1/*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7package java.util.concurrent;
8
9import java.lang.Thread.UncaughtExceptionHandler;
10import java.security.AccessControlContext;
11import java.security.Permissions;
12import java.security.ProtectionDomain;
13import java.util.ArrayList;
14import java.util.Arrays;
15import java.util.Collection;
16import java.util.Collections;
17import java.util.List;
18import java.util.concurrent.locks.ReentrantLock;
19import java.util.concurrent.locks.LockSupport;
20
21/**
22 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 * A {@code ForkJoinPool} provides the entry point for submissions
24 * from non-{@code ForkJoinTask} clients, as well as management and
25 * monitoring operations.
26 *
27 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 * ExecutorService} mainly by virtue of employing
29 * <em>work-stealing</em>: all threads in the pool attempt to find and
30 * execute tasks submitted to the pool and/or created by other active
31 * tasks (eventually blocking waiting for work if none exist). This
32 * enables efficient processing when most tasks spawn other subtasks
33 * (as do most {@code ForkJoinTask}s), as well as when many small
34 * tasks are submitted to the pool from external clients.  Especially
35 * when setting <em>asyncMode</em> to true in constructors, {@code
36 * ForkJoinPool}s may also be appropriate for use with event-style
37 * tasks that are never joined.
38 *
39 * <p>A static {@link #commonPool()} is available and appropriate for
40 * most applications. The common pool is used by any ForkJoinTask that
41 * is not explicitly submitted to a specified pool. Using the common
42 * pool normally reduces resource usage (its threads are slowly
43 * reclaimed during periods of non-use, and reinstated upon subsequent
44 * use).
45 *
46 * <p>For applications that require separate or custom pools, a {@code
47 * ForkJoinPool} may be constructed with a given target parallelism
48 * level; by default, equal to the number of available processors.
49 * The pool attempts to maintain enough active (or available) threads
50 * by dynamically adding, suspending, or resuming internal worker
51 * threads, even if some tasks are stalled waiting to join others.
52 * However, no such adjustments are guaranteed in the face of blocked
53 * I/O or other unmanaged synchronization. The nested {@link
54 * ManagedBlocker} interface enables extension of the kinds of
55 * synchronization accommodated.
56 *
57 * <p>In addition to execution and lifecycle control methods, this
58 * class provides status check methods (for example
59 * {@link #getStealCount}) that are intended to aid in developing,
60 * tuning, and monitoring fork/join applications. Also, method
61 * {@link #toString} returns indications of pool state in a
62 * convenient form for informal monitoring.
63 *
64 * <p>As is the case with other ExecutorServices, there are three
65 * main task execution methods summarized in the following table.
66 * These are designed to be used primarily by clients not already
67 * engaged in fork/join computations in the current pool.  The main
68 * forms of these methods accept instances of {@code ForkJoinTask},
69 * but overloaded forms also allow mixed execution of plain {@code
70 * Runnable}- or {@code Callable}- based activities as well.  However,
71 * tasks that are already executing in a pool should normally instead
72 * use the within-computation forms listed in the table unless using
73 * async event-style tasks that are not usually joined, in which case
74 * there is little difference among choice of methods.
75 *
76 * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 * <caption>Summary of task execution methods</caption>
78 *  <tr>
79 *    <td></td>
80 *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 *  </tr>
83 *  <tr>
84 *    <td> <b>Arrange async execution</b></td>
85 *    <td> {@link #execute(ForkJoinTask)}</td>
86 *    <td> {@link ForkJoinTask#fork}</td>
87 *  </tr>
88 *  <tr>
89 *    <td> <b>Await and obtain result</b></td>
90 *    <td> {@link #invoke(ForkJoinTask)}</td>
91 *    <td> {@link ForkJoinTask#invoke}</td>
92 *  </tr>
93 *  <tr>
94 *    <td> <b>Arrange exec and obtain Future</b></td>
95 *    <td> {@link #submit(ForkJoinTask)}</td>
96 *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 *  </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three
102 * {@linkplain System#getProperty system properties}:
103 * <ul>
104 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105 * - the parallelism level, a non-negative integer
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107 * - the class name of a {@link ForkJoinWorkerThreadFactory}
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109 * - the class name of a {@link UncaughtExceptionHandler}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 * - the maximum number of allowed extra threads to maintain target
112 * parallelism (default 256).
113 * </ul>
114 * If a {@link SecurityManager} is present and no factory is
115 * specified, then the default pool uses a factory supplying
116 * threads that have no {@link Permissions} enabled.
117 * The system class loader is used to load these classes.
118 * Upon any error in establishing these settings, default parameters
119 * are used. It is possible to disable or limit the use of threads in
120 * the common pool by setting the parallelism property to zero, and/or
121 * using a factory that may return {@code null}. However doing so may
122 * cause unjoined tasks to never be executed.
123 *
124 * <p><b>Implementation notes</b>: This implementation restricts the
125 * maximum number of running threads to 32767. Attempts to create
126 * pools with greater than the maximum number result in
127 * {@code IllegalArgumentException}.
128 *
129 * <p>This implementation rejects submitted tasks (that is, by throwing
130 * {@link RejectedExecutionException}) only when the pool is shut down
131 * or internal resources have been exhausted.
132 *
133 * @since 1.7
134 * @author Doug Lea
135 */
136//@jdk.internal.vm.annotation.Contended   // android-removed
137public class ForkJoinPool extends AbstractExecutorService {
138
139    /*
140     * Implementation Overview
141     *
142     * This class and its nested classes provide the main
143     * functionality and control for a set of worker threads:
144     * Submissions from non-FJ threads enter into submission queues.
145     * Workers take these tasks and typically split them into subtasks
146     * that may be stolen by other workers.  Preference rules give
147     * first priority to processing tasks from their own queues (LIFO
148     * or FIFO, depending on mode), then to randomized FIFO steals of
149     * tasks in other queues.  This framework began as vehicle for
150     * supporting tree-structured parallelism using work-stealing.
151     * Over time, its scalability advantages led to extensions and
152     * changes to better support more diverse usage contexts.  Because
153     * most internal methods and nested classes are interrelated,
154     * their main rationale and descriptions are presented here;
155     * individual methods and nested classes contain only brief
156     * comments about details.
157     *
158     * WorkQueues
159     * ==========
160     *
161     * Most operations occur within work-stealing queues (in nested
162     * class WorkQueue).  These are special forms of Deques that
163     * support only three of the four possible end-operations -- push,
164     * pop, and poll (aka steal), under the further constraints that
165     * push and pop are called only from the owning thread (or, as
166     * extended here, under a lock), while poll may be called from
167     * other threads.  (If you are unfamiliar with them, you probably
168     * want to read Herlihy and Shavit's book "The Art of
169     * Multiprocessor programming", chapter 16 describing these in
170     * more detail before proceeding.)  The main work-stealing queue
171     * design is roughly similar to those in the papers "Dynamic
172     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173     * (http://research.sun.com/scalable/pubs/index.html) and
174     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176     * The main differences ultimately stem from GC requirements that
177     * we null out taken slots as soon as we can, to maintain as small
178     * a footprint as possible even in programs generating huge
179     * numbers of tasks. To accomplish this, we shift the CAS
180     * arbitrating pop vs poll (steal) from being on the indices
181     * ("base" and "top") to the slots themselves.
182     *
183     * Adding tasks then takes the form of a classic array push(task)
184     * in a circular buffer:
185     *    q.array[q.top++ % length] = task;
186     *
187     * (The actual code needs to null-check and size-check the array,
188     * uses masking, not mod, for indexing a power-of-two-sized array,
189     * properly fences accesses, and possibly signals waiting workers
190     * to start scanning -- see below.)  Both a successful pop and
191     * poll mainly entail a CAS of a slot from non-null to null.
192     *
193     * The pop operation (always performed by owner) is:
194     *   if ((the task at top slot is not null) and
195     *        (CAS slot to null))
196     *           decrement top and return task;
197     *
198     * And the poll operation (usually by a stealer) is
199     *    if ((the task at base slot is not null) and
200     *        (CAS slot to null))
201     *           increment base and return task;
202     *
203     * There are several variants of each of these; for example most
204     * versions of poll pre-screen the CAS by rechecking that the base
205     * has not changed since reading the slot, and most methods only
206     * attempt the CAS if base appears not to be equal to top.
207     *
208     * Memory ordering.  See "Correct and Efficient Work-Stealing for
209     * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210     * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211     * analysis of memory ordering requirements in work-stealing
212     * algorithms similar to (but different than) the one used here.
213     * Extracting tasks in array slots via (fully fenced) CAS provides
214     * primary synchronization. The base and top indices imprecisely
215     * guide where to extract from. We do not always require strict
216     * orderings of array and index updates, so sometimes let them be
217     * subject to compiler and processor reorderings. However, the
218     * volatile "base" index also serves as a basis for memory
219     * ordering: Slot accesses are preceded by a read of base,
220     * ensuring happens-before ordering with respect to stealers (so
221     * the slots themselves can be read via plain array reads.)  The
222     * only other memory orderings relied on are maintained in the
223     * course of signalling and activation (see below).  A check that
224     * base == top indicates (momentary) emptiness, but otherwise may
225     * err on the side of possibly making the queue appear nonempty
226     * when a push, pop, or poll have not fully committed, or making
227     * it appear empty when an update of top has not yet been visibly
228     * written.  (Method isEmpty() checks the case of a partially
229     * completed removal of the last element.)  Because of this, the
230     * poll operation, considered individually, is not wait-free. One
231     * thief cannot successfully continue until another in-progress
232     * one (or, if previously empty, a push) visibly completes.
233     * However, in the aggregate, we ensure at least probabilistic
234     * non-blockingness.  If an attempted steal fails, a scanning
235     * thief chooses a different random victim target to try next. So,
236     * in order for one thief to progress, it suffices for any
237     * in-progress poll or new push on any empty queue to
238     * complete. (This is why we normally use method pollAt and its
239     * variants that try once at the apparent base index, else
240     * consider alternative actions, rather than method poll, which
241     * retries.)
242     *
243     * This approach also enables support of a user mode in which
244     * local task processing is in FIFO, not LIFO order, simply by
245     * using poll rather than pop.  This can be useful in
246     * message-passing frameworks in which tasks are never joined.
247     *
248     * WorkQueues are also used in a similar way for tasks submitted
249     * to the pool. We cannot mix these tasks in the same queues used
250     * by workers. Instead, we randomly associate submission queues
251     * with submitting threads, using a form of hashing.  The
252     * ThreadLocalRandom probe value serves as a hash code for
253     * choosing existing queues, and may be randomly repositioned upon
254     * contention with other submitters.  In essence, submitters act
255     * like workers except that they are restricted to executing local
256     * tasks that they submitted (or in the case of CountedCompleters,
257     * others with the same root task).  Insertion of tasks in shared
258     * mode requires a lock but we use only a simple spinlock (using
259     * field qlock), because submitters encountering a busy queue move
260     * on to try or create other queues -- they block only when
261     * creating and registering new queues. Because it is used only as
262     * a spinlock, unlocking requires only a "releasing" store (using
263     * putOrderedInt).  The qlock is also used during termination
264     * detection, in which case it is forced to a negative
265     * non-lockable value.
266     *
267     * Management
268     * ==========
269     *
270     * The main throughput advantages of work-stealing stem from
271     * decentralized control -- workers mostly take tasks from
272     * themselves or each other, at rates that can exceed a billion
273     * per second.  The pool itself creates, activates (enables
274     * scanning for and running tasks), deactivates, blocks, and
275     * terminates threads, all with minimal central information.
276     * There are only a few properties that we can globally track or
277     * maintain, so we pack them into a small number of variables,
278     * often maintaining atomicity without blocking or locking.
279     * Nearly all essentially atomic control state is held in two
280     * volatile variables that are by far most often read (not
281     * written) as status and consistency checks. (Also, field
282     * "config" holds unchanging configuration state.)
283     *
284     * Field "ctl" contains 64 bits holding information needed to
285     * atomically decide to add, inactivate, enqueue (on an event
286     * queue), dequeue, and/or re-activate workers.  To enable this
287     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288     * far in excess of normal operating range) to allow ids, counts,
289     * and their negations (used for thresholding) to fit into 16bit
290     * subfields.
291     *
292     * Field "runState" holds lifetime status, atomically and
293     * monotonically setting STARTED, SHUTDOWN, STOP, and finally
294     * TERMINATED bits.
295     *
296     * Field "auxState" is a ReentrantLock subclass that also
297     * opportunistically holds some other bookkeeping fields accessed
298     * only when locked.  It is mainly used to lock (infrequent)
299     * updates to workQueues.  The auxState instance is itself lazily
300     * constructed (see tryInitialize), requiring a double-check-style
301     * bootstrapping use of field runState, and locking a private
302     * static.
303     *
304     * Field "workQueues" holds references to WorkQueues.  It is
305     * updated (only during worker creation and termination) under the
306     * lock, but is otherwise concurrently readable, and accessed
307     * directly. We also ensure that reads of the array reference
308     * itself never become too stale (for example, re-reading before
309     * each scan). To simplify index-based operations, the array size
310     * is always a power of two, and all readers must tolerate null
311     * slots. Worker queues are at odd indices. Shared (submission)
312     * queues are at even indices, up to a maximum of 64 slots, to
313     * limit growth even if array needs to expand to add more
314     * workers. Grouping them together in this way simplifies and
315     * speeds up task scanning.
316     *
317     * All worker thread creation is on-demand, triggered by task
318     * submissions, replacement of terminated workers, and/or
319     * compensation for blocked workers. However, all other support
320     * code is set up to work with other policies.  To ensure that we
321     * do not hold on to worker references that would prevent GC, all
322     * accesses to workQueues are via indices into the workQueues
323     * array (which is one source of some of the messy code
324     * constructions here). In essence, the workQueues array serves as
325     * a weak reference mechanism. Thus for example the stack top
326     * subfield of ctl stores indices, not references.
327     *
328     * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
329     * cannot let workers spin indefinitely scanning for tasks when
330     * none can be found immediately, and we cannot start/resume
331     * workers unless there appear to be tasks available.  On the
332     * other hand, we must quickly prod them into action when new
333     * tasks are submitted or generated. In many usages, ramp-up time
334     * to activate workers is the main limiting factor in overall
335     * performance, which is compounded at program start-up by JIT
336     * compilation and allocation. So we streamline this as much as
337     * possible.
338     *
339     * The "ctl" field atomically maintains active and total worker
340     * counts as well as a queue to place waiting threads so they can
341     * be located for signalling. Active counts also play the role of
342     * quiescence indicators, so are decremented when workers believe
343     * that there are no more tasks to execute. The "queue" is
344     * actually a form of Treiber stack.  A stack is ideal for
345     * activating threads in most-recently used order. This improves
346     * performance and locality, outweighing the disadvantages of
347     * being prone to contention and inability to release a worker
348     * unless it is topmost on stack.  We block/unblock workers after
349     * pushing on the idle worker stack (represented by the lower
350     * 32bit subfield of ctl) when they cannot find work.  The top
351     * stack state holds the value of the "scanState" field of the
352     * worker: its index and status, plus a version counter that, in
353     * addition to the count subfields (also serving as version
354     * stamps) provide protection against Treiber stack ABA effects.
355     *
356     * Creating workers. To create a worker, we pre-increment total
357     * count (serving as a reservation), and attempt to construct a
358     * ForkJoinWorkerThread via its factory. Upon construction, the
359     * new thread invokes registerWorker, where it constructs a
360     * WorkQueue and is assigned an index in the workQueues array
361     * (expanding the array if necessary). The thread is then started.
362     * Upon any exception across these steps, or null return from
363     * factory, deregisterWorker adjusts counts and records
364     * accordingly.  If a null return, the pool continues running with
365     * fewer than the target number workers. If exceptional, the
366     * exception is propagated, generally to some external caller.
367     * Worker index assignment avoids the bias in scanning that would
368     * occur if entries were sequentially packed starting at the front
369     * of the workQueues array. We treat the array as a simple
370     * power-of-two hash table, expanding as needed. The seedIndex
371     * increment ensures no collisions until a resize is needed or a
372     * worker is deregistered and replaced, and thereafter keeps
373     * probability of collision low. We cannot use
374     * ThreadLocalRandom.getProbe() for similar purposes here because
375     * the thread has not started yet, but do so for creating
376     * submission queues for existing external threads (see
377     * externalPush).
