Threads.cpp revision b09a6d08321b9484d80a2a9dc11ed52623942c8d
1/*
2**
3** Copyright 2012, The Android Open Source Project
4**
5** Licensed under the Apache License, Version 2.0 (the "License");
6** you may not use this file except in compliance with the License.
7** You may obtain a copy of the License at
8**
9**     http://www.apache.org/licenses/LICENSE-2.0
10**
11** Unless required by applicable law or agreed to in writing, software
12** distributed under the License is distributed on an "AS IS" BASIS,
13** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14** See the License for the specific language governing permissions and
15** limitations under the License.
16*/
17
18
19#define LOG_TAG "AudioFlinger"
20//#define LOG_NDEBUG 0
21#define ATRACE_TAG ATRACE_TAG_AUDIO
22
23#include "Configuration.h"
24#include <math.h>
25#include <fcntl.h>
26#include <linux/futex.h>
27#include <sys/stat.h>
28#include <sys/syscall.h>
29#include <cutils/properties.h>
30#include <media/AudioParameter.h>
31#include <media/AudioResamplerPublic.h>
32#include <utils/Log.h>
33#include <utils/Trace.h>
34
35#include <private/media/AudioTrackShared.h>
36#include <hardware/audio.h>
37#include <audio_effects/effect_ns.h>
38#include <audio_effects/effect_aec.h>
39#include <audio_utils/conversion.h>
40#include <audio_utils/primitives.h>
41#include <audio_utils/format.h>
42#include <audio_utils/minifloat.h>
43
44// NBAIO implementations
45#include <media/nbaio/AudioStreamInSource.h>
46#include <media/nbaio/AudioStreamOutSink.h>
47#include <media/nbaio/MonoPipe.h>
48#include <media/nbaio/MonoPipeReader.h>
49#include <media/nbaio/Pipe.h>
50#include <media/nbaio/PipeReader.h>
51#include <media/nbaio/SourceAudioBufferProvider.h>
52#include <mediautils/BatteryNotifier.h>
53
54#include <powermanager/PowerManager.h>
55
56#include "AudioFlinger.h"
57#include "AudioMixer.h"
58#include "BufferProviders.h"
59#include "FastMixer.h"
60#include "FastCapture.h"
61#include "ServiceUtilities.h"
62#include "mediautils/SchedulingPolicyService.h"
63
64#ifdef ADD_BATTERY_DATA
65#include <media/IMediaPlayerService.h>
66#include <media/IMediaDeathNotifier.h>
67#endif
68
69#ifdef DEBUG_CPU_USAGE
70#include <cpustats/CentralTendencyStatistics.h>
71#include <cpustats/ThreadCpuUsage.h>
72#endif
73
74#include "AutoPark.h"
75
76// ----------------------------------------------------------------------------
77
78// Note: the following macro is used for extremely verbose logging message.  In
79// order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
80// 0; but one side effect of this is to turn all LOGV's as well.  Some messages
81// are so verbose that we want to suppress them even when we have ALOG_ASSERT
82// turned on.  Do not uncomment the #def below unless you really know what you
83// are doing and want to see all of the extremely verbose messages.
84//#define VERY_VERY_VERBOSE_LOGGING
85#ifdef VERY_VERY_VERBOSE_LOGGING
86#define ALOGVV ALOGV
87#else
88#define ALOGVV(a...) do { } while(0)
89#endif
90
91// TODO: Move these macro/inlines to a header file.
92#define max(a, b) ((a) > (b) ? (a) : (b))
93template <typename T>
94static inline T min(const T& a, const T& b)
95{
96    return a < b ? a : b;
97}
98
99#ifndef ARRAY_SIZE
100#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
101#endif
102
103namespace android {
104
105// retry counts for buffer fill timeout
106// 50 * ~20msecs = 1 second
107static const int8_t kMaxTrackRetries = 50;
108static const int8_t kMaxTrackStartupRetries = 50;
109// allow less retry attempts on direct output thread.
110// direct outputs can be a scarce resource in audio hardware and should
111// be released as quickly as possible.
112static const int8_t kMaxTrackRetriesDirect = 2;
113
114
115
116// don't warn about blocked writes or record buffer overflows more often than this
117static const nsecs_t kWarningThrottleNs = seconds(5);
118
119// RecordThread loop sleep time upon application overrun or audio HAL read error
120static const int kRecordThreadSleepUs = 5000;
121
122// maximum time to wait in sendConfigEvent_l() for a status to be received
123static const nsecs_t kConfigEventTimeoutNs = seconds(2);
124
125// minimum sleep time for the mixer thread loop when tracks are active but in underrun
126static const uint32_t kMinThreadSleepTimeUs = 5000;
127// maximum divider applied to the active sleep time in the mixer thread loop
128static const uint32_t kMaxThreadSleepTimeShift = 2;
129
130// minimum normal sink buffer size, expressed in milliseconds rather than frames
131// FIXME This should be based on experimentally observed scheduling jitter
132static const uint32_t kMinNormalSinkBufferSizeMs = 20;
133// maximum normal sink buffer size
134static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
135
136// minimum capture buffer size in milliseconds to _not_ need a fast capture thread
137// FIXME This should be based on experimentally observed scheduling jitter
138static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
139
140// Offloaded output thread standby delay: allows track transition without going to standby
141static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
142
143// Direct output thread minimum sleep time in idle or active(underrun) state
144static const nsecs_t kDirectMinSleepTimeUs = 10000;
145
146
147// Whether to use fast mixer
148static const enum {
149    FastMixer_Never,    // never initialize or use: for debugging only
150    FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
151                        // normal mixer multiplier is 1
152    FastMixer_Static,   // initialize if needed, then use all the time if initialized,
153                        // multiplier is calculated based on min & max normal mixer buffer size
154    FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
155                        // multiplier is calculated based on min & max normal mixer buffer size
156    // FIXME for FastMixer_Dynamic:
157    //  Supporting this option will require fixing HALs that can't handle large writes.
158    //  For example, one HAL implementation returns an error from a large write,
159    //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
160    //  We could either fix the HAL implementations, or provide a wrapper that breaks
161    //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
162} kUseFastMixer = FastMixer_Static;
163
164// Whether to use fast capture
165static const enum {
166    FastCapture_Never,  // never initialize or use: for debugging only
167    FastCapture_Always, // always initialize and use, even if not needed: for debugging only
168    FastCapture_Static, // initialize if needed, then use all the time if initialized
169} kUseFastCapture = FastCapture_Static;
170
171// Priorities for requestPriority
172static const int kPriorityAudioApp = 2;
173static const int kPriorityFastMixer = 3;
174static const int kPriorityFastCapture = 3;
175
176// IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
177// track buffer in shared memory.  Zero on input means to use a default value.  For fast tracks,
178// AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
179
180// This is the default value, if not specified by property.
181static const int kFastTrackMultiplier = 2;
182
183// The minimum and maximum allowed values
184static const int kFastTrackMultiplierMin = 1;
185static const int kFastTrackMultiplierMax = 2;
186
187// The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
188static int sFastTrackMultiplier = kFastTrackMultiplier;
189
190// See Thread::readOnlyHeap().
191// Initially this heap is used to allocate client buffers for "fast" AudioRecord.
192// Eventually it will be the single buffer that FastCapture writes into via HAL read(),
193// and that all "fast" AudioRecord clients read from.  In either case, the size can be small.
194static const size_t kRecordThreadReadOnlyHeapSize = 0x2000;
195
196// ----------------------------------------------------------------------------
197
198static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
199
200static void sFastTrackMultiplierInit()
201{
202    char value[PROPERTY_VALUE_MAX];
203    if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
204        char *endptr;
205        unsigned long ul = strtoul(value, &endptr, 0);
206        if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
207            sFastTrackMultiplier = (int) ul;
208        }
209    }
210}
211
212// ----------------------------------------------------------------------------
213
214#ifdef ADD_BATTERY_DATA
215// To collect the amplifier usage
216static void addBatteryData(uint32_t params) {
217    sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
218    if (service == NULL) {
219        // it already logged
220        return;
221    }
222
223    service->addBatteryData(params);
224}
225#endif
226
227// Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
228struct {
229    // call when you acquire a partial wakelock
230    void acquire(const sp<IBinder> &wakeLockToken) {
231        pthread_mutex_lock(&mLock);
232        if (wakeLockToken.get() == nullptr) {
233            adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
234        } else {
235            if (mCount == 0) {
236                adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
237            }
238            ++mCount;
239        }
240        pthread_mutex_unlock(&mLock);
241    }
242
243    // call when you release a partial wakelock.
244    void release(const sp<IBinder> &wakeLockToken) {
245        if (wakeLockToken.get() == nullptr) {
246            return;
247        }
248        pthread_mutex_lock(&mLock);
249        if (--mCount < 0) {
250            ALOGE("negative wakelock count");
251            mCount = 0;
252        }
253        pthread_mutex_unlock(&mLock);
254    }
255
256    // retrieves the boottime timebase offset from monotonic.
257    int64_t getBoottimeOffset() {
258        pthread_mutex_lock(&mLock);
259        int64_t boottimeOffset = mBoottimeOffset;
260        pthread_mutex_unlock(&mLock);
261        return boottimeOffset;
262    }
263
264    // Adjusts the timebase offset between TIMEBASE_MONOTONIC
265    // and the selected timebase.
266    // Currently only TIMEBASE_BOOTTIME is allowed.
267    //
268    // This only needs to be called upon acquiring the first partial wakelock
269    // after all other partial wakelocks are released.
270    //
271    // We do an empirical measurement of the offset rather than parsing
272    // /proc/timer_list since the latter is not a formal kernel ABI.
273    static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
274        int clockbase;
275        switch (timebase) {
276        case ExtendedTimestamp::TIMEBASE_BOOTTIME:
277            clockbase = SYSTEM_TIME_BOOTTIME;
278            break;
279        default:
280            LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
281            break;
282        }
283        // try three times to get the clock offset, choose the one
284        // with the minimum gap in measurements.
285        const int tries = 3;
286        nsecs_t bestGap, measured;
287        for (int i = 0; i < tries; ++i) {
288            const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
289            const nsecs_t tbase = systemTime(clockbase);
290            const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
291            const nsecs_t gap = tmono2 - tmono;
292            if (i == 0 || gap < bestGap) {
293                bestGap = gap;
294                measured = tbase - ((tmono + tmono2) >> 1);
295            }
296        }
297
298        // to avoid micro-adjusting, we don't change the timebase
299        // unless it is significantly different.
300        //
301        // Assumption: It probably takes more than toleranceNs to
302        // suspend and resume the device.
303        static int64_t toleranceNs = 10000; // 10 us
304        if (llabs(*offset - measured) > toleranceNs) {
305            ALOGV("Adjusting timebase offset old: %lld  new: %lld",
306                    (long long)*offset, (long long)measured);
307            *offset = measured;
308        }
309    }
310
311    pthread_mutex_t mLock;
312    int32_t mCount;
313    int64_t mBoottimeOffset;
314} gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
315
316// ----------------------------------------------------------------------------
317//      CPU Stats
318// ----------------------------------------------------------------------------
319
320class CpuStats {
321public:
322    CpuStats();
323    void sample(const String8 &title);
324#ifdef DEBUG_CPU_USAGE
325private:
326    ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
327    CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
328
329    CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
330
331    int mCpuNum;                        // thread's current CPU number
332    int mCpukHz;                        // frequency of thread's current CPU in kHz
333#endif
334};
335
336CpuStats::CpuStats()
337#ifdef DEBUG_CPU_USAGE
338    : mCpuNum(-1), mCpukHz(-1)
339#endif
340{
341}
342
343void CpuStats::sample(const String8 &title
344#ifndef DEBUG_CPU_USAGE
345                __unused
346#endif
347        ) {
348#ifdef DEBUG_CPU_USAGE
349    // get current thread's delta CPU time in wall clock ns
350    double wcNs;
351    bool valid = mCpuUsage.sampleAndEnable(wcNs);
352
353    // record sample for wall clock statistics
354    if (valid) {
355        mWcStats.sample(wcNs);
356    }
357
358    // get the current CPU number
359    int cpuNum = sched_getcpu();
360
361    // get the current CPU frequency in kHz
362    int cpukHz = mCpuUsage.getCpukHz(cpuNum);
363
364    // check if either CPU number or frequency changed
365    if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
366        mCpuNum = cpuNum;
367        mCpukHz = cpukHz;
368        // ignore sample for purposes of cycles
369        valid = false;
370    }
371
372    // if no change in CPU number or frequency, then record sample for cycle statistics
373    if (valid && mCpukHz > 0) {
374        double cycles = wcNs * cpukHz * 0.000001;
375        mHzStats.sample(cycles);
376    }
377
378    unsigned n = mWcStats.n();
379    // mCpuUsage.elapsed() is expensive, so don't call it every loop
380    if ((n & 127) == 1) {
381        long long elapsed = mCpuUsage.elapsed();
382        if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
383            double perLoop = elapsed / (double) n;
384            double perLoop100 = perLoop * 0.01;
385            double perLoop1k = perLoop * 0.001;
386            double mean = mWcStats.mean();
387            double stddev = mWcStats.stddev();
388            double minimum = mWcStats.minimum();
389            double maximum = mWcStats.maximum();
390            double meanCycles = mHzStats.mean();
391            double stddevCycles = mHzStats.stddev();
392            double minCycles = mHzStats.minimum();
393            double maxCycles = mHzStats.maximum();
394            mCpuUsage.resetElapsed();
395            mWcStats.reset();
396            mHzStats.reset();
397            ALOGD("CPU usage for %s over past %.1f secs\n"
398                "  (%u mixer loops at %.1f mean ms per loop):\n"
399                "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
400                "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
401                "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
402                    title.string(),
403                    elapsed * .000000001, n, perLoop * .000001,
404                    mean * .001,
405                    stddev * .001,
406                    minimum * .001,
407                    maximum * .001,
408                    mean / perLoop100,
409                    stddev / perLoop100,
410                    minimum / perLoop100,
411                    maximum / perLoop100,
412                    meanCycles / perLoop1k,
413                    stddevCycles / perLoop1k,
414                    minCycles / perLoop1k,
415                    maxCycles / perLoop1k);
416
417        }
418    }
419#endif
420};
421
422// ----------------------------------------------------------------------------
423//      ThreadBase
424// ----------------------------------------------------------------------------
425
426// static
427const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
428{
429    switch (type) {
430    case MIXER:
431        return "MIXER";
432    case DIRECT:
433        return "DIRECT";
434    case DUPLICATING:
435        return "DUPLICATING";
436    case RECORD:
437        return "RECORD";
438    case OFFLOAD:
439        return "OFFLOAD";
440    default:
441        return "unknown";
442    }
443}
444
445String8 devicesToString(audio_devices_t devices)
446{
447    static const struct mapping {
448        audio_devices_t mDevices;
449        const char *    mString;
450    } mappingsOut[] = {
451        {AUDIO_DEVICE_OUT_EARPIECE,         "EARPIECE"},
452        {AUDIO_DEVICE_OUT_SPEAKER,          "SPEAKER"},
453        {AUDIO_DEVICE_OUT_WIRED_HEADSET,    "WIRED_HEADSET"},
454        {AUDIO_DEVICE_OUT_WIRED_HEADPHONE,  "WIRED_HEADPHONE"},
455        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO,    "BLUETOOTH_SCO"},
456        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET,    "BLUETOOTH_SCO_HEADSET"},
457        {AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT,     "BLUETOOTH_SCO_CARKIT"},
458        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP,           "BLUETOOTH_A2DP"},
459        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES,"BLUETOOTH_A2DP_HEADPHONES"},
460        {AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER,   "BLUETOOTH_A2DP_SPEAKER"},
461        {AUDIO_DEVICE_OUT_AUX_DIGITAL,      "AUX_DIGITAL"},
462        {AUDIO_DEVICE_OUT_HDMI,             "HDMI"},
463        {AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET,"ANLG_DOCK_HEADSET"},
464        {AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET,"DGTL_DOCK_HEADSET"},
465        {AUDIO_DEVICE_OUT_USB_ACCESSORY,    "USB_ACCESSORY"},
466        {AUDIO_DEVICE_OUT_USB_DEVICE,       "USB_DEVICE"},
467        {AUDIO_DEVICE_OUT_TELEPHONY_TX,     "TELEPHONY_TX"},
468        {AUDIO_DEVICE_OUT_LINE,             "LINE"},
469        {AUDIO_DEVICE_OUT_HDMI_ARC,         "HDMI_ARC"},
470        {AUDIO_DEVICE_OUT_SPDIF,            "SPDIF"},
471        {AUDIO_DEVICE_OUT_FM,               "FM"},
472        {AUDIO_DEVICE_OUT_AUX_LINE,         "AUX_LINE"},
473        {AUDIO_DEVICE_OUT_SPEAKER_SAFE,     "SPEAKER_SAFE"},
474        {AUDIO_DEVICE_OUT_IP,               "IP"},
475        {AUDIO_DEVICE_OUT_BUS,              "BUS"},
476        {AUDIO_DEVICE_NONE,                 "NONE"},       // must be last
477    }, mappingsIn[] = {
478        {AUDIO_DEVICE_IN_COMMUNICATION,     "COMMUNICATION"},
479        {AUDIO_DEVICE_IN_AMBIENT,           "AMBIENT"},
480        {AUDIO_DEVICE_IN_BUILTIN_MIC,       "BUILTIN_MIC"},
481        {AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET"},
482        {AUDIO_DEVICE_IN_WIRED_HEADSET,     "WIRED_HEADSET"},
483        {AUDIO_DEVICE_IN_AUX_DIGITAL,       "AUX_DIGITAL"},
484        {AUDIO_DEVICE_IN_VOICE_CALL,        "VOICE_CALL"},
485        {AUDIO_DEVICE_IN_TELEPHONY_RX,      "TELEPHONY_RX"},
486        {AUDIO_DEVICE_IN_BACK_MIC,          "BACK_MIC"},
487        {AUDIO_DEVICE_IN_REMOTE_SUBMIX,     "REMOTE_SUBMIX"},
488        {AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET"},
489        {AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET"},
490        {AUDIO_DEVICE_IN_USB_ACCESSORY,     "USB_ACCESSORY"},
491        {AUDIO_DEVICE_IN_USB_DEVICE,        "USB_DEVICE"},
492        {AUDIO_DEVICE_IN_FM_TUNER,          "FM_TUNER"},
493        {AUDIO_DEVICE_IN_TV_TUNER,          "TV_TUNER"},
494        {AUDIO_DEVICE_IN_LINE,              "LINE"},
495        {AUDIO_DEVICE_IN_SPDIF,             "SPDIF"},
496        {AUDIO_DEVICE_IN_BLUETOOTH_A2DP,    "BLUETOOTH_A2DP"},
497        {AUDIO_DEVICE_IN_LOOPBACK,          "LOOPBACK"},
498        {AUDIO_DEVICE_IN_IP,                "IP"},
499        {AUDIO_DEVICE_IN_BUS,               "BUS"},
500        {AUDIO_DEVICE_NONE,                 "NONE"},        // must be last
501    };
502    String8 result;
503    audio_devices_t allDevices = AUDIO_DEVICE_NONE;
504    const mapping *entry;
505    if (devices & AUDIO_DEVICE_BIT_IN) {
506        devices &= ~AUDIO_DEVICE_BIT_IN;
507        entry = mappingsIn;
508    } else {
509        entry = mappingsOut;
510    }
511    for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) {
512        allDevices = (audio_devices_t) (allDevices | entry->mDevices);
513        if (devices & entry->mDevices) {
514            if (!result.isEmpty()) {
515                result.append("|");
516            }
517            result.append(entry->mString);
518        }
519    }
520    if (devices & ~allDevices) {
521        if (!result.isEmpty()) {
522            result.append("|");
523        }
524        result.appendFormat("0x%X", devices & ~allDevices);
525    }
526    if (result.isEmpty()) {
527        result.append(entry->mString);
528    }
529    return result;
530}
531
532String8 inputFlagsToString(audio_input_flags_t flags)
533{
534    static const struct mapping {
535        audio_input_flags_t     mFlag;
536        const char *            mString;
537    } mappings[] = {
538        {AUDIO_INPUT_FLAG_FAST,             "FAST"},
539        {AUDIO_INPUT_FLAG_HW_HOTWORD,       "HW_HOTWORD"},
540        {AUDIO_INPUT_FLAG_RAW,              "RAW"},
541        {AUDIO_INPUT_FLAG_SYNC,             "SYNC"},
542        {AUDIO_INPUT_FLAG_NONE,             "NONE"},        // must be last
543    };
544    String8 result;
545    audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE;
546    const mapping *entry;
547    for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) {
548        allFlags = (audio_input_flags_t) (allFlags | entry->mFlag);
549        if (flags & entry->mFlag) {
550            if (!result.isEmpty()) {
551                result.append("|");
552            }
553            result.append(entry->mString);
554        }
555    }
556    if (flags & ~allFlags) {
557        if (!result.isEmpty()) {
558            result.append("|");
559        }
560        result.appendFormat("0x%X", flags & ~allFlags);
561    }
562    if (result.isEmpty()) {
563        result.append(entry->mString);
564    }
565    return result;
566}
567
568String8 outputFlagsToString(audio_output_flags_t flags)
569{
570    static const struct mapping {
571        audio_output_flags_t    mFlag;
572        const char *            mString;
573    } mappings[] = {
574        {AUDIO_OUTPUT_FLAG_DIRECT,          "DIRECT"},
575        {AUDIO_OUTPUT_FLAG_PRIMARY,         "PRIMARY"},
576        {AUDIO_OUTPUT_FLAG_FAST,            "FAST"},
577        {AUDIO_OUTPUT_FLAG_DEEP_BUFFER,     "DEEP_BUFFER"},
578        {AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD,"COMPRESS_OFFLOAD"},
579        {AUDIO_OUTPUT_FLAG_NON_BLOCKING,    "NON_BLOCKING"},
580        {AUDIO_OUTPUT_FLAG_HW_AV_SYNC,      "HW_AV_SYNC"},
581        {AUDIO_OUTPUT_FLAG_RAW,             "RAW"},
582        {AUDIO_OUTPUT_FLAG_SYNC,            "SYNC"},
583        {AUDIO_OUTPUT_FLAG_IEC958_NONAUDIO, "IEC958_NONAUDIO"},
584        {AUDIO_OUTPUT_FLAG_NONE,            "NONE"},        // must be last
585    };
586    String8 result;
587    audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE;
588    const mapping *entry;
589    for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) {
590        allFlags = (audio_output_flags_t) (allFlags | entry->mFlag);
591        if (flags & entry->mFlag) {
592            if (!result.isEmpty()) {
593                result.append("|");
594            }
595            result.append(entry->mString);
596        }
597    }
598    if (flags & ~allFlags) {
599        if (!result.isEmpty()) {
600            result.append("|");
601        }
602        result.appendFormat("0x%X", flags & ~allFlags);
603    }
604    if (result.isEmpty()) {
605        result.append(entry->mString);
606    }
607    return result;
608}
609
610const char *sourceToString(audio_source_t source)
611{
612    switch (source) {
613    case AUDIO_SOURCE_DEFAULT:              return "default";
614    case AUDIO_SOURCE_MIC:                  return "mic";
615    case AUDIO_SOURCE_VOICE_UPLINK:         return "voice uplink";
616    case AUDIO_SOURCE_VOICE_DOWNLINK:       return "voice downlink";
617    case AUDIO_SOURCE_VOICE_CALL:           return "voice call";
618    case AUDIO_SOURCE_CAMCORDER:            return "camcorder";
619    case AUDIO_SOURCE_VOICE_RECOGNITION:    return "voice recognition";
620    case AUDIO_SOURCE_VOICE_COMMUNICATION:  return "voice communication";
621    case AUDIO_SOURCE_REMOTE_SUBMIX:        return "remote submix";
622    case AUDIO_SOURCE_UNPROCESSED:          return "unprocessed";
623    case AUDIO_SOURCE_FM_TUNER:             return "FM tuner";
624    case AUDIO_SOURCE_HOTWORD:              return "hotword";
625    default:                                return "unknown";
626    }
627}
628
629AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
630        audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady)
631    :   Thread(false /*canCallJava*/),
632        mType(type),
633        mAudioFlinger(audioFlinger),
634        // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
635        // are set by PlaybackThread::readOutputParameters_l() or
636        // RecordThread::readInputParameters_l()
637        //FIXME: mStandby should be true here. Is this some kind of hack?
638        mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
639        mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE),
640        mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
641        // mName will be set by concrete (non-virtual) subclass
642        mDeathRecipient(new PMDeathRecipient(this)),
643        mSystemReady(systemReady),
644        mNotifiedBatteryStart(false)
645{
646    memset(&mPatch, 0, sizeof(struct audio_patch));
647}
648
649AudioFlinger::ThreadBase::~ThreadBase()
650{
651    // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
652    mConfigEvents.clear();
653
654    // do not lock the mutex in destructor
655    releaseWakeLock_l();
656    if (mPowerManager != 0) {
657        sp<IBinder> binder = IInterface::asBinder(mPowerManager);
658        binder->unlinkToDeath(mDeathRecipient);
659    }
660}
661
662status_t AudioFlinger::ThreadBase::readyToRun()
663{
664    status_t status = initCheck();
665    if (status == NO_ERROR) {
666        ALOGI("AudioFlinger's thread %p ready to run", this);
667    } else {
668        ALOGE("No working audio driver found.");
669    }
670    return status;
671}
672
673void AudioFlinger::ThreadBase::exit()
674{
675    ALOGV("ThreadBase::exit");
676    // do any cleanup required for exit to succeed
677    preExit();
678    {
679        // This lock prevents the following race in thread (uniprocessor for illustration):
680        //  if (!exitPending()) {
681        //      // context switch from here to exit()
682        //      // exit() calls requestExit(), what exitPending() observes
683        //      // exit() calls signal(), which is dropped since no waiters
684        //      // context switch back from exit() to here
685        //      mWaitWorkCV.wait(...);
686        //      // now thread is hung
687        //  }
688        AutoMutex lock(mLock);
689        requestExit();
690        mWaitWorkCV.broadcast();
691    }
692    // When Thread::requestExitAndWait is made virtual and this method is renamed to
693    // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
694    requestExitAndWait();
695}
696
697status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
698{
699    ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
700    Mutex::Autolock _l(mLock);
701
702    return sendSetParameterConfigEvent_l(keyValuePairs);
703}
704
705// sendConfigEvent_l() must be called with ThreadBase::mLock held
706// Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
707status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
708{
709    status_t status = NO_ERROR;
710
711    if (event->mRequiresSystemReady && !mSystemReady) {
712        event->mWaitStatus = false;
713        mPendingConfigEvents.add(event);
714        return status;
715    }
716    mConfigEvents.add(event);
717    ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
718    mWaitWorkCV.signal();
719    mLock.unlock();
720    {
721        Mutex::Autolock _l(event->mLock);
722        while (event->mWaitStatus) {
723            if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
724                event->mStatus = TIMED_OUT;
725                event->mWaitStatus = false;
726            }
727        }
728        status = event->mStatus;
729    }
730    mLock.lock();
731    return status;
732}
733
734void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid)
735{
736    Mutex::Autolock _l(mLock);
737    sendIoConfigEvent_l(event, pid);
738}
739
740// sendIoConfigEvent_l() must be called with ThreadBase::mLock held
741void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid)
742{
743    sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid);
744    sendConfigEvent_l(configEvent);
745}
746
747void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio)
748{
749    Mutex::Autolock _l(mLock);
750    sendPrioConfigEvent_l(pid, tid, prio);
751}
752
753// sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
754void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
755{
756    sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio);
757    sendConfigEvent_l(configEvent);
758}
759
760// sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
761status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
762{
763    sp<ConfigEvent> configEvent;
764    AudioParameter param(keyValuePair);
765    int value;
766    if (param.getInt(String8(AUDIO_PARAMETER_MONO_OUTPUT), value) == NO_ERROR) {
767        setMasterMono_l(value != 0);
768        if (param.size() == 1) {
769            return NO_ERROR; // should be a solo parameter - we don't pass down
770        }
771        param.remove(String8(AUDIO_PARAMETER_MONO_OUTPUT));
772        configEvent = new SetParameterConfigEvent(param.toString());
773    } else {
774        configEvent = new SetParameterConfigEvent(keyValuePair);
775    }
776    return sendConfigEvent_l(configEvent);
777}
778
779status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
780                                                        const struct audio_patch *patch,
781                                                        audio_patch_handle_t *handle)
782{
783    Mutex::Autolock _l(mLock);
784    sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
785    status_t status = sendConfigEvent_l(configEvent);
786    if (status == NO_ERROR) {
787        CreateAudioPatchConfigEventData *data =
788                                        (CreateAudioPatchConfigEventData *)configEvent->mData.get();
789        *handle = data->mHandle;
790    }
791    return status;
792}
793
794status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
795                                                                const audio_patch_handle_t handle)
796{
797    Mutex::Autolock _l(mLock);
798    sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
799    return sendConfigEvent_l(configEvent);
800}
801
802
803// post condition: mConfigEvents.isEmpty()
804void AudioFlinger::ThreadBase::processConfigEvents_l()
805{
806    bool configChanged = false;
807
808    while (!mConfigEvents.isEmpty()) {
809        ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
810        sp<ConfigEvent> event = mConfigEvents[0];
811        mConfigEvents.removeAt(0);
812        switch (event->mType) {
813        case CFG_EVENT_PRIO: {
814            PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
815            // FIXME Need to understand why this has to be done asynchronously
816            int err = requestPriority(data->mPid, data->mTid, data->mPrio,
817                    true /*asynchronous*/);
818            if (err != 0) {
819                ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
820                      data->mPrio, data->mPid, data->mTid, err);
821            }
822        } break;
823        case CFG_EVENT_IO: {
824            IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
825            ioConfigChanged(data->mEvent, data->mPid);
826        } break;
827        case CFG_EVENT_SET_PARAMETER: {
828            SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
829            if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
830                configChanged = true;
831            }
832        } break;
833        case CFG_EVENT_CREATE_AUDIO_PATCH: {
834            CreateAudioPatchConfigEventData *data =
835                                            (CreateAudioPatchConfigEventData *)event->mData.get();
836            event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
837        } break;
838        case CFG_EVENT_RELEASE_AUDIO_PATCH: {
839            ReleaseAudioPatchConfigEventData *data =
840                                            (ReleaseAudioPatchConfigEventData *)event->mData.get();
841            event->mStatus = releaseAudioPatch_l(data->mHandle);
842        } break;
843        default:
844            ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
845            break;
846        }
847        {
848            Mutex::Autolock _l(event->mLock);
849            if (event->mWaitStatus) {
850                event->mWaitStatus = false;
851                event->mCond.signal();
852            }
853        }
854        ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
855    }
856
857    if (configChanged) {
858        cacheParameters_l();
859    }
860}
861
862String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
863    String8 s;
864    const audio_channel_representation_t representation =
865            audio_channel_mask_get_representation(mask);
866
867    switch (representation) {
868    case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
869        if (output) {
870            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
871            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
872            if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
873            if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
874            if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
875            if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
876            if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
877            if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
878            if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
879            if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
880            if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
881            if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
882            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
883            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
884            if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
885            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
886            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
887            if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
888            if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown,  ");
889        } else {
890            if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
891            if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
892            if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
893            if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
894            if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
895            if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
896            if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
897            if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
898            if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
899            if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
900            if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
901            if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
902            if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
903            if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
904            if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown,  ");
905        }
906        const int len = s.length();
907        if (len > 2) {
908            (void) s.lockBuffer(len);      // needed?
