1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27
28import java.util.function.Consumer;
29
30/**
31 * Doubly-linked list implementation of the {@code List} and {@code Deque}
32 * interfaces.  Implements all optional list operations, and permits all
33 * elements (including {@code null}).
34 *
35 * <p>All of the operations perform as could be expected for a doubly-linked
36 * list.  Operations that index into the list will traverse the list from
37 * the beginning or the end, whichever is closer to the specified index.
38 *
39 * <p><strong>Note that this implementation is not synchronized.</strong>
40 * If multiple threads access a linked list concurrently, and at least
41 * one of the threads modifies the list structurally, it <i>must</i> be
42 * synchronized externally.  (A structural modification is any operation
43 * that adds or deletes one or more elements; merely setting the value of
44 * an element is not a structural modification.)  This is typically
45 * accomplished by synchronizing on some object that naturally
46 * encapsulates the list.
47 *
48 * If no such object exists, the list should be "wrapped" using the
49 * {@link Collections#synchronizedList Collections.synchronizedList}
50 * method.  This is best done at creation time, to prevent accidental
51 * unsynchronized access to the list:<pre>
52 *   List list = Collections.synchronizedList(new LinkedList(...));</pre>
53 *
54 * <p>The iterators returned by this class's {@code iterator} and
55 * {@code listIterator} methods are <i>fail-fast</i>: if the list is
56 * structurally modified at any time after the iterator is created, in
57 * any way except through the Iterator's own {@code remove} or
58 * {@code add} methods, the iterator will throw a {@link
59 * ConcurrentModificationException}.  Thus, in the face of concurrent
60 * modification, the iterator fails quickly and cleanly, rather than
61 * risking arbitrary, non-deterministic behavior at an undetermined
62 * time in the future.
63 *
64 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
65 * as it is, generally speaking, impossible to make any hard guarantees in the
66 * presence of unsynchronized concurrent modification.  Fail-fast iterators
67 * throw {@code ConcurrentModificationException} on a best-effort basis.
68 * Therefore, it would be wrong to write a program that depended on this
69 * exception for its correctness:   <i>the fail-fast behavior of iterators
70 * should be used only to detect bugs.</i>
71 *
72 * <p>This class is a member of the
73 * <a href="{@docRoot}openjdk-redirect.html?v=8&path=/technotes/guides/collections/index.html">
74 * Java Collections Framework</a>.
75 *
76 * @author  Josh Bloch
77 * @see     List
78 * @see     ArrayList
79 * @since 1.2
80 * @param <E> the type of elements held in this collection
81 */
82
83public class LinkedList<E>
84    extends AbstractSequentialList<E>
85    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
86{
87    transient int size = 0;
88
89    /**
90     * Pointer to first node.
91     * Invariant: (first == null && last == null) ||
92     *            (first.prev == null && first.item != null)
93     */
94    transient Node<E> first;
95
96    /**
97     * Pointer to last node.
98     * Invariant: (first == null && last == null) ||
99     *            (last.next == null && last.item != null)
100     */
101    transient Node<E> last;
102
103    /**
104     * Constructs an empty list.
105     */
106    public LinkedList() {
107    }
108
109    /**
110     * Constructs a list containing the elements of the specified
111     * collection, in the order they are returned by the collection's
112     * iterator.
113     *
114     * @param  c the collection whose elements are to be placed into this list
115     * @throws NullPointerException if the specified collection is null
116     */
117    public LinkedList(Collection<? extends E> c) {
118        this();
119        addAll(c);
120    }
121
122    /**
123     * Links e as first element.
124     */
125    private void linkFirst(E e) {
126        final Node<E> f = first;
127        final Node<E> newNode = new Node<>(null, e, f);
128        first = newNode;
129        if (f == null)
130            last = newNode;
131        else
132            f.prev = newNode;
133        size++;
134        modCount++;
135    }
136
137    /**
138     * Links e as last element.
139     */
140    void linkLast(E e) {
141        final Node<E> l = last;
142        final Node<E> newNode = new Node<>(l, e, null);
143        last = newNode;
144        if (l == null)
145            first = newNode;
146        else
147            l.next = newNode;
148        size++;
149        modCount++;
150    }
151
152    /**
153     * Inserts element e before non-null Node succ.
