1/*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define TRACE_TAG SYSDEPS
18
19#include "sysdeps.h"
20
21#include <winsock2.h> /* winsock.h *must* be included before windows.h. */
22#include <windows.h>
23
24#include <errno.h>
25#include <stdio.h>
26#include <stdlib.h>
27
28#include <algorithm>
29#include <memory>
30#include <string>
31#include <unordered_map>
32#include <vector>
33
34#include <cutils/sockets.h>
35
36#include <android-base/errors.h>
37#include <android-base/logging.h>
38#include <android-base/stringprintf.h>
39#include <android-base/strings.h>
40#include <android-base/utf8.h>
41
42#include "adb.h"
43#include "adb_utils.h"
44
45extern void fatal(const char *fmt, ...);
46
47/* forward declarations */
48
49typedef const struct FHClassRec_* FHClass;
50typedef struct FHRec_* FH;
51typedef struct EventHookRec_* EventHook;
52
53typedef struct FHClassRec_ {
54    void (*_fh_init)(FH);
55    int (*_fh_close)(FH);
56    int (*_fh_lseek)(FH, int, int);
57    int (*_fh_read)(FH, void*, int);
58    int (*_fh_write)(FH, const void*, int);
59} FHClassRec;
60
61static void _fh_file_init(FH);
62static int _fh_file_close(FH);
63static int _fh_file_lseek(FH, int, int);
64static int _fh_file_read(FH, void*, int);
65static int _fh_file_write(FH, const void*, int);
66
67static const FHClassRec _fh_file_class = {
68    _fh_file_init,
69    _fh_file_close,
70    _fh_file_lseek,
71    _fh_file_read,
72    _fh_file_write,
73};
74
75static void _fh_socket_init(FH);
76static int _fh_socket_close(FH);
77static int _fh_socket_lseek(FH, int, int);
78static int _fh_socket_read(FH, void*, int);
79static int _fh_socket_write(FH, const void*, int);
80
81static const FHClassRec _fh_socket_class = {
82    _fh_socket_init,
83    _fh_socket_close,
84    _fh_socket_lseek,
85    _fh_socket_read,
86    _fh_socket_write,
87};
88
89#define assert(cond)                                                                       \
90    do {                                                                                   \
91        if (!(cond)) fatal("assertion failed '%s' on %s:%d\n", #cond, __FILE__, __LINE__); \
92    } while (0)
93
94void handle_deleter::operator()(HANDLE h) {
95    // CreateFile() is documented to return INVALID_HANDLE_FILE on error,
96    // implying that NULL is a valid handle, but this is probably impossible.
97    // Other APIs like CreateEvent() are documented to return NULL on error,
98    // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also
99    // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE
100    // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we
101    // only need to check for INVALID_HANDLE_VALUE.
102    if (h != INVALID_HANDLE_VALUE) {
103        if (!CloseHandle(h)) {
104            D("CloseHandle(%p) failed: %s", h,
105              android::base::SystemErrorCodeToString(GetLastError()).c_str());
106        }
107    }
108}
109
110/**************************************************************************/
111/**************************************************************************/
112/*****                                                                *****/
113/*****      replaces libs/cutils/load_file.c                          *****/
114/*****                                                                *****/
115/**************************************************************************/
116/**************************************************************************/
117
118void *load_file(const char *fn, unsigned *_sz)
119{
120    HANDLE    file;
121    char     *data;
122    DWORD     file_size;
123
124    std::wstring fn_wide;
125    if (!android::base::UTF8ToWide(fn, &fn_wide))
126        return NULL;
127
128    file = CreateFileW( fn_wide.c_str(),
129                        GENERIC_READ,
130                        FILE_SHARE_READ,
131                        NULL,
132                        OPEN_EXISTING,
133                        0,
134                        NULL );
135
136    if (file == INVALID_HANDLE_VALUE)
137        return NULL;
138
139    file_size = GetFileSize( file, NULL );
140    data      = NULL;
141
142    if (file_size > 0) {
143        data = (char*) malloc( file_size + 1 );
144        if (data == NULL) {
145            D("load_file: could not allocate %ld bytes", file_size );
146            file_size = 0;
147        } else {
148            DWORD  out_bytes;
149
150            if ( !ReadFile( file, data, file_size, &out_bytes, NULL ) ||
151                 out_bytes != file_size )
152            {
153                D("load_file: could not read %ld bytes from '%s'", file_size, fn);
154                free(data);
155                data      = NULL;
156                file_size = 0;
157            }
158        }
159    }
160    CloseHandle( file );
161
162    *_sz = (unsigned) file_size;
163    return  data;
164}
165
166/**************************************************************************/
167/**************************************************************************/
168/*****                                                                *****/
169/*****    common file descriptor handling                             *****/
170/*****                                                                *****/
171/**************************************************************************/
172/**************************************************************************/
173
174typedef struct FHRec_
175{
176    FHClass    clazz;
177    int        used;
178    int        eof;
179    union {
180        HANDLE      handle;
181        SOCKET      socket;
182    } u;
183
184    int       mask;
185
186    char  name[32];
187
188} FHRec;
189
190#define  fh_handle  u.handle
191#define  fh_socket  u.socket
192
193#define  WIN32_FH_BASE    2048
194#define  WIN32_MAX_FHS    2048
195
196static adb_mutex_t   _win32_lock;
197static  FHRec        _win32_fhs[ WIN32_MAX_FHS ];
198static  int          _win32_fh_next;  // where to start search for free FHRec
199
200static FH
201_fh_from_int( int   fd, const char*   func )
202{
203    FH  f;
204
205    fd -= WIN32_FH_BASE;
206
207    if (fd < 0 || fd >= WIN32_MAX_FHS) {
208        D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
209           func );
210        errno = EBADF;
211        return NULL;
212    }
213
214    f = &_win32_fhs[fd];
215
216    if (f->used == 0) {
217        D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
218           func );
219        errno = EBADF;
220        return NULL;
221    }
222
223    return f;
224}
225
226
227static int
228_fh_to_int( FH  f )
229{
230    if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
231        return (int)(f - _win32_fhs) + WIN32_FH_BASE;
232
233    return -1;
234}
235
236static FH
237_fh_alloc( FHClass  clazz )
238{
239    FH   f = NULL;
240
241    adb_mutex_lock( &_win32_lock );
242
243    for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) {
244        if (_win32_fhs[i].clazz == NULL) {
245            f = &_win32_fhs[i];
246            _win32_fh_next = i + 1;
247            goto Exit;
248        }
249    }
250    D( "_fh_alloc: no more free file descriptors" );
251    errno = EMFILE;   // Too many open files
252Exit:
253    if (f) {
254        f->clazz   = clazz;
255        f->used    = 1;
256        f->eof     = 0;
257        f->name[0] = '\0';
258        clazz->_fh_init(f);
259    }
260    adb_mutex_unlock( &_win32_lock );
261    return f;
262}
263
264
265static int
266_fh_close( FH   f )
267{
268    // Use lock so that closing only happens once and so that _fh_alloc can't
269    // allocate a FH that we're in the middle of closing.
270    adb_mutex_lock(&_win32_lock);
271
272    int offset = f - _win32_fhs;
273    if (_win32_fh_next > offset) {
274        _win32_fh_next = offset;
275    }
276
277    if (f->used) {
278        f->clazz->_fh_close( f );
279        f->name[0] = '\0';
280        f->eof     = 0;
281        f->used    = 0;
282        f->clazz   = NULL;
283    }
284    adb_mutex_unlock(&_win32_lock);
285    return 0;
286}
287
288// Deleter for unique_fh.
289class fh_deleter {
290 public:
291  void operator()(struct FHRec_* fh) {
292    // We're called from a destructor and destructors should not overwrite
293    // errno because callers may do:
294    //   errno = EBLAH;
295    //   return -1; // calls destructor, which should not overwrite errno
296    const int saved_errno = errno;
297    _fh_close(fh);
298    errno = saved_errno;
299  }
300};
301
302// Like std::unique_ptr, but calls _fh_close() instead of operator delete().
303typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
304
305/**************************************************************************/
306/**************************************************************************/
307/*****                                                                *****/
308/*****    file-based descriptor handling                              *****/
309/*****                                                                *****/
310/**************************************************************************/
311/**************************************************************************/
312
313static void _fh_file_init( FH  f ) {
314    f->fh_handle = INVALID_HANDLE_VALUE;
315}
316
317static int _fh_file_close( FH  f ) {
318    CloseHandle( f->fh_handle );
319    f->fh_handle = INVALID_HANDLE_VALUE;
320    return 0;
321}
322
323static int _fh_file_read( FH  f,  void*  buf, int   len ) {
324    DWORD  read_bytes;
325
326    if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) {
327        D( "adb_read: could not read %d bytes from %s", len, f->name );
328        errno = EIO;
329        return -1;
330    } else if (read_bytes < (DWORD)len) {
331        f->eof = 1;
332    }
333    return (int)read_bytes;
334}
335
336static int _fh_file_write( FH  f,  const void*  buf, int   len ) {
337    DWORD  wrote_bytes;
338
339    if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) {
340        D( "adb_file_write: could not write %d bytes from %s", len, f->name );
341        errno = EIO;
342        return -1;
343    } else if (wrote_bytes < (DWORD)len) {
344        f->eof = 1;
345    }
346    return  (int)wrote_bytes;
347}
348
349static int _fh_file_lseek( FH  f, int  pos, int  origin ) {
350    DWORD  method;
351    DWORD  result;
352
353    switch (origin)
354    {
355        case SEEK_SET:  method = FILE_BEGIN; break;
356        case SEEK_CUR:  method = FILE_CURRENT; break;
357        case SEEK_END:  method = FILE_END; break;
358        default:
359            errno = EINVAL;
360            return -1;
361    }
362
363    result = SetFilePointer( f->fh_handle, pos, NULL, method );
364    if (result == INVALID_SET_FILE_POINTER) {
365        errno = EIO;
366        return -1;
367    } else {
368        f->eof = 0;
369    }
370    return (int)result;
371}
372
373
374/**************************************************************************/
375/**************************************************************************/
376/*****                                                                *****/
377/*****    file-based descriptor handling                              *****/
378/*****                                                                *****/
379/**************************************************************************/
380/**************************************************************************/
381
382int  adb_open(const char*  path, int  options)
383{
384    FH  f;
385
386    DWORD  desiredAccess       = 0;
387    DWORD  shareMode           = FILE_SHARE_READ | FILE_SHARE_WRITE;
388
389    switch (options) {
390        case O_RDONLY:
391            desiredAccess = GENERIC_READ;
392            break;
393        case O_WRONLY:
394            desiredAccess = GENERIC_WRITE;
395            break;
396        case O_RDWR:
397            desiredAccess = GENERIC_READ | GENERIC_WRITE;
398            break;
399        default:
400            D("adb_open: invalid options (0x%0x)", options);
401            errno = EINVAL;
402            return -1;
403    }
404
405    f = _fh_alloc( &_fh_file_class );
406    if ( !f ) {
407        return -1;
408    }
409
410    std::wstring path_wide;
411    if (!android::base::UTF8ToWide(path, &path_wide)) {
412        return -1;
413    }
414    f->fh_handle = CreateFileW( path_wide.c_str(), desiredAccess, shareMode,
415                                NULL, OPEN_EXISTING, 0, NULL );
416
417    if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
418        const DWORD err = GetLastError();
419        _fh_close(f);
420        D( "adb_open: could not open '%s': ", path );
421        switch (err) {
422            case ERROR_FILE_NOT_FOUND:
423                D( "file not found" );
424                errno = ENOENT;
425                return -1;
426
427            case ERROR_PATH_NOT_FOUND:
428                D( "path not found" );
429                errno = ENOTDIR;
430                return -1;
431
432            default:
433                D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
434                errno = ENOENT;
435                return -1;
436        }
437    }
438
439    snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
440    D( "adb_open: '%s' => fd %d", path, _fh_to_int(f) );
441    return _fh_to_int(f);
442}
443
444/* ignore mode on Win32 */
445int  adb_creat(const char*  path, int  mode)
446{
447    FH  f;
448
449    f = _fh_alloc( &_fh_file_class );
450    if ( !f ) {
451        return -1;
452    }
453
454    std::wstring path_wide;
455    if (!android::base::UTF8ToWide(path, &path_wide)) {
456        return -1;
457    }
458    f->fh_handle = CreateFileW( path_wide.c_str(), GENERIC_WRITE,
459                                FILE_SHARE_READ | FILE_SHARE_WRITE,
460                                NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
461                                NULL );
462
463    if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
464        const DWORD err = GetLastError();
465        _fh_close(f);
466        D( "adb_creat: could not open '%s': ", path );
467        switch (err) {
468            case ERROR_FILE_NOT_FOUND:
469                D( "file not found" );
470                errno = ENOENT;
471                return -1;
472
473            case ERROR_PATH_NOT_FOUND:
474                D( "path not found" );
475                errno = ENOTDIR;
476                return -1;
477
478            default:
479                D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
480                errno = ENOENT;
481                return -1;
482        }
483    }
484    snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
485    D( "adb_creat: '%s' => fd %d", path, _fh_to_int(f) );
486    return _fh_to_int(f);
487}
488
489
490int  adb_read(int  fd, void* buf, int len)
491{
492    FH     f = _fh_from_int(fd, __func__);
493
494    if (f == NULL) {
495        return -1;
496    }
497
498    return f->clazz->_fh_read( f, buf, len );
499}
500
501
502int  adb_write(int  fd, const void*  buf, int  len)
503{
504    FH     f = _fh_from_int(fd, __func__);
505
506    if (f == NULL) {
507        return -1;
508    }
509
510    return f->clazz->_fh_write(f, buf, len);
511}
512
513
514int  adb_lseek(int  fd, int  pos, int  where)
515{
516    FH     f = _fh_from_int(fd, __func__);
517
518    if (!f) {
519        return -1;
520    }
521
522    return f->clazz->_fh_lseek(f, pos, where);
523}
524
525
526int  adb_close(int  fd)
527{
528    FH   f = _fh_from_int(fd, __func__);
529
530    if (!f) {
531        return -1;
532    }
533
534    D( "adb_close: %s", f->name);
535    _fh_close(f);
536    return 0;
537}
538
539// Overrides strerror() to handle error codes not supported by the Windows C
540// Runtime (MSVCRT.DLL).