378     *
379     * WorkQueue field scanState is used by both workers and the pool
380     * to manage and track whether a worker is UNSIGNALLED (possibly
381     * blocked waiting for a signal).  When a worker is inactivated,
382     * its scanState field is set, and is prevented from executing
383     * tasks, even though it must scan once for them to avoid queuing
384     * races. Note that scanState updates lag queue CAS releases so
385     * usage requires care. When queued, the lower 16 bits of
386     * scanState must hold its pool index. So we place the index there
387     * upon initialization (see registerWorker) and otherwise keep it
388     * there or restore it when necessary.
389     *
390     * The ctl field also serves as the basis for memory
391     * synchronization surrounding activation. This uses a more
392     * efficient version of a Dekker-like rule that task producers and
393     * consumers sync with each other by both writing/CASing ctl (even
394     * if to its current value).  This would be extremely costly. So
395     * we relax it in several ways: (1) Producers only signal when
396     * their queue is empty. Other workers propagate this signal (in
397     * method scan) when they find tasks. (2) Workers only enqueue
398     * after scanning (see below) and not finding any tasks.  (3)
399     * Rather than CASing ctl to its current value in the common case
400     * where no action is required, we reduce write contention by
401     * equivalently prefacing signalWork when called by an external
402     * task producer using a memory access with full-volatile
403     * semantics or a "fullFence". (4) For internal task producers we
404     * rely on the fact that even if no other workers awaken, the
405     * producer itself will eventually see the task and execute it.
406     *
407     * Almost always, too many signals are issued. A task producer
408     * cannot in general tell if some existing worker is in the midst
409     * of finishing one task (or already scanning) and ready to take
410     * another without being signalled. So the producer might instead
411     * activate a different worker that does not find any work, and
412     * then inactivates. This scarcely matters in steady-state
413     * computations involving all workers, but can create contention
414     * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
415     * computations involving only a few workers.
416     *
417     * Scanning. Method scan() performs top-level scanning for tasks.
418     * Each scan traverses (and tries to poll from) each queue in
419     * pseudorandom permutation order by randomly selecting an origin
420     * index and a step value.  (The pseudorandom generator need not
421     * have high-quality statistical properties in the long term, but
422     * just within computations; We use 64bit and 32bit Marsaglia
423     * XorShifts, which are cheap and suffice here.)  Scanning also
424     * employs contention reduction: When scanning workers fail a CAS
425     * polling for work, they soon restart with a different
426     * pseudorandom scan order (thus likely retrying at different
427     * intervals). This improves throughput when many threads are
428     * trying to take tasks from few queues.  Scans do not otherwise
429     * explicitly take into account core affinities, loads, cache
430     * localities, etc, However, they do exploit temporal locality
431     * (which usually approximates these) by preferring to re-poll (up
432     * to POLL_LIMIT times) from the same queue after a successful
433     * poll before trying others.  Restricted forms of scanning occur
434     * in methods helpComplete and findNonEmptyStealQueue, and take
435     * similar but simpler forms.
436     *
437     * Deactivation and waiting. Queuing encounters several intrinsic
438     * races; most notably that an inactivating scanning worker can
439     * miss seeing a task produced during a scan.  So when a worker
440     * cannot find a task to steal, it inactivates and enqueues, and
441     * then rescans to ensure that it didn't miss one, reactivating
442     * upon seeing one with probability approximately proportional to
443     * probability of a miss.  (In most cases, the worker will be
444     * signalled before self-signalling, avoiding cascades of multiple
445     * signals for the same task).
446     *
447     * Workers block (in method awaitWork) using park/unpark;
448     * advertising the need for signallers to unpark by setting their
449     * "parker" fields.
450     *
451     * Trimming workers. To release resources after periods of lack of
452     * use, a worker starting to wait when the pool is quiescent will
453     * time out and terminate (see awaitWork) if the pool has remained
454     * quiescent for period given by IDLE_TIMEOUT_MS, increasing the
455     * period as the number of threads decreases, eventually removing
456     * all workers.
457     *
458     * Shutdown and Termination. A call to shutdownNow invokes
459     * tryTerminate to atomically set a runState bit. The calling
460     * thread, as well as every other worker thereafter terminating,
461     * helps terminate others by setting their (qlock) status,
462     * cancelling their unprocessed tasks, and waking them up, doing
463     * so repeatedly until stable. Calls to non-abrupt shutdown()
464     * preface this by checking whether termination should commence.
465     * This relies primarily on the active count bits of "ctl"
466     * maintaining consensus -- tryTerminate is called from awaitWork
467     * whenever quiescent. However, external submitters do not take
468     * part in this consensus.  So, tryTerminate sweeps through queues
469     * (until stable) to ensure lack of in-flight submissions and
470     * workers about to process them before triggering the "STOP"
471     * phase of termination. (Note: there is an intrinsic conflict if
472     * helpQuiescePool is called when shutdown is enabled. Both wait
473     * for quiescence, but tryTerminate is biased to not trigger until
474     * helpQuiescePool completes.)
475     *
476     * Joining Tasks
477     * =============
478     *
479     * Any of several actions may be taken when one worker is waiting
480     * to join a task stolen (or always held) by another.  Because we
481     * are multiplexing many tasks on to a pool of workers, we can't
482     * just let them block (as in Thread.join).  We also cannot just
483     * reassign the joiner's run-time stack with another and replace
484     * it later, which would be a form of "continuation", that even if
485     * possible is not necessarily a good idea since we may need both
486     * an unblocked task and its continuation to progress.  Instead we
487     * combine two tactics:
488     *
489     *   Helping: Arranging for the joiner to execute some task that it
490     *      would be running if the steal had not occurred.
491     *
492     *   Compensating: Unless there are already enough live threads,
493     *      method tryCompensate() may create or re-activate a spare
494     *      thread to compensate for blocked joiners until they unblock.
495     *
496     * A third form (implemented in tryRemoveAndExec) amounts to
497     * helping a hypothetical compensator: If we can readily tell that
498     * a possible action of a compensator is to steal and execute the
499     * task being joined, the joining thread can do so directly,
500     * without the need for a compensation thread (although at the
501     * expense of larger run-time stacks, but the tradeoff is
502     * typically worthwhile).
503     *
504     * The ManagedBlocker extension API can't use helping so relies
505     * only on compensation in method awaitBlocker.
506     *
507     * The algorithm in helpStealer entails a form of "linear
508     * helping".  Each worker records (in field currentSteal) the most
509     * recent task it stole from some other worker (or a submission).
510     * It also records (in field currentJoin) the task it is currently
511     * actively joining. Method helpStealer uses these markers to try
512     * to find a worker to help (i.e., steal back a task from and
513     * execute it) that could hasten completion of the actively joined
514     * task.  Thus, the joiner executes a task that would be on its
515     * own local deque had the to-be-joined task not been stolen. This
516     * is a conservative variant of the approach described in Wagner &
517     * Calder "Leapfrogging: a portable technique for implementing
518     * efficient futures" SIGPLAN Notices, 1993
519     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
520     * that: (1) We only maintain dependency links across workers upon
521     * steals, rather than use per-task bookkeeping.  This sometimes
522     * requires a linear scan of workQueues array to locate stealers,
523     * but often doesn't because stealers leave hints (that may become
524     * stale/wrong) of where to locate them.  It is only a hint
525     * because a worker might have had multiple steals and the hint
526     * records only one of them (usually the most current).  Hinting
527     * isolates cost to when it is needed, rather than adding to
528     * per-task overhead.  (2) It is "shallow", ignoring nesting and
529     * potentially cyclic mutual steals.  (3) It is intentionally
530     * racy: field currentJoin is updated only while actively joining,
531     * which means that we miss links in the chain during long-lived
532     * tasks, GC stalls etc (which is OK since blocking in such cases
533     * is usually a good idea).  (4) We bound the number of attempts
534     * to find work using checksums and fall back to suspending the
535     * worker and if necessary replacing it with another.
536     *
537     * Helping actions for CountedCompleters do not require tracking
538     * currentJoins: Method helpComplete takes and executes any task
539     * with the same root as the task being waited on (preferring
540     * local pops to non-local polls). However, this still entails
541     * some traversal of completer chains, so is less efficient than
542     * using CountedCompleters without explicit joins.
543     *
544     * Compensation does not aim to keep exactly the target
545     * parallelism number of unblocked threads running at any given
546     * time. Some previous versions of this class employed immediate
547     * compensations for any blocked join. However, in practice, the
548     * vast majority of blockages are transient byproducts of GC and
549     * other JVM or OS activities that are made worse by replacement.
550     * Currently, compensation is attempted only after validating that
551     * all purportedly active threads are processing tasks by checking
552     * field WorkQueue.scanState, which eliminates most false
553     * positives.  Also, compensation is bypassed (tolerating fewer
554     * threads) in the most common case in which it is rarely
555     * beneficial: when a worker with an empty queue (thus no
556     * continuation tasks) blocks on a join and there still remain
557     * enough threads to ensure liveness.
558     *
559     * Spare threads are removed as soon as they notice that the
560     * target parallelism level has been exceeded, in method
561     * tryDropSpare. (Method scan arranges returns for rechecks upon
562     * each probe via the "bound" parameter.)
563     *
564     * The compensation mechanism may be bounded.  Bounds for the
565     * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
566     * with programming errors and abuse before running out of
567     * resources to do so. In other cases, users may supply factories
568     * that limit thread construction. The effects of bounding in this
569     * pool (like all others) is imprecise.  Total worker counts are
570     * decremented when threads deregister, not when they exit and
571     * resources are reclaimed by the JVM and OS. So the number of
572     * simultaneously live threads may transiently exceed bounds.
573     *
574     * Common Pool
575     * ===========
576     *
577     * The static common pool always exists after static
578     * initialization.  Since it (or any other created pool) need
579     * never be used, we minimize initial construction overhead and
580     * footprint to the setup of about a dozen fields, with no nested
581     * allocation. Most bootstrapping occurs within method
582     * externalSubmit during the first submission to the pool.
583     *
584     * When external threads submit to the common pool, they can
585     * perform subtask processing (see externalHelpComplete and
586     * related methods) upon joins.  This caller-helps policy makes it
587     * sensible to set common pool parallelism level to one (or more)
588     * less than the total number of available cores, or even zero for
589     * pure caller-runs.  We do not need to record whether external
590     * submissions are to the common pool -- if not, external help
591     * methods return quickly. These submitters would otherwise be
592     * blocked waiting for completion, so the extra effort (with
593     * liberally sprinkled task status checks) in inapplicable cases
594     * amounts to an odd form of limited spin-wait before blocking in
595     * ForkJoinTask.join.
596     *
597     * As a more appropriate default in managed environments, unless
598     * overridden by system properties, we use workers of subclass
599     * InnocuousForkJoinWorkerThread when there is a SecurityManager
600     * present. These workers have no permissions set, do not belong
601     * to any user-defined ThreadGroup, and erase all ThreadLocals
602     * after executing any top-level task (see WorkQueue.runTask).
603     * The associated mechanics (mainly in ForkJoinWorkerThread) may
604     * be JVM-dependent and must access particular Thread class fields
605     * to achieve this effect.
606     *
607     * Style notes
608     * ===========
609     *
610     * Memory ordering relies mainly on Unsafe intrinsics that carry
611     * the further responsibility of explicitly performing null- and
612     * bounds- checks otherwise carried out implicitly by JVMs.  This
613     * can be awkward and ugly, but also reflects the need to control
614     * outcomes across the unusual cases that arise in very racy code
615     * with very few invariants. So these explicit checks would exist
616     * in some form anyway.  All fields are read into locals before
617     * use, and null-checked if they are references.  This is usually
618     * done in a "C"-like style of listing declarations at the heads
619     * of methods or blocks, and using inline assignments on first
620     * encounter.  Array bounds-checks are usually performed by
621     * masking with array.length-1, which relies on the invariant that
622     * these arrays are created with positive lengths, which is itself
623     * paranoically checked. Nearly all explicit checks lead to
624     * bypass/return, not exception throws, because they may
625     * legitimately arise due to cancellation/revocation during
626     * shutdown.
627     *
628     * There is a lot of representation-level coupling among classes
629     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
630     * fields of WorkQueue maintain data structures managed by
631     * ForkJoinPool, so are directly accessed.  There is little point
632     * trying to reduce this, since any associated future changes in
633     * representations will need to be accompanied by algorithmic
634     * changes anyway. Several methods intrinsically sprawl because
635     * they must accumulate sets of consistent reads of fields held in
636     * local variables.  There are also other coding oddities
637     * (including several unnecessary-looking hoisted null checks)
638     * that help some methods perform reasonably even when interpreted
639     * (not compiled).
640     *
641     * The order of declarations in this file is (with a few exceptions):
642     * (1) Static utility functions
643     * (2) Nested (static) classes
644     * (3) Static fields
645     * (4) Fields, along with constants used when unpacking some of them
646     * (5) Internal control methods
647     * (6) Callbacks and other support for ForkJoinTask methods
648     * (7) Exported methods
649     * (8) Static block initializing statics in minimally dependent order
650     */
651
652    // Static utilities
653
654    /**
655     * If there is a security manager, makes sure caller has
656     * permission to modify threads.
657     */
658    private static void checkPermission() {
659        SecurityManager security = System.getSecurityManager();
660        if (security != null)
661            security.checkPermission(modifyThreadPermission);
662    }
663
664    // Nested classes
665
666    /**
667     * Factory for creating new {@link ForkJoinWorkerThread}s.
668     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
669     * for {@code ForkJoinWorkerThread} subclasses that extend base
670     * functionality or initialize threads with different contexts.
671     */
672    public static interface ForkJoinWorkerThreadFactory {
673        /**
674         * Returns a new worker thread operating in the given pool.
675         *
676         * @param pool the pool this thread works in
677         * @return the new worker thread, or {@code null} if the request
678         *         to create a thread is rejected
679         * @throws NullPointerException if the pool is null
680         */
681        public ForkJoinWorkerThread newThread(ForkJoinPool pool);
682    }
683
684    /**
685     * Default ForkJoinWorkerThreadFactory implementation; creates a
686     * new ForkJoinWorkerThread.
687     */
688    private static final class DefaultForkJoinWorkerThreadFactory
689        implements ForkJoinWorkerThreadFactory {
690        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
691            return new ForkJoinWorkerThread(pool);
692        }
693    }
694
695    /**
696     * Class for artificial tasks that are used to replace the target
697     * of local joins if they are removed from an interior queue slot
698     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
699     * actually do anything beyond having a unique identity.
700     */
701    private static final class EmptyTask extends ForkJoinTask<Void> {
702        private static final long serialVersionUID = -7721805057305804111L;
703        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
704        public final Void getRawResult() { return null; }
705        public final void setRawResult(Void x) {}
706        public final boolean exec() { return true; }
707    }
708
709    /**
710     * Additional fields and lock created upon initialization.
711     */
712    private static final class AuxState extends ReentrantLock {
713        private static final long serialVersionUID = -6001602636862214147L;
714        volatile long stealCount;     // cumulative steal count
715        long indexSeed;               // index bits for registerWorker
716        AuxState() {}
717    }
718
719    // Constants shared across ForkJoinPool and WorkQueue
720
721    // Bounds
722    static final int SMASK        = 0xffff;        // short bits == max index
723    static final int MAX_CAP      = 0x7fff;        // max #workers - 1
724    static final int EVENMASK     = 0xfffe;        // even short bits
725    static final int SQMASK       = 0x007e;        // max 64 (even) slots
726
727    // Masks and units for WorkQueue.scanState and ctl sp subfield
728    static final int UNSIGNALLED  = 1 << 31;       // must be negative
729    static final int SS_SEQ       = 1 << 16;       // version count
730
731    // Mode bits for ForkJoinPool.config and WorkQueue.config
732    static final int MODE_MASK    = 0xffff << 16;  // top half of int
733    static final int SPARE_WORKER = 1 << 17;       // set if tc > 0 on creation
734    static final int UNREGISTERED = 1 << 18;       // to skip some of deregister
735    static final int FIFO_QUEUE   = 1 << 31;       // must be negative
736    static final int LIFO_QUEUE   = 0;             // for clarity
737    static final int IS_OWNED     = 1;             // low bit 0 if shared
738
739    /**
740     * The maximum number of task executions from the same queue
741     * before checking other queues, bounding unfairness and impact of
742     * infinite user task recursion.  Must be a power of two minus 1.