154     */
155    void linkBefore(E e, Node<E> succ) {
156        // assert succ != null;
157        final Node<E> pred = succ.prev;
158        final Node<E> newNode = new Node<>(pred, e, succ);
159        succ.prev = newNode;
160        if (pred == null)
161            first = newNode;
162        else
163            pred.next = newNode;
164        size++;
165        modCount++;
166    }
167
168    /**
169     * Unlinks non-null first node f.
170     */
171    private E unlinkFirst(Node<E> f) {
172        // assert f == first && f != null;
173        final E element = f.item;
174        final Node<E> next = f.next;
175        f.item = null;
176        f.next = null; // help GC
177        first = next;
178        if (next == null)
179            last = null;
180        else
181            next.prev = null;
182        size--;
183        modCount++;
184        return element;
185    }
186
187    /**
188     * Unlinks non-null last node l.
189     */
190    private E unlinkLast(Node<E> l) {
191        // assert l == last && l != null;
192        final E element = l.item;
193        final Node<E> prev = l.prev;
194        l.item = null;
195        l.prev = null; // help GC
196        last = prev;
197        if (prev == null)
198            first = null;
199        else
200            prev.next = null;
201        size--;
202        modCount++;
203        return element;
204    }
205
206    /**
207     * Unlinks non-null node x.
208     */
209    E unlink(Node<E> x) {
210        // assert x != null;
211        final E element = x.item;
212        final Node<E> next = x.next;
213        final Node<E> prev = x.prev;
214
215        if (prev == null) {
216            first = next;
217        } else {
218            prev.next = next;
219            x.prev = null;
220        }
221
222        if (next == null) {
223            last = prev;
224        } else {
225            next.prev = prev;
226            x.next = null;
227        }
228
229        x.item = null;
230        size--;
231        modCount++;
232        return element;
233    }
234
235    /**
236     * Returns the first element in this list.
237     *
238     * @return the first element in this list
239     * @throws NoSuchElementException if this list is empty
240     */
241    public E getFirst() {
242        final Node<E> f = first;
243        if (f == null)
244            throw new NoSuchElementException();
245        return f.item;
246    }
247
248    /**
249     * Returns the last element in this list.
250     *
251     * @return the last element in this list
252     * @throws NoSuchElementException if this list is empty
253     */
254    public E getLast() {
255        final Node<E> l = last;
256        if (l == null)
257            throw new NoSuchElementException();
258        return l.item;
259    }
260
261    /**
262     * Removes and returns the first element from this list.
263     *
264     * @return the first element from this list
265     * @throws NoSuchElementException if this list is empty
266     */
267    public E removeFirst() {
268        final Node<E> f = first;
269        if (f == null)
270            throw new NoSuchElementException();
271        return unlinkFirst(f);
272    }
273
274    /**
275     * Removes and returns the last element from this list.
276     *
277     * @return the last element from this list
278     * @throws NoSuchElementException if this list is empty
279     */
280    public E removeLast() {
281        final Node<E> l = last;
282        if (l == null)
283            throw new NoSuchElementException();
284        return unlinkLast(l);
285    }
286
287    /**
288     * Inserts the specified element at the beginning of this list.
289     *
290     * @param e the element to add
291     */
292    public void addFirst(E e) {
293        linkFirst(e);
294    }
295
296    /**
297     * Appends the specified element to the end of this list.
298     *
299     * <p>This method is equivalent to {@link #add}.
300     *
301     * @param e the element to add
302     */
303    public void addLast(E e) {
304        linkLast(e);
305    }
306
307    /**
308     * Returns {@code true} if this list contains the specified element.
309     * More formally, returns {@code true} if and only if this list contains
310     * at least one element {@code e} such that
311     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
312     *
313     * @param o element whose presence in this list is to be tested
314     * @return {@code true} if this list contains the specified element
315     */
316    public boolean contains(Object o) {
317        return indexOf(o) != -1;
318    }
319
320    /**
321     * Returns the number of elements in this list.
322     *
323     * @return the number of elements in this list
324     */
325    public int size() {
326        return size;
327    }
328
329    /**
330     * Appends the specified element to the end of this list.
331     *
332     * <p>This method is equivalent to {@link #addLast}.
333     *
334     * @param e element to be appended to this list
335     * @return {@code true} (as specified by {@link Collection#add})
336     */
337    public boolean add(E e) {
338        linkLast(e);
339        return true;
340    }
341
342    /**
343     * Removes the first occurrence of the specified element from this list,
344     * if it is present.  If this list does not contain the element, it is
345     * unchanged.  More formally, removes the element with the lowest index
346     * {@code i} such that
347     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
348     * (if such an element exists).  Returns {@code true} if this list
349     * contained the specified element (or equivalently, if this list
350     * changed as a result of the call).
