method_verifier.cc revision 2535abe7d1fcdd0e6aca782b1f1932a703ed50a4
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_utils.h"
28#include "dex_instruction_visitor.h"
29#include "gc/accounting/card_table-inl.h"
30#include "indenter.h"
31#include "intern_table.h"
32#include "leb128.h"
33#include "mirror/art_field-inl.h"
34#include "mirror/art_method-inl.h"
35#include "mirror/class.h"
36#include "mirror/class-inl.h"
37#include "mirror/dex_cache-inl.h"
38#include "mirror/object-inl.h"
39#include "mirror/object_array-inl.h"
40#include "reg_type-inl.h"
41#include "register_line-inl.h"
42#include "runtime.h"
43#include "scoped_thread_state_change.h"
44#include "handle_scope-inl.h"
45#include "verifier/dex_gc_map.h"
46
47namespace art {
48namespace verifier {
49
50static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
51static constexpr bool gDebugVerify = false;
52// TODO: Add a constant to method_verifier to turn on verbose logging?
53
54void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
55                                 uint32_t insns_size, uint16_t registers_size,
56                                 MethodVerifier* verifier) {
57  DCHECK_GT(insns_size, 0U);
58  register_lines_.reset(new RegisterLine*[insns_size]());
59  size_ = insns_size;
60  for (uint32_t i = 0; i < insns_size; i++) {
61    bool interesting = false;
62    switch (mode) {
63      case kTrackRegsAll:
64        interesting = flags[i].IsOpcode();
65        break;
66      case kTrackCompilerInterestPoints:
67        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
68        break;
69      case kTrackRegsBranches:
70        interesting = flags[i].IsBranchTarget();
71        break;
72      default:
73        break;
74    }
75    if (interesting) {
76      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
77    }
78  }
79}
80
81PcToRegisterLineTable::~PcToRegisterLineTable() {
82  for (size_t i = 0; i < size_; i++) {
83    delete register_lines_[i];
84    if (kIsDebugBuild) {
85      register_lines_[i] = nullptr;
86    }
87  }
88}
89
90// Note: returns true on failure.
91ALWAYS_INLINE static inline bool FailOrAbort(MethodVerifier* verifier, bool condition,
92                                             const char* error_msg, uint32_t work_insn_idx) {
93  if (kIsDebugBuild) {
94    // In a debug build, abort if the error condition is wrong.
95    DCHECK(condition) << error_msg << work_insn_idx;
96  } else {
97    // In a non-debug build, just fail the class.
98    if (!condition) {
99      verifier->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << error_msg << work_insn_idx;
100      return true;
101    }
102  }
103
104  return false;
105}
106
107static void SafelyMarkAllRegistersAsConflicts(MethodVerifier* verifier, RegisterLine* reg_line) {
108  if (verifier->IsConstructor()) {
109    // Before we mark all regs as conflicts, check that we don't have an uninitialized this.
110    reg_line->CheckConstructorReturn(verifier);
111  }
112  reg_line->MarkAllRegistersAsConflicts(verifier);
113}
114
115MethodVerifier::FailureKind MethodVerifier::VerifyMethod(
116    mirror::ArtMethod* method, bool allow_soft_failures, std::string* error ATTRIBUTE_UNUSED) {
117  Thread* self = Thread::Current();
118  StackHandleScope<3> hs(self);
119  mirror::Class* klass = method->GetDeclaringClass();
120  auto h_dex_cache(hs.NewHandle(klass->GetDexCache()));
121  auto h_class_loader(hs.NewHandle(klass->GetClassLoader()));
122  auto h_method = hs.NewHandle(method);
123  return VerifyMethod(self, method->GetDexMethodIndex(), method->GetDexFile(), h_dex_cache,
124                      h_class_loader, klass->GetClassDef(), method->GetCodeItem(), h_method,
125                      method->GetAccessFlags(), allow_soft_failures, false);
126}
127
128
129MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
130                                                        mirror::Class* klass,
131                                                        bool allow_soft_failures,
132                                                        std::string* error) {
133  if (klass->IsVerified()) {
134    return kNoFailure;
135  }
136  bool early_failure = false;
137  std::string failure_message;
138  const DexFile& dex_file = klass->GetDexFile();
139  const DexFile::ClassDef* class_def = klass->GetClassDef();
140  mirror::Class* super = klass->GetSuperClass();
141  std::string temp;
142  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
143    early_failure = true;
144    failure_message = " that has no super class";
145  } else if (super != nullptr && super->IsFinal()) {
146    early_failure = true;
147    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
148  } else if (class_def == nullptr) {
149    early_failure = true;
150    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
151  }
152  if (early_failure) {
153    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
154    if (Runtime::Current()->IsAotCompiler()) {
155      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
156      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
157    }
158    return kHardFailure;
159  }
160  StackHandleScope<2> hs(self);
161  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
162  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
163  return VerifyClass(self, &dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
164}
165
166MethodVerifier::FailureKind MethodVerifier::VerifyClass(Thread* self,
167                                                        const DexFile* dex_file,
168                                                        Handle<mirror::DexCache> dex_cache,
169                                                        Handle<mirror::ClassLoader> class_loader,
170                                                        const DexFile::ClassDef* class_def,
171                                                        bool allow_soft_failures,
172                                                        std::string* error) {
173  DCHECK(class_def != nullptr);
174  const uint8_t* class_data = dex_file->GetClassData(*class_def);
175  if (class_data == nullptr) {
176    // empty class, probably a marker interface
177    return kNoFailure;
178  }
179  ClassDataItemIterator it(*dex_file, class_data);
180  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
181    it.Next();
182  }
183  size_t error_count = 0;
184  bool hard_fail = false;
185  ClassLinker* linker = Runtime::Current()->GetClassLinker();
186  int64_t previous_direct_method_idx = -1;
187  while (it.HasNextDirectMethod()) {
188    self->AllowThreadSuspension();
189    uint32_t method_idx = it.GetMemberIndex();
190    if (method_idx == previous_direct_method_idx) {
191      // smali can create dex files with two encoded_methods sharing the same method_idx
192      // http://code.google.com/p/smali/issues/detail?id=119
193      it.Next();
194      continue;
195    }
196    previous_direct_method_idx = method_idx;
197    InvokeType type = it.GetMethodInvokeType(*class_def);
198    mirror::ArtMethod* method =
199        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
200                              NullHandle<mirror::ArtMethod>(), type);
201    if (method == nullptr) {
202      DCHECK(self->IsExceptionPending());
203      // We couldn't resolve the method, but continue regardless.
204      self->ClearException();
205    }
206    StackHandleScope<1> hs(self);
207    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
208    MethodVerifier::FailureKind result = VerifyMethod(self,
209                                                      method_idx,
210                                                      dex_file,
211                                                      dex_cache,
212                                                      class_loader,
213                                                      class_def,
214                                                      it.GetMethodCodeItem(),
215                                                      h_method,
216                                                      it.GetMethodAccessFlags(),
217                                                      allow_soft_failures,
218                                                      false);
219    if (result != kNoFailure) {
220      if (result == kHardFailure) {
221        hard_fail = true;
222        if (error_count > 0) {
223          *error += "\n";
224        }
225        *error = "Verifier rejected class ";
226        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
227        *error += " due to bad method ";
228        *error += PrettyMethod(method_idx, *dex_file);
229      }
230      ++error_count;
231    }
232    it.Next();
233  }
234  int64_t previous_virtual_method_idx = -1;
235  while (it.HasNextVirtualMethod()) {
236    self->AllowThreadSuspension();
237    uint32_t method_idx = it.GetMemberIndex();
238    if (method_idx == previous_virtual_method_idx) {
239      // smali can create dex files with two encoded_methods sharing the same method_idx
240      // http://code.google.com/p/smali/issues/detail?id=119
241      it.Next();
242      continue;
243    }
244    previous_virtual_method_idx = method_idx;
245    InvokeType type = it.GetMethodInvokeType(*class_def);
246    mirror::ArtMethod* method =
247        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
248                              NullHandle<mirror::ArtMethod>(), type);
249    if (method == nullptr) {
250      DCHECK(self->IsExceptionPending());
251      // We couldn't resolve the method, but continue regardless.
252      self->ClearException();
253    }
254    StackHandleScope<1> hs(self);
255    Handle<mirror::ArtMethod> h_method(hs.NewHandle(method));
256    MethodVerifier::FailureKind result = VerifyMethod(self,
257                                                      method_idx,
258                                                      dex_file,
259                                                      dex_cache,
260                                                      class_loader,
261                                                      class_def,
262                                                      it.GetMethodCodeItem(),
263                                                      h_method,
264                                                      it.GetMethodAccessFlags(),
265                                                      allow_soft_failures,
266                                                      false);
267    if (result != kNoFailure) {
268      if (result == kHardFailure) {
269        hard_fail = true;
270        if (error_count > 0) {
271          *error += "\n";
272        }
273        *error = "Verifier rejected class ";
274        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
275        *error += " due to bad method ";
276        *error += PrettyMethod(method_idx, *dex_file);
277      }
278      ++error_count;
279    }
280    it.Next();
281  }
282  if (error_count == 0) {
283    return kNoFailure;
284  } else {
285    return hard_fail ? kHardFailure : kSoftFailure;
286  }
287}
288
289MethodVerifier::FailureKind MethodVerifier::VerifyMethod(Thread* self, uint32_t method_idx,
290                                                         const DexFile* dex_file,
291                                                         Handle<mirror::DexCache> dex_cache,
292                                                         Handle<mirror::ClassLoader> class_loader,
293                                                         const DexFile::ClassDef* class_def,
294                                                         const DexFile::CodeItem* code_item,
295                                                         Handle<mirror::ArtMethod> method,
296                                                         uint32_t method_access_flags,
297                                                         bool allow_soft_failures,
298                                                         bool need_precise_constants) {
299  MethodVerifier::FailureKind result = kNoFailure;
300  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
301
302  MethodVerifier verifier(self, dex_file, dex_cache, class_loader, class_def, code_item,
303                          method_idx, method, method_access_flags, true, allow_soft_failures,
304                          need_precise_constants, true);
305  if (verifier.Verify()) {
306    // Verification completed, however failures may be pending that didn't cause the verification
307    // to hard fail.