743     */
744    static final int POLL_LIMIT = (1 << 10) - 1;
745
746    /**
747     * Queues supporting work-stealing as well as external task
748     * submission. See above for descriptions and algorithms.
749     * Performance on most platforms is very sensitive to placement of
750     * instances of both WorkQueues and their arrays -- we absolutely
751     * do not want multiple WorkQueue instances or multiple queue
752     * arrays sharing cache lines. The @Contended annotation alerts
753     * JVMs to try to keep instances apart.
754     */
755    //@jdk.internal.vm.annotation.Contended   // android-removed
756    static final class WorkQueue {
757
758        /**
759         * Capacity of work-stealing queue array upon initialization.
760         * Must be a power of two; at least 4, but should be larger to
761         * reduce or eliminate cacheline sharing among queues.
762         * Currently, it is much larger, as a partial workaround for
763         * the fact that JVMs often place arrays in locations that
764         * share GC bookkeeping (especially cardmarks) such that
765         * per-write accesses encounter serious memory contention.
766         */
767        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
768
769        /**
770         * Maximum size for queue arrays. Must be a power of two less
771         * than or equal to 1 << (31 - width of array entry) to ensure
772         * lack of wraparound of index calculations, but defined to a
773         * value a bit less than this to help users trap runaway
774         * programs before saturating systems.
775         */
776        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
777
778        // Instance fields
779
780        volatile int scanState;    // versioned, negative if inactive
781        int stackPred;             // pool stack (ctl) predecessor
782        int nsteals;               // number of steals
783        int hint;                  // randomization and stealer index hint
784        int config;                // pool index and mode
785        volatile int qlock;        // 1: locked, < 0: terminate; else 0
786        volatile int base;         // index of next slot for poll
787        int top;                   // index of next slot for push
788        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
789        final ForkJoinPool pool;   // the containing pool (may be null)
790        final ForkJoinWorkerThread owner; // owning thread or null if shared
791        volatile Thread parker;    // == owner during call to park; else null
792        volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
793
794      // @jdk.internal.vm.annotation.Contended("group2") // segregate // android-removed
795        volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
796
797        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
798            this.pool = pool;
799            this.owner = owner;
800            // Place indices in the center of array (that is not yet allocated)
801            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
802        }
803
804        /**
805         * Returns an exportable index (used by ForkJoinWorkerThread).
806         */
807        final int getPoolIndex() {
808            return (config & 0xffff) >>> 1; // ignore odd/even tag bit
809        }
810
811        /**
812         * Returns the approximate number of tasks in the queue.
813         */
814        final int queueSize() {
815            int n = base - top;       // read base first
816            return (n >= 0) ? 0 : -n; // ignore transient negative
817        }
818
819        /**
820         * Provides a more accurate estimate of whether this queue has
821         * any tasks than does queueSize, by checking whether a
822         * near-empty queue has at least one unclaimed task.
823         */
824        final boolean isEmpty() {
825            ForkJoinTask<?>[] a; int n, al, s;
826            return ((n = base - (s = top)) >= 0 || // possibly one task
827                    (n == -1 && ((a = array) == null ||
828                                 (al = a.length) == 0 ||
829                                 a[(al - 1) & (s - 1)] == null)));
830        }
831
832        /**
833         * Pushes a task. Call only by owner in unshared queues.
834         *
835         * @param task the task. Caller must ensure non-null.
836         * @throws RejectedExecutionException if array cannot be resized
837         */
838        final void push(ForkJoinTask<?> task) {
839            U.storeFence();              // ensure safe publication
840            int s = top, al, d; ForkJoinTask<?>[] a;
841            if ((a = array) != null && (al = a.length) > 0) {
842                a[(al - 1) & s] = task;  // relaxed writes OK
843                top = s + 1;
844                ForkJoinPool p = pool;
845                if ((d = base - s) == 0 && p != null) {
846                    U.fullFence();
847                    p.signalWork();
848                }
849                else if (al + d == 1)
850                    growArray();
851            }
852        }
853
854        /**
855         * Initializes or doubles the capacity of array. Call either
856         * by owner or with lock held -- it is OK for base, but not
857         * top, to move while resizings are in progress.
858         */
859        final ForkJoinTask<?>[] growArray() {
860            ForkJoinTask<?>[] oldA = array;
861            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
862            if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
863                throw new RejectedExecutionException("Queue capacity exceeded");
864            int oldMask, t, b;
865            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
866            if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
867                (t = top) - (b = base) > 0) {
868                int mask = size - 1;
869                do { // emulate poll from old array, push to new array
870                    int index = b & oldMask;
871                    long offset = ((long)index << ASHIFT) + ABASE;
872                    ForkJoinTask<?> x = (ForkJoinTask<?>)
873                        U.getObjectVolatile(oldA, offset);
874                    if (x != null &&
875                        U.compareAndSwapObject(oldA, offset, x, null))
876                        a[b & mask] = x;
877                } while (++b != t);
878                U.storeFence();
879            }
880            return a;
881        }
882
883        /**
884         * Takes next task, if one exists, in LIFO order.  Call only
885         * by owner in unshared queues.
886         */
887        final ForkJoinTask<?> pop() {
888            int b = base, s = top, al, i; ForkJoinTask<?>[] a;
889            if ((a = array) != null && b != s && (al = a.length) > 0) {
890                int index = (al - 1) & --s;
891                long offset = ((long)index << ASHIFT) + ABASE;
892                ForkJoinTask<?> t = (ForkJoinTask<?>)
893                    U.getObject(a, offset);
894                if (t != null &&
895                    U.compareAndSwapObject(a, offset, t, null)) {
896                    top = s;
897                    return t;
898                }
899            }
900            return null;
901        }
902
903        /**
904         * Takes a task in FIFO order if b is base of queue and a task
905         * can be claimed without contention. Specialized versions
906         * appear in ForkJoinPool methods scan and helpStealer.
907         */
908        final ForkJoinTask<?> pollAt(int b) {
909            ForkJoinTask<?>[] a; int al;
910            if ((a = array) != null && (al = a.length) > 0) {
911                int index = (al - 1) & b;
912                long offset = ((long)index << ASHIFT) + ABASE;
913                ForkJoinTask<?> t = (ForkJoinTask<?>)
914                    U.getObjectVolatile(a, offset);
915                if (t != null && b++ == base &&
916                    U.compareAndSwapObject(a, offset, t, null)) {
917                    base = b;
918                    return t;
919                }
920            }
921            return null;
922        }
923
924        /**
925         * Takes next task, if one exists, in FIFO order.
926         */
927        final ForkJoinTask<?> poll() {
928            for (;;) {
929                int b = base, s = top, d, al; ForkJoinTask<?>[] a;
930                if ((a = array) != null && (d = b - s) < 0 &&
931                    (al = a.length) > 0) {
932                    int index = (al - 1) & b;
933                    long offset = ((long)index << ASHIFT) + ABASE;
934                    ForkJoinTask<?> t = (ForkJoinTask<?>)
935                        U.getObjectVolatile(a, offset);
936                    if (b++ == base) {
937                        if (t != null) {
938                            if (U.compareAndSwapObject(a, offset, t, null)) {
939                                base = b;
940                                return t;
941                            }
942                        }
943                        else if (d == -1)
944                            break; // now empty
945                    }
946                }
947                else
948                    break;
949            }
950            return null;
951        }
952
953        /**
954         * Takes next task, if one exists, in order specified by mode.
955         */
956        final ForkJoinTask<?> nextLocalTask() {
957            return (config < 0) ? poll() : pop();
958        }
959
960        /**
961         * Returns next task, if one exists, in order specified by mode.
962         */
963        final ForkJoinTask<?> peek() {
964            int al; ForkJoinTask<?>[] a;
965            return ((a = array) != null && (al = a.length) > 0) ?
966                a[(al - 1) & (config < 0 ? base : top - 1)] : null;
967        }
968
969        /**
970         * Pops the given task only if it is at the current top.
971         */
972        final boolean tryUnpush(ForkJoinTask<?> task) {
973            int b = base, s = top, al; ForkJoinTask<?>[] a;
974            if ((a = array) != null && b != s && (al = a.length) > 0) {
975                int index = (al - 1) & --s;
976                long offset = ((long)index << ASHIFT) + ABASE;
977                if (U.compareAndSwapObject(a, offset, task, null)) {
978                    top = s;
979                    return true;
980                }
981            }
982            return false;
983        }
984
985        /**
986         * Shared version of push. Fails if already locked.
987         *
988         * @return status: > 0 locked, 0 possibly was empty, < 0 was nonempty
989         */
990        final int sharedPush(ForkJoinTask<?> task) {
991            int stat;
992            if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
993                int b = base, s = top, al, d; ForkJoinTask<?>[] a;
994                if ((a = array) != null && (al = a.length) > 0 &&
995                    al - 1 + (d = b - s) > 0) {
996                    a[(al - 1) & s] = task;
997                    top = s + 1;                 // relaxed writes OK here
998                    qlock = 0;
999                    stat = (d < 0 && b == base) ? d : 0;
1000                }
1001                else {
1002                    growAndSharedPush(task);
1003                    stat = 0;
1004                }
1005            }
1006            else
1007                stat = 1;
1008            return stat;
1009        }
1010
1011        /**
1012         * Helper for sharedPush; called only when locked and resize
1013         * needed.
1014         */
1015        private void growAndSharedPush(ForkJoinTask<?> task) {
1016            try {
1017                growArray();
1018                int s = top, al; ForkJoinTask<?>[] a;
1019                if ((a = array) != null && (al = a.length) > 0) {
1020                    a[(al - 1) & s] = task;
1021                    top = s + 1;
1022                }
1023            } finally {
1024                qlock = 0;
1025            }
1026        }
1027
1028        /**
1029         * Shared version of tryUnpush.
1030         */
1031        final boolean trySharedUnpush(ForkJoinTask<?> task) {
1032            boolean popped = false;
1033            int s = top - 1, al; ForkJoinTask<?>[] a;
1034            if ((a = array) != null && (al = a.length) > 0) {
1035                int index = (al - 1) & s;
1036                long offset = ((long)index << ASHIFT) + ABASE;
1037                ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1038                if (t == task &&
1039                    U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1040                    if (top == s + 1 && array == a &&
1041                        U.compareAndSwapObject(a, offset, task, null)) {
1042                        popped = true;
1043                        top = s;
1044                    }
1045                    U.putOrderedInt(this, QLOCK, 0);
1046                }
1047            }
1048            return popped;
1049        }
1050
1051        /**
1052         * Removes and cancels all known tasks, ignoring any exceptions.
1053         */
1054        final void cancelAll() {
1055            ForkJoinTask<?> t;
1056            if ((t = currentJoin) != null) {
1057                currentJoin = null;
1058                ForkJoinTask.cancelIgnoringExceptions(t);
1059            }
1060            if ((t = currentSteal) != null) {
1061                currentSteal = null;
1062                ForkJoinTask.cancelIgnoringExceptions(t);
1063            }
1064            while ((t = poll()) != null)
1065                ForkJoinTask.cancelIgnoringExceptions(t);
1066        }
1067
1068        // Specialized execution methods
1069
1070        /**
1071         * Pops and executes up to POLL_LIMIT tasks or until empty.
1072         */
1073        final void localPopAndExec() {
1074            for (int nexec = 0;;) {
1075                int b = base, s = top, al; ForkJoinTask<?>[] a;
1076                if ((a = array) != null && b != s && (al = a.length) > 0) {
1077                    int index = (al - 1) & --s;
1078                    long offset = ((long)index << ASHIFT) + ABASE;
1079                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1080                        U.getAndSetObject(a, offset, null);
1081                    if (t != null) {
1082                        top = s;
1083                        (currentSteal = t).doExec();
1084                        if (++nexec > POLL_LIMIT)
1085                            break;
1086                    }
1087                    else
1088                        break;
1089                }
1090                else
1091                    break;
1092            }
1093        }
1094
1095        /**
1096         * Polls and executes up to POLL_LIMIT tasks or until empty.
1097         */
1098        final void localPollAndExec() {
1099            for (int nexec = 0;;) {
1100                int b = base, s = top, al; ForkJoinTask<?>[] a;
1101                if ((a = array) != null && b != s && (al = a.length) > 0) {
1102                    int index = (al - 1) & b++;
1103                    long offset = ((long)index << ASHIFT) + ABASE;
1104                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1105                        U.getAndSetObject(a, offset, null);
1106                    if (t != null) {
1107                        base = b;
1108                        t.doExec();
1109                        if (++nexec > POLL_LIMIT)
1110                            break;
1111                    }
1112                }
1113                else
1114                    break;
1115            }
1116        }
1117
1118        /**
1119         * Executes the given task and (some) remaining local tasks.
1120         */
1121        final void runTask(ForkJoinTask<?> task) {
1122            if (task != null) {
1123                task.doExec();
1124                if (config < 0)
1125                    localPollAndExec();
1126                else
1127                    localPopAndExec();
1128                int ns = ++nsteals;
1129                ForkJoinWorkerThread thread = owner;
1130                currentSteal = null;
1131                if (ns < 0)           // collect on overflow
1132                    transferStealCount(pool);
1133                if (thread != null)
1134                    thread.afterTopLevelExec();
1135            }
1136        }
1137
1138        /**
1139         * Adds steal count to pool steal count if it exists, and resets.
1140         */
1141        final void transferStealCount(ForkJoinPool p) {
1142            AuxState aux;
1143            if (p != null && (aux = p.auxState) != null) {
1144                long s = nsteals;
1145                nsteals = 0;            // if negative, correct for overflow
1146                if (s < 0) s = Integer.MAX_VALUE;
1147                aux.lock();
1148                try {
1149                    aux.stealCount += s;
1150                } finally {
1151                    aux.unlock();
1152                }
1153            }
1154        }
1155
1156        /**
1157         * If present, removes from queue and executes the given task,
1158         * or any other cancelled task. Used only by awaitJoin.
1159         *
1160         * @return true if queue empty and task not known to be done
1161         */
1162        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1163            if (task != null && task.status >= 0) {
1164                int b, s, d, al; ForkJoinTask<?>[] a;
1165                while ((d = (b = base) - (s = top)) < 0 &&
1166                       (a = array) != null && (al = a.length) > 0) {
1167                    for (;;) {      // traverse from s to b
1168                        int index = --s & (al - 1);
1169                        long offset = (index << ASHIFT) + ABASE;
1170                        ForkJoinTask<?> t = (ForkJoinTask<?>)
1171                            U.getObjectVolatile(a, offset);
1172                        if (t == null)
1173                            break;                   // restart
1174                        else if (t == task) {
1175                            boolean removed = false;
1176                            if (s + 1 == top) {      // pop
1177                                if (U.compareAndSwapObject(a, offset, t, null)) {
1178                                    top = s;
1179                                    removed = true;
1180                                }
1181                            }
1182                            else if (base == b)      // replace with proxy
1183                                removed = U.compareAndSwapObject(a, offset, t,
1184                                                                 new EmptyTask());
1185                            if (removed) {
1186                                ForkJoinTask<?> ps = currentSteal;
1187                                (currentSteal = task).doExec();
1188                                currentSteal = ps;
1189                            }
1190                            break;
1191                        }
1192                        else if (t.status < 0 && s + 1 == top) {
1193                            if (U.compareAndSwapObject(a, offset, t, null)) {
1194                                top = s;
1195                            }
1196                            break;                  // was cancelled
1197                        }
1198                        else if (++d == 0) {
1199                            if (base != b)          // rescan
1200                                break;
1201                            return false;
1202                        }
1203                    }
1204                    if (task.status < 0)
1205                        return false;
1206                }
1207            }
1208            return true;
1209        }
1210
1211        /**
1212         * Pops task if in the same CC computation as the given task,
1213         * in either shared or owned mode. Used only by helpComplete.