909            s.unlockBuffer(len - 2);       // remove trailing ", "
910        }
911        return s;
912    }
913    case AUDIO_CHANNEL_REPRESENTATION_INDEX:
914        s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
915        return s;
916    default:
917        s.appendFormat("unknown mask, representation:%d  bits:%#x",
918                representation, audio_channel_mask_get_bits(mask));
919        return s;
920    }
921}
922
923void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args __unused)
924{
925    const size_t SIZE = 256;
926    char buffer[SIZE];
927    String8 result;
928
929    bool locked = AudioFlinger::dumpTryLock(mLock);
930    if (!locked) {
931        dprintf(fd, "thread %p may be deadlocked\n", this);
932    }
933
934    dprintf(fd, "  Thread name: %s\n", mThreadName);
935    dprintf(fd, "  I/O handle: %d\n", mId);
936    dprintf(fd, "  TID: %d\n", getTid());
937    dprintf(fd, "  Standby: %s\n", mStandby ? "yes" : "no");
938    dprintf(fd, "  Sample rate: %u Hz\n", mSampleRate);
939    dprintf(fd, "  HAL frame count: %zu\n", mFrameCount);
940    dprintf(fd, "  HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat));
941    dprintf(fd, "  HAL buffer size: %zu bytes\n", mBufferSize);
942    dprintf(fd, "  Channel count: %u\n", mChannelCount);
943    dprintf(fd, "  Channel mask: 0x%08x (%s)\n", mChannelMask,
944            channelMaskToString(mChannelMask, mType != RECORD).string());
945    dprintf(fd, "  Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat));
946    dprintf(fd, "  Processing frame size: %zu bytes\n", mFrameSize);
947    dprintf(fd, "  Pending config events:");
948    size_t numConfig = mConfigEvents.size();
949    if (numConfig) {
950        for (size_t i = 0; i < numConfig; i++) {
951            mConfigEvents[i]->dump(buffer, SIZE);
952            dprintf(fd, "\n    %s", buffer);
953        }
954        dprintf(fd, "\n");
955    } else {
956        dprintf(fd, " none\n");
957    }
958    dprintf(fd, "  Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string());
959    dprintf(fd, "  Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string());
960    dprintf(fd, "  Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource));
961
962    if (locked) {
963        mLock.unlock();
964    }
965}
966
967void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
968{
969    const size_t SIZE = 256;
970    char buffer[SIZE];
971    String8 result;
972
973    size_t numEffectChains = mEffectChains.size();
974    snprintf(buffer, SIZE, "  %zu Effect Chains\n", numEffectChains);
975    write(fd, buffer, strlen(buffer));
976
977    for (size_t i = 0; i < numEffectChains; ++i) {
978        sp<EffectChain> chain = mEffectChains[i];
979        if (chain != 0) {
980            chain->dump(fd, args);
981        }
982    }
983}
984
985void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
986{
987    Mutex::Autolock _l(mLock);
988    acquireWakeLock_l(uid);
989}
990
991String16 AudioFlinger::ThreadBase::getWakeLockTag()
992{
993    switch (mType) {
994    case MIXER:
995        return String16("AudioMix");
996    case DIRECT:
997        return String16("AudioDirectOut");
998    case DUPLICATING:
999        return String16("AudioDup");
1000    case RECORD:
1001        return String16("AudioIn");
1002    case OFFLOAD:
1003        return String16("AudioOffload");
1004    default:
1005        ALOG_ASSERT(false);
1006        return String16("AudioUnknown");
1007    }
1008}
1009
1010void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
1011{
1012    getPowerManager_l();
1013    if (mPowerManager != 0) {
1014        sp<IBinder> binder = new BBinder();
1015        status_t status;
1016        if (uid >= 0) {
1017            status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
1018                    binder,
1019                    getWakeLockTag(),
1020                    String16("audioserver"),
1021                    uid,
1022                    true /* FIXME force oneway contrary to .aidl */);
1023        } else {
1024            status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
1025                    binder,
1026                    getWakeLockTag(),
1027                    String16("audioserver"),
1028                    true /* FIXME force oneway contrary to .aidl */);
1029        }
1030        if (status == NO_ERROR) {
1031            mWakeLockToken = binder;
1032        }
1033        ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
1034    }
1035
1036    if (!mNotifiedBatteryStart) {
1037        BatteryNotifier::getInstance().noteStartAudio();
1038        mNotifiedBatteryStart = true;
1039    }
1040    gBoottime.acquire(mWakeLockToken);
1041    mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
1042            gBoottime.getBoottimeOffset();
1043}
1044
1045void AudioFlinger::ThreadBase::releaseWakeLock()
1046{
1047    Mutex::Autolock _l(mLock);
1048    releaseWakeLock_l();
1049}
1050
1051void AudioFlinger::ThreadBase::releaseWakeLock_l()
1052{
1053    gBoottime.release(mWakeLockToken);
1054    if (mWakeLockToken != 0) {
1055        ALOGV("releaseWakeLock_l() %s", mThreadName);
1056        if (mPowerManager != 0) {
1057            mPowerManager->releaseWakeLock(mWakeLockToken, 0,
1058                    true /* FIXME force oneway contrary to .aidl */);
1059        }
1060        mWakeLockToken.clear();
1061    }
1062
1063    if (mNotifiedBatteryStart) {
1064        BatteryNotifier::getInstance().noteStopAudio();
1065        mNotifiedBatteryStart = false;
1066    }
1067}
1068
1069void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
1070    Mutex::Autolock _l(mLock);
1071    updateWakeLockUids_l(uids);
1072}
1073
1074void AudioFlinger::ThreadBase::getPowerManager_l() {
1075    if (mSystemReady && mPowerManager == 0) {
1076        // use checkService() to avoid blocking if power service is not up yet
1077        sp<IBinder> binder =
1078            defaultServiceManager()->checkService(String16("power"));
1079        if (binder == 0) {
1080            ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
1081        } else {
1082            mPowerManager = interface_cast<IPowerManager>(binder);
1083            binder->linkToDeath(mDeathRecipient);
1084        }
1085    }
1086}
1087
1088void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
1089    getPowerManager_l();
1090    if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1091        if (mSystemReady) {
1092            ALOGE("no wake lock to update, but system ready!");
1093        } else {
1094            ALOGW("no wake lock to update, system not ready yet");
1095        }
1096        return;
1097    }
1098    if (mPowerManager != 0) {
1099        sp<IBinder> binder = new BBinder();
1100        status_t status;
1101        status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(),
1102                    true /* FIXME force oneway contrary to .aidl */);
1103        ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1104    }
1105}
1106
1107void AudioFlinger::ThreadBase::clearPowerManager()
1108{
1109    Mutex::Autolock _l(mLock);
1110    releaseWakeLock_l();
1111    mPowerManager.clear();
1112}
1113
1114void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1115{
1116    sp<ThreadBase> thread = mThread.promote();
1117    if (thread != 0) {
1118        thread->clearPowerManager();
1119    }
1120    ALOGW("power manager service died !!!");
1121}
1122
1123void AudioFlinger::ThreadBase::setEffectSuspended(
1124        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1125{
1126    Mutex::Autolock _l(mLock);
1127    setEffectSuspended_l(type, suspend, sessionId);
1128}
1129
1130void AudioFlinger::ThreadBase::setEffectSuspended_l(
1131        const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1132{
1133    sp<EffectChain> chain = getEffectChain_l(sessionId);
1134    if (chain != 0) {
1135        if (type != NULL) {
1136            chain->setEffectSuspended_l(type, suspend);
1137        } else {
1138            chain->setEffectSuspendedAll_l(suspend);
1139        }
1140    }
1141
1142    updateSuspendedSessions_l(type, suspend, sessionId);
1143}
1144
1145void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1146{
1147    ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1148    if (index < 0) {
1149        return;
1150    }
1151
1152    const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1153            mSuspendedSessions.valueAt(index);
1154
1155    for (size_t i = 0; i < sessionEffects.size(); i++) {
1156        sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
1157        for (int j = 0; j < desc->mRefCount; j++) {
1158            if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1159                chain->setEffectSuspendedAll_l(true);
1160            } else {
1161                ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1162                    desc->mType.timeLow);
1163                chain->setEffectSuspended_l(&desc->mType, true);
1164            }
1165        }
1166    }
1167}
1168
1169void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1170                                                         bool suspend,
1171                                                         audio_session_t sessionId)
1172{
1173    ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1174
1175    KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1176
1177    if (suspend) {
1178        if (index >= 0) {
1179            sessionEffects = mSuspendedSessions.valueAt(index);
1180        } else {
1181            mSuspendedSessions.add(sessionId, sessionEffects);
1182        }
1183    } else {
1184        if (index < 0) {
1185            return;
1186        }
1187        sessionEffects = mSuspendedSessions.valueAt(index);
1188    }
1189
1190
1191    int key = EffectChain::kKeyForSuspendAll;
1192    if (type != NULL) {
1193        key = type->timeLow;
1194    }
1195    index = sessionEffects.indexOfKey(key);
1196
1197    sp<SuspendedSessionDesc> desc;
1198    if (suspend) {
1199        if (index >= 0) {
1200            desc = sessionEffects.valueAt(index);
1201        } else {
1202            desc = new SuspendedSessionDesc();
1203            if (type != NULL) {
1204                desc->mType = *type;
1205            }
1206            sessionEffects.add(key, desc);
1207            ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1208        }
1209        desc->mRefCount++;
1210    } else {
1211        if (index < 0) {
1212            return;
1213        }
1214        desc = sessionEffects.valueAt(index);
1215        if (--desc->mRefCount == 0) {
1216            ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1217            sessionEffects.removeItemsAt(index);
1218            if (sessionEffects.isEmpty()) {
1219                ALOGV("updateSuspendedSessions_l() restore removing session %d",
1220                                 sessionId);
1221                mSuspendedSessions.removeItem(sessionId);
1222            }
1223        }
1224    }
1225    if (!sessionEffects.isEmpty()) {
1226        mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1227    }
1228}
1229
1230void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
1231                                                            bool enabled,
1232                                                            audio_session_t sessionId)
1233{
1234    Mutex::Autolock _l(mLock);
1235    checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
1236}
1237
1238void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
1239                                                            bool enabled,
1240                                                            audio_session_t sessionId)
1241{
1242    if (mType != RECORD) {
1243        // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1244        // another session. This gives the priority to well behaved effect control panels
1245        // and applications not using global effects.
1246        // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1247        // global effects
1248        if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
1249            setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1250        }
1251    }
1252
1253    sp<EffectChain> chain = getEffectChain_l(sessionId);
1254    if (chain != 0) {
1255        chain->checkSuspendOnEffectEnabled(effect, enabled);
1256    }
1257}
1258
1259// ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
1260sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1261        const sp<AudioFlinger::Client>& client,
1262        const sp<IEffectClient>& effectClient,
1263        int32_t priority,
1264        audio_session_t sessionId,
1265        effect_descriptor_t *desc,
1266        int *enabled,
1267        status_t *status)
1268{
1269    sp<EffectModule> effect;
1270    sp<EffectHandle> handle;
1271    status_t lStatus;
1272    sp<EffectChain> chain;
1273    bool chainCreated = false;
1274    bool effectCreated = false;
1275    bool effectRegistered = false;
1276
1277    lStatus = initCheck();
1278    if (lStatus != NO_ERROR) {
1279        ALOGW("createEffect_l() Audio driver not initialized.");
1280        goto Exit;
1281    }
1282
1283    // Reject any effect on Direct output threads for now, since the format of
1284    // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1285    if (mType == DIRECT) {
1286        ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s",
1287                desc->name, mThreadName);
1288        lStatus = BAD_VALUE;
1289        goto Exit;
1290    }
1291
1292    // Reject any effect on mixer or duplicating multichannel sinks.
1293    // TODO: fix both format and multichannel issues with effects.
1294    if ((mType == MIXER || mType == DUPLICATING) && mChannelCount != FCC_2) {
1295        ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads",
1296                desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING");
1297        lStatus = BAD_VALUE;
1298        goto Exit;
1299    }
1300
1301    // Allow global effects only on offloaded and mixer threads
1302    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1303        switch (mType) {
1304        case MIXER:
1305        case OFFLOAD:
1306            break;
1307        case DIRECT:
1308        case DUPLICATING:
1309        case RECORD:
1310        default:
1311            ALOGW("createEffect_l() Cannot add global effect %s on thread %s",
1312                    desc->name, mThreadName);
1313            lStatus = BAD_VALUE;
1314            goto Exit;
1315        }
1316    }
1317
1318    // Only Pre processor effects are allowed on input threads and only on input threads
1319    if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
1320        ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
1321                desc->name, desc->flags, mType);
1322        lStatus = BAD_VALUE;
1323        goto Exit;
1324    }
1325
1326    ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1327
1328    { // scope for mLock
1329        Mutex::Autolock _l(mLock);
1330
1331        // check for existing effect chain with the requested audio session
1332        chain = getEffectChain_l(sessionId);
1333        if (chain == 0) {
1334            // create a new chain for this session
1335            ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1336            chain = new EffectChain(this, sessionId);
1337            addEffectChain_l(chain);
1338            chain->setStrategy(getStrategyForSession_l(sessionId));
1339            chainCreated = true;
1340        } else {
1341            effect = chain->getEffectFromDesc_l(desc);
1342        }
1343
1344        ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1345
1346        if (effect == 0) {
1347            audio_unique_id_t id = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1348            // Check CPU and memory usage
1349            lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
1350            if (lStatus != NO_ERROR) {
1351                goto Exit;
1352            }
1353            effectRegistered = true;
1354            // create a new effect module if none present in the chain
1355            effect = new EffectModule(this, chain, desc, id, sessionId);
1356            lStatus = effect->status();
1357            if (lStatus != NO_ERROR) {
1358                goto Exit;
1359            }
1360            effect->setOffloaded(mType == OFFLOAD, mId);
1361
1362            lStatus = chain->addEffect_l(effect);
1363            if (lStatus != NO_ERROR) {
1364                goto Exit;
1365            }
1366            effectCreated = true;
1367
1368            effect->setDevice(mOutDevice);
1369            effect->setDevice(mInDevice);
1370            effect->setMode(mAudioFlinger->getMode());
1371            effect->setAudioSource(mAudioSource);
1372        }
1373        // create effect handle and connect it to effect module
1374        handle = new EffectHandle(effect, client, effectClient, priority);
1375        lStatus = handle->initCheck();
1376        if (lStatus == OK) {
1377            lStatus = effect->addHandle(handle.get());
1378        }
1379        if (enabled != NULL) {
1380            *enabled = (int)effect->isEnabled();
1381        }
1382    }
1383
1384Exit:
1385    if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1386        Mutex::Autolock _l(mLock);
1387        if (effectCreated) {
1388            chain->removeEffect_l(effect);
1389        }
1390        if (effectRegistered) {
1391            AudioSystem::unregisterEffect(effect->id());
1392        }
1393        if (chainCreated) {
1394            removeEffectChain_l(chain);
1395        }
1396        handle.clear();
1397    }
1398
1399    *status = lStatus;
1400    return handle;
1401}
1402
1403sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1404        int effectId)
1405{
1406    Mutex::Autolock _l(mLock);
1407    return getEffect_l(sessionId, effectId);
1408}
1409
1410sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1411        int effectId)
1412{
1413    sp<EffectChain> chain = getEffectChain_l(sessionId);
1414    return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1415}
1416
1417// PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1418// PlaybackThread::mLock held
1419status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1420{
1421    // check for existing effect chain with the requested audio session
1422    audio_session_t sessionId = effect->sessionId();
1423    sp<EffectChain> chain = getEffectChain_l(sessionId);
1424    bool chainCreated = false;
1425
1426    ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1427             "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
1428                    this, effect->desc().name, effect->desc().flags);
1429
1430    if (chain == 0) {
1431        // create a new chain for this session
1432        ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1433        chain = new EffectChain(this, sessionId);
1434        addEffectChain_l(chain);
1435        chain->setStrategy(getStrategyForSession_l(sessionId));
1436        chainCreated = true;
1437    }
1438    ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1439
1440    if (chain->getEffectFromId_l(effect->id()) != 0) {
1441        ALOGW("addEffect_l() %p effect %s already present in chain %p",
1442                this, effect->desc().name, chain.get());
1443        return BAD_VALUE;
1444    }
1445
1446    effect->setOffloaded(mType == OFFLOAD, mId);
1447
1448    status_t status = chain->addEffect_l(effect);
1449    if (status != NO_ERROR) {
1450        if (chainCreated) {
1451            removeEffectChain_l(chain);
1452        }
1453        return status;
1454    }
1455
1456    effect->setDevice(mOutDevice);
1457    effect->setDevice(mInDevice);
1458    effect->setMode(mAudioFlinger->getMode());
1459    effect->setAudioSource(mAudioSource);
1460    return NO_ERROR;
1461}
1462
1463void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
1464
1465    ALOGV("removeEffect_l() %p effect %p", this, effect.get());
1466    effect_descriptor_t desc = effect->desc();
1467    if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1468        detachAuxEffect_l(effect->id());
1469    }
1470
1471    sp<EffectChain> chain = effect->chain().promote();
1472    if (chain != 0) {
1473        // remove effect chain if removing last effect
1474        if (chain->removeEffect_l(effect) == 0) {
1475            removeEffectChain_l(chain);
1476        }
1477    } else {
1478        ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1479    }
1480}
1481
1482void AudioFlinger::ThreadBase::lockEffectChains_l(
1483        Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1484{
1485    effectChains = mEffectChains;
1486    for (size_t i = 0; i < mEffectChains.size(); i++) {
1487        mEffectChains[i]->lock();
1488    }
1489}
1490
1491void AudioFlinger::ThreadBase::unlockEffectChains(
1492        const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1493{
1494    for (size_t i = 0; i < effectChains.size(); i++) {
1495        effectChains[i]->unlock();
1496    }
1497}
1498
1499sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1500{
1501    Mutex::Autolock _l(mLock);
1502    return getEffectChain_l(sessionId);
1503}
1504
1505sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1506        const
1507{
1508    size_t size = mEffectChains.size();
1509    for (size_t i = 0; i < size; i++) {
1510        if (mEffectChains[i]->sessionId() == sessionId) {
1511            return mEffectChains[i];
1512        }
1513    }
1514    return 0;
1515}
1516
1517void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1518{
1519    Mutex::Autolock _l(mLock);
1520    size_t size = mEffectChains.size();
1521    for (size_t i = 0; i < size; i++) {
1522        mEffectChains[i]->setMode_l(mode);
1523    }
1524}
1525
1526void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config)
1527{
1528    config->type = AUDIO_PORT_TYPE_MIX;
1529    config->ext.mix.handle = mId;
1530    config->sample_rate = mSampleRate;
1531    config->format = mFormat;
1532    config->channel_mask = mChannelMask;
1533    config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1534                            AUDIO_PORT_CONFIG_FORMAT;
1535}
1536
1537void AudioFlinger::ThreadBase::systemReady()
1538{
1539    Mutex::Autolock _l(mLock);
1540    if (mSystemReady) {
1541        return;
1542    }
1543    mSystemReady = true;
1544
1545    for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1546        sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1547    }
1548    mPendingConfigEvents.clear();
1549}
1550
1551
1552// ----------------------------------------------------------------------------
1553//      Playback
1554// ----------------------------------------------------------------------------
1555
1556AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1557                                             AudioStreamOut* output,
1558                                             audio_io_handle_t id,
1559                                             audio_devices_t device,
1560                                             type_t type,
1561                                             bool systemReady)
1562    :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady),
1563        mNormalFrameCount(0), mSinkBuffer(NULL),
1564        mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1565        mMixerBuffer(NULL),
1566        mMixerBufferSize(0),
1567        mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1568        mMixerBufferValid(false),
1569        mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1570        mEffectBuffer(NULL),
1571        mEffectBufferSize(0),
1572        mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1573        mEffectBufferValid(false),
1574        mSuspended(0), mBytesWritten(0),
1575        mFramesWritten(0),
1576        mActiveTracksGeneration(0),
1577        // mStreamTypes[] initialized in constructor body
1578        mOutput(output),
1579        mLastWriteTime(-1), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1580        mMixerStatus(MIXER_IDLE),
1581        mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1582        mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1583        mBytesRemaining(0),
1584        mCurrentWriteLength(0),
1585        mUseAsyncWrite(false),
1586        mWriteAckSequence(0),
1587        mDrainSequence(0),
1588        mSignalPending(false),
1589        mScreenState(AudioFlinger::mScreenState),
1590        // index 0 is reserved for normal mixer's submix
1591        mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1592        mHwSupportsPause(false), mHwPaused(false), mFlushPending(false)
1593{
1594    snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1595    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1596
1597    // Assumes constructor is called by AudioFlinger with it's mLock held, but
1598    // it would be safer to explicitly pass initial masterVolume/masterMute as
1599    // parameter.
1600    //
1601    // If the HAL we are using has support for master volume or master mute,
1602    // then do not attenuate or mute during mixing (just leave the volume at 1.0
1603    // and the mute set to false).
1604    mMasterVolume = audioFlinger->masterVolume_l();
1605    mMasterMute = audioFlinger->masterMute_l();
1606    if (mOutput && mOutput->audioHwDev) {
1607        if (mOutput->audioHwDev->canSetMasterVolume()) {
1608            mMasterVolume = 1.0;
1609        }
1610
1611        if (mOutput->audioHwDev->canSetMasterMute()) {
1612            mMasterMute = false;
1613        }
1614    }
1615
1616    readOutputParameters_l();
1617
1618    // ++ operator does not compile
1619    for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT;
1620            stream = (audio_stream_type_t) (stream + 1)) {
1621        mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1622        mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1623    }
1624}
1625
1626AudioFlinger::PlaybackThread::~PlaybackThread()
1627{
1628    mAudioFlinger->unregisterWriter(mNBLogWriter);
1629    free(mSinkBuffer);
1630    free(mMixerBuffer);
1631    free(mEffectBuffer);
1632}
1633
1634void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1635{
1636    dumpInternals(fd, args);
1637    dumpTracks(fd, args);
1638    dumpEffectChains(fd, args);
1639}
1640
1641void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args __unused)
1642{
1643    const size_t SIZE = 256;
1644    char buffer[SIZE];
1645    String8 result;
1646
1647    result.appendFormat("  Stream volumes in dB: ");
1648    for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1649        const stream_type_t *st = &mStreamTypes[i];
1650        if (i > 0) {
1651            result.appendFormat(", ");
1652        }
1653        result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1654        if (st->mute) {
1655            result.append("M");
1656        }
1657    }
1658    result.append("\n");
1659    write(fd, result.string(), result.length());
1660    result.clear();
1661
1662    // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
1663    FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1664    dprintf(fd, "  Normal mixer raw underrun counters: partial=%u empty=%u\n",
1665            underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1666
1667    size_t numtracks = mTracks.size();
1668    size_t numactive = mActiveTracks.size();
1669    dprintf(fd, "  %zu Tracks", numtracks);
1670    size_t numactiveseen = 0;
1671    if (numtracks) {
1672        dprintf(fd, " of which %zu are active\n", numactive);
1673        Track::appendDumpHeader(result);
1674        for (size_t i = 0; i < numtracks; ++i) {
1675            sp<Track> track = mTracks[i];
1676            if (track != 0) {
1677                bool active = mActiveTracks.indexOf(track) >= 0;
1678                if (active) {
1679                    numactiveseen++;
1680                }
1681                track->dump(buffer, SIZE, active);
1682                result.append(buffer);
1683            }
1684        }
1685    } else {
1686        result.append("\n");
1687    }
1688    if (numactiveseen != numactive) {
1689        // some tracks in the active list were not in the tracks list
1690        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
1691                " not in the track list\n");
1692        result.append(buffer);
1693        Track::appendDumpHeader(result);
1694        for (size_t i = 0; i < numactive; ++i) {
1695            sp<Track> track = mActiveTracks[i].promote();
1696            if (track != 0 && mTracks.indexOf(track) < 0) {
1697                track->dump(buffer, SIZE, true);
1698                result.append(buffer);
1699            }
1700        }
1701    }
1702
1703    write(fd, result.string(), result.size());
1704}
1705
1706void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1707{
1708    dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type()));
1709
1710    dumpBase(fd, args);
1711
1712    dprintf(fd, "  Normal frame count: %zu\n", mNormalFrameCount);
1713    dprintf(fd, "  Last write occurred (msecs): %llu\n",
1714            (unsigned long long) ns2ms(systemTime() - mLastWriteTime));
1715    dprintf(fd, "  Total writes: %d\n", mNumWrites);
1716    dprintf(fd, "  Delayed writes: %d\n", mNumDelayedWrites);
1717    dprintf(fd, "  Blocked in write: %s\n", mInWrite ? "yes" : "no");
1718    dprintf(fd, "  Suspend count: %d\n", mSuspended);
1719    dprintf(fd, "  Sink buffer : %p\n", mSinkBuffer);
1720    dprintf(fd, "  Mixer buffer: %p\n", mMixerBuffer);
1721    dprintf(fd, "  Effect buffer: %p\n", mEffectBuffer);
1722    dprintf(fd, "  Fast track availMask=%#x\n", mFastTrackAvailMask);
1723    dprintf(fd, "  Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1724    AudioStreamOut *output = mOutput;
1725    audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1726    String8 flagsAsString = outputFlagsToString(flags);
1727    dprintf(fd, "  AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string());
1728}
1729
1730// Thread virtuals
1731
1732void AudioFlinger::PlaybackThread::onFirstRef()
1733{
1734    run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1735}
1736
1737// ThreadBase virtuals
1738void AudioFlinger::PlaybackThread::preExit()
1739{
1740    ALOGV("  preExit()");
1741    // FIXME this is using hard-coded strings but in the future, this functionality will be
1742    //       converted to use audio HAL extensions required to support tunneling
1743    mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1744}
1745
1746// PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
1747sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1748        const sp<AudioFlinger::Client>& client,
1749        audio_stream_type_t streamType,
1750        uint32_t sampleRate,
1751        audio_format_t format,
1752        audio_channel_mask_t channelMask,
1753        size_t *pFrameCount,
1754        const sp<IMemory>& sharedBuffer,
1755        audio_session_t sessionId,
1756        IAudioFlinger::track_flags_t *flags,
1757        pid_t tid,
1758        int uid,
1759        status_t *status)
1760{
1761    size_t frameCount = *pFrameCount;
1762    sp<Track> track;
1763    status_t lStatus;
1764
1765    // client expresses a preference for FAST, but we get the final say
1766    if (*flags & IAudioFlinger::TRACK_FAST) {
1767      if (
1768            // PCM data
1769            audio_is_linear_pcm(format) &&
1770            // TODO: extract as a data library function that checks that a computationally
1771            // expensive downmixer is not required: isFastOutputChannelConversion()
1772            (channelMask == mChannelMask ||
1773                    mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
1774                    (channelMask == AUDIO_CHANNEL_OUT_MONO
1775                            /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
1776            // hardware sample rate
1777            (sampleRate == mSampleRate) &&
1778            // normal mixer has an associated fast mixer
1779            hasFastMixer() &&
1780            // there are sufficient fast track slots available
1781            (mFastTrackAvailMask != 0)
1782            // FIXME test that MixerThread for this fast track has a capable output HAL
1783            // FIXME add a permission test also?
1784        ) {
1785        // static tracks can have any nonzero framecount, streaming tracks check against minimum.
1786        if (sharedBuffer == 0) {
1787            // read the fast track multiplier property the first time it is needed
1788            int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
1789            if (ok != 0) {
1790                ALOGE("%s pthread_once failed: %d", __func__, ok);
1791            }
1792            frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
1793        }
1794        ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
1795                frameCount, mFrameCount);
1796      } else {
1797        ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
1798                "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
1799                "sampleRate=%u mSampleRate=%u "
1800                "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1801                sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
1802                audio_is_linear_pcm(format),
1803                channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1804        *flags &= ~IAudioFlinger::TRACK_FAST;
1805      }
1806    }
1807    // For normal PCM streaming tracks, update minimum frame count.
1808    // For compatibility with AudioTrack calculation, buffer depth is forced
1809    // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1810    // This is probably too conservative, but legacy application code may depend on it.
1811    // If you change this calculation, also review the start threshold which is related.
1812    if (!(*flags & IAudioFlinger::TRACK_FAST)
1813            && audio_has_proportional_frames(format) && sharedBuffer == 0) {
1814        // this must match AudioTrack.cpp calculateMinFrameCount().
1815        // TODO: Move to a common library
1816        uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1817        uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1818        if (minBufCount < 2) {
1819            minBufCount = 2;
1820        }
1821        // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack
1822        // or the client should compute and pass in a larger buffer request.