541char* adb_strerror(int err) {
542    // sysdeps.h defines strerror to adb_strerror, but in this function, we
543    // want to call the real C Runtime strerror().
544#pragma push_macro("strerror")
545#undef strerror
546    const int saved_err = errno;      // Save because we overwrite it later.
547
548    // Lookup the string for an unknown error.
549    char* errmsg = strerror(-1);
550    const std::string unknown_error = (errmsg == nullptr) ? "" : errmsg;
551
552    // Lookup the string for this error to see if the C Runtime has it.
553    errmsg = strerror(err);
554    if (errmsg != nullptr && unknown_error != errmsg) {
555        // The CRT returned an error message and it is different than the error
556        // message for an unknown error, so it is probably valid, so use it.
557    } else {
558        // Check if we have a string for this error code.
559        const char* custom_msg = nullptr;
560        switch (err) {
561#pragma push_macro("ERR")
562#undef ERR
563#define ERR(errnum, desc) case errnum: custom_msg = desc; break
564            // These error strings are from AOSP bionic/libc/include/sys/_errdefs.h.
565            // Note that these cannot be longer than 94 characters because we
566            // pass this to _strerror() which has that requirement.
567            ERR(ECONNRESET,    "Connection reset by peer");
568            ERR(EHOSTUNREACH,  "No route to host");
569            ERR(ENETDOWN,      "Network is down");
570            ERR(ENETRESET,     "Network dropped connection because of reset");
571            ERR(ENOBUFS,       "No buffer space available");
572            ERR(ENOPROTOOPT,   "Protocol not available");
573            ERR(ENOTCONN,      "Transport endpoint is not connected");
574            ERR(ENOTSOCK,      "Socket operation on non-socket");
575            ERR(EOPNOTSUPP,    "Operation not supported on transport endpoint");
576#pragma pop_macro("ERR")
577        }
578
579        if (custom_msg != nullptr) {
580            // Use _strerror() to write our string into the writable per-thread
581            // buffer used by strerror()/_strerror(). _strerror() appends the
582            // msg for the current value of errno, so set errno to a consistent
583            // value for every call so that our code-path is always the same.
584            errno = 0;
585            errmsg = _strerror(custom_msg);
586            const size_t custom_msg_len = strlen(custom_msg);
587            // Just in case _strerror() returned a read-only string, check if
588            // the returned string starts with our custom message because that
589            // implies that the string is not read-only.
590            if ((errmsg != nullptr) &&
591                !strncmp(custom_msg, errmsg, custom_msg_len)) {
592                // _strerror() puts other text after our custom message, so
593                // remove that by terminating after our message.
594                errmsg[custom_msg_len] = '\0';
595            } else {
596                // For some reason nullptr was returned or a pointer to a
597                // read-only string was returned, so fallback to whatever
598                // strerror() can muster (probably "Unknown error" or some
599                // generic CRT error string).
600                errmsg = strerror(err);
601            }
602        } else {
603            // We don't have a custom message, so use whatever strerror(err)
604            // returned earlier.
605        }
606    }
607
608    errno = saved_err;  // restore
609
610    return errmsg;
611#pragma pop_macro("strerror")
612}
613
614/**************************************************************************/
615/**************************************************************************/
616/*****                                                                *****/
617/*****    socket-based file descriptors                               *****/
618/*****                                                                *****/
619/**************************************************************************/
620/**************************************************************************/
621
622#undef setsockopt
623
624static void _socket_set_errno( const DWORD err ) {
625    // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a
626    // lot of POSIX and socket error codes, some of the resulting error codes
627    // are mapped to strings by adb_strerror() above.
628    switch ( err ) {
629    case 0:              errno = 0; break;
630    // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use.
631    // case WSAEINTR:    errno = EINTR; break;
632    case WSAEFAULT:      errno = EFAULT; break;
633    case WSAEINVAL:      errno = EINVAL; break;
634    case WSAEMFILE:      errno = EMFILE; break;
635    // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because
636    // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and
637    // callers check specifically for EAGAIN.
638    case WSAEWOULDBLOCK: errno = EAGAIN; break;
639    case WSAENOTSOCK:    errno = ENOTSOCK; break;
640    case WSAENOPROTOOPT: errno = ENOPROTOOPT; break;
641    case WSAEOPNOTSUPP:  errno = EOPNOTSUPP; break;
642    case WSAENETDOWN:    errno = ENETDOWN; break;
643    case WSAENETRESET:   errno = ENETRESET; break;
644    // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems
645    // to use EPIPE for these situations and there are some callers that look
646    // for EPIPE.
647    case WSAECONNABORTED: errno = EPIPE; break;
648    case WSAECONNRESET:  errno = ECONNRESET; break;
649    case WSAENOBUFS:     errno = ENOBUFS; break;
650    case WSAENOTCONN:    errno = ENOTCONN; break;
651    // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or
652    // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future
653    // considerations: Reportedly send() can return zero on timeout, and POSIX
654    // code may expect EAGAIN instead of ETIMEDOUT on timeout.
655    // case WSAETIMEDOUT: errno = ETIMEDOUT; break;
656    case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break;
657    default:
658        errno = EINVAL;
659        D( "_socket_set_errno: mapping Windows error code %lu to errno %d",
660           err, errno );
661    }
662}
663
664extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) {
665    // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves.
666    int skipped = 0;
667    std::vector<WSAPOLLFD> sockets;
668    std::vector<adb_pollfd*> original;
669    for (size_t i = 0; i < nfds; ++i) {
670        FH fh = _fh_from_int(fds[i].fd, __func__);
671        if (!fh || !fh->used || fh->clazz != &_fh_socket_class) {
672            D("adb_poll received bad FD %d", fds[i].fd);
673            fds[i].revents = POLLNVAL;
674            ++skipped;
675        } else {
676            WSAPOLLFD wsapollfd = {
677                .fd = fh->u.socket,
678                .events = static_cast<short>(fds[i].events)
679            };
680            sockets.push_back(wsapollfd);
681            original.push_back(&fds[i]);
682        }
683    }
684
685    if (sockets.empty()) {
686        return skipped;
687    }
688
689    int result = WSAPoll(sockets.data(), sockets.size(), timeout);
690    if (result == SOCKET_ERROR) {
691        _socket_set_errno(WSAGetLastError());
692        return -1;
693    }
694
695    // Map the results back onto the original set.
696    for (size_t i = 0; i < sockets.size(); ++i) {
697        original[i]->revents = sockets[i].revents;
698    }
699
700    // WSAPoll appears to return the number of unique FDs with avaiable events, instead of how many
701    // of the pollfd elements have a non-zero revents field, which is what it and poll are specified
702    // to do. Ignore its result and calculate the proper return value.
703    result = 0;
704    for (size_t i = 0; i < nfds; ++i) {
705        if (fds[i].revents != 0) {
706            ++result;
707        }
708    }
709    return result;
710}
711
712static void _fh_socket_init(FH f) {
713    f->fh_socket = INVALID_SOCKET;
714    f->mask      = 0;
715}
716
717static int _fh_socket_close( FH  f ) {
718    if (f->fh_socket != INVALID_SOCKET) {
719        /* gently tell any peer that we're closing the socket */
720        if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
721            // If the socket is not connected, this returns an error. We want to
722            // minimize logging spam, so don't log these errors for now.
723#if 0
724            D("socket shutdown failed: %s",
725              android::base::SystemErrorCodeToString(WSAGetLastError()).c_str());
726#endif
727        }
728        if (closesocket(f->fh_socket) == SOCKET_ERROR) {
729            // Don't set errno here, since adb_close will ignore it.
730            const DWORD err = WSAGetLastError();
731            D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str());
732        }
733        f->fh_socket = INVALID_SOCKET;
734    }
735    f->mask = 0;
736    return 0;
737}
738
739static int _fh_socket_lseek( FH  f, int pos, int origin ) {
740    errno = EPIPE;
741    return -1;
742}
743
744static int _fh_socket_read(FH f, void* buf, int len) {
745    int  result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
746    if (result == SOCKET_ERROR) {
747        const DWORD err = WSAGetLastError();
748        // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
749        // that to reduce spam and confusion.
750        if (err != WSAEWOULDBLOCK) {
751            D("recv fd %d failed: %s", _fh_to_int(f),
752              android::base::SystemErrorCodeToString(err).c_str());
753        }
754        _socket_set_errno(err);
755        result = -1;
756    }
757    return  result;
758}
759
760static int _fh_socket_write(FH f, const void* buf, int len) {
761    int  result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
762    if (result == SOCKET_ERROR) {
763        const DWORD err = WSAGetLastError();
764        // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
765        // that to reduce spam and confusion.
766        if (err != WSAEWOULDBLOCK) {
767            D("send fd %d failed: %s", _fh_to_int(f),
768              android::base::SystemErrorCodeToString(err).c_str());
769        }
770        _socket_set_errno(err);
771        result = -1;
772    } else {
773        // According to https://code.google.com/p/chromium/issues/detail?id=27870
774        // Winsock Layered Service Providers may cause this.
775        CHECK_LE(result, len) << "Tried to write " << len << " bytes to "
776                              << f->name << ", but " << result
777                              << " bytes reportedly written";
778    }
779    return result;
780}
781
782/**************************************************************************/
783/**************************************************************************/
784/*****                                                                *****/
785/*****    replacement for libs/cutils/socket_xxxx.c                   *****/
786/*****                                                                *****/
787/**************************************************************************/
788/**************************************************************************/
789
790#include <winsock2.h>
791
792static int  _winsock_init;
793
794static void
795_init_winsock( void )
796{
797    // TODO: Multiple threads calling this may potentially cause multiple calls
798    // to WSAStartup() which offers no real benefit.