1214         */
1215        final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1216            int b = base, s = top, al; ForkJoinTask<?>[] a;
1217            if ((a = array) != null && b != s && (al = a.length) > 0) {
1218                int index = (al - 1) & (s - 1);
1219                long offset = ((long)index << ASHIFT) + ABASE;
1220                ForkJoinTask<?> o = (ForkJoinTask<?>)
1221                    U.getObjectVolatile(a, offset);
1222                if (o instanceof CountedCompleter) {
1223                    CountedCompleter<?> t = (CountedCompleter<?>)o;
1224                    for (CountedCompleter<?> r = t;;) {
1225                        if (r == task) {
1226                            if ((mode & IS_OWNED) == 0) {
1227                                boolean popped = false;
1228                                if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1229                                    if (top == s && array == a &&
1230                                        U.compareAndSwapObject(a, offset,
1231                                                               t, null)) {
1232                                        popped = true;
1233                                        top = s - 1;
1234                                    }
1235                                    U.putOrderedInt(this, QLOCK, 0);
1236                                    if (popped)
1237                                        return t;
1238                                }
1239                            }
1240                            else if (U.compareAndSwapObject(a, offset,
1241                                                            t, null)) {
1242                                top = s - 1;
1243                                return t;
1244                            }
1245                            break;
1246                        }
1247                        else if ((r = r.completer) == null) // try parent
1248                            break;
1249                    }
1250                }
1251            }
1252            return null;
1253        }
1254
1255        /**
1256         * Steals and runs a task in the same CC computation as the
1257         * given task if one exists and can be taken without
1258         * contention. Otherwise returns a checksum/control value for
1259         * use by method helpComplete.
1260         *
1261         * @return 1 if successful, 2 if retryable (lost to another
1262         * stealer), -1 if non-empty but no matching task found, else
1263         * the base index, forced negative.
1264         */
1265        final int pollAndExecCC(CountedCompleter<?> task) {
1266            ForkJoinTask<?>[] a;
1267            int b = base, s = top, al, h;
1268            if ((a = array) != null && b != s && (al = a.length) > 0) {
1269                int index = (al - 1) & b;
1270                long offset = ((long)index << ASHIFT) + ABASE;
1271                ForkJoinTask<?> o = (ForkJoinTask<?>)
1272                    U.getObjectVolatile(a, offset);
1273                if (o == null)
1274                    h = 2;                      // retryable
1275                else if (!(o instanceof CountedCompleter))
1276                    h = -1;                     // unmatchable
1277                else {
1278                    CountedCompleter<?> t = (CountedCompleter<?>)o;
1279                    for (CountedCompleter<?> r = t;;) {
1280                        if (r == task) {
1281                            if (b++ == base &&
1282                                U.compareAndSwapObject(a, offset, t, null)) {
1283                                base = b;
1284                                t.doExec();
1285                                h = 1;          // success
1286                            }
1287                            else
1288                                h = 2;          // lost CAS
1289                            break;
1290                        }
1291                        else if ((r = r.completer) == null) {
1292                            h = -1;             // unmatched
1293                            break;
1294                        }
1295                    }
1296                }
1297            }
1298            else
1299                h = b | Integer.MIN_VALUE;      // to sense movement on re-poll
1300            return h;
1301        }
1302
1303        /**
1304         * Returns true if owned and not known to be blocked.
1305         */
1306        final boolean isApparentlyUnblocked() {
1307            Thread wt; Thread.State s;
1308            return (scanState >= 0 &&
1309                    (wt = owner) != null &&
1310                    (s = wt.getState()) != Thread.State.BLOCKED &&
1311                    s != Thread.State.WAITING &&
1312                    s != Thread.State.TIMED_WAITING);
1313        }
1314
1315        // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1316        private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1317        private static final long QLOCK;
1318        private static final int ABASE;
1319        private static final int ASHIFT;
1320        static {
1321            try {
1322                QLOCK = U.objectFieldOffset
1323                    (WorkQueue.class.getDeclaredField("qlock"));
1324                ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1325                int scale = U.arrayIndexScale(ForkJoinTask[].class);
1326                if ((scale & (scale - 1)) != 0)
1327                    throw new Error("array index scale not a power of two");
1328                ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1329            } catch (ReflectiveOperationException e) {
1330                throw new Error(e);
1331            }
1332        }
1333    }
1334
1335    // static fields (initialized in static initializer below)
1336
1337    /**
1338     * Creates a new ForkJoinWorkerThread. This factory is used unless
1339     * overridden in ForkJoinPool constructors.
1340     */
1341    public static final ForkJoinWorkerThreadFactory
1342        defaultForkJoinWorkerThreadFactory;
1343
1344    /**
1345     * Permission required for callers of methods that may start or
1346     * kill threads.  Also used as a static lock in tryInitialize.
1347     */
1348    static final RuntimePermission modifyThreadPermission;
1349
1350    /**
1351     * Common (static) pool. Non-null for public use unless a static
1352     * construction exception, but internal usages null-check on use
1353     * to paranoically avoid potential initialization circularities
1354     * as well as to simplify generated code.
1355     */
1356    static final ForkJoinPool common;
1357
1358    /**
1359     * Common pool parallelism. To allow simpler use and management
1360     * when common pool threads are disabled, we allow the underlying
1361     * common.parallelism field to be zero, but in that case still report
1362     * parallelism as 1 to reflect resulting caller-runs mechanics.
1363     */
1364    static final int COMMON_PARALLELISM;
1365
1366    /**
1367     * Limit on spare thread construction in tryCompensate.
1368     */
1369    private static final int COMMON_MAX_SPARES;
1370
1371    /**
1372     * Sequence number for creating workerNamePrefix.
1373     */
1374    private static int poolNumberSequence;
1375
1376    /**
1377     * Returns the next sequence number. We don't expect this to
1378     * ever contend, so use simple builtin sync.
1379     */
1380    private static final synchronized int nextPoolId() {
1381        return ++poolNumberSequence;
1382    }
1383
1384    // static configuration constants
1385
1386    /**
1387     * Initial timeout value (in milliseconds) for the thread
1388     * triggering quiescence to park waiting for new work. On timeout,
1389     * the thread will instead try to shrink the number of workers.
1390     * The value should be large enough to avoid overly aggressive
1391     * shrinkage during most transient stalls (long GCs etc).
1392     */
1393    private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1394
1395    /**
1396     * Tolerance for idle timeouts, to cope with timer undershoots.
1397     */
1398    private static final long TIMEOUT_SLOP_MS =   20L; // 20ms
1399
1400    /**
1401     * The default value for COMMON_MAX_SPARES.  Overridable using the
1402     * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1403     * property.  The default value is far in excess of normal
1404     * requirements, but also far short of MAX_CAP and typical OS
1405     * thread limits, so allows JVMs to catch misuse/abuse before
1406     * running out of resources needed to do so.
1407     */
1408    private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1409
1410    /**
1411     * Increment for seed generators. See class ThreadLocal for
1412     * explanation.
1413     */
1414    private static final int SEED_INCREMENT = 0x9e3779b9;
1415
1416    /*
1417     * Bits and masks for field ctl, packed with 4 16 bit subfields:
1418     * AC: Number of active running workers minus target parallelism
1419     * TC: Number of total workers minus target parallelism
1420     * SS: version count and status of top waiting thread
1421     * ID: poolIndex of top of Treiber stack of waiters
1422     *
1423     * When convenient, we can extract the lower 32 stack top bits
1424     * (including version bits) as sp=(int)ctl.  The offsets of counts
1425     * by the target parallelism and the positionings of fields makes
1426     * it possible to perform the most common checks via sign tests of
1427     * fields: When ac is negative, there are not enough active
1428     * workers, when tc is negative, there are not enough total
1429     * workers.  When sp is non-zero, there are waiting workers.  To
1430     * deal with possibly negative fields, we use casts in and out of
1431     * "short" and/or signed shifts to maintain signedness.
1432     *
1433     * Because it occupies uppermost bits, we can add one active count
1434     * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1435     * from a blocked join.  Other updates entail multiple subfields
1436     * and masking, requiring CAS.
1437     */
1438
1439    // Lower and upper word masks
1440    private static final long SP_MASK    = 0xffffffffL;
1441    private static final long UC_MASK    = ~SP_MASK;
1442
1443    // Active counts
1444    private static final int  AC_SHIFT   = 48;
1445    private static final long AC_UNIT    = 0x0001L << AC_SHIFT;
1446    private static final long AC_MASK    = 0xffffL << AC_SHIFT;
1447
1448    // Total counts
1449    private static final int  TC_SHIFT   = 32;
1450    private static final long TC_UNIT    = 0x0001L << TC_SHIFT;
1451    private static final long TC_MASK    = 0xffffL << TC_SHIFT;
1452    private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1453
1454    // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1455    private static final int  STARTED    = 1;
1456    private static final int  STOP       = 1 << 1;
1457    private static final int  TERMINATED = 1 << 2;
1458    private static final int  SHUTDOWN   = 1 << 31;
1459
1460    // Instance fields
1461    volatile long ctl;                   // main pool control
1462    volatile int runState;
1463    final int config;                    // parallelism, mode
1464    AuxState auxState;                   // lock, steal counts
1465    volatile WorkQueue[] workQueues;     // main registry
1466    final String workerNamePrefix;       // to create worker name string
1467    final ForkJoinWorkerThreadFactory factory;
1468    final UncaughtExceptionHandler ueh;  // per-worker UEH
1469
1470    /**
1471     * Instantiates fields upon first submission, or upon shutdown if
1472     * no submissions. If checkTermination true, also responds to
1473     * termination by external calls submitting tasks.
1474     */
1475    private void tryInitialize(boolean checkTermination) {
1476        if (runState == 0) { // bootstrap by locking static field
1477            int p = config & SMASK;
1478            int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1479            n |= n >>> 1;    // create workQueues array with size a power of two
1480            n |= n >>> 2;
1481            n |= n >>> 4;
1482            n |= n >>> 8;
1483            n |= n >>> 16;
1484            n = ((n + 1) << 1) & SMASK;
1485            AuxState aux = new AuxState();
1486            WorkQueue[] ws = new WorkQueue[n];
1487            synchronized (modifyThreadPermission) { // double-check
1488                if (runState == 0) {
1489                    workQueues = ws;
1490                    auxState = aux;
1491                    runState = STARTED;
1492                }
1493            }
1494        }
1495        if (checkTermination && runState < 0) {
1496            tryTerminate(false, false); // help terminate
1497            throw new RejectedExecutionException();
1498        }
1499    }
1500
1501    // Creating, registering and deregistering workers
1502
1503    /**
1504     * Tries to construct and start one worker. Assumes that total
1505     * count has already been incremented as a reservation.  Invokes
1506     * deregisterWorker on any failure.
1507     *
1508     * @param isSpare true if this is a spare thread
1509     * @return true if successful
1510     */
1511    private boolean createWorker(boolean isSpare) {
1512        ForkJoinWorkerThreadFactory fac = factory;
1513        Throwable ex = null;
1514        ForkJoinWorkerThread wt = null;
1515        WorkQueue q;
1516        try {
1517            if (fac != null && (wt = fac.newThread(this)) != null) {
1518                if (isSpare && (q = wt.workQueue) != null)
1519                    q.config |= SPARE_WORKER;
1520                wt.start();
1521                return true;
1522            }
1523        } catch (Throwable rex) {
1524            ex = rex;
1525        }
1526        deregisterWorker(wt, ex);
1527        return false;
1528    }
1529
1530    /**
1531     * Tries to add one worker, incrementing ctl counts before doing
1532     * so, relying on createWorker to back out on failure.
1533     *
1534     * @param c incoming ctl value, with total count negative and no
1535     * idle workers.  On CAS failure, c is refreshed and retried if
1536     * this holds (otherwise, a new worker is not needed).
1537     */
1538    private void tryAddWorker(long c) {
1539        do {
1540            long nc = ((AC_MASK & (c + AC_UNIT)) |
1541                       (TC_MASK & (c + TC_UNIT)));
1542            if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1543                createWorker(false);
1544                break;
1545            }
1546        } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1547    }
1548
1549    /**
1550     * Callback from ForkJoinWorkerThread constructor to establish and
1551     * record its WorkQueue.
1552     *
1553     * @param wt the worker thread
1554     * @return the worker's queue
1555     */
1556    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1557        UncaughtExceptionHandler handler;
1558        AuxState aux;
1559        wt.setDaemon(true);                           // configure thread
1560        if ((handler = ueh) != null)
1561            wt.setUncaughtExceptionHandler(handler);
1562        WorkQueue w = new WorkQueue(this, wt);
1563        int i = 0;                                    // assign a pool index
1564        int mode = config & MODE_MASK;
1565        if ((aux = auxState) != null) {
1566            aux.lock();
1567            try {
1568                int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m;
1569                WorkQueue[] ws = workQueues;
1570                if (ws != null && (n = ws.length) > 0) {
1571                    i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1572                    if (ws[i] != null) {              // collision
1573                        int probes = 0;               // step by approx half n
1574                        int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1575                        while (ws[i = (i + step) & m] != null) {
1576                            if (++probes >= n) {
1577                                workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1578                                m = n - 1;
1579                                probes = 0;
1580                            }
1581                        }
1582                    }
1583                    w.hint = s;                       // use as random seed
1584                    w.config = i | mode;
1585                    w.scanState = i | (s & 0x7fff0000); // random seq bits
1586                    ws[i] = w;
1587                }
1588            } finally {
1589                aux.unlock();
1590            }
1591        }
1592        wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1593        return w;
1594    }
1595
1596    /**
1597     * Final callback from terminating worker, as well as upon failure
1598     * to construct or start a worker.  Removes record of worker from
1599     * array, and adjusts counts. If pool is shutting down, tries to
1600     * complete termination.
1601     *
1602     * @param wt the worker thread, or null if construction failed
1603     * @param ex the exception causing failure, or null if none
1604     */
1605    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1606        WorkQueue w = null;
1607        if (wt != null && (w = wt.workQueue) != null) {
1608            AuxState aux; WorkQueue[] ws;          // remove index from array
1609            int idx = w.config & SMASK;
1610            int ns = w.nsteals;
1611            if ((aux = auxState) != null) {
1612                aux.lock();
1613                try {
1614                    if ((ws = workQueues) != null && ws.length > idx &&
1615                        ws[idx] == w)
1616                        ws[idx] = null;
1617                    aux.stealCount += ns;
1618                } finally {
1619                    aux.unlock();
1620                }
1621            }
1622        }
1623        if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1624            long c;                                   // decrement counts
1625            do {} while (!U.compareAndSwapLong
1626                         (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1627                                               (TC_MASK & (c - TC_UNIT)) |
1628                                               (SP_MASK & c))));
1629        }
1630        if (w != null) {
1631            w.currentSteal = null;
1632            w.qlock = -1;                             // ensure set
1633            w.cancelAll();                            // cancel remaining tasks
1634        }
1635        while (tryTerminate(false, false) >= 0) {     // possibly replace
1636            WorkQueue[] ws; int wl, sp; long c;
1637            if (w == null || w.array == null ||
1638                (ws = workQueues) == null || (wl = ws.length) <= 0)
1639                break;
1640            else if ((sp = (int)(c = ctl)) != 0) {    // wake up replacement
1641                if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1642                    break;
1643            }
1644            else if (ex != null && (c & ADD_WORKER) != 0L) {
1645                tryAddWorker(c);                      // create replacement
1646                break;
1647            }
1648            else                                      // don't need replacement
1649                break;
1650        }
1651        if (ex == null)                               // help clean on way out
1652            ForkJoinTask.helpExpungeStaleExceptions();
1653        else                                          // rethrow
1654            ForkJoinTask.rethrow(ex);
1655    }
1656
1657    // Signalling
1658
1659    /**
1660     * Tries to create or activate a worker if too few are active.
1661     */
1662    final void signalWork() {
1663        for (;;) {
1664            long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1665            if ((c = ctl) >= 0L)                      // enough workers
1666                break;
1667            else if ((sp = (int)c) == 0) {            // no idle workers
1668                if ((c & ADD_WORKER) != 0L)           // too few workers
1669                    tryAddWorker(c);
1670                break;
1671            }
1672            else if ((ws = workQueues) == null)
1673                break;                                // unstarted/terminated
1674            else if (ws.length <= (i = sp & SMASK))
1675                break;                                // terminated
1676            else if ((v = ws[i]) == null)
1677                break;                                // terminating
1678            else {
1679                int ns = sp & ~UNSIGNALLED;
1680                int vs = v.scanState;
1681                long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1682                if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1683                    v.scanState = ns;
1684                    LockSupport.unpark(v.parker);
1685                    break;
1686                }
1687            }
1688        }
1689    }
1690
1691    /**
1692     * Signals and releases worker v if it is top of idle worker
1693     * stack.  This performs a one-shot version of signalWork only if
1694     * there is (apparently) at least one idle worker.
