1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "art_field-inl.h"
22#include "art_method-inl.h"
23#include "base/logging.h"
24#include "base/mutex-inl.h"
25#include "base/stl_util.h"
26#include "base/systrace.h"
27#include "base/time_utils.h"
28#include "class_linker.h"
29#include "compiler_callbacks.h"
30#include "dex_file-inl.h"
31#include "dex_instruction-inl.h"
32#include "dex_instruction_utils.h"
33#include "dex_instruction_visitor.h"
34#include "experimental_flags.h"
35#include "gc/accounting/card_table-inl.h"
36#include "indenter.h"
37#include "intern_table.h"
38#include "leb128.h"
39#include "mirror/class.h"
40#include "mirror/class-inl.h"
41#include "mirror/dex_cache-inl.h"
42#include "mirror/object-inl.h"
43#include "mirror/object_array-inl.h"
44#include "reg_type-inl.h"
45#include "register_line-inl.h"
46#include "runtime.h"
47#include "scoped_thread_state_change.h"
48#include "utils.h"
49#include "handle_scope-inl.h"
50
51namespace art {
52namespace verifier {
53
54static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
55static constexpr bool kDebugVerify = false;
56// TODO: Add a constant to method_verifier to turn on verbose logging?
57
58// On VLOG(verifier), should we dump the whole state when we run into a hard failure?
59static constexpr bool kDumpRegLinesOnHardFailureIfVLOG = true;
60
61// We print a warning blurb about "dx --no-optimize" when we find monitor-locking issues. Make
62// sure we only print this once.
63static bool gPrintedDxMonitorText = false;
64
65PcToRegisterLineTable::PcToRegisterLineTable(ScopedArenaAllocator& arena)
66    : register_lines_(arena.Adapter(kArenaAllocVerifier)) {}
67
68void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
69                                 uint32_t insns_size, uint16_t registers_size,
70                                 MethodVerifier* verifier) {
71  DCHECK_GT(insns_size, 0U);
72  register_lines_.resize(insns_size);
73  for (uint32_t i = 0; i < insns_size; i++) {
74    bool interesting = false;
75    switch (mode) {
76      case kTrackRegsAll:
77        interesting = flags[i].IsOpcode();
78        break;
79      case kTrackCompilerInterestPoints:
80        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
81        break;
82      case kTrackRegsBranches:
83        interesting = flags[i].IsBranchTarget();
84        break;
85      default:
86        break;
87    }
88    if (interesting) {
89      register_lines_[i].reset(RegisterLine::Create(registers_size, verifier));
90    }
91  }
92}
93
94PcToRegisterLineTable::~PcToRegisterLineTable() {}
95
96// Note: returns true on failure.
97ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
98                                             const char* error_msg, uint32_t work_insn_idx) {
99  if (kIsDebugBuild) {
100    // In a debug build, abort if the error condition is wrong.
101    DCHECK(condition) << error_msg << work_insn_idx;
102  } else {
103    // In a non-debug build, just fail the class.
104    if (!condition) {
105      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
106      return true;
107    }
108  }
109
110  return false;
111}
112
113static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
114  if (verifier->IsInstanceConstructor()) {
115    // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
116    reg_line->CheckConstructorReturn(verifier);
117  }
118  reg_line->MarkAllRegistersAsConflicts(verifier);
119}
120
121MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
122                                                        mirror::Class* klass,
123                                                        CompilerCallbacks* callbacks,
124                                                        bool allow_soft_failures,
125                                                        LogSeverity log_level,
126                                                        std::string* error) {
127  if (klass->IsVerified()) {
128    return kNoFailure;
129  }
130  bool early_failure = false;
131  std::string failure_message;
132  const DexFile& dex_file = klass->GetDexFile();
133  const DexFile::ClassDef* class_def = klass->GetClassDef();
134  mirror::Class* super = klass->GetSuperClass();
135  std::string temp;
136  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
137    early_failure = true;
138    failure_message = " that has no super class";
139  } else if (super != nullptr && super->IsFinal()) {
140    early_failure = true;
141    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
142  } else if (class_def == nullptr) {
143    early_failure = true;
144    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
145  }
146  if (early_failure) {
147    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
148    if (callbacks != nullptr) {
149      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
150      callbacks->ClassRejected(ref);
151    }
152    return kHardFailure;
153  }
154  StackHandleScope<2> hs(self);
155  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
156  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
157  return VerifyClass(self,
158                     &dex_file,
159                     dex_cache,
160                     class_loader,
161                     class_def,
162                     callbacks,
163                     allow_soft_failures,
164                     log_level,
165                     error);
166}
167
168template <bool kDirect>
169static bool HasNextMethod(ClassDataItemIterator* it) {
170  return kDirect ? it->HasNextDirectMethod() : it->HasNextVirtualMethod();
171}
172
173static MethodVerifier::FailureKind FailureKindMax(MethodVerifier::FailureKind fk1,
174                                                  MethodVerifier::FailureKind fk2) {
175  static_assert(MethodVerifier::FailureKind::kNoFailure <
176                    MethodVerifier::FailureKind::kSoftFailure
177                && MethodVerifier::FailureKind::kSoftFailure <
178                       MethodVerifier::FailureKind::kHardFailure,
179                "Unexpected FailureKind order");
180  return std::max(fk1, fk2);
181}
182
183void MethodVerifier::FailureData::Merge(const MethodVerifier::FailureData& fd) {
184  kind = FailureKindMax(kind, fd.kind);
185  types |= fd.types;
186}
187
188template <bool kDirect>
189MethodVerifier::FailureData MethodVerifier::VerifyMethods(Thread* self,
190                                                          ClassLinker* linker,
191                                                          const DexFile* dex_file,
192                                                          const DexFile::ClassDef* class_def,
193                                                          ClassDataItemIterator* it,
194                                                          Handle<mirror::DexCache> dex_cache,
195                                                          Handle<mirror::ClassLoader> class_loader,
196                                                          CompilerCallbacks* callbacks,
197                                                          bool allow_soft_failures,
198                                                          LogSeverity log_level,
199                                                          bool need_precise_constants,
200                                                          std::string* error_string) {
201  DCHECK(it != nullptr);
202
203  MethodVerifier::FailureData failure_data;
204
205  int64_t previous_method_idx = -1;
206  while (HasNextMethod<kDirect>(it)) {
207    self->AllowThreadSuspension();
208    uint32_t method_idx = it->GetMemberIndex();
209    if (method_idx == previous_method_idx) {
210      // smali can create dex files with two encoded_methods sharing the same method_idx
211      // http://code.google.com/p/smali/issues/detail?id=119
212      it->Next();
213      continue;
214    }
215    previous_method_idx = method_idx;
216    InvokeType type = it->GetMethodInvokeType(*class_def);
217    ArtMethod* method = linker->ResolveMethod<ClassLinker::kNoICCECheckForCache>(
218        *dex_file, method_idx, dex_cache, class_loader, nullptr, type);
219    if (method == nullptr) {
220      DCHECK(self->IsExceptionPending());
221      // We couldn't resolve the method, but continue regardless.
222      self->ClearException();
223    } else {
224      DCHECK(method->GetDeclaringClassUnchecked() != nullptr) << type;
225    }
226    StackHandleScope<1> hs(self);
227    std::string hard_failure_msg;
228    MethodVerifier::FailureData result = VerifyMethod(self,
229                                                      method_idx,
230                                                      dex_file,
231                                                      dex_cache,
232                                                      class_loader,
233                                                      class_def,
234                                                      it->GetMethodCodeItem(),
235                                                      method,
236                                                      it->GetMethodAccessFlags(),
237                                                      callbacks,
238                                                      allow_soft_failures,
239                                                      log_level,
240                                                      need_precise_constants,
241                                                      &hard_failure_msg);
242    if (result.kind == kHardFailure) {
243      if (failure_data.kind == kHardFailure) {
244        // If we logged an error before, we need a newline.
245        *error_string += "\n";
246      } else {
247        // If we didn't log a hard failure before, print the header of the message.
248        *error_string += "Verifier rejected class ";
249        *error_string += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
250        *error_string += ":";
251      }
252      *error_string += " ";
253      *error_string += hard_failure_msg;
254    }
255    failure_data.Merge(result);
256    it->Next();
257  }
258
259  return failure_data;
260}
261
262MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
263                                                        const DexFile* dex_file,
264                                                        Handle<mirror::DexCache> dex_cache,
265                                                        Handle<mirror::ClassLoader> class_loader,
266                                                        const DexFile::ClassDef* class_def,
267                                                        CompilerCallbacks* callbacks,
268                                                        bool allow_soft_failures,
269                                                        LogSeverity log_level,
270                                                        std::string* error) {
271  DCHECK(class_def != nullptr);
272  ScopedTrace trace(__FUNCTION__);
273
274  // A class must not be abstract and final.
275  if ((class_def->access_flags_ & (kAccAbstract | kAccFinal)) == (kAccAbstract | kAccFinal)) {
276    *error = "Verifier rejected class ";
277    *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
278    *error += ": class is abstract and final.";
279    return kHardFailure;
280  }
281
282  const uint8_t* class_data = dex_file->GetClassData(*class_def);
283  if (class_data == nullptr) {
284    // empty class, probably a marker interface
285    return kNoFailure;
286  }
287  ClassDataItemIterator it(*dex_file, class_data);
288  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
289    it.Next();
290  }
291  ClassLinker* linker = Runtime::Current()->GetClassLinker();
292  // Direct methods.
293  MethodVerifier::FailureData data1 = VerifyMethods<true>(self,
294                                                          linker,
295                                                          dex_file,
296                                                          class_def,
297                                                          &it,
298                                                          dex_cache,
299                                                          class_loader,
300                                                          callbacks,
301                                                          allow_soft_failures,
302                                                          log_level,
303                                                          false /* need precise constants */,
304                                                          error);
305  // Virtual methods.
306  MethodVerifier::FailureData data2 = VerifyMethods<false>(self,
307                                                           linker,
308                                                           dex_file,
309                                                           class_def,
310                                                           &it,
311                                                           dex_cache,
312                                                           class_loader,
313                                                           callbacks,
314                                                           allow_soft_failures,
315                                                           log_level,
316                                                           false /* need precise constants */,
317                                                           error);
318
319  data1.Merge(data2);
320
321  if (data1.kind == kNoFailure) {
322    return kNoFailure;
323  } else {
324    if ((data1.types & VERIFY_ERROR_LOCKING) != 0) {
325      // Print a warning about expected slow-down. Use a string temporary to print one contiguous
326      // warning.
327      std::string tmp =
328          StringPrintf("Class %s failed lock verification and will run slower.",
329                       PrettyDescriptor(dex_file->GetClassDescriptor(*class_def)).c_str());
330      if (!gPrintedDxMonitorText) {
331        tmp = tmp + "\nCommon causes for lock verification issues are non-optimized dex code\n"
332                    "and incorrect proguard optimizations.";
333        gPrintedDxMonitorText = true;
334      }
335      LOG(WARNING) << tmp;
336    }
337    return data1.kind;
338  }
339}
340
341static bool IsLargeMethod(const DexFile::CodeItem* const code_item) {
342  if (code_item == nullptr) {
343    return false;
344  }
345
346  uint16_t registers_size = code_item->registers_size_;
347  uint32_t insns_size = code_item->insns_size_in_code_units_;
348
349  return registers_size * insns_size > 4*1024*1024;
350}
351
352MethodVerifier::FailureData MethodVerifier::VerifyMethod(Thread* self,
353                                                         uint32_t method_idx,
354                                                         const DexFile* dex_file,
355                                                         Handle<mirror::DexCache> dex_cache,
356                                                         Handle<mirror::ClassLoader> class_loader,
357                                                         const DexFile::ClassDef* class_def,
358                                                         const DexFile::CodeItem* code_item,
359                                                         ArtMethod* method,
360                                                         uint32_t method_access_flags,
361                                                         CompilerCallbacks* callbacks,
362                                                         bool allow_soft_failures,
363                                                         LogSeverity log_level,
364                                                         bool need_precise_constants,
365                                                         std::string* hard_failure_msg) {
366  MethodVerifier::FailureData result;
367  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
368
369  MethodVerifier verifier(self,
370                          dex_file,
371                          dex_cache,
372                          class_loader,
373                          class_def,
374                          code_item,
375                          method_idx,
376                          method,
377                          method_access_flags,
378                          true /* can_load_classes */,
379                          allow_soft_failures,
380                          need_precise_constants,
381                          false /* verify to dump */,
382                          true /* allow_thread_suspension */);
383  if (verifier.Verify()) {
384    // Verification completed, however failures may be pending that didn't cause the verification
385    // to hard fail.
386    CHECK(!verifier.have_pending_hard_failure_);
387
388    if (code_item != nullptr && callbacks != nullptr) {
389      // Let the interested party know that the method was verified.
390      callbacks->MethodVerified(&verifier);
391    }
392
393    if (verifier.failures_.size() != 0) {
394      if (VLOG_IS_ON(verifier)) {
395        verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
396                                                    << PrettyMethod(method_idx, *dex_file) << "\n");
397      }
398      result.kind = kSoftFailure;
399      if (method != nullptr &&
400          !CanCompilerHandleVerificationFailure(verifier.encountered_failure_types_)) {
401        method->SetAccessFlags(method->GetAccessFlags() | kAccCompileDontBother);
402      }
403    }
404    if (method != nullptr) {
405      if (verifier.HasInstructionThatWillThrow()) {
406        method->SetAccessFlags(method->GetAccessFlags() | kAccCompileDontBother);
407      }
408      if ((verifier.encountered_failure_types_ & VerifyError::VERIFY_ERROR_LOCKING) != 0) {
409        method->SetAccessFlags(method->GetAccessFlags() | kAccMustCountLocks);
410      }
411    }
412  } else {
413    // Bad method data.
414    CHECK_NE(verifier.failures_.size(), 0U);
415
416    if (UNLIKELY(verifier.have_pending_experimental_failure_)) {
417      // Failed due to being forced into interpreter. This is ok because
418      // we just want to skip verification.
419      result.kind = kSoftFailure;
420    } else {
421      CHECK(verifier.have_pending_hard_failure_);
422      if (VLOG_IS_ON(verifier)) {
423        log_level = LogSeverity::VERBOSE;
424      }
425      if (log_level > LogSeverity::VERBOSE) {
426        verifier.DumpFailures(LOG(log_level) << "Verification error in "
427                                             << PrettyMethod(method_idx, *dex_file) << "\n");
428      }
429      if (hard_failure_msg != nullptr) {
430        CHECK(!verifier.failure_messages_.empty());
431        *hard_failure_msg =
432            verifier.failure_messages_[verifier.failure_messages_.size() - 1]->str();
433      }
434      result.kind = kHardFailure;
435
436      if (callbacks != nullptr) {
437        // Let the interested party know that we failed the class.
438        ClassReference ref(dex_file, dex_file->GetIndexForClassDef(*class_def));
439        callbacks->ClassRejected(ref);
440      }
441    }
442    if (VLOG_IS_ON(verifier)) {
443      std::cout << "\n" << verifier.info_messages_.str();
444      verifier.Dump(std::cout);
445    }
446  }
447  if (kTimeVerifyMethod) {
448    uint64_t duration_ns = NanoTime() - start_ns;
449    if (duration_ns > MsToNs(100)) {
450      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
451                   << " took " << PrettyDuration(duration_ns)
452                   << (IsLargeMethod(code_item) ? " (large method)" : "");
453    }
454  }
455  result.types = verifier.encountered_failure_types_;
456  return result;
457}
458
459MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self,
460                                                    VariableIndentationOutputStream* vios,
461                                                    uint32_t dex_method_idx,
462                                                    const DexFile* dex_file,
463                                                    Handle<mirror::DexCache> dex_cache,
464                                                    Handle<mirror::ClassLoader> class_loader,
465                                                    const DexFile::ClassDef* class_def,
466                                                    const DexFile::CodeItem* code_item,
467                                                    ArtMethod* method,
468                                                    uint32_t method_access_flags) {
469  MethodVerifier* verifier = new MethodVerifier(self,
470                                                dex_file,
471                                                dex_cache,
472                                                class_loader,
473                                                class_def,
474                                                code_item,
475                                                dex_method_idx,
476                                                method,
477                                                method_access_flags,
478                                                true /* can_load_classes */,
479                                                true /* allow_soft_failures */,
480                                                true /* need_precise_constants */,
481                                                true /* verify_to_dump */,
482                                                true /* allow_thread_suspension */);
483  verifier->Verify();
484  verifier->DumpFailures(vios->Stream());
485  vios->Stream() << verifier->info_messages_.str();
486  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
487  // and querying any info is dangerous/can abort.
488  if (verifier->have_pending_hard_failure_) {
489    delete verifier;
490    return nullptr;
491  } else {
492    verifier->Dump(vios);
493    return verifier;
494  }
495}
496
497MethodVerifier::MethodVerifier(Thread* self,
498                               const DexFile* dex_file,
499                               Handle<mirror::DexCache> dex_cache,
500                               Handle<mirror::ClassLoader> class_loader,
501                               const DexFile::ClassDef* class_def,
502                               const DexFile::CodeItem* code_item,
503                               uint32_t dex_method_idx,
504                               ArtMethod* method,
505                               uint32_t method_access_flags,
506                               bool can_load_classes,
507                               bool allow_soft_failures,
508                               bool need_precise_constants,
509                               bool verify_to_dump,
510                               bool allow_thread_suspension)
511    : self_(self),
512      arena_stack_(Runtime::Current()->GetArenaPool()),
513      arena_(&arena_stack_),
514      reg_types_(can_load_classes, arena_),
515      reg_table_(arena_),
516      work_insn_idx_(DexFile::kDexNoIndex),
517      dex_method_idx_(dex_method_idx),
518      mirror_method_(method),
519      method_access_flags_(method_access_flags),
520      return_type_(nullptr),
521      dex_file_(dex_file),
522      dex_cache_(dex_cache),
523      class_loader_(class_loader),
524      class_def_(class_def),
525      code_item_(code_item),
526      declaring_class_(nullptr),
527      interesting_dex_pc_(-1),
528      monitor_enter_dex_pcs_(nullptr),
529      have_pending_hard_failure_(false),
530      have_pending_runtime_throw_failure_(false),
531      have_pending_experimental_failure_(false),
532      have_any_pending_runtime_throw_failure_(false),
533      new_instance_count_(0),
534      monitor_enter_count_(0),
535      encountered_failure_types_(0),
536      can_load_classes_(can_load_classes),
537      allow_soft_failures_(allow_soft_failures),
538      need_precise_constants_(need_precise_constants),
539      has_check_casts_(false),
540      has_virtual_or_interface_invokes_(false),
541      verify_to_dump_(verify_to_dump),
542      allow_thread_suspension_(allow_thread_suspension),
543      is_constructor_(false),
544      link_(nullptr) {
545  self->PushVerifier(this);
546  DCHECK(class_def != nullptr);
547}
548
549MethodVerifier::~MethodVerifier() {
550  Thread::Current()->PopVerifier(this);
551  STLDeleteElements(&failure_messages_);
552}
553
554void MethodVerifier::FindLocksAtDexPc(ArtMethod* m, uint32_t dex_pc,
555                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
556  StackHandleScope<2> hs(Thread::Current());
557  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
558  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
559  MethodVerifier verifier(hs.Self(),
560                          m->GetDexFile(),
561                          dex_cache,
562                          class_loader,
563                          &m->GetClassDef(),
564                          m->GetCodeItem(),
565                          m->GetDexMethodIndex(),
566                          m,
567                          m->GetAccessFlags(),
568                          false /* can_load_classes */,
569                          true  /* allow_soft_failures */,
570                          false /* need_precise_constants */,
571                          false /* verify_to_dump */,
572                          false /* allow_thread_suspension */);
573  verifier.interesting_dex_pc_ = dex_pc;
574  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
575  verifier.FindLocksAtDexPc();
576}
577
578static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
579  const Instruction* inst = Instruction::At(code_item->insns_);
580
581  uint32_t insns_size = code_item->insns_size_in_code_units_;
582  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
583    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
584      return true;
585    }
586
587    dex_pc += inst->SizeInCodeUnits();
588    inst = inst->Next();
589  }
590
591  return false;
592}
593
594void MethodVerifier::FindLocksAtDexPc() {
595  CHECK(monitor_enter_dex_pcs_ != nullptr);
596  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
597
598  // Quick check whether there are any monitor_enter instructions at all.
599  if (!HasMonitorEnterInstructions(code_item_)) {
600    return;
601  }
602
603  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
604  // verification. In practice, the phase we want relies on data structures set up by all the
605  // earlier passes, so we just run the full method verification and bail out early when we've
606  // got what we wanted.
607  Verify();
608}
609
610ArtField* MethodVerifier::FindAccessedFieldAtDexPc(ArtMethod* m, uint32_t dex_pc) {
611  StackHandleScope<2> hs(Thread::Current());
612  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
613  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
614  MethodVerifier verifier(hs.Self(),
615                          m->GetDexFile(),
616                          dex_cache,
617                          class_loader,
618                          &m->GetClassDef(),
619                          m->GetCodeItem(),
620                          m->GetDexMethodIndex(),
621                          m,
622                          m->GetAccessFlags(),
623                          true  /* can_load_classes */,
624                          true  /* allow_soft_failures */,
625                          false /* need_precise_constants */,
626                          false /* verify_to_dump */,
627                          true  /* allow_thread_suspension */);
628  return verifier.FindAccessedFieldAtDexPc(dex_pc);
629}
630
631ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
632  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
633
634  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
635  // verification. In practice, the phase we want relies on data structures set up by all the
636  // earlier passes, so we just run the full method verification and bail out early when we've
637  // got what we wanted.