799    if (!_winsock_init) {
800        WSADATA  wsaData;
801        int      rc = WSAStartup( MAKEWORD(2,2), &wsaData);
802        if (rc != 0) {
803            fatal("adb: could not initialize Winsock: %s",
804                  android::base::SystemErrorCodeToString(rc).c_str());
805        }
806        _winsock_init = 1;
807
808        // Note that we do not call atexit() to register WSACleanup to be called
809        // at normal process termination because:
810        // 1) When exit() is called, there are still threads actively using
811        //    Winsock because we don't cleanly shutdown all threads, so it
812        //    doesn't make sense to call WSACleanup() and may cause problems
813        //    with those threads.
814        // 2) A deadlock can occur when exit() holds a C Runtime lock, then it
815        //    calls WSACleanup() which tries to unload a DLL, which tries to
816        //    grab the LoaderLock. This conflicts with the device_poll_thread
817        //    which holds the LoaderLock because AdbWinApi.dll calls
818        //    setupapi.dll which tries to load wintrust.dll which tries to load
819        //    crypt32.dll which calls atexit() which tries to acquire the C
820        //    Runtime lock that the other thread holds.
821    }
822}
823
824// Map a socket type to an explicit socket protocol instead of using the socket
825// protocol of 0. Explicit socket protocols are used by most apps and we should
826// do the same to reduce the chance of exercising uncommon code-paths that might
827// have problems or that might load different Winsock service providers that
828// have problems.
829static int GetSocketProtocolFromSocketType(int type) {
830    switch (type) {
831        case SOCK_STREAM:
832            return IPPROTO_TCP;
833        case SOCK_DGRAM:
834            return IPPROTO_UDP;
835        default:
836            LOG(FATAL) << "Unknown socket type: " << type;
837            return 0;
838    }
839}
840
841int network_loopback_client(int port, int type, std::string* error) {
842    struct sockaddr_in addr;
843    SOCKET s;
844
845    unique_fh f(_fh_alloc(&_fh_socket_class));
846    if (!f) {
847        *error = strerror(errno);
848        return -1;
849    }
850
851    if (!_winsock_init) _init_winsock();
852
853    memset(&addr, 0, sizeof(addr));
854    addr.sin_family = AF_INET;
855    addr.sin_port = htons(port);
856    addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
857
858    s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
859    if (s == INVALID_SOCKET) {
860        const DWORD err = WSAGetLastError();
861        *error = android::base::StringPrintf("cannot create socket: %s",
862                                             android::base::SystemErrorCodeToString(err).c_str());
863        D("%s", error->c_str());
864        _socket_set_errno(err);
865        return -1;
866    }
867    f->fh_socket = s;
868
869    if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
870        // Save err just in case inet_ntoa() or ntohs() changes the last error.
871        const DWORD err = WSAGetLastError();
872        *error = android::base::StringPrintf("cannot connect to %s:%u: %s",
873                                             inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
874                                             android::base::SystemErrorCodeToString(err).c_str());
875        D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
876          error->c_str());
877        _socket_set_errno(err);
878        return -1;
879    }
880
881    const int fd = _fh_to_int(f.get());
882    snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
883             port);
884    D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
885    f.release();
886    return fd;
887}
888
889#define LISTEN_BACKLOG 4
890
891// interface_address is INADDR_LOOPBACK or INADDR_ANY.
892static int _network_server(int port, int type, u_long interface_address, std::string* error) {
893    struct sockaddr_in addr;
894    SOCKET s;
895    int n;
896
897    unique_fh f(_fh_alloc(&_fh_socket_class));
898    if (!f) {
899        *error = strerror(errno);
900        return -1;
901    }
902
903    if (!_winsock_init) _init_winsock();
904
905    memset(&addr, 0, sizeof(addr));
906    addr.sin_family = AF_INET;
907    addr.sin_port = htons(port);
908    addr.sin_addr.s_addr = htonl(interface_address);
909
910    // TODO: Consider using dual-stack socket that can simultaneously listen on
911    // IPv4 and IPv6.
912    s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
913    if (s == INVALID_SOCKET) {
914        const DWORD err = WSAGetLastError();
915        *error = android::base::StringPrintf("cannot create socket: %s",
916                                             android::base::SystemErrorCodeToString(err).c_str());
917        D("%s", error->c_str());
918        _socket_set_errno(err);
919        return -1;
920    }
921
922    f->fh_socket = s;
923
924    // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the
925    // same port, so instead use SO_EXCLUSIVEADDRUSE.
926    n = 1;
927    if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) {
928        const DWORD err = WSAGetLastError();
929        *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s",
930                                             android::base::SystemErrorCodeToString(err).c_str());
931        D("%s", error->c_str());
932        _socket_set_errno(err);
933        return -1;
934    }
935
936    if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
937        // Save err just in case inet_ntoa() or ntohs() changes the last error.
938        const DWORD err = WSAGetLastError();
939        *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr),
940                                             ntohs(addr.sin_port),
941                                             android::base::SystemErrorCodeToString(err).c_str());
942        D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
943        _socket_set_errno(err);
944        return -1;
945    }
946    if (type == SOCK_STREAM) {
947        if (listen(s, LISTEN_BACKLOG) == SOCKET_ERROR) {
948            const DWORD err = WSAGetLastError();
949            *error = android::base::StringPrintf(
950                "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str());
951            D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
952              error->c_str());
953            _socket_set_errno(err);
954            return -1;
955        }
956    }
957    const int fd = _fh_to_int(f.get());
958    snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
959             interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "",
960             port);
961    D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
962    f.release();
963    return fd;
964}
965
966int network_loopback_server(int port, int type, std::string* error) {
967    return _network_server(port, type, INADDR_LOOPBACK, error);
968}
969
970int network_inaddr_any_server(int port, int type, std::string* error) {
971    return _network_server(port, type, INADDR_ANY, error);
972}
973
974int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
975    unique_fh f(_fh_alloc(&_fh_socket_class));
976    if (!f) {
977        *error = strerror(errno);
978        return -1;
979    }
980
981    if (!_winsock_init) _init_winsock();
982
983    struct addrinfo hints;
984    memset(&hints, 0, sizeof(hints));
985    hints.ai_family = AF_UNSPEC;
986    hints.ai_socktype = type;
987    hints.ai_protocol = GetSocketProtocolFromSocketType(type);
988
989    char port_str[16];
990    snprintf(port_str, sizeof(port_str), "%d", port);
991
992    struct addrinfo* addrinfo_ptr = nullptr;
993
994#if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03)
995// TODO: When the Android SDK tools increases the Windows system
996// requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW().
997#else
998// Otherwise, keep using getaddrinfo(), or do runtime API detection
999// with GetProcAddress("GetAddrInfoW").
1000#endif
1001    if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
1002        const DWORD err = WSAGetLastError();
1003        *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s",
1004                                             host.c_str(), port_str,
1005                                             android::base::SystemErrorCodeToString(err).c_str());
1006
1007        D("%s", error->c_str());
1008        _socket_set_errno(err);
1009        return -1;
1010    }
1011    std::unique_ptr<struct addrinfo, decltype(freeaddrinfo)*> addrinfo(addrinfo_ptr, freeaddrinfo);
1012    addrinfo_ptr = nullptr;
1013
1014    // TODO: Try all the addresses if there's more than one? This just uses
1015    // the first. Or, could call WSAConnectByName() (Windows Vista and newer)
1016    // which tries all addresses, takes a timeout and more.
1017    SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol);
1018    if (s == INVALID_SOCKET) {
1019        const DWORD err = WSAGetLastError();
1020        *error = android::base::StringPrintf("cannot create socket: %s",
1021                                             android::base::SystemErrorCodeToString(err).c_str());
1022        D("%s", error->c_str());
1023        _socket_set_errno(err);
1024        return -1;
1025    }
1026    f->fh_socket = s;
1027
1028    // TODO: Implement timeouts for Windows. Seems like the default in theory
1029    // (according to http://serverfault.com/a/671453) and in practice is 21 sec.
1030    if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
1031        // TODO: Use WSAAddressToString or inet_ntop on address.
1032        const DWORD err = WSAGetLastError();
1033        *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str,
1034                                             android::base::SystemErrorCodeToString(err).c_str());
1035        D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(),
1036          port_str, error->c_str());
1037        _socket_set_errno(err);
1038        return -1;
1039    }
1040
1041    const int fd = _fh_to_int(f.get());
1042    snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
1043             port);
1044    D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp",
1045      fd);
1046    f.release();
1047    return fd;
1048}
1049
1050#undef accept
1051int  adb_socket_accept(int  serverfd, struct sockaddr*  addr, socklen_t  *addrlen)
1052{
1053    FH   serverfh = _fh_from_int(serverfd, __func__);
1054
1055    if ( !serverfh || serverfh->clazz != &_fh_socket_class ) {
1056        D("adb_socket_accept: invalid fd %d", serverfd);
1057        errno = EBADF;
1058        return -1;
1059    }
1060
1061    unique_fh fh(_fh_alloc( &_fh_socket_class ));
1062    if (!fh) {
1063        PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
1064                       "descriptor";
1065        return -1;
1066    }
1067
1068    fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen );
1069    if (fh->fh_socket == INVALID_SOCKET) {
1070        const DWORD err = WSAGetLastError();
1071        LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd <<
1072                      " failed: " + android::base::SystemErrorCodeToString(err);
1073        _socket_set_errno( err );
1074        return -1;
1075    }
1076
1077    const int fd = _fh_to_int(fh.get());
1078    snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name );
1079    D( "adb_socket_accept on fd %d returns fd %d", serverfd, fd );
1080    fh.release();
1081    return  fd;
1082}
1083
1084
1085int  adb_setsockopt( int  fd, int  level, int  optname, const void*  optval, socklen_t  optlen )
1086{
1087    FH   fh = _fh_from_int(fd, __func__);
1088
1089    if ( !fh || fh->clazz != &_fh_socket_class ) {
1090        D("adb_setsockopt: invalid fd %d", fd);
1091        errno = EBADF;
1092        return -1;
1093    }
1094
1095    // TODO: Once we can assume Windows Vista or later, if the caller is trying
1096    // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has
1097    // auto-tuning.
1098
1099    int result = setsockopt( fh->fh_socket, level, optname,
1100                             reinterpret_cast<const char*>(optval), optlen );
1101    if ( result == SOCKET_ERROR ) {
1102        const DWORD err = WSAGetLastError();
1103        D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n",
1104          fd, level, optname, android::base::SystemErrorCodeToString(err).c_str());
1105        _socket_set_errno( err );
1106        result = -1;
1107    }
1108    return result;
1109}
1110
1111int adb_getsockname(int fd, struct sockaddr* sockaddr, socklen_t* optlen) {
1112    FH fh = _fh_from_int(fd, __func__);
1113
1114    if (!fh || fh->clazz != &_fh_socket_class) {
1115        D("adb_getsockname: invalid fd %d", fd);
1116        errno = EBADF;
1117        return -1;
1118    }
1119
1120    int result = getsockname(fh->fh_socket, sockaddr, optlen);
1121    if (result == SOCKET_ERROR) {
1122        const DWORD err = WSAGetLastError();
1123        D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd,
1124          android::base::SystemErrorCodeToString(err).c_str());
1125        _socket_set_errno(err);
1126        result = -1;
1127    }
1128    return result;
1129}
1130
1131int  adb_shutdown(int  fd)
1132{
1133    FH   f = _fh_from_int(fd, __func__);
1134
1135    if (!f || f->clazz != &_fh_socket_class) {
1136        D("adb_shutdown: invalid fd %d", fd);
1137        errno = EBADF;
1138        return -1;
1139    }
1140
1141    D( "adb_shutdown: %s", f->name);
1142    if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
1143        const DWORD err = WSAGetLastError();
1144        D("socket shutdown fd %d failed: %s", fd,
1145          android::base::SystemErrorCodeToString(err).c_str());
1146        _socket_set_errno(err);
1147        return -1;
1148    }
1149    return 0;
1150}
1151
1152// Emulate socketpair(2) by binding and connecting to a socket.