1823        size_t minFrameCount =
1824                minBufCount * sourceFramesNeededWithTimestretch(
1825                        sampleRate, mNormalFrameCount,
1826                        mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/);
1827        if (frameCount < minFrameCount) { // including frameCount == 0
1828            frameCount = minFrameCount;
1829        }
1830    }
1831    *pFrameCount = frameCount;
1832
1833    switch (mType) {
1834
1835    case DIRECT:
1836        if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
1837            if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1838                ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
1839                        "for output %p with format %#x",
1840                        sampleRate, format, channelMask, mOutput, mFormat);
1841                lStatus = BAD_VALUE;
1842                goto Exit;
1843            }
1844        }
1845        break;
1846
1847    case OFFLOAD:
1848        if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1849            ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
1850                    "for output %p with format %#x",
1851                    sampleRate, format, channelMask, mOutput, mFormat);
1852            lStatus = BAD_VALUE;
1853            goto Exit;
1854        }
1855        break;
1856
1857    default:
1858        if (!audio_is_linear_pcm(format)) {
1859                ALOGE("createTrack_l() Bad parameter: format %#x \""
1860                        "for output %p with format %#x",
1861                        format, mOutput, mFormat);
1862                lStatus = BAD_VALUE;
1863                goto Exit;
1864        }
1865        if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
1866            ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1867            lStatus = BAD_VALUE;
1868            goto Exit;
1869        }
1870        break;
1871
1872    }
1873
1874    lStatus = initCheck();
1875    if (lStatus != NO_ERROR) {
1876        ALOGE("createTrack_l() audio driver not initialized");
1877        goto Exit;
1878    }
1879
1880    { // scope for mLock
1881        Mutex::Autolock _l(mLock);
1882
1883        // all tracks in same audio session must share the same routing strategy otherwise
1884        // conflicts will happen when tracks are moved from one output to another by audio policy
1885        // manager
1886        uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1887        for (size_t i = 0; i < mTracks.size(); ++i) {
1888            sp<Track> t = mTracks[i];
1889            if (t != 0 && t->isExternalTrack()) {
1890                uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1891                if (sessionId == t->sessionId() && strategy != actual) {
1892                    ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1893                            strategy, actual);
1894                    lStatus = BAD_VALUE;
1895                    goto Exit;
1896                }
1897            }
1898        }
1899
1900        track = new Track(this, client, streamType, sampleRate, format,
1901                          channelMask, frameCount, NULL, sharedBuffer,
1902                          sessionId, uid, *flags, TrackBase::TYPE_DEFAULT);
1903
1904        lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
1905        if (lStatus != NO_ERROR) {
1906            ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
1907            // track must be cleared from the caller as the caller has the AF lock
1908            goto Exit;
1909        }
1910        mTracks.add(track);
1911
1912        sp<EffectChain> chain = getEffectChain_l(sessionId);
1913        if (chain != 0) {
1914            ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1915            track->setMainBuffer(chain->inBuffer());
1916            chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1917            chain->incTrackCnt();
1918        }
1919
1920        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1921            pid_t callingPid = IPCThreadState::self()->getCallingPid();
1922            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1923            // so ask activity manager to do this on our behalf
1924            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1925        }
1926    }
1927
1928    lStatus = NO_ERROR;
1929
1930Exit:
1931    *status = lStatus;
1932    return track;
1933}
1934
1935uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1936{
1937    return latency;
1938}
1939
1940uint32_t AudioFlinger::PlaybackThread::latency() const
1941{
1942    Mutex::Autolock _l(mLock);
1943    return latency_l();
1944}
1945uint32_t AudioFlinger::PlaybackThread::latency_l() const
1946{
1947    if (initCheck() == NO_ERROR) {
1948        return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1949    } else {
1950        return 0;
1951    }
1952}
1953
1954void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1955{
1956    Mutex::Autolock _l(mLock);
1957    // Don't apply master volume in SW if our HAL can do it for us.
1958    if (mOutput && mOutput->audioHwDev &&
1959        mOutput->audioHwDev->canSetMasterVolume()) {
1960        mMasterVolume = 1.0;
1961    } else {
1962        mMasterVolume = value;
1963    }
1964}
1965
1966void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1967{
1968    Mutex::Autolock _l(mLock);
1969    // Don't apply master mute in SW if our HAL can do it for us.
1970    if (mOutput && mOutput->audioHwDev &&
1971        mOutput->audioHwDev->canSetMasterMute()) {
1972        mMasterMute = false;
1973    } else {
1974        mMasterMute = muted;
1975    }
1976}
1977
1978void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1979{
1980    Mutex::Autolock _l(mLock);
1981    mStreamTypes[stream].volume = value;
1982    broadcast_l();
1983}
1984
1985void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1986{
1987    Mutex::Autolock _l(mLock);
1988    mStreamTypes[stream].mute = muted;
1989    broadcast_l();
1990}
1991
1992float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1993{
1994    Mutex::Autolock _l(mLock);
1995    return mStreamTypes[stream].volume;
1996}
1997
1998// addTrack_l() must be called with ThreadBase::mLock held
1999status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2000{
2001    status_t status = ALREADY_EXISTS;
2002
2003    if (mActiveTracks.indexOf(track) < 0) {
2004        // the track is newly added, make sure it fills up all its
2005        // buffers before playing. This is to ensure the client will
2006        // effectively get the latency it requested.
2007        if (track->isExternalTrack()) {
2008            TrackBase::track_state state = track->mState;
2009            mLock.unlock();
2010            status = AudioSystem::startOutput(mId, track->streamType(),
2011                                              track->sessionId());
2012            mLock.lock();
2013            // abort track was stopped/paused while we released the lock
2014            if (state != track->mState) {
2015                if (status == NO_ERROR) {
2016                    mLock.unlock();
2017                    AudioSystem::stopOutput(mId, track->streamType(),
2018                                            track->sessionId());
2019                    mLock.lock();
2020                }
2021                return INVALID_OPERATION;
2022            }
2023            // abort if start is rejected by audio policy manager
2024            if (status != NO_ERROR) {
2025                return PERMISSION_DENIED;
2026            }
2027#ifdef ADD_BATTERY_DATA
2028            // to track the speaker usage
2029            addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2030#endif
2031        }
2032
2033        // set retry count for buffer fill
2034        if (track->isOffloaded()) {
2035            if (track->isStopping_1()) {
2036                track->mRetryCount = kMaxTrackStopRetriesOffload;
2037            } else {
2038                track->mRetryCount = kMaxTrackStartupRetriesOffload;
2039            }
2040            track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2041        } else {
2042            track->mRetryCount = kMaxTrackStartupRetries;
2043            track->mFillingUpStatus =
2044                    track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2045        }
2046
2047        track->mResetDone = false;
2048        track->mPresentationCompleteFrames = 0;
2049        mActiveTracks.add(track);
2050        mWakeLockUids.add(track->uid());
2051        mActiveTracksGeneration++;
2052        mLatestActiveTrack = track;
2053        sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2054        if (chain != 0) {
2055            ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2056                    track->sessionId());
2057            chain->incActiveTrackCnt();
2058        }
2059
2060        status = NO_ERROR;
2061    }
2062
2063    onAddNewTrack_l();
2064    return status;
2065}
2066
2067bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2068{
2069    track->terminate();
2070    // active tracks are removed by threadLoop()
2071    bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2072    track->mState = TrackBase::STOPPED;
2073    if (!trackActive) {
2074        removeTrack_l(track);
2075    } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2076        track->mState = TrackBase::STOPPING_1;
2077    }
2078
2079    return trackActive;
2080}
2081
2082void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2083{
2084    track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2085    mTracks.remove(track);
2086    deleteTrackName_l(track->name());
2087    // redundant as track is about to be destroyed, for dumpsys only
2088    track->mName = -1;
2089    if (track->isFastTrack()) {
2090        int index = track->mFastIndex;
2091        ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2092        ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2093        mFastTrackAvailMask |= 1 << index;
2094        // redundant as track is about to be destroyed, for dumpsys only
2095        track->mFastIndex = -1;
2096    }
2097    sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2098    if (chain != 0) {
2099        chain->decTrackCnt();
2100    }
2101}
2102
2103void AudioFlinger::PlaybackThread::broadcast_l()
2104{
2105    // Thread could be blocked waiting for async
2106    // so signal it to handle state changes immediately
2107    // If threadLoop is currently unlocked a signal of mWaitWorkCV will
2108    // be lost so we also flag to prevent it blocking on mWaitWorkCV
2109    mSignalPending = true;
2110    mWaitWorkCV.broadcast();
2111}
2112
2113String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2114{
2115    Mutex::Autolock _l(mLock);
2116    if (initCheck() != NO_ERROR) {
2117        return String8();
2118    }
2119
2120    char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
2121    const String8 out_s8(s);
2122    free(s);
2123    return out_s8;
2124}
2125
2126void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
2127    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2128    ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2129
2130    desc->mIoHandle = mId;
2131
2132    switch (event) {
2133    case AUDIO_OUTPUT_OPENED:
2134    case AUDIO_OUTPUT_CONFIG_CHANGED:
2135        desc->mPatch = mPatch;
2136        desc->mChannelMask = mChannelMask;
2137        desc->mSamplingRate = mSampleRate;
2138        desc->mFormat = mFormat;
2139        desc->mFrameCount = mNormalFrameCount; // FIXME see
2140                                             // AudioFlinger::frameCount(audio_io_handle_t)
2141        desc->mFrameCountHAL = mFrameCount;
2142        desc->mLatency = latency_l();
2143        break;
2144
2145    case AUDIO_OUTPUT_CLOSED:
2146    default:
2147        break;
2148    }
2149    mAudioFlinger->ioConfigChanged(event, desc, pid);
2150}
2151
2152void AudioFlinger::PlaybackThread::writeCallback()
2153{
2154    ALOG_ASSERT(mCallbackThread != 0);
2155    mCallbackThread->resetWriteBlocked();
2156}
2157
2158void AudioFlinger::PlaybackThread::drainCallback()
2159{
2160    ALOG_ASSERT(mCallbackThread != 0);
2161    mCallbackThread->resetDraining();
2162}
2163
2164void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2165{
2166    Mutex::Autolock _l(mLock);
2167    // reject out of sequence requests
2168    if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2169        mWriteAckSequence &= ~1;
2170        mWaitWorkCV.signal();
2171    }
2172}
2173
2174void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2175{
2176    Mutex::Autolock _l(mLock);
2177    // reject out of sequence requests
2178    if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2179        mDrainSequence &= ~1;
2180        mWaitWorkCV.signal();
2181    }
2182}
2183
2184// static
2185int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
2186                                                void *param __unused,
2187                                                void *cookie)
2188{
2189    AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
2190    ALOGV("asyncCallback() event %d", event);
2191    switch (event) {
2192    case STREAM_CBK_EVENT_WRITE_READY:
2193        me->writeCallback();
2194        break;
2195    case STREAM_CBK_EVENT_DRAIN_READY:
2196        me->drainCallback();
2197        break;
2198    default:
2199        ALOGW("asyncCallback() unknown event %d", event);
2200        break;
2201    }
2202    return 0;
2203}
2204
2205void AudioFlinger::PlaybackThread::readOutputParameters_l()
2206{
2207    // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2208    mSampleRate = mOutput->getSampleRate();
2209    mChannelMask = mOutput->getChannelMask();
2210    if (!audio_is_output_channel(mChannelMask)) {
2211        LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2212    }
2213    if ((mType == MIXER || mType == DUPLICATING)
2214            && !isValidPcmSinkChannelMask(mChannelMask)) {
2215        LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2216                mChannelMask);
2217    }
2218    mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2219
2220    // Get actual HAL format.
2221    mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
2222    // Get format from the shim, which will be different than the HAL format
2223    // if playing compressed audio over HDMI passthrough.
2224    mFormat = mOutput->getFormat();
2225    if (!audio_is_valid_format(mFormat)) {
2226        LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2227    }
2228    if ((mType == MIXER || mType == DUPLICATING)
2229            && !isValidPcmSinkFormat(mFormat)) {
2230        LOG_FATAL("HAL format %#x not supported for mixed output",
2231                mFormat);
2232    }
2233    mFrameSize = mOutput->getFrameSize();
2234    mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common);
2235    mFrameCount = mBufferSize / mFrameSize;
2236    if (mFrameCount & 15) {
2237        ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2238                mFrameCount);
2239    }
2240
2241    if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
2242            (mOutput->stream->set_callback != NULL)) {
2243        if (mOutput->stream->set_callback(mOutput->stream,
2244                                      AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
2245            mUseAsyncWrite = true;
2246            mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2247        }
2248    }
2249
2250    mHwSupportsPause = false;
2251    if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2252        if (mOutput->stream->pause != NULL) {
2253            if (mOutput->stream->resume != NULL) {
2254                mHwSupportsPause = true;
2255            } else {
2256                ALOGW("direct output implements pause but not resume");
2257            }
2258        } else if (mOutput->stream->resume != NULL) {
2259            ALOGW("direct output implements resume but not pause");
2260        }
2261    }
2262    if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2263        LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2264    }
2265
2266    if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2267        // For best precision, we use float instead of the associated output
2268        // device format (typically PCM 16 bit).
2269
2270        mFormat = AUDIO_FORMAT_PCM_FLOAT;
2271        mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2272        mBufferSize = mFrameSize * mFrameCount;
2273
2274        // TODO: We currently use the associated output device channel mask and sample rate.
2275        // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2276        // (if a valid mask) to avoid premature downmix.
2277        // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2278        // instead of the output device sample rate to avoid loss of high frequency information.
2279        // This may need to be updated as MixerThread/OutputTracks are added and not here.
2280    }
2281
2282    // Calculate size of normal sink buffer relative to the HAL output buffer size
2283    double multiplier = 1.0;
2284    if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2285            kUseFastMixer == FastMixer_Dynamic)) {
2286        size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2287        size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2288
2289        // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2290        minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2291        maxNormalFrameCount = maxNormalFrameCount & ~15;
2292        if (maxNormalFrameCount < minNormalFrameCount) {
2293            maxNormalFrameCount = minNormalFrameCount;
2294        }
2295        multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2296        if (multiplier <= 1.0) {
2297            multiplier = 1.0;
2298        } else if (multiplier <= 2.0) {
2299            if (2 * mFrameCount <= maxNormalFrameCount) {
2300                multiplier = 2.0;
2301            } else {
2302                multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2303            }
2304        } else {
2305            multiplier = floor(multiplier);
2306        }
2307    }
2308    mNormalFrameCount = multiplier * mFrameCount;
2309    // round up to nearest 16 frames to satisfy AudioMixer
2310    if (mType == MIXER || mType == DUPLICATING) {
2311        mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2312    }
2313    ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2314            mNormalFrameCount);
2315
2316    // Check if we want to throttle the processing to no more than 2x normal rate
2317    mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2318    mThreadThrottleTimeMs = 0;
2319    mThreadThrottleEndMs = 0;
2320    mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2321
2322    // mSinkBuffer is the sink buffer.  Size is always multiple-of-16 frames.
2323    // Originally this was int16_t[] array, need to remove legacy implications.
2324    free(mSinkBuffer);
2325    mSinkBuffer = NULL;
2326    // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2327    // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2328    const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2329    (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2330
2331    // We resize the mMixerBuffer according to the requirements of the sink buffer which
2332    // drives the output.
2333    free(mMixerBuffer);
2334    mMixerBuffer = NULL;
2335    if (mMixerBufferEnabled) {
2336        mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT.
2337        mMixerBufferSize = mNormalFrameCount * mChannelCount
2338                * audio_bytes_per_sample(mMixerBufferFormat);
2339        (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2340    }
2341    free(mEffectBuffer);
2342    mEffectBuffer = NULL;
2343    if (mEffectBufferEnabled) {
2344        mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only
2345        mEffectBufferSize = mNormalFrameCount * mChannelCount
2346                * audio_bytes_per_sample(mEffectBufferFormat);
2347        (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2348    }
2349
2350    // force reconfiguration of effect chains and engines to take new buffer size and audio
2351    // parameters into account
2352    // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2353    // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2354    // matter.
2355    // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2356    Vector< sp<EffectChain> > effectChains = mEffectChains;
2357    for (size_t i = 0; i < effectChains.size(); i ++) {
2358        mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
2359    }
2360}
2361
2362
2363status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2364{
2365    if (halFrames == NULL || dspFrames == NULL) {
2366        return BAD_VALUE;
2367    }
2368    Mutex::Autolock _l(mLock);
2369    if (initCheck() != NO_ERROR) {
2370        return INVALID_OPERATION;
2371    }
2372    int64_t framesWritten = mBytesWritten / mFrameSize;
2373    *halFrames = framesWritten;
2374
2375    if (isSuspended()) {
2376        // return an estimation of rendered frames when the output is suspended
2377        size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2378        *dspFrames = (uint32_t)
2379                (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2380        return NO_ERROR;
2381    } else {
2382        status_t status;
2383        uint32_t frames;
2384        status = mOutput->getRenderPosition(&frames);
2385        *dspFrames = (size_t)frames;
2386        return status;
2387    }
2388}
2389
2390uint32_t AudioFlinger::PlaybackThread::hasAudioSession(audio_session_t sessionId) const
2391{
2392    Mutex::Autolock _l(mLock);
2393    uint32_t result = 0;
2394    if (getEffectChain_l(sessionId) != 0) {
2395        result = EFFECT_SESSION;
2396    }
2397
2398    for (size_t i = 0; i < mTracks.size(); ++i) {
2399        sp<Track> track = mTracks[i];
2400        if (sessionId == track->sessionId() && !track->isInvalid()) {
2401            result |= TRACK_SESSION;
2402            break;
2403        }
2404    }
2405
2406    return result;
2407}
2408
2409uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2410{
2411    // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2412    // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2413    if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2414        return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2415    }
2416    for (size_t i = 0; i < mTracks.size(); i++) {
2417        sp<Track> track = mTracks[i];
2418        if (sessionId == track->sessionId() && !track->isInvalid()) {
2419            return AudioSystem::getStrategyForStream(track->streamType());
2420        }
2421    }
2422    return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2423}
2424
2425
2426AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2427{
2428    Mutex::Autolock _l(mLock);
2429    return mOutput;
2430}
2431
2432AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2433{
2434    Mutex::Autolock _l(mLock);
2435    AudioStreamOut *output = mOutput;
2436    mOutput = NULL;
2437    // FIXME FastMixer might also have a raw ptr to mOutputSink;
2438    //       must push a NULL and wait for ack
2439    mOutputSink.clear();
2440    mPipeSink.clear();
2441    mNormalSink.clear();
2442    return output;
2443}
2444
2445// this method must always be called either with ThreadBase mLock held or inside the thread loop
2446audio_stream_t* AudioFlinger::PlaybackThread::stream() const
2447{
2448    if (mOutput == NULL) {
2449        return NULL;
2450    }
2451    return &mOutput->stream->common;
2452}
2453
2454uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2455{
2456    return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2457}
2458
2459status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2460{
2461    if (!isValidSyncEvent(event)) {
2462        return BAD_VALUE;
2463    }
2464
2465    Mutex::Autolock _l(mLock);
2466
2467    for (size_t i = 0; i < mTracks.size(); ++i) {
2468        sp<Track> track = mTracks[i];
2469        if (event->triggerSession() == track->sessionId()) {
2470            (void) track->setSyncEvent(event);
2471            return NO_ERROR;
2472        }
2473    }
2474
2475    return NAME_NOT_FOUND;
2476}
2477
2478bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2479{
2480    return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2481}
2482
2483void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2484        const Vector< sp<Track> >& tracksToRemove)
2485{
2486    size_t count = tracksToRemove.size();
2487    if (count > 0) {
2488        for (size_t i = 0 ; i < count ; i++) {
2489            const sp<Track>& track = tracksToRemove.itemAt(i);
2490            if (track->isExternalTrack()) {
2491                AudioSystem::stopOutput(mId, track->streamType(),
2492                                        track->sessionId());
2493#ifdef ADD_BATTERY_DATA
2494                // to track the speaker usage
2495                addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2496#endif
2497                if (track->isTerminated()) {
2498                    AudioSystem::releaseOutput(mId, track->streamType(),
2499                                               track->sessionId());
2500                }
2501            }
2502        }
2503    }
2504}
2505
2506void AudioFlinger::PlaybackThread::checkSilentMode_l()
2507{
2508    if (!mMasterMute) {
2509        char value[PROPERTY_VALUE_MAX];
2510        if (mOutDevice == AUDIO_DEVICE_OUT_REMOTE_SUBMIX) {
2511            ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2512            return;
2513        }
2514        if (property_get("ro.audio.silent", value, "0") > 0) {
2515            char *endptr;
2516            unsigned long ul = strtoul(value, &endptr, 0);
2517            if (*endptr == '\0' && ul != 0) {
2518                ALOGD("Silence is golden");
2519                // The setprop command will not allow a property to be changed after
2520                // the first time it is set, so we don't have to worry about un-muting.
2521                setMasterMute_l(true);
2522            }
2523        }
2524    }
2525}
2526
2527// shared by MIXER and DIRECT, overridden by DUPLICATING
2528ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2529{
2530    mInWrite = true;
2531    ssize_t bytesWritten;
2532    const size_t offset = mCurrentWriteLength - mBytesRemaining;
2533
2534    // If an NBAIO sink is present, use it to write the normal mixer's submix
2535    if (mNormalSink != 0) {
2536
2537        const size_t count = mBytesRemaining / mFrameSize;
2538
2539        ATRACE_BEGIN("write");
2540        // update the setpoint when AudioFlinger::mScreenState changes
2541        uint32_t screenState = AudioFlinger::mScreenState;
2542        if (screenState != mScreenState) {
2543            mScreenState = screenState;
2544            MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2545            if (pipe != NULL) {
2546                pipe->setAvgFrames((mScreenState & 1) ?
2547                        (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2548            }
2549        }
2550        ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2551        ATRACE_END();
2552        if (framesWritten > 0) {
2553            bytesWritten = framesWritten * mFrameSize;
2554        } else {
2555            bytesWritten = framesWritten;
2556        }
2557    // otherwise use the HAL / AudioStreamOut directly
2558    } else {
2559        // Direct output and offload threads
2560
2561        if (mUseAsyncWrite) {
2562            ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
2563            mWriteAckSequence += 2;
2564            mWriteAckSequence |= 1;
2565            ALOG_ASSERT(mCallbackThread != 0);
2566            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2567        }
2568        // FIXME We should have an implementation of timestamps for direct output threads.
2569        // They are used e.g for multichannel PCM playback over HDMI.
2570        bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
2571
2572        if (mUseAsyncWrite &&
2573                ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
2574            // do not wait for async callback in case of error of full write
2575            mWriteAckSequence &= ~1;
2576            ALOG_ASSERT(mCallbackThread != 0);
2577            mCallbackThread->setWriteBlocked(mWriteAckSequence);
2578        }
2579    }
2580
2581    mNumWrites++;
2582    mInWrite = false;
2583    mStandby = false;
2584    return bytesWritten;
2585}
2586
2587void AudioFlinger::PlaybackThread::threadLoop_drain()
2588{
2589    if (mOutput->stream->drain) {
2590        ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
2591        if (mUseAsyncWrite) {
2592            ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
2593            mDrainSequence |= 1;
2594            ALOG_ASSERT(mCallbackThread != 0);
2595            mCallbackThread->setDraining(mDrainSequence);
2596        }
2597        mOutput->stream->drain(mOutput->stream,
2598            (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
2599                                                : AUDIO_DRAIN_ALL);
2600    }
2601}
2602
2603void AudioFlinger::PlaybackThread::threadLoop_exit()
2604{
2605    {
2606        Mutex::Autolock _l(mLock);
2607        for (size_t i = 0; i < mTracks.size(); i++) {
2608            sp<Track> track = mTracks[i];
2609            track->invalidate();
2610        }
2611    }
2612}
2613
2614/*
2615The derived values that are cached:
2616 - mSinkBufferSize from frame count * frame size
2617 - mActiveSleepTimeUs from activeSleepTimeUs()
2618 - mIdleSleepTimeUs from idleSleepTimeUs()
2619 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
2620   kDefaultStandbyTimeInNsecs when connected to an A2DP device.
2621 - maxPeriod from frame count and sample rate (MIXER only)
2622
2623The parameters that affect these derived values are:
2624 - frame count
2625 - frame size
2626 - sample rate
2627 - device type: A2DP or not
2628 - device latency
2629 - format: PCM or not
2630 - active sleep time
2631 - idle sleep time
2632*/
2633
2634void AudioFlinger::PlaybackThread::cacheParameters_l()
2635{
2636    mSinkBufferSize = mNormalFrameCount * mFrameSize;
2637    mActiveSleepTimeUs = activeSleepTimeUs();
2638    mIdleSleepTimeUs = idleSleepTimeUs();
2639
2640    // make sure standby delay is not too short when connected to an A2DP sink to avoid
2641    // truncating audio when going to standby.
2642    mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
2643    if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) {
2644        if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
2645            mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
2646        }
2647    }
2648}
2649
2650bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
2651{
2652    ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
2653            this,  streamType, mTracks.size());
2654    bool trackMatch = false;
2655    size_t size = mTracks.size();
2656    for (size_t i = 0; i < size; i++) {
2657        sp<Track> t = mTracks[i];
2658        if (t->streamType() == streamType && t->isExternalTrack()) {
2659            t->invalidate();
2660            trackMatch = true;
2661        }
2662    }
2663    return trackMatch;
2664}
2665
2666void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
2667{
2668    Mutex::Autolock _l(mLock);
2669    invalidateTracks_l(streamType);
2670}
2671
2672status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2673{
2674    audio_session_t session = chain->sessionId();
2675    int16_t* buffer = reinterpret_cast<int16_t*>(mEffectBufferEnabled
2676            ? mEffectBuffer : mSinkBuffer);
2677    bool ownsBuffer = false;
2678
2679    ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2680    if (session > AUDIO_SESSION_OUTPUT_MIX) {
2681        // Only one effect chain can be present in direct output thread and it uses
2682        // the sink buffer as input
2683        if (mType != DIRECT) {
2684            size_t numSamples = mNormalFrameCount * mChannelCount;
2685            buffer = new int16_t[numSamples];
2686            memset(buffer, 0, numSamples * sizeof(int16_t));
2687            ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2688            ownsBuffer = true;
2689        }
2690
2691        // Attach all tracks with same session ID to this chain.
2692        for (size_t i = 0; i < mTracks.size(); ++i) {
2693            sp<Track> track = mTracks[i];
2694            if (session == track->sessionId()) {
2695                ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2696                        buffer);
2697                track->setMainBuffer(buffer);
2698                chain->incTrackCnt();
2699            }
2700        }
2701
2702        // indicate all active tracks in the chain
2703        for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2704            sp<Track> track = mActiveTracks[i].promote();
2705            if (track == 0) {
2706                continue;
2707            }
2708            if (session == track->sessionId()) {
2709                ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2710                chain->incActiveTrackCnt();
2711            }
2712        }
2713    }
2714    chain->setThread(this);
2715    chain->setInBuffer(buffer, ownsBuffer);
2716    chain->setOutBuffer(reinterpret_cast<int16_t*>(mEffectBufferEnabled
2717            ? mEffectBuffer : mSinkBuffer));
2718    // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2719    // chains list in order to be processed last as it contains output stage effects.
2720    // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2721    // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2722    // after track specific effects and before output stage.
2723    // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2724    // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
2725    // Effect chain for other sessions are inserted at beginning of effect
2726    // chains list to be processed before output mix effects. Relative order between other
2727    // sessions is not important.
2728    static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
2729            AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX,
2730            "audio_session_t constants misdefined");
2731    size_t size = mEffectChains.size();
2732    size_t i = 0;
2733    for (i = 0; i < size; i++) {
2734        if (mEffectChains[i]->sessionId() < session) {
2735            break;
2736        }
2737    }
2738    mEffectChains.insertAt(chain, i);
2739    checkSuspendOnAddEffectChain_l(chain);
2740
2741    return NO_ERROR;
2742}
2743
2744size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2745{
2746    audio_session_t session = chain->sessionId();
2747
2748    ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2749
2750    for (size_t i = 0; i < mEffectChains.size(); i++) {
2751        if (chain == mEffectChains[i]) {
2752            mEffectChains.removeAt(i);
2753            // detach all active tracks from the chain
2754            for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2755                sp<Track> track = mActiveTracks[i].promote();
2756                if (track == 0) {
2757                    continue;
2758                }
2759                if (session == track->sessionId()) {
2760                    ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2761                            chain.get(), session);
2762                    chain->decActiveTrackCnt();
2763                }
2764            }
2765
2766            // detach all tracks with same session ID from this chain
2767            for (size_t i = 0; i < mTracks.size(); ++i) {
2768                sp<Track> track = mTracks[i];
2769                if (session == track->sessionId()) {
2770                    track->setMainBuffer(reinterpret_cast<int16_t*>(mSinkBuffer));
2771                    chain->decTrackCnt();
2772                }
2773            }
2774            break;
2775        }
2776    }
2777    return mEffectChains.size();
2778}
2779
2780status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2781        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2782{
2783    Mutex::Autolock _l(mLock);
2784    return attachAuxEffect_l(track, EffectId);
2785}
2786
2787status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2788        const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2789{
2790    status_t status = NO_ERROR;
2791
2792    if (EffectId == 0) {
2793        track->setAuxBuffer(0, NULL);
2794    } else {
2795        // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2796        sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2797        if (effect != 0) {
2798            if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2799                track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2800            } else {
2801                status = INVALID_OPERATION;
2802            }
2803        } else {
2804            status = BAD_VALUE;
2805        }
2806    }
2807    return status;
2808}
2809
2810void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2811{
2812    for (size_t i = 0; i < mTracks.size(); ++i) {
2813        sp<Track> track = mTracks[i];
2814        if (track->auxEffectId() == effectId) {
2815            attachAuxEffect_l(track, 0);
2816        }
2817    }
2818}
2819
2820bool AudioFlinger::PlaybackThread::threadLoop()
2821{
2822    Vector< sp<Track> > tracksToRemove;
2823
2824    mStandbyTimeNs = systemTime();
2825    nsecs_t lastWriteFinished = -1; // time last server write completed
2826    int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
2827
2828    // MIXER
2829    nsecs_t lastWarning = 0;
2830
2831    // DUPLICATING
2832    // FIXME could this be made local to while loop?
2833    writeFrames = 0;
2834
2835    int lastGeneration = 0;
2836
2837    cacheParameters_l();
2838    mSleepTimeUs = mIdleSleepTimeUs;
2839
2840    if (mType == MIXER) {
2841        sleepTimeShift = 0;
2842    }
2843
2844    CpuStats cpuStats;
2845    const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2846
2847    acquireWakeLock();
2848
2849    // mNBLogWriter->log can only be called while thread mutex mLock is held.
2850    // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2851    // and then that string will be logged at the next convenient opportunity.