638  bool success = Verify();
639  if (!success) {
640    return nullptr;
641  }
642  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
643  if (register_line == nullptr) {
644    return nullptr;
645  }
646  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
647  return GetQuickFieldAccess(inst, register_line);
648}
649
650ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(ArtMethod* m, uint32_t dex_pc) {
651  StackHandleScope<2> hs(Thread::Current());
652  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
653  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
654  MethodVerifier verifier(hs.Self(),
655                          m->GetDexFile(),
656                          dex_cache,
657                          class_loader,
658                          &m->GetClassDef(),
659                          m->GetCodeItem(),
660                          m->GetDexMethodIndex(),
661                          m,
662                          m->GetAccessFlags(),
663                          true  /* can_load_classes */,
664                          true  /* allow_soft_failures */,
665                          false /* need_precise_constants */,
666                          false /* verify_to_dump */,
667                          true  /* allow_thread_suspension */);
668  return verifier.FindInvokedMethodAtDexPc(dex_pc);
669}
670
671ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
672  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
673
674  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
675  // verification. In practice, the phase we want relies on data structures set up by all the
676  // earlier passes, so we just run the full method verification and bail out early when we've
677  // got what we wanted.
678  bool success = Verify();
679  if (!success) {
680    return nullptr;
681  }
682  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
683  if (register_line == nullptr) {
684    return nullptr;
685  }
686  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
687  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
688  return GetQuickInvokedMethod(inst, register_line, is_range, false);
689}
690
691bool MethodVerifier::Verify() {
692  // Some older code doesn't correctly mark constructors as such. Test for this case by looking at
693  // the name.
694  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
695  const char* method_name = dex_file_->StringDataByIdx(method_id.name_idx_);
696  bool instance_constructor_by_name = strcmp("<init>", method_name) == 0;
697  bool static_constructor_by_name = strcmp("<clinit>", method_name) == 0;
698  bool constructor_by_name = instance_constructor_by_name || static_constructor_by_name;
699  // Check that only constructors are tagged, and check for bad code that doesn't tag constructors.
700  if ((method_access_flags_ & kAccConstructor) != 0) {
701    if (!constructor_by_name) {
702      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
703            << "method is marked as constructor, but not named accordingly";
704      return false;
705    }
706    is_constructor_ = true;
707  } else if (constructor_by_name) {
708    LOG(WARNING) << "Method " << PrettyMethod(dex_method_idx_, *dex_file_)
709                 << " not marked as constructor.";
710    is_constructor_ = true;
711  }
712  // If it's a constructor, check whether IsStatic() matches the name.
713  // This should have been rejected by the dex file verifier. Only do in debug build.
714  if (kIsDebugBuild) {
715    if (IsConstructor()) {
716      if (IsStatic() ^ static_constructor_by_name) {
717        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
718              << "constructor name doesn't match static flag";
719        return false;
720      }
721    }
722  }
723
724  // Methods may only have one of public/protected/private.
725  // This should have been rejected by the dex file verifier. Only do in debug build.
726  if (kIsDebugBuild) {
727    size_t access_mod_count =
728        (((method_access_flags_ & kAccPublic) == 0) ? 0 : 1) +
729        (((method_access_flags_ & kAccProtected) == 0) ? 0 : 1) +
730        (((method_access_flags_ & kAccPrivate) == 0) ? 0 : 1);
731    if (access_mod_count > 1) {
732      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "method has more than one of public/protected/private";
733      return false;
734    }
735  }
736
737  // If there aren't any instructions, make sure that's expected, then exit successfully.
738  if (code_item_ == nullptr) {
739    // Only native or abstract methods may not have code.
740    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
741      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
742      return false;
743    }
744
745    // This should have been rejected by the dex file verifier. Only do in debug build.
746    // Note: the above will also be rejected in the dex file verifier, starting in dex version 37.
747    if (kIsDebugBuild) {
748      if ((method_access_flags_ & kAccAbstract) != 0) {
749        // Abstract methods are not allowed to have the following flags.
750        static constexpr uint32_t kForbidden =
751            kAccPrivate |
752            kAccStatic |
753            kAccFinal |
754            kAccNative |
755            kAccStrict |
756            kAccSynchronized;
757        if ((method_access_flags_ & kForbidden) != 0) {
758          Fail(VERIFY_ERROR_BAD_CLASS_HARD)
759                << "method can't be abstract and private/static/final/native/strict/synchronized";
760          return false;
761        }
762      }
763      if ((class_def_->GetJavaAccessFlags() & kAccInterface) != 0) {
764        // Interface methods must be public and abstract (if default methods are disabled).
765        uint32_t kRequired = kAccPublic;
766        if ((method_access_flags_ & kRequired) != kRequired) {
767          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods must be public";
768          return false;
769        }
770        // In addition to the above, interface methods must not be protected.
771        static constexpr uint32_t kForbidden = kAccProtected;
772        if ((method_access_flags_ & kForbidden) != 0) {
773          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface methods can't be protected";
774          return false;
775        }
776      }
777      // We also don't allow constructors to be abstract or native.
778      if (IsConstructor()) {
779        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be abstract or native";
780        return false;
781      }
782    }
783    return true;
784  }
785
786  // This should have been rejected by the dex file verifier. Only do in debug build.
787  if (kIsDebugBuild) {
788    // When there's code, the method must not be native or abstract.
789    if ((method_access_flags_ & (kAccNative | kAccAbstract)) != 0) {
790      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "non-zero-length code in abstract or native method";
791      return false;
792    }
793
794    if ((class_def_->GetJavaAccessFlags() & kAccInterface) != 0) {
795      // Interfaces may always have static initializers for their fields. If we are running with
796      // default methods enabled we also allow other public, static, non-final methods to have code.
797      // Otherwise that is the only type of method allowed.
798      if (!(IsConstructor() && IsStatic())) {
799        if (IsInstanceConstructor()) {
800          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have non-static constructor";
801          return false;
802        } else if (method_access_flags_ & kAccFinal) {
803          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interfaces may not have final methods";
804          return false;
805        } else {
806          uint32_t access_flag_options = kAccPublic;
807          if (dex_file_->GetVersion() >= DexFile::kDefaultMethodsVersion) {
808            access_flag_options |= kAccPrivate;
809          }
810          if (!(method_access_flags_ & access_flag_options)) {
811            Fail(VERIFY_ERROR_BAD_CLASS_HARD)
812                << "interfaces may not have protected or package-private members";
813            return false;
814          }
815        }
816      }
817    }
818
819    // Instance constructors must not be synchronized.
820    if (IsInstanceConstructor()) {
821      static constexpr uint32_t kForbidden = kAccSynchronized;
822      if ((method_access_flags_ & kForbidden) != 0) {
823        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "constructors can't be synchronized";
824        return false;
825      }
826    }
827  }
828
829  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
830  if (code_item_->ins_size_ > code_item_->registers_size_) {
831    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
832                                      << " regs=" << code_item_->registers_size_;
833    return false;
834  }
835
836  // Allocate and initialize an array to hold instruction data.
837  insn_flags_.reset(arena_.AllocArray<InstructionFlags>(code_item_->insns_size_in_code_units_));
838  DCHECK(insn_flags_ != nullptr);
839  std::uninitialized_fill_n(insn_flags_.get(),
840                            code_item_->insns_size_in_code_units_,
841                            InstructionFlags());
842  // Run through the instructions and see if the width checks out.
843  bool result = ComputeWidthsAndCountOps();
844  // Flag instructions guarded by a "try" block and check exception handlers.
845  result = result && ScanTryCatchBlocks();
846  // Perform static instruction verification.
847  result = result && VerifyInstructions();
848  // Perform code-flow analysis and return.
849  result = result && VerifyCodeFlow();
850
851  return result;
852}
853
854std::ostream& MethodVerifier::Fail(VerifyError error) {
855  // Mark the error type as encountered.
856  encountered_failure_types_ |= static_cast<uint32_t>(error);
857
858  switch (error) {
859    case VERIFY_ERROR_NO_CLASS:
860    case VERIFY_ERROR_NO_FIELD:
861    case VERIFY_ERROR_NO_METHOD:
862    case VERIFY_ERROR_ACCESS_CLASS:
863    case VERIFY_ERROR_ACCESS_FIELD:
864    case VERIFY_ERROR_ACCESS_METHOD:
865    case VERIFY_ERROR_INSTANTIATION:
866    case VERIFY_ERROR_CLASS_CHANGE:
867    case VERIFY_ERROR_FORCE_INTERPRETER:
868    case VERIFY_ERROR_LOCKING:
869      if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
870        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
871        // class change and instantiation errors into soft verification errors so that we re-verify
872        // at runtime. We may fail to find or to agree on access because of not yet available class
873        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
874        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
875        // paths" that dynamically perform the verification and cause the behavior to be that akin
876        // to an interpreter.
877        error = VERIFY_ERROR_BAD_CLASS_SOFT;
878      } else {
879        // If we fail again at runtime, mark that this instruction would throw and force this
880        // method to be executed using the interpreter with checks.
881        have_pending_runtime_throw_failure_ = true;
882
883        // We need to save the work_line if the instruction wasn't throwing before. Otherwise we'll
884        // try to merge garbage.
885        // Note: this assumes that Fail is called before we do any work_line modifications.
886        // Note: this can fail before we touch any instruction, for the signature of a method. So
887        //       add a check.
888        if (work_insn_idx_ < DexFile::kDexNoIndex) {
889          const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
890          const Instruction* inst = Instruction::At(insns);
891          int opcode_flags = Instruction::FlagsOf(inst->Opcode());
892
893          if ((opcode_flags & Instruction::kThrow) == 0 && CurrentInsnFlags()->IsInTry()) {
894            saved_line_->CopyFromLine(work_line_.get());
895          }
896        }
897      }
898      break;
899
900      // Indication that verification should be retried at runtime.
901    case VERIFY_ERROR_BAD_CLASS_SOFT:
902      if (!allow_soft_failures_) {
903        have_pending_hard_failure_ = true;
904      }
905      break;
906
907      // Hard verification failures at compile time will still fail at runtime, so the class is
908      // marked as rejected to prevent it from being compiled.
909    case VERIFY_ERROR_BAD_CLASS_HARD: {
910      have_pending_hard_failure_ = true;
911      if (VLOG_IS_ON(verifier) && kDumpRegLinesOnHardFailureIfVLOG) {
912        ScopedObjectAccess soa(Thread::Current());
913        std::ostringstream oss;
914        Dump(oss);
915        LOG(ERROR) << oss.str();
916      }
917      break;
918    }
919  }
920  failures_.push_back(error);
921  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
922                                    work_insn_idx_));
923  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
924  failure_messages_.push_back(failure_message);
925  return *failure_message;
926}
927
928std::ostream& MethodVerifier::LogVerifyInfo() {
929  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
930                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
931}
932
933void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
934  size_t failure_num = failure_messages_.size();
935  DCHECK_NE(failure_num, 0U);
936  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
937  prepend += last_fail_message->str();
938  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
939  delete last_fail_message;
940}
941
942void MethodVerifier::AppendToLastFailMessage(std::string append) {
943  size_t failure_num = failure_messages_.size();
944  DCHECK_NE(failure_num, 0U);
945  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
946  (*last_fail_message) << append;
947}
948
949bool MethodVerifier::ComputeWidthsAndCountOps() {
950  const uint16_t* insns = code_item_->insns_;
951  size_t insns_size = code_item_->insns_size_in_code_units_;
952  const Instruction* inst = Instruction::At(insns);
953  size_t new_instance_count = 0;
954  size_t monitor_enter_count = 0;
955  size_t dex_pc = 0;
956
957  while (dex_pc < insns_size) {
958    Instruction::Code opcode = inst->Opcode();
959    switch (opcode) {
960      case Instruction::APUT_OBJECT:
961      case Instruction::CHECK_CAST:
962        has_check_casts_ = true;
963        break;
964      case Instruction::INVOKE_VIRTUAL:
965      case Instruction::INVOKE_VIRTUAL_RANGE:
966      case Instruction::INVOKE_INTERFACE:
967      case Instruction::INVOKE_INTERFACE_RANGE:
968        has_virtual_or_interface_invokes_ = true;
969        break;
970      case Instruction::MONITOR_ENTER:
971        monitor_enter_count++;
972        break;
973      case Instruction::NEW_INSTANCE:
974        new_instance_count++;
975        break;
976      default:
977        break;
978    }
979    size_t inst_size = inst->SizeInCodeUnits();
980    GetInstructionFlags(dex_pc).SetIsOpcode();
981    dex_pc += inst_size;
982    inst = inst->RelativeAt(inst_size);
983  }
984
985  if (dex_pc != insns_size) {
986    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
987                                      << dex_pc << " vs. " << insns_size << ")";
988    return false;
989  }
990
991  new_instance_count_ = new_instance_count;
992  monitor_enter_count_ = monitor_enter_count;
993  return true;
994}
995
996bool MethodVerifier::ScanTryCatchBlocks() {
997  uint32_t tries_size = code_item_->tries_size_;
998  if (tries_size == 0) {
999    return true;
1000  }
1001  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1002  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
1003
1004  for (uint32_t idx = 0; idx < tries_size; idx++) {
1005    const DexFile::TryItem* try_item = &tries[idx];
1006    uint32_t start = try_item->start_addr_;
1007    uint32_t end = start + try_item->insn_count_;
1008    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
1009      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
1010                                        << " endAddr=" << end << " (size=" << insns_size << ")";
1011      return false;
1012    }
1013    if (!GetInstructionFlags(start).IsOpcode()) {
1014      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1015          << "'try' block starts inside an instruction (" << start << ")";
1016      return false;
1017    }
1018    uint32_t dex_pc = start;
1019    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
1020    while (dex_pc < end) {
1021      GetInstructionFlags(dex_pc).SetInTry();
1022      size_t insn_size = inst->SizeInCodeUnits();
1023      dex_pc += insn_size;
1024      inst = inst->RelativeAt(insn_size);
1025    }
1026  }
1027  // Iterate over each of the handlers to verify target addresses.
1028  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
1029  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
1030  ClassLinker* linker = Runtime::Current()->GetClassLinker();
1031  for (uint32_t idx = 0; idx < handlers_size; idx++) {
1032    CatchHandlerIterator iterator(handlers_ptr);
1033    for (; iterator.HasNext(); iterator.Next()) {
1034      uint32_t dex_pc= iterator.GetHandlerAddress();
1035      if (!GetInstructionFlags(dex_pc).IsOpcode()) {
1036        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1037            << "exception handler starts at bad address (" << dex_pc << ")";
1038        return false;
1039      }
1040      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
1041        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1042            << "exception handler begins with move-result* (" << dex_pc << ")";
1043        return false;
1044      }
1045      GetInstructionFlags(dex_pc).SetBranchTarget();
1046      // Ensure exception types are resolved so that they don't need resolution to be delivered,
1047      // unresolved exception types will be ignored by exception delivery
1048      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
1049        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
1050                                                            iterator.GetHandlerTypeIndex(),
1051                                                            dex_cache_, class_loader_);
1052        if (exception_type == nullptr) {
1053          DCHECK(self_->IsExceptionPending());
1054          self_->ClearException();
1055        }
1056      }
1057    }
1058    handlers_ptr = iterator.EndDataPointer();
1059  }
1060  return true;
1061}
1062
1063bool MethodVerifier::VerifyInstructions() {
1064  const Instruction* inst = Instruction::At(code_item_->insns_);
1065
1066  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
1067  GetInstructionFlags(0).SetBranchTarget();
1068  GetInstructionFlags(0).SetCompileTimeInfoPoint();
1069
1070  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1071  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
1072    if (!VerifyInstruction(inst, dex_pc)) {
1073      DCHECK_NE(failures_.size(), 0U);
1074      return false;
1075    }
1076    /* Flag instructions that are garbage collection points */
1077    // All invoke points are marked as "Throw" points already.
1078    // We are relying on this to also count all the invokes as interesting.
1079    if (inst->IsBranch()) {
1080      GetInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
1081      // The compiler also needs safepoints for fall-through to loop heads.
1082      // Such a loop head must be a target of a branch.
1083      int32_t offset = 0;
1084      bool cond, self_ok;
1085      bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
1086      DCHECK(target_ok);
1087      GetInstructionFlags(dex_pc + offset).SetCompileTimeInfoPoint();
1088    } else if (inst->IsSwitch() || inst->IsThrow()) {
1089      GetInstructionFlags(dex_pc).SetCompileTimeInfoPoint();
1090    } else if (inst->IsReturn()) {
1091      GetInstructionFlags(dex_pc).SetCompileTimeInfoPointAndReturn();
1092    }
1093    dex_pc += inst->SizeInCodeUnits();
1094    inst = inst->Next();
1095  }
1096  return true;
1097}
1098
1099bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
1100  if (UNLIKELY(inst->IsExperimental())) {
1101    // Experimental instructions don't yet have verifier support implementation.
1102    // While it is possible to use them by themselves, when we try to use stable instructions
1103    // with a virtual register that was created by an experimental instruction,
1104    // the data flow analysis will fail.
1105    Fail(VERIFY_ERROR_FORCE_INTERPRETER)
1106        << "experimental instruction is not supported by verifier; skipping verification";
1107    have_pending_experimental_failure_ = true;
1108    return false;
1109  }
1110
1111  bool result = true;
1112  switch (inst->GetVerifyTypeArgumentA()) {
1113    case Instruction::kVerifyRegA:
1114      result = result && CheckRegisterIndex(inst->VRegA());
1115      break;
1116    case Instruction::kVerifyRegAWide:
1117      result = result && CheckWideRegisterIndex(inst->VRegA());
1118      break;
1119  }
1120  switch (inst->GetVerifyTypeArgumentB()) {
1121    case Instruction::kVerifyRegB:
1122      result = result && CheckRegisterIndex(inst->VRegB());
1123      break;
1124    case Instruction::kVerifyRegBField:
1125      result = result && CheckFieldIndex(inst->VRegB());
1126      break;
1127    case Instruction::kVerifyRegBMethod:
1128      result = result && CheckMethodIndex(inst->VRegB());
1129      break;
1130    case Instruction::kVerifyRegBNewInstance:
1131      result = result && CheckNewInstance(inst->VRegB());
1132      break;
1133    case Instruction::kVerifyRegBString:
1134      result = result && CheckStringIndex(inst->VRegB());
1135      break;
1136    case Instruction::kVerifyRegBType:
1137      result = result && CheckTypeIndex(inst->VRegB());
1138      break;
1139    case Instruction::kVerifyRegBWide:
1140      result = result && CheckWideRegisterIndex(inst->VRegB());
1141      break;
1142  }
1143  switch (inst->GetVerifyTypeArgumentC()) {
1144    case Instruction::kVerifyRegC:
1145      result = result && CheckRegisterIndex(inst->VRegC());
1146      break;
1147    case Instruction::kVerifyRegCField:
1148      result = result && CheckFieldIndex(inst->VRegC());
1149      break;
1150    case Instruction::kVerifyRegCNewArray:
1151      result = result && CheckNewArray(inst->VRegC());
1152      break;
1153    case Instruction::kVerifyRegCType:
1154      result = result && CheckTypeIndex(inst->VRegC());
1155      break;
1156    case Instruction::kVerifyRegCWide:
1157      result = result && CheckWideRegisterIndex(inst->VRegC());
1158      break;
1159    case Instruction::kVerifyRegCString:
1160      result = result && CheckStringIndex(inst->VRegC());
1161      break;
1162  }
1163  switch (inst->GetVerifyExtraFlags()) {
1164    case Instruction::kVerifyArrayData:
1165      result = result && CheckArrayData(code_offset);
1166      break;
1167    case Instruction::kVerifyBranchTarget:
1168      result = result && CheckBranchTarget(code_offset);
1169      break;
1170    case Instruction::kVerifySwitchTargets:
1171      result = result && CheckSwitchTargets(code_offset);
1172      break;
1173    case Instruction::kVerifyVarArgNonZero:
1174      // Fall-through.
1175    case Instruction::kVerifyVarArg: {
1176      // Instructions that can actually return a negative value shouldn't have this flag.
1177      uint32_t v_a = dchecked_integral_cast<uint32_t>(inst->VRegA());
1178      if ((inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && v_a == 0) ||
1179          v_a > Instruction::kMaxVarArgRegs) {
1180        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << v_a << ") in "
1181                                             "non-range invoke";
1182        return false;
1183      }
1184
1185      uint32_t args[Instruction::kMaxVarArgRegs];
1186      inst->GetVarArgs(args);
1187      result = result && CheckVarArgRegs(v_a, args);
1188      break;
1189    }
1190    case Instruction::kVerifyVarArgRangeNonZero:
1191      // Fall-through.
1192    case Instruction::kVerifyVarArgRange:
1193      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
1194          inst->VRegA() <= 0) {
1195        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
1196                                             "range invoke";
1197        return false;
1198      }
1199      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
1200      break;
1201    case Instruction::kVerifyError:
1202      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
1203      result = false;
1204      break;
1205  }
1206  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
1207    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
1208    result = false;
1209  }
1210  return result;
1211}
1212
1213inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
1214  if (idx >= code_item_->registers_size_) {
1215    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
1216                                      << code_item_->registers_size_ << ")";
1217    return false;
1218  }
1219  return true;
1220}
1221
1222inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
1223  if (idx + 1 >= code_item_->registers_size_) {
1224    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
1225                                      << "+1 >= " << code_item_->registers_size_ << ")";
1226    return false;
1227  }
1228  return true;
1229}
1230
1231inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
1232  if (idx >= dex_file_->GetHeader().field_ids_size_) {
1233    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
1234                                      << dex_file_->GetHeader().field_ids_size_ << ")";
1235    return false;
1236  }
1237  return true;
1238}
1239
1240inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
1241  if (idx >= dex_file_->GetHeader().method_ids_size_) {
1242    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
1243                                      << dex_file_->GetHeader().method_ids_size_ << ")";
1244    return false;
1245  }
1246  return true;
1247}
1248
1249inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
1250  if (idx >= dex_file_->GetHeader().type_ids_size_) {
1251    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
1252                                      << dex_file_->GetHeader().type_ids_size_ << ")";
1253    return false;
1254  }
1255  // We don't need the actual class, just a pointer to the class name.