351     *
352     * @param o element to be removed from this list, if present
353     * @return {@code true} if this list contained the specified element
354     */
355    public boolean remove(Object o) {
356        if (o == null) {
357            for (Node<E> x = first; x != null; x = x.next) {
358                if (x.item == null) {
359                    unlink(x);
360                    return true;
361                }
362            }
363        } else {
364            for (Node<E> x = first; x != null; x = x.next) {
365                if (o.equals(x.item)) {
366                    unlink(x);
367                    return true;
368                }
369            }
370        }
371        return false;
372    }
373
374    /**
375     * Appends all of the elements in the specified collection to the end of
376     * this list, in the order that they are returned by the specified
377     * collection's iterator.  The behavior of this operation is undefined if
378     * the specified collection is modified while the operation is in
379     * progress.  (Note that this will occur if the specified collection is
380     * this list, and it's nonempty.)
381     *
382     * @param c collection containing elements to be added to this list
383     * @return {@code true} if this list changed as a result of the call
384     * @throws NullPointerException if the specified collection is null
385     */
386    public boolean addAll(Collection<? extends E> c) {
387        return addAll(size, c);
388    }
389
390    /**
391     * Inserts all of the elements in the specified collection into this
392     * list, starting at the specified position.  Shifts the element
393     * currently at that position (if any) and any subsequent elements to
394     * the right (increases their indices).  The new elements will appear
395     * in the list in the order that they are returned by the
396     * specified collection's iterator.
397     *
398     * @param index index at which to insert the first element
399     *              from the specified collection
400     * @param c collection containing elements to be added to this list
401     * @return {@code true} if this list changed as a result of the call
402     * @throws IndexOutOfBoundsException {@inheritDoc}
403     * @throws NullPointerException if the specified collection is null
404     */
405    public boolean addAll(int index, Collection<? extends E> c) {
406        checkPositionIndex(index);
407
408        Object[] a = c.toArray();
409        int numNew = a.length;
410        if (numNew == 0)
411            return false;
412
413        Node<E> pred, succ;
414        if (index == size) {
415            succ = null;
416            pred = last;
417        } else {
418            succ = node(index);
419            pred = succ.prev;
420        }
421
422        for (Object o : a) {
423            @SuppressWarnings("unchecked") E e = (E) o;
424            Node<E> newNode = new Node<>(pred, e, null);
425            if (pred == null)
426                first = newNode;
427            else
428                pred.next = newNode;
429            pred = newNode;
430        }
431
432        if (succ == null) {
433            last = pred;
434        } else {
435            pred.next = succ;
436            succ.prev = pred;
437        }
438
439        size += numNew;
440        modCount++;
441        return true;
442    }
443
444    /**
445     * Removes all of the elements from this list.
446     * The list will be empty after this call returns.
447     */
448    public void clear() {
449        // Clearing all of the links between nodes is "unnecessary", but:
450        // - helps a generational GC if the discarded nodes inhabit
451        //   more than one generation
452        // - is sure to free memory even if there is a reachable Iterator
453        for (Node<E> x = first; x != null; ) {
454            Node<E> next = x.next;
455            x.item = null;
456            x.next = null;
457            x.prev = null;
458            x = next;
459        }
460        first = last = null;
461        size = 0;
462        modCount++;
463    }
464
465
466    // Positional Access Operations
467
468    /**
469     * Returns the element at the specified position in this list.
470     *
471     * @param index index of the element to return
472     * @return the element at the specified position in this list
473     * @throws IndexOutOfBoundsException {@inheritDoc}
474     */
475    public E get(int index) {
476        checkElementIndex(index);
477        return node(index).item;
478    }
479
480    /**
481     * Replaces the element at the specified position in this list with the
482     * specified element.
483     *
484     * @param index index of the element to replace
485     * @param element element to be stored at the specified position
486     * @return the element previously at the specified position
487     * @throws IndexOutOfBoundsException {@inheritDoc}
488     */
489    public E set(int index, E element) {
490        checkElementIndex(index);
491        Node<E> x = node(index);
492        E oldVal = x.item;
493        x.item = element;
494        return oldVal;
495    }
496
497    /**
498     * Inserts the specified element at the specified position in this list.
499     * Shifts the element currently at that position (if any) and any
500     * subsequent elements to the right (adds one to their indices).