308    CHECK(!verifier.have_pending_hard_failure_);
309    if (verifier.failures_.size() != 0) {
310      if (VLOG_IS_ON(verifier)) {
311          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
312                                << PrettyMethod(method_idx, *dex_file) << "\n");
313      }
314      result = kSoftFailure;
315    }
316  } else {
317    // Bad method data.
318    CHECK_NE(verifier.failures_.size(), 0U);
319    CHECK(verifier.have_pending_hard_failure_);
320    verifier.DumpFailures(LOG(INFO) << "Verification error in "
321                                    << PrettyMethod(method_idx, *dex_file) << "\n");
322    if (gDebugVerify) {
323      std::cout << "\n" << verifier.info_messages_.str();
324      verifier.Dump(std::cout);
325    }
326    result = kHardFailure;
327  }
328  if (kTimeVerifyMethod) {
329    uint64_t duration_ns = NanoTime() - start_ns;
330    if (duration_ns > MsToNs(100)) {
331      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
332                   << " took " << PrettyDuration(duration_ns);
333    }
334  }
335  return result;
336}
337
338MethodVerifier* MethodVerifier::VerifyMethodAndDump(Thread* self, std::ostream& os, uint32_t dex_method_idx,
339                                         const DexFile* dex_file,
340                                         Handle<mirror::DexCache> dex_cache,
341                                         Handle<mirror::ClassLoader> class_loader,
342                                         const DexFile::ClassDef* class_def,
343                                         const DexFile::CodeItem* code_item,
344                                         Handle<mirror::ArtMethod> method,
345                                         uint32_t method_access_flags) {
346  MethodVerifier* verifier = new MethodVerifier(self, dex_file, dex_cache, class_loader,
347                                                class_def, code_item, dex_method_idx, method,
348                                                method_access_flags, true, true, true, true);
349  verifier->Verify();
350  verifier->DumpFailures(os);
351  os << verifier->info_messages_.str();
352  // Only dump and return if no hard failures. Otherwise the verifier may be not fully initialized
353  // and querying any info is dangerous/can abort.
354  if (verifier->have_pending_hard_failure_) {
355    delete verifier;
356    return nullptr;
357  } else {
358    verifier->Dump(os);
359    return verifier;
360  }
361}
362
363MethodVerifier::MethodVerifier(Thread* self,
364                               const DexFile* dex_file, Handle<mirror::DexCache> dex_cache,
365                               Handle<mirror::ClassLoader> class_loader,
366                               const DexFile::ClassDef* class_def,
367                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
368                               Handle<mirror::ArtMethod> method, uint32_t method_access_flags,
369                               bool can_load_classes, bool allow_soft_failures,
370                               bool need_precise_constants, bool verify_to_dump,
371                               bool allow_thread_suspension)
372    : self_(self),
373      reg_types_(can_load_classes),
374      work_insn_idx_(-1),
375      dex_method_idx_(dex_method_idx),
376      mirror_method_(method),
377      method_access_flags_(method_access_flags),
378      return_type_(nullptr),
379      dex_file_(dex_file),
380      dex_cache_(dex_cache),
381      class_loader_(class_loader),
382      class_def_(class_def),
383      code_item_(code_item),
384      declaring_class_(nullptr),
385      interesting_dex_pc_(-1),
386      monitor_enter_dex_pcs_(nullptr),
387      have_pending_hard_failure_(false),
388      have_pending_runtime_throw_failure_(false),
389      new_instance_count_(0),
390      monitor_enter_count_(0),
391      can_load_classes_(can_load_classes),
392      allow_soft_failures_(allow_soft_failures),
393      need_precise_constants_(need_precise_constants),
394      has_check_casts_(false),
395      has_virtual_or_interface_invokes_(false),
396      verify_to_dump_(verify_to_dump),
397      allow_thread_suspension_(allow_thread_suspension) {
398  Runtime::Current()->AddMethodVerifier(this);
399  DCHECK(class_def != nullptr);
400}
401
402MethodVerifier::~MethodVerifier() {
403  Runtime::Current()->RemoveMethodVerifier(this);
404  STLDeleteElements(&failure_messages_);
405}
406
407void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
408                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
409  Thread* self = Thread::Current();
410  StackHandleScope<3> hs(self);
411  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
412  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
413  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
414  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
415                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
416                          false, true, false, false);
417  verifier.interesting_dex_pc_ = dex_pc;
418  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
419  verifier.FindLocksAtDexPc();
420}
421
422static bool HasMonitorEnterInstructions(const DexFile::CodeItem* const code_item) {
423  const Instruction* inst = Instruction::At(code_item->insns_);
424
425  uint32_t insns_size = code_item->insns_size_in_code_units_;
426  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
427    if (inst->Opcode() == Instruction::MONITOR_ENTER) {
428      return true;
429    }
430
431    dex_pc += inst->SizeInCodeUnits();
432    inst = inst->Next();
433  }
434
435  return false;
436}
437
438void MethodVerifier::FindLocksAtDexPc() {
439  CHECK(monitor_enter_dex_pcs_ != nullptr);
440  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
441
442  // Quick check whether there are any monitor_enter instructions at all.
443  if (!HasMonitorEnterInstructions(code_item_)) {
444    return;
445  }
446
447  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
448  // verification. In practice, the phase we want relies on data structures set up by all the
449  // earlier passes, so we just run the full method verification and bail out early when we've
450  // got what we wanted.
451  Verify();
452}
453
454mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
455                                                           uint32_t dex_pc) {
456  Thread* self = Thread::Current();
457  StackHandleScope<3> hs(self);
458  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
459  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
460  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
461  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
462                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
463                          true, true, false, true);
464  return verifier.FindAccessedFieldAtDexPc(dex_pc);
465}
466
467mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
468  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
469
470  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
471  // verification. In practice, the phase we want relies on data structures set up by all the
472  // earlier passes, so we just run the full method verification and bail out early when we've
473  // got what we wanted.
474  bool success = Verify();
475  if (!success) {
476    return nullptr;
477  }
478  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
479  if (register_line == nullptr) {
480    return nullptr;
481  }
482  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
483  return GetQuickFieldAccess(inst, register_line);
484}
485
486mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
487                                                            uint32_t dex_pc) {
488  Thread* self = Thread::Current();
489  StackHandleScope<3> hs(self);
490  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
491  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
492  Handle<mirror::ArtMethod> method(hs.NewHandle(m));
493  MethodVerifier verifier(self, m->GetDexFile(), dex_cache, class_loader, &m->GetClassDef(),
494                          m->GetCodeItem(), m->GetDexMethodIndex(), method, m->GetAccessFlags(),
495                          true, true, false, true);
496  return verifier.FindInvokedMethodAtDexPc(dex_pc);
497}
498
499mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
500  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
501
502  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
503  // verification. In practice, the phase we want relies on data structures set up by all the
504  // earlier passes, so we just run the full method verification and bail out early when we've
505  // got what we wanted.
506  bool success = Verify();
507  if (!success) {
508    return nullptr;
509  }
510  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
511  if (register_line == nullptr) {
512    return nullptr;
513  }
514  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
515  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
516  return GetQuickInvokedMethod(inst, register_line, is_range);
517}
518
519bool MethodVerifier::Verify() {
520  // If there aren't any instructions, make sure that's expected, then exit successfully.
521  if (code_item_ == nullptr) {
522    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
523      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
524      return false;
525    } else {
526      return true;
527    }
528  }
529  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
530  if (code_item_->ins_size_ > code_item_->registers_size_) {
531    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
532                                      << " regs=" << code_item_->registers_size_;
533    return false;
534  }
535  // Allocate and initialize an array to hold instruction data.
536  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
537  // Run through the instructions and see if the width checks out.
538  bool result = ComputeWidthsAndCountOps();
539  // Flag instructions guarded by a "try" block and check exception handlers.
540  result = result && ScanTryCatchBlocks();
541  // Perform static instruction verification.
542  result = result && VerifyInstructions();
543  // Perform code-flow analysis and return.
544  result = result && VerifyCodeFlow();
545  // Compute information for compiler.
546  if (result && Runtime::Current()->IsCompiler()) {
547    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
548  }
549  return result;
550}
551
552std::ostream& MethodVerifier::Fail(VerifyError error) {
553  switch (error) {
554    case VERIFY_ERROR_NO_CLASS:
555    case VERIFY_ERROR_NO_FIELD:
556    case VERIFY_ERROR_NO_METHOD:
557    case VERIFY_ERROR_ACCESS_CLASS:
558    case VERIFY_ERROR_ACCESS_FIELD:
559    case VERIFY_ERROR_ACCESS_METHOD:
560    case VERIFY_ERROR_INSTANTIATION:
561    case VERIFY_ERROR_CLASS_CHANGE:
562      if (Runtime::Current()->IsAotCompiler() || !can_load_classes_) {
563        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
564        // class change and instantiation errors into soft verification errors so that we re-verify
565        // at runtime. We may fail to find or to agree on access because of not yet available class
566        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
567        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
568        // paths" that dynamically perform the verification and cause the behavior to be that akin
569        // to an interpreter.
570        error = VERIFY_ERROR_BAD_CLASS_SOFT;
571      } else {
572        // If we fail again at runtime, mark that this instruction would throw and force this
573        // method to be executed using the interpreter with checks.
574        have_pending_runtime_throw_failure_ = true;
575      }
576      break;
577      // Indication that verification should be retried at runtime.
578    case VERIFY_ERROR_BAD_CLASS_SOFT:
579      if (!allow_soft_failures_) {
580        have_pending_hard_failure_ = true;
581      }
582      break;
583      // Hard verification failures at compile time will still fail at runtime, so the class is
584      // marked as rejected to prevent it from being compiled.