1256  const char* descriptor = dex_file_->StringByTypeIdx(idx);
1257  if (descriptor[0] != 'L') {
1258    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
1259    return false;
1260  }
1261  return true;
1262}
1263
1264inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
1265  if (idx >= dex_file_->GetHeader().string_ids_size_) {
1266    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
1267                                      << dex_file_->GetHeader().string_ids_size_ << ")";
1268    return false;
1269  }
1270  return true;
1271}
1272
1273inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
1274  if (idx >= dex_file_->GetHeader().type_ids_size_) {
1275    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
1276                                      << dex_file_->GetHeader().type_ids_size_ << ")";
1277    return false;
1278  }
1279  return true;
1280}
1281
1282bool MethodVerifier::CheckNewArray(uint32_t idx) {
1283  if (idx >= dex_file_->GetHeader().type_ids_size_) {
1284    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
1285                                      << dex_file_->GetHeader().type_ids_size_ << ")";
1286    return false;
1287  }
1288  int bracket_count = 0;
1289  const char* descriptor = dex_file_->StringByTypeIdx(idx);
1290  const char* cp = descriptor;
1291  while (*cp++ == '[') {
1292    bracket_count++;
1293  }
1294  if (bracket_count == 0) {
1295    /* The given class must be an array type. */
1296    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1297        << "can't new-array class '" << descriptor << "' (not an array)";
1298    return false;
1299  } else if (bracket_count > 255) {
1300    /* It is illegal to create an array of more than 255 dimensions. */
1301    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1302        << "can't new-array class '" << descriptor << "' (exceeds limit)";
1303    return false;
1304  }
1305  return true;
1306}
1307
1308bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
1309  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1310  const uint16_t* insns = code_item_->insns_ + cur_offset;
1311  const uint16_t* array_data;
1312  int32_t array_data_offset;
1313
1314  DCHECK_LT(cur_offset, insn_count);
1315  /* make sure the start of the array data table is in range */
1316  array_data_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1317  if (static_cast<int32_t>(cur_offset) + array_data_offset < 0 ||
1318      cur_offset + array_data_offset + 2 >= insn_count) {
1319    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
1320                                      << ", data offset " << array_data_offset
1321                                      << ", count " << insn_count;
1322    return false;
1323  }
1324  /* offset to array data table is a relative branch-style offset */
1325  array_data = insns + array_data_offset;
1326  // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1327  if (!IsAligned<4>(array_data)) {
1328    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
1329                                      << ", data offset " << array_data_offset;
1330    return false;
1331  }
1332  // Make sure the array-data is marked as an opcode. This ensures that it was reached when
1333  // traversing the code item linearly. It is an approximation for a by-spec padding value.
1334  if (!GetInstructionFlags(cur_offset + array_data_offset).IsOpcode()) {
1335    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array data table at " << cur_offset
1336                                      << ", data offset " << array_data_offset
1337                                      << " not correctly visited, probably bad padding.";
1338    return false;
1339  }
1340
1341  uint32_t value_width = array_data[1];
1342  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
1343  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
1344  /* make sure the end of the switch is in range */
1345  if (cur_offset + array_data_offset + table_size > insn_count) {
1346    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
1347                                      << ", data offset " << array_data_offset << ", end "
1348                                      << cur_offset + array_data_offset + table_size
1349                                      << ", count " << insn_count;
1350    return false;
1351  }
1352  return true;
1353}
1354
1355bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
1356  int32_t offset;
1357  bool isConditional, selfOkay;
1358  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1359    return false;
1360  }
1361  if (!selfOkay && offset == 0) {
1362    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1363                                      << reinterpret_cast<void*>(cur_offset);
1364    return false;
1365  }
1366  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1367  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1368  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
1369    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1370                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1371    return false;
1372  }
1373  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1374  int32_t abs_offset = cur_offset + offset;
1375  if (abs_offset < 0 ||
1376      (uint32_t) abs_offset >= insn_count ||
1377      !GetInstructionFlags(abs_offset).IsOpcode()) {
1378    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1379                                      << reinterpret_cast<void*>(abs_offset) << ") at "
1380                                      << reinterpret_cast<void*>(cur_offset);
1381    return false;
1382  }
1383  GetInstructionFlags(abs_offset).SetBranchTarget();
1384  return true;
1385}
1386
1387bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1388                                  bool* selfOkay) {
1389  const uint16_t* insns = code_item_->insns_ + cur_offset;
1390  *pConditional = false;
1391  *selfOkay = false;
1392  switch (*insns & 0xff) {
1393    case Instruction::GOTO:
1394      *pOffset = ((int16_t) *insns) >> 8;
1395      break;
1396    case Instruction::GOTO_32:
1397      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1398      *selfOkay = true;
1399      break;
1400    case Instruction::GOTO_16:
1401      *pOffset = (int16_t) insns[1];
1402      break;
1403    case Instruction::IF_EQ:
1404    case Instruction::IF_NE:
1405    case Instruction::IF_LT:
1406    case Instruction::IF_GE:
1407    case Instruction::IF_GT:
1408    case Instruction::IF_LE:
1409    case Instruction::IF_EQZ:
1410    case Instruction::IF_NEZ:
1411    case Instruction::IF_LTZ:
1412    case Instruction::IF_GEZ:
1413    case Instruction::IF_GTZ:
1414    case Instruction::IF_LEZ:
1415      *pOffset = (int16_t) insns[1];
1416      *pConditional = true;
1417      break;
1418    default:
1419      return false;
1420  }
1421  return true;
1422}
1423
1424bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1425  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1426  DCHECK_LT(cur_offset, insn_count);
1427  const uint16_t* insns = code_item_->insns_ + cur_offset;
1428  /* make sure the start of the switch is in range */
1429  int32_t switch_offset = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
1430  if (static_cast<int32_t>(cur_offset) + switch_offset < 0 ||
1431      cur_offset + switch_offset + 2 > insn_count) {
1432    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1433                                      << ", switch offset " << switch_offset
1434                                      << ", count " << insn_count;
1435    return false;
1436  }
1437  /* offset to switch table is a relative branch-style offset */
1438  const uint16_t* switch_insns = insns + switch_offset;
1439  // Make sure the table is at an even dex pc, that is, 32-bit aligned.
1440  if (!IsAligned<4>(switch_insns)) {
1441    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1442                                      << ", switch offset " << switch_offset;
1443    return false;
1444  }
1445  // Make sure the switch data is marked as an opcode. This ensures that it was reached when
1446  // traversing the code item linearly. It is an approximation for a by-spec padding value.
1447  if (!GetInstructionFlags(cur_offset + switch_offset).IsOpcode()) {
1448    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "switch table at " << cur_offset
1449                                      << ", switch offset " << switch_offset
1450                                      << " not correctly visited, probably bad padding.";
1451    return false;
1452  }
1453
1454  bool is_packed_switch = (*insns & 0xff) == Instruction::PACKED_SWITCH;
1455
1456  uint32_t switch_count = switch_insns[1];
1457  int32_t targets_offset;
1458  uint16_t expected_signature;
1459  if (is_packed_switch) {
1460    /* 0=sig, 1=count, 2/3=firstKey */
1461    targets_offset = 4;
1462    expected_signature = Instruction::kPackedSwitchSignature;
1463  } else {
1464    /* 0=sig, 1=count, 2..count*2 = keys */
1465    targets_offset = 2 + 2 * switch_count;
1466    expected_signature = Instruction::kSparseSwitchSignature;
1467  }
1468  uint32_t table_size = targets_offset + switch_count * 2;
1469  if (switch_insns[0] != expected_signature) {
1470    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1471        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1472                        switch_insns[0], expected_signature);
1473    return false;
1474  }
1475  /* make sure the end of the switch is in range */
1476  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1477    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1478                                      << ", switch offset " << switch_offset
1479                                      << ", end " << (cur_offset + switch_offset + table_size)
1480                                      << ", count " << insn_count;
1481    return false;
1482  }
1483
1484  constexpr int32_t keys_offset = 2;
1485  if (switch_count > 1) {
1486    if (is_packed_switch) {
1487      /* for a packed switch, verify that keys do not overflow int32 */
1488      int32_t first_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1489      int32_t max_first_key =
1490          std::numeric_limits<int32_t>::max() - (static_cast<int32_t>(switch_count) - 1);
1491      if (first_key > max_first_key) {
1492        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: first_key=" << first_key
1493                                          << ", switch_count=" << switch_count;
1494        return false;
1495      }
1496    } else {
1497      /* for a sparse switch, verify the keys are in ascending order */
1498      int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1499      for (uint32_t targ = 1; targ < switch_count; targ++) {
1500        int32_t key =
1501            static_cast<int32_t>(switch_insns[keys_offset + targ * 2]) |
1502            static_cast<int32_t>(switch_insns[keys_offset + targ * 2 + 1] << 16);
1503        if (key <= last_key) {
1504          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid sparse switch: last key=" << last_key
1505                                            << ", this=" << key;
1506          return false;
1507        }
1508        last_key = key;
1509      }
1510    }
1511  }
1512  /* verify each switch target */
1513  for (uint32_t targ = 0; targ < switch_count; targ++) {
1514    int32_t offset = static_cast<int32_t>(switch_insns[targets_offset + targ * 2]) |
1515                     static_cast<int32_t>(switch_insns[targets_offset + targ * 2 + 1] << 16);
1516    int32_t abs_offset = cur_offset + offset;
1517    if (abs_offset < 0 ||
1518        abs_offset >= static_cast<int32_t>(insn_count) ||
1519        !GetInstructionFlags(abs_offset).IsOpcode()) {
1520      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1521                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1522                                        << reinterpret_cast<void*>(cur_offset)
1523                                        << "[" << targ << "]";
1524      return false;
1525    }
1526    GetInstructionFlags(abs_offset).SetBranchTarget();
1527  }
1528  return true;
1529}
1530
1531bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1532  uint16_t registers_size = code_item_->registers_size_;
1533  for (uint32_t idx = 0; idx < vA; idx++) {
1534    if (arg[idx] >= registers_size) {
1535      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1536                                        << ") in non-range invoke (>= " << registers_size << ")";
1537      return false;
1538    }
1539  }
1540
1541  return true;
1542}
1543
1544bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1545  uint16_t registers_size = code_item_->registers_size_;
1546  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1547  // integer overflow when adding them here.
1548  if (vA + vC > registers_size) {
1549    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1550                                      << " in range invoke (> " << registers_size << ")";
1551    return false;
1552  }
1553  return true;
1554}
1555
1556bool MethodVerifier::VerifyCodeFlow() {
1557  uint16_t registers_size = code_item_->registers_size_;
1558  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1559
1560  /* Create and initialize table holding register status */
1561  reg_table_.Init(kTrackCompilerInterestPoints,
1562                  insn_flags_.get(),
1563                  insns_size,
1564                  registers_size,
1565                  this);
1566
1567  work_line_.reset(RegisterLine::Create(registers_size, this));
1568  saved_line_.reset(RegisterLine::Create(registers_size, this));
1569
1570  /* Initialize register types of method arguments. */
1571  if (!SetTypesFromSignature()) {
1572    DCHECK_NE(failures_.size(), 0U);
1573    std::string prepend("Bad signature in ");
1574    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1575    PrependToLastFailMessage(prepend);
1576    return false;
1577  }
1578  // We may have a runtime failure here, clear.
1579  have_pending_runtime_throw_failure_ = false;
1580
1581  /* Perform code flow verification. */
1582  if (!CodeFlowVerifyMethod()) {
1583    DCHECK_NE(failures_.size(), 0U);
1584    return false;
1585  }
1586  return true;
1587}
1588
1589std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1590  DCHECK_EQ(failures_.size(), failure_messages_.size());
1591  for (size_t i = 0; i < failures_.size(); ++i) {
1592      os << failure_messages_[i]->str() << "\n";
1593  }
1594  return os;
1595}
1596
1597void MethodVerifier::Dump(std::ostream& os) {
1598  VariableIndentationOutputStream vios(&os);
1599  Dump(&vios);
1600}
1601
1602void MethodVerifier::Dump(VariableIndentationOutputStream* vios) {
1603  if (code_item_ == nullptr) {
1604    vios->Stream() << "Native method\n";
1605    return;
1606  }
1607  {
1608    vios->Stream() << "Register Types:\n";
1609    ScopedIndentation indent1(vios);
1610    reg_types_.Dump(vios->Stream());
1611  }
1612  vios->Stream() << "Dumping instructions and register lines:\n";
1613  ScopedIndentation indent1(vios);
1614  const Instruction* inst = Instruction::At(code_item_->insns_);
1615  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1616      dex_pc += inst->SizeInCodeUnits(), inst = inst->Next()) {
1617    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1618    if (reg_line != nullptr) {
1619      vios->Stream() << reg_line->Dump(this) << "\n";
1620    }
1621    vios->Stream()
1622        << StringPrintf("0x%04zx", dex_pc) << ": " << GetInstructionFlags(dex_pc).ToString() << " ";
1623    const bool kDumpHexOfInstruction = false;
1624    if (kDumpHexOfInstruction) {
1625      vios->Stream() << inst->DumpHex(5) << " ";
1626    }
1627    vios->Stream() << inst->DumpString(dex_file_) << "\n";
1628  }
1629}
1630
1631static bool IsPrimitiveDescriptor(char descriptor) {
1632  switch (descriptor) {
1633    case 'I':
1634    case 'C':
1635    case 'S':
1636    case 'B':
1637    case 'Z':
1638    case 'F':
1639    case 'D':
1640    case 'J':
1641      return true;
1642    default:
1643      return false;
1644  }
1645}
1646
1647bool MethodVerifier::SetTypesFromSignature() {
1648  RegisterLine* reg_line = reg_table_.GetLine(0);
1649
1650  // Should have been verified earlier.
1651  DCHECK_GE(code_item_->registers_size_, code_item_->ins_size_);
1652
1653  uint32_t arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1654  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1655
1656  // Include the "this" pointer.
1657  size_t cur_arg = 0;
1658  if (!IsStatic()) {
1659    if (expected_args == 0) {
1660      // Expect at least a receiver.
1661      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected 0 args, but method is not static";
1662      return false;
1663    }
1664
1665    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1666    // argument as uninitialized. This restricts field access until the superclass constructor is
1667    // called.
1668    const RegType& declaring_class = GetDeclaringClass();
1669    if (IsConstructor()) {
1670      if (declaring_class.IsJavaLangObject()) {
1671        // "this" is implicitly initialized.
1672        reg_line->SetThisInitialized();
1673        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
1674      } else {
1675        reg_line->SetRegisterType<LockOp::kClear>(
1676            this,
1677            arg_start + cur_arg,
1678            reg_types_.UninitializedThisArgument(declaring_class));
1679      }
1680    } else {
1681      reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, declaring_class);
1682    }
1683    cur_arg++;
1684  }
1685
1686  const DexFile::ProtoId& proto_id =
1687      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1688  DexFileParameterIterator iterator(*dex_file_, proto_id);
1689
1690  for (; iterator.HasNext(); iterator.Next()) {
1691    const char* descriptor = iterator.GetDescriptor();
1692    if (descriptor == nullptr) {
1693      LOG(FATAL) << "Null descriptor";
1694    }
1695    if (cur_arg >= expected_args) {
1696      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1697                                        << " args, found more (" << descriptor << ")";
1698      return false;
1699    }
1700    switch (descriptor[0]) {
1701      case 'L':
1702      case '[':
1703        // We assume that reference arguments are initialized. The only way it could be otherwise
1704        // (assuming the caller was verified) is if the current method is <init>, but in that case
1705        // it's effectively considered initialized the instant we reach here (in the sense that we
1706        // can return without doing anything or call virtual methods).
1707        {
1708          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1709          if (!reg_type.IsNonZeroReferenceTypes()) {
1710            DCHECK(HasFailures());
1711            return false;
1712          }
1713          reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_type);
1714        }
1715        break;
1716      case 'Z':
1717        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Boolean());
1718        break;
1719      case 'C':
1720        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Char());
1721        break;
1722      case 'B':
1723        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Byte());
1724        break;
1725      case 'I':
1726        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Integer());
1727        break;
1728      case 'S':
1729        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Short());
1730        break;
1731      case 'F':
1732        reg_line->SetRegisterType<LockOp::kClear>(this, arg_start + cur_arg, reg_types_.Float());
1733        break;
1734      case 'J':
1735      case 'D': {
1736        if (cur_arg + 1 >= expected_args) {
1737          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1738              << " args, found more (" << descriptor << ")";
1739          return false;
1740        }
1741
1742        const RegType* lo_half;
1743        const RegType* hi_half;
1744        if (descriptor[0] == 'J') {
1745          lo_half = &reg_types_.LongLo();
1746          hi_half = &reg_types_.LongHi();
1747        } else {
1748          lo_half = &reg_types_.DoubleLo();
1749          hi_half = &reg_types_.DoubleHi();
1750        }
1751        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1752        cur_arg++;
1753        break;
1754      }
1755      default:
1756        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1757                                          << descriptor << "'";
1758        return false;
1759    }
1760    cur_arg++;
1761  }
1762  if (cur_arg != expected_args) {
1763    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1764                                      << " arguments, found " << cur_arg;
1765    return false;
1766  }
1767  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1768  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1769  // format. Only major difference from the method argument format is that 'V' is supported.
1770  bool result;
1771  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1772    result = descriptor[1] == '\0';
1773  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1774    size_t i = 0;
1775    do {
1776      i++;
1777    } while (descriptor[i] == '[');  // process leading [
1778    if (descriptor[i] == 'L') {  // object array
1779      do {
1780        i++;  // find closing ;
1781      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1782      result = descriptor[i] == ';';
1783    } else {  // primitive array
1784      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1785    }
1786  } else if (descriptor[0] == 'L') {
1787    // could be more thorough here, but shouldn't be required
1788    size_t i = 0;
1789    do {
1790      i++;
1791    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1792    result = descriptor[i] == ';';
1793  } else {
1794    result = false;
1795  }
1796  if (!result) {
1797    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1798                                      << descriptor << "'";
1799  }
1800  return result;
1801}
1802
1803bool MethodVerifier::CodeFlowVerifyMethod() {
1804  const uint16_t* insns = code_item_->insns_;
1805  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1806
1807  /* Begin by marking the first instruction as "changed". */
1808  GetInstructionFlags(0).SetChanged();
1809  uint32_t start_guess = 0;
1810
1811  /* Continue until no instructions are marked "changed". */
1812  while (true) {
1813    if (allow_thread_suspension_) {
1814      self_->AllowThreadSuspension();
1815    }
1816    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1817    uint32_t insn_idx = start_guess;
1818    for (; insn_idx < insns_size; insn_idx++) {
1819      if (GetInstructionFlags(insn_idx).IsChanged())
1820        break;
1821    }
1822    if (insn_idx == insns_size) {
1823      if (start_guess != 0) {
1824        /* try again, starting from the top */
1825        start_guess = 0;
1826        continue;
1827      } else {
1828        /* all flags are clear */
1829        break;
1830      }
1831    }
1832    // We carry the working set of registers from instruction to instruction. If this address can
1833    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1834    // "changed" flags, we need to load the set of registers from the table.
1835    // Because we always prefer to continue on to the next instruction, we should never have a
1836    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1837    // target.
1838    work_insn_idx_ = insn_idx;
1839    if (GetInstructionFlags(insn_idx).IsBranchTarget()) {
1840      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1841    } else if (kIsDebugBuild) {
1842      /*
1843       * Sanity check: retrieve the stored register line (assuming
1844       * a full table) and make sure it actually matches.
1845       */
1846      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1847      if (register_line != nullptr) {
1848        if (work_line_->CompareLine(register_line) != 0) {
1849          Dump(std::cout);
1850          std::cout << info_messages_.str();
1851          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1852                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1853                     << " work_line=" << work_line_->Dump(this) << "\n"
1854                     << "  expected=" << register_line->Dump(this);
1855        }
1856      }
1857    }
1858    if (!CodeFlowVerifyInstruction(&start_guess)) {
1859      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1860      prepend += " failed to verify: ";
1861      PrependToLastFailMessage(prepend);
1862      return false;
1863    }
1864    /* Clear "changed" and mark as visited. */
1865    GetInstructionFlags(insn_idx).SetVisited();
1866    GetInstructionFlags(insn_idx).ClearChanged();
1867  }
1868
1869  if (kDebugVerify) {
1870    /*
1871     * Scan for dead code. There's nothing "evil" about dead code
1872     * (besides the wasted space), but it indicates a flaw somewhere
1873     * down the line, possibly in the verifier.
1874     *
1875     * If we've substituted "always throw" instructions into the stream,
1876     * we are almost certainly going to have some dead code.
1877     */
1878    int dead_start = -1;
1879    uint32_t insn_idx = 0;
1880    for (; insn_idx < insns_size;
1881         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1882      /*
1883       * Switch-statement data doesn't get "visited" by scanner. It
1884       * may or may not be preceded by a padding NOP (for alignment).
1885       */
1886      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1887          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1888          insns[insn_idx] == Instruction::kArrayDataSignature ||
1889          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1890           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1891            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1892            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1893        GetInstructionFlags(insn_idx).SetVisited();
1894      }
1895
1896      if (!GetInstructionFlags(insn_idx).IsVisited()) {
1897        if (dead_start < 0)
1898          dead_start = insn_idx;
1899      } else if (dead_start >= 0) {
1900        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1901                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1902        dead_start = -1;
1903      }
1904    }
1905    if (dead_start >= 0) {
1906      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1907                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1908    }
1909    // To dump the state of the verify after a method, do something like:
1910    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1911    //     "boolean java.lang.String.equals(java.lang.Object)") {
1912    //   LOG(INFO) << info_messages_.str();
1913    // }
1914  }
1915  return true;
1916}
1917
1918// Returns the index of the first final instance field of the given class, or kDexNoIndex if there
1919// is no such field.