1153int adb_socketpair(int sv[2]) {
1154    int server = -1;
1155    int client = -1;
1156    int accepted = -1;
1157    sockaddr_storage addr_storage;
1158    socklen_t addr_len = sizeof(addr_storage);
1159    sockaddr_in* addr = nullptr;
1160    std::string error;
1161
1162    server = network_loopback_server(0, SOCK_STREAM, &error);
1163    if (server < 0) {
1164        D("adb_socketpair: failed to create server: %s", error.c_str());
1165        goto fail;
1166    }
1167
1168    if (adb_getsockname(server, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) {
1169        D("adb_socketpair: adb_getsockname failed: %s", strerror(errno));
1170        goto fail;
1171    }
1172
1173    if (addr_storage.ss_family != AF_INET) {
1174        D("adb_socketpair: unknown address family received: %d", addr_storage.ss_family);
1175        errno = ECONNABORTED;
1176        goto fail;
1177    }
1178
1179    addr = reinterpret_cast<sockaddr_in*>(&addr_storage);
1180    D("adb_socketpair: bound on port %d", ntohs(addr->sin_port));
1181    client = network_loopback_client(ntohs(addr->sin_port), SOCK_STREAM, &error);
1182    if (client < 0) {
1183        D("adb_socketpair: failed to connect client: %s", error.c_str());
1184        goto fail;
1185    }
1186
1187    accepted = adb_socket_accept(server, nullptr, nullptr);
1188    if (accepted < 0) {
1189        D("adb_socketpair: failed to accept: %s", strerror(errno));
1190        goto fail;
1191    }
1192    adb_close(server);
1193    sv[0] = client;
1194    sv[1] = accepted;
1195    return 0;
1196
1197fail:
1198    if (server >= 0) {
1199        adb_close(server);
1200    }
1201    if (client >= 0) {
1202        adb_close(client);
1203    }
1204    if (accepted >= 0) {
1205        adb_close(accepted);
1206    }
1207    return -1;
1208}
1209
1210bool set_file_block_mode(int fd, bool block) {
1211    FH fh = _fh_from_int(fd, __func__);
1212
1213    if (!fh || !fh->used) {
1214        errno = EBADF;
1215        return false;
1216    }
1217
1218    if (fh->clazz == &_fh_socket_class) {
1219        u_long x = !block;
1220        if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) {
1221            _socket_set_errno(WSAGetLastError());
1222            return false;
1223        }
1224        return true;
1225    } else {
1226        errno = ENOTSOCK;
1227        return false;
1228    }
1229}
1230
1231bool set_tcp_keepalive(int fd, int interval_sec) {
1232    FH fh = _fh_from_int(fd, __func__);
1233
1234    if (!fh || fh->clazz != &_fh_socket_class) {
1235        D("set_tcp_keepalive(%d) failed: invalid fd", fd);
1236        errno = EBADF;
1237        return false;
1238    }
1239
1240    tcp_keepalive keepalive;
1241    keepalive.onoff = (interval_sec > 0);
1242    keepalive.keepalivetime = interval_sec * 1000;
1243    keepalive.keepaliveinterval = interval_sec * 1000;
1244
1245    DWORD bytes_returned = 0;
1246    if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0,
1247                 &bytes_returned, nullptr, nullptr) != 0) {
1248        const DWORD err = WSAGetLastError();
1249        D("set_tcp_keepalive(%d) failed: %s", fd,
1250          android::base::SystemErrorCodeToString(err).c_str());
1251        _socket_set_errno(err);
1252        return false;
1253    }
1254
1255    return true;
1256}
1257
1258static adb_mutex_t g_console_output_buffer_lock;
1259
1260void
1261adb_sysdeps_init( void )
1262{
1263#define  ADB_MUTEX(x)  InitializeCriticalSection( & x );
1264#include "mutex_list.h"
1265    InitializeCriticalSection( &_win32_lock );
1266    InitializeCriticalSection( &g_console_output_buffer_lock );
1267}
1268
1269/**************************************************************************/
1270/**************************************************************************/
1271/*****                                                                *****/
1272/*****      Console Window Terminal Emulation                         *****/
1273/*****                                                                *****/
1274/**************************************************************************/
1275/**************************************************************************/
1276
1277// This reads input from a Win32 console window and translates it into Unix
1278// terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
1279// mode, not Application mode), which itself emulates xterm. Gnome Terminal
1280// is emulated instead of xterm because it is probably more popular than xterm:
1281// Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
1282// supports modern fonts, etc. It seems best to emulate the terminal that most
1283// Android developers use because they'll fix apps (the shell, etc.) to keep
1284// working with that terminal's emulation.
1285//
1286// The point of this emulation is not to be perfect or to solve all issues with
1287// console windows on Windows, but to be better than the original code which
1288// just called read() (which called ReadFile(), which called ReadConsoleA())
1289// which did not support Ctrl-C, tab completion, shell input line editing
1290// keys, server echo, and more.
1291//
1292// This implementation reconfigures the console with SetConsoleMode(), then
1293// calls ReadConsoleInput() to get raw input which it remaps to Unix
1294// terminal-style sequences which is returned via unix_read() which is used
1295// by the 'adb shell' command.
1296//
1297// Code organization:
1298//
1299// * _get_console_handle() and unix_isatty() provide console information.
1300// * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
1301// * unix_read() detects console windows (as opposed to pipes, files, etc.).
1302// * _console_read() is the main code of the emulation.
1303
1304// Returns a console HANDLE if |fd| is a console, otherwise returns nullptr.
1305// If a valid HANDLE is returned and |mode| is not null, |mode| is also filled
1306// with the console mode. Requires GENERIC_READ access to the underlying HANDLE.
1307static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) {
1308    // First check isatty(); this is very fast and eliminates most non-console
1309    // FDs, but returns 1 for both consoles and character devices like NUL.
1310#pragma push_macro("isatty")
1311#undef isatty
1312    if (!isatty(fd)) {
1313        return nullptr;
1314    }
1315#pragma pop_macro("isatty")
1316
1317    // To differentiate between character devices and consoles we need to get
1318    // the underlying HANDLE and use GetConsoleMode(), which is what requires
1319    // GENERIC_READ permissions.
1320    const intptr_t intptr_handle = _get_osfhandle(fd);
1321    if (intptr_handle == -1) {
1322        return nullptr;
1323    }
1324    const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
1325    DWORD temp_mode = 0;
1326    if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) {
1327        return nullptr;
1328    }
1329
1330    return handle;
1331}
1332
1333// Returns a console handle if |stream| is a console, otherwise returns nullptr.
1334static HANDLE _get_console_handle(FILE* const stream) {
1335    // Save and restore errno to make it easier for callers to prevent from overwriting errno.
1336    android::base::ErrnoRestorer er;
1337    const int fd = fileno(stream);
1338    if (fd < 0) {
1339        return nullptr;
1340    }
1341    return _get_console_handle(fd);
1342}
1343
1344int unix_isatty(int fd) {
1345    return _get_console_handle(fd) ? 1 : 0;
1346}
1347
1348// Get the next KEY_EVENT_RECORD that should be processed.
1349static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) {
1350    for (;;) {
1351        DWORD read_count = 0;
1352        memset(input_record, 0, sizeof(*input_record));
1353        if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
1354            D("_get_key_event_record: ReadConsoleInputA() failed: %s\n",
1355              android::base::SystemErrorCodeToString(GetLastError()).c_str());
1356            errno = EIO;
1357            return false;
1358        }
1359
1360        if (read_count == 0) {   // should be impossible
1361            fatal("ReadConsoleInputA returned 0");
1362        }
1363
1364        if (read_count != 1) {   // should be impossible
1365            fatal("ReadConsoleInputA did not return one input record");
1366        }
1367
1368        // If the console window is resized, emulate SIGWINCH by breaking out
1369        // of read() with errno == EINTR. Note that there is no event on
1370        // vertical resize because we don't give the console our own custom
1371        // screen buffer (with CreateConsoleScreenBuffer() +
1372        // SetConsoleActiveScreenBuffer()). Instead, we use the default which
1373        // supports scrollback, but doesn't seem to raise an event for vertical
1374        // window resize.
1375        if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) {
1376            errno = EINTR;
1377            return false;
1378        }
1379
1380        if ((input_record->EventType == KEY_EVENT) &&
1381            (input_record->Event.KeyEvent.bKeyDown)) {
1382            if (input_record->Event.KeyEvent.wRepeatCount == 0) {
1383                fatal("ReadConsoleInputA returned a key event with zero repeat"
1384                      " count");
1385            }
1386
1387            // Got an interesting INPUT_RECORD, so return
1388            return true;
1389        }
1390    }
1391}
1392
1393static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
1394    return (control_key_state & SHIFT_PRESSED) != 0;
1395}
1396
1397static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
1398    return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
1399}
1400
1401static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
1402    return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
1403}
1404
1405static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
1406    return (control_key_state & NUMLOCK_ON) != 0;
1407}
1408
1409static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
1410    return (control_key_state & CAPSLOCK_ON) != 0;
1411}
1412
1413static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
1414    return (control_key_state & ENHANCED_KEY) != 0;
1415}
1416
1417// Constants from MSDN for ToAscii().
1418static const BYTE TOASCII_KEY_OFF = 0x00;
1419static const BYTE TOASCII_KEY_DOWN = 0x80;
1420static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01;   // for CapsLock
1421
1422// Given a key event, ignore a modifier key and return the character that was
1423// entered without the modifier. Writes to *ch and returns the number of bytes
1424// written.
1425static size_t _get_char_ignoring_modifier(char* const ch,
1426    const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
1427    const WORD modifier) {
1428    // If there is no character from Windows, try ignoring the specified
1429    // modifier and look for a character. Note that if AltGr is being used,
1430    // there will be a character from Windows.
1431    if (key_event->uChar.AsciiChar == '\0') {
1432        // Note that we read the control key state from the passed in argument
1433        // instead of from key_event since the argument has been normalized.
1434        if (((modifier == VK_SHIFT)   &&
1435            _is_shift_pressed(control_key_state)) ||
1436            ((modifier == VK_CONTROL) &&
1437            _is_ctrl_pressed(control_key_state)) ||
1438            ((modifier == VK_MENU)    && _is_alt_pressed(control_key_state))) {
1439
1440            BYTE key_state[256]   = {0};
1441            key_state[VK_SHIFT]   = _is_shift_pressed(control_key_state) ?
1442                TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1443            key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state)  ?
1444                TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1445            key_state[VK_MENU]    = _is_alt_pressed(control_key_state)   ?
1446                TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1447            key_state[VK_CAPITAL] = _is_capslock_on(control_key_state)   ?
1448                TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
1449
1450            // cause this modifier to be ignored
1451            key_state[modifier]   = TOASCII_KEY_OFF;
1452
1453            WORD translated = 0;
1454            if (ToAscii(key_event->wVirtualKeyCode,
1455                key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
1456                // Ignoring the modifier, we found a character.
1457                *ch = (CHAR)translated;
1458                return 1;
1459            }
1460        }
1461    }
1462
1463    // Just use whatever Windows told us originally.
1464    *ch = key_event->uChar.AsciiChar;
1465
1466    // If the character from Windows is NULL, return a size of zero.
1467    return (*ch == '\0') ? 0 : 1;
1468}
1469
1470// If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
1471// but taking into account the shift key. This is because for a sequence like
1472// Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
1473// we want to find the character ')'.
1474//
1475// Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
1476// because it is the default key-sequence to switch the input language.
1477// This is configurable in the Region and Language control panel.
1478static __inline__ size_t _get_non_control_char(char* const ch,
1479    const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1480    return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1481        VK_CONTROL);
1482}
1483
1484// Get without Alt.
1485static __inline__ size_t _get_non_alt_char(char* const ch,
1486    const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1487    return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1488        VK_MENU);
1489}
1490
1491// Ignore the control key, find the character from Windows, and apply any
1492// Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
1493// *pch and returns number of bytes written.