1695     *
1696     * @param c incoming ctl value
1697     * @param v if non-null, a worker
1698     * @param inc the increment to active count (zero when compensating)
1699     * @return true if successful
1700     */
1701    private boolean tryRelease(long c, WorkQueue v, long inc) {
1702        int sp = (int)c, ns = sp & ~UNSIGNALLED;
1703        if (v != null) {
1704            int vs = v.scanState;
1705            long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1706            if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1707                v.scanState = ns;
1708                LockSupport.unpark(v.parker);
1709                return true;
1710            }
1711        }
1712        return false;
1713    }
1714
1715    /**
1716     * With approx probability of a missed signal, tries (once) to
1717     * reactivate worker w (or some other worker), failing if stale or
1718     * known to be already active.
1719     *
1720     * @param w the worker
1721     * @param ws the workQueue array to use
1722     * @param r random seed
1723     */
1724    private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1725        long c; int sp, wl; WorkQueue v;
1726        if ((sp = (int)(c = ctl)) != 0 && w != null &&
1727            ws != null && (wl = ws.length) > 0 &&
1728            ((sp ^ r) & SS_SEQ) == 0 &&
1729            (v = ws[(wl - 1) & sp]) != null) {
1730            long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1731            int ns = sp & ~UNSIGNALLED;
1732            if (w.scanState < 0 &&
1733                v.scanState == sp &&
1734                U.compareAndSwapLong(this, CTL, c, nc)) {
1735                v.scanState = ns;
1736                LockSupport.unpark(v.parker);
1737            }
1738        }
1739    }
1740
1741    /**
1742     * If worker w exists and is active, enqueues and sets status to inactive.
1743     *
1744     * @param w the worker
1745     * @param ss current (non-negative) scanState
1746     */
1747    private void inactivate(WorkQueue w, int ss) {
1748        int ns = (ss + SS_SEQ) | UNSIGNALLED;
1749        long lc = ns & SP_MASK, nc, c;
1750        if (w != null) {
1751            w.scanState = ns;
1752            do {
1753                nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1754                w.stackPred = (int)c;
1755            } while (!U.compareAndSwapLong(this, CTL, c, nc));
1756        }
1757    }
1758
1759    /**
1760     * Possibly blocks worker w waiting for signal, or returns
1761     * negative status if the worker should terminate. May return
1762     * without status change if multiple stale unparks and/or
1763     * interrupts occur.
1764     *
1765     * @param w the calling worker
1766     * @return negative if w should terminate
1767     */
1768    private int awaitWork(WorkQueue w) {
1769        int stat = 0;
1770        if (w != null && w.scanState < 0) {
1771            long c = ctl;
1772            if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1773                stat = timedAwaitWork(w, c);     // possibly quiescent
1774            else if ((runState & STOP) != 0)
1775                stat = w.qlock = -1;             // pool terminating
1776            else if (w.scanState < 0) {
1777                w.parker = Thread.currentThread();
1778                if (w.scanState < 0)             // recheck after write
1779                    LockSupport.park(this);
1780                w.parker = null;
1781                if ((runState & STOP) != 0)
1782                    stat = w.qlock = -1;         // recheck
1783                else if (w.scanState < 0)
1784                    Thread.interrupted();        // clear status
1785            }
1786        }
1787        return stat;
1788    }
1789
1790    /**
1791     * Possibly triggers shutdown and tries (once) to block worker
1792     * when pool is (or may be) quiescent. Waits up to a duration
1793     * determined by number of workers.  On timeout, if ctl has not
1794     * changed, terminates the worker, which will in turn wake up
1795     * another worker to possibly repeat this process.
1796     *
1797     * @param w the calling worker
1798     * @return negative if w should terminate
1799     */
1800    private int timedAwaitWork(WorkQueue w, long c) {
1801        int stat = 0;
1802        int scale = 1 - (short)(c >>> TC_SHIFT);
1803        long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1804                         System.currentTimeMillis());
1805        if ((runState >= 0 || (stat = tryTerminate(false, false)) > 0) &&
1806            w != null && w.scanState < 0) {
1807            int ss; AuxState aux;
1808            w.parker = Thread.currentThread();
1809            if (w.scanState < 0)
1810                LockSupport.parkUntil(this, deadline);
1811            w.parker = null;
1812            if ((runState & STOP) != 0)
1813                stat = w.qlock = -1;         // pool terminating
1814            else if ((ss = w.scanState) < 0 && !Thread.interrupted() &&
1815                     (int)c == ss && (aux = auxState) != null && ctl == c &&
1816                     deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1817                aux.lock();
1818                try {                        // pre-deregister
1819                    WorkQueue[] ws;
1820                    int cfg = w.config, idx = cfg & SMASK;
1821                    long nc = ((UC_MASK & (c - TC_UNIT)) |
1822                               (SP_MASK & w.stackPred));
1823                    if ((runState & STOP) == 0 &&
1824                        (ws = workQueues) != null &&
1825                        idx < ws.length && idx >= 0 && ws[idx] == w &&
1826                        U.compareAndSwapLong(this, CTL, c, nc)) {
1827                        ws[idx] = null;
1828                        w.config = cfg | UNREGISTERED;
1829                        stat = w.qlock = -1;
1830                    }
1831                } finally {
1832                    aux.unlock();
1833                }
1834            }
1835        }
1836        return stat;
1837    }
1838
1839    /**
1840     * If the given worker is a spare with no queued tasks, and there
1841     * are enough existing workers, drops it from ctl counts and sets
1842     * its state to terminated.
1843     *
1844     * @param w the calling worker -- must be a spare
1845     * @return true if dropped (in which case it must not process more tasks)
1846     */
1847    private boolean tryDropSpare(WorkQueue w) {
1848        if (w != null && w.isEmpty()) {           // no local tasks
1849            long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1850            while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1851                   ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1852                   (ws = workQueues) != null && (wl = ws.length) > 0) {
1853                boolean dropped, canDrop;
1854                if (sp == 0) {                    // no queued workers
1855                    long nc = ((AC_MASK & (c - AC_UNIT)) |
1856                               (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1857                    dropped = U.compareAndSwapLong(this, CTL, c, nc);
1858                }
1859                else if (
1860                    (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1861                    dropped = false;              // stale; retry
1862                else {
1863                    long nc = v.stackPred & SP_MASK;
1864                    if (w == v || w.scanState >= 0) {
1865                        canDrop = true;           // w unqueued or topmost
1866                        nc |= ((AC_MASK & c) |    // ensure replacement
1867                               (TC_MASK & (c - TC_UNIT)));
1868                    }
1869                    else {                        // w may be queued
1870                        canDrop = false;          // help uncover
1871                        nc |= ((AC_MASK & (c + AC_UNIT)) |
1872                               (TC_MASK & c));
1873                    }
1874                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1875                        v.scanState = sp & ~UNSIGNALLED;
1876                        LockSupport.unpark(v.parker);
1877                        dropped = canDrop;
1878                    }
1879                    else
1880                        dropped = false;
1881                }
1882                if (dropped) {                    // pre-deregister
1883                    int cfg = w.config, idx = cfg & SMASK;
1884                    if (idx >= 0 && idx < ws.length && ws[idx] == w)
1885                        ws[idx] = null;
1886                    w.config = cfg | UNREGISTERED;
1887                    w.qlock = -1;
1888                    return true;
1889                }
1890            }
1891        }
1892        return false;
1893    }
1894
1895    /**
1896     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1897     */
1898    final void runWorker(WorkQueue w) {
1899        w.growArray();                                  // allocate queue
1900        int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1901        long seed = w.hint * 0xdaba0b6eb09322e3L;       // initial random seed
1902        if ((runState & STOP) == 0) {
1903            for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1904                if (bound == 0 && tryDropSpare(w))
1905                    break;
1906                // high bits of prev seed for step; current low bits for idx
1907                int step = (int)(r >>> 48) | 1;
1908                r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1909                if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1910                    break;
1911            }
1912        }
1913    }
1914
1915    // Scanning for tasks
1916
1917    /**
1918     * Repeatedly scans for and tries to steal and execute (via
1919     * workQueue.runTask) a queued task. Each scan traverses queues in
1920     * pseudorandom permutation. Upon finding a non-empty queue, makes
1921     * at most the given bound attempts to re-poll (fewer if
1922     * contended) on the same queue before returning (impossible
1923     * scanState value) 0 to restart scan. Else returns after at least
1924     * 1 and at most 32 full scans.
1925     *
1926     * @param w the worker (via its WorkQueue)
1927     * @param bound repoll bound as bitmask (0 if spare)
1928     * @param step (circular) index increment per iteration (must be odd)
1929     * @param r a random seed for origin index
1930     * @return negative if should await signal
1931     */
1932    private int scan(WorkQueue w, int bound, int step, int r) {
1933        int stat = 0, wl; WorkQueue[] ws;
1934        if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1935            for (int m = wl - 1,
1936                     origin = m & r, idx = origin,
1937                     npolls = 0,
1938                     ss = w.scanState;;) {         // negative if inactive
1939                WorkQueue q; ForkJoinTask<?>[] a; int b, al;
1940                if ((q = ws[idx]) != null && (b = q.base) - q.top < 0 &&
1941                    (a = q.array) != null && (al = a.length) > 0) {
1942                    int index = (al - 1) & b;
1943                    long offset = ((long)index << ASHIFT) + ABASE;
1944                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1945                        U.getObjectVolatile(a, offset);
1946                    if (t == null)
1947                        break;                     // empty or busy
1948                    else if (b++ != q.base)
1949                        break;                     // busy
1950                    else if (ss < 0) {
1951                        tryReactivate(w, ws, r);
1952                        break;                     // retry upon rescan
1953                    }
1954                    else if (!U.compareAndSwapObject(a, offset, t, null))
1955                        break;                     // contended
1956                    else {
1957                        q.base = b;
1958                        w.currentSteal = t;
1959                        if (b != q.top)            // propagate signal
1960                            signalWork();
1961                        w.runTask(t);
1962                        if (++npolls > bound)
1963                            break;
1964                    }
1965                }
1966                else if (npolls != 0)              // rescan
1967                    break;
1968                else if ((idx = (idx + step) & m) == origin) {
1969                    if (ss < 0) {                  // await signal
1970                        stat = ss;
1971                        break;
1972                    }
1973                    else if (r >= 0) {
1974                        inactivate(w, ss);
1975                        break;
1976                    }
1977                    else
1978                        r <<= 1;                   // at most 31 rescans
1979                }
1980            }
1981        }
1982        return stat;
1983    }
1984
1985    // Joining tasks
1986
1987    /**
1988     * Tries to steal and run tasks within the target's computation.
1989     * Uses a variant of the top-level algorithm, restricted to tasks
1990     * with the given task as ancestor: It prefers taking and running
1991     * eligible tasks popped from the worker's own queue (via
1992     * popCC). Otherwise it scans others, randomly moving on
1993     * contention or execution, deciding to give up based on a
1994     * checksum (via return codes from pollAndExecCC). The maxTasks
1995     * argument supports external usages; internal calls use zero,
1996     * allowing unbounded steps (external calls trap non-positive
1997     * values).
1998     *
1999     * @param w caller
2000     * @param maxTasks if non-zero, the maximum number of other tasks to run
2001     * @return task status on exit
2002     */
2003    final int helpComplete(WorkQueue w, CountedCompleter<?> task,
2004                           int maxTasks) {
2005        WorkQueue[] ws; int s = 0, wl;
2006        if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
2007            task != null && w != null) {
2008            for (int m = wl - 1,
2009                     mode = w.config,
2010                     r = ~mode,                  // scanning seed
2011                     origin = r & m, k = origin, // first queue to scan
2012                     step = 3,                   // first scan step
2013                     h = 1,                      // 1:ran, >1:contended, <0:hash
2014                     oldSum = 0, checkSum = 0;;) {
2015                CountedCompleter<?> p; WorkQueue q; int i;
2016                if ((s = task.status) < 0)
2017                    break;
2018                if (h == 1 && (p = w.popCC(task, mode)) != null) {
2019                    p.doExec();                  // run local task
2020                    if (maxTasks != 0 && --maxTasks == 0)
2021                        break;
2022                    origin = k;                  // reset
2023                    oldSum = checkSum = 0;
2024                }
2025                else {                           // poll other worker queues
2026                    if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
2027                        h = 0;
2028                    else if ((h = q.pollAndExecCC(task)) < 0)
2029                        checkSum += h;
2030                    if (h > 0) {
2031                        if (h == 1 && maxTasks != 0 && --maxTasks == 0)
2032                            break;
2033                        step = (r >>> 16) | 3;
2034                        r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
2035                        k = origin = r & m;      // move and restart
2036                        oldSum = checkSum = 0;
2037                    }
2038                    else if ((k = (k + step) & m) == origin) {
2039                        if (oldSum == (oldSum = checkSum))
2040                            break;
2041                        checkSum = 0;
2042                    }
2043                }
2044            }
2045        }
2046        return s;
2047    }
2048
2049    /**
2050     * Tries to locate and execute tasks for a stealer of the given
2051     * task, or in turn one of its stealers. Traces currentSteal ->
2052     * currentJoin links looking for a thread working on a descendant
2053     * of the given task and with a non-empty queue to steal back and
2054     * execute tasks from. The first call to this method upon a
2055     * waiting join will often entail scanning/search, (which is OK
2056     * because the joiner has nothing better to do), but this method
2057     * leaves hints in workers to speed up subsequent calls.
2058     *
2059     * @param w caller
2060     * @param task the task to join
2061     */
2062    private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
2063        if (task != null && w != null) {
2064            ForkJoinTask<?> ps = w.currentSteal;
2065            WorkQueue[] ws; int wl, oldSum = 0;
2066            outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
2067                          (ws = workQueues) != null && (wl = ws.length) > 0) {
2068                ForkJoinTask<?> subtask;
2069                int m = wl - 1, checkSum = 0;          // for stability check
2070                WorkQueue j = w, v;                    // v is subtask stealer
2071                descent: for (subtask = task; subtask.status >= 0; ) {
2072                    for (int h = j.hint | 1, k = 0, i;;) {
2073                        if ((v = ws[i = (h + (k << 1)) & m]) != null) {
2074                            if (v.currentSteal == subtask) {
2075                                j.hint = i;
2076                                break;
2077                            }
2078                            checkSum += v.base;
2079                        }
2080                        if (++k > m)                   // can't find stealer
2081                            break outer;
2082                    }
2083
2084                    for (;;) {                         // help v or descend
2085                        ForkJoinTask<?>[] a; int b, al;
2086                        if (subtask.status < 0)        // too late to help
2087                            break descent;
2088                        checkSum += (b = v.base);
2089                        ForkJoinTask<?> next = v.currentJoin;
2090                        ForkJoinTask<?> t = null;
2091                        if ((a = v.array) != null && (al = a.length) > 0) {
2092                            int index = (al - 1) & b;
2093                            long offset = ((long)index << ASHIFT) + ABASE;
2094                            t = (ForkJoinTask<?>)
2095                                U.getObjectVolatile(a, offset);
2096                            if (t != null && b++ == v.base) {
2097                                if (j.currentJoin != subtask ||
2098                                    v.currentSteal != subtask ||
2099                                    subtask.status < 0)
2100                                    break descent;     // stale
2101                                if (U.compareAndSwapObject(a, offset, t, null)) {
2102                                    v.base = b;
2103                                    w.currentSteal = t;
2104                                    for (int top = w.top;;) {
2105                                        t.doExec();    // help
2106                                        w.currentSteal = ps;
2107                                        if (task.status < 0)
2108                                            break outer;
2109                                        if (w.top == top)
2110                                            break;     // run local tasks
2111                                        if ((t = w.pop()) == null)
2112                                            break descent;
2113                                        w.currentSteal = t;
2114                                    }
2115                                }
2116                            }
2117                        }
2118                        if (t == null && b == v.base && b - v.top >= 0) {
2119                            if ((subtask = next) == null) {  // try to descend
2120                                if (next == v.currentJoin &&
2121                                    oldSum == (oldSum = checkSum))
2122                                    break outer;
2123                                break descent;
2124                            }
2125                            j = v;
2126                            break;
2127                        }
2128                    }
2129                }
2130            }
2131        }
2132    }
2133
2134    /**
2135     * Tries to decrement active count (sometimes implicitly) and
2136     * possibly release or create a compensating worker in preparation
2137     * for blocking. Returns false (retryable by caller), on
2138     * contention, detected staleness, instability, or termination.