1920static uint32_t GetFirstFinalInstanceFieldIndex(const DexFile& dex_file, uint16_t type_idx) {
1921  const DexFile::ClassDef* class_def = dex_file.FindClassDef(type_idx);
1922  DCHECK(class_def != nullptr);
1923  const uint8_t* class_data = dex_file.GetClassData(*class_def);
1924  DCHECK(class_data != nullptr);
1925  ClassDataItemIterator it(dex_file, class_data);
1926  // Skip static fields.
1927  while (it.HasNextStaticField()) {
1928    it.Next();
1929  }
1930  while (it.HasNextInstanceField()) {
1931    if ((it.GetFieldAccessFlags() & kAccFinal) != 0) {
1932      return it.GetMemberIndex();
1933    }
1934    it.Next();
1935  }
1936  return DexFile::kDexNoIndex;
1937}
1938
1939// Setup a register line for the given return instruction.
1940static void AdjustReturnLine(MethodVerifier* verifier,
1941                             const Instruction* ret_inst,
1942                             RegisterLine* line) {
1943  Instruction::Code opcode = ret_inst->Opcode();
1944
1945  switch (opcode) {
1946    case Instruction::RETURN_VOID:
1947    case Instruction::RETURN_VOID_NO_BARRIER:
1948      SafelyMarkAllRegistersAsConflicts(verifier, line);
1949      break;
1950
1951    case Instruction::RETURN:
1952    case Instruction::RETURN_OBJECT:
1953      line->MarkAllRegistersAsConflictsExcept(verifier, ret_inst->VRegA_11x());
1954      break;
1955
1956    case Instruction::RETURN_WIDE:
1957      line->MarkAllRegistersAsConflictsExceptWide(verifier, ret_inst->VRegA_11x());
1958      break;
1959
1960    default:
1961      LOG(FATAL) << "Unknown return opcode " << opcode;
1962      UNREACHABLE();
1963  }
1964}
1965
1966bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1967  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1968  // We want the state _before_ the instruction, for the case where the dex pc we're
1969  // interested in is itself a monitor-enter instruction (which is a likely place
1970  // for a thread to be suspended).
1971  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1972    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1973    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1974      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1975    }
1976  }
1977
1978  /*
1979   * Once we finish decoding the instruction, we need to figure out where
1980   * we can go from here. There are three possible ways to transfer
1981   * control to another statement:
1982   *
1983   * (1) Continue to the next instruction. Applies to all but
1984   *     unconditional branches, method returns, and exception throws.
1985   * (2) Branch to one or more possible locations. Applies to branches
1986   *     and switch statements.
1987   * (3) Exception handlers. Applies to any instruction that can
1988   *     throw an exception that is handled by an encompassing "try"
1989   *     block.
1990   *
1991   * We can also return, in which case there is no successor instruction
1992   * from this point.
1993   *
1994   * The behavior can be determined from the opcode flags.
1995   */
1996  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1997  const Instruction* inst = Instruction::At(insns);
1998  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1999
2000  int32_t branch_target = 0;
2001  bool just_set_result = false;
2002  if (kDebugVerify) {
2003    // Generate processing back trace to debug verifier
2004    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
2005                    << work_line_->Dump(this) << "\n";
2006  }
2007
2008  /*
2009   * Make a copy of the previous register state. If the instruction
2010   * can throw an exception, we will copy/merge this into the "catch"
2011   * address rather than work_line, because we don't want the result
2012   * from the "successful" code path (e.g. a check-cast that "improves"
2013   * a type) to be visible to the exception handler.
2014   */
2015  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
2016    saved_line_->CopyFromLine(work_line_.get());
2017  } else if (kIsDebugBuild) {
2018    saved_line_->FillWithGarbage();
2019  }
2020  DCHECK(!have_pending_runtime_throw_failure_);  // Per-instruction flag, should not be set here.
2021
2022
2023  // We need to ensure the work line is consistent while performing validation. When we spot a
2024  // peephole pattern we compute a new line for either the fallthrough instruction or the
2025  // branch target.
2026  RegisterLineArenaUniquePtr branch_line;
2027  RegisterLineArenaUniquePtr fallthrough_line;
2028
2029  switch (inst->Opcode()) {
2030    case Instruction::NOP:
2031      /*
2032       * A "pure" NOP has no effect on anything. Data tables start with
2033       * a signature that looks like a NOP; if we see one of these in
2034       * the course of executing code then we have a problem.
2035       */
2036      if (inst->VRegA_10x() != 0) {
2037        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
2038      }
2039      break;
2040
2041    case Instruction::MOVE:
2042      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
2043      break;
2044    case Instruction::MOVE_FROM16:
2045      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
2046      break;
2047    case Instruction::MOVE_16:
2048      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
2049      break;
2050    case Instruction::MOVE_WIDE:
2051      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
2052      break;
2053    case Instruction::MOVE_WIDE_FROM16:
2054      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
2055      break;
2056    case Instruction::MOVE_WIDE_16:
2057      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
2058      break;
2059    case Instruction::MOVE_OBJECT:
2060      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
2061      break;
2062    case Instruction::MOVE_OBJECT_FROM16:
2063      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
2064      break;
2065    case Instruction::MOVE_OBJECT_16:
2066      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
2067      break;
2068
2069    /*
2070     * The move-result instructions copy data out of a "pseudo-register"
2071     * with the results from the last method invocation. In practice we
2072     * might want to hold the result in an actual CPU register, so the
2073     * Dalvik spec requires that these only appear immediately after an
2074     * invoke or filled-new-array.
2075     *
2076     * These calls invalidate the "result" register. (This is now
2077     * redundant with the reset done below, but it can make the debug info
2078     * easier to read in some cases.)
2079     */
2080    case Instruction::MOVE_RESULT:
2081      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
2082      break;
2083    case Instruction::MOVE_RESULT_WIDE:
2084      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
2085      break;
2086    case Instruction::MOVE_RESULT_OBJECT:
2087      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
2088      break;
2089
2090    case Instruction::MOVE_EXCEPTION: {
2091      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
2092      // where one entrypoint to the catch block is not actually an exception path.
2093      if (work_insn_idx_ == 0) {
2094        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
2095        break;
2096      }
2097      /*
2098       * This statement can only appear as the first instruction in an exception handler. We verify
2099       * that as part of extracting the exception type from the catch block list.
2100       */
2101      const RegType& res_type = GetCaughtExceptionType();
2102      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_11x(), res_type);
2103      break;
2104    }
2105    case Instruction::RETURN_VOID:
2106      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2107        if (!GetMethodReturnType().IsConflict()) {
2108          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
2109        }
2110      }
2111      break;
2112    case Instruction::RETURN:
2113      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2114        /* check the method signature */
2115        const RegType& return_type = GetMethodReturnType();
2116        if (!return_type.IsCategory1Types()) {
2117          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
2118                                            << return_type;
2119        } else {
2120          // Compilers may generate synthetic functions that write byte values into boolean fields.
2121          // Also, it may use integer values for boolean, byte, short, and character return types.
2122          const uint32_t vregA = inst->VRegA_11x();
2123          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
2124          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
2125                          ((return_type.IsBoolean() || return_type.IsByte() ||
2126                           return_type.IsShort() || return_type.IsChar()) &&
2127                           src_type.IsInteger()));
2128          /* check the register contents */
2129          bool success =
2130              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
2131          if (!success) {
2132            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
2133          }
2134        }
2135      }
2136      break;
2137    case Instruction::RETURN_WIDE:
2138      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2139        /* check the method signature */
2140        const RegType& return_type = GetMethodReturnType();
2141        if (!return_type.IsCategory2Types()) {
2142          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
2143        } else {
2144          /* check the register contents */
2145          const uint32_t vregA = inst->VRegA_11x();
2146          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
2147          if (!success) {
2148            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
2149          }
2150        }
2151      }
2152      break;
2153    case Instruction::RETURN_OBJECT:
2154      if (!IsInstanceConstructor() || work_line_->CheckConstructorReturn(this)) {
2155        const RegType& return_type = GetMethodReturnType();
2156        if (!return_type.IsReferenceTypes()) {
2157          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
2158        } else {
2159          /* return_type is the *expected* return type, not register value */
2160          DCHECK(!return_type.IsZero());
2161          DCHECK(!return_type.IsUninitializedReference());
2162          const uint32_t vregA = inst->VRegA_11x();
2163          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
2164          // Disallow returning undefined, conflict & uninitialized values and verify that the
2165          // reference in vAA is an instance of the "return_type."
2166          if (reg_type.IsUndefined()) {
2167            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning undefined register";
2168          } else if (reg_type.IsConflict()) {
2169            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning register with conflict";
2170          } else if (reg_type.IsUninitializedTypes()) {
2171            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning uninitialized object '"
2172                                              << reg_type << "'";
2173          } else if (!reg_type.IsReferenceTypes()) {
2174            // We really do expect a reference here.
2175            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object returns a non-reference type "
2176                                              << reg_type;
2177          } else if (!return_type.IsAssignableFrom(reg_type)) {
2178            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
2179              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
2180                  << "' or '" << reg_type << "'";
2181            } else {
2182              bool soft_error = false;
2183              // Check whether arrays are involved. They will show a valid class status, even
2184              // if their components are erroneous.
2185              if (reg_type.IsArrayTypes() && return_type.IsArrayTypes()) {
2186                return_type.CanAssignArray(reg_type, reg_types_, class_loader_, &soft_error);
2187                if (soft_error) {
2188                  Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "array with erroneous component type: "
2189                        << reg_type << " vs " << return_type;
2190                }
2191              }
2192
2193              if (!soft_error) {
2194                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
2195                    << "', but expected from declaration '" << return_type << "'";
2196              }
2197            }
2198          }
2199        }
2200      }
2201      break;
2202
2203      /* could be boolean, int, float, or a null reference */
2204    case Instruction::CONST_4: {
2205      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
2206      work_line_->SetRegisterType<LockOp::kClear>(
2207          this, inst->VRegA_11n(), DetermineCat1Constant(val, need_precise_constants_));
2208      break;
2209    }
2210    case Instruction::CONST_16: {
2211      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
2212      work_line_->SetRegisterType<LockOp::kClear>(
2213          this, inst->VRegA_21s(), DetermineCat1Constant(val, need_precise_constants_));
2214      break;
2215    }
2216    case Instruction::CONST: {
2217      int32_t val = inst->VRegB_31i();
2218      work_line_->SetRegisterType<LockOp::kClear>(
2219          this, inst->VRegA_31i(), DetermineCat1Constant(val, need_precise_constants_));
2220      break;
2221    }
2222    case Instruction::CONST_HIGH16: {
2223      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
2224      work_line_->SetRegisterType<LockOp::kClear>(
2225          this, inst->VRegA_21h(), DetermineCat1Constant(val, need_precise_constants_));
2226      break;
2227    }
2228      /* could be long or double; resolved upon use */
2229    case Instruction::CONST_WIDE_16: {
2230      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
2231      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2232      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2233      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
2234      break;
2235    }
2236    case Instruction::CONST_WIDE_32: {
2237      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
2238      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2239      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2240      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
2241      break;
2242    }
2243    case Instruction::CONST_WIDE: {
2244      int64_t val = inst->VRegB_51l();
2245      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2246      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2247      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
2248      break;
2249    }
2250    case Instruction::CONST_WIDE_HIGH16: {
2251      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
2252      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
2253      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
2254      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
2255      break;
2256    }
2257    case Instruction::CONST_STRING:
2258      work_line_->SetRegisterType<LockOp::kClear>(
2259          this, inst->VRegA_21c(), reg_types_.JavaLangString());
2260      break;
2261    case Instruction::CONST_STRING_JUMBO:
2262      work_line_->SetRegisterType<LockOp::kClear>(
2263          this, inst->VRegA_31c(), reg_types_.JavaLangString());
2264      break;
2265    case Instruction::CONST_CLASS: {
2266      // Get type from instruction if unresolved then we need an access check
2267      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2268      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
2269      // Register holds class, ie its type is class, on error it will hold Conflict.
2270      work_line_->SetRegisterType<LockOp::kClear>(
2271          this, inst->VRegA_21c(), res_type.IsConflict() ? res_type
2272                                                         : reg_types_.JavaLangClass());
2273      break;
2274    }
2275    case Instruction::MONITOR_ENTER:
2276      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
2277      // Check whether the previous instruction is a move-object with vAA as a source, creating
2278      // untracked lock aliasing.
2279      if (0 != work_insn_idx_ && !GetInstructionFlags(work_insn_idx_).IsBranchTarget()) {
2280        uint32_t prev_idx = work_insn_idx_ - 1;
2281        while (0 != prev_idx && !GetInstructionFlags(prev_idx).IsOpcode()) {
2282          prev_idx--;
2283        }
2284        const Instruction* prev_inst = Instruction::At(code_item_->insns_ + prev_idx);
2285        switch (prev_inst->Opcode()) {
2286          case Instruction::MOVE_OBJECT:
2287          case Instruction::MOVE_OBJECT_16:
2288          case Instruction::MOVE_OBJECT_FROM16:
2289            if (prev_inst->VRegB() == inst->VRegA_11x()) {
2290              // Redo the copy. This won't change the register types, but update the lock status
2291              // for the aliased register.
2292              work_line_->CopyRegister1(this,
2293                                        prev_inst->VRegA(),
2294                                        prev_inst->VRegB(),
2295                                        kTypeCategoryRef);
2296            }
2297            break;
2298
2299          default:  // Other instruction types ignored.
2300            break;
2301        }
2302      }
2303      break;
2304    case Instruction::MONITOR_EXIT:
2305      /*
2306       * monitor-exit instructions are odd. They can throw exceptions,
2307       * but when they do they act as if they succeeded and the PC is
2308       * pointing to the following instruction. (This behavior goes back
2309       * to the need to handle asynchronous exceptions, a now-deprecated
2310       * feature that Dalvik doesn't support.)
2311       *
2312       * In practice we don't need to worry about this. The only
2313       * exceptions that can be thrown from monitor-exit are for a
2314       * null reference and -exit without a matching -enter. If the
2315       * structured locking checks are working, the former would have
2316       * failed on the -enter instruction, and the latter is impossible.
2317       *
2318       * This is fortunate, because issue 3221411 prevents us from
2319       * chasing the "can throw" path when monitor verification is
2320       * enabled. If we can fully verify the locking we can ignore
2321       * some catch blocks (which will show up as "dead" code when
2322       * we skip them here); if we can't, then the code path could be
2323       * "live" so we still need to check it.
2324       */
2325      opcode_flags &= ~Instruction::kThrow;
2326      work_line_->PopMonitor(this, inst->VRegA_11x());
2327      break;
2328    case Instruction::CHECK_CAST:
2329    case Instruction::INSTANCE_OF: {
2330      /*
2331       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
2332       * could be a "upcast" -- not expected, so we don't try to address it.)
2333       *
2334       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
2335       * dec_insn.vA when branching to a handler.
2336       */
2337      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
2338      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
2339      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
2340      if (res_type.IsConflict()) {
2341        // If this is a primitive type, fail HARD.
2342        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
2343        if (klass != nullptr && klass->IsPrimitive()) {
2344          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
2345              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
2346              << GetDeclaringClass();
2347          break;
2348        }
2349
2350        DCHECK_NE(failures_.size(), 0U);
2351        if (!is_checkcast) {
2352          work_line_->SetRegisterType<LockOp::kClear>(this,
2353                                                      inst->VRegA_22c(),
2354                                                      reg_types_.Boolean());
2355        }
2356        break;  // bad class
2357      }
2358      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2359      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
2360      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
2361      if (!res_type.IsNonZeroReferenceTypes()) {
2362        if (is_checkcast) {
2363          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
2364        } else {
2365          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
2366        }
2367      } else if (!orig_type.IsReferenceTypes()) {
2368        if (is_checkcast) {
2369          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
2370        } else {
2371          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
2372        }
2373      } else if (orig_type.IsUninitializedTypes()) {
2374        if (is_checkcast) {
2375          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on uninitialized reference in v"
2376                                            << orig_type_reg;
2377        } else {
2378          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on uninitialized reference in v"
2379                                            << orig_type_reg;
2380        }
2381      } else {
2382        if (is_checkcast) {
2383          work_line_->SetRegisterType<LockOp::kKeep>(this, inst->VRegA_21c(), res_type);
2384        } else {
2385          work_line_->SetRegisterType<LockOp::kClear>(this,
2386                                                      inst->VRegA_22c(),
2387                                                      reg_types_.Boolean());
2388        }
2389      }
2390      break;
2391    }
2392    case Instruction::ARRAY_LENGTH: {
2393      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
2394      if (res_type.IsReferenceTypes()) {
2395        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
2396          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2397        } else {
2398          work_line_->SetRegisterType<LockOp::kClear>(this,
2399                                                      inst->VRegA_12x(),
2400                                                      reg_types_.Integer());
2401        }
2402      } else {
2403        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
2404      }
2405      break;
2406    }
2407    case Instruction::NEW_INSTANCE: {
2408      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
2409      if (res_type.IsConflict()) {
2410        DCHECK_NE(failures_.size(), 0U);
2411        break;  // bad class
2412      }
2413      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
2414      // can't create an instance of an interface or abstract class */
2415      if (!res_type.IsInstantiableTypes()) {
2416        Fail(VERIFY_ERROR_INSTANTIATION)
2417            << "new-instance on primitive, interface or abstract class" << res_type;
2418        // Soft failure so carry on to set register type.
2419      }
2420      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
2421      // Any registers holding previous allocations from this address that have not yet been
2422      // initialized must be marked invalid.
2423      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
2424      // add the new uninitialized reference to the register state
2425      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_21c(), uninit_type);
2426      break;
2427    }
2428    case Instruction::NEW_ARRAY:
2429      VerifyNewArray(inst, false, false);
2430      break;
2431    case Instruction::FILLED_NEW_ARRAY:
2432      VerifyNewArray(inst, true, false);
2433      just_set_result = true;  // Filled new array sets result register
2434      break;
2435    case Instruction::FILLED_NEW_ARRAY_RANGE:
2436      VerifyNewArray(inst, true, true);
2437      just_set_result = true;  // Filled new array range sets result register
2438      break;
2439    case Instruction::CMPL_FLOAT:
2440    case Instruction::CMPG_FLOAT:
2441      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
2442        break;
2443      }
2444      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
2445        break;
2446      }
2447      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2448      break;
2449    case Instruction::CMPL_DOUBLE:
2450    case Instruction::CMPG_DOUBLE:
2451      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
2452                                              reg_types_.DoubleHi())) {
2453        break;
2454      }
2455      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
2456                                              reg_types_.DoubleHi())) {
2457        break;
2458      }
2459      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2460      break;
2461    case Instruction::CMP_LONG:
2462      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
2463                                              reg_types_.LongHi())) {
2464        break;
2465      }
2466      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
2467                                              reg_types_.LongHi())) {
2468        break;
2469      }
2470      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Integer());
2471      break;
2472    case Instruction::THROW: {
2473      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
2474      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
2475        if (res_type.IsUninitializedTypes()) {
2476          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown exception not initialized";
2477        } else if (!res_type.IsReferenceTypes()) {
2478          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "thrown value of non-reference type " << res_type;
2479        } else {
2480          Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
2481                << "thrown class " << res_type << " not instanceof Throwable";
2482        }
2483      }
2484      break;
2485    }
2486    case Instruction::GOTO:
2487    case Instruction::GOTO_16:
2488    case Instruction::GOTO_32:
2489      /* no effect on or use of registers */
2490      break;
2491
2492    case Instruction::PACKED_SWITCH:
2493    case Instruction::SPARSE_SWITCH:
2494      /* verify that vAA is an integer, or can be converted to one */
2495      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
2496      break;
2497
2498    case Instruction::FILL_ARRAY_DATA: {
2499      /* Similar to the verification done for APUT */
2500      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2501      /* array_type can be null if the reg type is Zero */
2502      if (!array_type.IsZero()) {
2503        if (!array_type.IsArrayTypes()) {
2504          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2505                                            << array_type;
2506        } else if (array_type.IsUnresolvedTypes()) {
2507          // If it's an unresolved array type, it must be non-primitive.
2508          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data for array of type "
2509                                            << array_type;
2510        } else {
2511          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
2512          DCHECK(!component_type.IsConflict());
2513          if (component_type.IsNonZeroReferenceTypes()) {
2514            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2515                                              << component_type;
2516          } else {
2517            // Now verify if the element width in the table matches the element width declared in
2518            // the array
2519            const uint16_t* array_data =
2520                insns + (insns[1] | (static_cast<int32_t>(insns[2]) << 16));
2521            if (array_data[0] != Instruction::kArrayDataSignature) {
2522              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2523            } else {
2524              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2525              // Since we don't compress the data in Dex, expect to see equal width of data stored
2526              // in the table and expected from the array class.
2527              if (array_data[1] != elem_width) {
2528                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2529                                                  << " vs " << elem_width << ")";
2530              }
2531            }
2532          }
2533        }
2534      }
2535      break;
2536    }
2537    case Instruction::IF_EQ:
2538    case Instruction::IF_NE: {
2539      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2540      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2541      bool mismatch = false;
2542      if (reg_type1.IsZero()) {  // zero then integral or reference expected
2543        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2544      } else if (reg_type1.IsReferenceTypes()) {  // both references?
2545        mismatch = !reg_type2.IsReferenceTypes();
2546      } else {  // both integral?