1494static size_t _get_control_character(char* const pch,
1495    const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1496    const size_t len = _get_non_control_char(pch, key_event,
1497        control_key_state);
1498
1499    if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
1500        char ch = *pch;
1501        switch (ch) {
1502        case '2':
1503        case '@':
1504        case '`':
1505            ch = '\0';
1506            break;
1507        case '3':
1508        case '[':
1509        case '{':
1510            ch = '\x1b';
1511            break;
1512        case '4':
1513        case '\\':
1514        case '|':
1515            ch = '\x1c';
1516            break;
1517        case '5':
1518        case ']':
1519        case '}':
1520            ch = '\x1d';
1521            break;
1522        case '6':
1523        case '^':
1524        case '~':
1525            ch = '\x1e';
1526            break;
1527        case '7':
1528        case '-':
1529        case '_':
1530            ch = '\x1f';
1531            break;
1532        case '8':
1533            ch = '\x7f';
1534            break;
1535        case '/':
1536            if (!_is_alt_pressed(control_key_state)) {
1537                ch = '\x1f';
1538            }
1539            break;
1540        case '?':
1541            if (!_is_alt_pressed(control_key_state)) {
1542                ch = '\x7f';
1543            }
1544            break;
1545        }
1546        *pch = ch;
1547    }
1548
1549    return len;
1550}
1551
1552static DWORD _normalize_altgr_control_key_state(
1553    const KEY_EVENT_RECORD* const key_event) {
1554    DWORD control_key_state = key_event->dwControlKeyState;
1555
1556    // If we're in an AltGr situation where the AltGr key is down (depending on
1557    // the keyboard layout, that might be the physical right alt key which
1558    // produces a control_key_state where Right-Alt and Left-Ctrl are down) or
1559    // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
1560    // a character (which indicates that there was an AltGr mapping), then act
1561    // as if alt and control are not really down for the purposes of modifiers.
1562    // This makes it so that if the user with, say, a German keyboard layout
1563    // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
1564    // output the key and we don't see the Alt and Ctrl keys.
1565    if (_is_ctrl_pressed(control_key_state) &&
1566        _is_alt_pressed(control_key_state)
1567        && (key_event->uChar.AsciiChar != '\0')) {
1568        // Try to remove as few bits as possible to improve our chances of
1569        // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
1570        // Left-Alt + Right-Ctrl + AltGr.
1571        if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
1572            // Remove Right-Alt.
1573            control_key_state &= ~RIGHT_ALT_PRESSED;
1574            // If uChar is set, a Ctrl key is pressed, and Right-Alt is
1575            // pressed, Left-Ctrl is almost always set, except if the user
1576            // presses Right-Ctrl, then AltGr (in that specific order) for
1577            // whatever reason. At any rate, make sure the bit is not set.
1578            control_key_state &= ~LEFT_CTRL_PRESSED;
1579        } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
1580            // Remove Left-Alt.
1581            control_key_state &= ~LEFT_ALT_PRESSED;
1582            // Whichever Ctrl key is down, remove it from the state. We only
1583            // remove one key, to improve our chances of detecting the
1584            // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
1585            if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
1586                // Remove Left-Ctrl.
1587                control_key_state &= ~LEFT_CTRL_PRESSED;
1588            } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
1589                // Remove Right-Ctrl.
1590                control_key_state &= ~RIGHT_CTRL_PRESSED;
1591            }
1592        }
1593
1594        // Note that this logic isn't 100% perfect because Windows doesn't
1595        // allow us to detect all combinations because a physical AltGr key
1596        // press shows up as two bits, plus some combinations are ambiguous
1597        // about what is actually physically pressed.
1598    }
1599
1600    return control_key_state;
1601}
1602
1603// If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
1604// dwControlKeyState for the following keypad keys: period, 0-9. If we detect
1605// this scenario, set the SHIFT_PRESSED bit so we can add modifiers
1606// appropriately.
1607static DWORD _normalize_keypad_control_key_state(const WORD vk,
1608    const DWORD control_key_state) {
1609    if (!_is_numlock_on(control_key_state)) {
1610        return control_key_state;
1611    }
1612    if (!_is_enhanced_key(control_key_state)) {
1613        switch (vk) {
1614            case VK_INSERT: // 0
1615            case VK_DELETE: // .
1616            case VK_END:    // 1
1617            case VK_DOWN:   // 2
1618            case VK_NEXT:   // 3
1619            case VK_LEFT:   // 4
1620            case VK_CLEAR:  // 5
1621            case VK_RIGHT:  // 6
1622            case VK_HOME:   // 7
1623            case VK_UP:     // 8
1624            case VK_PRIOR:  // 9
1625                return control_key_state | SHIFT_PRESSED;
1626        }
1627    }
1628
1629    return control_key_state;
1630}
1631
1632static const char* _get_keypad_sequence(const DWORD control_key_state,
1633    const char* const normal, const char* const shifted) {
1634    if (_is_shift_pressed(control_key_state)) {
1635        // Shift is pressed and NumLock is off
1636        return shifted;
1637    } else {
1638        // Shift is not pressed and NumLock is off, or,
1639        // Shift is pressed and NumLock is on, in which case we want the
1640        // NumLock and Shift to neutralize each other, thus, we want the normal
1641        // sequence.
1642        return normal;
1643    }
1644    // If Shift is not pressed and NumLock is on, a different virtual key code
1645    // is returned by Windows, which can be taken care of by a different case
1646    // statement in _console_read().
1647}
1648
1649// Write sequence to buf and return the number of bytes written.
1650static size_t _get_modifier_sequence(char* const buf, const WORD vk,
1651    DWORD control_key_state, const char* const normal) {
1652    // Copy the base sequence into buf.
1653    const size_t len = strlen(normal);
1654    memcpy(buf, normal, len);
1655
1656    int code = 0;
1657
1658    control_key_state = _normalize_keypad_control_key_state(vk,
1659        control_key_state);
1660
1661    if (_is_shift_pressed(control_key_state)) {
1662        code |= 0x1;
1663    }
1664    if (_is_alt_pressed(control_key_state)) {   // any alt key pressed
1665        code |= 0x2;
1666    }
1667    if (_is_ctrl_pressed(control_key_state)) {  // any control key pressed
1668        code |= 0x4;
1669    }
1670    // If some modifier was held down, then we need to insert the modifier code
1671    if (code != 0) {
1672        if (len == 0) {
1673            // Should be impossible because caller should pass a string of
1674            // non-zero length.
1675            return 0;
1676        }
1677        size_t index = len - 1;
1678        const char lastChar = buf[index];
1679        if (lastChar != '~') {
1680            buf[index++] = '1';
1681        }
1682        buf[index++] = ';';         // modifier separator
1683        // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
1684        // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
1685        buf[index++] = '1' + code;
1686        buf[index++] = lastChar;    // move ~ (or other last char) to the end
1687        return index;
1688    }
1689    return len;
1690}
1691
1692// Write sequence to buf and return the number of bytes written.
1693static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
1694    const DWORD control_key_state, const char* const normal,
1695    const char shifted) {
1696    if (_is_shift_pressed(control_key_state)) {
1697        // Shift is pressed and NumLock is off
1698        if (shifted != '\0') {
1699            buf[0] = shifted;
1700            return sizeof(buf[0]);
1701        } else {
1702            return 0;
1703        }
1704    } else {
1705        // Shift is not pressed and NumLock is off, or,
1706        // Shift is pressed and NumLock is on, in which case we want the
1707        // NumLock and Shift to neutralize each other, thus, we want the normal
1708        // sequence.
1709        return _get_modifier_sequence(buf, vk, control_key_state, normal);
1710    }
1711    // If Shift is not pressed and NumLock is on, a different virtual key code
1712    // is returned by Windows, which can be taken care of by a different case
1713    // statement in _console_read().
1714}
1715
1716// The decimal key on the keypad produces a '.' for U.S. English and a ',' for
1717// Standard German. Figure this out at runtime so we know what to output for
1718// Shift-VK_DELETE.
1719static char _get_decimal_char() {
1720    return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
1721}
1722
1723// Prefix the len bytes in buf with the escape character, and then return the
1724// new buffer length.
1725size_t _escape_prefix(char* const buf, const size_t len) {
1726    // If nothing to prefix, don't do anything. We might be called with
1727    // len == 0, if alt was held down with a dead key which produced nothing.
1728    if (len == 0) {
1729        return 0;
1730    }
1731
1732    memmove(&buf[1], buf, len);
1733    buf[0] = '\x1b';
1734    return len + 1;
1735}
1736
1737// Internal buffer to satisfy future _console_read() calls.
1738static auto& g_console_input_buffer = *new std::vector<char>();
1739
1740// Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never
1741// returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell).
1742static int _console_read(const HANDLE console, void* buf, size_t len) {
1743    for (;;) {
1744        // Read of zero bytes should not block waiting for something from the console.
1745        if (len == 0) {
1746            return 0;
1747        }
1748
1749        // Flush as much as possible from input buffer.
1750        if (!g_console_input_buffer.empty()) {
1751            const int bytes_read = std::min(len, g_console_input_buffer.size());
1752            memcpy(buf, g_console_input_buffer.data(), bytes_read);
1753            const auto begin = g_console_input_buffer.begin();
1754            g_console_input_buffer.erase(begin, begin + bytes_read);
1755            return bytes_read;
1756        }
1757
1758        // Read from the actual console. This may block until input.
1759        INPUT_RECORD input_record;
1760        if (!_get_key_event_record(console, &input_record)) {
1761            return -1;
1762        }
1763
1764        KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent;
1765        const WORD vk = key_event->wVirtualKeyCode;
1766        const CHAR ch = key_event->uChar.AsciiChar;
1767        const DWORD control_key_state = _normalize_altgr_control_key_state(
1768            key_event);
1769
1770        // The following emulation code should write the output sequence to
1771        // either seqstr or to seqbuf and seqbuflen.
1772        const char* seqstr = NULL;  // NULL terminated C-string
1773        // Enough space for max sequence string below, plus modifiers and/or
1774        // escape prefix.
1775        char seqbuf[16];
1776        size_t seqbuflen = 0;       // Space used in seqbuf.
1777
1778#define MATCH(vk, normal) \
1779            case (vk): \
1780            { \
1781                seqstr = (normal); \
1782            } \
1783            break;
1784
1785        // Modifier keys should affect the output sequence.
1786#define MATCH_MODIFIER(vk, normal) \
1787            case (vk): \
1788            { \
1789                seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
1790                    control_key_state, (normal)); \
1791            } \
1792            break;
1793
1794        // The shift key should affect the output sequence.
1795#define MATCH_KEYPAD(vk, normal, shifted) \
1796            case (vk): \
1797            { \
1798                seqstr = _get_keypad_sequence(control_key_state, (normal), \
1799                    (shifted)); \
1800            } \
1801            break;
1802
1803        // The shift key and other modifier keys should affect the output
1804        // sequence.
1805#define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
1806            case (vk): \
1807            { \
1808                seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
1809                    control_key_state, (normal), (shifted)); \
1810            } \
1811            break;
1812
1813#define ESC "\x1b"
1814#define CSI ESC "["
1815#define SS3 ESC "O"
1816
1817        // Only support normal mode, not application mode.
