1// Copyright 2013 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "src/v8.h"
29
30#include "src/arm64/utils-arm64.h"
31#include "src/macro-assembler.h"
32#include "test/cctest/cctest.h"
33#include "test/cctest/test-utils-arm64.h"
34
35using namespace v8::internal;
36
37
38#define __ masm->
39
40
41bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
42  if (result != expected) {
43    printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
44           expected, result);
45  }
46
47  return expected == result;
48}
49
50
51bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) {
52  if (result != expected) {
53    printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
54           expected, result);
55  }
56
57  return expected == result;
58}
59
60
61bool EqualFP32(float expected, const RegisterDump*, float result) {
62  if (float_to_rawbits(expected) == float_to_rawbits(result)) {
63    return true;
64  } else {
65    if (std::isnan(expected) || (expected == 0.0)) {
66      printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
67             float_to_rawbits(expected), float_to_rawbits(result));
68    } else {
69      printf("Expected %.9f (0x%08" PRIx32 ")\t "
70             "Found %.9f (0x%08" PRIx32 ")\n",
71             expected, float_to_rawbits(expected),
72             result, float_to_rawbits(result));
73    }
74    return false;
75  }
76}
77
78
79bool EqualFP64(double expected, const RegisterDump*, double result) {
80  if (double_to_rawbits(expected) == double_to_rawbits(result)) {
81    return true;
82  }
83
84  if (std::isnan(expected) || (expected == 0.0)) {
85    printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
86           double_to_rawbits(expected), double_to_rawbits(result));
87  } else {
88    printf("Expected %.17f (0x%016" PRIx64 ")\t "
89           "Found %.17f (0x%016" PRIx64 ")\n",
90           expected, double_to_rawbits(expected),
91           result, double_to_rawbits(result));
92  }
93  return false;
94}
95
96
97bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
98  CHECK(reg.Is32Bits());
99  // Retrieve the corresponding X register so we can check that the upper part
100  // was properly cleared.
101  int64_t result_x = core->xreg(reg.code());
102  if ((result_x & 0xffffffff00000000L) != 0) {
103    printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
104           expected, result_x);
105    return false;
106  }
107  uint32_t result_w = core->wreg(reg.code());
108  return Equal32(expected, core, result_w);
109}
110
111
112bool Equal64(uint64_t expected,
113             const RegisterDump* core,
114             const Register& reg) {
115  CHECK(reg.Is64Bits());
116  uint64_t result = core->xreg(reg.code());
117  return Equal64(expected, core, result);
118}
119
120
121bool EqualFP32(float expected,
122               const RegisterDump* core,
123               const FPRegister& fpreg) {
124  CHECK(fpreg.Is32Bits());
125  // Retrieve the corresponding D register so we can check that the upper part
126  // was properly cleared.
127  uint64_t result_64 = core->dreg_bits(fpreg.code());
128  if ((result_64 & 0xffffffff00000000L) != 0) {
129    printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
130           float_to_rawbits(expected), expected, result_64);
131    return false;
132  }
133
134  return EqualFP32(expected, core, core->sreg(fpreg.code()));
135}
136
137
138bool EqualFP64(double expected,
139               const RegisterDump* core,
140               const FPRegister& fpreg) {
141  CHECK(fpreg.Is64Bits());
142  return EqualFP64(expected, core, core->dreg(fpreg.code()));
143}
144
145
146bool Equal64(const Register& reg0,
147             const RegisterDump* core,
148             const Register& reg1) {
149  CHECK(reg0.Is64Bits() && reg1.Is64Bits());
150  int64_t expected = core->xreg(reg0.code());
151  int64_t result = core->xreg(reg1.code());
152  return Equal64(expected, core, result);
153}
154
155
156static char FlagN(uint32_t flags) {
157  return (flags & NFlag) ? 'N' : 'n';
158}
159
160
161static char FlagZ(uint32_t flags) {
162  return (flags & ZFlag) ? 'Z' : 'z';
163}
164
165
166static char FlagC(uint32_t flags) {
167  return (flags & CFlag) ? 'C' : 'c';
168}
169
170
171static char FlagV(uint32_t flags) {
172  return (flags & VFlag) ? 'V' : 'v';
173}
174
175
176bool EqualNzcv(uint32_t expected, uint32_t result) {
177  CHECK((expected & ~NZCVFlag) == 0);
178  CHECK((result & ~NZCVFlag) == 0);
179  if (result != expected) {
180    printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
181        FlagN(expected), FlagZ(expected), FlagC(expected), FlagV(expected),
182        FlagN(result), FlagZ(result), FlagC(result), FlagV(result));
183    return false;
184  }
185
186  return true;
187}
188
189
190bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
191  for (unsigned i = 0; i < kNumberOfRegisters; i++) {
192    if (a->xreg(i) != b->xreg(i)) {
193      printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
194             i, a->xreg(i), b->xreg(i));
195      return false;
196    }
197  }
198
199  for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
200    uint64_t a_bits = a->dreg_bits(i);
201    uint64_t b_bits = b->dreg_bits(i);
202    if (a_bits != b_bits) {
203      printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
204             i, a_bits, b_bits);
205      return false;
206    }
207  }
208
209  return true;
210}
211
212
213RegList PopulateRegisterArray(Register* w, Register* x, Register* r,
214                              int reg_size, int reg_count, RegList allowed) {
215  RegList list = 0;
216  int i = 0;
217  for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
218    if (((1UL << n) & allowed) != 0) {
219      // Only assign allowed registers.
