1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "image_writer.h"
18
19#include <sys/stat.h>
20#include <lz4.h>
21#include <lz4hc.h>
22
23#include <memory>
24#include <numeric>
25#include <unordered_set>
26#include <vector>
27
28#include "art_field-inl.h"
29#include "art_method-inl.h"
30#include "base/logging.h"
31#include "base/unix_file/fd_file.h"
32#include "class_linker-inl.h"
33#include "compiled_method.h"
34#include "dex_file-inl.h"
35#include "driver/compiler_driver.h"
36#include "elf_file.h"
37#include "elf_utils.h"
38#include "elf_writer.h"
39#include "gc/accounting/card_table-inl.h"
40#include "gc/accounting/heap_bitmap.h"
41#include "gc/accounting/space_bitmap-inl.h"
42#include "gc/heap.h"
43#include "gc/space/large_object_space.h"
44#include "gc/space/space-inl.h"
45#include "globals.h"
46#include "image.h"
47#include "intern_table.h"
48#include "linear_alloc.h"
49#include "lock_word.h"
50#include "mirror/abstract_method.h"
51#include "mirror/array-inl.h"
52#include "mirror/class-inl.h"
53#include "mirror/class_loader.h"
54#include "mirror/dex_cache-inl.h"
55#include "mirror/method.h"
56#include "mirror/object-inl.h"
57#include "mirror/object_array-inl.h"
58#include "mirror/string-inl.h"
59#include "oat.h"
60#include "oat_file.h"
61#include "oat_file_manager.h"
62#include "runtime.h"
63#include "scoped_thread_state_change.h"
64#include "handle_scope-inl.h"
65#include "utils/dex_cache_arrays_layout-inl.h"
66
67using ::art::mirror::Class;
68using ::art::mirror::DexCache;
69using ::art::mirror::Object;
70using ::art::mirror::ObjectArray;
71using ::art::mirror::String;
72
73namespace art {
74
75// Separate objects into multiple bins to optimize dirty memory use.
76static constexpr bool kBinObjects = true;
77
78// Return true if an object is already in an image space.
79bool ImageWriter::IsInBootImage(const void* obj) const {
80  gc::Heap* const heap = Runtime::Current()->GetHeap();
81  if (!compile_app_image_) {
82    DCHECK(heap->GetBootImageSpaces().empty());
83    return false;
84  }
85  for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
86    const uint8_t* image_begin = boot_image_space->Begin();
87    // Real image end including ArtMethods and ArtField sections.
88    const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
89    if (image_begin <= obj && obj < image_end) {
90      return true;
91    }
92  }
93  return false;
94}
95
96bool ImageWriter::IsInBootOatFile(const void* ptr) const {
97  gc::Heap* const heap = Runtime::Current()->GetHeap();
98  if (!compile_app_image_) {
99    DCHECK(heap->GetBootImageSpaces().empty());
100    return false;
101  }
102  for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
103    const ImageHeader& image_header = boot_image_space->GetImageHeader();
104    if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
105      return true;
106    }
107  }
108  return false;
109}
110
111static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED)
112    SHARED_REQUIRES(Locks::mutator_lock_) {
113  Class* klass = obj->GetClass();
114  CHECK_NE(PrettyClass(klass), "com.android.dex.Dex");
115}
116
117static void CheckNoDexObjects() {
118  ScopedObjectAccess soa(Thread::Current());
119  Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr);
120}
121
122bool ImageWriter::PrepareImageAddressSpace() {
123  target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
124  gc::Heap* const heap = Runtime::Current()->GetHeap();
125  {
126    ScopedObjectAccess soa(Thread::Current());
127    PruneNonImageClasses();  // Remove junk
128    if (!compile_app_image_) {
129      // Avoid for app image since this may increase RAM and image size.
130      ComputeLazyFieldsForImageClasses();  // Add useful information
131    }
132  }
133  heap->CollectGarbage(false);  // Remove garbage.
134
135  // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped
136  // dex files.
137  //
138  // We may open them in the unstarted-runtime code for class metadata. Their fields should all be
139  // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually
140  // true.
141  if (kIsDebugBuild) {
142    CheckNoDexObjects();
143  }
144
145  if (kIsDebugBuild) {
146    ScopedObjectAccess soa(Thread::Current());
147    CheckNonImageClassesRemoved();
148  }
149
150  {
151    ScopedObjectAccess soa(Thread::Current());
152    CalculateNewObjectOffsets();
153  }
154
155  // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
156  // bin size sums being calculated.
157  if (!AllocMemory()) {
158    return false;
159  }
160
161  return true;
162}
163
164bool ImageWriter::Write(int image_fd,
165                        const std::vector<const char*>& image_filenames,
166                        const std::vector<const char*>& oat_filenames) {
167  // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
168  // oat_filenames.
169  CHECK(!image_filenames.empty());
170  if (image_fd != kInvalidFd) {
171    CHECK_EQ(image_filenames.size(), 1u);
172  }
173  CHECK(!oat_filenames.empty());
174  CHECK_EQ(image_filenames.size(), oat_filenames.size());
175
176  {
177    ScopedObjectAccess soa(Thread::Current());
178    for (size_t i = 0; i < oat_filenames.size(); ++i) {
179      CreateHeader(i);
180      CopyAndFixupNativeData(i);
181    }
182  }
183
184  {
185    // TODO: heap validation can't handle these fix up passes.
186    ScopedObjectAccess soa(Thread::Current());
187    Runtime::Current()->GetHeap()->DisableObjectValidation();
188    CopyAndFixupObjects();
189  }
190
191  for (size_t i = 0; i < image_filenames.size(); ++i) {
192    const char* image_filename = image_filenames[i];
193    ImageInfo& image_info = GetImageInfo(i);
194    std::unique_ptr<File> image_file;
195    if (image_fd != kInvalidFd) {
196      if (strlen(image_filename) == 0u) {
197        image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
198        // Empty the file in case it already exists.
199        if (image_file != nullptr) {
200          TEMP_FAILURE_RETRY(image_file->SetLength(0));
201          TEMP_FAILURE_RETRY(image_file->Flush());
202        }
203      } else {
204        LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
205      }
206    } else {
207      image_file.reset(OS::CreateEmptyFile(image_filename));
208    }
209
210    if (image_file == nullptr) {
211      LOG(ERROR) << "Failed to open image file " << image_filename;
212      return false;
213    }
214
215    if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) {
216      PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
217      image_file->Erase();
218      return EXIT_FAILURE;
219    }
220
221    std::unique_ptr<char[]> compressed_data;
222    // Image data size excludes the bitmap and the header.
223    ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
224    const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader);
225    char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader);
226    size_t data_size;
227    const char* image_data_to_write;
228    const uint64_t compress_start_time = NanoTime();
229
230    CHECK_EQ(image_header->storage_mode_, image_storage_mode_);
231    switch (image_storage_mode_) {
232      case ImageHeader::kStorageModeLZ4HC:  // Fall-through.
233      case ImageHeader::kStorageModeLZ4: {
234        const size_t compressed_max_size = LZ4_compressBound(image_data_size);
235        compressed_data.reset(new char[compressed_max_size]);
236        data_size = LZ4_compress(
237            reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
238            &compressed_data[0],
239            image_data_size);
240
241        break;
242      }
243      /*
244       * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444
245      case ImageHeader::kStorageModeLZ4HC: {
246        // Bound is same as non HC.
247        const size_t compressed_max_size = LZ4_compressBound(image_data_size);
248        compressed_data.reset(new char[compressed_max_size]);
249        data_size = LZ4_compressHC(
250            reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
251            &compressed_data[0],
252            image_data_size);
253        break;
254      }
255      */
256      case ImageHeader::kStorageModeUncompressed: {
257        data_size = image_data_size;
258        image_data_to_write = image_data;
259        break;
260      }
261      default: {
262        LOG(FATAL) << "Unsupported";
263        UNREACHABLE();
264      }
265    }
266
267    if (compressed_data != nullptr) {
268      image_data_to_write = &compressed_data[0];
269      VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in "
270                     << PrettyDuration(NanoTime() - compress_start_time);
271      if (kIsDebugBuild) {
272        std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]);
273        const size_t decompressed_size = LZ4_decompress_safe(
274            reinterpret_cast<char*>(&compressed_data[0]),
275            reinterpret_cast<char*>(&temp[0]),
276            data_size,
277            image_data_size);
278        CHECK_EQ(decompressed_size, image_data_size);
279        CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_;
280      }
281    }
282
283    // Write out the image + fields + methods.
284    const bool is_compressed = compressed_data != nullptr;
285    if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) {
286      PLOG(ERROR) << "Failed to write image file data " << image_filename;
287      image_file->Erase();
288      return false;
289    }
290
291    // Write out the image bitmap at the page aligned start of the image end, also uncompressed for
292    // convenience.
293    const ImageSection& bitmap_section = image_header->GetImageSection(
294        ImageHeader::kSectionImageBitmap);
295    // Align up since data size may be unaligned if the image is compressed.
296    size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize);
297    if (!is_compressed) {
298      CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset());
299    }
300    if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()),
301                                 bitmap_section.Size(),
302                                 bitmap_position_in_file)) {
303      PLOG(ERROR) << "Failed to write image file " << image_filename;
304      image_file->Erase();
305      return false;
306    }
307
308    int err = image_file->Flush();
309    if (err < 0) {
310      PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
311      image_file->Erase();
312      return false;
313    }
314
315    // Write header last in case the compiler gets killed in the middle of image writing.
316    // We do not want to have a corrupted image with a valid header.
317    // The header is uncompressed since it contains whether the image is compressed or not.
318    image_header->data_size_ = data_size;
319    if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()),
320                                 sizeof(ImageHeader),
321                                 0)) {
322      PLOG(ERROR) << "Failed to write image file header " << image_filename;
323      image_file->Erase();
324      return false;
325    }
326
327    CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(),
328             static_cast<size_t>(image_file->GetLength()));
329    if (image_file->FlushCloseOrErase() != 0) {
330      PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
331      return false;
332    }
333  }
334  return true;
335}
336
337void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
338  DCHECK(object != nullptr);
339  DCHECK_NE(offset, 0U);
340
341  // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
342  object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
343  DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
344  DCHECK(IsImageOffsetAssigned(object));
345}
346
347void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
348  DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
349  obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
350  DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
351}
352
353void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
354  DCHECK(object != nullptr);
355  DCHECK_NE(image_objects_offset_begin_, 0u);
356
357  size_t oat_index = GetOatIndex(object);
358  ImageInfo& image_info = GetImageInfo(oat_index);
359  size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()];
360  size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
361  DCHECK_ALIGNED(new_offset, kObjectAlignment);
362
363  SetImageOffset(object, new_offset);
364  DCHECK_LT(new_offset, image_info.image_end_);
365}
366
367bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
368  // Will also return true if the bin slot was assigned since we are reusing the lock word.