1818
1819        // Enhanced keys:
1820        // * 6-pack: insert, delete, home, end, page up, page down
1821        // * cursor keys: up, down, right, left
1822        // * keypad: divide, enter
1823        // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
1824        //   VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
1825        if (_is_enhanced_key(control_key_state)) {
1826            switch (vk) {
1827                case VK_RETURN: // Enter key on keypad
1828                    if (_is_ctrl_pressed(control_key_state)) {
1829                        seqstr = "\n";
1830                    } else {
1831                        seqstr = "\r";
1832                    }
1833                    break;
1834
1835                MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
1836                MATCH_MODIFIER(VK_NEXT,  CSI "6~"); // Page Down
1837
1838                // gnome-terminal currently sends SS3 "F" and SS3 "H", but that
1839                // will be fixed soon to match xterm which sends CSI "F" and
1840                // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
1841                MATCH(VK_END,  CSI "F");
1842                MATCH(VK_HOME, CSI "H");
1843
1844                MATCH_MODIFIER(VK_LEFT,  CSI "D");
1845                MATCH_MODIFIER(VK_UP,    CSI "A");
1846                MATCH_MODIFIER(VK_RIGHT, CSI "C");
1847                MATCH_MODIFIER(VK_DOWN,  CSI "B");
1848
1849                MATCH_MODIFIER(VK_INSERT, CSI "2~");
1850                MATCH_MODIFIER(VK_DELETE, CSI "3~");
1851
1852                MATCH(VK_DIVIDE, "/");
1853            }
1854        } else {    // Non-enhanced keys:
1855            switch (vk) {
1856                case VK_BACK:   // backspace
1857                    if (_is_alt_pressed(control_key_state)) {
1858                        seqstr = ESC "\x7f";
1859                    } else {
1860                        seqstr = "\x7f";
1861                    }
1862                    break;
1863
1864                case VK_TAB:
1865                    if (_is_shift_pressed(control_key_state)) {
1866                        seqstr = CSI "Z";
1867                    } else {
1868                        seqstr = "\t";
1869                    }
1870                    break;
1871
1872                // Number 5 key in keypad when NumLock is off, or if NumLock is
1873                // on and Shift is down.
1874                MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
1875
1876                case VK_RETURN:     // Enter key on main keyboard
1877                    if (_is_alt_pressed(control_key_state)) {
1878                        seqstr = ESC "\n";
1879                    } else if (_is_ctrl_pressed(control_key_state)) {
1880                        seqstr = "\n";
1881                    } else {
1882                        seqstr = "\r";
1883                    }
1884                    break;
1885
1886                // VK_ESCAPE: Don't do any special handling. The OS uses many
1887                // of the sequences with Escape and many of the remaining
1888                // sequences don't produce bKeyDown messages, only !bKeyDown
1889                // for whatever reason.
1890
1891                case VK_SPACE:
1892                    if (_is_alt_pressed(control_key_state)) {
1893                        seqstr = ESC " ";
1894                    } else if (_is_ctrl_pressed(control_key_state)) {
1895                        seqbuf[0] = '\0';   // NULL char
1896                        seqbuflen = 1;
1897                    } else {
1898                        seqstr = " ";
1899                    }
1900                    break;
1901
1902                MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
1903                MATCH_MODIFIER_KEYPAD(VK_NEXT,  CSI "6~", '3'); // Page Down
1904
1905                MATCH_KEYPAD(VK_END,  CSI "4~", "1");
1906                MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
1907
1908                MATCH_MODIFIER_KEYPAD(VK_LEFT,  CSI "D", '4');
1909                MATCH_MODIFIER_KEYPAD(VK_UP,    CSI "A", '8');
1910                MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
1911                MATCH_MODIFIER_KEYPAD(VK_DOWN,  CSI "B", '2');
1912
1913                MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
1914                MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
1915                    _get_decimal_char());
1916
1917                case 0x30:          // 0
1918                case 0x31:          // 1
1919                case 0x39:          // 9
1920                case VK_OEM_1:      // ;:
1921                case VK_OEM_PLUS:   // =+
1922                case VK_OEM_COMMA:  // ,<
1923                case VK_OEM_PERIOD: // .>
1924                case VK_OEM_7:      // '"
1925                case VK_OEM_102:    // depends on keyboard, could be <> or \|
1926                case VK_OEM_2:      // /?
1927                case VK_OEM_3:      // `~
1928                case VK_OEM_4:      // [{
1929                case VK_OEM_5:      // \|
1930                case VK_OEM_6:      // ]}
1931                {
1932                    seqbuflen = _get_control_character(seqbuf, key_event,
1933                        control_key_state);
1934
1935                    if (_is_alt_pressed(control_key_state)) {
1936                        seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1937                    }
1938                }
1939                break;
1940
1941                case 0x32:          // 2
1942                case 0x33:          // 3
1943                case 0x34:          // 4
1944                case 0x35:          // 5
1945                case 0x36:          // 6
1946                case 0x37:          // 7
1947                case 0x38:          // 8
1948                case VK_OEM_MINUS:  // -_
1949                {
1950                    seqbuflen = _get_control_character(seqbuf, key_event,
1951                        control_key_state);
1952
1953                    // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
1954                    // prefix with escape.
1955                    if (_is_alt_pressed(control_key_state) &&
1956                        !(_is_ctrl_pressed(control_key_state) &&
1957                        !_is_shift_pressed(control_key_state))) {
1958                        seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1959                    }
1960                }
1961                break;
1962
1963                case 0x41:  // a
1964                case 0x42:  // b
1965                case 0x43:  // c
1966                case 0x44:  // d
1967                case 0x45:  // e
1968                case 0x46:  // f
1969                case 0x47:  // g
1970                case 0x48:  // h
1971                case 0x49:  // i
1972                case 0x4a:  // j
1973                case 0x4b:  // k
1974                case 0x4c:  // l
1975                case 0x4d:  // m
1976                case 0x4e:  // n
1977                case 0x4f:  // o
1978                case 0x50:  // p
1979                case 0x51:  // q
1980                case 0x52:  // r
1981                case 0x53:  // s
1982                case 0x54:  // t
1983                case 0x55:  // u
1984                case 0x56:  // v
1985                case 0x57:  // w
1986                case 0x58:  // x
1987                case 0x59:  // y
1988                case 0x5a:  // z
1989                {
1990                    seqbuflen = _get_non_alt_char(seqbuf, key_event,
1991                        control_key_state);
1992
1993                    // If Alt is pressed, then prefix with escape.
1994                    if (_is_alt_pressed(control_key_state)) {
1995                        seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1996                    }
1997                }
1998                break;
1999
2000                // These virtual key codes are generated by the keys on the
2001                // keypad *when NumLock is on* and *Shift is up*.
2002                MATCH(VK_NUMPAD0, "0");
2003                MATCH(VK_NUMPAD1, "1");
2004                MATCH(VK_NUMPAD2, "2");
2005                MATCH(VK_NUMPAD3, "3");
2006                MATCH(VK_NUMPAD4, "4");
2007                MATCH(VK_NUMPAD5, "5");
2008                MATCH(VK_NUMPAD6, "6");
2009                MATCH(VK_NUMPAD7, "7");
2010                MATCH(VK_NUMPAD8, "8");
2011                MATCH(VK_NUMPAD9, "9");
2012
2013                MATCH(VK_MULTIPLY, "*");
2014                MATCH(VK_ADD,      "+");
2015                MATCH(VK_SUBTRACT, "-");
2016                // VK_DECIMAL is generated by the . key on the keypad *when
2017                // NumLock is on* and *Shift is up* and the sequence is not
2018                // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
2019                // Windows Security screen to come up).
2020                case VK_DECIMAL:
2021                    // U.S. English uses '.', Germany German uses ','.
2022                    seqbuflen = _get_non_control_char(seqbuf, key_event,
2023                        control_key_state);
2024                    break;
2025
2026                MATCH_MODIFIER(VK_F1,  SS3 "P");
2027                MATCH_MODIFIER(VK_F2,  SS3 "Q");
2028                MATCH_MODIFIER(VK_F3,  SS3 "R");
2029                MATCH_MODIFIER(VK_F4,  SS3 "S");
2030                MATCH_MODIFIER(VK_F5,  CSI "15~");
2031                MATCH_MODIFIER(VK_F6,  CSI "17~");
2032                MATCH_MODIFIER(VK_F7,  CSI "18~");
2033                MATCH_MODIFIER(VK_F8,  CSI "19~");
2034                MATCH_MODIFIER(VK_F9,  CSI "20~");
2035                MATCH_MODIFIER(VK_F10, CSI "21~");
2036                MATCH_MODIFIER(VK_F11, CSI "23~");
2037                MATCH_MODIFIER(VK_F12, CSI "24~");
2038
2039                MATCH_MODIFIER(VK_F13, CSI "25~");
2040                MATCH_MODIFIER(VK_F14, CSI "26~");
2041                MATCH_MODIFIER(VK_F15, CSI "28~");
2042                MATCH_MODIFIER(VK_F16, CSI "29~");
2043                MATCH_MODIFIER(VK_F17, CSI "31~");
2044                MATCH_MODIFIER(VK_F18, CSI "32~");
2045                MATCH_MODIFIER(VK_F19, CSI "33~");
2046                MATCH_MODIFIER(VK_F20, CSI "34~");
2047
2048                // MATCH_MODIFIER(VK_F21, ???);
2049                // MATCH_MODIFIER(VK_F22, ???);
2050                // MATCH_MODIFIER(VK_F23, ???);
2051                // MATCH_MODIFIER(VK_F24, ???);
2052            }
2053        }
2054
2055#undef MATCH
2056#undef MATCH_MODIFIER
2057#undef MATCH_KEYPAD
2058#undef MATCH_MODIFIER_KEYPAD
2059#undef ESC
2060#undef CSI
2061#undef SS3
2062
2063        const char* out;
2064        size_t outlen;
2065
2066        // Check for output in any of:
2067        // * seqstr is set (and strlen can be used to determine the length).
2068        // * seqbuf and seqbuflen are set
2069        // Fallback to ch from Windows.
2070        if (seqstr != NULL) {
2071            out = seqstr;
2072            outlen = strlen(seqstr);
2073        } else if (seqbuflen > 0) {
2074            out = seqbuf;
2075            outlen = seqbuflen;
2076        } else if (ch != '\0') {
2077            // Use whatever Windows told us it is.
2078            seqbuf[0] = ch;
2079            seqbuflen = 1;
2080            out = seqbuf;
2081            outlen = seqbuflen;
2082        } else {
2083            // No special handling for the virtual key code and Windows isn't
2084            // telling us a character code, then we don't know how to translate
2085            // the key press.
2086            //
2087            // Consume the input and 'continue' to cause us to get a new key
2088            // event.
2089            D("_console_read: unknown virtual key code: %d, enhanced: %s",
2090                vk, _is_enhanced_key(control_key_state) ? "true" : "false");
2091            continue;
2092        }
2093
2094        // put output wRepeatCount times into g_console_input_buffer
2095        while (key_event->wRepeatCount-- > 0) {
2096            g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen);
2097        }
2098
2099        // Loop around and try to flush g_console_input_buffer
2100    }
2101}
2102
2103static DWORD _old_console_mode; // previous GetConsoleMode() result
2104static HANDLE _console_handle;  // when set, console mode should be restored
2105
2106void stdin_raw_init() {
2107    const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode);
2108    if (in == nullptr) {
2109        return;
2110    }
2111
2112    // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
2113    // calling the process Ctrl-C routine (configured by
2114    // SetConsoleCtrlHandler()).
2115    // Disable ENABLE_LINE_INPUT so that input is immediately sent.
2116    // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
2117    // flag also seems necessary to have proper line-ending processing.
2118    DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
2119                                                   ENABLE_LINE_INPUT |
2120                                                   ENABLE_ECHO_INPUT);
2121    // Enable ENABLE_WINDOW_INPUT to get window resizes.
2122    new_console_mode |= ENABLE_WINDOW_INPUT;
2123
2124    if (!SetConsoleMode(in, new_console_mode)) {
2125        // This really should not fail.
2126        D("stdin_raw_init: SetConsoleMode() failed: %s",
2127          android::base::SystemErrorCodeToString(GetLastError()).c_str());
2128    }
2129
2130    // Once this is set, it means that stdin has been configured for
2131    // reading from and that the old console mode should be restored later.
2132    _console_handle = in;
2133
2134    // Note that we don't need to configure C Runtime line-ending
2135    // translation because _console_read() does not call the C Runtime to
2136    // read from the console.
2137}
2138
2139void stdin_raw_restore() {
2140    if (_console_handle != NULL) {
2141        const HANDLE in = _console_handle;
2142        _console_handle = NULL;  // clear state
2143
2144        if (!SetConsoleMode(in, _old_console_mode)) {
2145            // This really should not fail.