220      if (r) {
221        r[i] = Register::Create(n, reg_size);
222      }
223      if (x) {
224        x[i] = Register::Create(n, kXRegSizeInBits);
225      }
226      if (w) {
227        w[i] = Register::Create(n, kWRegSizeInBits);
228      }
229      list |= (1UL << n);
230      i++;
231    }
232  }
233  // Check that we got enough registers.
234  CHECK(CountSetBits(list, kNumberOfRegisters) == reg_count);
235
236  return list;
237}
238
239
240RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v,
241                                int reg_size, int reg_count, RegList allowed) {
242  RegList list = 0;
243  int i = 0;
244  for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) {
245    if (((1UL << n) & allowed) != 0) {
246      // Only assigned allowed registers.
247      if (v) {
248        v[i] = FPRegister::Create(n, reg_size);
249      }
250      if (d) {
251        d[i] = FPRegister::Create(n, kDRegSizeInBits);
252      }
253      if (s) {
254        s[i] = FPRegister::Create(n, kSRegSizeInBits);
255      }
256      list |= (1UL << n);
257      i++;
258    }
259  }
260  // Check that we got enough registers.
261  CHECK(CountSetBits(list, kNumberOfFPRegisters) == reg_count);
262
263  return list;
264}
265
266
267void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
268  Register first = NoReg;
269  for (unsigned i = 0; i < kNumberOfRegisters; i++) {
270    if (reg_list & (1UL << i)) {
271      Register xn = Register::Create(i, kXRegSizeInBits);
272      // We should never write into csp here.
273      CHECK(!xn.Is(csp));
274      if (!xn.IsZero()) {
275        if (!first.IsValid()) {
276          // This is the first register we've hit, so construct the literal.
277          __ Mov(xn, value);
278          first = xn;
279        } else {
280          // We've already loaded the literal, so re-use the value already
281          // loaded into the first register we hit.
282          __ Mov(xn, first);
283        }
284      }
285    }
286  }
287}
288
289
290void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
291  FPRegister first = NoFPReg;
292  for (unsigned i = 0; i < kNumberOfFPRegisters; i++) {
293    if (reg_list & (1UL << i)) {
294      FPRegister dn = FPRegister::Create(i, kDRegSizeInBits);
295      if (!first.IsValid()) {
296        // This is the first register we've hit, so construct the literal.
297        __ Fmov(dn, value);
298        first = dn;
299      } else {
300        // We've already loaded the literal, so re-use the value already loaded
301        // into the first register we hit.
302        __ Fmov(dn, first);
303      }
304    }
305  }
306}
307
308
309void Clobber(MacroAssembler* masm, CPURegList reg_list) {
310  if (reg_list.type() == CPURegister::kRegister) {
311    // This will always clobber X registers.
312    Clobber(masm, reg_list.list());
313  } else if (reg_list.type() == CPURegister::kFPRegister) {
314    // This will always clobber D registers.
315    ClobberFP(masm, reg_list.list());
316  } else {
317    UNREACHABLE();
318  }
319}
320
321
322void RegisterDump::Dump(MacroAssembler* masm) {
323  CHECK(__ StackPointer().Is(csp));
324
325  // Ensure that we don't unintentionally clobber any registers.
326  RegList old_tmp_list = masm->TmpList()->list();
327  RegList old_fptmp_list = masm->FPTmpList()->list();
328  masm->TmpList()->set_list(0);
329  masm->FPTmpList()->set_list(0);
330
331  // Preserve some temporary registers.