369  DCHECK(object != nullptr);
370  return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
371}
372
373size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
374  DCHECK(object != nullptr);
375  DCHECK(IsImageOffsetAssigned(object));
376  LockWord lock_word = object->GetLockWord(false);
377  size_t offset = lock_word.ForwardingAddress();
378  size_t oat_index = GetOatIndex(object);
379  const ImageInfo& image_info = GetImageInfo(oat_index);
380  DCHECK_LT(offset, image_info.image_end_);
381  return offset;
382}
383
384void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
385  DCHECK(object != nullptr);
386  DCHECK(!IsImageOffsetAssigned(object));
387  DCHECK(!IsImageBinSlotAssigned(object));
388
389  // Before we stomp over the lock word, save the hash code for later.
390  LockWord lw(object->GetLockWord(false));
391  switch (lw.GetState()) {
392    case LockWord::kFatLocked: {
393      LOG(FATAL) << "Fat locked object " << object << " found during object copy";
394      break;
395    }
396    case LockWord::kThinLocked: {
397      LOG(FATAL) << "Thin locked object " << object << " found during object copy";
398      break;
399    }
400    case LockWord::kUnlocked:
401      // No hash, don't need to save it.
402      break;
403    case LockWord::kHashCode:
404      DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
405      saved_hashcode_map_.emplace(object, lw.GetHashCode());
406      break;
407    default:
408      LOG(FATAL) << "Unreachable.";
409      UNREACHABLE();
410  }
411  object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
412  DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
413  DCHECK(IsImageBinSlotAssigned(object));
414}
415
416void ImageWriter::PrepareDexCacheArraySlots() {
417  // Prepare dex cache array starts based on the ordering specified in the CompilerDriver.
418  // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
419  // when AssignImageBinSlot() assigns their indexes out or order.
420  for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
421    auto it = dex_file_oat_index_map_.find(dex_file);
422    DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
423    ImageInfo& image_info = GetImageInfo(it->second);
424    image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]);
425    DexCacheArraysLayout layout(target_ptr_size_, dex_file);
426    image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size();
427  }
428
429  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
430  Thread* const self = Thread::Current();
431  ReaderMutexLock mu(self, *class_linker->DexLock());
432  for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
433    mirror::DexCache* dex_cache =
434        down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
435    if (dex_cache == nullptr || IsInBootImage(dex_cache)) {
436      continue;
437    }
438    const DexFile* dex_file = dex_cache->GetDexFile();
439    CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
440        << "Dex cache should have been pruned " << dex_file->GetLocation()
441        << "; possibly in class path";
442    DexCacheArraysLayout layout(target_ptr_size_, dex_file);
443    DCHECK(layout.Valid());
444    size_t oat_index = GetOatIndexForDexCache(dex_cache);
445    ImageInfo& image_info = GetImageInfo(oat_index);
446    uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
447    DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
448    AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
449                               start + layout.TypesOffset(),
450                               dex_cache);
451    DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
452    AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
453                               start + layout.MethodsOffset(),
454                               dex_cache);
455    DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
456    AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
457                               start + layout.FieldsOffset(),
458                               dex_cache);
459    DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
460    AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache);
461  }
462}
463
464void ImageWriter::AddDexCacheArrayRelocation(void* array, size_t offset, DexCache* dex_cache) {
465  if (array != nullptr) {
466    DCHECK(!IsInBootImage(array));
467    size_t oat_index = GetOatIndexForDexCache(dex_cache);
468    native_object_relocations_.emplace(array,
469        NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray });
470  }
471}
472
473void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
474  DCHECK(arr != nullptr);
475  if (kIsDebugBuild) {
476    for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
477      ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
478      if (method != nullptr && !method->IsRuntimeMethod()) {
479        mirror::Class* klass = method->GetDeclaringClass();
480        CHECK(klass == nullptr || KeepClass(klass))
481            << PrettyClass(klass) << " should be a kept class";
482      }
483    }
484  }
485  // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
486  // ArtMethods.
487  pointer_arrays_.emplace(arr, kBinArtMethodClean);
488}
489
490void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
491  DCHECK(object != nullptr);
492  size_t object_size = object->SizeOf();
493
494  // The magic happens here. We segregate objects into different bins based
495  // on how likely they are to get dirty at runtime.
496  //
497  // Likely-to-dirty objects get packed together into the same bin so that
498  // at runtime their page dirtiness ratio (how many dirty objects a page has) is
499  // maximized.
500  //
501  // This means more pages will stay either clean or shared dirty (with zygote) and
502  // the app will use less of its own (private) memory.
503  Bin bin = kBinRegular;
504  size_t current_offset = 0u;
505
506  if (kBinObjects) {
507    //
508    // Changing the bin of an object is purely a memory-use tuning.
509    // It has no change on runtime correctness.
510    //
511    // Memory analysis has determined that the following types of objects get dirtied
512    // the most:
513    //
514    // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
515    //   a fixed layout which helps improve generated code (using PC-relative addressing),
516    //   so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
517    //   Since these arrays are huge, most pages do not overlap other objects and it's not
518    //   really important where they are for the clean/dirty separation. Due to their
519    //   special PC-relative addressing, we arbitrarily keep them at the end.
520    // * Class'es which are verified [their clinit runs only at runtime]
521    //   - classes in general [because their static fields get overwritten]
522    //   - initialized classes with all-final statics are unlikely to be ever dirty,
523    //     so bin them separately
524    // * Art Methods that are:
525    //   - native [their native entry point is not looked up until runtime]
526    //   - have declaring classes that aren't initialized
527    //            [their interpreter/quick entry points are trampolines until the class
528    //             becomes initialized]
529    //
530    // We also assume the following objects get dirtied either never or extremely rarely:
531    //  * Strings (they are immutable)
532    //  * Art methods that aren't native and have initialized declared classes
533    //
534    // We assume that "regular" bin objects are highly unlikely to become dirtied,
535    // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
536    //
537    if (object->IsClass()) {
538      bin = kBinClassVerified;
539      mirror::Class* klass = object->AsClass();
540
541      // Add non-embedded vtable to the pointer array table if there is one.
542      auto* vtable = klass->GetVTable();
543      if (vtable != nullptr) {
544        AddMethodPointerArray(vtable);
545      }
546      auto* iftable = klass->GetIfTable();
547      if (iftable != nullptr) {
548        for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
549          if (iftable->GetMethodArrayCount(i) > 0) {
550            AddMethodPointerArray(iftable->GetMethodArray(i));
551          }
552        }
553      }
554
555      if (klass->GetStatus() == Class::kStatusInitialized) {
556        bin = kBinClassInitialized;
557
558        // If the class's static fields are all final, put it into a separate bin
559        // since it's very likely it will stay clean.
560        uint32_t num_static_fields = klass->NumStaticFields();
561        if (num_static_fields == 0) {
562          bin = kBinClassInitializedFinalStatics;
563        } else {
564          // Maybe all the statics are final?
565          bool all_final = true;
566          for (uint32_t i = 0; i < num_static_fields; ++i) {
567            ArtField* field = klass->GetStaticField(i);
568            if (!field->IsFinal()) {
569              all_final = false;
570              break;
571            }
572          }
573
574          if (all_final) {
575            bin = kBinClassInitializedFinalStatics;
576          }
577        }
578      }
579    } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
580      bin = kBinString;  // Strings are almost always immutable (except for object header).
581    } else if (object->GetClass<kVerifyNone>() ==
582        Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) {
583      // Instance of java lang object, probably a lock object. This means it will be dirty when we
584      // synchronize on it.
585      bin = kBinMiscDirty;
586    } else if (object->IsDexCache()) {
587      // Dex file field becomes dirty when the image is loaded.
588      bin = kBinMiscDirty;
589    }
590    // else bin = kBinRegular
591  }
592
593  // Assign the oat index too.
594  DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
595  oat_index_map_.emplace(object, oat_index);
596
597  ImageInfo& image_info = GetImageInfo(oat_index);
598
599  size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
600  current_offset = image_info.bin_slot_sizes_[bin];  // How many bytes the current bin is at (aligned).
601  // Move the current bin size up to accommodate the object we just assigned a bin slot.
602  image_info.bin_slot_sizes_[bin] += offset_delta;
603
604  BinSlot new_bin_slot(bin, current_offset);
605  SetImageBinSlot(object, new_bin_slot);
606
607  ++image_info.bin_slot_count_[bin];
608
609  // Grow the image closer to the end by the object we just assigned.
610  image_info.image_end_ += offset_delta;
611}
612
613bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
614  if (m->IsNative()) {
615    return true;
616  }
617  mirror::Class* declaring_class = m->GetDeclaringClass();
618  // Initialized is highly unlikely to dirty since there's no entry points to mutate.
619  return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
620}
621
622bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
623  DCHECK(object != nullptr);
624
625  // We always stash the bin slot into a lockword, in the 'forwarding address' state.
626  // If it's in some other state, then we haven't yet assigned an image bin slot.
627  if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
628    return false;
629  } else if (kIsDebugBuild) {
630    LockWord lock_word = object->GetLockWord(false);
631    size_t offset = lock_word.ForwardingAddress();
632    BinSlot bin_slot(offset);
633    size_t oat_index = GetOatIndex(object);
634    const ImageInfo& image_info = GetImageInfo(oat_index);
635    DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()])
636        << "bin slot offset should not exceed the size of that bin";
637  }
638  return true;
639}
640
641ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
642  DCHECK(object != nullptr);
643  DCHECK(IsImageBinSlotAssigned(object));
644
645  LockWord lock_word = object->GetLockWord(false);
646  size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
647  DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
648
649  BinSlot bin_slot(static_cast<uint32_t>(offset));
650  size_t oat_index = GetOatIndex(object);
651  const ImageInfo& image_info = GetImageInfo(oat_index);
652  DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]);
653
654  return bin_slot;
655}
656
657bool ImageWriter::AllocMemory() {
658  for (ImageInfo& image_info : image_infos_) {
659    ImageSection unused_sections[ImageHeader::kSectionCount];
660    const size_t length = RoundUp(
661        image_info.CreateImageSections(unused_sections), kPageSize);
662
663    std::string error_msg;
664    image_info.image_.reset(MemMap::MapAnonymous("image writer image",
665                                                 nullptr,
666                                                 length,
667                                                 PROT_READ | PROT_WRITE,
668                                                 false,
669                                                 false,
670                                                 &error_msg));
671    if (UNLIKELY(image_info.image_.get() == nullptr)) {
672      LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
673      return false;
674    }
675
676    // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
677    CHECK_LE(image_info.image_end_, length);
678    image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
679        "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize)));
680    if (image_info.image_bitmap_.get() == nullptr) {
681      LOG(ERROR) << "Failed to allocate memory for image bitmap";
682      return false;
683    }
684  }
685  return true;
686}
687
688class ComputeLazyFieldsForClassesVisitor : public ClassVisitor {
689 public:
690  bool operator()(Class* c) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
691    StackHandleScope<1> hs(Thread::Current());
692    mirror::Class::ComputeName(hs.NewHandle(c));
693    return true;
694  }
695};
696
697void ImageWriter::ComputeLazyFieldsForImageClasses() {
698  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
699  ComputeLazyFieldsForClassesVisitor visitor;
700  class_linker->VisitClassesWithoutClassesLock(&visitor);
701}
702
703static bool IsBootClassLoaderClass(mirror::Class* klass) SHARED_REQUIRES(Locks::mutator_lock_) {
704  return klass->GetClassLoader() == nullptr;
705}
706
707bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
708  return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
709}
710
711bool ImageWriter::PruneAppImageClass(mirror::Class* klass) {
712  bool early_exit = false;
713  std::unordered_set<mirror::Class*> visited;
714  return PruneAppImageClassInternal(klass, &early_exit, &visited);
715}
716
717bool ImageWriter::PruneAppImageClassInternal(
718    mirror::Class* klass,
719    bool* early_exit,
720    std::unordered_set<mirror::Class*>* visited) {
721  DCHECK(early_exit != nullptr);
722  DCHECK(visited != nullptr);
723  DCHECK(compile_app_image_);
724  if (klass == nullptr || IsInBootImage(klass)) {
725    return false;
726  }
727  auto found = prune_class_memo_.find(klass);
728  if (found != prune_class_memo_.end()) {
729    // Already computed, return the found value.