585    case VERIFY_ERROR_BAD_CLASS_HARD: {
586      if (Runtime::Current()->IsAotCompiler()) {
587        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
588        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
589      }
590      have_pending_hard_failure_ = true;
591      break;
592    }
593  }
594  failures_.push_back(error);
595  std::string location(StringPrintf("%s: [0x%X] ", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
596                                    work_insn_idx_));
597  std::ostringstream* failure_message = new std::ostringstream(location, std::ostringstream::ate);
598  failure_messages_.push_back(failure_message);
599  return *failure_message;
600}
601
602std::ostream& MethodVerifier::LogVerifyInfo() {
603  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
604                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
605}
606
607void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
608  size_t failure_num = failure_messages_.size();
609  DCHECK_NE(failure_num, 0U);
610  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
611  prepend += last_fail_message->str();
612  failure_messages_[failure_num - 1] = new std::ostringstream(prepend, std::ostringstream::ate);
613  delete last_fail_message;
614}
615
616void MethodVerifier::AppendToLastFailMessage(std::string append) {
617  size_t failure_num = failure_messages_.size();
618  DCHECK_NE(failure_num, 0U);
619  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
620  (*last_fail_message) << append;
621}
622
623bool MethodVerifier::ComputeWidthsAndCountOps() {
624  const uint16_t* insns = code_item_->insns_;
625  size_t insns_size = code_item_->insns_size_in_code_units_;
626  const Instruction* inst = Instruction::At(insns);
627  size_t new_instance_count = 0;
628  size_t monitor_enter_count = 0;
629  size_t dex_pc = 0;
630
631  while (dex_pc < insns_size) {
632    Instruction::Code opcode = inst->Opcode();
633    switch (opcode) {
634      case Instruction::APUT_OBJECT:
635      case Instruction::CHECK_CAST:
636        has_check_casts_ = true;
637        break;
638      case Instruction::INVOKE_VIRTUAL:
639      case Instruction::INVOKE_VIRTUAL_RANGE:
640      case Instruction::INVOKE_INTERFACE:
641      case Instruction::INVOKE_INTERFACE_RANGE:
642        has_virtual_or_interface_invokes_ = true;
643        break;
644      case Instruction::MONITOR_ENTER:
645        monitor_enter_count++;
646        break;
647      case Instruction::NEW_INSTANCE:
648        new_instance_count++;
649        break;
650      default:
651        break;
652    }
653    size_t inst_size = inst->SizeInCodeUnits();
654    insn_flags_[dex_pc].SetIsOpcode();
655    dex_pc += inst_size;
656    inst = inst->RelativeAt(inst_size);
657  }
658
659  if (dex_pc != insns_size) {
660    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
661                                      << dex_pc << " vs. " << insns_size << ")";
662    return false;
663  }
664
665  new_instance_count_ = new_instance_count;
666  monitor_enter_count_ = monitor_enter_count;
667  return true;
668}
669
670bool MethodVerifier::ScanTryCatchBlocks() {
671  uint32_t tries_size = code_item_->tries_size_;
672  if (tries_size == 0) {
673    return true;
674  }
675  uint32_t insns_size = code_item_->insns_size_in_code_units_;
676  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
677
678  for (uint32_t idx = 0; idx < tries_size; idx++) {
679    const DexFile::TryItem* try_item = &tries[idx];
680    uint32_t start = try_item->start_addr_;
681    uint32_t end = start + try_item->insn_count_;
682    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
683      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
684                                        << " endAddr=" << end << " (size=" << insns_size << ")";
685      return false;
686    }
687    if (!insn_flags_[start].IsOpcode()) {
688      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
689          << "'try' block starts inside an instruction (" << start << ")";
690      return false;
691    }
692    uint32_t dex_pc = start;
693    const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
694    while (dex_pc < end) {
695      insn_flags_[dex_pc].SetInTry();
696      size_t insn_size = inst->SizeInCodeUnits();
697      dex_pc += insn_size;
698      inst = inst->RelativeAt(insn_size);
699    }
700  }
701  // Iterate over each of the handlers to verify target addresses.
702  const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
703  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
704  ClassLinker* linker = Runtime::Current()->GetClassLinker();
705  for (uint32_t idx = 0; idx < handlers_size; idx++) {
706    CatchHandlerIterator iterator(handlers_ptr);
707    for (; iterator.HasNext(); iterator.Next()) {
708      uint32_t dex_pc= iterator.GetHandlerAddress();
709      if (!insn_flags_[dex_pc].IsOpcode()) {
710        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
711            << "exception handler starts at bad address (" << dex_pc << ")";
712        return false;
713      }
714      if (!CheckNotMoveResult(code_item_->insns_, dex_pc)) {
715        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
716            << "exception handler begins with move-result* (" << dex_pc << ")";
717        return false;
718      }
719      insn_flags_[dex_pc].SetBranchTarget();
720      // Ensure exception types are resolved so that they don't need resolution to be delivered,
721      // unresolved exception types will be ignored by exception delivery
722      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
723        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
724                                                            iterator.GetHandlerTypeIndex(),
725                                                            dex_cache_, class_loader_);
726        if (exception_type == nullptr) {
727          DCHECK(self_->IsExceptionPending());
728          self_->ClearException();
729        }
730      }
731    }
732    handlers_ptr = iterator.EndDataPointer();
733  }
734  return true;
735}
736
737bool MethodVerifier::VerifyInstructions() {
738  const Instruction* inst = Instruction::At(code_item_->insns_);
739
740  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
741  insn_flags_[0].SetBranchTarget();
742  insn_flags_[0].SetCompileTimeInfoPoint();
743
744  uint32_t insns_size = code_item_->insns_size_in_code_units_;
745  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
746    if (!VerifyInstruction(inst, dex_pc)) {
747      DCHECK_NE(failures_.size(), 0U);
748      return false;
749    }
750    /* Flag instructions that are garbage collection points */
751    // All invoke points are marked as "Throw" points already.
752    // We are relying on this to also count all the invokes as interesting.
753    if (inst->IsBranch()) {
754      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
755      // The compiler also needs safepoints for fall-through to loop heads.
756      // Such a loop head must be a target of a branch.
757      int32_t offset = 0;
758      bool cond, self_ok;
759      bool target_ok = GetBranchOffset(dex_pc, &offset, &cond, &self_ok);
760      DCHECK(target_ok);
761      insn_flags_[dex_pc + offset].SetCompileTimeInfoPoint();
762    } else if (inst->IsSwitch() || inst->IsThrow()) {
763      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
764    } else if (inst->IsReturn()) {
765      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
766    }
767    dex_pc += inst->SizeInCodeUnits();
768    inst = inst->Next();
769  }
770  return true;
771}
772
773bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
774  bool result = true;
775  switch (inst->GetVerifyTypeArgumentA()) {
776    case Instruction::kVerifyRegA:
777      result = result && CheckRegisterIndex(inst->VRegA());
778      break;
779    case Instruction::kVerifyRegAWide:
780      result = result && CheckWideRegisterIndex(inst->VRegA());
781      break;
782  }
783  switch (inst->GetVerifyTypeArgumentB()) {
784    case Instruction::kVerifyRegB:
785      result = result && CheckRegisterIndex(inst->VRegB());
786      break;
787    case Instruction::kVerifyRegBField:
788      result = result && CheckFieldIndex(inst->VRegB());
789      break;
790    case Instruction::kVerifyRegBMethod:
791      result = result && CheckMethodIndex(inst->VRegB());
792      break;
793    case Instruction::kVerifyRegBNewInstance:
794      result = result && CheckNewInstance(inst->VRegB());
795      break;
796    case Instruction::kVerifyRegBString:
797      result = result && CheckStringIndex(inst->VRegB());
798      break;
799    case Instruction::kVerifyRegBType:
800      result = result && CheckTypeIndex(inst->VRegB());
801      break;
802    case Instruction::kVerifyRegBWide:
803      result = result && CheckWideRegisterIndex(inst->VRegB());
804      break;
805  }
806  switch (inst->GetVerifyTypeArgumentC()) {
807    case Instruction::kVerifyRegC:
808      result = result && CheckRegisterIndex(inst->VRegC());
809      break;
810    case Instruction::kVerifyRegCField:
811      result = result && CheckFieldIndex(inst->VRegC());
812      break;
813    case Instruction::kVerifyRegCNewArray:
814      result = result && CheckNewArray(inst->VRegC());
815      break;
816    case Instruction::kVerifyRegCType:
817      result = result && CheckTypeIndex(inst->VRegC());
818      break;
819    case Instruction::kVerifyRegCWide:
820      result = result && CheckWideRegisterIndex(inst->VRegC());
821      break;
822  }
823  switch (inst->GetVerifyExtraFlags()) {
824    case Instruction::kVerifyArrayData:
825      result = result && CheckArrayData(code_offset);
826      break;
827    case Instruction::kVerifyBranchTarget:
828      result = result && CheckBranchTarget(code_offset);
829      break;
830    case Instruction::kVerifySwitchTargets:
831      result = result && CheckSwitchTargets(code_offset);
832      break;
833    case Instruction::kVerifyVarArgNonZero:
834      // Fall-through.
835    case Instruction::kVerifyVarArg: {
836      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
837        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
838                                             "non-range invoke";
839        return false;
840      }
841      uint32_t args[Instruction::kMaxVarArgRegs];
842      inst->GetVarArgs(args);
843      result = result && CheckVarArgRegs(inst->VRegA(), args);
844      break;
845    }
846    case Instruction::kVerifyVarArgRangeNonZero:
847      // Fall-through.
848    case Instruction::kVerifyVarArgRange:
849      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
850          inst->VRegA() <= 0) {
851        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
852                                             "range invoke";
853        return false;
854      }
855      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
856      break;
857    case Instruction::kVerifyError:
858      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
859      result = false;
860      break;
861  }
862  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsAotCompiler() && !verify_to_dump_) {
863    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
864    result = false;
865  }
866  return result;
867}
868
869inline bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
870  if (idx >= code_item_->registers_size_) {
871    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
872                                      << code_item_->registers_size_ << ")";
873    return false;
874  }
875  return true;
876}
877
878inline bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
879  if (idx + 1 >= code_item_->registers_size_) {
880    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
881                                      << "+1 >= " << code_item_->registers_size_ << ")";
882    return false;
883  }
884  return true;
885}
886
887inline bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
888  if (idx >= dex_file_->GetHeader().field_ids_size_) {
889    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
890                                      << dex_file_->GetHeader().field_ids_size_ << ")";
891    return false;
892  }
893  return true;
894}
895
896inline bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
897  if (idx >= dex_file_->GetHeader().method_ids_size_) {
898    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
899                                      << dex_file_->GetHeader().method_ids_size_ << ")";
900    return false;
901  }
902  return true;
903}
904
905inline bool MethodVerifier::CheckNewInstance(uint32_t idx) {
906  if (idx >= dex_file_->GetHeader().type_ids_size_) {
907    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
908                                      << dex_file_->GetHeader().type_ids_size_ << ")";
909    return false;
910  }
911  // We don't need the actual class, just a pointer to the class name.