332  Register dump_base = x0;
333  Register dump = x1;
334  Register tmp = x2;
335  Register dump_base_w = dump_base.W();
336  Register dump_w = dump.W();
337  Register tmp_w = tmp.W();
338
339  // Offsets into the dump_ structure.
340  const int x_offset = offsetof(dump_t, x_);
341  const int w_offset = offsetof(dump_t, w_);
342  const int d_offset = offsetof(dump_t, d_);
343  const int s_offset = offsetof(dump_t, s_);
344  const int sp_offset = offsetof(dump_t, sp_);
345  const int wsp_offset = offsetof(dump_t, wsp_);
346  const int flags_offset = offsetof(dump_t, flags_);
347
348  __ Push(xzr, dump_base, dump, tmp);
349
350  // Load the address where we will dump the state.
351  __ Mov(dump_base, reinterpret_cast<uint64_t>(&dump_));
352
353  // Dump the stack pointer (csp and wcsp).
354  // The stack pointer cannot be stored directly; it needs to be moved into
355  // another register first. Also, we pushed four X registers, so we need to
356  // compensate here.
357  __ Add(tmp, csp, 4 * kXRegSize);
358  __ Str(tmp, MemOperand(dump_base, sp_offset));
359  __ Add(tmp_w, wcsp, 4 * kXRegSize);
360  __ Str(tmp_w, MemOperand(dump_base, wsp_offset));
361
362  // Dump X registers.
363  __ Add(dump, dump_base, x_offset);
364  for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
365    __ Stp(Register::XRegFromCode(i), Register::XRegFromCode(i + 1),
366           MemOperand(dump, i * kXRegSize));
367  }
368
369  // Dump W registers.
370  __ Add(dump, dump_base, w_offset);
371  for (unsigned i = 0; i < kNumberOfRegisters; i += 2) {
372    __ Stp(Register::WRegFromCode(i), Register::WRegFromCode(i + 1),
373           MemOperand(dump, i * kWRegSize));
374  }
375
376  // Dump D registers.
377  __ Add(dump, dump_base, d_offset);
378  for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
379    __ Stp(FPRegister::DRegFromCode(i), FPRegister::DRegFromCode(i + 1),
380           MemOperand(dump, i * kDRegSize));
381  }
382
383  // Dump S registers.
384  __ Add(dump, dump_base, s_offset);
385  for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) {
386    __ Stp(FPRegister::SRegFromCode(i), FPRegister::SRegFromCode(i + 1),
387           MemOperand(dump, i * kSRegSize));
388  }
389
390  // Dump the flags.
391  __ Mrs(tmp, NZCV);
392  __ Str(tmp, MemOperand(dump_base, flags_offset));
393
394  // To dump the values that were in tmp amd dump, we need a new scratch
395  // register.  We can use any of the already dumped registers since we can
396  // easily restore them.
397  Register dump2_base = x10;
398  Register dump2 = x11;
399  CHECK(!AreAliased(dump_base, dump, tmp, dump2_base, dump2));
400
401  // Don't lose the dump_ address.
402  __ Mov(dump2_base, dump_base);
403
404  __ Pop(tmp, dump, dump_base, xzr);
405
406  __ Add(dump2, dump2_base, w_offset);
407  __ Str(dump_base_w, MemOperand(dump2, dump_base.code() * kWRegSize));
408  __ Str(dump_w, MemOperand(dump2, dump.code() * kWRegSize));
409  __ Str(tmp_w, MemOperand(dump2, tmp.code() * kWRegSize));
410
411  __ Add(dump2, dump2_base, x_offset);
412  __ Str(dump_base, MemOperand(dump2, dump_base.code() * kXRegSize));
413  __ Str(dump, MemOperand(dump2, dump.code() * kXRegSize));
414  __ Str(tmp, MemOperand(dump2, tmp.code() * kXRegSize));
415
416  // Finally, restore dump2_base and dump2.
417  __ Ldr(dump2_base, MemOperand(dump2, dump2_base.code() * kXRegSize));
418  __ Ldr(dump2, MemOperand(dump2, dump2.code() * kXRegSize));
419
420  // Restore the MacroAssembler's scratch registers.
421  masm->TmpList()->set_list(old_tmp_list);
422  masm->FPTmpList()->set_list(old_fptmp_list);
423
424  completed_ = true;
425}
426