2852    const char *logString = NULL;
2853
2854    checkSilentMode_l();
2855
2856    while (!exitPending())
2857    {
2858        cpuStats.sample(myName);
2859
2860        Vector< sp<EffectChain> > effectChains;
2861
2862        { // scope for mLock
2863
2864            Mutex::Autolock _l(mLock);
2865
2866            processConfigEvents_l();
2867
2868            if (logString != NULL) {
2869                mNBLogWriter->logTimestamp();
2870                mNBLogWriter->log(logString);
2871                logString = NULL;
2872            }
2873
2874            // Gather the framesReleased counters for all active tracks,
2875            // and associate with the sink frames written out.  We need
2876            // this to convert the sink timestamp to the track timestamp.
2877            bool kernelLocationUpdate = false;
2878            if (mNormalSink != 0) {
2879                // Note: The DuplicatingThread may not have a mNormalSink.
2880                // We always fetch the timestamp here because often the downstream
2881                // sink will block while writing.
2882                ExtendedTimestamp timestamp; // use private copy to fetch
2883                (void) mNormalSink->getTimestamp(timestamp);
2884
2885                // We keep track of the last valid kernel position in case we are in underrun
2886                // and the normal mixer period is the same as the fast mixer period, or there
2887                // is some error from the HAL.
2888                if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
2889                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
2890                            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
2891                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
2892                            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
2893
2894                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
2895                            mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
2896                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
2897                            mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
2898                }
2899
2900                if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
2901                    kernelLocationUpdate = true;
2902                } else {
2903                    ALOGV("getTimestamp error - no valid kernel position");
2904                }
2905
2906                // copy over kernel info
2907                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
2908                        timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
2909                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
2910                        timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
2911            }
2912            // mFramesWritten for non-offloaded tracks are contiguous
2913            // even after standby() is called. This is useful for the track frame
2914            // to sink frame mapping.
2915            bool serverLocationUpdate = false;
2916            if (mFramesWritten != lastFramesWritten) {
2917                serverLocationUpdate = true;
2918                lastFramesWritten = mFramesWritten;
2919            }
2920            // Only update timestamps if there is a meaningful change.
2921            // Either the kernel timestamp must be valid or we have written something.
2922            if (kernelLocationUpdate || serverLocationUpdate) {
2923                if (serverLocationUpdate) {
2924                    // use the time before we called the HAL write - it is a bit more accurate
2925                    // to when the server last read data than the current time here.
2926                    //
2927                    // If we haven't written anything, mLastWriteTime will be -1
2928                    // and we use systemTime().
2929                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
2930                    mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastWriteTime == -1
2931                            ? systemTime() : mLastWriteTime;
2932                }
2933                const size_t size = mActiveTracks.size();
2934                for (size_t i = 0; i < size; ++i) {
2935                    sp<Track> t = mActiveTracks[i].promote();
2936                    if (t != 0 && !t->isFastTrack()) {
2937                        t->updateTrackFrameInfo(
2938                                t->mAudioTrackServerProxy->framesReleased(),
2939                                mFramesWritten,
2940                                mTimestamp);
2941                    }
2942                }
2943            }
2944
2945            saveOutputTracks();
2946            if (mSignalPending) {
2947                // A signal was raised while we were unlocked
2948                mSignalPending = false;
2949            } else if (waitingAsyncCallback_l()) {
2950                if (exitPending()) {
2951                    break;
2952                }
2953                bool released = false;
2954                if (!keepWakeLock()) {
2955                    releaseWakeLock_l();
2956                    released = true;
2957                }
2958                mWakeLockUids.clear();
2959                mActiveTracksGeneration++;
2960                ALOGV("wait async completion");
2961                mWaitWorkCV.wait(mLock);
2962                ALOGV("async completion/wake");
2963                if (released) {
2964                    acquireWakeLock_l();
2965                }
2966                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
2967                mSleepTimeUs = 0;
2968
2969                continue;
2970            }
2971            if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) ||
2972                                   isSuspended()) {
2973                // put audio hardware into standby after short delay
2974                if (shouldStandby_l()) {
2975
2976                    threadLoop_standby();
2977
2978                    mStandby = true;
2979                }
2980
2981                if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2982                    // we're about to wait, flush the binder command buffer
2983                    IPCThreadState::self()->flushCommands();
2984
2985                    clearOutputTracks();
2986
2987                    if (exitPending()) {
2988                        break;
2989                    }
2990
2991                    releaseWakeLock_l();
2992                    mWakeLockUids.clear();
2993                    mActiveTracksGeneration++;
2994                    // wait until we have something to do...
2995                    ALOGV("%s going to sleep", myName.string());
2996                    mWaitWorkCV.wait(mLock);
2997                    ALOGV("%s waking up", myName.string());
2998                    acquireWakeLock_l();
2999
3000                    mMixerStatus = MIXER_IDLE;
3001                    mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3002                    mBytesWritten = 0;
3003                    mBytesRemaining = 0;
3004                    checkSilentMode_l();
3005
3006                    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3007                    mSleepTimeUs = mIdleSleepTimeUs;
3008                    if (mType == MIXER) {
3009                        sleepTimeShift = 0;
3010                    }
3011
3012                    continue;
3013                }
3014            }
3015            // mMixerStatusIgnoringFastTracks is also updated internally
3016            mMixerStatus = prepareTracks_l(&tracksToRemove);
3017
3018            // compare with previously applied list
3019            if (lastGeneration != mActiveTracksGeneration) {
3020                // update wakelock
3021                updateWakeLockUids_l(mWakeLockUids);
3022                lastGeneration = mActiveTracksGeneration;
3023            }
3024
3025            // prevent any changes in effect chain list and in each effect chain
3026            // during mixing and effect process as the audio buffers could be deleted
3027            // or modified if an effect is created or deleted
3028            lockEffectChains_l(effectChains);
3029        } // mLock scope ends
3030
3031        if (mBytesRemaining == 0) {
3032            mCurrentWriteLength = 0;
3033            if (mMixerStatus == MIXER_TRACKS_READY) {
3034                // threadLoop_mix() sets mCurrentWriteLength
3035                threadLoop_mix();
3036            } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3037                        && (mMixerStatus != MIXER_DRAIN_ALL)) {
3038                // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3039                // must be written to HAL
3040                threadLoop_sleepTime();
3041                if (mSleepTimeUs == 0) {
3042                    mCurrentWriteLength = mSinkBufferSize;
3043                }
3044            }
3045            // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3046            // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3047            // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3048            // or mSinkBuffer (if there are no effects).
3049            //
3050            // This is done pre-effects computation; if effects change to
3051            // support higher precision, this needs to move.
3052            //
3053            // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3054            // TODO use mSleepTimeUs == 0 as an additional condition.
3055            if (mMixerBufferValid) {
3056                void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3057                audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3058
3059                // mono blend occurs for mixer threads only (not direct or offloaded)
3060                // and is handled here if we're going directly to the sink.
3061                if (requireMonoBlend() && !mEffectBufferValid) {
3062                    mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3063                               true /*limit*/);
3064                }
3065
3066                memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3067                        mNormalFrameCount * mChannelCount);
3068            }
3069
3070            mBytesRemaining = mCurrentWriteLength;
3071            if (isSuspended()) {
3072                mSleepTimeUs = suspendSleepTimeUs();
3073                // simulate write to HAL when suspended
3074                mBytesWritten += mSinkBufferSize;
3075                mFramesWritten += mSinkBufferSize / mFrameSize;
3076                mBytesRemaining = 0;
3077            }
3078
3079            // only process effects if we're going to write
3080            if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3081                for (size_t i = 0; i < effectChains.size(); i ++) {
3082                    effectChains[i]->process_l();
3083                }
3084            }
3085        }
3086        // Process effect chains for offloaded thread even if no audio
3087        // was read from audio track: process only updates effect state
3088        // and thus does have to be synchronized with audio writes but may have
3089        // to be called while waiting for async write callback
3090        if (mType == OFFLOAD) {
3091            for (size_t i = 0; i < effectChains.size(); i ++) {
3092                effectChains[i]->process_l();
3093            }
3094        }
3095
3096        // Only if the Effects buffer is enabled and there is data in the
3097        // Effects buffer (buffer valid), we need to
3098        // copy into the sink buffer.
3099        // TODO use mSleepTimeUs == 0 as an additional condition.
3100        if (mEffectBufferValid) {
3101            //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3102
3103            if (requireMonoBlend()) {
3104                mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3105                           true /*limit*/);
3106            }
3107
3108            memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3109                    mNormalFrameCount * mChannelCount);
3110        }
3111
3112        // enable changes in effect chain
3113        unlockEffectChains(effectChains);
3114
3115        if (!waitingAsyncCallback()) {
3116            // mSleepTimeUs == 0 means we must write to audio hardware
3117            if (mSleepTimeUs == 0) {
3118                ssize_t ret = 0;
3119                // We save lastWriteFinished here, as previousLastWriteFinished,
3120                // for throttling. On thread start, previousLastWriteFinished will be
3121                // set to -1, which properly results in no throttling after the first write.
3122                nsecs_t previousLastWriteFinished = lastWriteFinished;
3123                nsecs_t delta = 0;
3124                if (mBytesRemaining) {
3125                    // FIXME rewrite to reduce number of system calls
3126                    mLastWriteTime = systemTime();  // also used for dumpsys
3127                    ret = threadLoop_write();
3128                    lastWriteFinished = systemTime();
3129                    delta = lastWriteFinished - mLastWriteTime;
3130                    if (ret < 0) {
3131                        mBytesRemaining = 0;
3132                    } else {
3133                        mBytesWritten += ret;
3134                        mBytesRemaining -= ret;
3135                        mFramesWritten += ret / mFrameSize;
3136                    }
3137                } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3138                        (mMixerStatus == MIXER_DRAIN_ALL)) {
3139                    threadLoop_drain();
3140                }
3141                if (mType == MIXER && !mStandby) {
3142                    // write blocked detection
3143                    if (delta > maxPeriod) {
3144                        mNumDelayedWrites++;
3145                        if ((lastWriteFinished - lastWarning) > kWarningThrottleNs) {
3146                            ATRACE_NAME("underrun");
3147                            ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
3148                                    (unsigned long long) ns2ms(delta), mNumDelayedWrites, this);
3149                            lastWarning = lastWriteFinished;
3150                        }
3151                    }
3152
3153                    if (mThreadThrottle
3154                            && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3155                            && ret > 0) {                         // we wrote something
3156                        // Limit MixerThread data processing to no more than twice the
3157                        // expected processing rate.
3158                        //
3159                        // This helps prevent underruns with NuPlayer and other applications
3160                        // which may set up buffers that are close to the minimum size, or use
3161                        // deep buffers, and rely on a double-buffering sleep strategy to fill.
3162                        //
3163                        // The throttle smooths out sudden large data drains from the device,
3164                        // e.g. when it comes out of standby, which often causes problems with
3165                        // (1) mixer threads without a fast mixer (which has its own warm-up)
3166                        // (2) minimum buffer sized tracks (even if the track is full,
3167                        //     the app won't fill fast enough to handle the sudden draw).
3168                        //
3169                        // Total time spent in last processing cycle equals time spent in
3170                        // 1. threadLoop_write, as well as time spent in
3171                        // 2. threadLoop_mix (significant for heavy mixing, especially
3172                        //                    on low tier processors)
3173
3174                        // it's OK if deltaMs is an overestimate.
3175                        const int32_t deltaMs =
3176                                (lastWriteFinished - previousLastWriteFinished) / 1000000;
3177                        const int32_t throttleMs = mHalfBufferMs - deltaMs;
3178                        if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3179                            usleep(throttleMs * 1000);
3180                            // notify of throttle start on verbose log
3181                            ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3182                                    "mixer(%p) throttle begin:"
3183                                    " ret(%zd) deltaMs(%d) requires sleep %d ms",
3184                                    this, ret, deltaMs, throttleMs);
3185                            mThreadThrottleTimeMs += throttleMs;
3186                        } else {
3187                            uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3188                            if (diff > 0) {
3189                                // notify of throttle end on debug log
3190                                // but prevent spamming for bluetooth
3191                                ALOGD_IF(!audio_is_a2dp_out_device(outDevice()),
3192                                        "mixer(%p) throttle end: throttle time(%u)", this, diff);
3193                                mThreadThrottleEndMs = mThreadThrottleTimeMs;
3194                            }
3195                        }
3196                    }
3197                }
3198
3199            } else {
3200                ATRACE_BEGIN("sleep");
3201                Mutex::Autolock _l(mLock);
3202                if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3203                    mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3204                }
3205                ATRACE_END();
3206            }
3207        }
3208
3209        // Finally let go of removed track(s), without the lock held
3210        // since we can't guarantee the destructors won't acquire that
3211        // same lock.  This will also mutate and push a new fast mixer state.
3212        threadLoop_removeTracks(tracksToRemove);
3213        tracksToRemove.clear();
3214
3215        // FIXME I don't understand the need for this here;
3216        //       it was in the original code but maybe the
3217        //       assignment in saveOutputTracks() makes this unnecessary?
3218        clearOutputTracks();
3219
3220        // Effect chains will be actually deleted here if they were removed from
3221        // mEffectChains list during mixing or effects processing
3222        effectChains.clear();
3223
3224        // FIXME Note that the above .clear() is no longer necessary since effectChains
3225        // is now local to this block, but will keep it for now (at least until merge done).
3226    }
3227
3228    threadLoop_exit();
3229
3230    if (!mStandby) {
3231        threadLoop_standby();
3232        mStandby = true;
3233    }
3234
3235    releaseWakeLock();
3236    mWakeLockUids.clear();
3237    mActiveTracksGeneration++;
3238
3239    ALOGV("Thread %p type %d exiting", this, mType);
3240    return false;
3241}
3242
3243// removeTracks_l() must be called with ThreadBase::mLock held
3244void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3245{
3246    size_t count = tracksToRemove.size();
3247    if (count > 0) {
3248        for (size_t i=0 ; i<count ; i++) {
3249            const sp<Track>& track = tracksToRemove.itemAt(i);
3250            mActiveTracks.remove(track);
3251            mWakeLockUids.remove(track->uid());
3252            mActiveTracksGeneration++;
3253            ALOGV("removeTracks_l removing track on session %d", track->sessionId());
3254            sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3255            if (chain != 0) {
3256                ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
3257                        track->sessionId());
3258                chain->decActiveTrackCnt();
3259            }
3260            if (track->isTerminated()) {
3261                removeTrack_l(track);
3262            }
3263        }
3264    }
3265
3266}
3267
3268status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3269{
3270    if (mNormalSink != 0) {
3271        ExtendedTimestamp ets;
3272        status_t status = mNormalSink->getTimestamp(ets);
3273        if (status == NO_ERROR) {
3274            status = ets.getBestTimestamp(&timestamp);
3275        }
3276        return status;
3277    }
3278    if ((mType == OFFLOAD || mType == DIRECT)
3279            && mOutput != NULL && mOutput->stream->get_presentation_position) {
3280        uint64_t position64;
3281        int ret = mOutput->getPresentationPosition(&position64, &timestamp.mTime);
3282        if (ret == 0) {
3283            timestamp.mPosition = (uint32_t)position64;
3284            return NO_ERROR;
3285        }
3286    }
3287    return INVALID_OPERATION;
3288}
3289
3290status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
3291                                                          audio_patch_handle_t *handle)
3292{
3293    AutoPark<FastMixer> park(mFastMixer);
3294
3295    status_t status = PlaybackThread::createAudioPatch_l(patch, handle);
3296
3297    return status;
3298}
3299
3300status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
3301                                                          audio_patch_handle_t *handle)
3302{
3303    status_t status = NO_ERROR;
3304
3305    // store new device and send to effects
3306    audio_devices_t type = AUDIO_DEVICE_NONE;
3307    for (unsigned int i = 0; i < patch->num_sinks; i++) {
3308        type |= patch->sinks[i].ext.device.type;
3309    }
3310
3311#ifdef ADD_BATTERY_DATA
3312    // when changing the audio output device, call addBatteryData to notify
3313    // the change
3314    if (mOutDevice != type) {
3315        uint32_t params = 0;
3316        // check whether speaker is on
3317        if (type & AUDIO_DEVICE_OUT_SPEAKER) {
3318            params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3319        }
3320
3321        audio_devices_t deviceWithoutSpeaker
3322            = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3323        // check if any other device (except speaker) is on
3324        if (type & deviceWithoutSpeaker) {
3325            params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3326        }
3327
3328        if (params != 0) {
3329            addBatteryData(params);
3330        }
3331    }
3332#endif
3333
3334    for (size_t i = 0; i < mEffectChains.size(); i++) {
3335        mEffectChains[i]->setDevice_l(type);
3336    }
3337
3338    // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when
3339    // the thread is created so that the first patch creation triggers an ioConfigChanged callback
3340    bool configChanged = mPrevOutDevice != type;
3341    mOutDevice = type;
3342    mPatch = *patch;
3343
3344    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3345        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3346        status = hwDevice->create_audio_patch(hwDevice,
3347                                               patch->num_sources,
3348                                               patch->sources,
3349                                               patch->num_sinks,
3350                                               patch->sinks,
3351                                               handle);
3352    } else {
3353        char *address;
3354        if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
3355            //FIXME: we only support address on first sink with HAL version < 3.0
3356            address = audio_device_address_to_parameter(
3357                                                        patch->sinks[0].ext.device.type,
3358                                                        patch->sinks[0].ext.device.address);
3359        } else {
3360            address = (char *)calloc(1, 1);
3361        }
3362        AudioParameter param = AudioParameter(String8(address));
3363        free(address);
3364        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
3365        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3366                param.toString().string());
3367        *handle = AUDIO_PATCH_HANDLE_NONE;
3368    }
3369    if (configChanged) {
3370        mPrevOutDevice = type;
3371        sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
3372    }
3373    return status;
3374}
3375
3376status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3377{
3378    AutoPark<FastMixer> park(mFastMixer);
3379
3380    status_t status = PlaybackThread::releaseAudioPatch_l(handle);
3381
3382    return status;
3383}
3384
3385status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
3386{
3387    status_t status = NO_ERROR;
3388
3389    mOutDevice = AUDIO_DEVICE_NONE;
3390
3391    if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
3392        audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice();
3393        status = hwDevice->release_audio_patch(hwDevice, handle);
3394    } else {
3395        AudioParameter param;
3396        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
3397        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3398                param.toString().string());
3399    }
3400    return status;
3401}
3402
3403void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
3404{
3405    Mutex::Autolock _l(mLock);
3406    mTracks.add(track);
3407}
3408
3409void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
3410{
3411    Mutex::Autolock _l(mLock);
3412    destroyTrack_l(track);
3413}
3414
3415void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config)
3416{
3417    ThreadBase::getAudioPortConfig(config);
3418    config->role = AUDIO_PORT_ROLE_SOURCE;
3419    config->ext.mix.hw_module = mOutput->audioHwDev->handle();
3420    config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
3421}
3422
3423// ----------------------------------------------------------------------------
3424
3425AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
3426        audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type)
3427    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady),
3428        // mAudioMixer below
3429        // mFastMixer below
3430        mFastMixerFutex(0),
3431        mMasterMono(false)
3432        // mOutputSink below
3433        // mPipeSink below
3434        // mNormalSink below
3435{
3436    ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
3437    ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%zu, "
3438            "mFrameCount=%zu, mNormalFrameCount=%zu",
3439            mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
3440            mNormalFrameCount);
3441    mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3442
3443    if (type == DUPLICATING) {
3444        // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
3445        // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
3446        // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
3447        return;
3448    }
3449    // create an NBAIO sink for the HAL output stream, and negotiate
3450    mOutputSink = new AudioStreamOutSink(output->stream);
3451    size_t numCounterOffers = 0;
3452    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
3453#if !LOG_NDEBUG
3454    ssize_t index =
3455#else
3456    (void)
3457#endif
3458            mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
3459    ALOG_ASSERT(index == 0);
3460
3461    // initialize fast mixer depending on configuration
3462    bool initFastMixer;
3463    switch (kUseFastMixer) {
3464    case FastMixer_Never:
3465        initFastMixer = false;
3466        break;
3467    case FastMixer_Always:
3468        initFastMixer = true;
3469        break;
3470    case FastMixer_Static:
3471    case FastMixer_Dynamic:
3472        initFastMixer = mFrameCount < mNormalFrameCount;
3473        break;
3474    }
3475    if (initFastMixer) {
3476        audio_format_t fastMixerFormat;
3477        if (mMixerBufferEnabled && mEffectBufferEnabled) {
3478            fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
3479        } else {
3480            fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
3481        }
3482        if (mFormat != fastMixerFormat) {
3483            // change our Sink format to accept our intermediate precision
3484            mFormat = fastMixerFormat;
3485            free(mSinkBuffer);
3486            mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
3487            const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
3488            (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
3489        }
3490
3491        // create a MonoPipe to connect our submix to FastMixer
3492        NBAIO_Format format = mOutputSink->format();
3493#ifdef TEE_SINK
3494        NBAIO_Format origformat = format;
3495#endif
3496        // adjust format to match that of the Fast Mixer
3497        ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat);
3498        format.mFormat = fastMixerFormat;
3499        format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
3500
3501        // This pipe depth compensates for scheduling latency of the normal mixer thread.
3502        // When it wakes up after a maximum latency, it runs a few cycles quickly before
3503        // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
3504        MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
3505        const NBAIO_Format offers[1] = {format};
3506        size_t numCounterOffers = 0;
3507#if !LOG_NDEBUG || defined(TEE_SINK)
3508        ssize_t index =
3509#else
3510        (void)
3511#endif
3512                monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
3513        ALOG_ASSERT(index == 0);
3514        monoPipe->setAvgFrames((mScreenState & 1) ?
3515                (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
3516        mPipeSink = monoPipe;
3517
3518#ifdef TEE_SINK
3519        if (mTeeSinkOutputEnabled) {
3520            // create a Pipe to archive a copy of FastMixer's output for dumpsys
3521            Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat);
3522            const NBAIO_Format offers2[1] = {origformat};
3523            numCounterOffers = 0;
3524            index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers);
3525            ALOG_ASSERT(index == 0);
3526            mTeeSink = teeSink;
3527            PipeReader *teeSource = new PipeReader(*teeSink);
3528            numCounterOffers = 0;
3529            index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers);
3530            ALOG_ASSERT(index == 0);
3531            mTeeSource = teeSource;
3532        }
3533#endif
3534
3535        // create fast mixer and configure it initially with just one fast track for our submix
3536        mFastMixer = new FastMixer();
3537        FastMixerStateQueue *sq = mFastMixer->sq();
3538#ifdef STATE_QUEUE_DUMP
3539        sq->setObserverDump(&mStateQueueObserverDump);
3540        sq->setMutatorDump(&mStateQueueMutatorDump);
3541#endif
3542        FastMixerState *state = sq->begin();
3543        FastTrack *fastTrack = &state->mFastTracks[0];
3544        // wrap the source side of the MonoPipe to make it an AudioBufferProvider
3545        fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
3546        fastTrack->mVolumeProvider = NULL;
3547        fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer
3548        fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
3549        fastTrack->mGeneration++;
3550        state->mFastTracksGen++;
3551        state->mTrackMask = 1;
3552        // fast mixer will use the HAL output sink
3553        state->mOutputSink = mOutputSink.get();
3554        state->mOutputSinkGen++;
3555        state->mFrameCount = mFrameCount;
3556        state->mCommand = FastMixerState::COLD_IDLE;
3557        // already done in constructor initialization list
3558        //mFastMixerFutex = 0;
3559        state->mColdFutexAddr = &mFastMixerFutex;
3560        state->mColdGen++;
3561        state->mDumpState = &mFastMixerDumpState;
3562#ifdef TEE_SINK
3563        state->mTeeSink = mTeeSink.get();
3564#endif
3565        mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
3566        state->mNBLogWriter = mFastMixerNBLogWriter.get();
3567        sq->end();
3568        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3569
3570        // start the fast mixer
3571        mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
3572        pid_t tid = mFastMixer->getTid();
3573        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3574
3575#ifdef AUDIO_WATCHDOG
3576        // create and start the watchdog
3577        mAudioWatchdog = new AudioWatchdog();
3578        mAudioWatchdog->setDump(&mAudioWatchdogDump);
3579        mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
3580        tid = mAudioWatchdog->getTid();
3581        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer);
3582#endif
3583
3584    }
3585
3586    switch (kUseFastMixer) {
3587    case FastMixer_Never:
3588    case FastMixer_Dynamic:
3589        mNormalSink = mOutputSink;
3590        break;
3591    case FastMixer_Always:
3592        mNormalSink = mPipeSink;
3593        break;
3594    case FastMixer_Static:
3595        mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
3596        break;
3597    }
3598}
3599
3600AudioFlinger::MixerThread::~MixerThread()
3601{
3602    if (mFastMixer != 0) {
3603        FastMixerStateQueue *sq = mFastMixer->sq();
3604        FastMixerState *state = sq->begin();
3605        if (state->mCommand == FastMixerState::COLD_IDLE) {
3606            int32_t old = android_atomic_inc(&mFastMixerFutex);
3607            if (old == -1) {
3608                (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3609            }
3610        }
3611        state->mCommand = FastMixerState::EXIT;
3612        sq->end();
3613        sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3614        mFastMixer->join();
3615        // Though the fast mixer thread has exited, it's state queue is still valid.
3616        // We'll use that extract the final state which contains one remaining fast track
3617        // corresponding to our sub-mix.
3618        state = sq->begin();
3619        ALOG_ASSERT(state->mTrackMask == 1);
3620        FastTrack *fastTrack = &state->mFastTracks[0];
3621        ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
3622        delete fastTrack->mBufferProvider;
3623        sq->end(false /*didModify*/);
3624        mFastMixer.clear();
3625#ifdef AUDIO_WATCHDOG
3626        if (mAudioWatchdog != 0) {
3627            mAudioWatchdog->requestExit();
3628            mAudioWatchdog->requestExitAndWait();
3629            mAudioWatchdog.clear();
3630        }
3631#endif
3632    }
3633    mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
3634    delete mAudioMixer;
3635}
3636
3637
3638uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
3639{
3640    if (mFastMixer != 0) {
3641        MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
3642        latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
3643    }
3644    return latency;
3645}
3646
3647
3648void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
3649{
3650    PlaybackThread::threadLoop_removeTracks(tracksToRemove);
3651}
3652
3653ssize_t AudioFlinger::MixerThread::threadLoop_write()
3654{
3655    // FIXME we should only do one push per cycle; confirm this is true
3656    // Start the fast mixer if it's not already running
3657    if (mFastMixer != 0) {
3658        FastMixerStateQueue *sq = mFastMixer->sq();
3659        FastMixerState *state = sq->begin();
3660        if (state->mCommand != FastMixerState::MIX_WRITE &&
3661                (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
3662            if (state->mCommand == FastMixerState::COLD_IDLE) {
3663
3664                // FIXME workaround for first HAL write being CPU bound on some devices
3665                ATRACE_BEGIN("write");
3666                mOutput->write((char *)mSinkBuffer, 0);
3667                ATRACE_END();
3668
3669                int32_t old = android_atomic_inc(&mFastMixerFutex);
3670                if (old == -1) {
3671                    (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
3672                }
3673#ifdef AUDIO_WATCHDOG
3674                if (mAudioWatchdog != 0) {
3675                    mAudioWatchdog->resume();
3676                }
3677#endif
3678            }
3679            state->mCommand = FastMixerState::MIX_WRITE;
3680#ifdef FAST_THREAD_STATISTICS
3681            mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
3682                FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
3683#endif
3684            sq->end();
3685            sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3686            if (kUseFastMixer == FastMixer_Dynamic) {
3687                mNormalSink = mPipeSink;
3688            }
3689        } else {
3690            sq->end(false /*didModify*/);
3691        }
3692    }
3693    return PlaybackThread::threadLoop_write();
3694}
3695
3696void AudioFlinger::MixerThread::threadLoop_standby()
3697{
3698    // Idle the fast mixer if it's currently running
3699    if (mFastMixer != 0) {
3700        FastMixerStateQueue *sq = mFastMixer->sq();
3701        FastMixerState *state = sq->begin();
3702        if (!(state->mCommand & FastMixerState::IDLE)) {
3703            state->mCommand = FastMixerState::COLD_IDLE;
3704            state->mColdFutexAddr = &mFastMixerFutex;
3705            state->mColdGen++;
3706            mFastMixerFutex = 0;
3707            sq->end();
3708            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
3709            sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3710            if (kUseFastMixer == FastMixer_Dynamic) {
3711                mNormalSink = mOutputSink;
3712            }
3713#ifdef AUDIO_WATCHDOG
3714            if (mAudioWatchdog != 0) {
3715                mAudioWatchdog->pause();
3716            }
3717#endif
3718        } else {
3719            sq->end(false /*didModify*/);
3720        }
3721    }
3722    PlaybackThread::threadLoop_standby();
3723}
3724
3725bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
3726{
3727    return false;
3728}
3729
3730bool AudioFlinger::PlaybackThread::shouldStandby_l()
3731{
3732    return !mStandby;
3733}
3734
3735bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
3736{
3737    Mutex::Autolock _l(mLock);
3738    return waitingAsyncCallback_l();
3739}
3740
3741// shared by MIXER and DIRECT, overridden by DUPLICATING
3742void AudioFlinger::PlaybackThread::threadLoop_standby()
3743{
3744    ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
3745    mOutput->standby();
3746    if (mUseAsyncWrite != 0) {
3747        // discard any pending drain or write ack by incrementing sequence
3748        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
3749        mDrainSequence = (mDrainSequence + 2) & ~1;
3750        ALOG_ASSERT(mCallbackThread != 0);
3751        mCallbackThread->setWriteBlocked(mWriteAckSequence);
3752        mCallbackThread->setDraining(mDrainSequence);
3753    }
3754    mHwPaused = false;
3755}
3756
3757void AudioFlinger::PlaybackThread::onAddNewTrack_l()
3758{
3759    ALOGV("signal playback thread");
3760    broadcast_l();
3761}
3762
3763void AudioFlinger::MixerThread::threadLoop_mix()
3764{
3765    // mix buffers...
3766    mAudioMixer->process();
3767    mCurrentWriteLength = mSinkBufferSize;
3768    // increase sleep time progressively when application underrun condition clears.