2146            D("stdin_raw_restore: SetConsoleMode() failed: %s",
2147              android::base::SystemErrorCodeToString(GetLastError()).c_str());
2148        }
2149    }
2150}
2151
2152// Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin.
2153int unix_read_interruptible(int fd, void* buf, size_t len) {
2154    if ((fd == STDIN_FILENO) && (_console_handle != NULL)) {
2155        // If it is a request to read from stdin, and stdin_raw_init() has been
2156        // called, and it successfully configured the console, then read from
2157        // the console using Win32 console APIs and partially emulate a unix
2158        // terminal.
2159        return _console_read(_console_handle, buf, len);
2160    } else {
2161        // On older versions of Windows (definitely 7, definitely not 10),
2162        // ReadConsole() with a size >= 31367 fails, so if |fd| is a console
2163        // we need to limit the read size.
2164        if (len > 4096 && unix_isatty(fd)) {
2165            len = 4096;
2166        }
2167        // Just call into C Runtime which can read from pipes/files and which
2168        // can do LF/CR translation (which is overridable with _setmode()).
2169        // Undefine the macro that is set in sysdeps.h which bans calls to
2170        // plain read() in favor of unix_read() or adb_read().
2171#pragma push_macro("read")
2172#undef read
2173        return read(fd, buf, len);
2174#pragma pop_macro("read")
2175    }
2176}
2177
2178/**************************************************************************/
2179/**************************************************************************/
2180/*****                                                                *****/
2181/*****      Unicode support                                           *****/
2182/*****                                                                *****/
2183/**************************************************************************/
2184/**************************************************************************/
2185
2186// This implements support for using files with Unicode filenames and for
2187// outputting Unicode text to a Win32 console window. This is inspired from
2188// http://utf8everywhere.org/.
2189//
2190// Background
2191// ----------
2192//
2193// On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8
2194// filenames to APIs such as open(). This works because filenames are largely
2195// opaque 'cookies' (perhaps excluding path separators).
2196//
2197// On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t
2198// UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char
2199// strings, but the strings are in the ANSI codepage and not UTF-8. (The
2200// CreateFile() API is really just a macro that adds the W/A based on whether
2201// the UNICODE preprocessor symbol is defined).
2202//
2203// Options
2204// -------
2205//
2206// Thus, to write a portable program, there are a few options:
2207//
2208// 1. Write the program with wchar_t filenames (wchar_t path[256];).
2209//    For Windows, just call CreateFileW(). For POSIX, write a wrapper openW()
2210//    that takes a wchar_t string, converts it to UTF-8 and then calls the real
2211//    open() API.
2212//
2213// 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and
2214//    1 byte on POSIX. Make T-* wrappers for various OS APIs and call those,
2215//    potentially touching a lot of code.
2216//
2217// 3. Write the program with a 1-byte char filenames (char path[256];) that are
2218//    UTF-8. For POSIX, just call open(). For Windows, write a wrapper that
2219//    takes a UTF-8 string, converts it to UTF-16 and then calls the real OS
2220//    or C Runtime API.
2221//
2222// The Choice
2223// ----------
2224//
2225// The code below chooses option 3, the UTF-8 everywhere strategy. It uses
2226// android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the
2227// NarrowArgs helper class that is used to convert wmain() args into UTF-8
2228// args that are passed to main() at the beginning of program startup. We also use
2229// android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to
2230// implement wrappers below that call UTF-16 OS and C Runtime APIs.
2231//
2232// Unicode console output
2233// ----------------------
2234//
2235// The way to output Unicode to a Win32 console window is to call
2236// WriteConsoleW() with UTF-16 text. (The user must also choose a proper font
2237// such as Lucida Console or Consolas, and in the case of East Asian languages
2238// (such as Chinese, Japanese, Korean), the user must go to the Control Panel
2239// and change the "system locale" to Chinese, etc., which allows a Chinese, etc.
2240// font to be used in console windows.)
2241//
2242// The problem is getting the C Runtime to make fprintf and related APIs call
2243// WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds
2244// promising, but the various modes have issues:
2245//
2246// 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and
2247//    UTF-16 do not display properly.
2248// 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out
2249//    totally wrong.
2250// 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter
2251//    handler to be called (upon a later I/O call), aborting the process.
2252// 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf
2253//    to output nothing.
2254//
2255// So the only solution is to write our own adb_fprintf() that converts UTF-8
2256// to UTF-16 and then calls WriteConsoleW().
2257
2258
2259// Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to
2260// be passed to main().
2261NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) {
2262    narrow_args = new char*[argc + 1];
2263
2264    for (int i = 0; i < argc; ++i) {
2265        std::string arg_narrow;
2266        if (!android::base::WideToUTF8(argv[i], &arg_narrow)) {
2267            fatal_errno("cannot convert argument from UTF-16 to UTF-8");
2268        }
2269        narrow_args[i] = strdup(arg_narrow.c_str());
2270    }
2271    narrow_args[argc] = nullptr;   // terminate
2272}
2273
2274NarrowArgs::~NarrowArgs() {
2275    if (narrow_args != nullptr) {
2276        for (char** argp = narrow_args; *argp != nullptr; ++argp) {
2277            free(*argp);
2278        }
2279        delete[] narrow_args;
2280        narrow_args = nullptr;
2281    }
2282}
2283
2284int unix_open(const char* path, int options, ...) {
2285    std::wstring path_wide;
2286    if (!android::base::UTF8ToWide(path, &path_wide)) {
2287        return -1;
2288    }
2289    if ((options & O_CREAT) == 0) {
2290        return _wopen(path_wide.c_str(), options);
2291    } else {
2292        int      mode;
2293        va_list  args;
2294        va_start(args, options);
2295        mode = va_arg(args, int);
2296        va_end(args);
2297        return _wopen(path_wide.c_str(), options, mode);
2298    }
2299}
2300
2301// Version of opendir() that takes a UTF-8 path.
2302DIR* adb_opendir(const char* path) {
2303    std::wstring path_wide;
2304    if (!android::base::UTF8ToWide(path, &path_wide)) {
2305        return nullptr;
2306    }
2307
2308    // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of
2309    // the fields, but right now all the callers treat the structure as
2310    // opaque.
2311    return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str()));
2312}
2313
2314// Version of readdir() that returns UTF-8 paths.
2315struct dirent* adb_readdir(DIR* dir) {
2316    _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir);
2317    struct _wdirent* const went = _wreaddir(wdir);
2318    if (went == nullptr) {
2319        return nullptr;
2320    }
2321
2322    // Convert from UTF-16 to UTF-8.
2323    std::string name_utf8;
2324    if (!android::base::WideToUTF8(went->d_name, &name_utf8)) {
2325        return nullptr;
2326    }
2327
2328    // Cast the _wdirent* to dirent* and overwrite the d_name field (which has
2329    // space for UTF-16 wchar_t's) with UTF-8 char's.
2330    struct dirent* ent = reinterpret_cast<struct dirent*>(went);
2331
2332    if (name_utf8.length() + 1 > sizeof(went->d_name)) {
2333        // Name too big to fit in existing buffer.
2334        errno = ENOMEM;
2335        return nullptr;
2336    }
2337
2338    // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name)
2339    // because _wdirent contains wchar_t instead of char. So even if name_utf8
2340    // can fit in _wdirent::d_name, the resulting dirent::d_name field may be
2341    // bigger than the caller expects because they expect a dirent structure
2342    // which has a smaller d_name field. Ignore this since the caller should be
2343    // resilient.
2344
2345    // Rewrite the UTF-16 d_name field to UTF-8.
2346    strcpy(ent->d_name, name_utf8.c_str());
2347
2348    return ent;
2349}
2350
2351// Version of closedir() to go with our version of adb_opendir().
2352int adb_closedir(DIR* dir) {
2353    return _wclosedir(reinterpret_cast<_WDIR*>(dir));
2354}
2355
2356// Version of unlink() that takes a UTF-8 path.
2357int adb_unlink(const char* path) {
2358    std::wstring wpath;
2359    if (!android::base::UTF8ToWide(path, &wpath)) {
2360        return -1;
2361    }
2362
2363    int  rc = _wunlink(wpath.c_str());
2364
2365    if (rc == -1 && errno == EACCES) {
2366        /* unlink returns EACCES when the file is read-only, so we first */
2367        /* try to make it writable, then unlink again...                 */
2368        rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE);
2369        if (rc == 0)
2370            rc = _wunlink(wpath.c_str());
2371    }
2372    return rc;
2373}
2374
2375// Version of mkdir() that takes a UTF-8 path.
2376int adb_mkdir(const std::string& path, int mode) {
2377    std::wstring path_wide;
2378    if (!android::base::UTF8ToWide(path, &path_wide)) {
2379        return -1;
2380    }
2381
2382    return _wmkdir(path_wide.c_str());
2383}
2384
2385// Version of utime() that takes a UTF-8 path.
2386int adb_utime(const char* path, struct utimbuf* u) {
2387    std::wstring path_wide;
2388    if (!android::base::UTF8ToWide(path, &path_wide)) {
2389        return -1;
2390    }
2391
2392    static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf),
2393        "utimbuf and _utimbuf should be the same size because they both "
2394        "contain the same types, namely time_t");
2395    return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u));
2396}
2397
2398// Version of chmod() that takes a UTF-8 path.
2399int adb_chmod(const char* path, int mode) {
2400    std::wstring path_wide;
2401    if (!android::base::UTF8ToWide(path, &path_wide)) {
2402        return -1;
2403    }
2404
2405    return _wchmod(path_wide.c_str(), mode);
2406}
2407
2408// From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte.
2409static inline size_t utf8_codepoint_len(uint8_t ch) {
2410    return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1;
2411}
2412
2413namespace internal {
2414
2415// Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes
2416// (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to
2417// remaining_bytes.
2418size_t ParseCompleteUTF8(const char* const first, const char* const last,
2419                         std::vector<char>* const remaining_bytes) {
2420    // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence.
2421    // Current_after points one byte past the current byte to be examined.
2422    for (const char* current_after = last; current_after != first; --current_after) {
2423        const char* const current = current_after - 1;
2424        const char ch = *current;
2425        const char kHighBit = 0x80u;
2426        const char kTwoHighestBits = 0xC0u;
2427        if ((ch & kHighBit) == 0) { // high bit not set
2428            // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing
2429            // bytes with no leading byte, so return the entire buffer.
2430            break;
2431        } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set
2432            // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence.
2433            const size_t bytes_available = last - current;
2434            if (bytes_available < utf8_codepoint_len(ch)) {
2435                // We don't have all the bytes in the UTF-8 sequence, so return all the bytes
2436                // preceding the current incomplete UTF-8 sequence and append the remaining bytes
2437                // to remaining_bytes.
2438                remaining_bytes->insert(remaining_bytes->end(), current, last);
2439                return current - first;
2440            } else {
2441                // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid
2442                // trailing bytes with no lead byte, so return the entire buffer.
2443                break;
2444            }
2445        } else {
2446            // Trailing byte, so keep going backwards looking for the lead byte.
2447        }
2448    }
2449
2450    // Return the size of the entire buffer. It is possible that we walked backward past invalid
2451    // trailing bytes with no lead byte, in which case we want to return all those invalid bytes
2452    // so that they can be processed.
2453    return last - first;
2454}
2455
2456}
2457
2458// Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences.
2459// Note that we use only one buffer even though stderr and stdout are logically separate streams.
2460// This matches the behavior of Linux.
2461// Protected by g_console_output_buffer_lock.
2462static auto& g_console_output_buffer = *new std::vector<char>();
2463
2464// Internal helper function to write UTF-8 bytes to a console. Returns -1 on error.
2465static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream,
2466                               HANDLE console) {
2467    const int saved_errno = errno;
2468    std::vector<char> combined_buffer;
2469
2470    // Complete UTF-8 sequences that should be immediately written to the console.
2471    const char* utf8;
2472    size_t utf8_size;
2473
2474    adb_mutex_lock(&g_console_output_buffer_lock);
2475    if (g_console_output_buffer.empty()) {
2476        // If g_console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the
2477        // common case with plain ASCII), parse buf directly.