730    return found->second;
731  }
732  // Circular dependencies, return false but do not store the result in the memoization table.
733  if (visited->find(klass) != visited->end()) {
734    *early_exit = true;
735    return false;
736  }
737  visited->emplace(klass);
738  bool result = IsBootClassLoaderClass(klass);
739  std::string temp;
740  // Prune if not an image class, this handles any broken sets of image classes such as having a
741  // class in the set but not it's superclass.
742  result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
743  bool my_early_exit = false;  // Only for ourselves, ignore caller.
744  // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
745  // app image.
746  if (klass->GetStatus() == mirror::Class::kStatusError) {
747    result = true;
748  } else {
749    CHECK(klass->GetVerifyError() == nullptr) << PrettyClass(klass);
750  }
751  if (!result) {
752    // Check interfaces since these wont be visited through VisitReferences.)
753    mirror::IfTable* if_table = klass->GetIfTable();
754    for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
755      result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
756                                                    &my_early_exit,
757                                                    visited);
758    }
759  }
760  if (klass->IsObjectArrayClass()) {
761    result = result || PruneAppImageClassInternal(klass->GetComponentType(),
762                                                  &my_early_exit,
763                                                  visited);
764  }
765  // Check static fields and their classes.
766  size_t num_static_fields = klass->NumReferenceStaticFields();
767  if (num_static_fields != 0 && klass->IsResolved()) {
768    // Presumably GC can happen when we are cross compiling, it should not cause performance
769    // problems to do pointer size logic.
770    MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
771        Runtime::Current()->GetClassLinker()->GetImagePointerSize());
772    for (size_t i = 0u; i < num_static_fields; ++i) {
773      mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
774      if (ref != nullptr) {
775        if (ref->IsClass()) {
776          result = result || PruneAppImageClassInternal(ref->AsClass(),
777                                                        &my_early_exit,
778                                                        visited);
779        } else {
780          result = result || PruneAppImageClassInternal(ref->GetClass(),
781                                                        &my_early_exit,
782                                                        visited);
783        }
784      }
785      field_offset = MemberOffset(field_offset.Uint32Value() +
786                                  sizeof(mirror::HeapReference<mirror::Object>));
787    }
788  }
789  result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
790                                                &my_early_exit,
791                                                visited);
792  // Remove the class if the dex file is not in the set of dex files. This happens for classes that
793  // are from uses library if there is no profile. b/30688277
794  mirror::DexCache* dex_cache = klass->GetDexCache();
795  if (dex_cache != nullptr) {
796    result = result ||
797        dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
798  }
799  // Erase the element we stored earlier since we are exiting the function.
800  auto it = visited->find(klass);
801  DCHECK(it != visited->end());
802  visited->erase(it);
803  // Only store result if it is true or none of the calls early exited due to circular
804  // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
805  // a child call and we can remember the result.
806  if (result == true || !my_early_exit || visited->empty()) {
807    prune_class_memo_[klass] = result;
808  }
809  *early_exit |= my_early_exit;
810  return result;
811}
812
813bool ImageWriter::KeepClass(Class* klass) {
814  if (klass == nullptr) {
815    return false;
816  }
817  if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
818    // Already in boot image, return true.
819    return true;
820  }
821  std::string temp;
822  if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) {
823    return false;
824  }
825  if (compile_app_image_) {
826    // For app images, we need to prune boot loader classes that are not in the boot image since
827    // these may have already been loaded when the app image is loaded.
828    // Keep classes in the boot image space since we don't want to re-resolve these.
829    return !PruneAppImageClass(klass);
830  }
831  return true;
832}
833
834class NonImageClassesVisitor : public ClassVisitor {
835 public:
836  explicit NonImageClassesVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
837
838  bool operator()(Class* klass) OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
839    if (!image_writer_->KeepClass(klass)) {
840      classes_to_prune_.insert(klass);
841    }
842    return true;
843  }
844
845  std::unordered_set<mirror::Class*> classes_to_prune_;
846  ImageWriter* const image_writer_;
847};
848
849void ImageWriter::PruneNonImageClasses() {
850  Runtime* runtime = Runtime::Current();
851  ClassLinker* class_linker = runtime->GetClassLinker();
852  Thread* self = Thread::Current();
853
854  // Clear class table strong roots so that dex caches can get pruned. We require pruning the class
855  // path dex caches.
856  class_linker->ClearClassTableStrongRoots();
857
858  // Make a list of classes we would like to prune.
859  NonImageClassesVisitor visitor(this);
860  class_linker->VisitClasses(&visitor);
861
862  // Remove the undesired classes from the class roots.
863  VLOG(compiler) << "Pruning " << visitor.classes_to_prune_.size() << " classes";
864  for (mirror::Class* klass : visitor.classes_to_prune_) {
865    std::string temp;
866    const char* name = klass->GetDescriptor(&temp);
867    VLOG(compiler) << "Pruning class " << name;
868    if (!compile_app_image_) {
869      DCHECK(IsBootClassLoaderClass(klass));
870    }
871    bool result = class_linker->RemoveClass(name, klass->GetClassLoader());
872    DCHECK(result);
873  }
874
875  // Clear references to removed classes from the DexCaches.
876  ArtMethod* resolution_method = runtime->GetResolutionMethod();
877
878  ScopedAssertNoThreadSuspension sa(self, __FUNCTION__);
879  ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);  // For ClassInClassTable
880  ReaderMutexLock mu2(self, *class_linker->DexLock());
881  for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
882    if (self->IsJWeakCleared(data.weak_root)) {
883      continue;
884    }
885    mirror::DexCache* dex_cache = self->DecodeJObject(data.weak_root)->AsDexCache();
886    for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
887      Class* klass = dex_cache->GetResolvedType(i);
888      if (klass != nullptr && !KeepClass(klass)) {
889        dex_cache->SetResolvedType(i, nullptr);
890      }
891    }
892    ArtMethod** resolved_methods = dex_cache->GetResolvedMethods();
893    for (size_t i = 0, num = dex_cache->NumResolvedMethods(); i != num; ++i) {
894      ArtMethod* method =
895          mirror::DexCache::GetElementPtrSize(resolved_methods, i, target_ptr_size_);
896      DCHECK(method != nullptr) << "Expected resolution method instead of null method";
897      mirror::Class* declaring_class = method->GetDeclaringClass();
898      // Copied methods may be held live by a class which was not an image class but have a
899      // declaring class which is an image class. Set it to the resolution method to be safe and
900      // prevent dangling pointers.
901      if (method->IsCopied() || !KeepClass(declaring_class)) {
902        mirror::DexCache::SetElementPtrSize(resolved_methods,
903                                            i,
904                                            resolution_method,
905                                            target_ptr_size_);
906      } else {
907        // Check that the class is still in the classes table.
908        DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class "
909            << PrettyClass(declaring_class) << " not in class linker table";
910      }
911    }
912    ArtField** resolved_fields = dex_cache->GetResolvedFields();
913    for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
914      ArtField* field = mirror::DexCache::GetElementPtrSize(resolved_fields, i, target_ptr_size_);
915      if (field != nullptr && !KeepClass(field->GetDeclaringClass())) {
916        dex_cache->SetResolvedField(i, nullptr, target_ptr_size_);
917      }
918    }
919    // Clean the dex field. It might have been populated during the initialization phase, but
920    // contains data only valid during a real run.
921    dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr);
922  }
923
924  // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
925  class_linker->DropFindArrayClassCache();
926
927  // Clear to save RAM.
928  prune_class_memo_.clear();
929}
930
931void ImageWriter::CheckNonImageClassesRemoved() {
932  if (compiler_driver_.GetImageClasses() != nullptr) {
933    gc::Heap* heap = Runtime::Current()->GetHeap();
934    heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
935  }
936}
937
938void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
939  ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
940  if (obj->IsClass() && !image_writer->IsInBootImage(obj)) {
941    Class* klass = obj->AsClass();
942    if (!image_writer->KeepClass(klass)) {
943      image_writer->DumpImageClasses();
944      std::string temp;
945      CHECK(image_writer->KeepClass(klass)) << klass->GetDescriptor(&temp)
946                                            << " " << PrettyDescriptor(klass);
947    }
948  }
949}
950
951void ImageWriter::DumpImageClasses() {
952  auto image_classes = compiler_driver_.GetImageClasses();
953  CHECK(image_classes != nullptr);
954  for (const std::string& image_class : *image_classes) {
955    LOG(INFO) << " " << image_class;
956  }
957}
958
959mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
960  Thread* const self = Thread::Current();
961  for (const ImageInfo& image_info : image_infos_) {
962    mirror::String* const found = image_info.intern_table_->LookupStrong(self, string);
963    DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
964        << string->ToModifiedUtf8();
965    if (found != nullptr) {
966      return found;
967    }
968  }
969  if (compile_app_image_) {
970    Runtime* const runtime = Runtime::Current();
971    mirror::String* found = runtime->GetInternTable()->LookupStrong(self, string);
972    // If we found it in the runtime intern table it could either be in the boot image or interned
973    // during app image compilation. If it was in the boot image return that, otherwise return null
974    // since it belongs to another image space.
975    if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found)) {
976      return found;
977    }
978    DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
979        << string->ToModifiedUtf8();
980  }
981  return nullptr;
982}
983
984
985ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const {
986  Runtime* runtime = Runtime::Current();
987  ClassLinker* class_linker = runtime->GetClassLinker();
988  Thread* self = Thread::Current();
989  StackHandleScope<3> hs(self);
990  Handle<Class> object_array_class(hs.NewHandle(
991      class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
992
993  std::unordered_set<const DexFile*> image_dex_files;
994  for (auto& pair : dex_file_oat_index_map_) {
995    const DexFile* image_dex_file = pair.first;
996    size_t image_oat_index = pair.second;
997    if (oat_index == image_oat_index) {
998      image_dex_files.insert(image_dex_file);
999    }
1000  }
1001
1002  // build an Object[] of all the DexCaches used in the source_space_.