2139     *
2140     * @param w caller
2141     */
2142    private boolean tryCompensate(WorkQueue w) {
2143        boolean canBlock; int wl;
2144        long c = ctl;
2145        WorkQueue[] ws = workQueues;
2146        int pc = config & SMASK;
2147        int ac = pc + (int)(c >> AC_SHIFT);
2148        int tc = pc + (short)(c >> TC_SHIFT);
2149        if (w == null || w.qlock < 0 || pc == 0 ||  // terminating or disabled
2150            ws == null || (wl = ws.length) <= 0)
2151            canBlock = false;
2152        else {
2153            int m = wl - 1, sp;
2154            boolean busy = true;                    // validate ac
2155            for (int i = 0; i <= m; ++i) {
2156                int k; WorkQueue v;
2157                if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2158                    v.scanState >= 0 && v.currentSteal == null) {
2159                    busy = false;
2160                    break;
2161                }
2162            }
2163            if (!busy || ctl != c)
2164                canBlock = false;                   // unstable or stale
2165            else if ((sp = (int)c) != 0)            // release idle worker
2166                canBlock = tryRelease(c, ws[m & sp], 0L);
2167            else if (tc >= pc && ac > 1 && w.isEmpty()) {
2168                long nc = ((AC_MASK & (c - AC_UNIT)) |
2169                           (~AC_MASK & c));         // uncompensated
2170                canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2171            }
2172            else if (tc >= MAX_CAP ||
2173                     (this == common && tc >= pc + COMMON_MAX_SPARES))
2174                throw new RejectedExecutionException(
2175                    "Thread limit exceeded replacing blocked worker");
2176            else {                                  // similar to tryAddWorker
2177                boolean isSpare = (tc >= pc);
2178                long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2179                canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2180                            createWorker(isSpare)); // throws on exception
2181            }
2182        }
2183        return canBlock;
2184    }
2185
2186    /**
2187     * Helps and/or blocks until the given task is done or timeout.
2188     *
2189     * @param w caller
2190     * @param task the task
2191     * @param deadline for timed waits, if nonzero
2192     * @return task status on exit
2193     */
2194    final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2195        int s = 0;
2196        if (w != null) {
2197            ForkJoinTask<?> prevJoin = w.currentJoin;
2198            if (task != null && (s = task.status) >= 0) {
2199                w.currentJoin = task;
2200                CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2201                    (CountedCompleter<?>)task : null;
2202                for (;;) {
2203                    if (cc != null)
2204                        helpComplete(w, cc, 0);
2205                    else
2206                        helpStealer(w, task);
2207                    if ((s = task.status) < 0)
2208                        break;
2209                    long ms, ns;
2210                    if (deadline == 0L)
2211                        ms = 0L;
2212                    else if ((ns = deadline - System.nanoTime()) <= 0L)
2213                        break;
2214                    else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2215                        ms = 1L;
2216                    if (tryCompensate(w)) {
2217                        task.internalWait(ms);
2218                        U.getAndAddLong(this, CTL, AC_UNIT);
2219                    }
2220                    if ((s = task.status) < 0)
2221                        break;
2222                }
2223                w.currentJoin = prevJoin;
2224            }
2225        }
2226        return s;
2227    }
2228
2229    // Specialized scanning
2230
2231    /**
2232     * Returns a (probably) non-empty steal queue, if one is found
2233     * during a scan, else null.  This method must be retried by
2234     * caller if, by the time it tries to use the queue, it is empty.
2235     */
2236    private WorkQueue findNonEmptyStealQueue() {
2237        WorkQueue[] ws; int wl;  // one-shot version of scan loop
2238        int r = ThreadLocalRandom.nextSecondarySeed();
2239        if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2240            int m = wl - 1, origin = r & m;
2241            for (int k = origin, oldSum = 0, checkSum = 0;;) {
2242                WorkQueue q; int b;
2243                if ((q = ws[k]) != null) {
2244                    if ((b = q.base) - q.top < 0)
2245                        return q;
2246                    checkSum += b;
2247                }
2248                if ((k = (k + 1) & m) == origin) {
2249                    if (oldSum == (oldSum = checkSum))
2250                        break;
2251                    checkSum = 0;
2252                }
2253            }
2254        }
2255        return null;
2256    }
2257
2258    /**
2259     * Runs tasks until {@code isQuiescent()}. We piggyback on
2260     * active count ctl maintenance, but rather than blocking
2261     * when tasks cannot be found, we rescan until all others cannot
2262     * find tasks either.
2263     */
2264    final void helpQuiescePool(WorkQueue w) {
2265        ForkJoinTask<?> ps = w.currentSteal; // save context
2266        int wc = w.config;
2267        for (boolean active = true;;) {
2268            long c; WorkQueue q; ForkJoinTask<?> t;
2269            if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2270                (w.currentSteal = t).doExec();
2271                w.currentSteal = ps;
2272            }
2273            else if ((q = findNonEmptyStealQueue()) != null) {
2274                if (!active) {      // re-establish active count
2275                    active = true;
2276                    U.getAndAddLong(this, CTL, AC_UNIT);
2277                }
2278                if ((t = q.pollAt(q.base)) != null) {
2279                    (w.currentSteal = t).doExec();
2280                    w.currentSteal = ps;
2281                    if (++w.nsteals < 0)
2282                        w.transferStealCount(this);
2283                }
2284            }
2285            else if (active) {      // decrement active count without queuing
2286                long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2287                if (U.compareAndSwapLong(this, CTL, c, nc))
2288                    active = false;
2289            }
2290            else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2291                     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2292                break;
2293        }
2294    }
2295
2296    /**
2297     * Gets and removes a local or stolen task for the given worker.
2298     *
2299     * @return a task, if available
2300     */
2301    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2302        for (ForkJoinTask<?> t;;) {
2303            WorkQueue q;
2304            if ((t = w.nextLocalTask()) != null)
2305                return t;
2306            if ((q = findNonEmptyStealQueue()) == null)
2307                return null;
2308            if ((t = q.pollAt(q.base)) != null)
2309                return t;
2310        }
2311    }
2312
2313    /**
2314     * Returns a cheap heuristic guide for task partitioning when
2315     * programmers, frameworks, tools, or languages have little or no
2316     * idea about task granularity.  In essence, by offering this
2317     * method, we ask users only about tradeoffs in overhead vs
2318     * expected throughput and its variance, rather than how finely to
2319     * partition tasks.
2320     *
2321     * In a steady state strict (tree-structured) computation, each
2322     * thread makes available for stealing enough tasks for other
2323     * threads to remain active. Inductively, if all threads play by
2324     * the same rules, each thread should make available only a
2325     * constant number of tasks.
2326     *
2327     * The minimum useful constant is just 1. But using a value of 1
2328     * would require immediate replenishment upon each steal to
2329     * maintain enough tasks, which is infeasible.  Further,
2330     * partitionings/granularities of offered tasks should minimize
2331     * steal rates, which in general means that threads nearer the top
2332     * of computation tree should generate more than those nearer the
2333     * bottom. In perfect steady state, each thread is at
2334     * approximately the same level of computation tree. However,
2335     * producing extra tasks amortizes the uncertainty of progress and
2336     * diffusion assumptions.
2337     *
2338     * So, users will want to use values larger (but not much larger)
2339     * than 1 to both smooth over transient shortages and hedge
2340     * against uneven progress; as traded off against the cost of
2341     * extra task overhead. We leave the user to pick a threshold
2342     * value to compare with the results of this call to guide
2343     * decisions, but recommend values such as 3.
2344     *
2345     * When all threads are active, it is on average OK to estimate
2346     * surplus strictly locally. In steady-state, if one thread is
2347     * maintaining say 2 surplus tasks, then so are others. So we can
2348     * just use estimated queue length.  However, this strategy alone
2349     * leads to serious mis-estimates in some non-steady-state
2350     * conditions (ramp-up, ramp-down, other stalls). We can detect
2351     * many of these by further considering the number of "idle"
2352     * threads, that are known to have zero queued tasks, so
2353     * compensate by a factor of (#idle/#active) threads.
2354     */
2355    static int getSurplusQueuedTaskCount() {
2356        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2357        if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2358            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2359            int n = (q = wt.workQueue).top - q.base;
2360            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2361            return n - (a > (p >>>= 1) ? 0 :
2362                        a > (p >>>= 1) ? 1 :
2363                        a > (p >>>= 1) ? 2 :
2364                        a > (p >>>= 1) ? 4 :
2365                        8);
2366        }
2367        return 0;
2368    }
2369
2370    //  Termination
2371
2372    /**
2373     * Possibly initiates and/or completes termination.
2374     *
2375     * @param now if true, unconditionally terminate, else only
2376     * if no work and no active workers
2377     * @param enable if true, terminate when next possible
2378     * @return -1: terminating/terminated, 0: retry if internal caller, else 1
2379     */
2380    private int tryTerminate(boolean now, boolean enable) {
2381        int rs; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2382
2383        while ((rs = runState) >= 0) {
2384            if (!enable || this == common)        // cannot shutdown
2385                return 1;
2386            else if (rs == 0)
2387                tryInitialize(false);             // ensure initialized
2388            else
2389                U.compareAndSwapInt(this, RUNSTATE, rs, rs | SHUTDOWN);
2390        }
2391
2392        if ((rs & STOP) == 0) {                   // try to initiate termination
2393            if (!now) {                           // check quiescence
2394                for (long oldSum = 0L;;) {        // repeat until stable
2395                    WorkQueue[] ws; WorkQueue w; int b;
2396                    long checkSum = ctl;
2397                    if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2398                        return 0;                 // still active workers
2399                    if ((ws = workQueues) != null) {
2400                        for (int i = 0; i < ws.length; ++i) {
2401                            if ((w = ws[i]) != null) {
2402                                checkSum += (b = w.base);
2403                                if (w.currentSteal != null || b != w.top)
2404                                    return 0;     // retry if internal caller
2405                            }
2406                        }
2407                    }
2408                    if (oldSum == (oldSum = checkSum))
2409                        break;
2410                }
2411            }
2412            do {} while (!U.compareAndSwapInt(this, RUNSTATE,
2413                                              rs = runState, rs | STOP));
2414        }
2415
2416        for (long oldSum = 0L;;) {                // repeat until stable
2417            WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt;
2418            long checkSum = ctl;
2419            if ((ws = workQueues) != null) {      // help terminate others
2420                for (int i = 0; i < ws.length; ++i) {
2421                    if ((w = ws[i]) != null) {
2422                        w.cancelAll();            // clear queues
2423                        checkSum += w.base;
2424                        if (w.qlock >= 0) {
2425                            w.qlock = -1;         // racy set OK
2426                            if ((wt = w.owner) != null) {
2427                                try {             // unblock join or park
2428                                    wt.interrupt();
2429                                } catch (Throwable ignore) {
2430                                }
2431                            }
2432                        }
2433                    }
2434                }
2435            }
2436            if (oldSum == (oldSum = checkSum))
2437                break;
2438        }
2439
2440        if ((short)(ctl >>> TC_SHIFT) + (config & SMASK) <= 0) {
2441            runState = (STARTED | SHUTDOWN | STOP | TERMINATED); // final write
2442            synchronized (this) {
2443                notifyAll();                      // for awaitTermination
2444            }
2445        }
2446
2447        return -1;
2448    }
2449
2450    // External operations
2451
2452    /**
2453     * Constructs and tries to install a new external queue,
2454     * failing if the workQueues array already has a queue at
2455     * the given index.
2456     *
2457     * @param index the index of the new queue
2458     */
2459    private void tryCreateExternalQueue(int index) {
2460        AuxState aux;
2461        if ((aux = auxState) != null && index >= 0) {
2462            WorkQueue q = new WorkQueue(this, null);
2463            q.config = index;
2464            q.scanState = ~UNSIGNALLED;
2465            q.qlock = 1;                   // lock queue
2466            boolean installed = false;
2467            aux.lock();
2468            try {                          // lock pool to install
2469                WorkQueue[] ws;
2470                if ((ws = workQueues) != null && index < ws.length &&
2471                    ws[index] == null) {
2472                    ws[index] = q;         // else throw away
2473                    installed = true;
2474                }
2475            } finally {
2476                aux.unlock();
2477            }
2478            if (installed) {
2479                try {
2480                    q.growArray();
2481                } finally {
2482                    q.qlock = 0;
2483                }
2484            }
2485        }
2486    }
2487
2488    /**
2489     * Adds the given task to a submission queue at submitter's
2490     * current queue. Also performs secondary initialization upon the
2491     * first submission of the first task to the pool, and detects
2492     * first submission by an external thread and creates a new shared
2493     * queue if the one at index if empty or contended.
2494     *
2495     * @param task the task. Caller must ensure non-null.
2496     */
2497    final void externalPush(ForkJoinTask<?> task) {
2498        int r;                            // initialize caller's probe
2499        if ((r = ThreadLocalRandom.getProbe()) == 0) {
2500            ThreadLocalRandom.localInit();
2501            r = ThreadLocalRandom.getProbe();
2502        }
2503        for (;;) {
2504            WorkQueue q; int wl, k, stat;
2505            int rs = runState;
2506            WorkQueue[] ws = workQueues;
2507            if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2508                tryInitialize(true);
2509            else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2510                tryCreateExternalQueue(k);
2511            else if ((stat = q.sharedPush(task)) < 0)
2512                break;
2513            else if (stat == 0) {
2514                signalWork();
2515                break;
2516            }
2517            else                          // move if busy
2518                r = ThreadLocalRandom.advanceProbe(r);
2519        }
2520    }
2521
2522    /**
2523     * Pushes a possibly-external submission.
2524     */
2525    private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2526        Thread t; ForkJoinWorkerThread w; WorkQueue q;
2527        if (task == null)
2528            throw new NullPointerException();
2529        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2530            (w = (ForkJoinWorkerThread)t).pool == this &&
2531            (q = w.workQueue) != null)
2532            q.push(task);
2533        else
2534            externalPush(task);
2535        return task;
2536    }
2537
2538    /**
2539     * Returns common pool queue for an external thread.
2540     */
2541    static WorkQueue commonSubmitterQueue() {
2542        ForkJoinPool p = common;
2543        int r = ThreadLocalRandom.getProbe();
2544        WorkQueue[] ws; int wl;
2545        return (p != null && (ws = p.workQueues) != null &&
2546                (wl = ws.length) > 0) ?
2547            ws[(wl - 1) & r & SQMASK] : null;
2548    }
2549
2550    /**
2551     * Performs tryUnpush for an external submitter.
2552     */
2553    final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2554        int r = ThreadLocalRandom.getProbe();
2555        WorkQueue[] ws; WorkQueue w; int wl;
2556        return ((ws = workQueues) != null &&
2557                (wl = ws.length) > 0 &&
2558                (w = ws[(wl - 1) & r & SQMASK]) != null &&
2559                w.trySharedUnpush(task));
2560    }
2561
2562    /**
2563     * Performs helpComplete for an external submitter.
2564     */
2565    final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2566        WorkQueue[] ws; int wl;
2567        int r = ThreadLocalRandom.getProbe();
2568        return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2569            helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2570    }
2571
2572    // Exported methods
2573
2574    // Constructors
2575
2576    /**
2577     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2578     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2579     * #defaultForkJoinWorkerThreadFactory default thread factory},
2580     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2581     *
2582     * @throws SecurityException if a security manager exists and
2583     *         the caller is not permitted to modify threads
2584     *         because it does not hold {@link
2585     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2586     */
2587    public ForkJoinPool() {
2588        this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2589             defaultForkJoinWorkerThreadFactory, null, false);
2590    }
2591
2592    /**
2593     * Creates a {@code ForkJoinPool} with the indicated parallelism
2594     * level, the {@linkplain
2595     * #defaultForkJoinWorkerThreadFactory default thread factory},
2596     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2597     *
2598     * @param parallelism the parallelism level
2599     * @throws IllegalArgumentException if parallelism less than or
2600     *         equal to zero, or greater than implementation limit
2601     * @throws SecurityException if a security manager exists and
2602     *         the caller is not permitted to modify threads
2603     *         because it does not hold {@link
2604     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2605     */
2606    public ForkJoinPool(int parallelism) {
2607        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2608    }
2609
2610    /**
2611     * Creates a {@code ForkJoinPool} with the given parameters.
