1/* 2 * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11// 12// Specifies helper classes for intelligibility enhancement. 13// 14 15#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ 16#define WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ 17 18#include <complex> 19 20#include "webrtc/base/scoped_ptr.h" 21 22namespace webrtc { 23 24namespace intelligibility { 25 26// Return |current| changed towards |target|, with the change being at most 27// |limit|. 28float UpdateFactor(float target, float current, float limit); 29 30// Apply a small fudge to degenerate complex values. The numbers in the array 31// were chosen randomly, so that even a series of all zeroes has some small 32// variability. 33std::complex<float> zerofudge(std::complex<float> c); 34 35// Incremental mean computation. Return the mean of the series with the 36// mean |mean| with added |data|. 37std::complex<float> NewMean(std::complex<float> mean, 38 std::complex<float> data, 39 size_t count); 40 41// Updates |mean| with added |data|; 42void AddToMean(std::complex<float> data, 43 size_t count, 44 std::complex<float>* mean); 45 46// Internal helper for computing the variances of a stream of arrays. 47// The result is an array of variances per position: the i-th variance 48// is the variance of the stream of data on the i-th positions in the 49// input arrays. 50// There are four methods of computation: 51// * kStepInfinite computes variances from the beginning onwards 52// * kStepDecaying uses a recursive exponential decay formula with a 53// settable forgetting factor 54// * kStepWindowed computes variances within a moving window 55// * kStepBlocked is similar to kStepWindowed, but history is kept 56// as a rolling window of blocks: multiple input elements are used for 57// one block and the history then consists of the variances of these blocks 58// with the same effect as kStepWindowed, but less storage, so the window 59// can be longer 60class VarianceArray { 61 public: 62 enum StepType { 63 kStepInfinite = 0, 64 kStepDecaying, 65 kStepWindowed, 66 kStepBlocked, 67 kStepBlockBasedMovingAverage 68 }; 69 70 // Construct an instance for the given input array length (|freqs|) and 71 // computation algorithm (|type|), with the appropriate parameters. 72 // |window_size| is the number of samples for kStepWindowed and 73 // the number of blocks for kStepBlocked. |decay| is the forgetting factor 74 // for kStepDecaying. 75 VarianceArray(size_t freqs, StepType type, size_t window_size, float decay); 76 77 // Add a new data point to the series and compute the new variances. 78 // TODO(bercic) |skip_fudge| is a flag for kStepWindowed and kStepDecaying, 79 // whether they should skip adding some small dummy values to the input 80 // to prevent problems with all-zero inputs. Can probably be removed. 81 void Step(const std::complex<float>* data, bool skip_fudge = false) { 82 (this->*step_func_)(data, skip_fudge); 83 } 84 // Reset variances to zero and forget all history. 85 void Clear(); 86 // Scale the input data by |scale|. Effectively multiply variances 87 // by |scale^2|. 88 void ApplyScale(float scale); 89 90 // The current set of variances. 91 const float* variance() const { return variance_.get(); } 92 93 // The mean value of the current set of variances. 94 float array_mean() const { return array_mean_; } 95 96 private: 97 void InfiniteStep(const std::complex<float>* data, bool dummy); 98 void DecayStep(const std::complex<float>* data, bool dummy); 99 void WindowedStep(const std::complex<float>* data, bool dummy); 100 void BlockedStep(const std::complex<float>* data, bool dummy); 101 void BlockBasedMovingAverage(const std::complex<float>* data, bool dummy); 102 103 // TODO(ekmeyerson): Switch the following running means 104 // and histories from rtc::scoped_ptr to std::vector. 105 106 // The current average X and X^2. 107 rtc::scoped_ptr<std::complex<float>[]> running_mean_; 108 rtc::scoped_ptr<std::complex<float>[]> running_mean_sq_; 109 110 // Average X and X^2 for the current block in kStepBlocked. 111 rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_; 112 rtc::scoped_ptr<std::complex<float>[]> sub_running_mean_sq_; 113 114 // Sample history for the rolling window in kStepWindowed and block-wise 115 // histories for kStepBlocked. 116 rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> history_; 117 rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_; 118 rtc::scoped_ptr<rtc::scoped_ptr<std::complex<float>[]>[]> subhistory_sq_; 119 120 // The current set of variances and sums for Welford's algorithm. 121 rtc::scoped_ptr<float[]> variance_; 122 rtc::scoped_ptr<float[]> conj_sum_; 123 124 const size_t num_freqs_; 125 const size_t window_size_; 126 const float decay_; 127 size_t history_cursor_; 128 size_t count_; 129 float array_mean_; 130 bool buffer_full_; 131 void (VarianceArray::*step_func_)(const std::complex<float>*, bool); 132}; 133 134// Helper class for smoothing gain changes. On each applicatiion step, the 135// currently used gains are changed towards a set of settable target gains, 136// constrained by a limit on the magnitude of the changes. 137class GainApplier { 138 public: 139 GainApplier(size_t freqs, float change_limit); 140 141 // Copy |in_block| to |out_block|, multiplied by the current set of gains, 142 // and step the current set of gains towards the target set. 143 void Apply(const std::complex<float>* in_block, 144 std::complex<float>* out_block); 145 146 // Return the current target gain set. Modify this array to set the targets. 147 float* target() const { return target_.get(); } 148 149 private: 150 const size_t num_freqs_; 151 const float change_limit_; 152 rtc::scoped_ptr<float[]> target_; 153 rtc::scoped_ptr<float[]> current_; 154}; 155 156} // namespace intelligibility 157 158} // namespace webrtc 159 160#endif // WEBRTC_MODULES_AUDIO_PROCESSING_INTELLIGIBILITY_INTELLIGIBILITY_UTILS_H_ 161