3769    // Only increase sleep time if the mixer is ready for two consecutive times to avoid
3770    // that a steady state of alternating ready/not ready conditions keeps the sleep time
3771    // such that we would underrun the audio HAL.
3772    if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
3773        sleepTimeShift--;
3774    }
3775    mSleepTimeUs = 0;
3776    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3777    //TODO: delay standby when effects have a tail
3778
3779}
3780
3781void AudioFlinger::MixerThread::threadLoop_sleepTime()
3782{
3783    // If no tracks are ready, sleep once for the duration of an output
3784    // buffer size, then write 0s to the output
3785    if (mSleepTimeUs == 0) {
3786        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3787            mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
3788            if (mSleepTimeUs < kMinThreadSleepTimeUs) {
3789                mSleepTimeUs = kMinThreadSleepTimeUs;
3790            }
3791            // reduce sleep time in case of consecutive application underruns to avoid
3792            // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
3793            // duration we would end up writing less data than needed by the audio HAL if
3794            // the condition persists.
3795            if (sleepTimeShift < kMaxThreadSleepTimeShift) {
3796                sleepTimeShift++;
3797            }
3798        } else {
3799            mSleepTimeUs = mIdleSleepTimeUs;
3800        }
3801    } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
3802        // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
3803        // before effects processing or output.
3804        if (mMixerBufferValid) {
3805            memset(mMixerBuffer, 0, mMixerBufferSize);
3806        } else {
3807            memset(mSinkBuffer, 0, mSinkBufferSize);
3808        }
3809        mSleepTimeUs = 0;
3810        ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
3811                "anticipated start");
3812    }
3813    // TODO add standby time extension fct of effect tail
3814}
3815
3816// prepareTracks_l() must be called with ThreadBase::mLock held
3817AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
3818        Vector< sp<Track> > *tracksToRemove)
3819{
3820
3821    mixer_state mixerStatus = MIXER_IDLE;
3822    // find out which tracks need to be processed
3823    size_t count = mActiveTracks.size();
3824    size_t mixedTracks = 0;
3825    size_t tracksWithEffect = 0;
3826    // counts only _active_ fast tracks
3827    size_t fastTracks = 0;
3828    uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
3829
3830    float masterVolume = mMasterVolume;
3831    bool masterMute = mMasterMute;
3832
3833    if (masterMute) {
3834        masterVolume = 0;
3835    }
3836    // Delegate master volume control to effect in output mix effect chain if needed
3837    sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
3838    if (chain != 0) {
3839        uint32_t v = (uint32_t)(masterVolume * (1 << 24));
3840        chain->setVolume_l(&v, &v);
3841        masterVolume = (float)((v + (1 << 23)) >> 24);
3842        chain.clear();
3843    }
3844
3845    // prepare a new state to push
3846    FastMixerStateQueue *sq = NULL;
3847    FastMixerState *state = NULL;
3848    bool didModify = false;
3849    FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
3850    if (mFastMixer != 0) {
3851        sq = mFastMixer->sq();
3852        state = sq->begin();
3853    }
3854
3855    mMixerBufferValid = false;  // mMixerBuffer has no valid data until appropriate tracks found.
3856    mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
3857
3858    for (size_t i=0 ; i<count ; i++) {
3859        const sp<Track> t = mActiveTracks[i].promote();
3860        if (t == 0) {
3861            continue;
3862        }
3863
3864        // this const just means the local variable doesn't change
3865        Track* const track = t.get();
3866
3867        // process fast tracks
3868        if (track->isFastTrack()) {
3869
3870            // It's theoretically possible (though unlikely) for a fast track to be created
3871            // and then removed within the same normal mix cycle.  This is not a problem, as
3872            // the track never becomes active so it's fast mixer slot is never touched.
3873            // The converse, of removing an (active) track and then creating a new track
3874            // at the identical fast mixer slot within the same normal mix cycle,
3875            // is impossible because the slot isn't marked available until the end of each cycle.
3876            int j = track->mFastIndex;
3877            ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
3878            ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
3879            FastTrack *fastTrack = &state->mFastTracks[j];
3880
3881            // Determine whether the track is currently in underrun condition,
3882            // and whether it had a recent underrun.
3883            FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
3884            FastTrackUnderruns underruns = ftDump->mUnderruns;
3885            uint32_t recentFull = (underruns.mBitFields.mFull -
3886                    track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
3887            uint32_t recentPartial = (underruns.mBitFields.mPartial -
3888                    track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
3889            uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
3890                    track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
3891            uint32_t recentUnderruns = recentPartial + recentEmpty;
3892            track->mObservedUnderruns = underruns;
3893            // don't count underruns that occur while stopping or pausing
3894            // or stopped which can occur when flush() is called while active
3895            if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
3896                    recentUnderruns > 0) {
3897                // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
3898                track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
3899            } else {
3900                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
3901            }
3902
3903            // This is similar to the state machine for normal tracks,
3904            // with a few modifications for fast tracks.
3905            bool isActive = true;
3906            switch (track->mState) {
3907            case TrackBase::STOPPING_1:
3908                // track stays active in STOPPING_1 state until first underrun
3909                if (recentUnderruns > 0 || track->isTerminated()) {
3910                    track->mState = TrackBase::STOPPING_2;
3911                }
3912                break;
3913            case TrackBase::PAUSING:
3914                // ramp down is not yet implemented
3915                track->setPaused();
3916                break;
3917            case TrackBase::RESUMING:
3918                // ramp up is not yet implemented
3919                track->mState = TrackBase::ACTIVE;
3920                break;
3921            case TrackBase::ACTIVE:
3922                if (recentFull > 0 || recentPartial > 0) {
3923                    // track has provided at least some frames recently: reset retry count
3924                    track->mRetryCount = kMaxTrackRetries;
3925                }
3926                if (recentUnderruns == 0) {
3927                    // no recent underruns: stay active
3928                    break;
3929                }
3930                // there has recently been an underrun of some kind
3931                if (track->sharedBuffer() == 0) {
3932                    // were any of the recent underruns "empty" (no frames available)?
3933                    if (recentEmpty == 0) {
3934                        // no, then ignore the partial underruns as they are allowed indefinitely
3935                        break;
3936                    }
3937                    // there has recently been an "empty" underrun: decrement the retry counter
3938                    if (--(track->mRetryCount) > 0) {
3939                        break;
3940                    }
3941                    // indicate to client process that the track was disabled because of underrun;
3942                    // it will then automatically call start() when data is available
3943                    track->disable();
3944                    // remove from active list, but state remains ACTIVE [confusing but true]
3945                    isActive = false;
3946                    break;
3947                }
3948                // fall through
3949            case TrackBase::STOPPING_2:
3950            case TrackBase::PAUSED:
3951            case TrackBase::STOPPED:
3952            case TrackBase::FLUSHED:   // flush() while active
3953                // Check for presentation complete if track is inactive
3954                // We have consumed all the buffers of this track.
3955                // This would be incomplete if we auto-paused on underrun
3956                {
3957                    size_t audioHALFrames =
3958                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
3959                    int64_t framesWritten = mBytesWritten / mFrameSize;
3960                    if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
3961                        // track stays in active list until presentation is complete
3962                        break;
3963                    }
3964                }
3965                if (track->isStopping_2()) {
3966                    track->mState = TrackBase::STOPPED;
3967                }
3968                if (track->isStopped()) {
3969                    // Can't reset directly, as fast mixer is still polling this track
3970                    //   track->reset();
3971                    // So instead mark this track as needing to be reset after push with ack
3972                    resetMask |= 1 << i;
3973                }
3974                isActive = false;
3975                break;
3976            case TrackBase::IDLE:
3977            default:
3978                LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
3979            }
3980
3981            if (isActive) {
3982                // was it previously inactive?
3983                if (!(state->mTrackMask & (1 << j))) {
3984                    ExtendedAudioBufferProvider *eabp = track;
3985                    VolumeProvider *vp = track;
3986                    fastTrack->mBufferProvider = eabp;
3987                    fastTrack->mVolumeProvider = vp;
3988                    fastTrack->mChannelMask = track->mChannelMask;
3989                    fastTrack->mFormat = track->mFormat;
3990                    fastTrack->mGeneration++;
3991                    state->mTrackMask |= 1 << j;
3992                    didModify = true;
3993                    // no acknowledgement required for newly active tracks
3994                }
3995                // cache the combined master volume and stream type volume for fast mixer; this
3996                // lacks any synchronization or barrier so VolumeProvider may read a stale value
3997                track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
3998                ++fastTracks;
3999            } else {
4000                // was it previously active?
4001                if (state->mTrackMask & (1 << j)) {
4002                    fastTrack->mBufferProvider = NULL;
4003                    fastTrack->mGeneration++;
4004                    state->mTrackMask &= ~(1 << j);
4005                    didModify = true;
4006                    // If any fast tracks were removed, we must wait for acknowledgement
4007                    // because we're about to decrement the last sp<> on those tracks.
4008                    block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4009                } else {
4010                    LOG_ALWAYS_FATAL("fast track %d should have been active; "
4011                            "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4012                            j, track->mState, state->mTrackMask, recentUnderruns,
4013                            track->sharedBuffer() != 0);
4014                }
4015                tracksToRemove->add(track);
4016                // Avoids a misleading display in dumpsys
4017                track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4018            }
4019            continue;
4020        }
4021
4022        {   // local variable scope to avoid goto warning
4023
4024        audio_track_cblk_t* cblk = track->cblk();
4025
4026        // The first time a track is added we wait
4027        // for all its buffers to be filled before processing it
4028        int name = track->name();
4029        // make sure that we have enough frames to mix one full buffer.
4030        // enforce this condition only once to enable draining the buffer in case the client
4031        // app does not call stop() and relies on underrun to stop:
4032        // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4033        // during last round
4034        size_t desiredFrames;
4035        const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4036        AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4037
4038        desiredFrames = sourceFramesNeededWithTimestretch(
4039                sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4040        // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4041        // add frames already consumed but not yet released by the resampler
4042        // because mAudioTrackServerProxy->framesReady() will include these frames
4043        desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
4044
4045        uint32_t minFrames = 1;
4046        if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4047                (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4048            minFrames = desiredFrames;
4049        }
4050
4051        size_t framesReady = track->framesReady();
4052        if (ATRACE_ENABLED()) {
4053            // I wish we had formatted trace names
4054            char traceName[16];
4055            strcpy(traceName, "nRdy");
4056            int name = track->name();
4057            if (AudioMixer::TRACK0 <= name &&
4058                    name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) {
4059                name -= AudioMixer::TRACK0;
4060                traceName[4] = (name / 10) + '0';
4061                traceName[5] = (name % 10) + '0';
4062            } else {
4063                traceName[4] = '?';
4064                traceName[5] = '?';
4065            }
4066            traceName[6] = '\0';
4067            ATRACE_INT(traceName, framesReady);
4068        }
4069        if ((framesReady >= minFrames) && track->isReady() &&
4070                !track->isPaused() && !track->isTerminated())
4071        {
4072            ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
4073
4074            mixedTracks++;
4075
4076            // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4077            // there is an effect chain connected to the track
4078            chain.clear();
4079            if (track->mainBuffer() != mSinkBuffer &&
4080                    track->mainBuffer() != mMixerBuffer) {
4081                if (mEffectBufferEnabled) {
4082                    mEffectBufferValid = true; // Later can set directly.
4083                }
4084                chain = getEffectChain_l(track->sessionId());
4085                // Delegate volume control to effect in track effect chain if needed
4086                if (chain != 0) {
4087                    tracksWithEffect++;
4088                } else {
4089                    ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
4090                            "session %d",
4091                            name, track->sessionId());
4092                }
4093            }
4094
4095
4096            int param = AudioMixer::VOLUME;
4097            if (track->mFillingUpStatus == Track::FS_FILLED) {
4098                // no ramp for the first volume setting
4099                track->mFillingUpStatus = Track::FS_ACTIVE;
4100                if (track->mState == TrackBase::RESUMING) {
4101                    track->mState = TrackBase::ACTIVE;
4102                    param = AudioMixer::RAMP_VOLUME;
4103                }
4104                mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
4105            // FIXME should not make a decision based on mServer
4106            } else if (cblk->mServer != 0) {
4107                // If the track is stopped before the first frame was mixed,
4108                // do not apply ramp
4109                param = AudioMixer::RAMP_VOLUME;
4110            }
4111
4112            // compute volume for this track
4113            uint32_t vl, vr;       // in U8.24 integer format
4114            float vlf, vrf, vaf;   // in [0.0, 1.0] float format
4115            if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
4116                vl = vr = 0;
4117                vlf = vrf = vaf = 0.;
4118                if (track->isPausing()) {
4119                    track->setPaused();
4120                }
4121            } else {
4122
4123                // read original volumes with volume control
4124                float typeVolume = mStreamTypes[track->streamType()].volume;
4125                float v = masterVolume * typeVolume;
4126                AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4127                gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4128                vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
4129                vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
4130                // track volumes come from shared memory, so can't be trusted and must be clamped
4131                if (vlf > GAIN_FLOAT_UNITY) {
4132                    ALOGV("Track left volume out of range: %.3g", vlf);
4133                    vlf = GAIN_FLOAT_UNITY;
4134                }
4135                if (vrf > GAIN_FLOAT_UNITY) {
4136                    ALOGV("Track right volume out of range: %.3g", vrf);
4137                    vrf = GAIN_FLOAT_UNITY;
4138                }
4139                // now apply the master volume and stream type volume
4140                vlf *= v;
4141                vrf *= v;
4142                // assuming master volume and stream type volume each go up to 1.0,
4143                // then derive vl and vr as U8.24 versions for the effect chain
4144                const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
4145                vl = (uint32_t) (scaleto8_24 * vlf);
4146                vr = (uint32_t) (scaleto8_24 * vrf);
4147                // vl and vr are now in U8.24 format
4148                uint16_t sendLevel = proxy->getSendLevel_U4_12();
4149                // send level comes from shared memory and so may be corrupt
4150                if (sendLevel > MAX_GAIN_INT) {
4151                    ALOGV("Track send level out of range: %04X", sendLevel);
4152                    sendLevel = MAX_GAIN_INT;
4153                }
4154                // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
4155                vaf = v * sendLevel * (1. / MAX_GAIN_INT);
4156            }
4157
4158            // Delegate volume control to effect in track effect chain if needed
4159            if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
4160                // Do not ramp volume if volume is controlled by effect
4161                param = AudioMixer::VOLUME;
4162                // Update remaining floating point volume levels
4163                vlf = (float)vl / (1 << 24);
4164                vrf = (float)vr / (1 << 24);
4165                track->mHasVolumeController = true;
4166            } else {
4167                // force no volume ramp when volume controller was just disabled or removed
4168                // from effect chain to avoid volume spike
4169                if (track->mHasVolumeController) {
4170                    param = AudioMixer::VOLUME;
4171                }
4172                track->mHasVolumeController = false;
4173            }
4174
4175            // XXX: these things DON'T need to be done each time
4176            mAudioMixer->setBufferProvider(name, track);
4177            mAudioMixer->enable(name);
4178
4179            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf);
4180            mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf);
4181            mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf);
4182            mAudioMixer->setParameter(
4183                name,
4184                AudioMixer::TRACK,
4185                AudioMixer::FORMAT, (void *)track->format());
4186            mAudioMixer->setParameter(
4187                name,
4188                AudioMixer::TRACK,
4189                AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
4190            mAudioMixer->setParameter(
4191                name,
4192                AudioMixer::TRACK,
4193                AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask);
4194            // limit track sample rate to 2 x output sample rate, which changes at re-configuration
4195            uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
4196            uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
4197            if (reqSampleRate == 0) {
4198                reqSampleRate = mSampleRate;
4199            } else if (reqSampleRate > maxSampleRate) {
4200                reqSampleRate = maxSampleRate;
4201            }
4202            mAudioMixer->setParameter(
4203                name,
4204                AudioMixer::RESAMPLE,
4205                AudioMixer::SAMPLE_RATE,
4206                (void *)(uintptr_t)reqSampleRate);
4207
4208            AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4209            mAudioMixer->setParameter(
4210                name,
4211                AudioMixer::TIMESTRETCH,
4212                AudioMixer::PLAYBACK_RATE,
4213                &playbackRate);
4214
4215            /*
4216             * Select the appropriate output buffer for the track.
4217             *
4218             * Tracks with effects go into their own effects chain buffer
4219             * and from there into either mEffectBuffer or mSinkBuffer.
4220             *
4221             * Other tracks can use mMixerBuffer for higher precision
4222             * channel accumulation.  If this buffer is enabled
4223             * (mMixerBufferEnabled true), then selected tracks will accumulate
4224             * into it.
4225             *
4226             */
4227            if (mMixerBufferEnabled
4228                    && (track->mainBuffer() == mSinkBuffer
4229                            || track->mainBuffer() == mMixerBuffer)) {
4230                mAudioMixer->setParameter(
4231                        name,
4232                        AudioMixer::TRACK,
4233                        AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
4234                mAudioMixer->setParameter(
4235                        name,
4236                        AudioMixer::TRACK,
4237                        AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
4238                // TODO: override track->mainBuffer()?
4239                mMixerBufferValid = true;
4240            } else {
4241                mAudioMixer->setParameter(
4242                        name,
4243                        AudioMixer::TRACK,
4244                        AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT);
4245                mAudioMixer->setParameter(
4246                        name,
4247                        AudioMixer::TRACK,
4248                        AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
4249            }
4250            mAudioMixer->setParameter(
4251                name,
4252                AudioMixer::TRACK,
4253                AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
4254
4255            // reset retry count
4256            track->mRetryCount = kMaxTrackRetries;
4257
4258            // If one track is ready, set the mixer ready if:
4259            //  - the mixer was not ready during previous round OR
4260            //  - no other track is not ready
4261            if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
4262                    mixerStatus != MIXER_TRACKS_ENABLED) {
4263                mixerStatus = MIXER_TRACKS_READY;
4264            }
4265        } else {
4266            if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
4267                ALOGV("track(%p) underrun,  framesReady(%zu) < framesDesired(%zd)",
4268                        track, framesReady, desiredFrames);
4269                track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
4270            } else {
4271                track->mAudioTrackServerProxy->tallyUnderrunFrames(0);
4272            }
4273
4274            // clear effect chain input buffer if an active track underruns to avoid sending
4275            // previous audio buffer again to effects
4276            chain = getEffectChain_l(track->sessionId());
4277            if (chain != 0) {
4278                chain->clearInputBuffer();
4279            }
4280
4281            ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
4282            if ((track->sharedBuffer() != 0) || track->isTerminated() ||
4283                    track->isStopped() || track->isPaused()) {
4284                // We have consumed all the buffers of this track.
4285                // Remove it from the list of active tracks.
4286                // TODO: use actual buffer filling status instead of latency when available from
4287                // audio HAL
4288                size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
4289                int64_t framesWritten = mBytesWritten / mFrameSize;
4290                if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
4291                    if (track->isStopped()) {
4292                        track->reset();
4293                    }
4294                    tracksToRemove->add(track);
4295                }
4296            } else {
4297                // No buffers for this track. Give it a few chances to
4298                // fill a buffer, then remove it from active list.
4299                if (--(track->mRetryCount) <= 0) {
4300                    ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
4301                    tracksToRemove->add(track);
4302                    // indicate to client process that the track was disabled because of underrun;
4303                    // it will then automatically call start() when data is available
4304                    track->disable();
4305                // If one track is not ready, mark the mixer also not ready if:
4306                //  - the mixer was ready during previous round OR
4307                //  - no other track is ready
4308                } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
4309                                mixerStatus != MIXER_TRACKS_READY) {
4310                    mixerStatus = MIXER_TRACKS_ENABLED;
4311                }
4312            }
4313            mAudioMixer->disable(name);
4314        }
4315
4316        }   // local variable scope to avoid goto warning
4317
4318    }
4319
4320    // Push the new FastMixer state if necessary
4321    bool pauseAudioWatchdog = false;
4322    if (didModify) {
4323        state->mFastTracksGen++;
4324        // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
4325        if (kUseFastMixer == FastMixer_Dynamic &&
4326                state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
4327            state->mCommand = FastMixerState::COLD_IDLE;
4328            state->mColdFutexAddr = &mFastMixerFutex;
4329            state->mColdGen++;
4330            mFastMixerFutex = 0;
4331            if (kUseFastMixer == FastMixer_Dynamic) {
4332                mNormalSink = mOutputSink;
4333            }
4334            // If we go into cold idle, need to wait for acknowledgement
4335            // so that fast mixer stops doing I/O.
4336            block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4337            pauseAudioWatchdog = true;
4338        }
4339    }
4340    if (sq != NULL) {
4341        sq->end(didModify);
4342        sq->push(block);
4343    }
4344#ifdef AUDIO_WATCHDOG
4345    if (pauseAudioWatchdog && mAudioWatchdog != 0) {
4346        mAudioWatchdog->pause();
4347    }
4348#endif
4349
4350    // Now perform the deferred reset on fast tracks that have stopped
4351    while (resetMask != 0) {
4352        size_t i = __builtin_ctz(resetMask);
4353        ALOG_ASSERT(i < count);
4354        resetMask &= ~(1 << i);
4355        sp<Track> t = mActiveTracks[i].promote();
4356        if (t == 0) {
4357            continue;
4358        }
4359        Track* track = t.get();
4360        ALOG_ASSERT(track->isFastTrack() && track->isStopped());
4361        track->reset();
4362    }
4363
4364    // remove all the tracks that need to be...
4365    removeTracks_l(*tracksToRemove);
4366
4367    if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
4368        mEffectBufferValid = true;
4369    }
4370
4371    if (mEffectBufferValid) {
4372        // as long as there are effects we should clear the effects buffer, to avoid
4373        // passing a non-clean buffer to the effect chain
4374        memset(mEffectBuffer, 0, mEffectBufferSize);
4375    }
4376    // sink or mix buffer must be cleared if all tracks are connected to an
4377    // effect chain as in this case the mixer will not write to the sink or mix buffer
4378    // and track effects will accumulate into it
4379    if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4380            (mixedTracks == 0 && fastTracks > 0))) {
4381        // FIXME as a performance optimization, should remember previous zero status
4382        if (mMixerBufferValid) {
4383            memset(mMixerBuffer, 0, mMixerBufferSize);
4384            // TODO: In testing, mSinkBuffer below need not be cleared because
4385            // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
4386            // after mixing.
4387            //
4388            // To enforce this guarantee:
4389            // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
4390            // (mixedTracks == 0 && fastTracks > 0))
4391            // must imply MIXER_TRACKS_READY.
4392            // Later, we may clear buffers regardless, and skip much of this logic.
4393        }
4394        // FIXME as a performance optimization, should remember previous zero status
4395        memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
4396    }
4397
4398    // if any fast tracks, then status is ready
4399    mMixerStatusIgnoringFastTracks = mixerStatus;
4400    if (fastTracks > 0) {
4401        mixerStatus = MIXER_TRACKS_READY;
4402    }
4403    return mixerStatus;
4404}
4405
4406// getTrackName_l() must be called with ThreadBase::mLock held
4407int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask,
4408        audio_format_t format, audio_session_t sessionId)
4409{
4410    return mAudioMixer->getTrackName(channelMask, format, sessionId);
4411}
4412
4413// deleteTrackName_l() must be called with ThreadBase::mLock held
4414void AudioFlinger::MixerThread::deleteTrackName_l(int name)
4415{
4416    ALOGV("remove track (%d) and delete from mixer", name);
4417    mAudioMixer->deleteTrackName(name);
4418}
4419
4420// checkForNewParameter_l() must be called with ThreadBase::mLock held
4421bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
4422                                                       status_t& status)
4423{
4424    bool reconfig = false;
4425    bool a2dpDeviceChanged = false;
4426
4427    status = NO_ERROR;
4428
4429    AutoPark<FastMixer> park(mFastMixer);
4430
4431    AudioParameter param = AudioParameter(keyValuePair);
4432    int value;
4433    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
4434        reconfig = true;
4435    }
4436    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
4437        if (!isValidPcmSinkFormat((audio_format_t) value)) {
4438            status = BAD_VALUE;
4439        } else {
4440            // no need to save value, since it's constant
4441            reconfig = true;
4442        }
4443    }
4444    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
4445        if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
4446            status = BAD_VALUE;
4447        } else {
4448            // no need to save value, since it's constant
4449            reconfig = true;
4450        }
4451    }
4452    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4453        // do not accept frame count changes if tracks are open as the track buffer
4454        // size depends on frame count and correct behavior would not be guaranteed
4455        // if frame count is changed after track creation
4456        if (!mTracks.isEmpty()) {
4457            status = INVALID_OPERATION;
4458        } else {
4459            reconfig = true;
4460        }
4461    }
4462    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4463#ifdef ADD_BATTERY_DATA
4464        // when changing the audio output device, call addBatteryData to notify
4465        // the change
4466        if (mOutDevice != value) {
4467            uint32_t params = 0;
4468            // check whether speaker is on
4469            if (value & AUDIO_DEVICE_OUT_SPEAKER) {
4470                params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4471            }
4472
4473            audio_devices_t deviceWithoutSpeaker
4474                = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
4475            // check if any other device (except speaker) is on
4476            if (value & deviceWithoutSpeaker) {
4477                params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4478            }
4479
4480            if (params != 0) {
4481                addBatteryData(params);
4482            }
4483        }
4484#endif
4485
4486        // forward device change to effects that have requested to be
4487        // aware of attached audio device.
4488        if (value != AUDIO_DEVICE_NONE) {
4489            a2dpDeviceChanged =
4490                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4491            mOutDevice = value;
4492            for (size_t i = 0; i < mEffectChains.size(); i++) {
4493                mEffectChains[i]->setDevice_l(mOutDevice);
4494            }
4495        }
4496    }
4497
4498    if (status == NO_ERROR) {
4499        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4500                                                keyValuePair.string());
4501        if (!mStandby && status == INVALID_OPERATION) {
4502            mOutput->standby();
4503            mStandby = true;
4504            mBytesWritten = 0;
4505            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4506                                                   keyValuePair.string());
4507        }
4508        if (status == NO_ERROR && reconfig) {
4509            readOutputParameters_l();
4510            delete mAudioMixer;
4511            mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4512            for (size_t i = 0; i < mTracks.size() ; i++) {
4513                int name = getTrackName_l(mTracks[i]->mChannelMask,
4514                        mTracks[i]->mFormat, mTracks[i]->mSessionId);
4515                if (name < 0) {
4516                    break;
4517                }
4518                mTracks[i]->mName = name;
4519            }
4520            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4521        }
4522    }
4523
4524    return reconfig || a2dpDeviceChanged;
4525}
4526
4527
4528void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
4529{
4530    PlaybackThread::dumpInternals(fd, args);
4531    dprintf(fd, "  Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
4532    dprintf(fd, "  AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames());
4533    dprintf(fd, "  Master mono: %s\n", mMasterMono ? "on" : "off");
4534
4535    // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
4536    // while we are dumping it.  It may be inconsistent, but it won't mutate!
4537    // This is a large object so we place it on the heap.
4538    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
4539    const FastMixerDumpState *copy = new FastMixerDumpState(mFastMixerDumpState);
4540    copy->dump(fd);
4541    delete copy;
4542
4543#ifdef STATE_QUEUE_DUMP
4544    // Similar for state queue
4545    StateQueueObserverDump observerCopy = mStateQueueObserverDump;
4546    observerCopy.dump(fd);
4547    StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
4548    mutatorCopy.dump(fd);
4549#endif
4550
4551#ifdef TEE_SINK
4552    // Write the tee output to a .wav file
4553    dumpTee(fd, mTeeSource, mId);
4554#endif
4555
4556#ifdef AUDIO_WATCHDOG
4557    if (mAudioWatchdog != 0) {
4558        // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
4559        AudioWatchdogDump wdCopy = mAudioWatchdogDump;
4560        wdCopy.dump(fd);
4561    }
4562#endif
4563}
4564
4565uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
4566{
4567    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
4568}
4569
4570uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
4571{
4572    return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
4573}
4574
4575void AudioFlinger::MixerThread::cacheParameters_l()
4576{
4577    PlaybackThread::cacheParameters_l();
4578
4579    // FIXME: Relaxed timing because of a certain device that can't meet latency
4580    // Should be reduced to 2x after the vendor fixes the driver issue
4581    // increase threshold again due to low power audio mode. The way this warning
4582    // threshold is calculated and its usefulness should be reconsidered anyway.
4583    maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
4584}
4585
4586// ----------------------------------------------------------------------------
4587
4588AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4589        AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady)
4590    :   PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady)
4591        // mLeftVolFloat, mRightVolFloat
4592{
4593}
4594
4595AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
4596        AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
4597        ThreadBase::type_t type, bool systemReady)
4598    :   PlaybackThread(audioFlinger, output, id, device, type, systemReady)
4599        // mLeftVolFloat, mRightVolFloat
4600{
4601}
4602
4603AudioFlinger::DirectOutputThread::~DirectOutputThread()
4604{
4605}
4606
4607void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
4608{
4609    float left, right;
4610
4611    if (mMasterMute || mStreamTypes[track->streamType()].mute) {
4612        left = right = 0;
4613    } else {
4614        float typeVolume = mStreamTypes[track->streamType()].volume;
4615        float v = mMasterVolume * typeVolume;
4616        AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
4617        gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4618        left = float_from_gain(gain_minifloat_unpack_left(vlr));
4619        if (left > GAIN_FLOAT_UNITY) {
4620            left = GAIN_FLOAT_UNITY;
4621        }
4622        left *= v;
4623        right = float_from_gain(gain_minifloat_unpack_right(vlr));
4624        if (right > GAIN_FLOAT_UNITY) {
4625            right = GAIN_FLOAT_UNITY;
4626        }
4627        right *= v;
4628    }
4629
4630    if (lastTrack) {
4631        if (left != mLeftVolFloat || right != mRightVolFloat) {
4632            mLeftVolFloat = left;
4633            mRightVolFloat = right;
4634
4635            // Convert volumes from float to 8.24
4636            uint32_t vl = (uint32_t)(left * (1 << 24));
4637            uint32_t vr = (uint32_t)(right * (1 << 24));
4638
4639            // Delegate volume control to effect in track effect chain if needed
4640            // only one effect chain can be present on DirectOutputThread, so if
4641            // there is one, the track is connected to it
4642            if (!mEffectChains.isEmpty()) {
4643                mEffectChains[0]->setVolume_l(&vl, &vr);
4644                left = (float)vl / (1 << 24);
4645                right = (float)vr / (1 << 24);
4646            }
4647            if (mOutput->stream->set_volume) {
4648                mOutput->stream->set_volume(mOutput->stream, left, right);
4649            }
4650        }
4651    }
4652}
4653
4654void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
4655{
4656    sp<Track> previousTrack = mPreviousTrack.promote();
4657    sp<Track> latestTrack = mLatestActiveTrack.promote();
4658
4659    if (previousTrack != 0 && latestTrack != 0) {
4660        if (mType == DIRECT) {
4661            if (previousTrack.get() != latestTrack.get()) {
4662                mFlushPending = true;
4663            }
4664        } else /* mType == OFFLOAD */ {
4665            if (previousTrack->sessionId() != latestTrack->sessionId()) {
4666                mFlushPending = true;
4667            }
4668        }
4669    }
4670    PlaybackThread::onAddNewTrack_l();
4671}
4672
4673AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
4674    Vector< sp<Track> > *tracksToRemove
4675)
4676{
4677    size_t count = mActiveTracks.size();
4678    mixer_state mixerStatus = MIXER_IDLE;
4679    bool doHwPause = false;
4680    bool doHwResume = false;
4681
4682    // find out which tracks need to be processed
4683    for (size_t i = 0; i < count; i++) {
4684        sp<Track> t = mActiveTracks[i].promote();
4685        // The track died recently
4686        if (t == 0) {
4687            continue;
4688        }
4689
4690        if (t->isInvalid()) {
4691            ALOGW("An invalidated track shouldn't be in active list");
4692            tracksToRemove->add(t);
4693            continue;
4694        }
4695
4696        Track* const track = t.get();
4697#ifdef VERY_VERY_VERBOSE_LOGGING
4698        audio_track_cblk_t* cblk = track->cblk();
4699#endif
4700        // Only consider last track started for volume and mixer state control.