501     *
502     * @param index index at which the specified element is to be inserted
503     * @param element element to be inserted
504     * @throws IndexOutOfBoundsException {@inheritDoc}
505     */
506    public void add(int index, E element) {
507        checkPositionIndex(index);
508
509        if (index == size)
510            linkLast(element);
511        else
512            linkBefore(element, node(index));
513    }
514
515    /**
516     * Removes the element at the specified position in this list.  Shifts any
517     * subsequent elements to the left (subtracts one from their indices).
518     * Returns the element that was removed from the list.
519     *
520     * @param index the index of the element to be removed
521     * @return the element previously at the specified position
522     * @throws IndexOutOfBoundsException {@inheritDoc}
523     */
524    public E remove(int index) {
525        checkElementIndex(index);
526        return unlink(node(index));
527    }
528
529    /**
530     * Tells if the argument is the index of an existing element.
531     */
532    private boolean isElementIndex(int index) {
533        return index >= 0 && index < size;
534    }
535
536    /**
537     * Tells if the argument is the index of a valid position for an
538     * iterator or an add operation.
539     */
540    private boolean isPositionIndex(int index) {
541        return index >= 0 && index <= size;
542    }
543
544    /**
545     * Constructs an IndexOutOfBoundsException detail message.
546     * Of the many possible refactorings of the error handling code,
547     * this "outlining" performs best with both server and client VMs.
548     */
549    private String outOfBoundsMsg(int index) {
550        return "Index: "+index+", Size: "+size;
551    }
552
553    private void checkElementIndex(int index) {
554        if (!isElementIndex(index))
555            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
556    }
557
558    private void checkPositionIndex(int index) {
559        if (!isPositionIndex(index))
560            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
561    }
562
563    /**
564     * Returns the (non-null) Node at the specified element index.
565     */
566    Node<E> node(int index) {
567        // assert isElementIndex(index);
568
569        if (index < (size >> 1)) {
570            Node<E> x = first;
571            for (int i = 0; i < index; i++)
572                x = x.next;
573            return x;
574        } else {
575            Node<E> x = last;
576            for (int i = size - 1; i > index; i--)
577                x = x.prev;
578            return x;
579        }
580    }
581
582    // Search Operations
583
584    /**
585     * Returns the index of the first occurrence of the specified element
586     * in this list, or -1 if this list does not contain the element.
587     * More formally, returns the lowest index {@code i} such that
588     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
589     * or -1 if there is no such index.
590     *
591     * @param o element to search for
592     * @return the index of the first occurrence of the specified element in
593     *         this list, or -1 if this list does not contain the element
594     */
595    public int indexOf(Object o) {
596        int index = 0;
597        if (o == null) {
598            for (Node<E> x = first; x != null; x = x.next) {
599                if (x.item == null)
600                    return index;
601                index++;
602            }
603        } else {
604            for (Node<E> x = first; x != null; x = x.next) {
605                if (o.equals(x.item))
606                    return index;
607                index++;
608            }
609        }
610        return -1;
611    }
612
613    /**
614     * Returns the index of the last occurrence of the specified element
615     * in this list, or -1 if this list does not contain the element.
616     * More formally, returns the highest index {@code i} such that
617     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
618     * or -1 if there is no such index.
619     *
620     * @param o element to search for
621     * @return the index of the last occurrence of the specified element in
622     *         this list, or -1 if this list does not contain the element
623     */
624    public int lastIndexOf(Object o) {
625        int index = size;
626        if (o == null) {
627            for (Node<E> x = last; x != null; x = x.prev) {
628                index--;
629                if (x.item == null)
630                    return index;
631            }
632        } else {
633            for (Node<E> x = last; x != null; x = x.prev) {
634                index--;
635                if (o.equals(x.item))
636                    return index;
637            }
638        }
639        return -1;
640    }
641
642    // Queue operations.
643
644    /**
645     * Retrieves, but does not remove, the head (first element) of this list.
646     *
647     * @return the head of this list, or {@code null} if this list is empty
648     * @since 1.5
649     */
650    public E peek() {
651        final Node<E> f = first;
652        return (f == null) ? null : f.item;
653    }
654
655    /**
656     * Retrieves, but does not remove, the head (first element) of this list.
657     *
658     * @return the head of this list
659     * @throws NoSuchElementException if this list is empty
660     * @since 1.5
661     */
662    public E element() {
663        return getFirst();
664    }
665
666    /**
667     * Retrieves and removes the head (first element) of this list.