2612     *
2613     * @param parallelism the parallelism level. For default value,
2614     * use {@link java.lang.Runtime#availableProcessors}.
2615     * @param factory the factory for creating new threads. For default value,
2616     * use {@link #defaultForkJoinWorkerThreadFactory}.
2617     * @param handler the handler for internal worker threads that
2618     * terminate due to unrecoverable errors encountered while executing
2619     * tasks. For default value, use {@code null}.
2620     * @param asyncMode if true,
2621     * establishes local first-in-first-out scheduling mode for forked
2622     * tasks that are never joined. This mode may be more appropriate
2623     * than default locally stack-based mode in applications in which
2624     * worker threads only process event-style asynchronous tasks.
2625     * For default value, use {@code false}.
2626     * @throws IllegalArgumentException if parallelism less than or
2627     *         equal to zero, or greater than implementation limit
2628     * @throws NullPointerException if the factory is null
2629     * @throws SecurityException if a security manager exists and
2630     *         the caller is not permitted to modify threads
2631     *         because it does not hold {@link
2632     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2633     */
2634    public ForkJoinPool(int parallelism,
2635                        ForkJoinWorkerThreadFactory factory,
2636                        UncaughtExceptionHandler handler,
2637                        boolean asyncMode) {
2638        this(checkParallelism(parallelism),
2639             checkFactory(factory),
2640             handler,
2641             asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2642             "ForkJoinPool-" + nextPoolId() + "-worker-");
2643        checkPermission();
2644    }
2645
2646    private static int checkParallelism(int parallelism) {
2647        if (parallelism <= 0 || parallelism > MAX_CAP)
2648            throw new IllegalArgumentException();
2649        return parallelism;
2650    }
2651
2652    private static ForkJoinWorkerThreadFactory checkFactory
2653        (ForkJoinWorkerThreadFactory factory) {
2654        if (factory == null)
2655            throw new NullPointerException();
2656        return factory;
2657    }
2658
2659    /**
2660     * Creates a {@code ForkJoinPool} with the given parameters, without
2661     * any security checks or parameter validation.  Invoked directly by
2662     * makeCommonPool.
2663     */
2664    private ForkJoinPool(int parallelism,
2665                         ForkJoinWorkerThreadFactory factory,
2666                         UncaughtExceptionHandler handler,
2667                         int mode,
2668                         String workerNamePrefix) {
2669        this.workerNamePrefix = workerNamePrefix;
2670        this.factory = factory;
2671        this.ueh = handler;
2672        this.config = (parallelism & SMASK) | mode;
2673        long np = (long)(-parallelism); // offset ctl counts
2674        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2675    }
2676
2677    /**
2678     * Returns the common pool instance. This pool is statically
2679     * constructed; its run state is unaffected by attempts to {@link
2680     * #shutdown} or {@link #shutdownNow}. However this pool and any
2681     * ongoing processing are automatically terminated upon program
2682     * {@link System#exit}.  Any program that relies on asynchronous
2683     * task processing to complete before program termination should
2684     * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2685     * before exit.
2686     *
2687     * @return the common pool instance
2688     * @since 1.8
2689     */
2690    public static ForkJoinPool commonPool() {
2691        // assert common != null : "static init error";
2692        return common;
2693    }
2694
2695    // Execution methods
2696
2697    /**
2698     * Performs the given task, returning its result upon completion.
2699     * If the computation encounters an unchecked Exception or Error,
2700     * it is rethrown as the outcome of this invocation.  Rethrown
2701     * exceptions behave in the same way as regular exceptions, but,
2702     * when possible, contain stack traces (as displayed for example
2703     * using {@code ex.printStackTrace()}) of both the current thread
2704     * as well as the thread actually encountering the exception;
2705     * minimally only the latter.
2706     *
2707     * @param task the task
2708     * @param <T> the type of the task's result
2709     * @return the task's result
2710     * @throws NullPointerException if the task is null
2711     * @throws RejectedExecutionException if the task cannot be
2712     *         scheduled for execution
2713     */
2714    public <T> T invoke(ForkJoinTask<T> task) {
2715        if (task == null)
2716            throw new NullPointerException();
2717        externalSubmit(task);
2718        return task.join();
2719    }
2720
2721    /**
2722     * Arranges for (asynchronous) execution of the given task.
2723     *
2724     * @param task the task
2725     * @throws NullPointerException if the task is null
2726     * @throws RejectedExecutionException if the task cannot be
2727     *         scheduled for execution
2728     */
2729    public void execute(ForkJoinTask<?> task) {
2730        externalSubmit(task);
2731    }
2732
2733    // AbstractExecutorService methods
2734
2735    /**
2736     * @throws NullPointerException if the task is null
2737     * @throws RejectedExecutionException if the task cannot be
2738     *         scheduled for execution
2739     */
2740    public void execute(Runnable task) {
2741        if (task == null)
2742            throw new NullPointerException();
2743        ForkJoinTask<?> job;
2744        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2745            job = (ForkJoinTask<?>) task;
2746        else
2747            job = new ForkJoinTask.RunnableExecuteAction(task);
2748        externalSubmit(job);
2749    }
2750
2751    /**
2752     * Submits a ForkJoinTask for execution.
2753     *
2754     * @param task the task to submit
2755     * @param <T> the type of the task's result
2756     * @return the task
2757     * @throws NullPointerException if the task is null
2758     * @throws RejectedExecutionException if the task cannot be
2759     *         scheduled for execution
2760     */
2761    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2762        return externalSubmit(task);
2763    }
2764
2765    /**
2766     * @throws NullPointerException if the task is null
2767     * @throws RejectedExecutionException if the task cannot be
2768     *         scheduled for execution
2769     */
2770    public <T> ForkJoinTask<T> submit(Callable<T> task) {
2771        return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2772    }
2773
2774    /**
2775     * @throws NullPointerException if the task is null
2776     * @throws RejectedExecutionException if the task cannot be
2777     *         scheduled for execution
2778     */
2779    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2780        return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2781    }
2782
2783    /**
2784     * @throws NullPointerException if the task is null
2785     * @throws RejectedExecutionException if the task cannot be
2786     *         scheduled for execution
2787     */
2788    public ForkJoinTask<?> submit(Runnable task) {
2789        if (task == null)
2790            throw new NullPointerException();
2791        ForkJoinTask<?> job;
2792        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2793            job = (ForkJoinTask<?>) task;
2794        else
2795            job = new ForkJoinTask.AdaptedRunnableAction(task);
2796        return externalSubmit(job);
2797    }
2798
2799    /**
2800     * @throws NullPointerException       {@inheritDoc}
2801     * @throws RejectedExecutionException {@inheritDoc}
2802     */
2803    public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2804        // In previous versions of this class, this method constructed
2805        // a task to run ForkJoinTask.invokeAll, but now external
2806        // invocation of multiple tasks is at least as efficient.
2807        ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2808
2809        try {
2810            for (Callable<T> t : tasks) {
2811                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2812                futures.add(f);
2813                externalSubmit(f);
2814            }
2815            for (int i = 0, size = futures.size(); i < size; i++)
2816                ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2817            return futures;
2818        } catch (Throwable t) {
2819            for (int i = 0, size = futures.size(); i < size; i++)
2820                futures.get(i).cancel(false);
2821            throw t;
2822        }
2823    }
2824
2825    /**
2826     * Returns the factory used for constructing new workers.
2827     *
2828     * @return the factory used for constructing new workers
2829     */
2830    public ForkJoinWorkerThreadFactory getFactory() {
2831        return factory;
2832    }
2833
2834    /**
2835     * Returns the handler for internal worker threads that terminate
2836     * due to unrecoverable errors encountered while executing tasks.
2837     *
2838     * @return the handler, or {@code null} if none
2839     */
2840    public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2841        return ueh;
2842    }
2843
2844    /**
2845     * Returns the targeted parallelism level of this pool.
2846     *
2847     * @return the targeted parallelism level of this pool
2848     */
2849    public int getParallelism() {
2850        int par;
2851        return ((par = config & SMASK) > 0) ? par : 1;
2852    }
2853
2854    /**
2855     * Returns the targeted parallelism level of the common pool.
2856     *
2857     * @return the targeted parallelism level of the common pool
2858     * @since 1.8
2859     */
2860    public static int getCommonPoolParallelism() {
2861        return COMMON_PARALLELISM;
2862    }
2863
2864    /**
2865     * Returns the number of worker threads that have started but not
2866     * yet terminated.  The result returned by this method may differ
2867     * from {@link #getParallelism} when threads are created to
2868     * maintain parallelism when others are cooperatively blocked.
2869     *
2870     * @return the number of worker threads
2871     */
2872    public int getPoolSize() {
2873        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2874    }
2875
2876    /**
2877     * Returns {@code true} if this pool uses local first-in-first-out
2878     * scheduling mode for forked tasks that are never joined.
2879     *
2880     * @return {@code true} if this pool uses async mode
2881     */
2882    public boolean getAsyncMode() {
2883        return (config & FIFO_QUEUE) != 0;
2884    }
2885
2886    /**
2887     * Returns an estimate of the number of worker threads that are
2888     * not blocked waiting to join tasks or for other managed
2889     * synchronization. This method may overestimate the
2890     * number of running threads.
2891     *
2892     * @return the number of worker threads
2893     */
2894    public int getRunningThreadCount() {
2895        int rc = 0;
2896        WorkQueue[] ws; WorkQueue w;
2897        if ((ws = workQueues) != null) {
2898            for (int i = 1; i < ws.length; i += 2) {
2899                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2900                    ++rc;
2901            }
2902        }
2903        return rc;
2904    }
2905
2906    /**
2907     * Returns an estimate of the number of threads that are currently
2908     * stealing or executing tasks. This method may overestimate the
2909     * number of active threads.
2910     *
2911     * @return the number of active threads
2912     */
2913    public int getActiveThreadCount() {
2914        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2915        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2916    }
2917
2918    /**
2919     * Returns {@code true} if all worker threads are currently idle.
2920     * An idle worker is one that cannot obtain a task to execute
2921     * because none are available to steal from other threads, and
2922     * there are no pending submissions to the pool. This method is
2923     * conservative; it might not return {@code true} immediately upon
2924     * idleness of all threads, but will eventually become true if
2925     * threads remain inactive.
2926     *
2927     * @return {@code true} if all threads are currently idle
2928     */
2929    public boolean isQuiescent() {
2930        return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2931    }
2932
2933    /**
2934     * Returns an estimate of the total number of tasks stolen from
2935     * one thread's work queue by another. The reported value
2936     * underestimates the actual total number of steals when the pool
2937     * is not quiescent. This value may be useful for monitoring and
2938     * tuning fork/join programs: in general, steal counts should be
2939     * high enough to keep threads busy, but low enough to avoid
2940     * overhead and contention across threads.
2941     *
2942     * @return the number of steals
2943     */
2944    public long getStealCount() {
2945        AuxState sc = auxState;
2946        long count = (sc == null) ? 0L : sc.stealCount;
2947        WorkQueue[] ws; WorkQueue w;
2948        if ((ws = workQueues) != null) {
2949            for (int i = 1; i < ws.length; i += 2) {
2950                if ((w = ws[i]) != null)
2951                    count += w.nsteals;
2952            }
2953        }
2954        return count;
2955    }
2956
2957    /**
2958     * Returns an estimate of the total number of tasks currently held
2959     * in queues by worker threads (but not including tasks submitted
2960     * to the pool that have not begun executing). This value is only
2961     * an approximation, obtained by iterating across all threads in
2962     * the pool. This method may be useful for tuning task
2963     * granularities.
2964     *
2965     * @return the number of queued tasks
2966     */
2967    public long getQueuedTaskCount() {
2968        long count = 0;
2969        WorkQueue[] ws; WorkQueue w;
2970        if ((ws = workQueues) != null) {
2971            for (int i = 1; i < ws.length; i += 2) {
2972                if ((w = ws[i]) != null)
2973                    count += w.queueSize();
2974            }
2975        }
2976        return count;
2977    }
2978
2979    /**
2980     * Returns an estimate of the number of tasks submitted to this
2981     * pool that have not yet begun executing.  This method may take
2982     * time proportional to the number of submissions.
2983     *
2984     * @return the number of queued submissions
2985     */
2986    public int getQueuedSubmissionCount() {
2987        int count = 0;
2988        WorkQueue[] ws; WorkQueue w;
2989        if ((ws = workQueues) != null) {
2990            for (int i = 0; i < ws.length; i += 2) {
2991                if ((w = ws[i]) != null)
2992                    count += w.queueSize();
2993            }
2994        }
2995        return count;
2996    }
2997
2998    /**
2999     * Returns {@code true} if there are any tasks submitted to this
3000     * pool that have not yet begun executing.
3001     *
3002     * @return {@code true} if there are any queued submissions
3003     */
3004    public boolean hasQueuedSubmissions() {
3005        WorkQueue[] ws; WorkQueue w;
3006        if ((ws = workQueues) != null) {
3007            for (int i = 0; i < ws.length; i += 2) {
3008                if ((w = ws[i]) != null && !w.isEmpty())
3009                    return true;
3010            }
3011        }
3012        return false;
3013    }
3014
3015    /**
3016     * Removes and returns the next unexecuted submission if one is
3017     * available.  This method may be useful in extensions to this
3018     * class that re-assign work in systems with multiple pools.
3019     *
3020     * @return the next submission, or {@code null} if none
3021     */
3022    protected ForkJoinTask<?> pollSubmission() {
3023        WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
3024        int r = ThreadLocalRandom.nextSecondarySeed();
3025        if ((ws = workQueues) != null && (wl = ws.length) > 0) {
3026            for (int m = wl - 1, i = 0; i < wl; ++i) {
3027                if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
3028                    return t;
3029            }
3030        }
3031        return null;
3032    }
3033
3034    /**
3035     * Removes all available unexecuted submitted and forked tasks
3036     * from scheduling queues and adds them to the given collection,
3037     * without altering their execution status. These may include
3038     * artificially generated or wrapped tasks. This method is
3039     * designed to be invoked only when the pool is known to be
3040     * quiescent. Invocations at other times may not remove all
3041     * tasks. A failure encountered while attempting to add elements
3042     * to collection {@code c} may result in elements being in
3043     * neither, either or both collections when the associated
3044     * exception is thrown.  The behavior of this operation is
3045     * undefined if the specified collection is modified while the
3046     * operation is in progress.
3047     *
3048     * @param c the collection to transfer elements into
3049     * @return the number of elements transferred
3050     */
3051    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3052        int count = 0;
3053        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
3054        if ((ws = workQueues) != null) {
3055            for (int i = 0; i < ws.length; ++i) {
3056                if ((w = ws[i]) != null) {
3057                    while ((t = w.poll()) != null) {
3058                        c.add(t);
3059                        ++count;
3060                    }
3061                }
3062            }
3063        }
3064        return count;
3065    }
3066
3067    /**
3068     * Returns a string identifying this pool, as well as its state,
3069     * including indications of run state, parallelism level, and
3070     * worker and task counts.