2547        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2548      }
2549      if (mismatch) {
2550        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2551                                          << reg_type2 << ") must both be references or integral";
2552      }
2553      break;
2554    }
2555    case Instruction::IF_LT:
2556    case Instruction::IF_GE:
2557    case Instruction::IF_GT:
2558    case Instruction::IF_LE: {
2559      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2560      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2561      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2562        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2563                                          << reg_type2 << ") must be integral";
2564      }
2565      break;
2566    }
2567    case Instruction::IF_EQZ:
2568    case Instruction::IF_NEZ: {
2569      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2570      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2571        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2572                                          << " unexpected as arg to if-eqz/if-nez";
2573      }
2574
2575      // Find previous instruction - its existence is a precondition to peephole optimization.
2576      uint32_t instance_of_idx = 0;
2577      if (0 != work_insn_idx_) {
2578        instance_of_idx = work_insn_idx_ - 1;
2579        while (0 != instance_of_idx && !GetInstructionFlags(instance_of_idx).IsOpcode()) {
2580          instance_of_idx--;
2581        }
2582        if (FailOrAbort(this, GetInstructionFlags(instance_of_idx).IsOpcode(),
2583                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
2584                        work_insn_idx_)) {
2585          break;
2586        }
2587      } else {
2588        break;
2589      }
2590
2591      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2592
2593      /* Check for peep-hole pattern of:
2594       *    ...;
2595       *    instance-of vX, vY, T;
2596       *    ifXXX vX, label ;
2597       *    ...;
2598       * label:
2599       *    ...;
2600       * and sharpen the type of vY to be type T.
2601       * Note, this pattern can't be if:
2602       *  - if there are other branches to this branch,
2603       *  - when vX == vY.
2604       */
2605      if (!CurrentInsnFlags()->IsBranchTarget() &&
2606          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2607          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2608          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2609        // Check the type of the instance-of is different than that of registers type, as if they
2610        // are the same there is no work to be done here. Check that the conversion is not to or
2611        // from an unresolved type as type information is imprecise. If the instance-of is to an
2612        // interface then ignore the type information as interfaces can only be treated as Objects
2613        // and we don't want to disallow field and other operations on the object. If the value
2614        // being instance-of checked against is known null (zero) then allow the optimization as
2615        // we didn't have type information. If the merge of the instance-of type with the original
2616        // type is assignable to the original then allow optimization. This check is performed to
2617        // ensure that subsequent merges don't lose type information - such as becoming an
2618        // interface from a class that would lose information relevant to field checks.
2619        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2620        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2621
2622        if (!orig_type.Equals(cast_type) &&
2623            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2624            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2625            !cast_type.GetClass()->IsInterface() &&
2626            (orig_type.IsZero() ||
2627                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2628          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2629          if (inst->Opcode() == Instruction::IF_EQZ) {
2630            fallthrough_line.reset(update_line);
2631          } else {
2632            branch_line.reset(update_line);
2633          }
2634          update_line->CopyFromLine(work_line_.get());
2635          update_line->SetRegisterType<LockOp::kKeep>(this,
2636                                                      instance_of_inst->VRegB_22c(),
2637                                                      cast_type);
2638          if (!GetInstructionFlags(instance_of_idx).IsBranchTarget() && 0 != instance_of_idx) {
2639            // See if instance-of was preceded by a move-object operation, common due to the small
2640            // register encoding space of instance-of, and propagate type information to the source
2641            // of the move-object.
2642            uint32_t move_idx = instance_of_idx - 1;
2643            while (0 != move_idx && !GetInstructionFlags(move_idx).IsOpcode()) {
2644              move_idx--;
2645            }
2646            if (FailOrAbort(this, GetInstructionFlags(move_idx).IsOpcode(),
2647                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2648                            work_insn_idx_)) {
2649              break;
2650            }
2651            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2652            switch (move_inst->Opcode()) {
2653              case Instruction::MOVE_OBJECT:
2654                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2655                  update_line->SetRegisterType<LockOp::kKeep>(this,
2656                                                              move_inst->VRegB_12x(),
2657                                                              cast_type);
2658                }
2659                break;
2660              case Instruction::MOVE_OBJECT_FROM16:
2661                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2662                  update_line->SetRegisterType<LockOp::kKeep>(this,
2663                                                              move_inst->VRegB_22x(),
2664                                                              cast_type);
2665                }
2666                break;
2667              case Instruction::MOVE_OBJECT_16:
2668                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2669                  update_line->SetRegisterType<LockOp::kKeep>(this,
2670                                                              move_inst->VRegB_32x(),
2671                                                              cast_type);
2672                }
2673                break;
2674              default:
2675                break;
2676            }
2677          }
2678        }
2679      }
2680
2681      break;
2682    }
2683    case Instruction::IF_LTZ:
2684    case Instruction::IF_GEZ:
2685    case Instruction::IF_GTZ:
2686    case Instruction::IF_LEZ: {
2687      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2688      if (!reg_type.IsIntegralTypes()) {
2689        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2690                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2691      }
2692      break;
2693    }
2694    case Instruction::AGET_BOOLEAN:
2695      VerifyAGet(inst, reg_types_.Boolean(), true);
2696      break;
2697    case Instruction::AGET_BYTE:
2698      VerifyAGet(inst, reg_types_.Byte(), true);
2699      break;
2700    case Instruction::AGET_CHAR:
2701      VerifyAGet(inst, reg_types_.Char(), true);
2702      break;
2703    case Instruction::AGET_SHORT:
2704      VerifyAGet(inst, reg_types_.Short(), true);
2705      break;
2706    case Instruction::AGET:
2707      VerifyAGet(inst, reg_types_.Integer(), true);
2708      break;
2709    case Instruction::AGET_WIDE:
2710      VerifyAGet(inst, reg_types_.LongLo(), true);
2711      break;
2712    case Instruction::AGET_OBJECT:
2713      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2714      break;
2715
2716    case Instruction::APUT_BOOLEAN:
2717      VerifyAPut(inst, reg_types_.Boolean(), true);
2718      break;
2719    case Instruction::APUT_BYTE:
2720      VerifyAPut(inst, reg_types_.Byte(), true);
2721      break;
2722    case Instruction::APUT_CHAR:
2723      VerifyAPut(inst, reg_types_.Char(), true);
2724      break;
2725    case Instruction::APUT_SHORT:
2726      VerifyAPut(inst, reg_types_.Short(), true);
2727      break;
2728    case Instruction::APUT:
2729      VerifyAPut(inst, reg_types_.Integer(), true);
2730      break;
2731    case Instruction::APUT_WIDE:
2732      VerifyAPut(inst, reg_types_.LongLo(), true);
2733      break;
2734    case Instruction::APUT_OBJECT:
2735      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2736      break;
2737
2738    case Instruction::IGET_BOOLEAN:
2739      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2740      break;
2741    case Instruction::IGET_BYTE:
2742      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2743      break;
2744    case Instruction::IGET_CHAR:
2745      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2746      break;
2747    case Instruction::IGET_SHORT:
2748      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2749      break;
2750    case Instruction::IGET:
2751      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2752      break;
2753    case Instruction::IGET_WIDE:
2754      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2755      break;
2756    case Instruction::IGET_OBJECT:
2757      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2758                                                    false);
2759      break;
2760
2761    case Instruction::IPUT_BOOLEAN:
2762      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2763      break;
2764    case Instruction::IPUT_BYTE:
2765      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2766      break;
2767    case Instruction::IPUT_CHAR:
2768      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2769      break;
2770    case Instruction::IPUT_SHORT:
2771      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2772      break;
2773    case Instruction::IPUT:
2774      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2775      break;
2776    case Instruction::IPUT_WIDE:
2777      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2778      break;
2779    case Instruction::IPUT_OBJECT:
2780      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2781                                                    false);
2782      break;
2783
2784    case Instruction::SGET_BOOLEAN:
2785      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2786      break;
2787    case Instruction::SGET_BYTE:
2788      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2789      break;
2790    case Instruction::SGET_CHAR:
2791      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2792      break;
2793    case Instruction::SGET_SHORT:
2794      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2795      break;
2796    case Instruction::SGET:
2797      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2798      break;
2799    case Instruction::SGET_WIDE:
2800      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2801      break;
2802    case Instruction::SGET_OBJECT:
2803      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2804                                                    true);
2805      break;
2806
2807    case Instruction::SPUT_BOOLEAN:
2808      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2809      break;
2810    case Instruction::SPUT_BYTE:
2811      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2812      break;
2813    case Instruction::SPUT_CHAR:
2814      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2815      break;
2816    case Instruction::SPUT_SHORT:
2817      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2818      break;
2819    case Instruction::SPUT:
2820      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2821      break;
2822    case Instruction::SPUT_WIDE:
2823      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2824      break;
2825    case Instruction::SPUT_OBJECT:
2826      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2827                                                    true);
2828      break;
2829
2830    case Instruction::INVOKE_VIRTUAL:
2831    case Instruction::INVOKE_VIRTUAL_RANGE:
2832    case Instruction::INVOKE_SUPER:
2833    case Instruction::INVOKE_SUPER_RANGE: {
2834      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2835                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2836      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2837                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2838      MethodType type = is_super ? METHOD_SUPER : METHOD_VIRTUAL;
2839      ArtMethod* called_method = VerifyInvocationArgs(inst, type, is_range);
2840      const RegType* return_type = nullptr;
2841      if (called_method != nullptr) {
2842        size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
2843        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_,
2844                                                                        pointer_size);
2845        if (return_type_class != nullptr) {
2846          return_type = &FromClass(called_method->GetReturnTypeDescriptor(),
2847                                   return_type_class,
2848                                   return_type_class->CannotBeAssignedFromOtherTypes());
2849        } else {
2850          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2851          self_->ClearException();
2852        }
2853      }
2854      if (return_type == nullptr) {
2855        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2856        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2857        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2858        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2859        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2860      }
2861      if (!return_type->IsLowHalf()) {
2862        work_line_->SetResultRegisterType(this, *return_type);
2863      } else {
2864        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2865      }
2866      just_set_result = true;
2867      break;
2868    }
2869    case Instruction::INVOKE_DIRECT:
2870    case Instruction::INVOKE_DIRECT_RANGE: {
2871      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2872      ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT, is_range);
2873      const char* return_type_descriptor;
2874      bool is_constructor;
2875      const RegType* return_type = nullptr;
2876      if (called_method == nullptr) {
2877        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2878        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2879        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2880        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2881        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2882      } else {
2883        is_constructor = called_method->IsConstructor();
2884        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2885        size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
2886        mirror::Class* return_type_class = called_method->GetReturnType(can_load_classes_,
2887                                                                        pointer_size);
2888        if (return_type_class != nullptr) {
2889          return_type = &FromClass(return_type_descriptor,
2890                                   return_type_class,
2891                                   return_type_class->CannotBeAssignedFromOtherTypes());
2892        } else {
2893          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2894          self_->ClearException();
2895        }
2896      }
2897      if (is_constructor) {
2898        /*
2899         * Some additional checks when calling a constructor. We know from the invocation arg check
2900         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2901         * that to require that called_method->klass is the same as this->klass or this->super,
2902         * allowing the latter only if the "this" argument is the same as the "this" argument to
2903         * this method (which implies that we're in a constructor ourselves).
2904         */
2905        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2906        if (this_type.IsConflict())  // failure.
2907          break;
2908
2909        /* no null refs allowed (?) */
2910        if (this_type.IsZero()) {
2911          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2912          break;
2913        }
2914
2915        /* must be in same class or in superclass */
2916        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2917        // TODO: re-enable constructor type verification
2918        // if (this_super_klass.IsConflict()) {
2919          // Unknown super class, fail so we re-check at runtime.
2920          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2921          // break;
2922        // }
2923
2924        /* arg must be an uninitialized reference */
2925        if (!this_type.IsUninitializedTypes()) {
2926          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2927              << this_type;
2928          break;
2929        }
2930
2931        /*
2932         * Replace the uninitialized reference with an initialized one. We need to do this for all
2933         * registers that have the same object instance in them, not just the "this" register.
2934         */
2935        work_line_->MarkRefsAsInitialized(this, this_type);
2936      }
2937      if (return_type == nullptr) {
2938        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor, false);
2939      }
2940      if (!return_type->IsLowHalf()) {
2941        work_line_->SetResultRegisterType(this, *return_type);
2942      } else {
2943        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2944      }
2945      just_set_result = true;
2946      break;
2947    }
2948    case Instruction::INVOKE_STATIC:
2949    case Instruction::INVOKE_STATIC_RANGE: {
2950        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2951        ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_STATIC, is_range);
2952        const char* descriptor;
2953        if (called_method == nullptr) {
2954          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2955          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2956          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2957          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2958        } else {
2959          descriptor = called_method->GetReturnTypeDescriptor();
2960        }
2961        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2962        if (!return_type.IsLowHalf()) {
2963          work_line_->SetResultRegisterType(this, return_type);
2964        } else {
2965          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2966        }
2967        just_set_result = true;
2968      }
2969      break;
2970    case Instruction::INVOKE_INTERFACE:
2971    case Instruction::INVOKE_INTERFACE_RANGE: {
2972      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2973      ArtMethod* abs_method = VerifyInvocationArgs(inst, METHOD_INTERFACE, is_range);
2974      if (abs_method != nullptr) {
2975        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2976        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2977          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2978              << PrettyMethod(abs_method) << "'";
2979          break;
2980        }
2981      }
2982      /* Get the type of the "this" arg, which should either be a sub-interface of called
2983       * interface or Object (see comments in RegType::JoinClass).
2984       */
2985      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2986      if (this_type.IsZero()) {
2987        /* null pointer always passes (and always fails at runtime) */
2988      } else {
2989        if (this_type.IsUninitializedTypes()) {
2990          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2991              << this_type;
2992          break;
2993        }
2994        // In the past we have tried to assert that "called_interface" is assignable
2995        // from "this_type.GetClass()", however, as we do an imprecise Join
2996        // (RegType::JoinClass) we don't have full information on what interfaces are
2997        // implemented by "this_type". For example, two classes may implement the same
2998        // interfaces and have a common parent that doesn't implement the interface. The
2999        // join will set "this_type" to the parent class and a test that this implements
3000        // the interface will incorrectly fail.
3001      }
3002      /*
3003       * We don't have an object instance, so we can't find the concrete method. However, all of
3004       * the type information is in the abstract method, so we're good.
3005       */
3006      const char* descriptor;
3007      if (abs_method == nullptr) {
3008        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3009        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
3010        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
3011        descriptor = dex_file_->StringByTypeIdx(return_type_idx);
3012      } else {
3013        descriptor = abs_method->GetReturnTypeDescriptor();
3014      }
3015      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3016      if (!return_type.IsLowHalf()) {
3017        work_line_->SetResultRegisterType(this, return_type);
3018      } else {
3019        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3020      }
3021      just_set_result = true;
3022      break;
3023    }
3024    case Instruction::NEG_INT:
3025    case Instruction::NOT_INT:
3026      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
3027      break;
3028    case Instruction::NEG_LONG:
3029    case Instruction::NOT_LONG:
3030      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3031                                   reg_types_.LongLo(), reg_types_.LongHi());
3032      break;
3033    case Instruction::NEG_FLOAT:
3034      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
3035      break;
3036    case Instruction::NEG_DOUBLE:
3037      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3038                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
3039      break;
3040    case Instruction::INT_TO_LONG:
3041      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3042                                     reg_types_.Integer());
3043      break;
3044    case Instruction::INT_TO_FLOAT:
3045      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
3046      break;
3047    case Instruction::INT_TO_DOUBLE:
3048      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3049                                     reg_types_.Integer());
3050      break;
3051    case Instruction::LONG_TO_INT:
3052      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3053                                       reg_types_.LongLo(), reg_types_.LongHi());
3054      break;
3055    case Instruction::LONG_TO_FLOAT:
3056      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3057                                       reg_types_.LongLo(), reg_types_.LongHi());
3058      break;
3059    case Instruction::LONG_TO_DOUBLE:
3060      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3061                                   reg_types_.LongLo(), reg_types_.LongHi());
3062      break;
3063    case Instruction::FLOAT_TO_INT:
3064      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
3065      break;
3066    case Instruction::FLOAT_TO_LONG:
3067      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3068                                     reg_types_.Float());
3069      break;
3070    case Instruction::FLOAT_TO_DOUBLE:
3071      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3072                                     reg_types_.Float());
3073      break;
3074    case Instruction::DOUBLE_TO_INT:
3075      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
3076                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
3077      break;
3078    case Instruction::DOUBLE_TO_LONG:
3079      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3080                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
3081      break;
3082    case Instruction::DOUBLE_TO_FLOAT:
3083      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
3084                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
3085      break;
3086    case Instruction::INT_TO_BYTE:
3087      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
3088      break;
3089    case Instruction::INT_TO_CHAR:
3090      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
3091      break;
3092    case Instruction::INT_TO_SHORT:
3093      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
3094      break;
3095
3096    case Instruction::ADD_INT:
3097    case Instruction::SUB_INT:
3098    case Instruction::MUL_INT:
3099    case Instruction::REM_INT:
3100    case Instruction::DIV_INT:
3101    case Instruction::SHL_INT:
3102    case Instruction::SHR_INT:
3103    case Instruction::USHR_INT:
3104      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3105                                reg_types_.Integer(), false);
3106      break;
3107    case Instruction::AND_INT:
3108    case Instruction::OR_INT:
3109    case Instruction::XOR_INT:
3110      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3111                                reg_types_.Integer(), true);
3112      break;
3113    case Instruction::ADD_LONG:
3114    case Instruction::SUB_LONG:
3115    case Instruction::MUL_LONG:
3116    case Instruction::DIV_LONG:
3117    case Instruction::REM_LONG:
3118    case Instruction::AND_LONG:
3119    case Instruction::OR_LONG:
3120    case Instruction::XOR_LONG:
3121      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3122                                    reg_types_.LongLo(), reg_types_.LongHi(),
3123                                    reg_types_.LongLo(), reg_types_.LongHi());
3124      break;
3125    case Instruction::SHL_LONG:
3126    case Instruction::SHR_LONG:
3127    case Instruction::USHR_LONG:
3128      /* shift distance is Int, making these different from other binary operations */
3129      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3130                                         reg_types_.Integer());
3131      break;
3132    case Instruction::ADD_FLOAT:
3133    case Instruction::SUB_FLOAT:
3134    case Instruction::MUL_FLOAT:
3135    case Instruction::DIV_FLOAT:
3136    case Instruction::REM_FLOAT:
3137      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
3138                                reg_types_.Float(), false);
3139      break;
3140    case Instruction::ADD_DOUBLE:
3141    case Instruction::SUB_DOUBLE:
3142    case Instruction::MUL_DOUBLE:
3143    case Instruction::DIV_DOUBLE:
3144    case Instruction::REM_DOUBLE:
3145      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3146                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3147                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
3148      break;
3149    case Instruction::ADD_INT_2ADDR:
3150    case Instruction::SUB_INT_2ADDR:
3151    case Instruction::MUL_INT_2ADDR:
3152    case Instruction::REM_INT_2ADDR:
3153    case Instruction::SHL_INT_2ADDR:
3154    case Instruction::SHR_INT_2ADDR:
3155    case Instruction::USHR_INT_2ADDR:
3156      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3157                                     reg_types_.Integer(), false);
3158      break;
3159    case Instruction::AND_INT_2ADDR:
3160    case Instruction::OR_INT_2ADDR:
3161    case Instruction::XOR_INT_2ADDR:
3162      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3163                                     reg_types_.Integer(), true);
3164      break;
3165    case Instruction::DIV_INT_2ADDR:
3166      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
3167                                     reg_types_.Integer(), false);
3168      break;
3169    case Instruction::ADD_LONG_2ADDR:
3170    case Instruction::SUB_LONG_2ADDR:
3171    case Instruction::MUL_LONG_2ADDR:
3172    case Instruction::DIV_LONG_2ADDR:
3173    case Instruction::REM_LONG_2ADDR:
3174    case Instruction::AND_LONG_2ADDR:
3175    case Instruction::OR_LONG_2ADDR:
3176    case Instruction::XOR_LONG_2ADDR:
3177      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3178                                         reg_types_.LongLo(), reg_types_.LongHi(),
3179                                         reg_types_.LongLo(), reg_types_.LongHi());
3180      break;
3181    case Instruction::SHL_LONG_2ADDR:
3182    case Instruction::SHR_LONG_2ADDR:
3183    case Instruction::USHR_LONG_2ADDR:
3184      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
3185                                              reg_types_.Integer());
3186      break;
3187    case Instruction::ADD_FLOAT_2ADDR:
3188    case Instruction::SUB_FLOAT_2ADDR:
3189    case Instruction::MUL_FLOAT_2ADDR:
3190    case Instruction::DIV_FLOAT_2ADDR:
3191    case Instruction::REM_FLOAT_2ADDR:
3192      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
3193                                     reg_types_.Float(), false);
3194      break;
3195    case Instruction::ADD_DOUBLE_2ADDR:
3196    case Instruction::SUB_DOUBLE_2ADDR:
3197    case Instruction::MUL_DOUBLE_2ADDR:
3198    case Instruction::DIV_DOUBLE_2ADDR:
3199    case Instruction::REM_DOUBLE_2ADDR:
3200      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
3201                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
3202                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
3203      break;
3204    case Instruction::ADD_INT_LIT16:
3205    case Instruction::RSUB_INT_LIT16:
3206    case Instruction::MUL_INT_LIT16:
3207    case Instruction::DIV_INT_LIT16:
3208    case Instruction::REM_INT_LIT16:
3209      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3210                                 true);
3211      break;
3212    case Instruction::AND_INT_LIT16:
3213    case Instruction::OR_INT_LIT16:
3214    case Instruction::XOR_INT_LIT16:
3215      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3216                                 true);
3217      break;
3218    case Instruction::ADD_INT_LIT8:
3219    case Instruction::RSUB_INT_LIT8:
3220    case Instruction::MUL_INT_LIT8:
3221    case Instruction::DIV_INT_LIT8:
3222    case Instruction::REM_INT_LIT8:
3223    case Instruction::SHL_INT_LIT8:
3224    case Instruction::SHR_INT_LIT8:
3225    case Instruction::USHR_INT_LIT8:
3226      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
3227                                 false);
3228      break;
3229    case Instruction::AND_INT_LIT8:
3230    case Instruction::OR_INT_LIT8:
3231    case Instruction::XOR_INT_LIT8:
3232      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
3233                                 false);
3234      break;
3235
3236    // Special instructions.