668     *
669     * @return the head of this list, or {@code null} if this list is empty
670     * @since 1.5
671     */
672    public E poll() {
673        final Node<E> f = first;
674        return (f == null) ? null : unlinkFirst(f);
675    }
676
677    /**
678     * Retrieves and removes the head (first element) of this list.
679     *
680     * @return the head of this list
681     * @throws NoSuchElementException if this list is empty
682     * @since 1.5
683     */
684    public E remove() {
685        return removeFirst();
686    }
687
688    /**
689     * Adds the specified element as the tail (last element) of this list.
690     *
691     * @param e the element to add
692     * @return {@code true} (as specified by {@link Queue#offer})
693     * @since 1.5
694     */
695    public boolean offer(E e) {
696        return add(e);
697    }
698
699    // Deque operations
700    /**
701     * Inserts the specified element at the front of this list.
702     *
703     * @param e the element to insert
704     * @return {@code true} (as specified by {@link Deque#offerFirst})
705     * @since 1.6
706     */
707    public boolean offerFirst(E e) {
708        addFirst(e);
709        return true;
710    }
711
712    /**
713     * Inserts the specified element at the end of this list.
714     *
715     * @param e the element to insert
716     * @return {@code true} (as specified by {@link Deque#offerLast})
717     * @since 1.6
718     */
719    public boolean offerLast(E e) {
720        addLast(e);
721        return true;
722    }
723
724    /**
725     * Retrieves, but does not remove, the first element of this list,
726     * or returns {@code null} if this list is empty.
727     *
728     * @return the first element of this list, or {@code null}
729     *         if this list is empty
730     * @since 1.6
731     */
732    public E peekFirst() {
733        final Node<E> f = first;
734        return (f == null) ? null : f.item;
735     }
736
737    /**
738     * Retrieves, but does not remove, the last element of this list,
739     * or returns {@code null} if this list is empty.
740     *
741     * @return the last element of this list, or {@code null}
742     *         if this list is empty
743     * @since 1.6
744     */
745    public E peekLast() {
746        final Node<E> l = last;
747        return (l == null) ? null : l.item;
748    }
749
750    /**
751     * Retrieves and removes the first element of this list,
752     * or returns {@code null} if this list is empty.
753     *
754     * @return the first element of this list, or {@code null} if
755     *     this list is empty
756     * @since 1.6
757     */
758    public E pollFirst() {
759        final Node<E> f = first;
760        return (f == null) ? null : unlinkFirst(f);
761    }
762
763    /**
764     * Retrieves and removes the last element of this list,
765     * or returns {@code null} if this list is empty.
766     *
767     * @return the last element of this list, or {@code null} if
768     *     this list is empty
769     * @since 1.6
770     */
771    public E pollLast() {
772        final Node<E> l = last;
773        return (l == null) ? null : unlinkLast(l);
774    }
775
776    /**
777     * Pushes an element onto the stack represented by this list.  In other
778     * words, inserts the element at the front of this list.
779     *
780     * <p>This method is equivalent to {@link #addFirst}.
781     *
782     * @param e the element to push
783     * @since 1.6
784     */
785    public void push(E e) {
786        addFirst(e);
787    }
788
789    /**
790     * Pops an element from the stack represented by this list.  In other
791     * words, removes and returns the first element of this list.
792     *
793     * <p>This method is equivalent to {@link #removeFirst()}.
794     *
795     * @return the element at the front of this list (which is the top
796     *         of the stack represented by this list)
797     * @throws NoSuchElementException if this list is empty
798     * @since 1.6
799     */
800    public E pop() {
801        return removeFirst();
802    }
803
804    /**
805     * Removes the first occurrence of the specified element in this
806     * list (when traversing the list from head to tail).  If the list
807     * does not contain the element, it is unchanged.
808     *
809     * @param o element to be removed from this list, if present
810     * @return {@code true} if the list contained the specified element
811     * @since 1.6
812     */
813    public boolean removeFirstOccurrence(Object o) {
814        return remove(o);
815    }
816
817    /**
818     * Removes the last occurrence of the specified element in this
819     * list (when traversing the list from head to tail).  If the list
820     * does not contain the element, it is unchanged.