1003  // Since we can't hold the dex lock when allocating the dex_caches
1004  // ObjectArray, we lock the dex lock twice, first to get the number
1005  // of dex caches first and then lock it again to copy the dex
1006  // caches. We check that the number of dex caches does not change.
1007  size_t dex_cache_count = 0;
1008  {
1009    ReaderMutexLock mu(self, *class_linker->DexLock());
1010    // Count number of dex caches not in the boot image.
1011    for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1012      mirror::DexCache* dex_cache =
1013          down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1014      if (dex_cache == nullptr) {
1015        continue;
1016      }
1017      const DexFile* dex_file = dex_cache->GetDexFile();
1018      if (!IsInBootImage(dex_cache)) {
1019        dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1020      }
1021    }
1022  }
1023  Handle<ObjectArray<Object>> dex_caches(
1024      hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count)));
1025  CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array.";
1026  {
1027    ReaderMutexLock mu(self, *class_linker->DexLock());
1028    size_t non_image_dex_caches = 0;
1029    // Re-count number of non image dex caches.
1030    for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1031      mirror::DexCache* dex_cache =
1032          down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1033      if (dex_cache == nullptr) {
1034        continue;
1035      }
1036      const DexFile* dex_file = dex_cache->GetDexFile();
1037      if (!IsInBootImage(dex_cache)) {
1038        non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1039      }
1040    }
1041    CHECK_EQ(dex_cache_count, non_image_dex_caches)
1042        << "The number of non-image dex caches changed.";
1043    size_t i = 0;
1044    for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1045      mirror::DexCache* dex_cache =
1046          down_cast<mirror::DexCache*>(self->DecodeJObject(data.weak_root));
1047      if (dex_cache == nullptr) {
1048        continue;
1049      }
1050      const DexFile* dex_file = dex_cache->GetDexFile();
1051      if (!IsInBootImage(dex_cache) && image_dex_files.find(dex_file) != image_dex_files.end()) {
1052        dex_caches->Set<false>(i, dex_cache);
1053        ++i;
1054      }
1055    }
1056  }
1057
1058  // build an Object[] of the roots needed to restore the runtime
1059  auto image_roots(hs.NewHandle(
1060      ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax)));
1061  image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
1062  image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1063  for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
1064    CHECK(image_roots->Get(i) != nullptr);
1065  }
1066  return image_roots.Get();
1067}
1068
1069mirror::Object* ImageWriter::TryAssignBinSlot(WorkStack& work_stack,
1070                                              mirror::Object* obj,
1071                                              size_t oat_index) {
1072  if (obj == nullptr || IsInBootImage(obj)) {
1073    // Object is null or already in the image, there is no work to do.
1074    return obj;
1075  }
1076  if (!IsImageBinSlotAssigned(obj)) {
1077    // We want to intern all strings but also assign offsets for the source string. Since the
1078    // pruning phase has already happened, if we intern a string to one in the image we still
1079    // end up copying an unreachable string.
1080    if (obj->IsString()) {
1081      // Need to check if the string is already interned in another image info so that we don't have
1082      // the intern tables of two different images contain the same string.
1083      mirror::String* interned = FindInternedString(obj->AsString());
1084      if (interned == nullptr) {
1085        // Not in another image space, insert to our table.
1086        interned = GetImageInfo(oat_index).intern_table_->InternStrongImageString(obj->AsString());
1087        DCHECK_EQ(interned, obj);
1088      }
1089    } else if (obj->IsDexCache()) {
1090      oat_index = GetOatIndexForDexCache(obj->AsDexCache());
1091    } else if (obj->IsClass()) {
1092      // Visit and assign offsets for fields and field arrays.
1093      mirror::Class* as_klass = obj->AsClass();
1094      mirror::DexCache* dex_cache = as_klass->GetDexCache();
1095      DCHECK_NE(as_klass->GetStatus(), mirror::Class::kStatusError);
1096      if (compile_app_image_) {
1097        // Extra sanity, no boot loader classes should be left!
1098        CHECK(!IsBootClassLoaderClass(as_klass)) << PrettyClass(as_klass);
1099      }
1100      LengthPrefixedArray<ArtField>* fields[] = {
1101          as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
1102      };
1103      // Overwrite the oat index value since the class' dex cache is more accurate of where it
1104      // belongs.
1105      oat_index = GetOatIndexForDexCache(dex_cache);
1106      ImageInfo& image_info = GetImageInfo(oat_index);
1107      {
1108        // Note: This table is only accessed from the image writer, avoid locking to prevent lock
1109        // order violations from root visiting.
1110        image_info.class_table_->InsertWithoutLocks(as_klass);
1111      }
1112      for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1113        // Total array length including header.
1114        if (cur_fields != nullptr) {
1115          const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
1116          // Forward the entire array at once.
1117          auto it = native_object_relocations_.find(cur_fields);
1118          CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
1119                                                  << " already forwarded";
1120          size_t& offset = image_info.bin_slot_sizes_[kBinArtField];
1121          DCHECK(!IsInBootImage(cur_fields));
1122          native_object_relocations_.emplace(
1123              cur_fields,
1124              NativeObjectRelocation {
1125                  oat_index, offset, kNativeObjectRelocationTypeArtFieldArray
1126              });
1127          offset += header_size;
1128          // Forward individual fields so that we can quickly find where they belong.
1129          for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
1130            // Need to forward arrays separate of fields.
1131            ArtField* field = &cur_fields->At(i);
1132            auto it2 = native_object_relocations_.find(field);
1133            CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
1134                << " already assigned " << PrettyField(field) << " static=" << field->IsStatic();
1135            DCHECK(!IsInBootImage(field));
1136            native_object_relocations_.emplace(
1137                field,
1138                NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField });
1139            offset += sizeof(ArtField);
1140          }
1141        }
1142      }
1143      // Visit and assign offsets for methods.
1144      size_t num_methods = as_klass->NumMethods();
1145      if (num_methods != 0) {
1146        bool any_dirty = false;
1147        for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1148          if (WillMethodBeDirty(&m)) {
1149            any_dirty = true;
1150            break;
1151          }
1152        }
1153        NativeObjectRelocationType type = any_dirty
1154            ? kNativeObjectRelocationTypeArtMethodDirty
1155            : kNativeObjectRelocationTypeArtMethodClean;
1156        Bin bin_type = BinTypeForNativeRelocationType(type);
1157        // Forward the entire array at once, but header first.
1158        const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1159        const size_t method_size = ArtMethod::Size(target_ptr_size_);
1160        const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1161                                                                               method_size,
1162                                                                               method_alignment);
1163        LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
1164        auto it = native_object_relocations_.find(array);
1165        CHECK(it == native_object_relocations_.end())
1166            << "Method array " << array << " already forwarded";
1167        size_t& offset = image_info.bin_slot_sizes_[bin_type];
1168        DCHECK(!IsInBootImage(array));
1169        native_object_relocations_.emplace(array,
1170            NativeObjectRelocation {
1171                oat_index,
1172                offset,
1173                any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty
1174                          : kNativeObjectRelocationTypeArtMethodArrayClean });
1175        offset += header_size;
1176        for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1177          AssignMethodOffset(&m, type, oat_index);
1178        }
1179        (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1180      }
1181      // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1182      // live.
1183      if (as_klass->ShouldHaveImt()) {
1184        ImTable* imt = as_klass->GetImt(target_ptr_size_);
1185        for (size_t i = 0; i < ImTable::kSize; ++i) {
1186          ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
1187          DCHECK(imt_method != nullptr);
1188          if (imt_method->IsRuntimeMethod() &&
1189              !IsInBootImage(imt_method) &&
1190              !NativeRelocationAssigned(imt_method)) {
1191            AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index);
1192          }
1193        }
1194      }
1195
1196      if (as_klass->ShouldHaveImt()) {
1197        ImTable* imt = as_klass->GetImt(target_ptr_size_);
1198        TryAssignImTableOffset(imt, oat_index);
1199      }
1200    } else if (obj->IsClassLoader()) {
1201      // Register the class loader if it has a class table.
1202      // The fake boot class loader should not get registered and we should end up with only one
1203      // class loader.
1204      mirror::ClassLoader* class_loader = obj->AsClassLoader();
1205      if (class_loader->GetClassTable() != nullptr) {
1206        class_loaders_.insert(class_loader);
1207      }
1208    }
1209    AssignImageBinSlot(obj, oat_index);
1210    work_stack.emplace(obj, oat_index);
1211  }
1212  if (obj->IsString()) {
1213    // Always return the interned string if there exists one.
1214    mirror::String* interned = FindInternedString(obj->AsString());
1215    if (interned != nullptr) {
1216      return interned;
1217    }
1218  }
1219  return obj;
1220}
1221
1222bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1223  return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1224}
1225
1226void ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
1227  // No offset, or already assigned.
1228  if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
1229    return;
1230  }
1231  // If the method is a conflict method we also want to assign the conflict table offset.
1232  ImageInfo& image_info = GetImageInfo(oat_index);
1233  const size_t size = ImTable::SizeInBytes(target_ptr_size_);
1234  native_object_relocations_.emplace(
1235      imt,
1236      NativeObjectRelocation {
1237          oat_index,
1238          image_info.bin_slot_sizes_[kBinImTable],
1239          kNativeObjectRelocationTypeIMTable});
1240  image_info.bin_slot_sizes_[kBinImTable] += size;
1241}
1242
1243void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1244  // No offset, or already assigned.
1245  if (table == nullptr || NativeRelocationAssigned(table)) {
1246    return;
1247  }
1248  CHECK(!IsInBootImage(table));
1249  // If the method is a conflict method we also want to assign the conflict table offset.
1250  ImageInfo& image_info = GetImageInfo(oat_index);
1251  const size_t size = table->ComputeSize(target_ptr_size_);
1252  native_object_relocations_.emplace(
1253      table,
1254      NativeObjectRelocation {
1255          oat_index,
1256          image_info.bin_slot_sizes_[kBinIMTConflictTable],
1257          kNativeObjectRelocationTypeIMTConflictTable});
1258  image_info.bin_slot_sizes_[kBinIMTConflictTable] += size;
1259}
1260
1261void ImageWriter::AssignMethodOffset(ArtMethod* method,
1262                                     NativeObjectRelocationType type,
1263                                     size_t oat_index) {
1264  DCHECK(!IsInBootImage(method));
1265  CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1266      << PrettyMethod(method);
1267  if (method->IsRuntimeMethod()) {
1268    TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1269  }
1270  ImageInfo& image_info = GetImageInfo(oat_index);
1271  size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)];
1272  native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
1273  offset += ArtMethod::Size(target_ptr_size_);
1274}
1275
1276void ImageWriter::EnsureBinSlotAssignedCallback(mirror::Object* obj, void* arg) {
1277  ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
1278  DCHECK(writer != nullptr);
1279  if (!Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(obj)) {
1280    CHECK(writer->IsImageBinSlotAssigned(obj)) << PrettyTypeOf(obj) << " " << obj;
1281  }
1282}
1283
1284void ImageWriter::DeflateMonitorCallback(mirror::Object* obj, void* arg ATTRIBUTE_UNUSED) {
1285  Monitor::Deflate(Thread::Current(), obj);
1286}
1287
1288void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) {
1289  ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
1290  DCHECK(writer != nullptr);
1291  if (!writer->IsInBootImage(obj)) {
1292    writer->UnbinObjectsIntoOffset(obj);
1293  }
1294}
1295
1296void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
1297  DCHECK(!IsInBootImage(obj));
1298  CHECK(obj != nullptr);
1299
1300  // We know the bin slot, and the total bin sizes for all objects by now,
1301  // so calculate the object's final image offset.