912  const char* descriptor = dex_file_->StringByTypeIdx(idx);
913  if (descriptor[0] != 'L') {
914    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
915    return false;
916  }
917  return true;
918}
919
920inline bool MethodVerifier::CheckStringIndex(uint32_t idx) {
921  if (idx >= dex_file_->GetHeader().string_ids_size_) {
922    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
923                                      << dex_file_->GetHeader().string_ids_size_ << ")";
924    return false;
925  }
926  return true;
927}
928
929inline bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
930  if (idx >= dex_file_->GetHeader().type_ids_size_) {
931    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
932                                      << dex_file_->GetHeader().type_ids_size_ << ")";
933    return false;
934  }
935  return true;
936}
937
938bool MethodVerifier::CheckNewArray(uint32_t idx) {
939  if (idx >= dex_file_->GetHeader().type_ids_size_) {
940    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
941                                      << dex_file_->GetHeader().type_ids_size_ << ")";
942    return false;
943  }
944  int bracket_count = 0;
945  const char* descriptor = dex_file_->StringByTypeIdx(idx);
946  const char* cp = descriptor;
947  while (*cp++ == '[') {
948    bracket_count++;
949  }
950  if (bracket_count == 0) {
951    /* The given class must be an array type. */
952    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
953        << "can't new-array class '" << descriptor << "' (not an array)";
954    return false;
955  } else if (bracket_count > 255) {
956    /* It is illegal to create an array of more than 255 dimensions. */
957    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
958        << "can't new-array class '" << descriptor << "' (exceeds limit)";
959    return false;
960  }
961  return true;
962}
963
964bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
965  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
966  const uint16_t* insns = code_item_->insns_ + cur_offset;
967  const uint16_t* array_data;
968  int32_t array_data_offset;
969
970  DCHECK_LT(cur_offset, insn_count);
971  /* make sure the start of the array data table is in range */
972  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
973  if ((int32_t) cur_offset + array_data_offset < 0 ||
974      cur_offset + array_data_offset + 2 >= insn_count) {
975    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
976                                      << ", data offset " << array_data_offset
977                                      << ", count " << insn_count;
978    return false;
979  }
980  /* offset to array data table is a relative branch-style offset */
981  array_data = insns + array_data_offset;
982  /* make sure the table is 32-bit aligned */
983  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
984    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
985                                      << ", data offset " << array_data_offset;
986    return false;
987  }
988  uint32_t value_width = array_data[1];
989  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
990  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
991  /* make sure the end of the switch is in range */
992  if (cur_offset + array_data_offset + table_size > insn_count) {
993    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
994                                      << ", data offset " << array_data_offset << ", end "
995                                      << cur_offset + array_data_offset + table_size
996                                      << ", count " << insn_count;
997    return false;
998  }
999  return true;
1000}
1001
1002bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
1003  int32_t offset;
1004  bool isConditional, selfOkay;
1005  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
1006    return false;
1007  }
1008  if (!selfOkay && offset == 0) {
1009    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
1010                                      << reinterpret_cast<void*>(cur_offset);
1011    return false;
1012  }
1013  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
1014  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
1015  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
1016    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
1017                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
1018    return false;
1019  }
1020  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1021  int32_t abs_offset = cur_offset + offset;
1022  if (abs_offset < 0 ||
1023      (uint32_t) abs_offset >= insn_count ||
1024      !insn_flags_[abs_offset].IsOpcode()) {
1025    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
1026                                      << reinterpret_cast<void*>(abs_offset) << ") at "
1027                                      << reinterpret_cast<void*>(cur_offset);
1028    return false;
1029  }
1030  insn_flags_[abs_offset].SetBranchTarget();
1031  return true;
1032}
1033
1034bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
1035                                  bool* selfOkay) {
1036  const uint16_t* insns = code_item_->insns_ + cur_offset;
1037  *pConditional = false;
1038  *selfOkay = false;
1039  switch (*insns & 0xff) {
1040    case Instruction::GOTO:
1041      *pOffset = ((int16_t) *insns) >> 8;
1042      break;
1043    case Instruction::GOTO_32:
1044      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
1045      *selfOkay = true;
1046      break;
1047    case Instruction::GOTO_16:
1048      *pOffset = (int16_t) insns[1];
1049      break;
1050    case Instruction::IF_EQ:
1051    case Instruction::IF_NE:
1052    case Instruction::IF_LT:
1053    case Instruction::IF_GE:
1054    case Instruction::IF_GT:
1055    case Instruction::IF_LE:
1056    case Instruction::IF_EQZ:
1057    case Instruction::IF_NEZ:
1058    case Instruction::IF_LTZ:
1059    case Instruction::IF_GEZ:
1060    case Instruction::IF_GTZ:
1061    case Instruction::IF_LEZ:
1062      *pOffset = (int16_t) insns[1];
1063      *pConditional = true;
1064      break;
1065    default:
1066      return false;
1067      break;
1068  }
1069  return true;
1070}
1071
1072bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
1073  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
1074  DCHECK_LT(cur_offset, insn_count);
1075  const uint16_t* insns = code_item_->insns_ + cur_offset;
1076  /* make sure the start of the switch is in range */
1077  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
1078  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
1079    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
1080                                      << ", switch offset " << switch_offset
1081                                      << ", count " << insn_count;
1082    return false;
1083  }
1084  /* offset to switch table is a relative branch-style offset */
1085  const uint16_t* switch_insns = insns + switch_offset;
1086  /* make sure the table is 32-bit aligned */
1087  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
1088    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
1089                                      << ", switch offset " << switch_offset;
1090    return false;
1091  }
1092  uint32_t switch_count = switch_insns[1];
1093  int32_t keys_offset, targets_offset;
1094  uint16_t expected_signature;
1095  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
1096    /* 0=sig, 1=count, 2/3=firstKey */
1097    targets_offset = 4;
1098    keys_offset = -1;
1099    expected_signature = Instruction::kPackedSwitchSignature;
1100  } else {
1101    /* 0=sig, 1=count, 2..count*2 = keys */
1102    keys_offset = 2;
1103    targets_offset = 2 + 2 * switch_count;
1104    expected_signature = Instruction::kSparseSwitchSignature;
1105  }
1106  uint32_t table_size = targets_offset + switch_count * 2;
1107  if (switch_insns[0] != expected_signature) {
1108    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1109        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1110                        switch_insns[0], expected_signature);
1111    return false;
1112  }
1113  /* make sure the end of the switch is in range */
1114  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1115    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1116                                      << ", switch offset " << switch_offset
1117                                      << ", end " << (cur_offset + switch_offset + table_size)
1118                                      << ", count " << insn_count;
1119    return false;
1120  }
1121  /* for a sparse switch, verify the keys are in ascending order */
1122  if (keys_offset > 0 && switch_count > 1) {
1123    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1124    for (uint32_t targ = 1; targ < switch_count; targ++) {
1125      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1126                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1127      if (key <= last_key) {
1128        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1129                                          << ", this=" << key;
1130        return false;
1131      }
1132      last_key = key;
1133    }
1134  }
1135  /* verify each switch target */
1136  for (uint32_t targ = 0; targ < switch_count; targ++) {
1137    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1138                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1139    int32_t abs_offset = cur_offset + offset;
1140    if (abs_offset < 0 ||
1141        abs_offset >= (int32_t) insn_count ||
1142        !insn_flags_[abs_offset].IsOpcode()) {
1143      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1144                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1145                                        << reinterpret_cast<void*>(cur_offset)
1146                                        << "[" << targ << "]";
1147      return false;
1148    }
1149    insn_flags_[abs_offset].SetBranchTarget();
1150  }
1151  return true;
1152}
1153
1154bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1155  if (vA > Instruction::kMaxVarArgRegs) {
1156    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1157    return false;
1158  }
1159  uint16_t registers_size = code_item_->registers_size_;
1160  for (uint32_t idx = 0; idx < vA; idx++) {
1161    if (arg[idx] >= registers_size) {
1162      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1163                                        << ") in non-range invoke (>= " << registers_size << ")";
1164      return false;
1165    }
1166  }
1167
1168  return true;
1169}
1170
1171bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1172  uint16_t registers_size = code_item_->registers_size_;
1173  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1174  // integer overflow when adding them here.
1175  if (vA + vC > registers_size) {
1176    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1177                                      << " in range invoke (> " << registers_size << ")";
1178    return false;
1179  }
1180  return true;
1181}
1182
1183bool MethodVerifier::VerifyCodeFlow() {
1184  uint16_t registers_size = code_item_->registers_size_;
1185  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1186
1187  if (registers_size * insns_size > 4*1024*1024) {
1188    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1189                 << " insns_size=" << insns_size << ")";
1190  }
1191  /* Create and initialize table holding register status */
1192  reg_table_.Init(kTrackCompilerInterestPoints,
1193                  insn_flags_.get(),
1194                  insns_size,
1195                  registers_size,
1196                  this);
1197
1198
1199  work_line_.reset(RegisterLine::Create(registers_size, this));
1200  saved_line_.reset(RegisterLine::Create(registers_size, this));
1201
1202  /* Initialize register types of method arguments. */
1203  if (!SetTypesFromSignature()) {
1204    DCHECK_NE(failures_.size(), 0U);
1205    std::string prepend("Bad signature in ");
1206    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1207    PrependToLastFailMessage(prepend);
1208    return false;
1209  }
1210  /* Perform code flow verification. */
1211  if (!CodeFlowVerifyMethod()) {
1212    DCHECK_NE(failures_.size(), 0U);
1213    return false;
1214  }
1215  return true;
1216}
1217
1218std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1219  DCHECK_EQ(failures_.size(), failure_messages_.size());
1220  for (size_t i = 0; i < failures_.size(); ++i) {
1221      os << failure_messages_[i]->str() << "\n";
1222  }
1223  return os;
1224}
1225
1226void MethodVerifier::Dump(std::ostream& os) {
1227  if (code_item_ == nullptr) {
1228    os << "Native method\n";
1229    return;
1230  }
1231  {
1232    os << "Register Types:\n";
1233    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1234    std::ostream indent_os(&indent_filter);
1235    reg_types_.Dump(indent_os);
1236  }
1237  os << "Dumping instructions and register lines:\n";
1238  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1239  std::ostream indent_os(&indent_filter);
1240  const Instruction* inst = Instruction::At(code_item_->insns_);
1241  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1242      dex_pc += inst->SizeInCodeUnits()) {
1243    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1244    if (reg_line != nullptr) {
1245      indent_os << reg_line->Dump(this) << "\n";
1246    }
1247    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1248    const bool kDumpHexOfInstruction = false;
1249    if (kDumpHexOfInstruction) {
1250      indent_os << inst->DumpHex(5) << " ";
1251    }
1252    indent_os << inst->DumpString(dex_file_) << "\n";
1253    inst = inst->Next();
1254  }
1255}
1256
1257static bool IsPrimitiveDescriptor(char descriptor) {
1258  switch (descriptor) {
1259    case 'I':
1260    case 'C':
1261    case 'S':
1262    case 'B':
1263    case 'Z':
1264    case 'F':
1265    case 'D':
1266    case 'J':
1267      return true;
1268    default:
1269      return false;
1270  }
1271}
1272
1273bool MethodVerifier::SetTypesFromSignature() {
1274  RegisterLine* reg_line = reg_table_.GetLine(0);
1275  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1276  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1277
1278  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1279  // Include the "this" pointer.