821     *
822     * @param o element to be removed from this list, if present
823     * @return {@code true} if the list contained the specified element
824     * @since 1.6
825     */
826    public boolean removeLastOccurrence(Object o) {
827        if (o == null) {
828            for (Node<E> x = last; x != null; x = x.prev) {
829                if (x.item == null) {
830                    unlink(x);
831                    return true;
832                }
833            }
834        } else {
835            for (Node<E> x = last; x != null; x = x.prev) {
836                if (o.equals(x.item)) {
837                    unlink(x);
838                    return true;
839                }
840            }
841        }
842        return false;
843    }
844
845    /**
846     * Returns a list-iterator of the elements in this list (in proper
847     * sequence), starting at the specified position in the list.
848     * Obeys the general contract of {@code List.listIterator(int)}.<p>
849     *
850     * The list-iterator is <i>fail-fast</i>: if the list is structurally
851     * modified at any time after the Iterator is created, in any way except
852     * through the list-iterator's own {@code remove} or {@code add}
853     * methods, the list-iterator will throw a
854     * {@code ConcurrentModificationException}.  Thus, in the face of
855     * concurrent modification, the iterator fails quickly and cleanly, rather
856     * than risking arbitrary, non-deterministic behavior at an undetermined
857     * time in the future.
858     *
859     * @param index index of the first element to be returned from the
860     *              list-iterator (by a call to {@code next})
861     * @return a ListIterator of the elements in this list (in proper
862     *         sequence), starting at the specified position in the list
863     * @throws IndexOutOfBoundsException {@inheritDoc}
864     * @see List#listIterator(int)
865     */
866    public ListIterator<E> listIterator(int index) {
867        checkPositionIndex(index);
868        return new ListItr(index);
869    }
870
871    private class ListItr implements ListIterator<E> {
872        private Node<E> lastReturned = null;
873        private Node<E> next;
874        private int nextIndex;
875        private int expectedModCount = modCount;
876
877        ListItr(int index) {
878            // assert isPositionIndex(index);
879            next = (index == size) ? null : node(index);
880            nextIndex = index;
881        }
882
883        public boolean hasNext() {
884            return nextIndex < size;
885        }
886
887        public E next() {
888            checkForComodification();
889            if (!hasNext())
890                throw new NoSuchElementException();
891
892            lastReturned = next;
893            next = next.next;
894            nextIndex++;
895            return lastReturned.item;
896        }
897
898        public boolean hasPrevious() {
899            return nextIndex > 0;
900        }
901
902        public E previous() {
903            checkForComodification();
904            if (!hasPrevious())
905                throw new NoSuchElementException();
906
907            lastReturned = next = (next == null) ? last : next.prev;
908            nextIndex--;
909            return lastReturned.item;
910        }
911
912        public int nextIndex() {
913            return nextIndex;
914        }
915
916        public int previousIndex() {
917            return nextIndex - 1;
918        }
919
920        public void remove() {
921            checkForComodification();
922            if (lastReturned == null)
923                throw new IllegalStateException();
924
925            Node<E> lastNext = lastReturned.next;
926            unlink(lastReturned);
927            if (next == lastReturned)
928                next = lastNext;
929            else
930                nextIndex--;
931            lastReturned = null;
932            expectedModCount++;
933        }
934
935        public void set(E e) {
936            if (lastReturned == null)
937                throw new IllegalStateException();
938            checkForComodification();
939            lastReturned.item = e;
940        }
941
942        public void add(E e) {
943            checkForComodification();
944            lastReturned = null;
945            if (next == null)
946                linkLast(e);
947            else
948                linkBefore(e, next);
949            nextIndex++;
950            expectedModCount++;
951        }
952
953        @Override
954        public void forEachRemaining(Consumer<? super E> action) {
955            Objects.requireNonNull(action);
956            while (modCount == expectedModCount && nextIndex < size) {
957                action.accept(next.item);
958                lastReturned = next;
959                next = next.next;
960                nextIndex++;
961            }
962            checkForComodification();
963        }
964
965        final void checkForComodification() {
966            if (modCount != expectedModCount)
967                throw new ConcurrentModificationException();
968        }
969    }
970
971    private static class Node<E> {
972        E item;
973        Node<E> next;
974        Node<E> prev;
975
976        Node(Node<E> prev, E element, Node<E> next) {
977            this.item = element;
978            this.next = next;
979            this.prev = prev;
980        }
981    }
982
983    /**
984     * @since 1.6
985     */
986    public Iterator<E> descendingIterator() {
987        return new DescendingIterator();
988    }
989
990    /**
991     * Adapter to provide descending iterators via ListItr.previous
992     */
993    private class DescendingIterator implements Iterator<E> {
994        private final ListItr itr = new ListItr(size());
995        public boolean hasNext() {
996            return itr.hasPrevious();
997        }
998        public E next() {
999            return itr.previous();
1000        }
1001        public void remove() {
1002            itr.remove();
1003        }
1004    }
1005
1006    @SuppressWarnings("unchecked")
1007    private LinkedList<E> superClone() {
1008        try {
1009            return (LinkedList<E>) super.clone();
1010        } catch (CloneNotSupportedException e) {
1011            throw new InternalError(e);
1012        }
1013    }
1014
1015    /**
1016     * Returns a shallow copy of this {@code LinkedList}. (The elements
1017     * themselves are not cloned.)