3237    case Instruction::RETURN_VOID_NO_BARRIER:
3238      if (IsConstructor() && !IsStatic()) {
3239        auto& declaring_class = GetDeclaringClass();
3240        if (declaring_class.IsUnresolvedReference()) {
3241          // We must iterate over the fields, even if we cannot use mirror classes to do so. Do it
3242          // manually over the underlying dex file.
3243          uint32_t first_index = GetFirstFinalInstanceFieldIndex(*dex_file_,
3244              dex_file_->GetMethodId(dex_method_idx_).class_idx_);
3245          if (first_index != DexFile::kDexNoIndex) {
3246            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for field "
3247                              << first_index;
3248          }
3249          break;
3250        }
3251        auto* klass = declaring_class.GetClass();
3252        for (uint32_t i = 0, num_fields = klass->NumInstanceFields(); i < num_fields; ++i) {
3253          if (klass->GetInstanceField(i)->IsFinal()) {
3254            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-no-barrier not expected for "
3255                << PrettyField(klass->GetInstanceField(i));
3256            break;
3257          }
3258        }
3259      }
3260      // Handle this like a RETURN_VOID now. Code is duplicated to separate standard from
3261      // quickened opcodes (otherwise this could be a fall-through).
3262      if (!IsConstructor()) {
3263        if (!GetMethodReturnType().IsConflict()) {
3264          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
3265        }
3266      }
3267      break;
3268    // Note: the following instructions encode offsets derived from class linking.
3269    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
3270    // meaning if the class linking and resolution were successful.
3271    case Instruction::IGET_QUICK:
3272      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
3273      break;
3274    case Instruction::IGET_WIDE_QUICK:
3275      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
3276      break;
3277    case Instruction::IGET_OBJECT_QUICK:
3278      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
3279      break;
3280    case Instruction::IGET_BOOLEAN_QUICK:
3281      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
3282      break;
3283    case Instruction::IGET_BYTE_QUICK:
3284      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
3285      break;
3286    case Instruction::IGET_CHAR_QUICK:
3287      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
3288      break;
3289    case Instruction::IGET_SHORT_QUICK:
3290      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
3291      break;
3292    case Instruction::IPUT_QUICK:
3293      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
3294      break;
3295    case Instruction::IPUT_BOOLEAN_QUICK:
3296      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
3297      break;
3298    case Instruction::IPUT_BYTE_QUICK:
3299      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
3300      break;
3301    case Instruction::IPUT_CHAR_QUICK:
3302      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
3303      break;
3304    case Instruction::IPUT_SHORT_QUICK:
3305      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
3306      break;
3307    case Instruction::IPUT_WIDE_QUICK:
3308      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
3309      break;
3310    case Instruction::IPUT_OBJECT_QUICK:
3311      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
3312      break;
3313    case Instruction::INVOKE_VIRTUAL_QUICK:
3314    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
3315      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3316      ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
3317      if (called_method != nullptr) {
3318        const char* descriptor = called_method->GetReturnTypeDescriptor();
3319        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3320        if (!return_type.IsLowHalf()) {
3321          work_line_->SetResultRegisterType(this, return_type);
3322        } else {
3323          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
3324        }
3325        just_set_result = true;
3326      }
3327      break;
3328    }
3329    case Instruction::INVOKE_LAMBDA: {
3330      // Don't bother verifying, instead the interpreter will take the slow path with access checks.
3331      // If the code would've normally hard-failed, then the interpreter will throw the
3332      // appropriate verification errors at runtime.
3333      Fail(VERIFY_ERROR_FORCE_INTERPRETER);  // TODO(iam): implement invoke-lambda verification
3334      break;
3335    }
3336    case Instruction::CAPTURE_VARIABLE: {
3337      // Don't bother verifying, instead the interpreter will take the slow path with access checks.
3338      // If the code would've normally hard-failed, then the interpreter will throw the
3339      // appropriate verification errors at runtime.
3340      Fail(VERIFY_ERROR_FORCE_INTERPRETER);  // TODO(iam): implement capture-variable verification
3341      break;
3342    }
3343    case Instruction::CREATE_LAMBDA: {
3344      // Don't bother verifying, instead the interpreter will take the slow path with access checks.
3345      // If the code would've normally hard-failed, then the interpreter will throw the
3346      // appropriate verification errors at runtime.
3347      Fail(VERIFY_ERROR_FORCE_INTERPRETER);  // TODO(iam): implement create-lambda verification
3348      break;
3349    }
3350    case Instruction::LIBERATE_VARIABLE: {
3351      // Don't bother verifying, instead the interpreter will take the slow path with access checks.
3352      // If the code would've normally hard-failed, then the interpreter will throw the
3353      // appropriate verification errors at runtime.
3354      Fail(VERIFY_ERROR_FORCE_INTERPRETER);  // TODO(iam): implement liberate-variable verification
3355      break;
3356    }
3357
3358    case Instruction::UNUSED_F4: {
3359      DCHECK(false);  // TODO(iam): Implement opcodes for lambdas
3360      // Conservatively fail verification on release builds.
3361      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
3362      break;
3363    }
3364
3365    case Instruction::BOX_LAMBDA: {
3366      // Don't bother verifying, instead the interpreter will take the slow path with access checks.
3367      // If the code would've normally hard-failed, then the interpreter will throw the
3368      // appropriate verification errors at runtime.
3369      Fail(VERIFY_ERROR_FORCE_INTERPRETER);  // TODO(iam): implement box-lambda verification
3370
3371      // Partial verification. Sets the resulting type to always be an object, which
3372      // is good enough for some other verification to occur without hard-failing.
3373      const uint32_t vreg_target_object = inst->VRegA_22x();  // box-lambda vA, vB
3374      const RegType& reg_type = reg_types_.JavaLangObject(need_precise_constants_);
3375      work_line_->SetRegisterType<LockOp::kClear>(this, vreg_target_object, reg_type);
3376      break;
3377    }
3378
3379     case Instruction::UNBOX_LAMBDA: {
3380      // Don't bother verifying, instead the interpreter will take the slow path with access checks.
3381      // If the code would've normally hard-failed, then the interpreter will throw the
3382      // appropriate verification errors at runtime.
3383      Fail(VERIFY_ERROR_FORCE_INTERPRETER);  // TODO(iam): implement unbox-lambda verification
3384      break;
3385    }
3386
3387    /* These should never appear during verification. */
3388    case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
3389    case Instruction::UNUSED_FA ... Instruction::UNUSED_FF:
3390    case Instruction::UNUSED_79:
3391    case Instruction::UNUSED_7A:
3392      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
3393      break;
3394
3395    /*
3396     * DO NOT add a "default" clause here. Without it the compiler will
3397     * complain if an instruction is missing (which is desirable).
3398     */
3399  }  // end - switch (dec_insn.opcode)
3400
3401  if (have_pending_hard_failure_) {
3402    if (Runtime::Current()->IsAotCompiler()) {
3403      /* When AOT compiling, check that the last failure is a hard failure */
3404      if (failures_[failures_.size() - 1] != VERIFY_ERROR_BAD_CLASS_HARD) {
3405        LOG(ERROR) << "Pending failures:";
3406        for (auto& error : failures_) {
3407          LOG(ERROR) << error;
3408        }
3409        for (auto& error_msg : failure_messages_) {
3410          LOG(ERROR) << error_msg->str();
3411        }
3412        LOG(FATAL) << "Pending hard failure, but last failure not hard.";
3413      }
3414    }
3415    /* immediate failure, reject class */
3416    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
3417    return false;
3418  } else if (have_pending_runtime_throw_failure_) {
3419    /* checking interpreter will throw, mark following code as unreachable */
3420    opcode_flags = Instruction::kThrow;
3421    // Note: the flag must be reset as it is only global to decouple Fail and is semantically per
3422    //       instruction. However, RETURN checking may throw LOCKING errors, so we clear at the
3423    //       very end.
3424  }
3425  /*
3426   * If we didn't just set the result register, clear it out. This ensures that you can only use
3427   * "move-result" immediately after the result is set. (We could check this statically, but it's
3428   * not expensive and it makes our debugging output cleaner.)
3429   */
3430  if (!just_set_result) {
3431    work_line_->SetResultTypeToUnknown(this);
3432  }
3433
3434
3435
3436  /*
3437   * Handle "branch". Tag the branch target.
3438   *
3439   * NOTE: instructions like Instruction::EQZ provide information about the
3440   * state of the register when the branch is taken or not taken. For example,
3441   * somebody could get a reference field, check it for zero, and if the
3442   * branch is taken immediately store that register in a boolean field
3443   * since the value is known to be zero. We do not currently account for
3444   * that, and will reject the code.
3445   *
3446   * TODO: avoid re-fetching the branch target
3447   */
3448  if ((opcode_flags & Instruction::kBranch) != 0) {
3449    bool isConditional, selfOkay;
3450    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
3451      /* should never happen after static verification */
3452      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
3453      return false;
3454    }
3455    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
3456    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
3457      return false;
3458    }
3459    /* update branch target, set "changed" if appropriate */
3460    if (nullptr != branch_line) {
3461      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
3462        return false;
3463      }
3464    } else {
3465      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
3466        return false;
3467      }
3468    }
3469  }
3470
3471  /*
3472   * Handle "switch". Tag all possible branch targets.
3473   *
3474   * We've already verified that the table is structurally sound, so we
3475   * just need to walk through and tag the targets.
3476   */
3477  if ((opcode_flags & Instruction::kSwitch) != 0) {
3478    int offset_to_switch = insns[1] | (static_cast<int32_t>(insns[2]) << 16);
3479    const uint16_t* switch_insns = insns + offset_to_switch;
3480    int switch_count = switch_insns[1];
3481    int offset_to_targets, targ;
3482
3483    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
3484      /* 0 = sig, 1 = count, 2/3 = first key */
3485      offset_to_targets = 4;
3486    } else {
3487      /* 0 = sig, 1 = count, 2..count * 2 = keys */
3488      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
3489      offset_to_targets = 2 + 2 * switch_count;
3490    }
3491
3492    /* verify each switch target */
3493    for (targ = 0; targ < switch_count; targ++) {
3494      int offset;
3495      uint32_t abs_offset;
3496
3497      /* offsets are 32-bit, and only partly endian-swapped */
3498      offset = switch_insns[offset_to_targets + targ * 2] |
3499         (static_cast<int32_t>(switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
3500      abs_offset = work_insn_idx_ + offset;
3501      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
3502      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
3503        return false;
3504      }
3505      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
3506        return false;
3507      }
3508    }
3509  }
3510
3511  /*
3512   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
3513   * "try" block when they throw, control transfers out of the method.)
3514   */
3515  if ((opcode_flags & Instruction::kThrow) != 0 && GetInstructionFlags(work_insn_idx_).IsInTry()) {
3516    bool has_catch_all_handler = false;
3517    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
3518
3519    // Need the linker to try and resolve the handled class to check if it's Throwable.
3520    ClassLinker* linker = Runtime::Current()->GetClassLinker();
3521
3522    for (; iterator.HasNext(); iterator.Next()) {
3523      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
3524      if (handler_type_idx == DexFile::kDexNoIndex16) {
3525        has_catch_all_handler = true;
3526      } else {
3527        // It is also a catch-all if it is java.lang.Throwable.
3528        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
3529                                                   class_loader_);
3530        if (klass != nullptr) {
3531          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
3532            has_catch_all_handler = true;
3533          }
3534        } else {
3535          // Clear exception.
3536          DCHECK(self_->IsExceptionPending());
3537          self_->ClearException();
3538        }
3539      }
3540      /*
3541       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
3542       * "work_regs", because at runtime the exception will be thrown before the instruction
3543       * modifies any registers.
3544       */
3545      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
3546        return false;
3547      }
3548    }
3549
3550    /*
3551     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
3552     * instruction. This does apply to monitor-exit because of async exception handling.
3553     */
3554    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
3555      /*
3556       * The state in work_line reflects the post-execution state. If the current instruction is a
3557       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
3558       * it will do so before grabbing the lock).
3559       */
3560      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
3561        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
3562            << "expected to be within a catch-all for an instruction where a monitor is held";
3563        return false;
3564      }
3565    }
3566  }
3567
3568  /* Handle "continue". Tag the next consecutive instruction.
3569   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
3570   *        because it changes work_line_ when performing peephole optimization
3571   *        and this change should not be used in those cases.
3572   */
3573  if ((opcode_flags & Instruction::kContinue) != 0) {
3574    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3575    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
3576    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
3577      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
3578      return false;
3579    }
3580    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
3581    // next instruction isn't one.
3582    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
3583      return false;
3584    }
3585    if (nullptr != fallthrough_line) {
3586      // Make workline consistent with fallthrough computed from peephole optimization.
3587      work_line_->CopyFromLine(fallthrough_line.get());
3588    }
3589    if (GetInstructionFlags(next_insn_idx).IsReturn()) {
3590      // For returns we only care about the operand to the return, all other registers are dead.
3591      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
3592      AdjustReturnLine(this, ret_inst, work_line_.get());
3593    }
3594    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3595    if (next_line != nullptr) {
3596      // Merge registers into what we have for the next instruction, and set the "changed" flag if
3597      // needed. If the merge changes the state of the registers then the work line will be
3598      // updated.
3599      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3600        return false;
3601      }
3602    } else {
3603      /*
3604       * We're not recording register data for the next instruction, so we don't know what the
3605       * prior state was. We have to assume that something has changed and re-evaluate it.
3606       */
3607      GetInstructionFlags(next_insn_idx).SetChanged();
3608    }
3609  }
3610
3611  /* If we're returning from the method, make sure monitor stack is empty. */
3612  if ((opcode_flags & Instruction::kReturn) != 0) {
3613    work_line_->VerifyMonitorStackEmpty(this);
3614  }
3615
3616  /*
3617   * Update start_guess. Advance to the next instruction of that's
3618   * possible, otherwise use the branch target if one was found. If
3619   * neither of those exists we're in a return or throw; leave start_guess
3620   * alone and let the caller sort it out.
3621   */
3622  if ((opcode_flags & Instruction::kContinue) != 0) {
3623    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3624    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3625  } else if ((opcode_flags & Instruction::kBranch) != 0) {
3626    /* we're still okay if branch_target is zero */
3627    *start_guess = work_insn_idx_ + branch_target;
3628  }
3629
3630  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3631  DCHECK(GetInstructionFlags(*start_guess).IsOpcode());
3632
3633  if (have_pending_runtime_throw_failure_) {
3634    have_any_pending_runtime_throw_failure_ = true;
3635    // Reset the pending_runtime_throw flag now.
3636    have_pending_runtime_throw_failure_ = false;
3637  }
3638
3639  return true;
3640}  // NOLINT(readability/fn_size)
3641
3642void MethodVerifier::UninstantiableError(const char* descriptor) {
3643  Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
3644                                           << "non-instantiable klass " << descriptor;
3645}
3646
3647inline bool MethodVerifier::IsInstantiableOrPrimitive(mirror::Class* klass) {
3648  return klass->IsInstantiable() || klass->IsPrimitive();
3649}
3650
3651const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3652  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3653  const RegType* result = nullptr;
3654  if (klass != nullptr) {
3655    bool precise = klass->CannotBeAssignedFromOtherTypes();
3656    if (precise && !IsInstantiableOrPrimitive(klass)) {
3657      const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3658      UninstantiableError(descriptor);
3659      precise = false;
3660    }
3661    result = reg_types_.FindClass(klass, precise);
3662    if (result == nullptr) {
3663      const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3664      result = reg_types_.InsertClass(descriptor, klass, precise);
3665    }
3666  } else {
3667    const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3668    result = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3669  }
3670  DCHECK(result != nullptr);
3671  if (result->IsConflict()) {
3672    const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3673    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3674        << "' in " << GetDeclaringClass();
3675    return *result;
3676  }
3677  if (klass == nullptr && !result->IsUnresolvedTypes()) {
3678    dex_cache_->SetResolvedType(class_idx, result->GetClass());
3679  }
3680  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3681  // check at runtime if access is allowed and so pass here. If result is
3682  // primitive, skip the access check.
3683  if (result->IsNonZeroReferenceTypes() && !result->IsUnresolvedTypes()) {
3684    const RegType& referrer = GetDeclaringClass();
3685    if (!referrer.IsUnresolvedTypes() && !referrer.CanAccess(*result)) {
3686      Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3687                                      << referrer << "' -> '" << result << "'";
3688    }
3689  }
3690  return *result;
3691}
3692
3693const RegType& MethodVerifier::GetCaughtExceptionType() {
3694  const RegType* common_super = nullptr;
3695  if (code_item_->tries_size_ != 0) {
3696    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3697    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3698    for (uint32_t i = 0; i < handlers_size; i++) {
3699      CatchHandlerIterator iterator(handlers_ptr);
3700      for (; iterator.HasNext(); iterator.Next()) {
3701        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3702          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3703            common_super = &reg_types_.JavaLangThrowable(false);
3704          } else {
3705            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3706            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3707              DCHECK(!exception.IsUninitializedTypes());  // Comes from dex, shouldn't be uninit.
3708              if (exception.IsUnresolvedTypes()) {
3709                // We don't know enough about the type. Fail here and let runtime handle it.
3710                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3711                return exception;
3712              } else {
3713                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3714                return reg_types_.Conflict();
3715              }
3716            } else if (common_super == nullptr) {
3717              common_super = &exception;
3718            } else if (common_super->Equals(exception)) {
3719              // odd case, but nothing to do
3720            } else {
3721              common_super = &common_super->Merge(exception, &reg_types_);
3722              if (FailOrAbort(this,
3723                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3724                              "java.lang.Throwable is not assignable-from common_super at ",
3725                              work_insn_idx_)) {
3726                break;
3727              }
3728            }
3729          }
3730        }
3731      }
3732      handlers_ptr = iterator.EndDataPointer();
3733    }
3734  }
3735  if (common_super == nullptr) {
3736    /* no catch blocks, or no catches with classes we can find */
3737    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3738    return reg_types_.Conflict();
3739  }
3740  return *common_super;
3741}
3742
3743ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(
3744    uint32_t dex_method_idx, MethodType method_type) {
3745  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3746  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3747  if (klass_type.IsConflict()) {
3748    std::string append(" in attempt to access method ");
3749    append += dex_file_->GetMethodName(method_id);
3750    AppendToLastFailMessage(append);
3751    return nullptr;
3752  }
3753  if (klass_type.IsUnresolvedTypes()) {
3754    return nullptr;  // Can't resolve Class so no more to do here
3755  }
3756  mirror::Class* klass = klass_type.GetClass();
3757  const RegType& referrer = GetDeclaringClass();
3758  auto* cl = Runtime::Current()->GetClassLinker();
3759  auto pointer_size = cl->GetImagePointerSize();
3760
3761  ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx, pointer_size);
3762  bool stash_method = false;
3763  if (res_method == nullptr) {
3764    const char* name = dex_file_->GetMethodName(method_id);
3765    const Signature signature = dex_file_->GetMethodSignature(method_id);
3766
3767    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3768      res_method = klass->FindDirectMethod(name, signature, pointer_size);
3769    } else if (method_type == METHOD_INTERFACE) {
3770      res_method = klass->FindInterfaceMethod(name, signature, pointer_size);
3771    } else if (method_type == METHOD_SUPER && klass->IsInterface()) {
3772      res_method = klass->FindInterfaceMethod(name, signature, pointer_size);
3773    } else {
3774      DCHECK(method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER);
3775      res_method = klass->FindVirtualMethod(name, signature, pointer_size);
3776    }
3777    if (res_method != nullptr) {
3778      stash_method = true;
3779    } else {
3780      // If a virtual or interface method wasn't found with the expected type, look in
3781      // the direct methods. This can happen when the wrong invoke type is used or when
3782      // a class has changed, and will be flagged as an error in later checks.
3783      if (method_type == METHOD_INTERFACE ||
3784          method_type == METHOD_VIRTUAL ||
3785          method_type == METHOD_SUPER) {
3786        res_method = klass->FindDirectMethod(name, signature, pointer_size);
3787      }
3788      if (res_method == nullptr) {
3789        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3790                                     << PrettyDescriptor(klass) << "." << name
3791                                     << " " << signature;
3792        return nullptr;
3793      }
3794    }
3795  }
3796  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3797  // enforce them here.
3798  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3799    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3800                                      << PrettyMethod(res_method);
3801    return nullptr;
3802  }
3803  // Disallow any calls to class initializers.
3804  if (res_method->IsClassInitializer()) {
3805    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3806                                      << PrettyMethod(res_method);
3807    return nullptr;
3808  }
3809
3810  // Check that interface methods are static or match interface classes.
3811  // We only allow statics if we don't have default methods enabled.
3812  //
3813  // Note: this check must be after the initializer check, as those are required to fail a class,
3814  //       while this check implies an IncompatibleClassChangeError.
3815  if (klass->IsInterface()) {
3816    // methods called on interfaces should be invoke-interface, invoke-super, invoke-direct (if
3817    // dex file version is 37 or greater), or invoke-static.