1280  size_t cur_arg = 0;
1281  if (!IsStatic()) {
1282    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1283    // argument as uninitialized. This restricts field access until the superclass constructor is
1284    // called.
1285    const RegType& declaring_class = GetDeclaringClass();
1286    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1287      reg_line->SetRegisterType(this, arg_start + cur_arg,
1288                                reg_types_.UninitializedThisArgument(declaring_class));
1289    } else {
1290      reg_line->SetRegisterType(this, arg_start + cur_arg, declaring_class);
1291    }
1292    cur_arg++;
1293  }
1294
1295  const DexFile::ProtoId& proto_id =
1296      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1297  DexFileParameterIterator iterator(*dex_file_, proto_id);
1298
1299  for (; iterator.HasNext(); iterator.Next()) {
1300    const char* descriptor = iterator.GetDescriptor();
1301    if (descriptor == nullptr) {
1302      LOG(FATAL) << "Null descriptor";
1303    }
1304    if (cur_arg >= expected_args) {
1305      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1306                                        << " args, found more (" << descriptor << ")";
1307      return false;
1308    }
1309    switch (descriptor[0]) {
1310      case 'L':
1311      case '[':
1312        // We assume that reference arguments are initialized. The only way it could be otherwise
1313        // (assuming the caller was verified) is if the current method is <init>, but in that case
1314        // it's effectively considered initialized the instant we reach here (in the sense that we
1315        // can return without doing anything or call virtual methods).
1316        {
1317          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1318          if (!reg_type.IsNonZeroReferenceTypes()) {
1319            DCHECK(HasFailures());
1320            return false;
1321          }
1322          reg_line->SetRegisterType(this, arg_start + cur_arg, reg_type);
1323        }
1324        break;
1325      case 'Z':
1326        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Boolean());
1327        break;
1328      case 'C':
1329        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Char());
1330        break;
1331      case 'B':
1332        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Byte());
1333        break;
1334      case 'I':
1335        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Integer());
1336        break;
1337      case 'S':
1338        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Short());
1339        break;
1340      case 'F':
1341        reg_line->SetRegisterType(this, arg_start + cur_arg, reg_types_.Float());
1342        break;
1343      case 'J':
1344      case 'D': {
1345        if (cur_arg + 1 >= expected_args) {
1346          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1347              << " args, found more (" << descriptor << ")";
1348          return false;
1349        }
1350
1351        const RegType* lo_half;
1352        const RegType* hi_half;
1353        if (descriptor[0] == 'J') {
1354          lo_half = &reg_types_.LongLo();
1355          hi_half = &reg_types_.LongHi();
1356        } else {
1357          lo_half = &reg_types_.DoubleLo();
1358          hi_half = &reg_types_.DoubleHi();
1359        }
1360        reg_line->SetRegisterTypeWide(this, arg_start + cur_arg, *lo_half, *hi_half);
1361        cur_arg++;
1362        break;
1363      }
1364      default:
1365        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1366                                          << descriptor << "'";
1367        return false;
1368    }
1369    cur_arg++;
1370  }
1371  if (cur_arg != expected_args) {
1372    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1373                                      << " arguments, found " << cur_arg;
1374    return false;
1375  }
1376  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1377  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1378  // format. Only major difference from the method argument format is that 'V' is supported.
1379  bool result;
1380  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1381    result = descriptor[1] == '\0';
1382  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1383    size_t i = 0;
1384    do {
1385      i++;
1386    } while (descriptor[i] == '[');  // process leading [
1387    if (descriptor[i] == 'L') {  // object array
1388      do {
1389        i++;  // find closing ;
1390      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1391      result = descriptor[i] == ';';
1392    } else {  // primitive array
1393      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1394    }
1395  } else if (descriptor[0] == 'L') {
1396    // could be more thorough here, but shouldn't be required
1397    size_t i = 0;
1398    do {
1399      i++;
1400    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1401    result = descriptor[i] == ';';
1402  } else {
1403    result = false;
1404  }
1405  if (!result) {
1406    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1407                                      << descriptor << "'";
1408  }
1409  return result;
1410}
1411
1412bool MethodVerifier::CodeFlowVerifyMethod() {
1413  const uint16_t* insns = code_item_->insns_;
1414  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1415
1416  /* Begin by marking the first instruction as "changed". */
1417  insn_flags_[0].SetChanged();
1418  uint32_t start_guess = 0;
1419
1420  /* Continue until no instructions are marked "changed". */
1421  while (true) {
1422    if (allow_thread_suspension_) {
1423      self_->AllowThreadSuspension();
1424    }
1425    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1426    uint32_t insn_idx = start_guess;
1427    for (; insn_idx < insns_size; insn_idx++) {
1428      if (insn_flags_[insn_idx].IsChanged())
1429        break;
1430    }
1431    if (insn_idx == insns_size) {
1432      if (start_guess != 0) {
1433        /* try again, starting from the top */
1434        start_guess = 0;
1435        continue;
1436      } else {
1437        /* all flags are clear */
1438        break;
1439      }
1440    }
1441    // We carry the working set of registers from instruction to instruction. If this address can
1442    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1443    // "changed" flags, we need to load the set of registers from the table.
1444    // Because we always prefer to continue on to the next instruction, we should never have a
1445    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1446    // target.
1447    work_insn_idx_ = insn_idx;
1448    if (insn_flags_[insn_idx].IsBranchTarget()) {
1449      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1450    } else if (kIsDebugBuild) {
1451      /*
1452       * Sanity check: retrieve the stored register line (assuming
1453       * a full table) and make sure it actually matches.
1454       */
1455      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1456      if (register_line != nullptr) {
1457        if (work_line_->CompareLine(register_line) != 0) {
1458          Dump(std::cout);
1459          std::cout << info_messages_.str();
1460          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1461                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1462                     << " work_line=" << work_line_->Dump(this) << "\n"
1463                     << "  expected=" << register_line->Dump(this);
1464        }
1465      }
1466    }
1467    if (!CodeFlowVerifyInstruction(&start_guess)) {
1468      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1469      prepend += " failed to verify: ";
1470      PrependToLastFailMessage(prepend);
1471      return false;
1472    }
1473    /* Clear "changed" and mark as visited. */
1474    insn_flags_[insn_idx].SetVisited();
1475    insn_flags_[insn_idx].ClearChanged();
1476  }
1477
1478  if (gDebugVerify) {
1479    /*
1480     * Scan for dead code. There's nothing "evil" about dead code
1481     * (besides the wasted space), but it indicates a flaw somewhere
1482     * down the line, possibly in the verifier.
1483     *
1484     * If we've substituted "always throw" instructions into the stream,
1485     * we are almost certainly going to have some dead code.
1486     */
1487    int dead_start = -1;
1488    uint32_t insn_idx = 0;
1489    for (; insn_idx < insns_size;
1490         insn_idx += Instruction::At(code_item_->insns_ + insn_idx)->SizeInCodeUnits()) {
1491      /*
1492       * Switch-statement data doesn't get "visited" by scanner. It
1493       * may or may not be preceded by a padding NOP (for alignment).
1494       */
1495      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1496          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1497          insns[insn_idx] == Instruction::kArrayDataSignature ||
1498          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1499           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1500            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1501            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1502        insn_flags_[insn_idx].SetVisited();
1503      }
1504
1505      if (!insn_flags_[insn_idx].IsVisited()) {
1506        if (dead_start < 0)
1507          dead_start = insn_idx;
1508      } else if (dead_start >= 0) {
1509        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1510                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1511        dead_start = -1;
1512      }
1513    }
1514    if (dead_start >= 0) {
1515      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1516                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1517    }
1518    // To dump the state of the verify after a method, do something like:
1519    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1520    //     "boolean java.lang.String.equals(java.lang.Object)") {
1521    //   LOG(INFO) << info_messages_.str();
1522    // }
1523  }
1524  return true;
1525}
1526
1527bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1528  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1529  // We want the state _before_ the instruction, for the case where the dex pc we're
1530  // interested in is itself a monitor-enter instruction (which is a likely place
1531  // for a thread to be suspended).
1532  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1533    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1534    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1535      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1536    }
1537  }
1538
1539  /*
1540   * Once we finish decoding the instruction, we need to figure out where
1541   * we can go from here. There are three possible ways to transfer
1542   * control to another statement:
1543   *
1544   * (1) Continue to the next instruction. Applies to all but
1545   *     unconditional branches, method returns, and exception throws.
1546   * (2) Branch to one or more possible locations. Applies to branches
1547   *     and switch statements.
1548   * (3) Exception handlers. Applies to any instruction that can
1549   *     throw an exception that is handled by an encompassing "try"
1550   *     block.
1551   *
1552   * We can also return, in which case there is no successor instruction
1553   * from this point.
1554   *
1555   * The behavior can be determined from the opcode flags.
1556   */
1557  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1558  const Instruction* inst = Instruction::At(insns);
1559  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1560
1561  int32_t branch_target = 0;
1562  bool just_set_result = false;
1563  if (gDebugVerify) {
1564    // Generate processing back trace to debug verifier
1565    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1566                    << work_line_->Dump(this) << "\n";
1567  }
1568
1569  /*
1570   * Make a copy of the previous register state. If the instruction
1571   * can throw an exception, we will copy/merge this into the "catch"
1572   * address rather than work_line, because we don't want the result
1573   * from the "successful" code path (e.g. a check-cast that "improves"
1574   * a type) to be visible to the exception handler.