3071     *
3072     * @return a string identifying this pool, as well as its state
3073     */
3074    public String toString() {
3075        // Use a single pass through workQueues to collect counts
3076        long qt = 0L, qs = 0L; int rc = 0;
3077        AuxState sc = auxState;
3078        long st = (sc == null) ? 0L : sc.stealCount;
3079        long c = ctl;
3080        WorkQueue[] ws; WorkQueue w;
3081        if ((ws = workQueues) != null) {
3082            for (int i = 0; i < ws.length; ++i) {
3083                if ((w = ws[i]) != null) {
3084                    int size = w.queueSize();
3085                    if ((i & 1) == 0)
3086                        qs += size;
3087                    else {
3088                        qt += size;
3089                        st += w.nsteals;
3090                        if (w.isApparentlyUnblocked())
3091                            ++rc;
3092                    }
3093                }
3094            }
3095        }
3096        int pc = (config & SMASK);
3097        int tc = pc + (short)(c >>> TC_SHIFT);
3098        int ac = pc + (int)(c >> AC_SHIFT);
3099        if (ac < 0) // ignore transient negative
3100            ac = 0;
3101        int rs = runState;
3102        String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3103                        (rs & STOP)       != 0 ? "Terminating" :
3104                        (rs & SHUTDOWN)   != 0 ? "Shutting down" :
3105                        "Running");
3106        return super.toString() +
3107            "[" + level +
3108            ", parallelism = " + pc +
3109            ", size = " + tc +
3110            ", active = " + ac +
3111            ", running = " + rc +
3112            ", steals = " + st +
3113            ", tasks = " + qt +
3114            ", submissions = " + qs +
3115            "]";
3116    }
3117
3118    /**
3119     * Possibly initiates an orderly shutdown in which previously
3120     * submitted tasks are executed, but no new tasks will be
3121     * accepted. Invocation has no effect on execution state if this
3122     * is the {@link #commonPool()}, and no additional effect if
3123     * already shut down.  Tasks that are in the process of being
3124     * submitted concurrently during the course of this method may or
3125     * may not be rejected.
3126     *
3127     * @throws SecurityException if a security manager exists and
3128     *         the caller is not permitted to modify threads
3129     *         because it does not hold {@link
3130     *         java.lang.RuntimePermission}{@code ("modifyThread")}
3131     */
3132    public void shutdown() {
3133        checkPermission();
3134        tryTerminate(false, true);
3135    }
3136
3137    /**
3138     * Possibly attempts to cancel and/or stop all tasks, and reject
3139     * all subsequently submitted tasks.  Invocation has no effect on
3140     * execution state if this is the {@link #commonPool()}, and no
3141     * additional effect if already shut down. Otherwise, tasks that
3142     * are in the process of being submitted or executed concurrently
3143     * during the course of this method may or may not be
3144     * rejected. This method cancels both existing and unexecuted
3145     * tasks, in order to permit termination in the presence of task
3146     * dependencies. So the method always returns an empty list
3147     * (unlike the case for some other Executors).
3148     *
3149     * @return an empty list
3150     * @throws SecurityException if a security manager exists and
3151     *         the caller is not permitted to modify threads
3152     *         because it does not hold {@link
3153     *         java.lang.RuntimePermission}{@code ("modifyThread")}
3154     */
3155    public List<Runnable> shutdownNow() {
3156        checkPermission();
3157        tryTerminate(true, true);
3158        return Collections.emptyList();
3159    }
3160
3161    /**
3162     * Returns {@code true} if all tasks have completed following shut down.
3163     *
3164     * @return {@code true} if all tasks have completed following shut down
3165     */
3166    public boolean isTerminated() {
3167        return (runState & TERMINATED) != 0;
3168    }
3169
3170    /**
3171     * Returns {@code true} if the process of termination has
3172     * commenced but not yet completed.  This method may be useful for
3173     * debugging. A return of {@code true} reported a sufficient
3174     * period after shutdown may indicate that submitted tasks have
3175     * ignored or suppressed interruption, or are waiting for I/O,
3176     * causing this executor not to properly terminate. (See the
3177     * advisory notes for class {@link ForkJoinTask} stating that
3178     * tasks should not normally entail blocking operations.  But if
3179     * they do, they must abort them on interrupt.)
3180     *
3181     * @return {@code true} if terminating but not yet terminated
3182     */
3183    public boolean isTerminating() {
3184        int rs = runState;
3185        return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3186    }
3187
3188    /**
3189     * Returns {@code true} if this pool has been shut down.
3190     *
3191     * @return {@code true} if this pool has been shut down
3192     */
3193    public boolean isShutdown() {
3194        return (runState & SHUTDOWN) != 0;
3195    }
3196
3197    /**
3198     * Blocks until all tasks have completed execution after a
3199     * shutdown request, or the timeout occurs, or the current thread
3200     * is interrupted, whichever happens first. Because the {@link
3201     * #commonPool()} never terminates until program shutdown, when
3202     * applied to the common pool, this method is equivalent to {@link
3203     * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3204     *
3205     * @param timeout the maximum time to wait
3206     * @param unit the time unit of the timeout argument
3207     * @return {@code true} if this executor terminated and
3208     *         {@code false} if the timeout elapsed before termination
3209     * @throws InterruptedException if interrupted while waiting
3210     */
3211    public boolean awaitTermination(long timeout, TimeUnit unit)
3212        throws InterruptedException {
3213        if (Thread.interrupted())
3214            throw new InterruptedException();
3215        if (this == common) {
3216            awaitQuiescence(timeout, unit);
3217            return false;
3218        }
3219        long nanos = unit.toNanos(timeout);
3220        if (isTerminated())
3221            return true;
3222        if (nanos <= 0L)
3223            return false;
3224        long deadline = System.nanoTime() + nanos;
3225        synchronized (this) {
3226            for (;;) {
3227                if (isTerminated())
3228                    return true;
3229                if (nanos <= 0L)
3230                    return false;
3231                long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3232                wait(millis > 0L ? millis : 1L);
3233                nanos = deadline - System.nanoTime();
3234            }
3235        }
3236    }
3237
3238    /**
3239     * If called by a ForkJoinTask operating in this pool, equivalent
3240     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3241     * waits and/or attempts to assist performing tasks until this
3242     * pool {@link #isQuiescent} or the indicated timeout elapses.
3243     *
3244     * @param timeout the maximum time to wait
3245     * @param unit the time unit of the timeout argument
3246     * @return {@code true} if quiescent; {@code false} if the
3247     * timeout elapsed.
3248     */
3249    public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3250        long nanos = unit.toNanos(timeout);
3251        ForkJoinWorkerThread wt;
3252        Thread thread = Thread.currentThread();
3253        if ((thread instanceof ForkJoinWorkerThread) &&
3254            (wt = (ForkJoinWorkerThread)thread).pool == this) {
3255            helpQuiescePool(wt.workQueue);
3256            return true;
3257        }
3258        long startTime = System.nanoTime();
3259        WorkQueue[] ws;
3260        int r = 0, wl;
3261        boolean found = true;
3262        while (!isQuiescent() && (ws = workQueues) != null &&
3263               (wl = ws.length) > 0) {
3264            if (!found) {
3265                if ((System.nanoTime() - startTime) > nanos)
3266                    return false;
3267                Thread.yield(); // cannot block
3268            }
3269            found = false;
3270            for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3271                ForkJoinTask<?> t; WorkQueue q; int b, k;
3272                if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3273                    (b = q.base) - q.top < 0) {
3274                    found = true;
3275                    if ((t = q.pollAt(b)) != null)
3276                        t.doExec();
3277                    break;
3278                }
3279            }
3280        }
3281        return true;
3282    }
3283
3284    /**
3285     * Waits and/or attempts to assist performing tasks indefinitely
3286     * until the {@link #commonPool()} {@link #isQuiescent}.
3287     */
3288    static void quiesceCommonPool() {
3289        common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3290    }
3291
3292    /**
3293     * Interface for extending managed parallelism for tasks running
3294     * in {@link ForkJoinPool}s.
3295     *
3296     * <p>A {@code ManagedBlocker} provides two methods.  Method
3297     * {@link #isReleasable} must return {@code true} if blocking is
3298     * not necessary. Method {@link #block} blocks the current thread
3299     * if necessary (perhaps internally invoking {@code isReleasable}
3300     * before actually blocking). These actions are performed by any
3301     * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3302     * The unusual methods in this API accommodate synchronizers that
3303     * may, but don't usually, block for long periods. Similarly, they
3304     * allow more efficient internal handling of cases in which
3305     * additional workers may be, but usually are not, needed to
3306     * ensure sufficient parallelism.  Toward this end,
3307     * implementations of method {@code isReleasable} must be amenable
3308     * to repeated invocation.
3309     *
3310     * <p>For example, here is a ManagedBlocker based on a
3311     * ReentrantLock:
3312     * <pre> {@code
3313     * class ManagedLocker implements ManagedBlocker {
3314     *   final ReentrantLock lock;
3315     *   boolean hasLock = false;
3316     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3317     *   public boolean block() {
3318     *     if (!hasLock)
3319     *       lock.lock();
3320     *     return true;
3321     *   }
3322     *   public boolean isReleasable() {
3323     *     return hasLock || (hasLock = lock.tryLock());
3324     *   }
3325     * }}</pre>
3326     *
3327     * <p>Here is a class that possibly blocks waiting for an
3328     * item on a given queue:
3329     * <pre> {@code
3330     * class QueueTaker<E> implements ManagedBlocker {
3331     *   final BlockingQueue<E> queue;
3332     *   volatile E item = null;
3333     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3334     *   public boolean block() throws InterruptedException {
3335     *     if (item == null)
3336     *       item = queue.take();
3337     *     return true;
3338     *   }
3339     *   public boolean isReleasable() {
3340     *     return item != null || (item = queue.poll()) != null;
3341     *   }
3342     *   public E getItem() { // call after pool.managedBlock completes
3343     *     return item;
3344     *   }
3345     * }}</pre>
3346     */
3347    public static interface ManagedBlocker {
3348        /**
3349         * Possibly blocks the current thread, for example waiting for
3350         * a lock or condition.
3351         *
3352         * @return {@code true} if no additional blocking is necessary
3353         * (i.e., if isReleasable would return true)
3354         * @throws InterruptedException if interrupted while waiting
3355         * (the method is not required to do so, but is allowed to)
3356         */
3357        boolean block() throws InterruptedException;
3358
3359        /**
3360         * Returns {@code true} if blocking is unnecessary.
3361         * @return {@code true} if blocking is unnecessary
3362         */
3363        boolean isReleasable();
3364    }
3365
3366    /**
3367     * Runs the given possibly blocking task.  When {@linkplain
3368     * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3369     * method possibly arranges for a spare thread to be activated if
3370     * necessary to ensure sufficient parallelism while the current
3371     * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3372     *
3373     * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3374     * {@code blocker.block()} until either method returns {@code true}.
3375     * Every call to {@code blocker.block()} is preceded by a call to
3376     * {@code blocker.isReleasable()} that returned {@code false}.
3377     *
3378     * <p>If not running in a ForkJoinPool, this method is
3379     * behaviorally equivalent to
3380     * <pre> {@code
3381     * while (!blocker.isReleasable())
3382     *   if (blocker.block())
3383     *     break;}</pre>
3384     *
3385     * If running in a ForkJoinPool, the pool may first be expanded to
3386     * ensure sufficient parallelism available during the call to
3387     * {@code blocker.block()}.
3388     *
3389     * @param blocker the blocker task
3390     * @throws InterruptedException if {@code blocker.block()} did so
3391     */
3392    public static void managedBlock(ManagedBlocker blocker)
3393        throws InterruptedException {
3394        ForkJoinPool p;
3395        ForkJoinWorkerThread wt;
3396        Thread t = Thread.currentThread();
3397        if ((t instanceof ForkJoinWorkerThread) &&
3398            (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3399            WorkQueue w = wt.workQueue;
3400            while (!blocker.isReleasable()) {
3401                if (p.tryCompensate(w)) {
3402                    try {
3403                        do {} while (!blocker.isReleasable() &&
3404                                     !blocker.block());
3405                    } finally {
3406                        U.getAndAddLong(p, CTL, AC_UNIT);
3407                    }
3408                    break;
3409                }
3410            }
3411        }
3412        else {
3413            do {} while (!blocker.isReleasable() &&
3414                         !blocker.block());
3415        }
3416    }
3417
3418    // AbstractExecutorService overrides.  These rely on undocumented
3419    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3420    // implement RunnableFuture.
3421
3422    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3423        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3424    }
3425
3426    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3427        return new ForkJoinTask.AdaptedCallable<T>(callable);
3428    }
3429
3430    // Unsafe mechanics
3431    private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3432    private static final long CTL;
3433    private static final long RUNSTATE;
3434    private static final int ABASE;
3435    private static final int ASHIFT;
3436
3437    static {
3438        try {
3439            CTL = U.objectFieldOffset
3440                (ForkJoinPool.class.getDeclaredField("ctl"));
3441            RUNSTATE = U.objectFieldOffset
3442                (ForkJoinPool.class.getDeclaredField("runState"));
3443            ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3444            int scale = U.arrayIndexScale(ForkJoinTask[].class);
3445            if ((scale & (scale - 1)) != 0)
3446                throw new Error("array index scale not a power of two");
3447            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3448        } catch (ReflectiveOperationException e) {
3449            throw new Error(e);
3450        }
3451
3452        // Reduce the risk of rare disastrous classloading in first call to
3453        // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3454        Class<?> ensureLoaded = LockSupport.class;
3455
3456        int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3457        try {
3458            String p = System.getProperty
3459                ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3460            if (p != null)
3461                commonMaxSpares = Integer.parseInt(p);
3462        } catch (Exception ignore) {}
3463        COMMON_MAX_SPARES = commonMaxSpares;
3464
3465        defaultForkJoinWorkerThreadFactory =
3466            new DefaultForkJoinWorkerThreadFactory();
3467        modifyThreadPermission = new RuntimePermission("modifyThread");
3468
3469        common = java.security.AccessController.doPrivileged
3470            (new java.security.PrivilegedAction<ForkJoinPool>() {
3471                public ForkJoinPool run() { return makeCommonPool(); }});
3472
3473        // report 1 even if threads disabled
3474        COMMON_PARALLELISM = Math.max(common.config & SMASK, 1);
3475    }
3476
3477    /**
3478     * Creates and returns the common pool, respecting user settings
3479     * specified via system properties.
3480     */
3481    static ForkJoinPool makeCommonPool() {
3482        int parallelism = -1;
3483        ForkJoinWorkerThreadFactory factory = null;
3484        UncaughtExceptionHandler handler = null;
3485        try {  // ignore exceptions in accessing/parsing properties
3486            String pp = System.getProperty
3487                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3488            String fp = System.getProperty
3489                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3490            String hp = System.getProperty
3491                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3492            if (pp != null)
3493                parallelism = Integer.parseInt(pp);
3494            if (fp != null)
3495                factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3496                           getSystemClassLoader().loadClass(fp).newInstance());
3497            if (hp != null)
3498                handler = ((UncaughtExceptionHandler)ClassLoader.
3499                           getSystemClassLoader().loadClass(hp).newInstance());
3500        } catch (Exception ignore) {
3501        }
3502        if (factory == null) {
3503            if (System.getSecurityManager() == null)
3504                factory = defaultForkJoinWorkerThreadFactory;
3505            else // use security-managed default
3506                factory = new InnocuousForkJoinWorkerThreadFactory();
3507        }
3508        if (parallelism < 0 && // default 1 less than #cores
3509            (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3510            parallelism = 1;
3511        if (parallelism > MAX_CAP)
3512            parallelism = MAX_CAP;
3513        return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3514                                "ForkJoinPool.commonPool-worker-");
3515    }
3516
3517    /**
3518     * Factory for innocuous worker threads.
3519     */
3520    private static final class InnocuousForkJoinWorkerThreadFactory
3521        implements ForkJoinWorkerThreadFactory {
3522
3523        /**
3524         * An ACC to restrict permissions for the factory itself.
3525         * The constructed workers have no permissions set.
3526         */
3527        private static final AccessControlContext innocuousAcc;
3528        static {
3529            Permissions innocuousPerms = new Permissions();
3530            innocuousPerms.add(modifyThreadPermission);
3531            innocuousPerms.add(new RuntimePermission(
3532                                   "enableContextClassLoaderOverride"));
3533            innocuousPerms.add(new RuntimePermission(
3534                                   "modifyThreadGroup"));
3535            innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3536                    new ProtectionDomain(null, innocuousPerms)
3537                });
3538        }
3539
3540        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3541            return java.security.AccessController.doPrivileged(
3542                new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3543                    public ForkJoinWorkerThread run() {
3544                        return new ForkJoinWorkerThread.
3545                            InnocuousForkJoinWorkerThread(pool);
3546                    }}, innocuousAcc);
3547        }
3548    }
3549
3550}
3551