3818    if (method_type != METHOD_INTERFACE &&
3819        method_type != METHOD_STATIC &&
3820        ((dex_file_->GetVersion() < DexFile::kDefaultMethodsVersion) ||
3821         method_type != METHOD_DIRECT) &&
3822        method_type != METHOD_SUPER) {
3823      Fail(VERIFY_ERROR_CLASS_CHANGE)
3824          << "non-interface method " << PrettyMethod(dex_method_idx, *dex_file_)
3825          << " is in an interface class " << PrettyClass(klass);
3826      return nullptr;
3827    }
3828  } else {
3829    if (method_type == METHOD_INTERFACE) {
3830      Fail(VERIFY_ERROR_CLASS_CHANGE)
3831          << "interface method " << PrettyMethod(dex_method_idx, *dex_file_)
3832          << " is in a non-interface class " << PrettyClass(klass);
3833      return nullptr;
3834    }
3835  }
3836
3837  // Only stash after the above passed. Otherwise the method wasn't guaranteed to be correct.
3838  if (stash_method) {
3839    dex_cache_->SetResolvedMethod(dex_method_idx, res_method, pointer_size);
3840  }
3841
3842  // Check if access is allowed.
3843  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3844    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3845                                     << " from " << referrer << ")";
3846    return res_method;
3847  }
3848  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3849  if (res_method->IsPrivate() && (method_type == METHOD_VIRTUAL || method_type == METHOD_SUPER)) {
3850    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3851                                      << PrettyMethod(res_method);
3852    return nullptr;
3853  }
3854  // See if the method type implied by the invoke instruction matches the access flags for the
3855  // target method.
3856  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3857      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3858      ((method_type == METHOD_SUPER ||
3859        method_type == METHOD_VIRTUAL ||
3860        method_type == METHOD_INTERFACE) && res_method->IsDirect())
3861      ) {
3862    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3863                                       " type of " << PrettyMethod(res_method);
3864    return nullptr;
3865  }
3866  return res_method;
3867}
3868
3869template <class T>
3870ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(
3871    T* it, const Instruction* inst, MethodType method_type, bool is_range, ArtMethod* res_method) {
3872  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3873  // match the call to the signature. Also, we might be calling through an abstract method
3874  // definition (which doesn't have register count values).
3875  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3876  /* caught by static verifier */
3877  DCHECK(is_range || expected_args <= 5);
3878  if (expected_args > code_item_->outs_size_) {
3879    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3880        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3881    return nullptr;
3882  }
3883
3884  uint32_t arg[5];
3885  if (!is_range) {
3886    inst->GetVarArgs(arg);
3887  }
3888  uint32_t sig_registers = 0;
3889
3890  /*
3891   * Check the "this" argument, which must be an instance of the class that declared the method.
3892   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3893   * rigorous check here (which is okay since we have to do it at runtime).
3894   */
3895  if (method_type != METHOD_STATIC) {
3896    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3897    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3898      CHECK(have_pending_hard_failure_);
3899      return nullptr;
3900    }
3901    bool is_init = false;
3902    if (actual_arg_type.IsUninitializedTypes()) {
3903      if (res_method) {
3904        if (!res_method->IsConstructor()) {
3905          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3906          return nullptr;
3907        }
3908      } else {
3909        // Check whether the name of the called method is "<init>"
3910        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3911        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3912          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3913          return nullptr;
3914        }
3915      }
3916      is_init = true;
3917    }
3918    const RegType& adjusted_type = is_init
3919                                       ? GetRegTypeCache()->FromUninitialized(actual_arg_type)
3920                                       : actual_arg_type;
3921    if (method_type != METHOD_INTERFACE && !adjusted_type.IsZero()) {
3922      const RegType* res_method_class;
3923      // Miranda methods have the declaring interface as their declaring class, not the abstract
3924      // class. It would be wrong to use this for the type check (interface type checks are
3925      // postponed to runtime).
3926      if (res_method != nullptr && !res_method->IsMiranda()) {
3927        mirror::Class* klass = res_method->GetDeclaringClass();
3928        std::string temp;
3929        res_method_class = &FromClass(klass->GetDescriptor(&temp), klass,
3930                                      klass->CannotBeAssignedFromOtherTypes());
3931      } else {
3932        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3933        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3934        res_method_class = &reg_types_.FromDescriptor(
3935            GetClassLoader(),
3936            dex_file_->StringByTypeIdx(class_idx),
3937            false);
3938      }
3939      if (!res_method_class->IsAssignableFrom(adjusted_type)) {
3940        Fail(adjusted_type.IsUnresolvedTypes()
3941                 ? VERIFY_ERROR_NO_CLASS
3942                 : VERIFY_ERROR_BAD_CLASS_SOFT)
3943            << "'this' argument '" << actual_arg_type << "' not instance of '"
3944            << *res_method_class << "'";
3945        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3946        // the compiler.
3947        if (have_pending_hard_failure_) {
3948          return nullptr;
3949        }
3950      }
3951    }
3952    sig_registers = 1;
3953  }
3954
3955  for ( ; it->HasNext(); it->Next()) {
3956    if (sig_registers >= expected_args) {
3957      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3958          " arguments, found " << sig_registers << " or more.";
3959      return nullptr;
3960    }
3961
3962    const char* param_descriptor = it->GetDescriptor();
3963
3964    if (param_descriptor == nullptr) {
3965      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3966          "component";
3967      return nullptr;
3968    }
3969
3970    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3971    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3972        arg[sig_registers];
3973    if (reg_type.IsIntegralTypes()) {
3974      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3975      if (!src_type.IsIntegralTypes()) {
3976        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3977            << " but expected " << reg_type;
3978        return nullptr;
3979      }
3980    } else {
3981      if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3982        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3983        // the compiler.
3984        if (have_pending_hard_failure_) {
3985          return nullptr;
3986        }
3987      } else if (reg_type.IsLongOrDoubleTypes()) {
3988        // Check that registers are consecutive (for non-range invokes). Invokes are the only
3989        // instructions not specifying register pairs by the first component, but require them
3990        // nonetheless. Only check when there's an actual register in the parameters. If there's
3991        // none, this will fail below.
3992        if (!is_range && sig_registers + 1 < expected_args) {
3993          uint32_t second_reg = arg[sig_registers + 1];
3994          if (second_reg != get_reg + 1) {
3995            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, long or double parameter "
3996                "at index " << sig_registers << " is not a pair: " << get_reg << " + "
3997                << second_reg << ".";
3998            return nullptr;
3999          }
4000        }
4001      }
4002    }
4003    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
4004  }
4005  if (expected_args != sig_registers) {
4006    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
4007        " arguments, found " << sig_registers;
4008    return nullptr;
4009  }
4010  return res_method;
4011}
4012
4013void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
4014                                                          MethodType method_type,
4015                                                          bool is_range) {
4016  // As the method may not have been resolved, make this static check against what we expect.
4017  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
4018  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
4019  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
4020  DexFileParameterIterator it(*dex_file_,
4021                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
4022  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
4023                                                             nullptr);
4024}
4025
4026class MethodParamListDescriptorIterator {
4027 public:
4028  explicit MethodParamListDescriptorIterator(ArtMethod* res_method) :
4029      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
4030      params_size_(params_ == nullptr ? 0 : params_->Size()) {
4031  }
4032
4033  bool HasNext() {
4034    return pos_ < params_size_;
4035  }
4036
4037  void Next() {
4038    ++pos_;
4039  }
4040
4041  const char* GetDescriptor() SHARED_REQUIRES(Locks::mutator_lock_) {
4042    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
4043  }
4044
4045 private:
4046  ArtMethod* res_method_;
4047  size_t pos_;
4048  const DexFile::TypeList* params_;
4049  const size_t params_size_;
4050};
4051
4052ArtMethod* MethodVerifier::VerifyInvocationArgs(
4053    const Instruction* inst, MethodType method_type, bool is_range) {
4054  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
4055  // we're making.
4056  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
4057
4058  ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
4059  if (res_method == nullptr) {  // error or class is unresolved
4060    // Check what we can statically.
4061    if (!have_pending_hard_failure_) {
4062      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
4063    }
4064    return nullptr;
4065  }
4066
4067  // If we're using invoke-super(method), make sure that the executing method's class' superclass
4068  // has a vtable entry for the target method. Or the target is on a interface.
4069  if (method_type == METHOD_SUPER) {
4070    uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
4071    mirror::Class* reference_class = dex_cache_->GetResolvedType(class_idx);
4072    if (reference_class == nullptr) {
4073      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Unable to find referenced class from invoke-super";
4074      return nullptr;
4075    }
4076    if (reference_class->IsInterface()) {
4077      // TODO Can we verify anything else.
4078      if (class_idx == class_def_->class_idx_) {
4079        Fail(VERIFY_ERROR_CLASS_CHANGE) << "Cannot invoke-super on self as interface";
4080        return nullptr;
4081      }
4082      // TODO Revisit whether we want to allow invoke-super on direct interfaces only like the JLS
4083      // does.
4084      if (!GetDeclaringClass().HasClass()) {
4085        Fail(VERIFY_ERROR_NO_CLASS) << "Unable to resolve the full class of 'this' used in an"
4086                                    << "interface invoke-super";
4087        return nullptr;
4088      } else if (!reference_class->IsAssignableFrom(GetDeclaringClass().GetClass())) {
4089        Fail(VERIFY_ERROR_CLASS_CHANGE)
4090            << "invoke-super in " << PrettyClass(GetDeclaringClass().GetClass()) << " in method "
4091            << PrettyMethod(dex_method_idx_, *dex_file_) << " to method "
4092            << PrettyMethod(method_idx, *dex_file_) << " references "
4093            << "non-super-interface type " << PrettyClass(reference_class);
4094        return nullptr;
4095      }
4096    } else {
4097      const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
4098      if (super.IsUnresolvedTypes()) {
4099        Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
4100                                    << PrettyMethod(dex_method_idx_, *dex_file_)
4101                                    << " to super " << PrettyMethod(res_method);
4102        return nullptr;
4103      }
4104      if (!reference_class->IsAssignableFrom(GetDeclaringClass().GetClass()) ||
4105          (res_method->GetMethodIndex() >= super.GetClass()->GetVTableLength())) {
4106        Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
4107                                    << PrettyMethod(dex_method_idx_, *dex_file_)
4108                                    << " to super " << super
4109                                    << "." << res_method->GetName()
4110                                    << res_method->GetSignature();
4111        return nullptr;
4112      }
4113    }
4114  }
4115
4116  // Process the target method's signature. This signature may or may not
4117  MethodParamListDescriptorIterator it(res_method);
4118  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
4119                                                                             is_range, res_method);
4120}
4121
4122ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst, RegisterLine* reg_line,
4123                                                 bool is_range, bool allow_failure) {
4124  if (is_range) {
4125    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
4126  } else {
4127    DCHECK_EQ(inst->Opcode(), Instruction::INVOKE_VIRTUAL_QUICK);
4128  }
4129  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range, allow_failure);
4130  if (!actual_arg_type.HasClass()) {
4131    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
4132    return nullptr;
4133  }
4134  mirror::Class* klass = actual_arg_type.GetClass();
4135  mirror::Class* dispatch_class;
4136  if (klass->IsInterface()) {
4137    // Derive Object.class from Class.class.getSuperclass().
4138    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
4139    if (FailOrAbort(this, object_klass->IsObjectClass(),
4140                    "Failed to find Object class in quickened invoke receiver", work_insn_idx_)) {
4141      return nullptr;
4142    }
4143    dispatch_class = object_klass;
4144  } else {
4145    dispatch_class = klass;
4146  }
4147  if (!dispatch_class->HasVTable()) {
4148    FailOrAbort(this, allow_failure, "Receiver class has no vtable for quickened invoke at ",
4149                work_insn_idx_);
4150    return nullptr;
4151  }
4152  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
4153  auto* cl = Runtime::Current()->GetClassLinker();
4154  auto pointer_size = cl->GetImagePointerSize();
4155  if (static_cast<int32_t>(vtable_index) >= dispatch_class->GetVTableLength()) {
4156    FailOrAbort(this, allow_failure,
4157                "Receiver class has not enough vtable slots for quickened invoke at ",
4158                work_insn_idx_);
4159    return nullptr;
4160  }
4161  ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index, pointer_size);
4162  if (self_->IsExceptionPending()) {
4163    FailOrAbort(this, allow_failure, "Unexpected exception pending for quickened invoke at ",
4164                work_insn_idx_);
4165    return nullptr;
4166  }
4167  return res_method;
4168}
4169
4170ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst, bool is_range) {
4171  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
4172      << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;
4173
4174  ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(), is_range, false);
4175  if (res_method == nullptr) {
4176    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
4177    return nullptr;
4178  }
4179  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
4180                  work_insn_idx_)) {
4181    return nullptr;
4182  }
4183  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
4184                  work_insn_idx_)) {
4185    return nullptr;
4186  }
4187
4188  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
4189  // match the call to the signature. Also, we might be calling through an abstract method
4190  // definition (which doesn't have register count values).
4191  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
4192  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
4193    return nullptr;
4194  }
4195  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
4196  /* caught by static verifier */
4197  DCHECK(is_range || expected_args <= 5);
4198  if (expected_args > code_item_->outs_size_) {
4199    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
4200        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
4201    return nullptr;
4202  }
4203
4204  /*
4205   * Check the "this" argument, which must be an instance of the class that declared the method.
4206   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
4207   * rigorous check here (which is okay since we have to do it at runtime).
4208   */
4209  // Note: given an uninitialized type, this should always fail. Constructors aren't virtual.
4210  if (actual_arg_type.IsUninitializedTypes() && !res_method->IsConstructor()) {
4211    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
4212    return nullptr;
4213  }
4214  if (!actual_arg_type.IsZero()) {
4215    mirror::Class* klass = res_method->GetDeclaringClass();
4216    std::string temp;
4217    const RegType& res_method_class =
4218        FromClass(klass->GetDescriptor(&temp), klass, klass->CannotBeAssignedFromOtherTypes());
4219    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
4220      Fail(actual_arg_type.IsUninitializedTypes()    // Just overcautious - should have never
4221               ? VERIFY_ERROR_BAD_CLASS_HARD         // quickened this.
4222               : actual_arg_type.IsUnresolvedTypes()
4223                     ? VERIFY_ERROR_NO_CLASS
4224                     : VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
4225          << "' not instance of '" << res_method_class << "'";
4226      return nullptr;
4227    }
4228  }
4229  /*
4230   * Process the target method's signature. This signature may or may not
4231   * have been verified, so we can't assume it's properly formed.
4232   */
4233  const DexFile::TypeList* params = res_method->GetParameterTypeList();
4234  size_t params_size = params == nullptr ? 0 : params->Size();
4235  uint32_t arg[5];
4236  if (!is_range) {
4237    inst->GetVarArgs(arg);
4238  }
4239  size_t actual_args = 1;
4240  for (size_t param_index = 0; param_index < params_size; param_index++) {
4241    if (actual_args >= expected_args) {
4242      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
4243                                        << "'. Expected " << expected_args
4244                                         << " arguments, processing argument " << actual_args
4245                                        << " (where longs/doubles count twice).";
4246      return nullptr;
4247    }
4248    const char* descriptor =
4249        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
4250    if (descriptor == nullptr) {
4251      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
4252                                        << " missing signature component";
4253      return nullptr;
4254    }
4255    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4256    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
4257    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
4258      return res_method;
4259    }
4260    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
4261  }
4262  if (actual_args != expected_args) {
4263    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
4264              << " expected " << expected_args << " arguments, found " << actual_args;
4265    return nullptr;
4266  } else {
4267    return res_method;
4268  }
4269}
4270
4271void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
4272  uint32_t type_idx;
4273  if (!is_filled) {
4274    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
4275    type_idx = inst->VRegC_22c();
4276  } else if (!is_range) {
4277    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
4278    type_idx = inst->VRegB_35c();
4279  } else {
4280    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
4281    type_idx = inst->VRegB_3rc();
4282  }
4283  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
4284  if (res_type.IsConflict()) {  // bad class
4285    DCHECK_NE(failures_.size(), 0U);
4286  } else {
4287    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
4288    if (!res_type.IsArrayTypes()) {
4289      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
4290    } else if (!is_filled) {
4291      /* make sure "size" register is valid type */
4292      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
4293      /* set register type to array class */
4294      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4295      work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_22c(), precise_type);
4296    } else {
4297      DCHECK(!res_type.IsUnresolvedMergedReference());
4298      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
4299      // the list and fail. It's legal, if silly, for arg_count to be zero.
4300      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
4301      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
4302      uint32_t arg[5];
4303      if (!is_range) {
4304        inst->GetVarArgs(arg);
4305      }
4306      for (size_t ui = 0; ui < arg_count; ui++) {
4307        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
4308        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
4309          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
4310          return;
4311        }
4312      }
4313      // filled-array result goes into "result" register
4314      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
4315      work_line_->SetResultRegisterType(this, precise_type);
4316    }
4317  }
4318}
4319
4320void MethodVerifier::VerifyAGet(const Instruction* inst,
4321                                const RegType& insn_type, bool is_primitive) {
4322  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4323  if (!index_type.IsArrayIndexTypes()) {
4324    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4325  } else {
4326    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4327    if (array_type.IsZero()) {
4328      have_pending_runtime_throw_failure_ = true;
4329      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
4330      // instruction type. TODO: have a proper notion of bottom here.
4331      if (!is_primitive || insn_type.IsCategory1Types()) {
4332        // Reference or category 1
4333        work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), reg_types_.Zero());
4334      } else {
4335        // Category 2
4336        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
4337                                        reg_types_.FromCat2ConstLo(0, false),
4338                                        reg_types_.FromCat2ConstHi(0, false));
4339      }
4340    } else if (!array_type.IsArrayTypes()) {
4341      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
4342    } else if (array_type.IsUnresolvedMergedReference()) {
4343      // Unresolved array types must be reference array types.
4344      if (is_primitive) {
4345        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4346                    << " source for category 1 aget";
4347      } else {
4348        Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aget for " << array_type
4349            << " because of missing class";
4350        // Approximate with java.lang.Object[].
4351        work_line_->SetRegisterType<LockOp::kClear>(this,
4352                                                    inst->VRegA_23x(),
4353                                                    reg_types_.JavaLangObject(false));
4354      }
4355    } else {
4356      /* verify the class */
4357      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
4358      if (!component_type.IsReferenceTypes() && !is_primitive) {
4359        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4360            << " source for aget-object";
4361      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
4362        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
4363            << " source for category 1 aget";
4364      } else if (is_primitive && !insn_type.Equals(component_type) &&
4365                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
4366                 (insn_type.IsLong() && component_type.IsDouble()))) {
4367        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
4368            << " incompatible with aget of type " << insn_type;
4369      } else {
4370        // Use knowledge of the field type which is stronger than the type inferred from the
4371        // instruction, which can't differentiate object types and ints from floats, longs from
4372        // doubles.
4373        if (!component_type.IsLowHalf()) {
4374          work_line_->SetRegisterType<LockOp::kClear>(this, inst->VRegA_23x(), component_type);
4375        } else {
4376          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
4377                                          component_type.HighHalf(&reg_types_));
4378        }
4379      }
4380    }
4381  }
4382}
4383
4384void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
4385                                        const uint32_t vregA) {
4386  // Primitive assignability rules are weaker than regular assignability rules.
4387  bool instruction_compatible;
4388  bool value_compatible;
4389  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4390  if (target_type.IsIntegralTypes()) {
4391    instruction_compatible = target_type.Equals(insn_type);
4392    value_compatible = value_type.IsIntegralTypes();
4393  } else if (target_type.IsFloat()) {
4394    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
4395    value_compatible = value_type.IsFloatTypes();
4396  } else if (target_type.IsLong()) {
4397    instruction_compatible = insn_type.IsLong();
4398    // Additional register check: this is not checked statically (as part of VerifyInstructions),
4399    // as target_type depends on the resolved type of the field.
4400    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4401      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4402      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
4403    } else {
4404      value_compatible = false;
4405    }
4406  } else if (target_type.IsDouble()) {
4407    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
4408    // Additional register check: this is not checked statically (as part of VerifyInstructions),
4409    // as target_type depends on the resolved type of the field.
4410    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
4411      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
4412      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
4413    } else {
4414      value_compatible = false;
4415    }
4416  } else {
4417    instruction_compatible = false;  // reference with primitive store
4418    value_compatible = false;  // unused
4419  }
4420  if (!instruction_compatible) {
4421    // This is a global failure rather than a class change failure as the instructions and
4422    // the descriptors for the type should have been consistent within the same file at
4423    // compile time.
4424    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4425        << "' but expected type '" << target_type << "'";
4426    return;
4427  }
4428  if (!value_compatible) {
4429    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4430        << " of type " << value_type << " but expected " << target_type << " for put";
4431    return;
4432  }
4433}
4434
4435void MethodVerifier::VerifyAPut(const Instruction* inst,
4436                                const RegType& insn_type, bool is_primitive) {
4437  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
4438  if (!index_type.IsArrayIndexTypes()) {
4439    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
4440  } else {
4441    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
4442    if (array_type.IsZero()) {
4443      // Null array type; this code path will fail at runtime.
4444      // Still check that the given value matches the instruction's type.
4445      // Note: this is, as usual, complicated by the fact the the instruction isn't fully typed
4446      //       and fits multiple register types.
4447      const RegType* modified_reg_type = &insn_type;
4448      if ((modified_reg_type == &reg_types_.Integer()) ||
4449          (modified_reg_type == &reg_types_.LongLo())) {
4450        // May be integer or float | long or double. Overwrite insn_type accordingly.
4451        const RegType& value_type = work_line_->GetRegisterType(this, inst->VRegA_23x());
4452        if (modified_reg_type == &reg_types_.Integer()) {
4453          if (&value_type == &reg_types_.Float()) {
4454            modified_reg_type = &value_type;
4455          }
4456        } else {
4457          if (&value_type == &reg_types_.DoubleLo()) {
4458            modified_reg_type = &value_type;
4459          }
4460        }
4461      }
4462      work_line_->VerifyRegisterType(this, inst->VRegA_23x(), *modified_reg_type);
4463    } else if (!array_type.IsArrayTypes()) {
4464      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
4465    } else if (array_type.IsUnresolvedMergedReference()) {
4466      // Unresolved array types must be reference array types.