1575   */
1576  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1577    saved_line_->CopyFromLine(work_line_.get());
1578  } else if (kIsDebugBuild) {
1579    saved_line_->FillWithGarbage();
1580  }
1581
1582
1583  // We need to ensure the work line is consistent while performing validation. When we spot a
1584  // peephole pattern we compute a new line for either the fallthrough instruction or the
1585  // branch target.
1586  std::unique_ptr<RegisterLine> branch_line;
1587  std::unique_ptr<RegisterLine> fallthrough_line;
1588
1589  /*
1590   * If we are in a constructor, and we currently have an UninitializedThis type
1591   * in a register somewhere, we need to make sure it isn't overwritten.
1592   */
1593  bool track_uninitialized_this = false;
1594  size_t uninitialized_this_loc = 0;
1595  if (IsConstructor()) {
1596    track_uninitialized_this = work_line_->GetUninitializedThisLoc(this, &uninitialized_this_loc);
1597  }
1598
1599  switch (inst->Opcode()) {
1600    case Instruction::NOP:
1601      /*
1602       * A "pure" NOP has no effect on anything. Data tables start with
1603       * a signature that looks like a NOP; if we see one of these in
1604       * the course of executing code then we have a problem.
1605       */
1606      if (inst->VRegA_10x() != 0) {
1607        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1608      }
1609      break;
1610
1611    case Instruction::MOVE:
1612      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1613      break;
1614    case Instruction::MOVE_FROM16:
1615      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1616      break;
1617    case Instruction::MOVE_16:
1618      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1619      break;
1620    case Instruction::MOVE_WIDE:
1621      work_line_->CopyRegister2(this, inst->VRegA_12x(), inst->VRegB_12x());
1622      break;
1623    case Instruction::MOVE_WIDE_FROM16:
1624      work_line_->CopyRegister2(this, inst->VRegA_22x(), inst->VRegB_22x());
1625      break;
1626    case Instruction::MOVE_WIDE_16:
1627      work_line_->CopyRegister2(this, inst->VRegA_32x(), inst->VRegB_32x());
1628      break;
1629    case Instruction::MOVE_OBJECT:
1630      work_line_->CopyRegister1(this, inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1631      break;
1632    case Instruction::MOVE_OBJECT_FROM16:
1633      work_line_->CopyRegister1(this, inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1634      break;
1635    case Instruction::MOVE_OBJECT_16:
1636      work_line_->CopyRegister1(this, inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1637      break;
1638
1639    /*
1640     * The move-result instructions copy data out of a "pseudo-register"
1641     * with the results from the last method invocation. In practice we
1642     * might want to hold the result in an actual CPU register, so the
1643     * Dalvik spec requires that these only appear immediately after an
1644     * invoke or filled-new-array.
1645     *
1646     * These calls invalidate the "result" register. (This is now
1647     * redundant with the reset done below, but it can make the debug info
1648     * easier to read in some cases.)
1649     */
1650    case Instruction::MOVE_RESULT:
1651      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), false);
1652      break;
1653    case Instruction::MOVE_RESULT_WIDE:
1654      work_line_->CopyResultRegister2(this, inst->VRegA_11x());
1655      break;
1656    case Instruction::MOVE_RESULT_OBJECT:
1657      work_line_->CopyResultRegister1(this, inst->VRegA_11x(), true);
1658      break;
1659
1660    case Instruction::MOVE_EXCEPTION: {
1661      // We do not allow MOVE_EXCEPTION as the first instruction in a method. This is a simple case
1662      // where one entrypoint to the catch block is not actually an exception path.
1663      if (work_insn_idx_ == 0) {
1664        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "move-exception at pc 0x0";
1665        break;
1666      }
1667      /*
1668       * This statement can only appear as the first instruction in an exception handler. We verify
1669       * that as part of extracting the exception type from the catch block list.
1670       */
1671      const RegType& res_type = GetCaughtExceptionType();
1672      work_line_->SetRegisterType(this, inst->VRegA_11x(), res_type);
1673      break;
1674    }
1675    case Instruction::RETURN_VOID:
1676      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1677        if (!GetMethodReturnType().IsConflict()) {
1678          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1679        }
1680      }
1681      break;
1682    case Instruction::RETURN:
1683      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1684        /* check the method signature */
1685        const RegType& return_type = GetMethodReturnType();
1686        if (!return_type.IsCategory1Types()) {
1687          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1688                                            << return_type;
1689        } else {
1690          // Compilers may generate synthetic functions that write byte values into boolean fields.
1691          // Also, it may use integer values for boolean, byte, short, and character return types.
1692          const uint32_t vregA = inst->VRegA_11x();
1693          const RegType& src_type = work_line_->GetRegisterType(this, vregA);
1694          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1695                          ((return_type.IsBoolean() || return_type.IsByte() ||
1696                           return_type.IsShort() || return_type.IsChar()) &&
1697                           src_type.IsInteger()));
1698          /* check the register contents */
1699          bool success =
1700              work_line_->VerifyRegisterType(this, vregA, use_src ? src_type : return_type);
1701          if (!success) {
1702            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1703          }
1704        }
1705      }
1706      break;
1707    case Instruction::RETURN_WIDE:
1708      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1709        /* check the method signature */
1710        const RegType& return_type = GetMethodReturnType();
1711        if (!return_type.IsCategory2Types()) {
1712          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1713        } else {
1714          /* check the register contents */
1715          const uint32_t vregA = inst->VRegA_11x();
1716          bool success = work_line_->VerifyRegisterType(this, vregA, return_type);
1717          if (!success) {
1718            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1719          }
1720        }
1721      }
1722      break;
1723    case Instruction::RETURN_OBJECT:
1724      if (!IsConstructor() || work_line_->CheckConstructorReturn(this)) {
1725        const RegType& return_type = GetMethodReturnType();
1726        if (!return_type.IsReferenceTypes()) {
1727          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1728        } else {
1729          /* return_type is the *expected* return type, not register value */
1730          DCHECK(!return_type.IsZero());
1731          DCHECK(!return_type.IsUninitializedReference());
1732          const uint32_t vregA = inst->VRegA_11x();
1733          const RegType& reg_type = work_line_->GetRegisterType(this, vregA);
1734          // Disallow returning uninitialized values and verify that the reference in vAA is an
1735          // instance of the "return_type"
1736          if (reg_type.IsUninitializedTypes()) {
1737            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1738                                              << reg_type << "'";
1739          } else if (!return_type.IsAssignableFrom(reg_type)) {
1740            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1741              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1742                  << "' or '" << reg_type << "'";
1743            } else {
1744              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1745                  << "', but expected from declaration '" << return_type << "'";
1746            }
1747          }
1748        }
1749      }
1750      break;
1751
1752      /* could be boolean, int, float, or a null reference */
1753    case Instruction::CONST_4: {
1754      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1755      work_line_->SetRegisterType(this, inst->VRegA_11n(),
1756                                  DetermineCat1Constant(val, need_precise_constants_));
1757      break;
1758    }
1759    case Instruction::CONST_16: {
1760      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1761      work_line_->SetRegisterType(this, inst->VRegA_21s(),
1762                                  DetermineCat1Constant(val, need_precise_constants_));
1763      break;
1764    }
1765    case Instruction::CONST: {
1766      int32_t val = inst->VRegB_31i();
1767      work_line_->SetRegisterType(this, inst->VRegA_31i(),
1768                                  DetermineCat1Constant(val, need_precise_constants_));
1769      break;
1770    }
1771    case Instruction::CONST_HIGH16: {
1772      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1773      work_line_->SetRegisterType(this, inst->VRegA_21h(),
1774                                  DetermineCat1Constant(val, need_precise_constants_));
1775      break;
1776    }
1777      /* could be long or double; resolved upon use */
1778    case Instruction::CONST_WIDE_16: {
1779      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1780      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1781      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1782      work_line_->SetRegisterTypeWide(this, inst->VRegA_21s(), lo, hi);
1783      break;
1784    }
1785    case Instruction::CONST_WIDE_32: {
1786      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1787      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1788      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1789      work_line_->SetRegisterTypeWide(this, inst->VRegA_31i(), lo, hi);
1790      break;
1791    }
1792    case Instruction::CONST_WIDE: {
1793      int64_t val = inst->VRegB_51l();
1794      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1795      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1796      work_line_->SetRegisterTypeWide(this, inst->VRegA_51l(), lo, hi);
1797      break;
1798    }
1799    case Instruction::CONST_WIDE_HIGH16: {
1800      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1801      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1802      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1803      work_line_->SetRegisterTypeWide(this, inst->VRegA_21h(), lo, hi);
1804      break;
1805    }
1806    case Instruction::CONST_STRING:
1807      work_line_->SetRegisterType(this, inst->VRegA_21c(), reg_types_.JavaLangString());
1808      break;
1809    case Instruction::CONST_STRING_JUMBO:
1810      work_line_->SetRegisterType(this, inst->VRegA_31c(), reg_types_.JavaLangString());
1811      break;
1812    case Instruction::CONST_CLASS: {
1813      // Get type from instruction if unresolved then we need an access check
1814      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1815      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1816      // Register holds class, ie its type is class, on error it will hold Conflict.
1817      work_line_->SetRegisterType(this, inst->VRegA_21c(),
1818                                  res_type.IsConflict() ? res_type
1819                                                        : reg_types_.JavaLangClass());
1820      break;
1821    }
1822    case Instruction::MONITOR_ENTER:
1823      work_line_->PushMonitor(this, inst->VRegA_11x(), work_insn_idx_);
1824      break;
1825    case Instruction::MONITOR_EXIT:
1826      /*
1827       * monitor-exit instructions are odd. They can throw exceptions,
1828       * but when they do they act as if they succeeded and the PC is
1829       * pointing to the following instruction. (This behavior goes back
1830       * to the need to handle asynchronous exceptions, a now-deprecated
1831       * feature that Dalvik doesn't support.)
1832       *
1833       * In practice we don't need to worry about this. The only
1834       * exceptions that can be thrown from monitor-exit are for a
1835       * null reference and -exit without a matching -enter. If the
1836       * structured locking checks are working, the former would have
1837       * failed on the -enter instruction, and the latter is impossible.