1302
1303  DCHECK(IsImageBinSlotAssigned(obj));
1304  BinSlot bin_slot = GetImageBinSlot(obj);
1305  // Change the lockword from a bin slot into an offset
1306  AssignImageOffset(obj, bin_slot);
1307}
1308
1309class ImageWriter::VisitReferencesVisitor {
1310 public:
1311  VisitReferencesVisitor(ImageWriter* image_writer, WorkStack* work_stack, size_t oat_index)
1312      : image_writer_(image_writer), work_stack_(work_stack), oat_index_(oat_index) {}
1313
1314  // Fix up separately since we also need to fix up method entrypoints.
1315  ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1316      SHARED_REQUIRES(Locks::mutator_lock_) {
1317    if (!root->IsNull()) {
1318      VisitRoot(root);
1319    }
1320  }
1321
1322  ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1323      SHARED_REQUIRES(Locks::mutator_lock_) {
1324    root->Assign(VisitReference(root->AsMirrorPtr()));
1325  }
1326
1327  ALWAYS_INLINE void operator() (mirror::Object* obj,
1328                                 MemberOffset offset,
1329                                 bool is_static ATTRIBUTE_UNUSED) const
1330      SHARED_REQUIRES(Locks::mutator_lock_) {
1331    mirror::Object* ref =
1332        obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1333    obj->SetFieldObject</*kTransactionActive*/false>(offset, VisitReference(ref));
1334  }
1335
1336  ALWAYS_INLINE void operator() (mirror::Class* klass ATTRIBUTE_UNUSED,
1337                                 mirror::Reference* ref) const
1338      SHARED_REQUIRES(Locks::mutator_lock_) {
1339    ref->SetReferent</*kTransactionActive*/false>(
1340        VisitReference(ref->GetReferent<kWithoutReadBarrier>()));
1341  }
1342
1343 private:
1344  mirror::Object* VisitReference(mirror::Object* ref) const SHARED_REQUIRES(Locks::mutator_lock_) {
1345    return image_writer_->TryAssignBinSlot(*work_stack_, ref, oat_index_);
1346  }
1347
1348  ImageWriter* const image_writer_;
1349  WorkStack* const work_stack_;
1350  const size_t oat_index_;
1351};
1352
1353class ImageWriter::GetRootsVisitor : public RootVisitor  {
1354 public:
1355  explicit GetRootsVisitor(std::vector<mirror::Object*>* roots) : roots_(roots) {}
1356
1357  void VisitRoots(mirror::Object*** roots,
1358                  size_t count,
1359                  const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE
1360      SHARED_REQUIRES(Locks::mutator_lock_) {
1361    for (size_t i = 0; i < count; ++i) {
1362      roots_->push_back(*roots[i]);
1363    }
1364  }
1365
1366  void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
1367                  size_t count,
1368                  const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE
1369      SHARED_REQUIRES(Locks::mutator_lock_) {
1370    for (size_t i = 0; i < count; ++i) {
1371      roots_->push_back(roots[i]->AsMirrorPtr());
1372    }
1373  }
1374
1375 private:
1376  std::vector<mirror::Object*>* const roots_;
1377};
1378
1379void ImageWriter::ProcessWorkStack(WorkStack* work_stack) {
1380  while (!work_stack->empty()) {
1381    std::pair<mirror::Object*, size_t> pair(work_stack->top());
1382    work_stack->pop();
1383    VisitReferencesVisitor visitor(this, work_stack, /*oat_index*/ pair.second);
1384    // Walk references and assign bin slots for them.
1385    pair.first->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
1386        visitor,
1387        visitor);
1388  }
1389}
1390
1391void ImageWriter::CalculateNewObjectOffsets() {
1392  Thread* const self = Thread::Current();
1393  StackHandleScopeCollection handles(self);
1394  std::vector<Handle<ObjectArray<Object>>> image_roots;
1395  for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
1396    image_roots.push_back(handles.NewHandle(CreateImageRoots(i)));
1397  }
1398
1399  Runtime* const runtime = Runtime::Current();
1400  gc::Heap* const heap = runtime->GetHeap();
1401
1402  // Leave space for the header, but do not write it yet, we need to
1403  // know where image_roots is going to end up
1404  image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
1405
1406  const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1407  // Write the image runtime methods.
1408  image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
1409  image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
1410  image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
1411  image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll);
1412  image_methods_[ImageHeader::kRefsOnlySaveMethod] =
1413      runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
1414  image_methods_[ImageHeader::kRefsAndArgsSaveMethod] =
1415      runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
1416  // Visit image methods first to have the main runtime methods in the first image.
1417  for (auto* m : image_methods_) {
1418    CHECK(m != nullptr);
1419    CHECK(m->IsRuntimeMethod());
1420    DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image";
1421    if (!IsInBootImage(m)) {
1422      AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex());
1423    }
1424  }
1425
1426  // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
1427  // this lock while holding other locks may cause lock order violations.
1428  heap->VisitObjects(DeflateMonitorCallback, this);
1429
1430  // Work list of <object, oat_index> for objects. Everything on the stack must already be
1431  // assigned a bin slot.
1432  WorkStack work_stack;
1433
1434  // Special case interned strings to put them in the image they are likely to be resolved from.
1435  for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
1436    auto it = dex_file_oat_index_map_.find(dex_file);
1437    DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1438    const size_t oat_index = it->second;
1439    InternTable* const intern_table = runtime->GetInternTable();
1440    for (size_t i = 0, count = dex_file->NumStringIds(); i < count; ++i) {
1441      uint32_t utf16_length;
1442      const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(i, &utf16_length);
1443      mirror::String* string = intern_table->LookupStrong(self, utf16_length, utf8_data);
1444      TryAssignBinSlot(work_stack, string, oat_index);
1445    }
1446  }
1447
1448  // Get the GC roots and then visit them separately to avoid lock violations since the root visitor
1449  // visits roots while holding various locks.
1450  {
1451    std::vector<mirror::Object*> roots;
1452    GetRootsVisitor root_visitor(&roots);
1453    runtime->VisitRoots(&root_visitor);
1454    for (mirror::Object* obj : roots) {
1455      TryAssignBinSlot(work_stack, obj, GetDefaultOatIndex());
1456    }
1457  }
1458  ProcessWorkStack(&work_stack);
1459
1460  // For app images, there may be objects that are only held live by the by the boot image. One
1461  // example is finalizer references. Forward these objects so that EnsureBinSlotAssignedCallback
1462  // does not fail any checks. TODO: We should probably avoid copying these objects.
1463  if (compile_app_image_) {
1464    for (gc::space::ImageSpace* space : heap->GetBootImageSpaces()) {
1465      DCHECK(space->IsImageSpace());
1466      gc::accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1467      live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
1468                                    reinterpret_cast<uintptr_t>(space->Limit()),
1469                                    [this, &work_stack](mirror::Object* obj)
1470          SHARED_REQUIRES(Locks::mutator_lock_) {
1471        VisitReferencesVisitor visitor(this, &work_stack, GetDefaultOatIndex());
1472        // Visit all references and try to assign bin slots for them (calls TryAssignBinSlot).
1473        obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
1474            visitor,
1475            visitor);
1476      });
1477    }
1478    // Process the work stack in case anything was added by TryAssignBinSlot.
1479    ProcessWorkStack(&work_stack);
1480  }
1481
1482  // Verify that all objects have assigned image bin slots.
1483  heap->VisitObjects(EnsureBinSlotAssignedCallback, this);
1484
1485  // Calculate size of the dex cache arrays slot and prepare offsets.
1486  PrepareDexCacheArraySlots();
1487
1488  // Calculate the sizes of the intern tables and class tables.
1489  for (ImageInfo& image_info : image_infos_) {
1490    // Calculate how big the intern table will be after being serialized.
1491    InternTable* const intern_table = image_info.intern_table_.get();
1492    CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
1493    image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
1494    // Calculate the size of the class table.
1495    ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1496    image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
1497  }
1498
1499  // Calculate bin slot offsets.
1500  for (ImageInfo& image_info : image_infos_) {
1501    size_t bin_offset = image_objects_offset_begin_;
1502    for (size_t i = 0; i != kBinSize; ++i) {
1503      switch (i) {
1504        case kBinArtMethodClean:
1505        case kBinArtMethodDirty: {
1506          bin_offset = RoundUp(bin_offset, method_alignment);
1507          break;
1508        }
1509        case kBinImTable:
1510        case kBinIMTConflictTable: {
1511          bin_offset = RoundUp(bin_offset, target_ptr_size_);
1512          break;
1513        }
1514        default: {
1515          // Normal alignment.
1516        }
1517      }
1518      image_info.bin_slot_offsets_[i] = bin_offset;
1519      bin_offset += image_info.bin_slot_sizes_[i];
1520    }
1521    // NOTE: There may be additional padding between the bin slots and the intern table.
1522    DCHECK_EQ(image_info.image_end_,
1523              GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_);
1524  }
1525
1526  // Calculate image offsets.
1527  size_t image_offset = 0;
1528  for (ImageInfo& image_info : image_infos_) {
1529    image_info.image_begin_ = global_image_begin_ + image_offset;
1530    image_info.image_offset_ = image_offset;
1531    ImageSection unused_sections[ImageHeader::kSectionCount];
1532    image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize);
1533    // There should be no gaps until the next image.
1534    image_offset += image_info.image_size_;
1535  }
1536
1537  // Transform each object's bin slot into an offset which will be used to do the final copy.
1538  heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this);
1539
1540  // DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);
1541
1542  size_t i = 0;
1543  for (ImageInfo& image_info : image_infos_) {
1544    image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
1545    i++;
1546  }
1547
1548  // Update the native relocations by adding their bin sums.
1549  for (auto& pair : native_object_relocations_) {
1550    NativeObjectRelocation& relocation = pair.second;
1551    Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
1552    ImageInfo& image_info = GetImageInfo(relocation.oat_index);
1553    relocation.offset += image_info.bin_slot_offsets_[bin_type];
1554  }
1555
1556  // Note that image_info.image_end_ is left at end of used mirror object section.
1557}
1558
1559size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const {
1560  DCHECK(out_sections != nullptr);
1561
1562  // Do not round up any sections here that are represented by the bins since it will break
1563  // offsets.
1564
1565  // Objects section
1566  ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects];
1567  *objects_section = ImageSection(0u, image_end_);
1568
1569  // Add field section.
1570  ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields];
1571  *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]);
1572  CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset());
1573
1574  // Add method section.
1575  ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods];
1576  *methods_section = ImageSection(
1577      bin_slot_offsets_[kBinArtMethodClean],
1578      bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]);
1579
1580  // IMT section.