1018     *
1019     * @return a shallow copy of this {@code LinkedList} instance
1020     */
1021    public Object clone() {
1022        LinkedList<E> clone = superClone();
1023
1024        // Put clone into "virgin" state
1025        clone.first = clone.last = null;
1026        clone.size = 0;
1027        clone.modCount = 0;
1028
1029        // Initialize clone with our elements
1030        for (Node<E> x = first; x != null; x = x.next)
1031            clone.add(x.item);
1032
1033        return clone;
1034    }
1035
1036    /**
1037     * Returns an array containing all of the elements in this list
1038     * in proper sequence (from first to last element).
1039     *
1040     * <p>The returned array will be "safe" in that no references to it are
1041     * maintained by this list.  (In other words, this method must allocate
1042     * a new array).  The caller is thus free to modify the returned array.
1043     *
1044     * <p>This method acts as bridge between array-based and collection-based
1045     * APIs.
1046     *
1047     * @return an array containing all of the elements in this list
1048     *         in proper sequence
1049     */
1050    public Object[] toArray() {
1051        Object[] result = new Object[size];
1052        int i = 0;
1053        for (Node<E> x = first; x != null; x = x.next)
1054            result[i++] = x.item;
1055        return result;
1056    }
1057
1058    /**
1059     * Returns an array containing all of the elements in this list in
1060     * proper sequence (from first to last element); the runtime type of
1061     * the returned array is that of the specified array.  If the list fits
1062     * in the specified array, it is returned therein.  Otherwise, a new
1063     * array is allocated with the runtime type of the specified array and
1064     * the size of this list.
1065     *
1066     * <p>If the list fits in the specified array with room to spare (i.e.,
1067     * the array has more elements than the list), the element in the array
1068     * immediately following the end of the list is set to {@code null}.
1069     * (This is useful in determining the length of the list <i>only</i> if
1070     * the caller knows that the list does not contain any null elements.)
1071     *
1072     * <p>Like the {@link #toArray()} method, this method acts as bridge between
1073     * array-based and collection-based APIs.  Further, this method allows
1074     * precise control over the runtime type of the output array, and may,
1075     * under certain circumstances, be used to save allocation costs.
1076     *
1077     * <p>Suppose {@code x} is a list known to contain only strings.
1078     * The following code can be used to dump the list into a newly
1079     * allocated array of {@code String}:
1080     *
1081     * <pre>
1082     *     String[] y = x.toArray(new String[0]);</pre>
1083     *
1084     * Note that {@code toArray(new Object[0])} is identical in function to
1085     * {@code toArray()}.
1086     *
1087     * @param a the array into which the elements of the list are to
1088     *          be stored, if it is big enough; otherwise, a new array of the
1089     *          same runtime type is allocated for this purpose.
1090     * @return an array containing the elements of the list
1091     * @throws ArrayStoreException if the runtime type of the specified array
1092     *         is not a supertype of the runtime type of every element in
1093     *         this list
1094     * @throws NullPointerException if the specified array is null
1095     */
1096    @SuppressWarnings("unchecked")
1097    public <T> T[] toArray(T[] a) {
1098        if (a.length < size)
1099            a = (T[])java.lang.reflect.Array.newInstance(
1100                                a.getClass().getComponentType(), size);
1101        int i = 0;
1102        Object[] result = a;
1103        for (Node<E> x = first; x != null; x = x.next)
1104            result[i++] = x.item;
1105
1106        if (a.length > size)
1107            a[size] = null;
1108
1109        return a;
1110    }
1111
1112    private static final long serialVersionUID = 876323262645176354L;
1113
1114    /**
1115     * Saves the state of this {@code LinkedList} instance to a stream
1116     * (that is, serializes it).
1117     *
1118     * @serialData The size of the list (the number of elements it
1119     *             contains) is emitted (int), followed by all of its
1120     *             elements (each an Object) in the proper order.