1838       *
1839       * This is fortunate, because issue 3221411 prevents us from
1840       * chasing the "can throw" path when monitor verification is
1841       * enabled. If we can fully verify the locking we can ignore
1842       * some catch blocks (which will show up as "dead" code when
1843       * we skip them here); if we can't, then the code path could be
1844       * "live" so we still need to check it.
1845       */
1846      opcode_flags &= ~Instruction::kThrow;
1847      work_line_->PopMonitor(this, inst->VRegA_11x());
1848      break;
1849
1850    case Instruction::CHECK_CAST:
1851    case Instruction::INSTANCE_OF: {
1852      /*
1853       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1854       * could be a "upcast" -- not expected, so we don't try to address it.)
1855       *
1856       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1857       * dec_insn.vA when branching to a handler.
1858       */
1859      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1860      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1861      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1862      if (res_type.IsConflict()) {
1863        // If this is a primitive type, fail HARD.
1864        mirror::Class* klass = dex_cache_->GetResolvedType(type_idx);
1865        if (klass != nullptr && klass->IsPrimitive()) {
1866          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1867              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1868              << GetDeclaringClass();
1869          break;
1870        }
1871
1872        DCHECK_NE(failures_.size(), 0U);
1873        if (!is_checkcast) {
1874          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1875        }
1876        break;  // bad class
1877      }
1878      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1879      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1880      const RegType& orig_type = work_line_->GetRegisterType(this, orig_type_reg);
1881      if (!res_type.IsNonZeroReferenceTypes()) {
1882        if (is_checkcast) {
1883          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1884        } else {
1885          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1886        }
1887      } else if (!orig_type.IsReferenceTypes()) {
1888        if (is_checkcast) {
1889          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1890        } else {
1891          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1892        }
1893      } else {
1894        if (is_checkcast) {
1895          work_line_->SetRegisterType(this, inst->VRegA_21c(), res_type);
1896        } else {
1897          work_line_->SetRegisterType(this, inst->VRegA_22c(), reg_types_.Boolean());
1898        }
1899      }
1900      break;
1901    }
1902    case Instruction::ARRAY_LENGTH: {
1903      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegB_12x());
1904      if (res_type.IsReferenceTypes()) {
1905        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1906          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1907        } else {
1908          work_line_->SetRegisterType(this, inst->VRegA_12x(), reg_types_.Integer());
1909        }
1910      } else {
1911        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1912      }
1913      break;
1914    }
1915    case Instruction::NEW_INSTANCE: {
1916      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1917      if (res_type.IsConflict()) {
1918        DCHECK_NE(failures_.size(), 0U);
1919        break;  // bad class
1920      }
1921      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1922      // can't create an instance of an interface or abstract class */
1923      if (!res_type.IsInstantiableTypes()) {
1924        Fail(VERIFY_ERROR_INSTANTIATION)
1925            << "new-instance on primitive, interface or abstract class" << res_type;
1926        // Soft failure so carry on to set register type.
1927      }
1928      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1929      // Any registers holding previous allocations from this address that have not yet been
1930      // initialized must be marked invalid.
1931      work_line_->MarkUninitRefsAsInvalid(this, uninit_type);
1932      // add the new uninitialized reference to the register state
1933      work_line_->SetRegisterType(this, inst->VRegA_21c(), uninit_type);
1934      break;
1935    }
1936    case Instruction::NEW_ARRAY:
1937      VerifyNewArray(inst, false, false);
1938      break;
1939    case Instruction::FILLED_NEW_ARRAY:
1940      VerifyNewArray(inst, true, false);
1941      just_set_result = true;  // Filled new array sets result register
1942      break;
1943    case Instruction::FILLED_NEW_ARRAY_RANGE:
1944      VerifyNewArray(inst, true, true);
1945      just_set_result = true;  // Filled new array range sets result register
1946      break;
1947    case Instruction::CMPL_FLOAT:
1948    case Instruction::CMPG_FLOAT:
1949      if (!work_line_->VerifyRegisterType(this, inst->VRegB_23x(), reg_types_.Float())) {
1950        break;
1951      }
1952      if (!work_line_->VerifyRegisterType(this, inst->VRegC_23x(), reg_types_.Float())) {
1953        break;
1954      }
1955      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1956      break;
1957    case Instruction::CMPL_DOUBLE:
1958    case Instruction::CMPG_DOUBLE:
1959      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.DoubleLo(),
1960                                              reg_types_.DoubleHi())) {
1961        break;
1962      }
1963      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.DoubleLo(),
1964                                              reg_types_.DoubleHi())) {
1965        break;
1966      }
1967      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1968      break;
1969    case Instruction::CMP_LONG:
1970      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegB_23x(), reg_types_.LongLo(),
1971                                              reg_types_.LongHi())) {
1972        break;
1973      }
1974      if (!work_line_->VerifyRegisterTypeWide(this, inst->VRegC_23x(), reg_types_.LongLo(),
1975                                              reg_types_.LongHi())) {
1976        break;
1977      }
1978      work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Integer());
1979      break;
1980    case Instruction::THROW: {
1981      const RegType& res_type = work_line_->GetRegisterType(this, inst->VRegA_11x());
1982      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1983        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1984            << "thrown class " << res_type << " not instanceof Throwable";
1985      }
1986      break;
1987    }
1988    case Instruction::GOTO:
1989    case Instruction::GOTO_16:
1990    case Instruction::GOTO_32:
1991      /* no effect on or use of registers */
1992      break;
1993
1994    case Instruction::PACKED_SWITCH:
1995    case Instruction::SPARSE_SWITCH:
1996      /* verify that vAA is an integer, or can be converted to one */
1997      work_line_->VerifyRegisterType(this, inst->VRegA_31t(), reg_types_.Integer());
1998      break;
1999
2000    case Instruction::FILL_ARRAY_DATA: {
2001      /* Similar to the verification done for APUT */
2002      const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegA_31t());
2003      /* array_type can be null if the reg type is Zero */
2004      if (!array_type.IsZero()) {
2005        if (!array_type.IsArrayTypes()) {
2006          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
2007                                            << array_type;
2008        } else {
2009          const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
2010          DCHECK(!component_type.IsConflict());
2011          if (component_type.IsNonZeroReferenceTypes()) {
2012            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
2013                                              << component_type;
2014          } else {
2015            // Now verify if the element width in the table matches the element width declared in
2016            // the array
2017            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
2018            if (array_data[0] != Instruction::kArrayDataSignature) {
2019              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
2020            } else {
2021              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
2022              // Since we don't compress the data in Dex, expect to see equal width of data stored
2023              // in the table and expected from the array class.
2024              if (array_data[1] != elem_width) {
2025                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
2026                                                  << " vs " << elem_width << ")";
2027              }
2028            }
2029          }
2030        }
2031      }
2032      break;
2033    }
2034    case Instruction::IF_EQ:
2035    case Instruction::IF_NE: {
2036      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2037      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2038      bool mismatch = false;
2039      if (reg_type1.IsZero()) {  // zero then integral or reference expected
2040        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
2041      } else if (reg_type1.IsReferenceTypes()) {  // both references?
2042        mismatch = !reg_type2.IsReferenceTypes();
2043      } else {  // both integral?
2044        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
2045      }
2046      if (mismatch) {
2047        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
2048                                          << reg_type2 << ") must both be references or integral";
2049      }
2050      break;
2051    }
2052    case Instruction::IF_LT:
2053    case Instruction::IF_GE:
2054    case Instruction::IF_GT:
2055    case Instruction::IF_LE: {
2056      const RegType& reg_type1 = work_line_->GetRegisterType(this, inst->VRegA_22t());
2057      const RegType& reg_type2 = work_line_->GetRegisterType(this, inst->VRegB_22t());
2058      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
2059        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
2060                                          << reg_type2 << ") must be integral";
2061      }
2062      break;
2063    }
2064    case Instruction::IF_EQZ:
2065    case Instruction::IF_NEZ: {
2066      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2067      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
2068        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2069                                          << " unexpected as arg to if-eqz/if-nez";
2070      }
2071
2072      // Find previous instruction - its existence is a precondition to peephole optimization.
2073      uint32_t instance_of_idx = 0;
2074      if (0 != work_insn_idx_) {
2075        instance_of_idx = work_insn_idx_ - 1;
2076        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
2077          instance_of_idx--;
2078        }
2079        if (FailOrAbort(this, insn_flags_[instance_of_idx].IsOpcode(),
2080                        "Unable to get previous instruction of if-eqz/if-nez for work index ",
2081                        work_insn_idx_)) {
2082          break;
2083        }
2084      } else {
2085        break;
2086      }
2087
2088      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
2089
2090      /* Check for peep-hole pattern of:
2091       *    ...;
2092       *    instance-of vX, vY, T;
2093       *    ifXXX vX, label ;
2094       *    ...;
2095       * label:
2096       *    ...;
2097       * and sharpen the type of vY to be type T.
2098       * Note, this pattern can't be if:
2099       *  - if there are other branches to this branch,
2100       *  - when vX == vY.
2101       */
2102      if (!CurrentInsnFlags()->IsBranchTarget() &&
2103          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
2104          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
2105          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
2106        // Check the type of the instance-of is different than that of registers type, as if they
2107        // are the same there is no work to be done here. Check that the conversion is not to or
2108        // from an unresolved type as type information is imprecise. If the instance-of is to an
2109        // interface then ignore the type information as interfaces can only be treated as Objects
2110        // and we don't want to disallow field and other operations on the object. If the value
2111        // being instance-of checked against is known null (zero) then allow the optimization as
2112        // we didn't have type information. If the merge of the instance-of type with the original
2113        // type is assignable to the original then allow optimization. This check is performed to
2114        // ensure that subsequent merges don't lose type information - such as becoming an
2115        // interface from a class that would lose information relevant to field checks.
2116        const RegType& orig_type = work_line_->GetRegisterType(this, instance_of_inst->VRegB_22c());
2117        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
2118
2119        if (!orig_type.Equals(cast_type) &&
2120            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
2121            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
2122            !cast_type.GetClass()->IsInterface() &&
2123            (orig_type.IsZero() ||
2124                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
2125          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
2126          if (inst->Opcode() == Instruction::IF_EQZ) {
2127            fallthrough_line.reset(update_line);
2128          } else {
2129            branch_line.reset(update_line);
2130          }
2131          update_line->CopyFromLine(work_line_.get());
2132          update_line->SetRegisterType(this, instance_of_inst->VRegB_22c(), cast_type);
2133          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2134            // See if instance-of was preceded by a move-object operation, common due to the small
2135            // register encoding space of instance-of, and propagate type information to the source
2136            // of the move-object.