4701        // In theory an older track could underrun and restart after the new one starts
4702        // but as we only care about the transition phase between two tracks on a
4703        // direct output, it is not a problem to ignore the underrun case.
4704        sp<Track> l = mLatestActiveTrack.promote();
4705        bool last = l.get() == track;
4706
4707        if (track->isPausing()) {
4708            track->setPaused();
4709            if (mHwSupportsPause && last && !mHwPaused) {
4710                doHwPause = true;
4711                mHwPaused = true;
4712            }
4713            tracksToRemove->add(track);
4714        } else if (track->isFlushPending()) {
4715            track->flushAck();
4716            if (last) {
4717                mFlushPending = true;
4718            }
4719        } else if (track->isResumePending()) {
4720            track->resumeAck();
4721            if (last && mHwPaused) {
4722                doHwResume = true;
4723                mHwPaused = false;
4724            }
4725        }
4726
4727        // The first time a track is added we wait
4728        // for all its buffers to be filled before processing it.
4729        // Allow draining the buffer in case the client
4730        // app does not call stop() and relies on underrun to stop:
4731        // hence the test on (track->mRetryCount > 1).
4732        // If retryCount<=1 then track is about to underrun and be removed.
4733        // Do not use a high threshold for compressed audio.
4734        uint32_t minFrames;
4735        if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
4736            && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
4737            minFrames = mNormalFrameCount;
4738        } else {
4739            minFrames = 1;
4740        }
4741
4742        if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() &&
4743                !track->isStopping_2() && !track->isStopped())
4744        {
4745            ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
4746
4747            if (track->mFillingUpStatus == Track::FS_FILLED) {
4748                track->mFillingUpStatus = Track::FS_ACTIVE;
4749                // make sure processVolume_l() will apply new volume even if 0
4750                mLeftVolFloat = mRightVolFloat = -1.0;
4751                if (!mHwSupportsPause) {
4752                    track->resumeAck();
4753                }
4754            }
4755
4756            // compute volume for this track
4757            processVolume_l(track, last);
4758            if (last) {
4759                sp<Track> previousTrack = mPreviousTrack.promote();
4760                if (previousTrack != 0) {
4761                    if (track != previousTrack.get()) {
4762                        // Flush any data still being written from last track
4763                        mBytesRemaining = 0;
4764                        // Invalidate previous track to force a seek when resuming.
4765                        previousTrack->invalidate();
4766                    }
4767                }
4768                mPreviousTrack = track;
4769
4770                // reset retry count
4771                track->mRetryCount = kMaxTrackRetriesDirect;
4772                mActiveTrack = t;
4773                mixerStatus = MIXER_TRACKS_READY;
4774                if (mHwPaused) {
4775                    doHwResume = true;
4776                    mHwPaused = false;
4777                }
4778            }
4779        } else {
4780            // clear effect chain input buffer if the last active track started underruns
4781            // to avoid sending previous audio buffer again to effects
4782            if (!mEffectChains.isEmpty() && last) {
4783                mEffectChains[0]->clearInputBuffer();
4784            }
4785            if (track->isStopping_1()) {
4786                track->mState = TrackBase::STOPPING_2;
4787                if (last && mHwPaused) {
4788                     doHwResume = true;
4789                     mHwPaused = false;
4790                 }
4791            }
4792            if ((track->sharedBuffer() != 0) || track->isStopped() ||
4793                    track->isStopping_2() || track->isPaused()) {
4794                // We have consumed all the buffers of this track.
4795                // Remove it from the list of active tracks.
4796                size_t audioHALFrames;
4797                if (audio_has_proportional_frames(mFormat)) {
4798                    audioHALFrames = (latency_l() * mSampleRate) / 1000;
4799                } else {
4800                    audioHALFrames = 0;
4801                }
4802
4803                int64_t framesWritten = mBytesWritten / mFrameSize;
4804                if (mStandby || !last ||
4805                        track->presentationComplete(framesWritten, audioHALFrames)) {
4806                    if (track->isStopping_2()) {
4807                        track->mState = TrackBase::STOPPED;
4808                    }
4809                    if (track->isStopped()) {
4810                        track->reset();
4811                    }
4812                    tracksToRemove->add(track);
4813                }
4814            } else {
4815                // No buffers for this track. Give it a few chances to
4816                // fill a buffer, then remove it from active list.
4817                // Only consider last track started for mixer state control
4818                if (--(track->mRetryCount) <= 0) {
4819                    ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
4820                    tracksToRemove->add(track);
4821                    // indicate to client process that the track was disabled because of underrun;
4822                    // it will then automatically call start() when data is available
4823                    track->disable();
4824                } else if (last) {
4825                    ALOGW("pause because of UNDERRUN, framesReady = %zu,"
4826                            "minFrames = %u, mFormat = %#x",
4827                            track->framesReady(), minFrames, mFormat);
4828                    mixerStatus = MIXER_TRACKS_ENABLED;
4829                    if (mHwSupportsPause && !mHwPaused && !mStandby) {
4830                        doHwPause = true;
4831                        mHwPaused = true;
4832                    }
4833                }
4834            }
4835        }
4836    }
4837
4838    // if an active track did not command a flush, check for pending flush on stopped tracks
4839    if (!mFlushPending) {
4840        for (size_t i = 0; i < mTracks.size(); i++) {
4841            if (mTracks[i]->isFlushPending()) {
4842                mTracks[i]->flushAck();
4843                mFlushPending = true;
4844            }
4845        }
4846    }
4847
4848    // make sure the pause/flush/resume sequence is executed in the right order.
4849    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4850    // before flush and then resume HW. This can happen in case of pause/flush/resume
4851    // if resume is received before pause is executed.
4852    if (mHwSupportsPause && !mStandby &&
4853            (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4854        mOutput->stream->pause(mOutput->stream);
4855    }
4856    if (mFlushPending) {
4857        flushHw_l();
4858    }
4859    if (mHwSupportsPause && !mStandby && doHwResume) {
4860        mOutput->stream->resume(mOutput->stream);
4861    }
4862    // remove all the tracks that need to be...
4863    removeTracks_l(*tracksToRemove);
4864
4865    return mixerStatus;
4866}
4867
4868void AudioFlinger::DirectOutputThread::threadLoop_mix()
4869{
4870    size_t frameCount = mFrameCount;
4871    int8_t *curBuf = (int8_t *)mSinkBuffer;
4872    // output audio to hardware
4873    while (frameCount) {
4874        AudioBufferProvider::Buffer buffer;
4875        buffer.frameCount = frameCount;
4876        status_t status = mActiveTrack->getNextBuffer(&buffer);
4877        if (status != NO_ERROR || buffer.raw == NULL) {
4878            // no need to pad with 0 for compressed audio
4879            if (audio_has_proportional_frames(mFormat)) {
4880                memset(curBuf, 0, frameCount * mFrameSize);
4881            }
4882            break;
4883        }
4884        memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
4885        frameCount -= buffer.frameCount;
4886        curBuf += buffer.frameCount * mFrameSize;
4887        mActiveTrack->releaseBuffer(&buffer);
4888    }
4889    mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
4890    mSleepTimeUs = 0;
4891    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4892    mActiveTrack.clear();
4893}
4894
4895void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
4896{
4897    // do not write to HAL when paused
4898    if (mHwPaused || (usesHwAvSync() && mStandby)) {
4899        mSleepTimeUs = mIdleSleepTimeUs;
4900        return;
4901    }
4902    if (mSleepTimeUs == 0) {
4903        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4904            mSleepTimeUs = mActiveSleepTimeUs;
4905        } else {
4906            mSleepTimeUs = mIdleSleepTimeUs;
4907        }
4908    } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
4909        memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
4910        mSleepTimeUs = 0;
4911    }
4912}
4913
4914void AudioFlinger::DirectOutputThread::threadLoop_exit()
4915{
4916    {
4917        Mutex::Autolock _l(mLock);
4918        for (size_t i = 0; i < mTracks.size(); i++) {
4919            if (mTracks[i]->isFlushPending()) {
4920                mTracks[i]->flushAck();
4921                mFlushPending = true;
4922            }
4923        }
4924        if (mFlushPending) {
4925            flushHw_l();
4926        }
4927    }
4928    PlaybackThread::threadLoop_exit();
4929}
4930
4931// must be called with thread mutex locked
4932bool AudioFlinger::DirectOutputThread::shouldStandby_l()
4933{
4934    bool trackPaused = false;
4935    bool trackStopped = false;
4936
4937    if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
4938        return !mStandby;
4939    }
4940
4941    // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4942    // after a timeout and we will enter standby then.
4943    if (mTracks.size() > 0) {
4944        trackPaused = mTracks[mTracks.size() - 1]->isPaused();
4945        trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
4946                           mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
4947    }
4948
4949    return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
4950}
4951
4952// getTrackName_l() must be called with ThreadBase::mLock held
4953int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused,
4954        audio_format_t format __unused, audio_session_t sessionId __unused)
4955{
4956    return 0;
4957}
4958
4959// deleteTrackName_l() must be called with ThreadBase::mLock held
4960void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused)
4961{
4962}
4963
4964// checkForNewParameter_l() must be called with ThreadBase::mLock held
4965bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
4966                                                              status_t& status)
4967{
4968    bool reconfig = false;
4969    bool a2dpDeviceChanged = false;
4970
4971    status = NO_ERROR;
4972
4973    AudioParameter param = AudioParameter(keyValuePair);
4974    int value;
4975    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
4976        // forward device change to effects that have requested to be
4977        // aware of attached audio device.
4978        if (value != AUDIO_DEVICE_NONE) {
4979            a2dpDeviceChanged =
4980                    (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP);
4981            mOutDevice = value;
4982            for (size_t i = 0; i < mEffectChains.size(); i++) {
4983                mEffectChains[i]->setDevice_l(mOutDevice);
4984            }
4985        }
4986    }
4987    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
4988        // do not accept frame count changes if tracks are open as the track buffer
4989        // size depends on frame count and correct behavior would not be garantied
4990        // if frame count is changed after track creation
4991        if (!mTracks.isEmpty()) {
4992            status = INVALID_OPERATION;
4993        } else {
4994            reconfig = true;
4995        }
4996    }
4997    if (status == NO_ERROR) {
4998        status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
4999                                                keyValuePair.string());
5000        if (!mStandby && status == INVALID_OPERATION) {
5001            mOutput->standby();
5002            mStandby = true;
5003            mBytesWritten = 0;
5004            status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
5005                                                   keyValuePair.string());
5006        }
5007        if (status == NO_ERROR && reconfig) {
5008            readOutputParameters_l();
5009            sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5010        }
5011    }
5012
5013    return reconfig || a2dpDeviceChanged;
5014}
5015
5016uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5017{
5018    uint32_t time;
5019    if (audio_has_proportional_frames(mFormat)) {
5020        time = PlaybackThread::activeSleepTimeUs();
5021    } else {
5022        time = kDirectMinSleepTimeUs;
5023    }
5024    return time;
5025}
5026
5027uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5028{
5029    uint32_t time;
5030    if (audio_has_proportional_frames(mFormat)) {
5031        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5032    } else {
5033        time = kDirectMinSleepTimeUs;
5034    }
5035    return time;
5036}
5037
5038uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5039{
5040    uint32_t time;
5041    if (audio_has_proportional_frames(mFormat)) {
5042        time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5043    } else {
5044        time = kDirectMinSleepTimeUs;
5045    }
5046    return time;
5047}
5048
5049void AudioFlinger::DirectOutputThread::cacheParameters_l()
5050{
5051    PlaybackThread::cacheParameters_l();
5052
5053    // use shorter standby delay as on normal output to release
5054    // hardware resources as soon as possible
5055    // no delay on outputs with HW A/V sync
5056    if (usesHwAvSync()) {
5057        mStandbyDelayNs = 0;
5058    } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
5059        mStandbyDelayNs = kOffloadStandbyDelayNs;
5060    } else {
5061        mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
5062    }
5063}
5064
5065void AudioFlinger::DirectOutputThread::flushHw_l()
5066{
5067    mOutput->flush();
5068    mHwPaused = false;
5069    mFlushPending = false;
5070}
5071
5072// ----------------------------------------------------------------------------
5073
5074AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
5075        const wp<AudioFlinger::PlaybackThread>& playbackThread)
5076    :   Thread(false /*canCallJava*/),
5077        mPlaybackThread(playbackThread),
5078        mWriteAckSequence(0),
5079        mDrainSequence(0)
5080{
5081}
5082
5083AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
5084{
5085}
5086
5087void AudioFlinger::AsyncCallbackThread::onFirstRef()
5088{
5089    run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
5090}
5091
5092bool AudioFlinger::AsyncCallbackThread::threadLoop()
5093{
5094    while (!exitPending()) {
5095        uint32_t writeAckSequence;
5096        uint32_t drainSequence;
5097
5098        {
5099            Mutex::Autolock _l(mLock);
5100            while (!((mWriteAckSequence & 1) ||
5101                     (mDrainSequence & 1) ||
5102                     exitPending())) {
5103                mWaitWorkCV.wait(mLock);
5104            }
5105
5106            if (exitPending()) {
5107                break;
5108            }
5109            ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
5110                  mWriteAckSequence, mDrainSequence);
5111            writeAckSequence = mWriteAckSequence;
5112            mWriteAckSequence &= ~1;
5113            drainSequence = mDrainSequence;
5114            mDrainSequence &= ~1;
5115        }
5116        {
5117            sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
5118            if (playbackThread != 0) {
5119                if (writeAckSequence & 1) {
5120                    playbackThread->resetWriteBlocked(writeAckSequence >> 1);
5121                }
5122                if (drainSequence & 1) {
5123                    playbackThread->resetDraining(drainSequence >> 1);
5124                }
5125            }
5126        }
5127    }
5128    return false;
5129}
5130
5131void AudioFlinger::AsyncCallbackThread::exit()
5132{
5133    ALOGV("AsyncCallbackThread::exit");
5134    Mutex::Autolock _l(mLock);
5135    requestExit();
5136    mWaitWorkCV.broadcast();
5137}
5138
5139void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
5140{
5141    Mutex::Autolock _l(mLock);
5142    // bit 0 is cleared
5143    mWriteAckSequence = sequence << 1;
5144}
5145
5146void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
5147{
5148    Mutex::Autolock _l(mLock);
5149    // ignore unexpected callbacks
5150    if (mWriteAckSequence & 2) {
5151        mWriteAckSequence |= 1;
5152        mWaitWorkCV.signal();
5153    }
5154}
5155
5156void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
5157{
5158    Mutex::Autolock _l(mLock);
5159    // bit 0 is cleared
5160    mDrainSequence = sequence << 1;
5161}
5162
5163void AudioFlinger::AsyncCallbackThread::resetDraining()
5164{
5165    Mutex::Autolock _l(mLock);
5166    // ignore unexpected callbacks
5167    if (mDrainSequence & 2) {
5168        mDrainSequence |= 1;
5169        mWaitWorkCV.signal();
5170    }
5171}
5172
5173
5174// ----------------------------------------------------------------------------
5175AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
5176        AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady)
5177    :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady),
5178        mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true)
5179{
5180    //FIXME: mStandby should be set to true by ThreadBase constructor
5181    mStandby = true;
5182    mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
5183}
5184
5185void AudioFlinger::OffloadThread::threadLoop_exit()
5186{
5187    if (mFlushPending || mHwPaused) {
5188        // If a flush is pending or track was paused, just discard buffered data
5189        flushHw_l();
5190    } else {
5191        mMixerStatus = MIXER_DRAIN_ALL;
5192        threadLoop_drain();
5193    }
5194    if (mUseAsyncWrite) {
5195        ALOG_ASSERT(mCallbackThread != 0);
5196        mCallbackThread->exit();
5197    }
5198    PlaybackThread::threadLoop_exit();
5199}
5200
5201AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
5202    Vector< sp<Track> > *tracksToRemove
5203)
5204{
5205    size_t count = mActiveTracks.size();
5206
5207    mixer_state mixerStatus = MIXER_IDLE;
5208    bool doHwPause = false;
5209    bool doHwResume = false;
5210
5211    ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
5212
5213    // find out which tracks need to be processed
5214    for (size_t i = 0; i < count; i++) {
5215        sp<Track> t = mActiveTracks[i].promote();
5216        // The track died recently
5217        if (t == 0) {
5218            continue;
5219        }
5220        Track* const track = t.get();
5221#ifdef VERY_VERY_VERBOSE_LOGGING
5222        audio_track_cblk_t* cblk = track->cblk();
5223#endif
5224        // Only consider last track started for volume and mixer state control.
5225        // In theory an older track could underrun and restart after the new one starts
5226        // but as we only care about the transition phase between two tracks on a
5227        // direct output, it is not a problem to ignore the underrun case.
5228        sp<Track> l = mLatestActiveTrack.promote();
5229        bool last = l.get() == track;
5230
5231        if (track->isInvalid()) {
5232            ALOGW("An invalidated track shouldn't be in active list");
5233            tracksToRemove->add(track);
5234            continue;
5235        }
5236
5237        if (track->mState == TrackBase::IDLE) {
5238            ALOGW("An idle track shouldn't be in active list");
5239            continue;
5240        }
5241
5242        if (track->isPausing()) {
5243            track->setPaused();
5244            if (last) {
5245                if (mHwSupportsPause && !mHwPaused) {
5246                    doHwPause = true;
5247                    mHwPaused = true;
5248                }
5249                // If we were part way through writing the mixbuffer to
5250                // the HAL we must save this until we resume
5251                // BUG - this will be wrong if a different track is made active,
5252                // in that case we want to discard the pending data in the
5253                // mixbuffer and tell the client to present it again when the
5254                // track is resumed
5255                mPausedWriteLength = mCurrentWriteLength;
5256                mPausedBytesRemaining = mBytesRemaining;
5257                mBytesRemaining = 0;    // stop writing
5258            }
5259            tracksToRemove->add(track);
5260        } else if (track->isFlushPending()) {
5261            if (track->isStopping_1()) {
5262                track->mRetryCount = kMaxTrackStopRetriesOffload;
5263            } else {
5264                track->mRetryCount = kMaxTrackRetriesOffload;
5265            }
5266            track->flushAck();
5267            if (last) {
5268                mFlushPending = true;
5269            }
5270        } else if (track->isResumePending()){
5271            track->resumeAck();
5272            if (last) {
5273                if (mPausedBytesRemaining) {
5274                    // Need to continue write that was interrupted
5275                    mCurrentWriteLength = mPausedWriteLength;
5276                    mBytesRemaining = mPausedBytesRemaining;
5277                    mPausedBytesRemaining = 0;
5278                }
5279                if (mHwPaused) {
5280                    doHwResume = true;
5281                    mHwPaused = false;
5282                    // threadLoop_mix() will handle the case that we need to
5283                    // resume an interrupted write
5284                }
5285                // enable write to audio HAL
5286                mSleepTimeUs = 0;
5287
5288                // Do not handle new data in this iteration even if track->framesReady()
5289                mixerStatus = MIXER_TRACKS_ENABLED;
5290            }
5291        }  else if (track->framesReady() && track->isReady() &&
5292                !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
5293            ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
5294            if (track->mFillingUpStatus == Track::FS_FILLED) {
5295                track->mFillingUpStatus = Track::FS_ACTIVE;
5296                // make sure processVolume_l() will apply new volume even if 0
5297                mLeftVolFloat = mRightVolFloat = -1.0;
5298            }
5299
5300            if (last) {
5301                sp<Track> previousTrack = mPreviousTrack.promote();
5302                if (previousTrack != 0) {
5303                    if (track != previousTrack.get()) {
5304                        // Flush any data still being written from last track
5305                        mBytesRemaining = 0;
5306                        if (mPausedBytesRemaining) {
5307                            // Last track was paused so we also need to flush saved
5308                            // mixbuffer state and invalidate track so that it will
5309                            // re-submit that unwritten data when it is next resumed
5310                            mPausedBytesRemaining = 0;
5311                            // Invalidate is a bit drastic - would be more efficient
5312                            // to have a flag to tell client that some of the
5313                            // previously written data was lost
5314                            previousTrack->invalidate();
5315                        }
5316                        // flush data already sent to the DSP if changing audio session as audio
5317                        // comes from a different source. Also invalidate previous track to force a
5318                        // seek when resuming.
5319                        if (previousTrack->sessionId() != track->sessionId()) {
5320                            previousTrack->invalidate();
5321                        }
5322                    }
5323                }
5324                mPreviousTrack = track;
5325                // reset retry count
5326                if (track->isStopping_1()) {
5327                    track->mRetryCount = kMaxTrackStopRetriesOffload;
5328                } else {
5329                    track->mRetryCount = kMaxTrackRetriesOffload;
5330                }
5331                mActiveTrack = t;
5332                mixerStatus = MIXER_TRACKS_READY;
5333            }
5334        } else {
5335            ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
5336            if (track->isStopping_1()) {
5337                if (--(track->mRetryCount) <= 0) {
5338                    // Hardware buffer can hold a large amount of audio so we must
5339                    // wait for all current track's data to drain before we say
5340                    // that the track is stopped.
5341                    if (mBytesRemaining == 0) {
5342                        // Only start draining when all data in mixbuffer
5343                        // has been written
5344                        ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
5345                        track->mState = TrackBase::STOPPING_2; // so presentation completes after
5346                        // drain do not drain if no data was ever sent to HAL (mStandby == true)
5347                        if (last && !mStandby) {
5348                            // do not modify drain sequence if we are already draining. This happens
5349                            // when resuming from pause after drain.
5350                            if ((mDrainSequence & 1) == 0) {
5351                                mSleepTimeUs = 0;
5352                                mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5353                                mixerStatus = MIXER_DRAIN_TRACK;
5354                                mDrainSequence += 2;
5355                            }
5356                            if (mHwPaused) {
5357                                // It is possible to move from PAUSED to STOPPING_1 without
5358                                // a resume so we must ensure hardware is running
5359                                doHwResume = true;
5360                                mHwPaused = false;
5361                            }
5362                        }
5363                    }
5364                } else if (last) {
5365                    ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
5366                    mixerStatus = MIXER_TRACKS_ENABLED;
5367                }
5368            } else if (track->isStopping_2()) {
5369                // Drain has completed or we are in standby, signal presentation complete
5370                if (!(mDrainSequence & 1) || !last || mStandby) {
5371                    track->mState = TrackBase::STOPPED;
5372                    size_t audioHALFrames =
5373                            (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
5374                    int64_t framesWritten =
5375                            mBytesWritten / mOutput->getFrameSize();
5376                    track->presentationComplete(framesWritten, audioHALFrames);
5377                    track->reset();
5378                    tracksToRemove->add(track);
5379                }
5380            } else {
5381                // No buffers for this track. Give it a few chances to
5382                // fill a buffer, then remove it from active list.
5383                if (--(track->mRetryCount) <= 0) {
5384                    ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
5385                          track->name());
5386                    tracksToRemove->add(track);
5387                    // indicate to client process that the track was disabled because of underrun;
5388                    // it will then automatically call start() when data is available
5389                    track->disable();
5390                } else if (last){
5391                    mixerStatus = MIXER_TRACKS_ENABLED;
5392                }
5393            }
5394        }
5395        // compute volume for this track
5396        processVolume_l(track, last);
5397    }
5398
5399    // make sure the pause/flush/resume sequence is executed in the right order.
5400    // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5401    // before flush and then resume HW. This can happen in case of pause/flush/resume
5402    // if resume is received before pause is executed.
5403    if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5404        mOutput->stream->pause(mOutput->stream);
5405    }
5406    if (mFlushPending) {
5407        flushHw_l();
5408    }
5409    if (!mStandby && doHwResume) {
5410        mOutput->stream->resume(mOutput->stream);
5411    }
5412
5413    // remove all the tracks that need to be...
5414    removeTracks_l(*tracksToRemove);
5415
5416    return mixerStatus;
5417}
5418
5419// must be called with thread mutex locked
5420bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
5421{
5422    ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
5423          mWriteAckSequence, mDrainSequence);
5424    if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
5425        return true;
5426    }
5427    return false;
5428}
5429
5430bool AudioFlinger::OffloadThread::waitingAsyncCallback()
5431{
5432    Mutex::Autolock _l(mLock);
5433    return waitingAsyncCallback_l();
5434}
5435
5436void AudioFlinger::OffloadThread::flushHw_l()
5437{
5438    DirectOutputThread::flushHw_l();
5439    // Flush anything still waiting in the mixbuffer
5440    mCurrentWriteLength = 0;
5441    mBytesRemaining = 0;
5442    mPausedWriteLength = 0;
5443    mPausedBytesRemaining = 0;
5444    // reset bytes written count to reflect that DSP buffers are empty after flush.
5445    mBytesWritten = 0;
5446
5447    if (mUseAsyncWrite) {
5448        // discard any pending drain or write ack by incrementing sequence
5449        mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
5450        mDrainSequence = (mDrainSequence + 2) & ~1;
5451        ALOG_ASSERT(mCallbackThread != 0);
5452        mCallbackThread->setWriteBlocked(mWriteAckSequence);
5453        mCallbackThread->setDraining(mDrainSequence);
5454    }
5455}
5456
5457void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
5458{
5459    Mutex::Autolock _l(mLock);
5460    if (PlaybackThread::invalidateTracks_l(streamType)) {
5461        mFlushPending = true;
5462    }
5463}
5464
5465// ----------------------------------------------------------------------------
5466
5467AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
5468        AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
5469    :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
5470                    systemReady, DUPLICATING),
5471        mWaitTimeMs(UINT_MAX)
5472{
5473    addOutputTrack(mainThread);
5474}
5475
5476AudioFlinger::DuplicatingThread::~DuplicatingThread()
5477{
5478    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5479        mOutputTracks[i]->destroy();
5480    }
5481}
5482
5483void AudioFlinger::DuplicatingThread::threadLoop_mix()
5484{
5485    // mix buffers...
5486    if (outputsReady(outputTracks)) {
5487        mAudioMixer->process();
5488    } else {
5489        if (mMixerBufferValid) {
5490            memset(mMixerBuffer, 0, mMixerBufferSize);
5491        } else {
5492            memset(mSinkBuffer, 0, mSinkBufferSize);
5493        }
5494    }
5495    mSleepTimeUs = 0;
5496    writeFrames = mNormalFrameCount;
5497    mCurrentWriteLength = mSinkBufferSize;
5498    mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5499}
5500
5501void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
5502{
5503    if (mSleepTimeUs == 0) {
5504        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5505            mSleepTimeUs = mActiveSleepTimeUs;
5506        } else {
5507            mSleepTimeUs = mIdleSleepTimeUs;
5508        }
5509    } else if (mBytesWritten != 0) {
5510        if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5511            writeFrames = mNormalFrameCount;
5512            memset(mSinkBuffer, 0, mSinkBufferSize);
5513        } else {
5514            // flush remaining overflow buffers in output tracks
5515            writeFrames = 0;
5516        }
5517        mSleepTimeUs = 0;
5518    }
5519}
5520
5521ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
5522{
5523    for (size_t i = 0; i < outputTracks.size(); i++) {
5524        outputTracks[i]->write(mSinkBuffer, writeFrames);
5525    }
5526    mStandby = false;
5527    return (ssize_t)mSinkBufferSize;
5528}
5529
5530void AudioFlinger::DuplicatingThread::threadLoop_standby()
5531{
5532    // DuplicatingThread implements standby by stopping all tracks
5533    for (size_t i = 0; i < outputTracks.size(); i++) {
5534        outputTracks[i]->stop();
5535    }
5536}
5537
5538void AudioFlinger::DuplicatingThread::saveOutputTracks()
5539{
5540    outputTracks = mOutputTracks;
5541}
5542
5543void AudioFlinger::DuplicatingThread::clearOutputTracks()
5544{
5545    outputTracks.clear();
5546}
5547
5548void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
5549{
5550    Mutex::Autolock _l(mLock);
5551    // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
5552    // Adjust for thread->sampleRate() to determine minimum buffer frame count.
5553    // Then triple buffer because Threads do not run synchronously and may not be clock locked.
5554    const size_t frameCount =
5555            3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
5556    // TODO: Consider asynchronous sample rate conversion to handle clock disparity
5557    // from different OutputTracks and their associated MixerThreads (e.g. one may
5558    // nearly empty and the other may be dropping data).