1121     */
1122    private void writeObject(java.io.ObjectOutputStream s)
1123        throws java.io.IOException {
1124        // Write out any hidden serialization magic
1125        s.defaultWriteObject();
1126
1127        // Write out size
1128        s.writeInt(size);
1129
1130        // Write out all elements in the proper order.
1131        for (Node<E> x = first; x != null; x = x.next)
1132            s.writeObject(x.item);
1133    }
1134
1135    /**
1136     * Reconstitutes this {@code LinkedList} instance from a stream
1137     * (that is, deserializes it).
1138     */
1139    @SuppressWarnings("unchecked")
1140    private void readObject(java.io.ObjectInputStream s)
1141        throws java.io.IOException, ClassNotFoundException {
1142        // Read in any hidden serialization magic
1143        s.defaultReadObject();
1144
1145        // Read in size
1146        int size = s.readInt();
1147
1148        // Read in all elements in the proper order.
1149        for (int i = 0; i < size; i++)
1150            linkLast((E)s.readObject());
1151    }
1152
1153    /**
1154     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1155     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1156     * list.
1157     *
1158     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and
1159     * {@link Spliterator#ORDERED}.  Overriding implementations should document
1160     * the reporting of additional characteristic values.
1161     *
1162     * @implNote
1163     * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}
1164     * and implements {@code trySplit} to permit limited parallelism..
1165     *
1166     * @return a {@code Spliterator} over the elements in this list
1167     * @since 1.8
1168     */
1169    @Override
1170    public Spliterator<E> spliterator() {
1171        return new LLSpliterator<E>(this, -1, 0);
1172    }
1173
1174    /** A customized variant of Spliterators.IteratorSpliterator */
1175    static final class LLSpliterator<E> implements Spliterator<E> {
1176        static final int BATCH_UNIT = 1 << 10;  // batch array size increment
1177        static final int MAX_BATCH = 1 << 25;  // max batch array size;
1178        final LinkedList<E> list; // null OK unless traversed
1179        Node<E> current;      // current node; null until initialized
1180        int est;              // size estimate; -1 until first needed
1181        int expectedModCount; // initialized when est set
1182        int batch;            // batch size for splits
1183
1184        LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
1185            this.list = list;
1186            this.est = est;
1187            this.expectedModCount = expectedModCount;
1188        }
1189
1190        final int getEst() {
1191            int s; // force initialization
1192            final LinkedList<E> lst;
1193            if ((s = est) < 0) {
1194                if ((lst = list) == null)
1195                    s = est = 0;
1196                else {
1197                    expectedModCount = lst.modCount;
1198                    current = lst.first;
1199                    s = est = lst.size;
1200                }
1201            }
1202            return s;
1203        }
1204
1205        public long estimateSize() { return (long) getEst(); }
1206
1207        public Spliterator<E> trySplit() {
1208            Node<E> p;
1209            int s = getEst();
1210            if (s > 1 && (p = current) != null) {
1211                int n = batch + BATCH_UNIT;
1212                if (n > s)
1213                    n = s;
1214                if (n > MAX_BATCH)
1215                    n = MAX_BATCH;
1216                Object[] a = new Object[n];
1217                int j = 0;
1218                do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
1219                current = p;
1220                batch = j;
1221                est = s - j;
1222                return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
1223            }
1224            return null;
1225        }
1226
1227        public void forEachRemaining(Consumer<? super E> action) {
1228            Node<E> p; int n;
1229            if (action == null) throw new NullPointerException();
1230            if ((n = getEst()) > 0 && (p = current) != null) {
1231                current = null;
1232                est = 0;
1233                do {
1234                    E e = p.item;
1235                    p = p.next;
1236                    action.accept(e);
1237                } while (p != null && --n > 0);
1238            }
1239            if (list.modCount != expectedModCount)
1240                throw new ConcurrentModificationException();
1241        }
1242
1243        public boolean tryAdvance(Consumer<? super E> action) {
1244            Node<E> p;
1245            if (action == null) throw new NullPointerException();
1246            if (getEst() > 0 && (p = current) != null) {
1247                --est;
1248                E e = p.item;
1249                current = p.next;
1250                action.accept(e);
1251                if (list.modCount != expectedModCount)
1252                    throw new ConcurrentModificationException();
1253                return true;
1254            }
1255            return false;
1256        }
1257
1258        public int characteristics() {
1259            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1260        }
1261    }
1262
1263}
1264