1581  ImageSection* imt_section = &out_sections[ImageHeader::kSectionImTables];
1582  *imt_section = ImageSection(bin_slot_offsets_[kBinImTable], bin_slot_sizes_[kBinImTable]);
1583
1584  // Conflict tables section.
1585  ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables];
1586  *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable],
1587                                              bin_slot_sizes_[kBinIMTConflictTable]);
1588
1589  // Runtime methods section.
1590  ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods];
1591  *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod],
1592                                          bin_slot_sizes_[kBinRuntimeMethod]);
1593
1594  // Add dex cache arrays section.
1595  ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays];
1596  *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray],
1597                                           bin_slot_sizes_[kBinDexCacheArray]);
1598
1599  // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
1600  size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t));
1601  // Calculate the size of the interned strings.
1602  ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings];
1603  *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
1604  cur_pos = interned_strings_section->End();
1605  // Round up to the alignment the class table expects. See HashSet::WriteToMemory.
1606  cur_pos = RoundUp(cur_pos, sizeof(uint64_t));
1607  // Calculate the size of the class table section.
1608  ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable];
1609  *class_table_section = ImageSection(cur_pos, class_table_bytes_);
1610  cur_pos = class_table_section->End();
1611  // Image end goes right before the start of the image bitmap.
1612  return cur_pos;
1613}
1614
1615void ImageWriter::CreateHeader(size_t oat_index) {
1616  ImageInfo& image_info = GetImageInfo(oat_index);
1617  const uint8_t* oat_file_begin = image_info.oat_file_begin_;
1618  const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
1619  const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
1620
1621  // Create the image sections.
1622  ImageSection sections[ImageHeader::kSectionCount];
1623  const size_t image_end = image_info.CreateImageSections(sections);
1624
1625  // Finally bitmap section.
1626  const size_t bitmap_bytes = image_info.image_bitmap_->Size();
1627  auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
1628  *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
1629  if (VLOG_IS_ON(compiler)) {
1630    LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
1631    size_t idx = 0;
1632    for (const ImageSection& section : sections) {
1633      LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
1634      ++idx;
1635    }
1636    LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
1637    LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
1638    LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
1639              << " Image offset=" << image_info.image_offset_ << std::dec;
1640    LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
1641              << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
1642              << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
1643              << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
1644  }
1645  // Store boot image info for app image so that we can relocate.
1646  uint32_t boot_image_begin = 0;
1647  uint32_t boot_image_end = 0;
1648  uint32_t boot_oat_begin = 0;
1649  uint32_t boot_oat_end = 0;
1650  gc::Heap* const heap = Runtime::Current()->GetHeap();
1651  heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
1652
1653  // Create the header, leave 0 for data size since we will fill this in as we are writing the
1654  // image.
1655  new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_),
1656                                               image_end,
1657                                               sections,
1658                                               image_info.image_roots_address_,
1659                                               image_info.oat_checksum_,
1660                                               PointerToLowMemUInt32(oat_file_begin),
1661                                               PointerToLowMemUInt32(image_info.oat_data_begin_),
1662                                               PointerToLowMemUInt32(oat_data_end),
1663                                               PointerToLowMemUInt32(oat_file_end),
1664                                               boot_image_begin,
1665                                               boot_image_end - boot_image_begin,
1666                                               boot_oat_begin,
1667                                               boot_oat_end - boot_oat_begin,
1668                                               target_ptr_size_,
1669                                               compile_pic_,
1670                                               /*is_pic*/compile_app_image_,
1671                                               image_storage_mode_,
1672                                               /*data_size*/0u);
1673}
1674
1675ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
1676  auto it = native_object_relocations_.find(method);
1677  CHECK(it != native_object_relocations_.end()) << PrettyMethod(method) << " @ " << method;
1678  size_t oat_index = GetOatIndex(method->GetDexCache());
1679  ImageInfo& image_info = GetImageInfo(oat_index);
1680  CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects";
1681  return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset);
1682}
1683
1684class FixupRootVisitor : public RootVisitor {
1685 public:
1686  explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
1687  }
1688
1689  void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1690      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1691    for (size_t i = 0; i < count; ++i) {
1692      *roots[i] = image_writer_->GetImageAddress(*roots[i]);
1693    }
1694  }
1695
1696  void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
1697                  const RootInfo& info ATTRIBUTE_UNUSED)
1698      OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
1699    for (size_t i = 0; i < count; ++i) {
1700      roots[i]->Assign(image_writer_->GetImageAddress(roots[i]->AsMirrorPtr()));
1701    }
1702  }
1703
1704 private:
1705  ImageWriter* const image_writer_;
1706};
1707
1708void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
1709  for (size_t i = 0; i < ImTable::kSize; ++i) {
1710    ArtMethod* method = orig->Get(i, target_ptr_size_);
1711    copy->Set(i, NativeLocationInImage(method), target_ptr_size_);
1712  }
1713}
1714
1715void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
1716  const size_t count = orig->NumEntries(target_ptr_size_);
1717  for (size_t i = 0; i < count; ++i) {
1718    ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
1719    ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
1720    copy->SetInterfaceMethod(i, target_ptr_size_, NativeLocationInImage(interface_method));
1721    copy->SetImplementationMethod(i,
1722                                  target_ptr_size_,
1723                                  NativeLocationInImage(implementation_method));
1724  }
1725}
1726
1727void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
1728  const ImageInfo& image_info = GetImageInfo(oat_index);
1729  // Copy ArtFields and methods to their locations and update the array for convenience.
1730  for (auto& pair : native_object_relocations_) {
1731    NativeObjectRelocation& relocation = pair.second;
1732    // Only work with fields and methods that are in the current oat file.
1733    if (relocation.oat_index != oat_index) {
1734      continue;
1735    }
1736    auto* dest = image_info.image_->Begin() + relocation.offset;
1737    DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_);
1738    DCHECK(!IsInBootImage(pair.first));
1739    switch (relocation.type) {
1740      case kNativeObjectRelocationTypeArtField: {
1741        memcpy(dest, pair.first, sizeof(ArtField));
1742        reinterpret_cast<ArtField*>(dest)->SetDeclaringClass(
1743            GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass()));
1744        break;
1745      }
1746      case kNativeObjectRelocationTypeRuntimeMethod:
1747      case kNativeObjectRelocationTypeArtMethodClean:
1748      case kNativeObjectRelocationTypeArtMethodDirty: {
1749        CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
1750                           reinterpret_cast<ArtMethod*>(dest),
1751                           image_info);
1752        break;
1753      }
1754      // For arrays, copy just the header since the elements will get copied by their corresponding
1755      // relocations.
1756      case kNativeObjectRelocationTypeArtFieldArray: {
1757        memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
1758        break;
1759      }
1760      case kNativeObjectRelocationTypeArtMethodArrayClean:
1761      case kNativeObjectRelocationTypeArtMethodArrayDirty: {
1762        size_t size = ArtMethod::Size(target_ptr_size_);
1763        size_t alignment = ArtMethod::Alignment(target_ptr_size_);
1764        memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
1765        // Clear padding to avoid non-deterministic data in the image (and placate valgrind).
1766        reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
1767        break;
1768      }
1769      case kNativeObjectRelocationTypeDexCacheArray:
1770        // Nothing to copy here, everything is done in FixupDexCache().
1771        break;
1772      case kNativeObjectRelocationTypeIMTable: {
1773        ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
1774        ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
1775        CopyAndFixupImTable(orig_imt, dest_imt);
1776        break;
1777      }
1778      case kNativeObjectRelocationTypeIMTConflictTable: {
1779        auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
1780        CopyAndFixupImtConflictTable(
1781            orig_table,
1782            new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
1783        break;
1784      }
1785    }
1786  }
1787  // Fixup the image method roots.
1788  auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
1789  for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
1790    ArtMethod* method = image_methods_[i];
1791    CHECK(method != nullptr);
1792    if (!IsInBootImage(method)) {
1793      method = NativeLocationInImage(method);
1794    }
1795    image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method);
1796  }
1797  FixupRootVisitor root_visitor(this);
1798
1799  // Write the intern table into the image.
1800  if (image_info.intern_table_bytes_ > 0) {
1801    const ImageSection& intern_table_section = image_header->GetImageSection(
1802        ImageHeader::kSectionInternedStrings);
1803    InternTable* const intern_table = image_info.intern_table_.get();
1804    uint8_t* const intern_table_memory_ptr =
1805        image_info.image_->Begin() + intern_table_section.Offset();
1806    const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
1807    CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
1808    // Fixup the pointers in the newly written intern table to contain image addresses.
1809    InternTable temp_intern_table;
1810    // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
1811    // the VisitRoots() will update the memory directly rather than the copies.
1812    // This also relies on visit roots not doing any verification which could fail after we update
1813    // the roots to be the image addresses.
1814    temp_intern_table.AddTableFromMemory(intern_table_memory_ptr);
1815    CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
1816    temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
1817  }
1818  // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
1819  // class loaders. Writing multiple class tables into the image is currently unsupported.
1820  if (image_info.class_table_bytes_ > 0u) {
1821    const ImageSection& class_table_section = image_header->GetImageSection(
1822        ImageHeader::kSectionClassTable);
1823    uint8_t* const class_table_memory_ptr =
1824        image_info.image_->Begin() + class_table_section.Offset();
1825    ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1826
1827    ClassTable* table = image_info.class_table_.get();
1828    CHECK(table != nullptr);
1829    const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
1830    CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
1831    // Fixup the pointers in the newly written class table to contain image addresses. See
1832    // above comment for intern tables.
1833    ClassTable temp_class_table;
1834    temp_class_table.ReadFromMemory(class_table_memory_ptr);
1835    CHECK_EQ(temp_class_table.NumZygoteClasses(), table->NumNonZygoteClasses() +
1836             table->NumZygoteClasses());
1837    BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(&root_visitor,
1838                                                                    RootInfo(kRootUnknown));
1839    temp_class_table.VisitRoots(buffered_visitor);
1840  }
1841}
1842
1843void ImageWriter::CopyAndFixupObjects() {
1844  gc::Heap* heap = Runtime::Current()->GetHeap();
1845  heap->VisitObjects(CopyAndFixupObjectsCallback, this);
1846  // Fix up the object previously had hash codes.
1847  for (const auto& hash_pair : saved_hashcode_map_) {
1848    Object* obj = hash_pair.first;
1849    DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U);
1850    obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false);
1851  }
1852  saved_hashcode_map_.clear();
1853}
1854
1855void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
1856  DCHECK(obj != nullptr);
1857  DCHECK(arg != nullptr);
1858  reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj);
1859}
1860
1861void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr,
1862                                    mirror::Class* klass, Bin array_type) {
1863  CHECK(klass->IsArrayClass());
1864  CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr;
1865  // Fixup int and long pointers for the ArtMethod or ArtField arrays.