4467      if (is_primitive) {
4468        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
4469                                          << "' but unresolved type '" << array_type << "'";
4470      } else {
4471        Fail(VERIFY_ERROR_NO_CLASS) << "cannot verify aput for " << array_type
4472                                    << " because of missing class";
4473      }
4474    } else {
4475      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
4476      const uint32_t vregA = inst->VRegA_23x();
4477      if (is_primitive) {
4478        VerifyPrimitivePut(component_type, insn_type, vregA);
4479      } else {
4480        if (!component_type.IsReferenceTypes()) {
4481          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
4482              << " source for aput-object";
4483        } else {
4484          // The instruction agrees with the type of array, confirm the value to be stored does too
4485          // Note: we use the instruction type (rather than the component type) for aput-object as
4486          // incompatible classes will be caught at runtime as an array store exception
4487          work_line_->VerifyRegisterType(this, vregA, insn_type);
4488        }
4489      }
4490    }
4491  }
4492}
4493
4494ArtField* MethodVerifier::GetStaticField(int field_idx) {
4495  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4496  // Check access to class
4497  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
4498  if (klass_type.IsConflict()) {  // bad class
4499    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
4500                                         field_idx, dex_file_->GetFieldName(field_id),
4501                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4502    return nullptr;
4503  }
4504  if (klass_type.IsUnresolvedTypes()) {
4505    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
4506  }
4507  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
4508  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
4509                                                  class_loader_);
4510  if (field == nullptr) {
4511    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
4512              << dex_file_->GetFieldName(field_id) << ") in "
4513              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4514    DCHECK(self_->IsExceptionPending());
4515    self_->ClearException();
4516    return nullptr;
4517  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4518                                                  field->GetAccessFlags())) {
4519    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
4520                                    << " from " << GetDeclaringClass();
4521    return nullptr;
4522  } else if (!field->IsStatic()) {
4523    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
4524    return nullptr;
4525  }
4526  return field;
4527}
4528
4529ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
4530  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4531  // Check access to class
4532  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
4533  if (klass_type.IsConflict()) {
4534    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
4535                                         field_idx, dex_file_->GetFieldName(field_id),
4536                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
4537    return nullptr;
4538  }
4539  if (klass_type.IsUnresolvedTypes()) {
4540    return nullptr;  // Can't resolve Class so no more to do here
4541  }
4542  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
4543  ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
4544                                                  class_loader_);
4545  if (field == nullptr) {
4546    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
4547              << dex_file_->GetFieldName(field_id) << ") in "
4548              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
4549    DCHECK(self_->IsExceptionPending());
4550    self_->ClearException();
4551    return nullptr;
4552  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
4553                                                  field->GetAccessFlags())) {
4554    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
4555                                    << " from " << GetDeclaringClass();
4556    return nullptr;
4557  } else if (field->IsStatic()) {
4558    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
4559                                    << " to not be static";
4560    return nullptr;
4561  } else if (obj_type.IsZero()) {
4562    // Cannot infer and check type, however, access will cause null pointer exception
4563    return field;
4564  } else if (!obj_type.IsReferenceTypes()) {
4565    // Trying to read a field from something that isn't a reference
4566    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
4567                                      << "non-reference type " << obj_type;
4568    return nullptr;
4569  } else {
4570    mirror::Class* klass = field->GetDeclaringClass();
4571    const RegType& field_klass =
4572        FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
4573                  klass, klass->CannotBeAssignedFromOtherTypes());
4574    if (obj_type.IsUninitializedTypes()) {
4575      // Field accesses through uninitialized references are only allowable for constructors where
4576      // the field is declared in this class.
4577      // Note: this IsConstructor check is technically redundant, as UninitializedThis should only
4578      //       appear in constructors.
4579      if (!obj_type.IsUninitializedThisReference() ||
4580          !IsConstructor() ||
4581          !field_klass.Equals(GetDeclaringClass())) {
4582        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
4583                                          << " of a not fully initialized object within the context"
4584                                          << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
4585        return nullptr;
4586      }
4587      return field;
4588    } else if (!field_klass.IsAssignableFrom(obj_type)) {
4589      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
4590      // of C1. For resolution to occur the declared class of the field must be compatible with
4591      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
4592      VerifyError type;
4593      bool is_aot = Runtime::Current()->IsAotCompiler();
4594      if (is_aot && (field_klass.IsUnresolvedTypes() || obj_type.IsUnresolvedTypes())) {
4595        // Compiler & unresolved types involved, retry at runtime.
4596        type = VerifyError::VERIFY_ERROR_NO_CLASS;
4597      } else {
4598        // Classes known (resolved; and thus assignability check is precise), or we are at runtime
4599        // and still missing classes. This is a hard failure.
4600        type = VerifyError::VERIFY_ERROR_BAD_CLASS_HARD;
4601      }
4602      Fail(type) << "cannot access instance field " << PrettyField(field)
4603                 << " from object of type " << obj_type;
4604      return nullptr;
4605    } else {
4606      return field;
4607    }
4608  }
4609}
4610
4611template <MethodVerifier::FieldAccessType kAccType>
4612void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
4613                                         bool is_primitive, bool is_static) {
4614  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
4615  ArtField* field;
4616  if (is_static) {
4617    field = GetStaticField(field_idx);
4618  } else {
4619    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
4620
4621    // One is not allowed to access fields on uninitialized references, except to write to
4622    // fields in the constructor (before calling another constructor).
4623    // GetInstanceField does an assignability check which will fail for uninitialized types.
4624    // We thus modify the type if the uninitialized reference is a "this" reference (this also
4625    // checks at the same time that we're verifying a constructor).
4626    bool should_adjust = (kAccType == FieldAccessType::kAccPut) &&
4627                         object_type.IsUninitializedThisReference();
4628    const RegType& adjusted_type = should_adjust
4629                                       ? GetRegTypeCache()->FromUninitialized(object_type)
4630                                       : object_type;
4631    field = GetInstanceField(adjusted_type, field_idx);
4632    if (UNLIKELY(have_pending_hard_failure_)) {
4633      return;
4634    }
4635    if (should_adjust) {
4636      if (field == nullptr) {
4637        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Might be accessing a superclass instance field prior "
4638                                          << "to the superclass being initialized in "
4639                                          << PrettyMethod(dex_method_idx_, *dex_file_);
4640      } else if (field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4641        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access superclass instance field "
4642                                          << PrettyField(field) << " of a not fully initialized "
4643                                          << "object within the context of "
4644                                          << PrettyMethod(dex_method_idx_, *dex_file_);
4645        return;
4646      }
4647    }
4648  }
4649  const RegType* field_type = nullptr;
4650  if (field != nullptr) {
4651    if (kAccType == FieldAccessType::kAccPut) {
4652      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4653        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4654                                        << " from other class " << GetDeclaringClass();
4655        // Keep hunting for possible hard fails.
4656      }
4657    }
4658
4659    mirror::Class* field_type_class =
4660        can_load_classes_ ? field->GetType<true>() : field->GetType<false>();
4661    if (field_type_class != nullptr) {
4662      field_type = &FromClass(field->GetTypeDescriptor(), field_type_class,
4663                              field_type_class->CannotBeAssignedFromOtherTypes());
4664    } else {
4665      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4666      self_->ClearException();
4667    }
4668  }
4669  if (field_type == nullptr) {
4670    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
4671    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
4672    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4673  }
4674  DCHECK(field_type != nullptr);
4675  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
4676  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4677                "Unexpected third access type");
4678  if (kAccType == FieldAccessType::kAccPut) {
4679    // sput or iput.
4680    if (is_primitive) {
4681      VerifyPrimitivePut(*field_type, insn_type, vregA);
4682    } else {
4683      if (!insn_type.IsAssignableFrom(*field_type)) {
4684        // If the field type is not a reference, this is a global failure rather than
4685        // a class change failure as the instructions and the descriptors for the type
4686        // should have been consistent within the same file at compile time.
4687        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4688                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
4689        Fail(error) << "expected field " << PrettyField(field)
4690                    << " to be compatible with type '" << insn_type
4691                    << "' but found type '" << *field_type
4692                    << "' in put-object";
4693        return;
4694      }
4695      work_line_->VerifyRegisterType(this, vregA, *field_type);
4696    }
4697  } else if (kAccType == FieldAccessType::kAccGet) {
4698    // sget or iget.
4699    if (is_primitive) {
4700      if (field_type->Equals(insn_type) ||
4701          (field_type->IsFloat() && insn_type.IsInteger()) ||
4702          (field_type->IsDouble() && insn_type.IsLong())) {
4703        // expected that read is of the correct primitive type or that int reads are reading
4704        // floats or long reads are reading doubles
4705      } else {
4706        // This is a global failure rather than a class change failure as the instructions and
4707        // the descriptors for the type should have been consistent within the same file at
4708        // compile time
4709        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4710                                          << " to be of type '" << insn_type
4711                                          << "' but found type '" << *field_type << "' in get";
4712        return;
4713      }
4714    } else {
4715      if (!insn_type.IsAssignableFrom(*field_type)) {
4716        // If the field type is not a reference, this is a global failure rather than
4717        // a class change failure as the instructions and the descriptors for the type
4718        // should have been consistent within the same file at compile time.
4719        VerifyError error = field_type->IsReferenceTypes() ? VERIFY_ERROR_BAD_CLASS_SOFT
4720                                                           : VERIFY_ERROR_BAD_CLASS_HARD;
4721        Fail(error) << "expected field " << PrettyField(field)
4722                    << " to be compatible with type '" << insn_type
4723                    << "' but found type '" << *field_type
4724                    << "' in get-object";
4725        if (error != VERIFY_ERROR_BAD_CLASS_HARD) {
4726          work_line_->SetRegisterType<LockOp::kClear>(this, vregA, reg_types_.Conflict());
4727        }
4728        return;
4729      }
4730    }
4731    if (!field_type->IsLowHalf()) {
4732      work_line_->SetRegisterType<LockOp::kClear>(this, vregA, *field_type);
4733    } else {
4734      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4735    }
4736  } else {
4737    LOG(FATAL) << "Unexpected case.";
4738  }
4739}
4740
4741ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
4742                                                      RegisterLine* reg_line) {
4743  DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
4744  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
4745  if (!object_type.HasClass()) {
4746    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
4747    return nullptr;
4748  }
4749  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
4750  ArtField* const f = ArtField::FindInstanceFieldWithOffset(object_type.GetClass(), field_offset);
4751  DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
4752  if (f == nullptr) {
4753    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
4754                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
4755  }
4756  return f;
4757}
4758
4759template <MethodVerifier::FieldAccessType kAccType>
4760void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
4761                                            bool is_primitive) {
4762  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
4763
4764  ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
4765  if (field == nullptr) {
4766    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
4767    return;
4768  }
4769
4770  // For an IPUT_QUICK, we now test for final flag of the field.
4771  if (kAccType == FieldAccessType::kAccPut) {
4772    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
4773      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
4774                                      << " from other class " << GetDeclaringClass();
4775      return;
4776    }
4777  }
4778
4779  // Get the field type.
4780  const RegType* field_type;
4781  {
4782    mirror::Class* field_type_class = can_load_classes_ ? field->GetType<true>() :
4783        field->GetType<false>();
4784
4785    if (field_type_class != nullptr) {
4786      field_type = &FromClass(field->GetTypeDescriptor(),
4787                              field_type_class,
4788                              field_type_class->CannotBeAssignedFromOtherTypes());
4789    } else {
4790      Thread* self = Thread::Current();
4791      DCHECK(!can_load_classes_ || self->IsExceptionPending());
4792      self->ClearException();
4793      field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
4794                                              field->GetTypeDescriptor(),
4795                                              false);
4796    }
4797    if (field_type == nullptr) {
4798      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
4799      return;
4800    }
4801  }
4802
4803  const uint32_t vregA = inst->VRegA_22c();
4804  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4805                "Unexpected third access type");
4806  if (kAccType == FieldAccessType::kAccPut) {
4807    if (is_primitive) {
4808      // Primitive field assignability rules are weaker than regular assignability rules
4809      bool instruction_compatible;
4810      bool value_compatible;
4811      const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4812      if (field_type->IsIntegralTypes()) {
4813        instruction_compatible = insn_type.IsIntegralTypes();
4814        value_compatible = value_type.IsIntegralTypes();
4815      } else if (field_type->IsFloat()) {
4816        instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
4817        value_compatible = value_type.IsFloatTypes();
4818      } else if (field_type->IsLong()) {
4819        instruction_compatible = insn_type.IsLong();
4820        value_compatible = value_type.IsLongTypes();
4821      } else if (field_type->IsDouble()) {
4822        instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
4823        value_compatible = value_type.IsDoubleTypes();
4824      } else {
4825        instruction_compatible = false;  // reference field with primitive store
4826        value_compatible = false;  // unused
4827      }
4828      if (!instruction_compatible) {
4829        // This is a global failure rather than a class change failure as the instructions and
4830        // the descriptors for the type should have been consistent within the same file at
4831        // compile time
4832        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4833                                          << " to be of type '" << insn_type
4834                                          << "' but found type '" << *field_type
4835                                          << "' in put";
4836        return;
4837      }
4838      if (!value_compatible) {
4839        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4840            << " of type " << value_type
4841            << " but expected " << *field_type
4842            << " for store to " << PrettyField(field) << " in put";
4843        return;
4844      }
4845    } else {
4846      if (!insn_type.IsAssignableFrom(*field_type)) {
4847        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4848                                          << " to be compatible with type '" << insn_type
4849                                          << "' but found type '" << *field_type
4850                                          << "' in put-object";
4851        return;
4852      }
4853      work_line_->VerifyRegisterType(this, vregA, *field_type);
4854    }
4855  } else if (kAccType == FieldAccessType::kAccGet) {
4856    if (is_primitive) {
4857      if (field_type->Equals(insn_type) ||
4858          (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
4859          (field_type->IsDouble() && insn_type.IsLongTypes())) {
4860        // expected that read is of the correct primitive type or that int reads are reading
4861        // floats or long reads are reading doubles
4862      } else {
4863        // This is a global failure rather than a class change failure as the instructions and
4864        // the descriptors for the type should have been consistent within the same file at
4865        // compile time
4866        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4867                                          << " to be of type '" << insn_type
4868                                          << "' but found type '" << *field_type << "' in Get";
4869        return;
4870      }
4871    } else {
4872      if (!insn_type.IsAssignableFrom(*field_type)) {
4873        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4874                                          << " to be compatible with type '" << insn_type
4875                                          << "' but found type '" << *field_type
4876                                          << "' in get-object";
4877        work_line_->SetRegisterType<LockOp::kClear>(this, vregA, reg_types_.Conflict());
4878        return;
4879      }
4880    }
4881    if (!field_type->IsLowHalf()) {
4882      work_line_->SetRegisterType<LockOp::kClear>(this, vregA, *field_type);
4883    } else {
4884      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4885    }
4886  } else {
4887    LOG(FATAL) << "Unexpected case.";
4888  }
4889}
4890
4891bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4892  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4893    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4894    return false;
4895  }
4896  return true;
4897}
4898
4899bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4900  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4901      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4902    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4903    return false;
4904  }
4905  return true;
4906}
4907
4908bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4909  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4910}
4911
4912bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4913                                     bool update_merge_line) {
4914  bool changed = true;
4915  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4916  if (!GetInstructionFlags(next_insn).IsVisitedOrChanged()) {
4917    /*
4918     * We haven't processed this instruction before, and we haven't touched the registers here, so
4919     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4920     * only way a register can transition out of "unknown", so this is not just an optimization.)
4921     */
4922    target_line->CopyFromLine(merge_line);
4923    if (GetInstructionFlags(next_insn).IsReturn()) {
4924      // Verify that the monitor stack is empty on return.
4925      merge_line->VerifyMonitorStackEmpty(this);
4926
4927      // For returns we only care about the operand to the return, all other registers are dead.
4928      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4929      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4930      AdjustReturnLine(this, ret_inst, target_line);
4931    }
4932  } else {
4933    RegisterLineArenaUniquePtr copy;
4934    if (kDebugVerify) {
4935      copy.reset(RegisterLine::Create(target_line->NumRegs(), this));
4936      copy->CopyFromLine(target_line);
4937    }
4938    changed = target_line->MergeRegisters(this, merge_line);
4939    if (have_pending_hard_failure_) {
4940      return false;
4941    }
4942    if (kDebugVerify && changed) {
4943      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4944                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4945                      << copy->Dump(this) << "  MERGE\n"
4946                      << merge_line->Dump(this) << "  ==\n"
4947                      << target_line->Dump(this) << "\n";
4948    }
4949    if (update_merge_line && changed) {
4950      merge_line->CopyFromLine(target_line);
4951    }
4952  }
4953  if (changed) {
4954    GetInstructionFlags(next_insn).SetChanged();
4955  }
4956  return true;
4957}
4958
4959InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4960  return &GetInstructionFlags(work_insn_idx_);
4961}
4962
4963const RegType& MethodVerifier::GetMethodReturnType() {
4964  if (return_type_ == nullptr) {
4965    if (mirror_method_ != nullptr) {
4966      size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
4967      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_,
4968                                                                       pointer_size);
4969      if (return_type_class != nullptr) {
4970        return_type_ = &FromClass(mirror_method_->GetReturnTypeDescriptor(),
4971                                  return_type_class,
4972                                  return_type_class->CannotBeAssignedFromOtherTypes());
4973      } else {
4974        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4975        self_->ClearException();
4976      }
4977    }
4978    if (return_type_ == nullptr) {
4979      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4980      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4981      uint16_t return_type_idx = proto_id.return_type_idx_;
4982      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4983      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4984    }
4985  }
4986  return *return_type_;
4987}
4988
4989const RegType& MethodVerifier::GetDeclaringClass() {
4990  if (declaring_class_ == nullptr) {
4991    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4992    const char* descriptor
4993        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4994    if (mirror_method_ != nullptr) {
4995      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4996      declaring_class_ = &FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
4997    } else {
4998      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4999    }
5000  }
5001  return *declaring_class_;
5002}
5003
5004std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
5005  RegisterLine* line = reg_table_.GetLine(dex_pc);
5006  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
5007  std::vector<int32_t> result;
5008  for (size_t i = 0; i < line->NumRegs(); ++i) {
5009    const RegType& type = line->GetRegisterType(this, i);
5010    if (type.IsConstant()) {
5011      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
5012      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
5013      result.push_back(const_val->ConstantValue());
5014    } else if (type.IsConstantLo()) {
5015      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
5016      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
5017      result.push_back(const_val->ConstantValueLo());
5018    } else if (type.IsConstantHi()) {
5019      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
5020      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
5021      result.push_back(const_val->ConstantValueHi());
5022    } else if (type.IsIntegralTypes()) {
5023      result.push_back(kIntVReg);
5024      result.push_back(0);
5025    } else if (type.IsFloat()) {
5026      result.push_back(kFloatVReg);
5027      result.push_back(0);
5028    } else if (type.IsLong()) {
5029      result.push_back(kLongLoVReg);
5030      result.push_back(0);
5031      result.push_back(kLongHiVReg);
5032      result.push_back(0);
5033      ++i;
5034    } else if (type.IsDouble()) {
5035      result.push_back(kDoubleLoVReg);
5036      result.push_back(0);
5037      result.push_back(kDoubleHiVReg);
5038      result.push_back(0);
5039      ++i;
5040    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
5041      result.push_back(kUndefined);
5042      result.push_back(0);
5043    } else {
5044      CHECK(type.IsNonZeroReferenceTypes());
5045      result.push_back(kReferenceVReg);
5046      result.push_back(0);
5047    }
5048  }
5049  return result;
5050}
5051
5052const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
5053  if (precise) {
5054    // Precise constant type.
5055    return reg_types_.FromCat1Const(value, true);
5056  } else {
5057    // Imprecise constant type.
5058    if (value < -32768) {
5059      return reg_types_.IntConstant();
5060    } else if (value < -128) {
5061      return reg_types_.ShortConstant();
5062    } else if (value < 0) {
5063      return reg_types_.ByteConstant();
5064    } else if (value == 0) {
5065      return reg_types_.Zero();
5066    } else if (value == 1) {
5067      return reg_types_.One();
5068    } else if (value < 128) {
5069      return reg_types_.PosByteConstant();
5070    } else if (value < 32768) {
5071      return reg_types_.PosShortConstant();
5072    } else if (value < 65536) {
5073      return reg_types_.CharConstant();
5074    } else {
5075      return reg_types_.IntConstant();
5076    }
5077  }
5078}
5079
5080void MethodVerifier::Init() {
5081  art::verifier::RegTypeCache::Init();
5082}
5083
5084void MethodVerifier::Shutdown() {
5085  verifier::RegTypeCache::ShutDown();
5086}
5087
5088void MethodVerifier::VisitStaticRoots(RootVisitor* visitor) {
5089  RegTypeCache::VisitStaticRoots(visitor);
5090}
5091
5092void MethodVerifier::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
5093  reg_types_.VisitRoots(visitor, root_info);
5094}
5095
5096const RegType& MethodVerifier::FromClass(const char* descriptor,
5097                                         mirror::Class* klass,
5098                                         bool precise) {
5099  DCHECK(klass != nullptr);
5100  if (precise && !klass->IsInstantiable() && !klass->IsPrimitive()) {
5101    Fail(VerifyError::VERIFY_ERROR_NO_CLASS) << "Could not create precise reference for "
5102        << "non-instantiable klass " << descriptor;
5103    precise = false;
5104  }
5105  return reg_types_.FromClass(descriptor, klass, precise);
5106}
5107
5108}  // namespace verifier
5109}  // namespace art
5110