2478        utf8 = buf;
2479        utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &g_console_output_buffer);
2480    } else {
2481        // If g_console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to
2482        // combined_buffer (and effectively clear g_console_output_buffer) and append buf to
2483        // combined_buffer, then parse it all together.
2484        combined_buffer.swap(g_console_output_buffer);
2485        combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size);
2486
2487        utf8 = combined_buffer.data();
2488        utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(),
2489                                                &g_console_output_buffer);
2490    }
2491    adb_mutex_unlock(&g_console_output_buffer_lock);
2492
2493    std::wstring utf16;
2494
2495    // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux
2496    // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's
2497    // random data, runs dmesg (which might have non-UTF-8), etc.
2498    // This could throw std::bad_alloc.
2499    (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16);
2500
2501    // Note that this does not do \n => \r\n translation because that
2502    // doesn't seem necessary for the Windows console. For the Windows
2503    // console \r moves to the beginning of the line and \n moves to a new
2504    // line.
2505
2506    // Flush any stream buffering so that our output is afterwards which
2507    // makes sense because our call is afterwards.
2508    (void)fflush(stream);
2509
2510    // Write UTF-16 to the console.
2511    DWORD written = 0;
2512    if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, NULL)) {
2513        errno = EIO;
2514        return -1;
2515    }
2516
2517    // Return the size of the original buffer passed in, signifying that we consumed it all, even
2518    // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This
2519    // matches the Linux behavior.
2520    errno = saved_errno;
2521    return buf_size;
2522}
2523
2524// Function prototype because attributes cannot be placed on func definitions.
2525static int _console_vfprintf(const HANDLE console, FILE* stream,
2526                             const char *format, va_list ap)
2527    __attribute__((__format__(ADB_FORMAT_ARCHETYPE, 3, 0)));
2528
2529// Internal function to format a UTF-8 string and write it to a Win32 console.
2530// Returns -1 on error.
2531static int _console_vfprintf(const HANDLE console, FILE* stream,
2532                             const char *format, va_list ap) {
2533    const int saved_errno = errno;
2534    std::string output_utf8;
2535
2536    // Format the string.
2537    // This could throw std::bad_alloc.
2538    android::base::StringAppendV(&output_utf8, format, ap);
2539
2540    const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream,
2541                                           console);
2542    if (result != -1) {
2543        errno = saved_errno;
2544    } else {
2545        // If -1 was returned, errno has been set.
2546    }
2547    return result;
2548}
2549
2550// Version of vfprintf() that takes UTF-8 and can write Unicode to a
2551// Windows console.
2552int adb_vfprintf(FILE *stream, const char *format, va_list ap) {
2553    const HANDLE console = _get_console_handle(stream);
2554
2555    // If there is an associated Win32 console, write to it specially,
2556    // otherwise defer to the regular C Runtime, passing it UTF-8.
2557    if (console != NULL) {
2558        return _console_vfprintf(console, stream, format, ap);
2559    } else {
2560        // If vfprintf is a macro, undefine it, so we can call the real
2561        // C Runtime API.
2562#pragma push_macro("vfprintf")
2563#undef vfprintf
2564        return vfprintf(stream, format, ap);
2565#pragma pop_macro("vfprintf")
2566    }
2567}
2568
2569// Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console.
2570int adb_vprintf(const char *format, va_list ap) {
2571    return adb_vfprintf(stdout, format, ap);
2572}
2573
2574// Version of fprintf() that takes UTF-8 and can write Unicode to a
2575// Windows console.
2576int adb_fprintf(FILE *stream, const char *format, ...) {
2577    va_list ap;
2578    va_start(ap, format);
2579    const int result = adb_vfprintf(stream, format, ap);
2580    va_end(ap);
2581
2582    return result;
2583}
2584
2585// Version of printf() that takes UTF-8 and can write Unicode to a
2586// Windows console.
2587int adb_printf(const char *format, ...) {
2588    va_list ap;
2589    va_start(ap, format);
2590    const int result = adb_vfprintf(stdout, format, ap);
2591    va_end(ap);
2592
2593    return result;
2594}
2595
2596// Version of fputs() that takes UTF-8 and can write Unicode to a
2597// Windows console.
2598int adb_fputs(const char* buf, FILE* stream) {
2599    // adb_fprintf returns -1 on error, which is conveniently the same as EOF
2600    // which fputs (and hence adb_fputs) should return on error.
2601    static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2602    return adb_fprintf(stream, "%s", buf);
2603}
2604
2605// Version of fputc() that takes UTF-8 and can write Unicode to a
2606// Windows console.
2607int adb_fputc(int ch, FILE* stream) {
2608    const int result = adb_fprintf(stream, "%c", ch);
2609    if (result == -1) {
2610        return EOF;
2611    }
2612    // For success, fputc returns the char, cast to unsigned char, then to int.
2613    return static_cast<unsigned char>(ch);
2614}
2615
2616// Version of putchar() that takes UTF-8 and can write Unicode to a Windows console.
2617int adb_putchar(int ch) {
2618    return adb_fputc(ch, stdout);
2619}
2620
2621// Version of puts() that takes UTF-8 and can write Unicode to a Windows console.
2622int adb_puts(const char* buf) {
2623    // adb_printf returns -1 on error, which is conveniently the same as EOF
2624    // which puts (and hence adb_puts) should return on error.
2625    static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2626    return adb_printf("%s\n", buf);
2627}
2628
2629// Internal function to write UTF-8 to a Win32 console. Returns the number of
2630// items (of length size) written. On error, returns a short item count or 0.
2631static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb,
2632                              FILE* stream, HANDLE console) {
2633    const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream,
2634                                           console);
2635    if (result == -1) {
2636        return 0;
2637    }
2638    return result / size;
2639}
2640
2641// Version of fwrite() that takes UTF-8 and can write Unicode to a
2642// Windows console.
2643size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) {
2644    const HANDLE console = _get_console_handle(stream);
2645
2646    // If there is an associated Win32 console, write to it specially,
2647    // otherwise defer to the regular C Runtime, passing it UTF-8.
2648    if (console != NULL) {
2649        return _console_fwrite(ptr, size, nmemb, stream, console);
2650    } else {
2651        // If fwrite is a macro, undefine it, so we can call the real
2652        // C Runtime API.
2653#pragma push_macro("fwrite")
2654#undef fwrite
2655        return fwrite(ptr, size, nmemb, stream);
2656#pragma pop_macro("fwrite")
2657    }
2658}
2659
2660// Version of fopen() that takes a UTF-8 filename and can access a file with
2661// a Unicode filename.
2662FILE* adb_fopen(const char* path, const char* mode) {
2663    std::wstring path_wide;
2664    if (!android::base::UTF8ToWide(path, &path_wide)) {
2665        return nullptr;
2666    }
2667
2668    std::wstring mode_wide;
2669    if (!android::base::UTF8ToWide(mode, &mode_wide)) {
2670        return nullptr;
2671    }
2672
2673    return _wfopen(path_wide.c_str(), mode_wide.c_str());
2674}
2675
2676// Return a lowercase version of the argument. Uses C Runtime tolower() on
2677// each byte which is not UTF-8 aware, and theoretically uses the current C
2678// Runtime locale (which in practice is not changed, so this becomes a ASCII
2679// conversion).
2680static std::string ToLower(const std::string& anycase) {
2681    // copy string
2682    std::string str(anycase);
2683    // transform the copy
2684    std::transform(str.begin(), str.end(), str.begin(), tolower);
2685    return str;
2686}
2687
2688extern "C" int main(int argc, char** argv);
2689
2690// Link with -municode to cause this wmain() to be used as the program
2691// entrypoint. It will convert the args from UTF-16 to UTF-8 and call the
2692// regular main() with UTF-8 args.
2693extern "C" int wmain(int argc, wchar_t **argv) {
2694    // Convert args from UTF-16 to UTF-8 and pass that to main().
2695    NarrowArgs narrow_args(argc, argv);
2696    return main(argc, narrow_args.data());
2697}
2698
2699// Shadow UTF-8 environment variable name/value pairs that are created from
2700// _wenviron the first time that adb_getenv() is called. Note that this is not
2701// currently updated if putenv, setenv, unsetenv are called. Note that no
2702// thread synchronization is done, but we're called early enough in
2703// single-threaded startup that things work ok.
2704static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>();
2705
2706// Make sure that shadow UTF-8 environment variables are setup.
2707static void _ensure_env_setup() {
2708    // If some name/value pairs exist, then we've already done the setup below.
2709    if (g_environ_utf8.size() != 0) {
2710        return;
2711    }
2712
2713    if (_wenviron == nullptr) {
2714        // If _wenviron is null, then -municode probably wasn't used. That
2715        // linker flag will cause the entry point to setup _wenviron. It will
2716        // also require an implementation of wmain() (which we provide above).
2717        fatal("_wenviron is not set, did you link with -municode?");
2718    }
2719
2720    // Read name/value pairs from UTF-16 _wenviron and write new name/value
2721    // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense
2722    // to use the D() macro here because that tracing only works if the
2723    // ADB_TRACE environment variable is setup, but that env var can't be read
2724    // until this code completes.
2725    for (wchar_t** env = _wenviron; *env != nullptr; ++env) {
2726        wchar_t* const equal = wcschr(*env, L'=');
2727        if (equal == nullptr) {
2728            // Malformed environment variable with no equal sign. Shouldn't
2729            // really happen, but we should be resilient to this.
2730            continue;
2731        }
2732
2733        // If we encounter an error converting UTF-16, don't error-out on account of a single env
2734        // var because the program might never even read this particular variable.
2735        std::string name_utf8;
2736        if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) {
2737            continue;
2738        }
2739
2740        // Store lowercase name so that we can do case-insensitive searches.
2741        name_utf8 = ToLower(name_utf8);
2742
2743        std::string value_utf8;
2744        if (!android::base::WideToUTF8(equal + 1, &value_utf8)) {
2745            continue;
2746        }
2747
2748        char* const value_dup = strdup(value_utf8.c_str());
2749
2750        // Don't overwrite a previus env var with the same name. In reality,
2751        // the system probably won't let two env vars with the same name exist
2752        // in _wenviron.
2753        g_environ_utf8.insert({name_utf8, value_dup});
2754    }
2755}
2756
2757// Version of getenv() that takes a UTF-8 environment variable name and
2758// retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows.
2759char* adb_getenv(const char* name) {
2760    _ensure_env_setup();
2761
2762    // Case-insensitive search by searching for lowercase name in a map of
2763    // lowercase names.
2764    const auto it = g_environ_utf8.find(ToLower(std::string(name)));
2765    if (it == g_environ_utf8.end()) {
2766        return nullptr;
2767    }
2768
2769    return it->second;
2770}
2771
2772// Version of getcwd() that returns the current working directory in UTF-8.
2773char* adb_getcwd(char* buf, int size) {
2774    wchar_t* wbuf = _wgetcwd(nullptr, 0);
2775    if (wbuf == nullptr) {
2776        return nullptr;
2777    }
2778
2779    std::string buf_utf8;
2780    const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8);
2781    free(wbuf);
2782    wbuf = nullptr;
2783
2784    if (!narrow_result) {
2785        return nullptr;
2786    }
2787
2788    // If size was specified, make sure all the chars will fit.
2789    if (size != 0) {
2790        if (size < static_cast<int>(buf_utf8.length() + 1)) {
2791            errno = ERANGE;
2792            return nullptr;
2793        }
2794    }
2795
2796    // If buf was not specified, allocate storage.
2797    if (buf == nullptr) {
2798        if (size == 0) {
2799            size = buf_utf8.length() + 1;
2800        }
2801        buf = reinterpret_cast<char*>(malloc(size));
2802        if (buf == nullptr) {
2803            return nullptr;
2804        }
2805    }
2806
2807    // Destination buffer was allocated with enough space, or we've already
2808    // checked an existing buffer size for enough space.
2809    strcpy(buf, buf_utf8.c_str());
2810
2811    return buf;
2812}
2813