1866  const size_t num_elements = arr->GetLength();
1867  dst->SetClass(GetImageAddress(arr->GetClass()));
1868  auto* dest_array = down_cast<mirror::PointerArray*>(dst);
1869  for (size_t i = 0, count = num_elements; i < count; ++i) {
1870    void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
1871    if (elem != nullptr && !IsInBootImage(elem)) {
1872      auto it = native_object_relocations_.find(elem);
1873      if (UNLIKELY(it == native_object_relocations_.end())) {
1874        if (it->second.IsArtMethodRelocation()) {
1875          auto* method = reinterpret_cast<ArtMethod*>(elem);
1876          LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ "
1877              << method << " idx=" << i << "/" << num_elements << " with declaring class "
1878              << PrettyClass(method->GetDeclaringClass());
1879        } else {
1880          CHECK_EQ(array_type, kBinArtField);
1881          auto* field = reinterpret_cast<ArtField*>(elem);
1882          LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ "
1883              << field << " idx=" << i << "/" << num_elements << " with declaring class "
1884              << PrettyClass(field->GetDeclaringClass());
1885        }
1886        UNREACHABLE();
1887      } else {
1888        ImageInfo& image_info = GetImageInfo(it->second.oat_index);
1889        elem = image_info.image_begin_ + it->second.offset;
1890      }
1891    }
1892    dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_);
1893  }
1894}
1895
1896void ImageWriter::CopyAndFixupObject(Object* obj) {
1897  if (IsInBootImage(obj)) {
1898    return;
1899  }
1900  size_t offset = GetImageOffset(obj);
1901  size_t oat_index = GetOatIndex(obj);
1902  ImageInfo& image_info = GetImageInfo(oat_index);
1903  auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset);
1904  DCHECK_LT(offset, image_info.image_end_);
1905  const auto* src = reinterpret_cast<const uint8_t*>(obj);
1906
1907  image_info.image_bitmap_->Set(dst);  // Mark the obj as live.
1908
1909  const size_t n = obj->SizeOf();
1910  DCHECK_LE(offset + n, image_info.image_->Size());
1911  memcpy(dst, src, n);
1912
1913  // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
1914  // word.
1915  const auto it = saved_hashcode_map_.find(obj);
1916  dst->SetLockWord(it != saved_hashcode_map_.end() ?
1917      LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
1918  FixupObject(obj, dst);
1919}
1920
1921// Rewrite all the references in the copied object to point to their image address equivalent
1922class FixupVisitor {
1923 public:
1924  FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
1925  }
1926
1927  // Ignore class roots since we don't have a way to map them to the destination. These are handled
1928  // with other logic.
1929  void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1930      const {}
1931  void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1932
1933
1934  void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1935      REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1936    Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
1937    // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1938    // image.
1939    copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1940        offset,
1941        image_writer_->GetImageAddress(ref));
1942  }
1943
1944  // java.lang.ref.Reference visitor.
1945  void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
1946      SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1947    copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1948        mirror::Reference::ReferentOffset(),
1949        image_writer_->GetImageAddress(ref->GetReferent()));
1950  }
1951
1952 protected:
1953  ImageWriter* const image_writer_;
1954  mirror::Object* const copy_;
1955};
1956
1957class FixupClassVisitor FINAL : public FixupVisitor {
1958 public:
1959  FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
1960  }
1961
1962  void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1963      REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1964    DCHECK(obj->IsClass());
1965    FixupVisitor::operator()(obj, offset, /*is_static*/false);
1966  }
1967
1968  void operator()(mirror::Class* klass ATTRIBUTE_UNUSED,
1969                  mirror::Reference* ref ATTRIBUTE_UNUSED) const
1970      SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1971    LOG(FATAL) << "Reference not expected here.";
1972  }
1973};
1974
1975uintptr_t ImageWriter::NativeOffsetInImage(void* obj) {
1976  DCHECK(obj != nullptr);
1977  DCHECK(!IsInBootImage(obj));
1978  auto it = native_object_relocations_.find(obj);
1979  CHECK(it != native_object_relocations_.end()) << obj << " spaces "
1980      << Runtime::Current()->GetHeap()->DumpSpaces();
1981  const NativeObjectRelocation& relocation = it->second;
1982  return relocation.offset;
1983}
1984
1985template <typename T>
1986std::string PrettyPrint(T* ptr) SHARED_REQUIRES(Locks::mutator_lock_) {
1987  std::ostringstream oss;
1988  oss << ptr;
1989  return oss.str();
1990}
1991
1992template <>
1993std::string PrettyPrint(ArtMethod* method) SHARED_REQUIRES(Locks::mutator_lock_) {
1994  return PrettyMethod(method);
1995}
1996
1997template <typename T>
1998T* ImageWriter::NativeLocationInImage(T* obj) {
1999  if (obj == nullptr || IsInBootImage(obj)) {
2000    return obj;
2001  } else {
2002    auto it = native_object_relocations_.find(obj);
2003    CHECK(it != native_object_relocations_.end()) << obj << " " << PrettyPrint(obj)
2004        << " spaces " << Runtime::Current()->GetHeap()->DumpSpaces();
2005    const NativeObjectRelocation& relocation = it->second;
2006    ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2007    return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
2008  }
2009}
2010
2011template <typename T>
2012T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) {
2013  if (obj == nullptr || IsInBootImage(obj)) {
2014    return obj;
2015  } else {
2016    size_t oat_index = GetOatIndexForDexCache(dex_cache);
2017    ImageInfo& image_info = GetImageInfo(oat_index);
2018    return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj));
2019  }
2020}
2021
2022class NativeLocationVisitor {
2023 public:
2024  explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
2025
2026  template <typename T>
2027  T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
2028    return image_writer_->NativeLocationInImage(ptr);
2029  }
2030
2031 private:
2032  ImageWriter* const image_writer_;
2033};
2034
2035void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
2036  orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
2037  FixupClassVisitor visitor(this, copy);
2038  static_cast<mirror::Object*>(orig)->VisitReferences(visitor, visitor);
2039
2040  // Remove the clinitThreadId. This is required for image determinism.
2041  copy->SetClinitThreadId(static_cast<pid_t>(0));
2042}
2043
2044void ImageWriter::FixupObject(Object* orig, Object* copy) {
2045  DCHECK(orig != nullptr);
2046  DCHECK(copy != nullptr);
2047  if (kUseBakerOrBrooksReadBarrier) {
2048    orig->AssertReadBarrierPointer();
2049    if (kUseBrooksReadBarrier) {
2050      // Note the address 'copy' isn't the same as the image address of 'orig'.
2051      copy->SetReadBarrierPointer(GetImageAddress(orig));
2052      DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
2053    }
2054  }
2055  auto* klass = orig->GetClass();
2056  if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
2057    // Is this a native pointer array?
2058    auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
2059    if (it != pointer_arrays_.end()) {
2060      // Should only need to fixup every pointer array exactly once.
2061      FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
2062      pointer_arrays_.erase(it);
2063      return;
2064    }
2065  }
2066  if (orig->IsClass()) {
2067    FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
2068  } else {
2069    if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
2070      // Need to go update the ArtMethod.
2071      auto* dest = down_cast<mirror::AbstractMethod*>(copy);
2072      auto* src = down_cast<mirror::AbstractMethod*>(orig);
2073      ArtMethod* src_method = src->GetArtMethod();
2074      auto it = native_object_relocations_.find(src_method);
2075      CHECK(it != native_object_relocations_.end())
2076          << "Missing relocation for AbstractMethod.artMethod " << PrettyMethod(src_method);
2077      dest->SetArtMethod(
2078          reinterpret_cast<ArtMethod*>(global_image_begin_ + it->second.offset));
2079    } else if (!klass->IsArrayClass()) {
2080      ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2081      if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) {
2082        FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
2083      } else if (klass->IsClassLoaderClass()) {
2084        mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
2085        // If src is a ClassLoader, set the class table to null so that it gets recreated by the
2086        // ClassLoader.
2087        copy_loader->SetClassTable(nullptr);
2088        // Also set allocator to null to be safe. The allocator is created when we create the class
2089        // table. We also never expect to unload things in the image since they are held live as
2090        // roots.
2091        copy_loader->SetAllocator(nullptr);
2092      }
2093    }
2094    FixupVisitor visitor(this, copy);
2095    orig->VisitReferences(visitor, visitor);
2096  }
2097}
2098
2099
2100class ImageAddressVisitor {
2101 public:
2102  explicit ImageAddressVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
2103
2104  template <typename T>
2105  T* operator()(T* ptr) const SHARED_REQUIRES(Locks::mutator_lock_) {
2106    return image_writer_->GetImageAddress(ptr);
2107  }
2108
2109 private:
2110  ImageWriter* const image_writer_;
2111};
2112
2113
2114void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache,
2115                                mirror::DexCache* copy_dex_cache) {
2116  // Though the DexCache array fields are usually treated as native pointers, we set the full
2117  // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
2118  // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
2119  //     static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
2120  GcRoot<mirror::String>* orig_strings = orig_dex_cache->GetStrings();
2121  if (orig_strings != nullptr) {
2122    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(),
2123                                               NativeLocationInImage(orig_strings),
2124                                               /*pointer size*/8u);
2125    orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache),
2126                                 ImageAddressVisitor(this));
2127  }
2128  GcRoot<mirror::Class>* orig_types = orig_dex_cache->GetResolvedTypes();
2129  if (orig_types != nullptr) {
2130    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(),
2131                                               NativeLocationInImage(orig_types),
2132                                               /*pointer size*/8u);
2133    orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache),
2134                                       ImageAddressVisitor(this));
2135  }
2136  ArtMethod** orig_methods = orig_dex_cache->GetResolvedMethods();
2137  if (orig_methods != nullptr) {
2138    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(),
2139                                               NativeLocationInImage(orig_methods),
2140                                               /*pointer size*/8u);
2141    ArtMethod** copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache);
2142    for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) {
2143      ArtMethod* orig = mirror::DexCache::GetElementPtrSize(orig_methods, i, target_ptr_size_);
2144      // NativeLocationInImage also handles runtime methods since these have relocation info.
2145      ArtMethod* copy = NativeLocationInImage(orig);
2146      mirror::DexCache::SetElementPtrSize(copy_methods, i, copy, target_ptr_size_);
2147    }
2148  }
2149  ArtField** orig_fields = orig_dex_cache->GetResolvedFields();
2150  if (orig_fields != nullptr) {
2151    copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(),
2152                                               NativeLocationInImage(orig_fields),
2153                                               /*pointer size*/8u);
2154    ArtField** copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache);
2155    for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) {
2156      ArtField* orig = mirror::DexCache::GetElementPtrSize(orig_fields, i, target_ptr_size_);
2157      ArtField* copy = NativeLocationInImage(orig);
2158      mirror::DexCache::SetElementPtrSize(copy_fields, i, copy, target_ptr_size_);
2159    }
2160  }
2161
2162  // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
2163  // compiler pointers in here will make the output non-deterministic.
2164  copy_dex_cache->SetDexFile(nullptr);
2165}
2166
2167const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const {
2168  DCHECK_LT(type, kOatAddressCount);
2169  // If we are compiling an app image, we need to use the stubs of the boot image.
2170  if (compile_app_image_) {
2171    // Use the current image pointers.