5559
5560    sp<OutputTrack> outputTrack = new OutputTrack(thread,
5561                                            this,
5562                                            mSampleRate,
5563                                            mFormat,
5564                                            mChannelMask,
5565                                            frameCount,
5566                                            IPCThreadState::self()->getCallingUid());
5567    if (outputTrack->cblk() != NULL) {
5568        thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
5569        mOutputTracks.add(outputTrack);
5570        ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
5571        updateWaitTime_l();
5572    }
5573}
5574
5575void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
5576{
5577    Mutex::Autolock _l(mLock);
5578    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5579        if (mOutputTracks[i]->thread() == thread) {
5580            mOutputTracks[i]->destroy();
5581            mOutputTracks.removeAt(i);
5582            updateWaitTime_l();
5583            if (thread->getOutput() == mOutput) {
5584                mOutput = NULL;
5585            }
5586            return;
5587        }
5588    }
5589    ALOGV("removeOutputTrack(): unknown thread: %p", thread);
5590}
5591
5592// caller must hold mLock
5593void AudioFlinger::DuplicatingThread::updateWaitTime_l()
5594{
5595    mWaitTimeMs = UINT_MAX;
5596    for (size_t i = 0; i < mOutputTracks.size(); i++) {
5597        sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
5598        if (strong != 0) {
5599            uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
5600            if (waitTimeMs < mWaitTimeMs) {
5601                mWaitTimeMs = waitTimeMs;
5602            }
5603        }
5604    }
5605}
5606
5607
5608bool AudioFlinger::DuplicatingThread::outputsReady(
5609        const SortedVector< sp<OutputTrack> > &outputTracks)
5610{
5611    for (size_t i = 0; i < outputTracks.size(); i++) {
5612        sp<ThreadBase> thread = outputTracks[i]->thread().promote();
5613        if (thread == 0) {
5614            ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
5615                    outputTracks[i].get());
5616            return false;
5617        }
5618        PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
5619        // see note at standby() declaration
5620        if (playbackThread->standby() && !playbackThread->isSuspended()) {
5621            ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
5622                    thread.get());
5623            return false;
5624        }
5625    }
5626    return true;
5627}
5628
5629uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
5630{
5631    return (mWaitTimeMs * 1000) / 2;
5632}
5633
5634void AudioFlinger::DuplicatingThread::cacheParameters_l()
5635{
5636    // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
5637    updateWaitTime_l();
5638
5639    MixerThread::cacheParameters_l();
5640}
5641
5642// ----------------------------------------------------------------------------
5643//      Record
5644// ----------------------------------------------------------------------------
5645
5646AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
5647                                         AudioStreamIn *input,
5648                                         audio_io_handle_t id,
5649                                         audio_devices_t outDevice,
5650                                         audio_devices_t inDevice,
5651                                         bool systemReady
5652#ifdef TEE_SINK
5653                                         , const sp<NBAIO_Sink>& teeSink
5654#endif
5655                                         ) :
5656    ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady),
5657    mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL),
5658    // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l()
5659    mRsmpInRear(0)
5660#ifdef TEE_SINK
5661    , mTeeSink(teeSink)
5662#endif
5663    , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
5664            "RecordThreadRO", MemoryHeapBase::READ_ONLY))
5665    // mFastCapture below
5666    , mFastCaptureFutex(0)
5667    // mInputSource
5668    // mPipeSink
5669    // mPipeSource
5670    , mPipeFramesP2(0)
5671    // mPipeMemory
5672    // mFastCaptureNBLogWriter
5673    , mFastTrackAvail(false)
5674{
5675    snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
5676    mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
5677
5678    readInputParameters_l();
5679
5680    // create an NBAIO source for the HAL input stream, and negotiate
5681    mInputSource = new AudioStreamInSource(input->stream);
5682    size_t numCounterOffers = 0;
5683    const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
5684#if !LOG_NDEBUG
5685    ssize_t index =
5686#else
5687    (void)
5688#endif
5689            mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
5690    ALOG_ASSERT(index == 0);
5691
5692    // initialize fast capture depending on configuration
5693    bool initFastCapture;
5694    switch (kUseFastCapture) {
5695    case FastCapture_Never:
5696        initFastCapture = false;
5697        break;
5698    case FastCapture_Always:
5699        initFastCapture = true;
5700        break;
5701    case FastCapture_Static:
5702        initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
5703        break;
5704    // case FastCapture_Dynamic:
5705    }
5706
5707    if (initFastCapture) {
5708        // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
5709        NBAIO_Format format = mInputSource->format();
5710        size_t pipeFramesP2 = roundup(mSampleRate / 25);    // double-buffering of 20 ms each
5711        size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
5712        void *pipeBuffer;
5713        const sp<MemoryDealer> roHeap(readOnlyHeap());
5714        sp<IMemory> pipeMemory;
5715        if ((roHeap == 0) ||
5716                (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
5717                (pipeBuffer = pipeMemory->pointer()) == NULL) {
5718            ALOGE("not enough memory for pipe buffer size=%zu", pipeSize);
5719            goto failed;
5720        }
5721        // pipe will be shared directly with fast clients, so clear to avoid leaking old information
5722        memset(pipeBuffer, 0, pipeSize);
5723        Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
5724        const NBAIO_Format offers[1] = {format};
5725        size_t numCounterOffers = 0;
5726        ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
5727        ALOG_ASSERT(index == 0);
5728        mPipeSink = pipe;
5729        PipeReader *pipeReader = new PipeReader(*pipe);
5730        numCounterOffers = 0;
5731        index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
5732        ALOG_ASSERT(index == 0);
5733        mPipeSource = pipeReader;
5734        mPipeFramesP2 = pipeFramesP2;
5735        mPipeMemory = pipeMemory;
5736
5737        // create fast capture
5738        mFastCapture = new FastCapture();
5739        FastCaptureStateQueue *sq = mFastCapture->sq();
5740#ifdef STATE_QUEUE_DUMP
5741        // FIXME
5742#endif
5743        FastCaptureState *state = sq->begin();
5744        state->mCblk = NULL;
5745        state->mInputSource = mInputSource.get();
5746        state->mInputSourceGen++;
5747        state->mPipeSink = pipe;
5748        state->mPipeSinkGen++;
5749        state->mFrameCount = mFrameCount;
5750        state->mCommand = FastCaptureState::COLD_IDLE;
5751        // already done in constructor initialization list
5752        //mFastCaptureFutex = 0;
5753        state->mColdFutexAddr = &mFastCaptureFutex;
5754        state->mColdGen++;
5755        state->mDumpState = &mFastCaptureDumpState;
5756#ifdef TEE_SINK
5757        // FIXME
5758#endif
5759        mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
5760        state->mNBLogWriter = mFastCaptureNBLogWriter.get();
5761        sq->end();
5762        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5763
5764        // start the fast capture
5765        mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
5766        pid_t tid = mFastCapture->getTid();
5767        sendPrioConfigEvent(getpid_cached, tid, kPriorityFastCapture);
5768#ifdef AUDIO_WATCHDOG
5769        // FIXME
5770#endif
5771
5772        mFastTrackAvail = true;
5773    }
5774failed: ;
5775
5776    // FIXME mNormalSource
5777}
5778
5779AudioFlinger::RecordThread::~RecordThread()
5780{
5781    if (mFastCapture != 0) {
5782        FastCaptureStateQueue *sq = mFastCapture->sq();
5783        FastCaptureState *state = sq->begin();
5784        if (state->mCommand == FastCaptureState::COLD_IDLE) {
5785            int32_t old = android_atomic_inc(&mFastCaptureFutex);
5786            if (old == -1) {
5787                (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5788            }
5789        }
5790        state->mCommand = FastCaptureState::EXIT;
5791        sq->end();
5792        sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
5793        mFastCapture->join();
5794        mFastCapture.clear();
5795    }
5796    mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
5797    mAudioFlinger->unregisterWriter(mNBLogWriter);
5798    free(mRsmpInBuffer);
5799}
5800
5801void AudioFlinger::RecordThread::onFirstRef()
5802{
5803    run(mThreadName, PRIORITY_URGENT_AUDIO);
5804}
5805
5806bool AudioFlinger::RecordThread::threadLoop()
5807{
5808    nsecs_t lastWarning = 0;
5809
5810    inputStandBy();
5811
5812reacquire_wakelock:
5813    sp<RecordTrack> activeTrack;
5814    int activeTracksGen;
5815    {
5816        Mutex::Autolock _l(mLock);
5817        size_t size = mActiveTracks.size();
5818        activeTracksGen = mActiveTracksGen;
5819        if (size > 0) {
5820            // FIXME an arbitrary choice
5821            activeTrack = mActiveTracks[0];
5822            acquireWakeLock_l(activeTrack->uid());
5823            if (size > 1) {
5824                SortedVector<int> tmp;
5825                for (size_t i = 0; i < size; i++) {
5826                    tmp.add(mActiveTracks[i]->uid());
5827                }
5828                updateWakeLockUids_l(tmp);
5829            }
5830        } else {
5831            acquireWakeLock_l(-1);
5832        }
5833    }
5834
5835    // used to request a deferred sleep, to be executed later while mutex is unlocked
5836    uint32_t sleepUs = 0;
5837
5838    // loop while there is work to do
5839    for (;;) {
5840        Vector< sp<EffectChain> > effectChains;
5841
5842        // sleep with mutex unlocked
5843        if (sleepUs > 0) {
5844            ATRACE_BEGIN("sleep");
5845            usleep(sleepUs);
5846            ATRACE_END();
5847            sleepUs = 0;
5848        }
5849
5850        // activeTracks accumulates a copy of a subset of mActiveTracks
5851        Vector< sp<RecordTrack> > activeTracks;
5852
5853        // reference to the (first and only) active fast track
5854        sp<RecordTrack> fastTrack;
5855
5856        // reference to a fast track which is about to be removed
5857        sp<RecordTrack> fastTrackToRemove;
5858
5859        { // scope for mLock
5860            Mutex::Autolock _l(mLock);
5861
5862            processConfigEvents_l();
5863
5864            // check exitPending here because checkForNewParameters_l() and
5865            // checkForNewParameters_l() can temporarily release mLock
5866            if (exitPending()) {
5867                break;
5868            }
5869
5870            // if no active track(s), then standby and release wakelock
5871            size_t size = mActiveTracks.size();
5872            if (size == 0) {
5873                standbyIfNotAlreadyInStandby();
5874                // exitPending() can't become true here
5875                releaseWakeLock_l();
5876                ALOGV("RecordThread: loop stopping");
5877                // go to sleep
5878                mWaitWorkCV.wait(mLock);
5879                ALOGV("RecordThread: loop starting");
5880                goto reacquire_wakelock;
5881            }
5882
5883            if (mActiveTracksGen != activeTracksGen) {
5884                activeTracksGen = mActiveTracksGen;
5885                SortedVector<int> tmp;
5886                for (size_t i = 0; i < size; i++) {
5887                    tmp.add(mActiveTracks[i]->uid());
5888                }
5889                updateWakeLockUids_l(tmp);
5890            }
5891
5892            bool doBroadcast = false;
5893            for (size_t i = 0; i < size; ) {
5894
5895                activeTrack = mActiveTracks[i];
5896                if (activeTrack->isTerminated()) {
5897                    if (activeTrack->isFastTrack()) {
5898                        ALOG_ASSERT(fastTrackToRemove == 0);
5899                        fastTrackToRemove = activeTrack;
5900                    }
5901                    removeTrack_l(activeTrack);
5902                    mActiveTracks.remove(activeTrack);
5903                    mActiveTracksGen++;
5904                    size--;
5905                    continue;
5906                }
5907
5908                TrackBase::track_state activeTrackState = activeTrack->mState;
5909                switch (activeTrackState) {
5910
5911                case TrackBase::PAUSING:
5912                    mActiveTracks.remove(activeTrack);
5913                    mActiveTracksGen++;
5914                    doBroadcast = true;
5915                    size--;
5916                    continue;
5917
5918                case TrackBase::STARTING_1:
5919                    sleepUs = 10000;
5920                    i++;
5921                    continue;
5922
5923                case TrackBase::STARTING_2:
5924                    doBroadcast = true;
5925                    mStandby = false;
5926                    activeTrack->mState = TrackBase::ACTIVE;
5927                    break;
5928
5929                case TrackBase::ACTIVE:
5930                    break;
5931
5932                case TrackBase::IDLE:
5933                    i++;
5934                    continue;
5935
5936                default:
5937                    LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
5938                }
5939
5940                activeTracks.add(activeTrack);
5941                i++;
5942
5943                if (activeTrack->isFastTrack()) {
5944                    ALOG_ASSERT(!mFastTrackAvail);
5945                    ALOG_ASSERT(fastTrack == 0);
5946                    fastTrack = activeTrack;
5947                }
5948            }
5949            if (doBroadcast) {
5950                mStartStopCond.broadcast();
5951            }
5952
5953            // sleep if there are no active tracks to process
5954            if (activeTracks.size() == 0) {
5955                if (sleepUs == 0) {
5956                    sleepUs = kRecordThreadSleepUs;
5957                }
5958                continue;
5959            }
5960            sleepUs = 0;
5961
5962            lockEffectChains_l(effectChains);
5963        }
5964
5965        // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
5966
5967        size_t size = effectChains.size();
5968        for (size_t i = 0; i < size; i++) {
5969            // thread mutex is not locked, but effect chain is locked
5970            effectChains[i]->process_l();
5971        }
5972
5973        // Push a new fast capture state if fast capture is not already running, or cblk change
5974        if (mFastCapture != 0) {
5975            FastCaptureStateQueue *sq = mFastCapture->sq();
5976            FastCaptureState *state = sq->begin();
5977            bool didModify = false;
5978            FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
5979            if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
5980                    (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
5981                if (state->mCommand == FastCaptureState::COLD_IDLE) {
5982                    int32_t old = android_atomic_inc(&mFastCaptureFutex);
5983                    if (old == -1) {
5984                        (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
5985                    }
5986                }
5987                state->mCommand = FastCaptureState::READ_WRITE;
5988#if 0   // FIXME
5989                mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
5990                        FastThreadDumpState::kSamplingNforLowRamDevice :
5991                        FastThreadDumpState::kSamplingN);
5992#endif
5993                didModify = true;
5994            }
5995            audio_track_cblk_t *cblkOld = state->mCblk;
5996            audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
5997            if (cblkNew != cblkOld) {
5998                state->mCblk = cblkNew;
5999                // block until acked if removing a fast track
6000                if (cblkOld != NULL) {
6001                    block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
6002                }
6003                didModify = true;
6004            }
6005            sq->end(didModify);
6006            if (didModify) {
6007                sq->push(block);
6008#if 0
6009                if (kUseFastCapture == FastCapture_Dynamic) {
6010                    mNormalSource = mPipeSource;
6011                }
6012#endif
6013            }
6014        }
6015
6016        // now run the fast track destructor with thread mutex unlocked
6017        fastTrackToRemove.clear();
6018
6019        // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
6020        // Only the client(s) that are too slow will overrun. But if even the fastest client is too
6021        // slow, then this RecordThread will overrun by not calling HAL read often enough.
6022        // If destination is non-contiguous, first read past the nominal end of buffer, then
6023        // copy to the right place.  Permitted because mRsmpInBuffer was over-allocated.
6024
6025        int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
6026        ssize_t framesRead;
6027
6028        // If an NBAIO source is present, use it to read the normal capture's data
6029        if (mPipeSource != 0) {
6030            size_t framesToRead = mBufferSize / mFrameSize;
6031            framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
6032                    framesToRead);
6033            if (framesRead == 0) {
6034                // since pipe is non-blocking, simulate blocking input
6035                sleepUs = (framesToRead * 1000000LL) / mSampleRate;
6036            }
6037        // otherwise use the HAL / AudioStreamIn directly
6038        } else {
6039            ATRACE_BEGIN("read");
6040            ssize_t bytesRead = mInput->stream->read(mInput->stream,
6041                    (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize);
6042            ATRACE_END();
6043            if (bytesRead < 0) {
6044                framesRead = bytesRead;
6045            } else {
6046                framesRead = bytesRead / mFrameSize;
6047            }
6048        }
6049
6050        // Update server timestamp with server stats
6051        // systemTime() is optional if the hardware supports timestamps.
6052        mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
6053        mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
6054
6055        // Update server timestamp with kernel stats
6056        if (mInput->stream->get_capture_position != nullptr) {
6057            int64_t position, time;
6058            int ret = mInput->stream->get_capture_position(mInput->stream, &position, &time);
6059            if (ret == NO_ERROR) {
6060                mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
6061                mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
6062                // Note: In general record buffers should tend to be empty in
6063                // a properly running pipeline.
6064                //
6065                // Also, it is not advantageous to call get_presentation_position during the read
6066                // as the read obtains a lock, preventing the timestamp call from executing.
6067            }
6068        }
6069        // Use this to track timestamp information
6070        // ALOGD("%s", mTimestamp.toString().c_str());
6071
6072        if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
6073            ALOGE("read failed: framesRead=%zd", framesRead);
6074            // Force input into standby so that it tries to recover at next read attempt
6075            inputStandBy();
6076            sleepUs = kRecordThreadSleepUs;
6077        }
6078        if (framesRead <= 0) {
6079            goto unlock;
6080        }
6081        ALOG_ASSERT(framesRead > 0);
6082
6083        if (mTeeSink != 0) {
6084            (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
6085        }
6086        // If destination is non-contiguous, we now correct for reading past end of buffer.
6087        {
6088            size_t part1 = mRsmpInFramesP2 - rear;
6089            if ((size_t) framesRead > part1) {
6090                memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
6091                        (framesRead - part1) * mFrameSize);
6092            }
6093        }
6094        rear = mRsmpInRear += framesRead;
6095
6096        size = activeTracks.size();
6097        // loop over each active track
6098        for (size_t i = 0; i < size; i++) {
6099            activeTrack = activeTracks[i];
6100
6101            // skip fast tracks, as those are handled directly by FastCapture
6102            if (activeTrack->isFastTrack()) {
6103                continue;
6104            }
6105
6106            // TODO: This code probably should be moved to RecordTrack.
6107            // TODO: Update the activeTrack buffer converter in case of reconfigure.
6108
6109            enum {
6110                OVERRUN_UNKNOWN,
6111                OVERRUN_TRUE,
6112                OVERRUN_FALSE
6113            } overrun = OVERRUN_UNKNOWN;
6114
6115            // loop over getNextBuffer to handle circular sink
6116            for (;;) {
6117
6118                activeTrack->mSink.frameCount = ~0;
6119                status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
6120                size_t framesOut = activeTrack->mSink.frameCount;
6121                LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
6122
6123                // check available frames and handle overrun conditions
6124                // if the record track isn't draining fast enough.
6125                bool hasOverrun;
6126                size_t framesIn;
6127                activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
6128                if (hasOverrun) {
6129                    overrun = OVERRUN_TRUE;
6130                }
6131                if (framesOut == 0 || framesIn == 0) {
6132                    break;
6133                }
6134
6135                // Don't allow framesOut to be larger than what is possible with resampling
6136                // from framesIn.
6137                // This isn't strictly necessary but helps limit buffer resizing in
6138                // RecordBufferConverter.  TODO: remove when no longer needed.
6139                framesOut = min(framesOut,
6140                        destinationFramesPossible(
6141                                framesIn, mSampleRate, activeTrack->mSampleRate));
6142                // process frames from the RecordThread buffer provider to the RecordTrack buffer
6143                framesOut = activeTrack->mRecordBufferConverter->convert(
6144                        activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut);
6145
6146                if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
6147                    overrun = OVERRUN_FALSE;
6148                }
6149
6150                if (activeTrack->mFramesToDrop == 0) {
6151                    if (framesOut > 0) {
6152                        activeTrack->mSink.frameCount = framesOut;
6153                        activeTrack->releaseBuffer(&activeTrack->mSink);
6154                    }
6155                } else {
6156                    // FIXME could do a partial drop of framesOut
6157                    if (activeTrack->mFramesToDrop > 0) {
6158                        activeTrack->mFramesToDrop -= framesOut;
6159                        if (activeTrack->mFramesToDrop <= 0) {
6160                            activeTrack->clearSyncStartEvent();
6161                        }
6162                    } else {
6163                        activeTrack->mFramesToDrop += framesOut;
6164                        if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
6165                                activeTrack->mSyncStartEvent->isCancelled()) {
6166                            ALOGW("Synced record %s, session %d, trigger session %d",
6167                                  (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
6168                                  activeTrack->sessionId(),
6169                                  (activeTrack->mSyncStartEvent != 0) ?
6170                                          activeTrack->mSyncStartEvent->triggerSession() :
6171                                          AUDIO_SESSION_NONE);
6172                            activeTrack->clearSyncStartEvent();
6173                        }
6174                    }
6175                }
6176
6177                if (framesOut == 0) {
6178                    break;
6179                }
6180            }
6181
6182            switch (overrun) {
6183            case OVERRUN_TRUE:
6184                // client isn't retrieving buffers fast enough
6185                if (!activeTrack->setOverflow()) {
6186                    nsecs_t now = systemTime();
6187                    // FIXME should lastWarning per track?
6188                    if ((now - lastWarning) > kWarningThrottleNs) {
6189                        ALOGW("RecordThread: buffer overflow");
6190                        lastWarning = now;
6191                    }
6192                }
6193                break;
6194            case OVERRUN_FALSE:
6195                activeTrack->clearOverflow();
6196                break;
6197            case OVERRUN_UNKNOWN:
6198                break;
6199            }
6200
6201            // update frame information and push timestamp out
6202            activeTrack->updateTrackFrameInfo(
6203                    activeTrack->mServerProxy->framesReleased(),
6204                    mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
6205                    mSampleRate, mTimestamp);
6206        }
6207
6208unlock:
6209        // enable changes in effect chain
6210        unlockEffectChains(effectChains);
6211        // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
6212    }
6213
6214    standbyIfNotAlreadyInStandby();
6215
6216    {
6217        Mutex::Autolock _l(mLock);
6218        for (size_t i = 0; i < mTracks.size(); i++) {
6219            sp<RecordTrack> track = mTracks[i];
6220            track->invalidate();
6221        }
6222        mActiveTracks.clear();
6223        mActiveTracksGen++;
6224        mStartStopCond.broadcast();
6225    }
6226
6227    releaseWakeLock();
6228
6229    ALOGV("RecordThread %p exiting", this);
6230    return false;
6231}
6232
6233void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
6234{
6235    if (!mStandby) {
6236        inputStandBy();
6237        mStandby = true;
6238    }
6239}
6240
6241void AudioFlinger::RecordThread::inputStandBy()
6242{
6243    // Idle the fast capture if it's currently running
6244    if (mFastCapture != 0) {
6245        FastCaptureStateQueue *sq = mFastCapture->sq();
6246        FastCaptureState *state = sq->begin();
6247        if (!(state->mCommand & FastCaptureState::IDLE)) {
6248            state->mCommand = FastCaptureState::COLD_IDLE;
6249            state->mColdFutexAddr = &mFastCaptureFutex;
6250            state->mColdGen++;
6251            mFastCaptureFutex = 0;
6252            sq->end();
6253            // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
6254            sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
6255#if 0
6256            if (kUseFastCapture == FastCapture_Dynamic) {
6257                // FIXME
6258            }
6259#endif
6260#ifdef AUDIO_WATCHDOG
6261            // FIXME
6262#endif
6263        } else {
6264            sq->end(false /*didModify*/);
6265        }
6266    }
6267    mInput->stream->common.standby(&mInput->stream->common);
6268}
6269
6270// RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
6271sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
6272        const sp<AudioFlinger::Client>& client,
6273        uint32_t sampleRate,
6274        audio_format_t format,
6275        audio_channel_mask_t channelMask,
6276        size_t *pFrameCount,
6277        audio_session_t sessionId,
6278        size_t *notificationFrames,
6279        int uid,
6280        IAudioFlinger::track_flags_t *flags,
6281        pid_t tid,
6282        status_t *status)
6283{
6284    size_t frameCount = *pFrameCount;
6285    sp<RecordTrack> track;
6286    status_t lStatus;
6287
6288    // client expresses a preference for FAST, but we get the final say
6289    if (*flags & IAudioFlinger::TRACK_FAST) {
6290      if (
6291            // we formerly checked for a callback handler (non-0 tid),
6292            // but that is no longer required for TRANSFER_OBTAIN mode
6293            //
6294            // frame count is not specified, or is exactly the pipe depth
6295            ((frameCount == 0) || (frameCount == mPipeFramesP2)) &&
6296            // PCM data
6297            audio_is_linear_pcm(format) &&
6298            // hardware format
6299            (format == mFormat) &&
6300            // hardware channel mask
6301            (channelMask == mChannelMask) &&
6302            // hardware sample rate
6303            (sampleRate == mSampleRate) &&
6304            // record thread has an associated fast capture
6305            hasFastCapture() &&
6306            // there are sufficient fast track slots available
6307            mFastTrackAvail
6308        ) {
6309        ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
6310                frameCount, mFrameCount);
6311      } else {
6312        ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
6313                "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
6314                "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
6315                frameCount, mFrameCount, mPipeFramesP2,
6316                format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate,
6317                hasFastCapture(), tid, mFastTrackAvail);
6318        *flags &= ~IAudioFlinger::TRACK_FAST;
6319      }
6320    }
6321
6322    // compute track buffer size in frames, and suggest the notification frame count
6323    if (*flags & IAudioFlinger::TRACK_FAST) {
6324        // fast track: frame count is exactly the pipe depth
6325        frameCount = mPipeFramesP2;
6326        // ignore requested notificationFrames, and always notify exactly once every HAL buffer
6327        *notificationFrames = mFrameCount;
6328    } else {
6329        // not fast track: max notification period is resampled equivalent of one HAL buffer time
6330        //                 or 20 ms if there is a fast capture
6331        // TODO This could be a roundupRatio inline, and const
6332        size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
6333                * sampleRate + mSampleRate - 1) / mSampleRate;
6334        // minimum number of notification periods is at least kMinNotifications,
6335        // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
6336        static const size_t kMinNotifications = 3;
6337        static const uint32_t kMinMs = 30;
6338        // TODO This could be a roundupRatio inline
6339        const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
6340        // TODO This could be a roundupRatio inline
6341        const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
6342                maxNotificationFrames;
6343        const size_t minFrameCount = maxNotificationFrames *
6344                max(kMinNotifications, minNotificationsByMs);
6345        frameCount = max(frameCount, minFrameCount);
6346        if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) {
6347            *notificationFrames = maxNotificationFrames;
6348        }
6349    }
6350    *pFrameCount = frameCount;
6351
6352    lStatus = initCheck();
6353    if (lStatus != NO_ERROR) {
6354        ALOGE("createRecordTrack_l() audio driver not initialized");
6355        goto Exit;
6356    }
6357
6358    { // scope for mLock
6359        Mutex::Autolock _l(mLock);
6360
6361        track = new RecordTrack(this, client, sampleRate,
6362                      format, channelMask, frameCount, NULL, sessionId, uid,
6363                      *flags, TrackBase::TYPE_DEFAULT);
6364
6365        lStatus = track->initCheck();
6366        if (lStatus != NO_ERROR) {
6367            ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
6368            // track must be cleared from the caller as the caller has the AF lock
6369            goto Exit;
6370        }
6371        mTracks.add(track);
6372
6373        // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
6374        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
6375                        mAudioFlinger->btNrecIsOff();
6376        setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
6377        setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
6378
6379        if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
6380            pid_t callingPid = IPCThreadState::self()->getCallingPid();
6381            // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
6382            // so ask activity manager to do this on our behalf
6383            sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
6384        }
6385    }
6386
6387    lStatus = NO_ERROR;
6388
6389Exit:
6390    *status = lStatus;
6391    return track;
6392}
6393
6394status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
6395                                           AudioSystem::sync_event_t event,
6396                                           audio_session_t triggerSession)
6397{
6398    ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
6399    sp<ThreadBase> strongMe = this;
6400    status_t status = NO_ERROR;
6401
6402    if (event == AudioSystem::SYNC_EVENT_NONE) {
6403        recordTrack->clearSyncStartEvent();
6404    } else if (event != AudioSystem::SYNC_EVENT_SAME) {
6405        recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
6406                                       triggerSession,
6407                                       recordTrack->sessionId(),
6408                                       syncStartEventCallback,
6409                                       recordTrack);
6410        // Sync event can be cancelled by the trigger session if the track is not in a
6411        // compatible state in which case we start record immediately
6412        if (recordTrack->mSyncStartEvent->isCancelled()) {
6413            recordTrack->clearSyncStartEvent();
6414        } else {
6415            // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
6416            recordTrack->mFramesToDrop = -
6417                    ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
6418        }
6419    }
6420
6421    {
6422        // This section is a rendezvous between binder thread executing start() and RecordThread
6423        AutoMutex lock(mLock);
6424        if (mActiveTracks.indexOf(recordTrack) >= 0) {
6425            if (recordTrack->mState == TrackBase::PAUSING) {
6426                ALOGV("active record track PAUSING -> ACTIVE");
6427                recordTrack->mState = TrackBase::ACTIVE;
6428            } else {
6429                ALOGV("active record track state %d", recordTrack->mState);
6430            }
6431            return status;
6432        }
6433
6434        // TODO consider other ways of handling this, such as changing the state to :STARTING and
6435        //      adding the track to mActiveTracks after returning from AudioSystem::startInput(),
6436        //      or using a separate command thread
6437        recordTrack->mState = TrackBase::STARTING_1;
6438        mActiveTracks.add(recordTrack);
6439        mActiveTracksGen++;
6440        status_t status = NO_ERROR;
6441        if (recordTrack->isExternalTrack()) {
6442            mLock.unlock();
6443            status = AudioSystem::startInput(mId, recordTrack->sessionId());
6444            mLock.lock();
6445            // FIXME should verify that recordTrack is still in mActiveTracks
6446            if (status != NO_ERROR) {
6447                mActiveTracks.remove(recordTrack);
6448                mActiveTracksGen++;
6449                recordTrack->clearSyncStartEvent();
6450                ALOGV("RecordThread::start error %d", status);
6451                return status;
6452            }
6453        }
6454        // Catch up with current buffer indices if thread is already running.
6455        // This is what makes a new client discard all buffered data.  If the track's mRsmpInFront
6456        // was initialized to some value closer to the thread's mRsmpInFront, then the track could
6457        // see previously buffered data before it called start(), but with greater risk of overrun.