2172    const std::vector<gc::space::ImageSpace*>& image_spaces =
2173        Runtime::Current()->GetHeap()->GetBootImageSpaces();
2174    DCHECK(!image_spaces.empty());
2175    const OatFile* oat_file = image_spaces[0]->GetOatFile();
2176    CHECK(oat_file != nullptr);
2177    const OatHeader& header = oat_file->GetOatHeader();
2178    switch (type) {
2179      // TODO: We could maybe clean this up if we stored them in an array in the oat header.
2180      case kOatAddressQuickGenericJNITrampoline:
2181        return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
2182      case kOatAddressInterpreterToInterpreterBridge:
2183        return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge());
2184      case kOatAddressInterpreterToCompiledCodeBridge:
2185        return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge());
2186      case kOatAddressJNIDlsymLookup:
2187        return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
2188      case kOatAddressQuickIMTConflictTrampoline:
2189        return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
2190      case kOatAddressQuickResolutionTrampoline:
2191        return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
2192      case kOatAddressQuickToInterpreterBridge:
2193        return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
2194      default:
2195        UNREACHABLE();
2196    }
2197  }
2198  const ImageInfo& primary_image_info = GetImageInfo(0);
2199  return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info);
2200}
2201
2202const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
2203                                         const ImageInfo& image_info,
2204                                         bool* quick_is_interpreted) {
2205  DCHECK(!method->IsResolutionMethod()) << PrettyMethod(method);
2206  DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << PrettyMethod(method);
2207  DCHECK(!method->IsImtUnimplementedMethod()) << PrettyMethod(method);
2208  DCHECK(method->IsInvokable()) << PrettyMethod(method);
2209  DCHECK(!IsInBootImage(method)) << PrettyMethod(method);
2210
2211  // Use original code if it exists. Otherwise, set the code pointer to the resolution
2212  // trampoline.
2213
2214  // Quick entrypoint:
2215  const void* quick_oat_entry_point =
2216      method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
2217  const uint8_t* quick_code;
2218
2219  if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) {
2220    DCHECK(method->IsCopied());
2221    // If the code is not in the oat file corresponding to this image (e.g. default methods)
2222    quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
2223  } else {
2224    uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
2225    quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
2226  }
2227
2228  *quick_is_interpreted = false;
2229  if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
2230      method->GetDeclaringClass()->IsInitialized())) {
2231    // We have code for a non-static or initialized method, just use the code.
2232  } else if (quick_code == nullptr && method->IsNative() &&
2233      (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
2234    // Non-static or initialized native method missing compiled code, use generic JNI version.
2235    quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline);
2236  } else if (quick_code == nullptr && !method->IsNative()) {
2237    // We don't have code at all for a non-native method, use the interpreter.
2238    quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge);
2239    *quick_is_interpreted = true;
2240  } else {
2241    CHECK(!method->GetDeclaringClass()->IsInitialized());
2242    // We have code for a static method, but need to go through the resolution stub for class
2243    // initialization.
2244    quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline);
2245  }
2246  if (!IsInBootOatFile(quick_code)) {
2247    // DCHECK_GE(quick_code, oat_data_begin_);
2248  }
2249  return quick_code;
2250}
2251
2252void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
2253                                     ArtMethod* copy,
2254                                     const ImageInfo& image_info) {
2255  memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
2256
2257  copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked()));
2258  ArtMethod** orig_resolved_methods = orig->GetDexCacheResolvedMethods(target_ptr_size_);
2259  copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_);
2260  GcRoot<mirror::Class>* orig_resolved_types = orig->GetDexCacheResolvedTypes(target_ptr_size_);
2261  copy->SetDexCacheResolvedTypes(NativeLocationInImage(orig_resolved_types), target_ptr_size_);
2262
2263  // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
2264  // oat_begin_
2265
2266  // The resolution method has a special trampoline to call.
2267  Runtime* runtime = Runtime::Current();
2268  if (orig->IsRuntimeMethod()) {
2269    ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
2270    if (orig_table != nullptr) {
2271      // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
2272      copy->SetEntryPointFromQuickCompiledCodePtrSize(
2273          GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_);
2274      copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_);
2275    } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
2276      copy->SetEntryPointFromQuickCompiledCodePtrSize(
2277          GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_);
2278    } else {
2279      bool found_one = false;
2280      for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) {
2281        auto idx = static_cast<Runtime::CalleeSaveType>(i);
2282        if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
2283          found_one = true;
2284          break;
2285        }
2286      }
2287      CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig);
2288      CHECK(copy->IsRuntimeMethod());
2289    }
2290  } else {
2291    // We assume all methods have code. If they don't currently then we set them to the use the
2292    // resolution trampoline. Abstract methods never have code and so we need to make sure their
2293    // use results in an AbstractMethodError. We use the interpreter to achieve this.
2294    if (UNLIKELY(!orig->IsInvokable())) {
2295      copy->SetEntryPointFromQuickCompiledCodePtrSize(
2296          GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_);
2297    } else {
2298      bool quick_is_interpreted;
2299      const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
2300      copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
2301
2302      // JNI entrypoint:
2303      if (orig->IsNative()) {
2304        // The native method's pointer is set to a stub to lookup via dlsym.
2305        // Note this is not the code_ pointer, that is handled above.
2306        copy->SetEntryPointFromJniPtrSize(
2307            GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_);
2308      }
2309    }
2310  }
2311}
2312
2313size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const {
2314  DCHECK_LE(up_to, kBinSize);
2315  return std::accumulate(&image_info.bin_slot_sizes_[0],
2316                         &image_info.bin_slot_sizes_[up_to],
2317                         /*init*/0);
2318}
2319
2320ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
2321  // These values may need to get updated if more bins are added to the enum Bin
2322  static_assert(kBinBits == 3, "wrong number of bin bits");
2323  static_assert(kBinShift == 27, "wrong number of shift");
2324  static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
2325
2326  DCHECK_LT(GetBin(), kBinSize);
2327  DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
2328}
2329
2330ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
2331    : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
2332  DCHECK_EQ(index, GetIndex());
2333}
2334
2335ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
2336  return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
2337}
2338
2339uint32_t ImageWriter::BinSlot::GetIndex() const {
2340  return lockword_ & ~kBinMask;
2341}
2342
2343ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
2344  switch (type) {
2345    case kNativeObjectRelocationTypeArtField:
2346    case kNativeObjectRelocationTypeArtFieldArray:
2347      return kBinArtField;
2348    case kNativeObjectRelocationTypeArtMethodClean:
2349    case kNativeObjectRelocationTypeArtMethodArrayClean:
2350      return kBinArtMethodClean;
2351    case kNativeObjectRelocationTypeArtMethodDirty:
2352    case kNativeObjectRelocationTypeArtMethodArrayDirty:
2353      return kBinArtMethodDirty;
2354    case kNativeObjectRelocationTypeDexCacheArray:
2355      return kBinDexCacheArray;
2356    case kNativeObjectRelocationTypeRuntimeMethod:
2357      return kBinRuntimeMethod;
2358    case kNativeObjectRelocationTypeIMTable:
2359      return kBinImTable;
2360    case kNativeObjectRelocationTypeIMTConflictTable:
2361      return kBinIMTConflictTable;
2362  }
2363  UNREACHABLE();
2364}
2365
2366size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
2367  if (!IsMultiImage()) {
2368    return GetDefaultOatIndex();
2369  }
2370  auto it = oat_index_map_.find(obj);
2371  DCHECK(it != oat_index_map_.end());
2372  return it->second;
2373}
2374
2375size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
2376  if (!IsMultiImage()) {
2377    return GetDefaultOatIndex();
2378  }
2379  auto it = dex_file_oat_index_map_.find(dex_file);
2380  DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2381  return it->second;
2382}
2383
2384size_t ImageWriter::GetOatIndexForDexCache(mirror::DexCache* dex_cache) const {
2385  if (dex_cache == nullptr) {
2386    return GetDefaultOatIndex();
2387  } else {
2388    return GetOatIndexForDexFile(dex_cache->GetDexFile());
2389  }
2390}
2391
2392void ImageWriter::UpdateOatFileLayout(size_t oat_index,
2393                                      size_t oat_loaded_size,
2394                                      size_t oat_data_offset,
2395                                      size_t oat_data_size) {
2396  const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
2397  for (const ImageInfo& info : image_infos_) {
2398    DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
2399  }
2400  DCHECK(images_end != nullptr);  // Image space must be ready.
2401
2402  ImageInfo& cur_image_info = GetImageInfo(oat_index);
2403  cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
2404  cur_image_info.oat_loaded_size_ = oat_loaded_size;
2405  cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
2406  cur_image_info.oat_size_ = oat_data_size;
2407
2408  if (compile_app_image_) {
2409    CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
2410    return;
2411  }
2412
2413  // Update the oat_offset of the next image info.
2414  if (oat_index + 1u != oat_filenames_.size()) {
2415    // There is a following one.
2416    ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
2417    next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
2418  }
2419}
2420
2421void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
2422  ImageInfo& cur_image_info = GetImageInfo(oat_index);
2423  cur_image_info.oat_checksum_ = oat_header.GetChecksum();
2424
2425  if (oat_index == GetDefaultOatIndex()) {
2426    // Primary oat file, read the trampolines.
2427    cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] =
2428        oat_header.GetInterpreterToInterpreterBridgeOffset();
2429    cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] =
2430        oat_header.GetInterpreterToCompiledCodeBridgeOffset();
2431    cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] =
2432        oat_header.GetJniDlsymLookupOffset();
2433    cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] =
2434        oat_header.GetQuickGenericJniTrampolineOffset();
2435    cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] =
2436        oat_header.GetQuickImtConflictTrampolineOffset();
2437    cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] =
2438        oat_header.GetQuickResolutionTrampolineOffset();
2439    cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] =
2440        oat_header.GetQuickToInterpreterBridgeOffset();
2441  }
2442}
2443
2444ImageWriter::ImageWriter(
2445    const CompilerDriver& compiler_driver,
2446    uintptr_t image_begin,
2447    bool compile_pic,
2448    bool compile_app_image,
2449    ImageHeader::StorageMode image_storage_mode,
2450    const std::vector<const char*>& oat_filenames,
2451    const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map)
2452    : compiler_driver_(compiler_driver),
2453      global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
2454      image_objects_offset_begin_(0),
2455      compile_pic_(compile_pic),
2456      compile_app_image_(compile_app_image),
2457      target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())),
2458      image_infos_(oat_filenames.size()),
2459      dirty_methods_(0u),
2460      clean_methods_(0u),
2461      image_storage_mode_(image_storage_mode),
2462      oat_filenames_(oat_filenames),
2463      dex_file_oat_index_map_(dex_file_oat_index_map) {
2464  CHECK_NE(image_begin, 0U);
2465  std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
2466  CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
2467      << "Compiling a boot image should occur iff there are no boot image spaces loaded";
2468}
2469
2470ImageWriter::ImageInfo::ImageInfo()
2471    : intern_table_(new InternTable),
2472      class_table_(new ClassTable) {}
2473
2474}  // namespace art
2475