6458
6459        recordTrack->mResamplerBufferProvider->reset();
6460        // clear any converter state as new data will be discontinuous
6461        recordTrack->mRecordBufferConverter->reset();
6462        recordTrack->mState = TrackBase::STARTING_2;
6463        // signal thread to start
6464        mWaitWorkCV.broadcast();
6465        if (mActiveTracks.indexOf(recordTrack) < 0) {
6466            ALOGV("Record failed to start");
6467            status = BAD_VALUE;
6468            goto startError;
6469        }
6470        return status;
6471    }
6472
6473startError:
6474    if (recordTrack->isExternalTrack()) {
6475        AudioSystem::stopInput(mId, recordTrack->sessionId());
6476    }
6477    recordTrack->clearSyncStartEvent();
6478    // FIXME I wonder why we do not reset the state here?
6479    return status;
6480}
6481
6482void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
6483{
6484    sp<SyncEvent> strongEvent = event.promote();
6485
6486    if (strongEvent != 0) {
6487        sp<RefBase> ptr = strongEvent->cookie().promote();
6488        if (ptr != 0) {
6489            RecordTrack *recordTrack = (RecordTrack *)ptr.get();
6490            recordTrack->handleSyncStartEvent(strongEvent);
6491        }
6492    }
6493}
6494
6495bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
6496    ALOGV("RecordThread::stop");
6497    AutoMutex _l(mLock);
6498    if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) {
6499        return false;
6500    }
6501    // note that threadLoop may still be processing the track at this point [without lock]
6502    recordTrack->mState = TrackBase::PAUSING;
6503    // do not wait for mStartStopCond if exiting
6504    if (exitPending()) {
6505        return true;
6506    }
6507    // FIXME incorrect usage of wait: no explicit predicate or loop
6508    mStartStopCond.wait(mLock);
6509    // if we have been restarted, recordTrack is in mActiveTracks here
6510    if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) {
6511        ALOGV("Record stopped OK");
6512        return true;
6513    }
6514    return false;
6515}
6516
6517bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
6518{
6519    return false;
6520}
6521
6522status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
6523{
6524#if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
6525    if (!isValidSyncEvent(event)) {
6526        return BAD_VALUE;
6527    }
6528
6529    audio_session_t eventSession = event->triggerSession();
6530    status_t ret = NAME_NOT_FOUND;
6531
6532    Mutex::Autolock _l(mLock);
6533
6534    for (size_t i = 0; i < mTracks.size(); i++) {
6535        sp<RecordTrack> track = mTracks[i];
6536        if (eventSession == track->sessionId()) {
6537            (void) track->setSyncEvent(event);
6538            ret = NO_ERROR;
6539        }
6540    }
6541    return ret;
6542#else
6543    return BAD_VALUE;
6544#endif
6545}
6546
6547// destroyTrack_l() must be called with ThreadBase::mLock held
6548void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
6549{
6550    track->terminate();
6551    track->mState = TrackBase::STOPPED;
6552    // active tracks are removed by threadLoop()
6553    if (mActiveTracks.indexOf(track) < 0) {
6554        removeTrack_l(track);
6555    }
6556}
6557
6558void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
6559{
6560    mTracks.remove(track);
6561    // need anything related to effects here?
6562    if (track->isFastTrack()) {
6563        ALOG_ASSERT(!mFastTrackAvail);
6564        mFastTrackAvail = true;
6565    }
6566}
6567
6568void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
6569{
6570    dumpInternals(fd, args);
6571    dumpTracks(fd, args);
6572    dumpEffectChains(fd, args);
6573}
6574
6575void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
6576{
6577    dprintf(fd, "\nInput thread %p:\n", this);
6578
6579    dumpBase(fd, args);
6580
6581    if (mActiveTracks.size() == 0) {
6582        dprintf(fd, "  No active record clients\n");
6583    }
6584    dprintf(fd, "  Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
6585    dprintf(fd, "  Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
6586
6587    // Make a non-atomic copy of fast capture dump state so it won't change underneath us
6588    // while we are dumping it.  It may be inconsistent, but it won't mutate!
6589    // This is a large object so we place it on the heap.
6590    // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
6591    const FastCaptureDumpState *copy = new FastCaptureDumpState(mFastCaptureDumpState);
6592    copy->dump(fd);
6593    delete copy;
6594}
6595
6596void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args __unused)
6597{
6598    const size_t SIZE = 256;
6599    char buffer[SIZE];
6600    String8 result;
6601
6602    size_t numtracks = mTracks.size();
6603    size_t numactive = mActiveTracks.size();
6604    size_t numactiveseen = 0;
6605    dprintf(fd, "  %zu Tracks", numtracks);
6606    if (numtracks) {
6607        dprintf(fd, " of which %zu are active\n", numactive);
6608        RecordTrack::appendDumpHeader(result);
6609        for (size_t i = 0; i < numtracks ; ++i) {
6610            sp<RecordTrack> track = mTracks[i];
6611            if (track != 0) {
6612                bool active = mActiveTracks.indexOf(track) >= 0;
6613                if (active) {
6614                    numactiveseen++;
6615                }
6616                track->dump(buffer, SIZE, active);
6617                result.append(buffer);
6618            }
6619        }
6620    } else {
6621        dprintf(fd, "\n");
6622    }
6623
6624    if (numactiveseen != numactive) {
6625        snprintf(buffer, SIZE, "  The following tracks are in the active list but"
6626                " not in the track list\n");
6627        result.append(buffer);
6628        RecordTrack::appendDumpHeader(result);
6629        for (size_t i = 0; i < numactive; ++i) {
6630            sp<RecordTrack> track = mActiveTracks[i];
6631            if (mTracks.indexOf(track) < 0) {
6632                track->dump(buffer, SIZE, true);
6633                result.append(buffer);
6634            }
6635        }
6636
6637    }
6638    write(fd, result.string(), result.size());
6639}
6640
6641
6642void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
6643{
6644    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6645    RecordThread *recordThread = (RecordThread *) threadBase.get();
6646    mRsmpInFront = recordThread->mRsmpInRear;
6647    mRsmpInUnrel = 0;
6648}
6649
6650void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
6651        size_t *framesAvailable, bool *hasOverrun)
6652{
6653    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6654    RecordThread *recordThread = (RecordThread *) threadBase.get();
6655    const int32_t rear = recordThread->mRsmpInRear;
6656    const int32_t front = mRsmpInFront;
6657    const ssize_t filled = rear - front;
6658
6659    size_t framesIn;
6660    bool overrun = false;
6661    if (filled < 0) {
6662        // should not happen, but treat like a massive overrun and re-sync
6663        framesIn = 0;
6664        mRsmpInFront = rear;
6665        overrun = true;
6666    } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
6667        framesIn = (size_t) filled;
6668    } else {
6669        // client is not keeping up with server, but give it latest data
6670        framesIn = recordThread->mRsmpInFrames;
6671        mRsmpInFront = /* front = */ rear - framesIn;
6672        overrun = true;
6673    }
6674    if (framesAvailable != NULL) {
6675        *framesAvailable = framesIn;
6676    }
6677    if (hasOverrun != NULL) {
6678        *hasOverrun = overrun;
6679    }
6680}
6681
6682// AudioBufferProvider interface
6683status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
6684        AudioBufferProvider::Buffer* buffer)
6685{
6686    sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
6687    if (threadBase == 0) {
6688        buffer->frameCount = 0;
6689        buffer->raw = NULL;
6690        return NOT_ENOUGH_DATA;
6691    }
6692    RecordThread *recordThread = (RecordThread *) threadBase.get();
6693    int32_t rear = recordThread->mRsmpInRear;
6694    int32_t front = mRsmpInFront;
6695    ssize_t filled = rear - front;
6696    // FIXME should not be P2 (don't want to increase latency)
6697    // FIXME if client not keeping up, discard
6698    LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
6699    // 'filled' may be non-contiguous, so return only the first contiguous chunk
6700    front &= recordThread->mRsmpInFramesP2 - 1;
6701    size_t part1 = recordThread->mRsmpInFramesP2 - front;
6702    if (part1 > (size_t) filled) {
6703        part1 = filled;
6704    }
6705    size_t ask = buffer->frameCount;
6706    ALOG_ASSERT(ask > 0);
6707    if (part1 > ask) {
6708        part1 = ask;
6709    }
6710    if (part1 == 0) {
6711        // out of data is fine since the resampler will return a short-count.
6712        buffer->raw = NULL;
6713        buffer->frameCount = 0;
6714        mRsmpInUnrel = 0;
6715        return NOT_ENOUGH_DATA;
6716    }
6717
6718    buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
6719    buffer->frameCount = part1;
6720    mRsmpInUnrel = part1;
6721    return NO_ERROR;
6722}
6723
6724// AudioBufferProvider interface
6725void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
6726        AudioBufferProvider::Buffer* buffer)
6727{
6728    size_t stepCount = buffer->frameCount;
6729    if (stepCount == 0) {
6730        return;
6731    }
6732    ALOG_ASSERT(stepCount <= mRsmpInUnrel);
6733    mRsmpInUnrel -= stepCount;
6734    mRsmpInFront += stepCount;
6735    buffer->raw = NULL;
6736    buffer->frameCount = 0;
6737}
6738
6739AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter(
6740        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6741        uint32_t srcSampleRate,
6742        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6743        uint32_t dstSampleRate) :
6744            mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars
6745            // mSrcFormat
6746            // mSrcSampleRate
6747            // mDstChannelMask
6748            // mDstFormat
6749            // mDstSampleRate
6750            // mSrcChannelCount
6751            // mDstChannelCount
6752            // mDstFrameSize
6753            mBuf(NULL), mBufFrames(0), mBufFrameSize(0),
6754            mResampler(NULL),
6755            mIsLegacyDownmix(false),
6756            mIsLegacyUpmix(false),
6757            mRequiresFloat(false),
6758            mInputConverterProvider(NULL)
6759{
6760    (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate,
6761            dstChannelMask, dstFormat, dstSampleRate);
6762}
6763
6764AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() {
6765    free(mBuf);
6766    delete mResampler;
6767    delete mInputConverterProvider;
6768}
6769
6770size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst,
6771        AudioBufferProvider *provider, size_t frames)
6772{
6773    if (mInputConverterProvider != NULL) {
6774        mInputConverterProvider->setBufferProvider(provider);
6775        provider = mInputConverterProvider;
6776    }
6777
6778    if (mResampler == NULL) {
6779        ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6780                mSrcSampleRate, mSrcFormat, mDstFormat);
6781
6782        AudioBufferProvider::Buffer buffer;
6783        for (size_t i = frames; i > 0; ) {
6784            buffer.frameCount = i;
6785            status_t status = provider->getNextBuffer(&buffer);
6786            if (status != OK || buffer.frameCount == 0) {
6787                frames -= i; // cannot fill request.
6788                break;
6789            }
6790            // format convert to destination buffer
6791            convertNoResampler(dst, buffer.raw, buffer.frameCount);
6792
6793            dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize;
6794            i -= buffer.frameCount;
6795            provider->releaseBuffer(&buffer);
6796        }
6797    } else {
6798         ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x",
6799                 mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat);
6800
6801         // reallocate buffer if needed
6802         if (mBufFrameSize != 0 && mBufFrames < frames) {
6803             free(mBuf);
6804             mBufFrames = frames;
6805             (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6806         }
6807        // resampler accumulates, but we only have one source track
6808        memset(mBuf, 0, frames * mBufFrameSize);
6809        frames = mResampler->resample((int32_t*)mBuf, frames, provider);
6810        // format convert to destination buffer
6811        convertResampler(dst, mBuf, frames);
6812    }
6813    return frames;
6814}
6815
6816status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters(
6817        audio_channel_mask_t srcChannelMask, audio_format_t srcFormat,
6818        uint32_t srcSampleRate,
6819        audio_channel_mask_t dstChannelMask, audio_format_t dstFormat,
6820        uint32_t dstSampleRate)
6821{
6822    // quick evaluation if there is any change.
6823    if (mSrcFormat == srcFormat
6824            && mSrcChannelMask == srcChannelMask
6825            && mSrcSampleRate == srcSampleRate
6826            && mDstFormat == dstFormat
6827            && mDstChannelMask == dstChannelMask
6828            && mDstSampleRate == dstSampleRate) {
6829        return NO_ERROR;
6830    }
6831
6832    ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x"
6833            "  srcFormat:%#x dstFormat:%#x  srcRate:%u dstRate:%u",
6834            srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate);
6835    const bool valid =
6836            audio_is_input_channel(srcChannelMask)
6837            && audio_is_input_channel(dstChannelMask)
6838            && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat)
6839            && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat)
6840            && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX)
6841            ; // no upsampling checks for now
6842    if (!valid) {
6843        return BAD_VALUE;
6844    }
6845
6846    mSrcFormat = srcFormat;
6847    mSrcChannelMask = srcChannelMask;
6848    mSrcSampleRate = srcSampleRate;
6849    mDstFormat = dstFormat;
6850    mDstChannelMask = dstChannelMask;
6851    mDstSampleRate = dstSampleRate;
6852
6853    // compute derived parameters
6854    mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask);
6855    mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask);
6856    mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat);
6857
6858    // do we need to resample?
6859    delete mResampler;
6860    mResampler = NULL;
6861    if (mSrcSampleRate != mDstSampleRate) {
6862        mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT,
6863                mSrcChannelCount, mDstSampleRate);
6864        mResampler->setSampleRate(mSrcSampleRate);
6865        mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT);
6866    }
6867
6868    // are we running legacy channel conversion modes?
6869    mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO
6870                            || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK)
6871                   && mDstChannelMask == AUDIO_CHANNEL_IN_MONO;
6872    mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO
6873                   && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO
6874                            || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK);
6875
6876    // do we need to process in float?
6877    mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix;
6878
6879    // do we need a staging buffer to convert for destination (we can still optimize this)?
6880    // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity
6881    if (mResampler != NULL) {
6882        mBufFrameSize = max(mSrcChannelCount, FCC_2)
6883                * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6884    } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float
6885        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT);
6886    } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) {
6887        mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat);
6888    } else {
6889        mBufFrameSize = 0;
6890    }
6891    mBufFrames = 0; // force the buffer to be resized.
6892
6893    // do we need an input converter buffer provider to give us float?
6894    delete mInputConverterProvider;
6895    mInputConverterProvider = NULL;
6896    if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) {
6897        mInputConverterProvider = new ReformatBufferProvider(
6898                audio_channel_count_from_in_mask(mSrcChannelMask),
6899                mSrcFormat,
6900                AUDIO_FORMAT_PCM_FLOAT,
6901                256 /* provider buffer frame count */);
6902    }
6903
6904    // do we need a remixer to do channel mask conversion
6905    if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) {
6906        (void) memcpy_by_index_array_initialization_from_channel_mask(
6907                mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask);
6908    }
6909    return NO_ERROR;
6910}
6911
6912void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler(
6913        void *dst, const void *src, size_t frames)
6914{
6915    // src is native type unless there is legacy upmix or downmix, whereupon it is float.
6916    if (mBufFrameSize != 0 && mBufFrames < frames) {
6917        free(mBuf);
6918        mBufFrames = frames;
6919        (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize);
6920    }
6921    // do we need to do legacy upmix and downmix?
6922    if (mIsLegacyUpmix || mIsLegacyDownmix) {
6923        void *dstBuf = mBuf != NULL ? mBuf : dst;
6924        if (mIsLegacyUpmix) {
6925            upmix_to_stereo_float_from_mono_float((float *)dstBuf,
6926                    (const float *)src, frames);
6927        } else /*mIsLegacyDownmix */ {
6928            downmix_to_mono_float_from_stereo_float((float *)dstBuf,
6929                    (const float *)src, frames);
6930        }
6931        if (mBuf != NULL) {
6932            memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT,
6933                    frames * mDstChannelCount);
6934        }
6935        return;
6936    }
6937    // do we need to do channel mask conversion?
6938    if (mSrcChannelMask != mDstChannelMask) {
6939        void *dstBuf = mBuf != NULL ? mBuf : dst;
6940        memcpy_by_index_array(dstBuf, mDstChannelCount,
6941                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames);
6942        if (dstBuf == dst) {
6943            return; // format is the same
6944        }
6945    }
6946    // convert to destination buffer
6947    const void *convertBuf = mBuf != NULL ? mBuf : src;
6948    memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat,
6949            frames * mDstChannelCount);
6950}
6951
6952void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler(
6953        void *dst, /*not-a-const*/ void *src, size_t frames)
6954{
6955    // src buffer format is ALWAYS float when entering this routine
6956    if (mIsLegacyUpmix) {
6957        ; // mono to stereo already handled by resampler
6958    } else if (mIsLegacyDownmix
6959            || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) {
6960        // the resampler outputs stereo for mono input channel (a feature?)
6961        // must convert to mono
6962        downmix_to_mono_float_from_stereo_float((float *)src,
6963                (const float *)src, frames);
6964    } else if (mSrcChannelMask != mDstChannelMask) {
6965        // convert to mono channel again for channel mask conversion (could be skipped
6966        // with further optimization).
6967        if (mSrcChannelCount == 1) {
6968            downmix_to_mono_float_from_stereo_float((float *)src,
6969                (const float *)src, frames);
6970        }
6971        // convert to destination format (in place, OK as float is larger than other types)
6972        if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) {
6973            memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6974                    frames * mSrcChannelCount);
6975        }
6976        // channel convert and save to dst
6977        memcpy_by_index_array(dst, mDstChannelCount,
6978                src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames);
6979        return;
6980    }
6981    // convert to destination format and save to dst
6982    memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT,
6983            frames * mDstChannelCount);
6984}
6985
6986bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
6987                                                        status_t& status)
6988{
6989    bool reconfig = false;
6990
6991    status = NO_ERROR;
6992
6993    audio_format_t reqFormat = mFormat;
6994    uint32_t samplingRate = mSampleRate;
6995    // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
6996    audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
6997
6998    AudioParameter param = AudioParameter(keyValuePair);
6999    int value;
7000
7001    // scope for AutoPark extends to end of method
7002    AutoPark<FastCapture> park(mFastCapture);
7003
7004    // TODO Investigate when this code runs. Check with audio policy when a sample rate and
7005    //      channel count change can be requested. Do we mandate the first client defines the
7006    //      HAL sampling rate and channel count or do we allow changes on the fly?
7007    if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
7008        samplingRate = value;
7009        reconfig = true;
7010    }
7011    if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
7012        if (!audio_is_linear_pcm((audio_format_t) value)) {
7013            status = BAD_VALUE;
7014        } else {
7015            reqFormat = (audio_format_t) value;
7016            reconfig = true;
7017        }
7018    }
7019    if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
7020        audio_channel_mask_t mask = (audio_channel_mask_t) value;
7021        if (!audio_is_input_channel(mask) ||
7022                audio_channel_count_from_in_mask(mask) > FCC_8) {
7023            status = BAD_VALUE;
7024        } else {
7025            channelMask = mask;
7026            reconfig = true;
7027        }
7028    }
7029    if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
7030        // do not accept frame count changes if tracks are open as the track buffer
7031        // size depends on frame count and correct behavior would not be guaranteed
7032        // if frame count is changed after track creation
7033        if (mActiveTracks.size() > 0) {
7034            status = INVALID_OPERATION;
7035        } else {
7036            reconfig = true;
7037        }
7038    }
7039    if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
7040        // forward device change to effects that have requested to be
7041        // aware of attached audio device.
7042        for (size_t i = 0; i < mEffectChains.size(); i++) {
7043            mEffectChains[i]->setDevice_l(value);
7044        }
7045
7046        // store input device and output device but do not forward output device to audio HAL.
7047        // Note that status is ignored by the caller for output device
7048        // (see AudioFlinger::setParameters()
7049        if (audio_is_output_devices(value)) {
7050            mOutDevice = value;
7051            status = BAD_VALUE;
7052        } else {
7053            mInDevice = value;
7054            if (value != AUDIO_DEVICE_NONE) {
7055                mPrevInDevice = value;
7056            }
7057            // disable AEC and NS if the device is a BT SCO headset supporting those
7058            // pre processings
7059            if (mTracks.size() > 0) {
7060                bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7061                                    mAudioFlinger->btNrecIsOff();
7062                for (size_t i = 0; i < mTracks.size(); i++) {
7063                    sp<RecordTrack> track = mTracks[i];
7064                    setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7065                    setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7066                }
7067            }
7068        }
7069    }
7070    if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
7071            mAudioSource != (audio_source_t)value) {
7072        // forward device change to effects that have requested to be
7073        // aware of attached audio device.
7074        for (size_t i = 0; i < mEffectChains.size(); i++) {
7075            mEffectChains[i]->setAudioSource_l((audio_source_t)value);
7076        }
7077        mAudioSource = (audio_source_t)value;
7078    }
7079
7080    if (status == NO_ERROR) {
7081        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7082                keyValuePair.string());
7083        if (status == INVALID_OPERATION) {
7084            inputStandBy();
7085            status = mInput->stream->common.set_parameters(&mInput->stream->common,
7086                    keyValuePair.string());
7087        }
7088        if (reconfig) {
7089            if (status == BAD_VALUE &&
7090                audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) &&
7091                audio_is_linear_pcm(reqFormat) &&
7092                (mInput->stream->common.get_sample_rate(&mInput->stream->common)
7093                        <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) &&
7094                audio_channel_count_from_in_mask(
7095                        mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) {
7096                status = NO_ERROR;
7097            }
7098            if (status == NO_ERROR) {
7099                readInputParameters_l();
7100                sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7101            }
7102        }
7103    }
7104
7105    return reconfig;
7106}
7107
7108String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
7109{
7110    Mutex::Autolock _l(mLock);
7111    if (initCheck() != NO_ERROR) {
7112        return String8();
7113    }
7114
7115    char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
7116    const String8 out_s8(s);
7117    free(s);
7118    return out_s8;
7119}
7120
7121void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) {
7122    sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
7123
7124    desc->mIoHandle = mId;
7125
7126    switch (event) {
7127    case AUDIO_INPUT_OPENED:
7128    case AUDIO_INPUT_CONFIG_CHANGED:
7129        desc->mPatch = mPatch;
7130        desc->mChannelMask = mChannelMask;
7131        desc->mSamplingRate = mSampleRate;
7132        desc->mFormat = mFormat;
7133        desc->mFrameCount = mFrameCount;
7134        desc->mFrameCountHAL = mFrameCount;
7135        desc->mLatency = 0;
7136        break;
7137
7138    case AUDIO_INPUT_CLOSED:
7139    default:
7140        break;
7141    }
7142    mAudioFlinger->ioConfigChanged(event, desc, pid);
7143}
7144
7145void AudioFlinger::RecordThread::readInputParameters_l()
7146{
7147    mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
7148    mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
7149    mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
7150    if (mChannelCount > FCC_8) {
7151        ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8);
7152    }
7153    mHALFormat = mInput->stream->common.get_format(&mInput->stream->common);
7154    mFormat = mHALFormat;
7155    if (!audio_is_linear_pcm(mFormat)) {
7156        ALOGE("HAL format %#x is not linear pcm", mFormat);
7157    }
7158    mFrameSize = audio_stream_in_frame_size(mInput->stream);
7159    mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
7160    mFrameCount = mBufferSize / mFrameSize;
7161    // This is the formula for calculating the temporary buffer size.
7162    // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
7163    // 1 full output buffer, regardless of the alignment of the available input.
7164    // The value is somewhat arbitrary, and could probably be even larger.
7165    // A larger value should allow more old data to be read after a track calls start(),
7166    // without increasing latency.
7167    //
7168    // Note this is independent of the maximum downsampling ratio permitted for capture.
7169    mRsmpInFrames = mFrameCount * 7;
7170    mRsmpInFramesP2 = roundup(mRsmpInFrames);
7171    free(mRsmpInBuffer);
7172    mRsmpInBuffer = NULL;
7173
7174    // TODO optimize audio capture buffer sizes ...
7175    // Here we calculate the size of the sliding buffer used as a source
7176    // for resampling.  mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
7177    // For current HAL frame counts, this is usually 2048 = 40 ms.  It would
7178    // be better to have it derived from the pipe depth in the long term.
7179    // The current value is higher than necessary.  However it should not add to latency.
7180
7181    // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
7182    size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize;
7183    (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize);
7184    memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here.
7185
7186    // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
7187    // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
7188}
7189
7190uint32_t AudioFlinger::RecordThread::getInputFramesLost()
7191{
7192    Mutex::Autolock _l(mLock);
7193    if (initCheck() != NO_ERROR) {
7194        return 0;
7195    }
7196
7197    return mInput->stream->get_input_frames_lost(mInput->stream);
7198}
7199
7200uint32_t AudioFlinger::RecordThread::hasAudioSession(audio_session_t sessionId) const
7201{
7202    Mutex::Autolock _l(mLock);
7203    uint32_t result = 0;
7204    if (getEffectChain_l(sessionId) != 0) {
7205        result = EFFECT_SESSION;
7206    }
7207
7208    for (size_t i = 0; i < mTracks.size(); ++i) {
7209        if (sessionId == mTracks[i]->sessionId()) {
7210            result |= TRACK_SESSION;
7211            break;
7212        }
7213    }
7214
7215    return result;
7216}
7217
7218KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
7219{
7220    KeyedVector<audio_session_t, bool> ids;
7221    Mutex::Autolock _l(mLock);
7222    for (size_t j = 0; j < mTracks.size(); ++j) {
7223        sp<RecordThread::RecordTrack> track = mTracks[j];
7224        audio_session_t sessionId = track->sessionId();
7225        if (ids.indexOfKey(sessionId) < 0) {
7226            ids.add(sessionId, true);
7227        }
7228    }
7229    return ids;
7230}
7231
7232AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
7233{
7234    Mutex::Autolock _l(mLock);
7235    AudioStreamIn *input = mInput;
7236    mInput = NULL;
7237    return input;
7238}
7239
7240// this method must always be called either with ThreadBase mLock held or inside the thread loop
7241audio_stream_t* AudioFlinger::RecordThread::stream() const
7242{
7243    if (mInput == NULL) {
7244        return NULL;
7245    }
7246    return &mInput->stream->common;
7247}
7248
7249status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
7250{
7251    // only one chain per input thread
7252    if (mEffectChains.size() != 0) {
7253        ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this);
7254        return INVALID_OPERATION;
7255    }
7256    ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
7257    chain->setThread(this);
7258    chain->setInBuffer(NULL);
7259    chain->setOutBuffer(NULL);
7260
7261    checkSuspendOnAddEffectChain_l(chain);
7262
7263    // make sure enabled pre processing effects state is communicated to the HAL as we
7264    // just moved them to a new input stream.
7265    chain->syncHalEffectsState();
7266
7267    mEffectChains.add(chain);
7268
7269    return NO_ERROR;
7270}
7271
7272size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
7273{
7274    ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
7275    ALOGW_IF(mEffectChains.size() != 1,
7276            "removeEffectChain_l() %p invalid chain size %zu on thread %p",
7277            chain.get(), mEffectChains.size(), this);
7278    if (mEffectChains.size() == 1) {
7279        mEffectChains.removeAt(0);
7280    }
7281    return 0;
7282}
7283
7284status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
7285                                                          audio_patch_handle_t *handle)
7286{
7287    status_t status = NO_ERROR;
7288
7289    // store new device and send to effects
7290    mInDevice = patch->sources[0].ext.device.type;
7291    mPatch = *patch;
7292    for (size_t i = 0; i < mEffectChains.size(); i++) {
7293        mEffectChains[i]->setDevice_l(mInDevice);
7294    }
7295
7296    // disable AEC and NS if the device is a BT SCO headset supporting those
7297    // pre processings
7298    if (mTracks.size() > 0) {
7299        bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
7300                            mAudioFlinger->btNrecIsOff();
7301        for (size_t i = 0; i < mTracks.size(); i++) {
7302            sp<RecordTrack> track = mTracks[i];
7303            setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
7304            setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
7305        }
7306    }
7307
7308    // store new source and send to effects
7309    if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
7310        mAudioSource = patch->sinks[0].ext.mix.usecase.source;
7311        for (size_t i = 0; i < mEffectChains.size(); i++) {
7312            mEffectChains[i]->setAudioSource_l(mAudioSource);
7313        }
7314    }
7315
7316    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7317        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7318        status = hwDevice->create_audio_patch(hwDevice,
7319                                               patch->num_sources,
7320                                               patch->sources,
7321                                               patch->num_sinks,
7322                                               patch->sinks,
7323                                               handle);
7324    } else {
7325        char *address;
7326        if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
7327            address = audio_device_address_to_parameter(
7328                                                patch->sources[0].ext.device.type,
7329                                                patch->sources[0].ext.device.address);
7330        } else {
7331            address = (char *)calloc(1, 1);
7332        }
7333        AudioParameter param = AudioParameter(String8(address));
7334        free(address);
7335        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
7336                     (int)patch->sources[0].ext.device.type);
7337        param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
7338                                         (int)patch->sinks[0].ext.mix.usecase.source);
7339        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7340                param.toString().string());
7341        *handle = AUDIO_PATCH_HANDLE_NONE;
7342    }
7343
7344    if (mInDevice != mPrevInDevice) {
7345        sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
7346        mPrevInDevice = mInDevice;
7347    }
7348
7349    return status;
7350}
7351
7352status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
7353{
7354    status_t status = NO_ERROR;
7355
7356    mInDevice = AUDIO_DEVICE_NONE;
7357
7358    if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
7359        audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice();
7360        status = hwDevice->release_audio_patch(hwDevice, handle);
7361    } else {
7362        AudioParameter param;
7363        param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0);
7364        status = mInput->stream->common.set_parameters(&mInput->stream->common,
7365                param.toString().string());
7366    }
7367    return status;
7368}
7369
7370void AudioFlinger::RecordThread::addPatchRecord(const sp<PatchRecord>& record)
7371{
7372    Mutex::Autolock _l(mLock);
7373    mTracks.add(record);
7374}
7375
7376void AudioFlinger::RecordThread::deletePatchRecord(const sp<PatchRecord>& record)
7377{
7378    Mutex::Autolock _l(mLock);
7379    destroyTrack_l(record);
7380}
7381
7382void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config)
7383{
7384    ThreadBase::getAudioPortConfig(config);
7385    config->role = AUDIO_PORT_ROLE_SINK;
7386    config->ext.mix.hw_module = mInput->audioHwDev->handle();
7387    config->ext.mix.usecase.source = mAudioSource;
7388}
7389
7390} // namespace android
7391