2137            uint32_t move_idx = instance_of_idx - 1;
2138            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2139              move_idx--;
2140            }
2141            if (FailOrAbort(this, insn_flags_[move_idx].IsOpcode(),
2142                            "Unable to get previous instruction of if-eqz/if-nez for work index ",
2143                            work_insn_idx_)) {
2144              break;
2145            }
2146            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2147            switch (move_inst->Opcode()) {
2148              case Instruction::MOVE_OBJECT:
2149                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2150                  update_line->SetRegisterType(this, move_inst->VRegB_12x(), cast_type);
2151                }
2152                break;
2153              case Instruction::MOVE_OBJECT_FROM16:
2154                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2155                  update_line->SetRegisterType(this, move_inst->VRegB_22x(), cast_type);
2156                }
2157                break;
2158              case Instruction::MOVE_OBJECT_16:
2159                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2160                  update_line->SetRegisterType(this, move_inst->VRegB_32x(), cast_type);
2161                }
2162                break;
2163              default:
2164                break;
2165            }
2166          }
2167        }
2168      }
2169
2170      break;
2171    }
2172    case Instruction::IF_LTZ:
2173    case Instruction::IF_GEZ:
2174    case Instruction::IF_GTZ:
2175    case Instruction::IF_LEZ: {
2176      const RegType& reg_type = work_line_->GetRegisterType(this, inst->VRegA_21t());
2177      if (!reg_type.IsIntegralTypes()) {
2178        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2179                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2180      }
2181      break;
2182    }
2183    case Instruction::AGET_BOOLEAN:
2184      VerifyAGet(inst, reg_types_.Boolean(), true);
2185      break;
2186    case Instruction::AGET_BYTE:
2187      VerifyAGet(inst, reg_types_.Byte(), true);
2188      break;
2189    case Instruction::AGET_CHAR:
2190      VerifyAGet(inst, reg_types_.Char(), true);
2191      break;
2192    case Instruction::AGET_SHORT:
2193      VerifyAGet(inst, reg_types_.Short(), true);
2194      break;
2195    case Instruction::AGET:
2196      VerifyAGet(inst, reg_types_.Integer(), true);
2197      break;
2198    case Instruction::AGET_WIDE:
2199      VerifyAGet(inst, reg_types_.LongLo(), true);
2200      break;
2201    case Instruction::AGET_OBJECT:
2202      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2203      break;
2204
2205    case Instruction::APUT_BOOLEAN:
2206      VerifyAPut(inst, reg_types_.Boolean(), true);
2207      break;
2208    case Instruction::APUT_BYTE:
2209      VerifyAPut(inst, reg_types_.Byte(), true);
2210      break;
2211    case Instruction::APUT_CHAR:
2212      VerifyAPut(inst, reg_types_.Char(), true);
2213      break;
2214    case Instruction::APUT_SHORT:
2215      VerifyAPut(inst, reg_types_.Short(), true);
2216      break;
2217    case Instruction::APUT:
2218      VerifyAPut(inst, reg_types_.Integer(), true);
2219      break;
2220    case Instruction::APUT_WIDE:
2221      VerifyAPut(inst, reg_types_.LongLo(), true);
2222      break;
2223    case Instruction::APUT_OBJECT:
2224      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2225      break;
2226
2227    case Instruction::IGET_BOOLEAN:
2228      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, false);
2229      break;
2230    case Instruction::IGET_BYTE:
2231      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, false);
2232      break;
2233    case Instruction::IGET_CHAR:
2234      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, false);
2235      break;
2236    case Instruction::IGET_SHORT:
2237      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, false);
2238      break;
2239    case Instruction::IGET:
2240      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, false);
2241      break;
2242    case Instruction::IGET_WIDE:
2243      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, false);
2244      break;
2245    case Instruction::IGET_OBJECT:
2246      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2247                                                    false);
2248      break;
2249
2250    case Instruction::IPUT_BOOLEAN:
2251      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, false);
2252      break;
2253    case Instruction::IPUT_BYTE:
2254      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, false);
2255      break;
2256    case Instruction::IPUT_CHAR:
2257      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, false);
2258      break;
2259    case Instruction::IPUT_SHORT:
2260      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, false);
2261      break;
2262    case Instruction::IPUT:
2263      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, false);
2264      break;
2265    case Instruction::IPUT_WIDE:
2266      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, false);
2267      break;
2268    case Instruction::IPUT_OBJECT:
2269      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2270                                                    false);
2271      break;
2272
2273    case Instruction::SGET_BOOLEAN:
2274      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true, true);
2275      break;
2276    case Instruction::SGET_BYTE:
2277      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true, true);
2278      break;
2279    case Instruction::SGET_CHAR:
2280      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true, true);
2281      break;
2282    case Instruction::SGET_SHORT:
2283      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true, true);
2284      break;
2285    case Instruction::SGET:
2286      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true, true);
2287      break;
2288    case Instruction::SGET_WIDE:
2289      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true, true);
2290      break;
2291    case Instruction::SGET_OBJECT:
2292      VerifyISFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false,
2293                                                    true);
2294      break;
2295
2296    case Instruction::SPUT_BOOLEAN:
2297      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true, true);
2298      break;
2299    case Instruction::SPUT_BYTE:
2300      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true, true);
2301      break;
2302    case Instruction::SPUT_CHAR:
2303      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true, true);
2304      break;
2305    case Instruction::SPUT_SHORT:
2306      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true, true);
2307      break;
2308    case Instruction::SPUT:
2309      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true, true);
2310      break;
2311    case Instruction::SPUT_WIDE:
2312      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true, true);
2313      break;
2314    case Instruction::SPUT_OBJECT:
2315      VerifyISFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false,
2316                                                    true);
2317      break;
2318
2319    case Instruction::INVOKE_VIRTUAL:
2320    case Instruction::INVOKE_VIRTUAL_RANGE:
2321    case Instruction::INVOKE_SUPER:
2322    case Instruction::INVOKE_SUPER_RANGE: {
2323      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2324                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2325      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2326                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2327      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2328                                                              is_super);
2329      const RegType* return_type = nullptr;
2330      if (called_method != nullptr) {
2331        StackHandleScope<1> hs(self_);
2332        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2333        mirror::Class* return_type_class = h_called_method->GetReturnType(can_load_classes_);
2334        if (return_type_class != nullptr) {
2335          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2336                                              return_type_class,
2337                                              return_type_class->CannotBeAssignedFromOtherTypes());
2338        } else {
2339          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2340          self_->ClearException();
2341        }
2342      }
2343      if (return_type == nullptr) {
2344        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2345        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2346        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2347        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2348        return_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2349      }
2350      if (!return_type->IsLowHalf()) {
2351        work_line_->SetResultRegisterType(this, *return_type);
2352      } else {
2353        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2354      }
2355      just_set_result = true;
2356      break;
2357    }
2358    case Instruction::INVOKE_DIRECT:
2359    case Instruction::INVOKE_DIRECT_RANGE: {
2360      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2361      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2362                                                                   is_range, false);
2363      const char* return_type_descriptor;
2364      bool is_constructor;
2365      const RegType* return_type = nullptr;
2366      if (called_method == nullptr) {
2367        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2368        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2369        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2370        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2371        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2372      } else {
2373        is_constructor = called_method->IsConstructor();
2374        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2375        StackHandleScope<1> hs(self_);
2376        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2377        mirror::Class* return_type_class = h_called_method->GetReturnType(can_load_classes_);
2378        if (return_type_class != nullptr) {
2379          return_type = &reg_types_.FromClass(return_type_descriptor,
2380                                              return_type_class,
2381                                              return_type_class->CannotBeAssignedFromOtherTypes());
2382        } else {
2383          DCHECK(!can_load_classes_ || self_->IsExceptionPending());
2384          self_->ClearException();
2385        }
2386      }
2387      if (is_constructor) {
2388        /*
2389         * Some additional checks when calling a constructor. We know from the invocation arg check
2390         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2391         * that to require that called_method->klass is the same as this->klass or this->super,
2392         * allowing the latter only if the "this" argument is the same as the "this" argument to
2393         * this method (which implies that we're in a constructor ourselves).
2394         */
2395        const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2396        if (this_type.IsConflict())  // failure.
2397          break;
2398
2399        /* no null refs allowed (?) */
2400        if (this_type.IsZero()) {
2401          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2402          break;
2403        }
2404
2405        /* must be in same class or in superclass */
2406        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2407        // TODO: re-enable constructor type verification
2408        // if (this_super_klass.IsConflict()) {
2409          // Unknown super class, fail so we re-check at runtime.
2410          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2411          // break;
2412        // }
2413
2414        /* arg must be an uninitialized reference */
2415        if (!this_type.IsUninitializedTypes()) {
2416          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2417              << this_type;
2418          break;
2419        }
2420
2421        /*
2422         * Replace the uninitialized reference with an initialized one. We need to do this for all
2423         * registers that have the same object instance in them, not just the "this" register.
2424         */
2425        work_line_->MarkRefsAsInitialized(this, this_type);
2426      }
2427      if (return_type == nullptr) {
2428        return_type = &reg_types_.FromDescriptor(GetClassLoader(), return_type_descriptor,
2429                                                 false);
2430      }
2431      if (!return_type->IsLowHalf()) {
2432        work_line_->SetResultRegisterType(this, *return_type);
2433      } else {
2434        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2435      }
2436      just_set_result = true;
2437      break;
2438    }
2439    case Instruction::INVOKE_STATIC:
2440    case Instruction::INVOKE_STATIC_RANGE: {
2441        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2442        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2443                                                                     METHOD_STATIC,
2444                                                                     is_range,
2445                                                                     false);
2446        const char* descriptor;
2447        if (called_method == nullptr) {
2448          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2449          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2450          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2451          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2452        } else {
2453          descriptor = called_method->GetReturnTypeDescriptor();
2454        }
2455        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2456        if (!return_type.IsLowHalf()) {
2457          work_line_->SetResultRegisterType(this, return_type);
2458        } else {
2459          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2460        }
2461        just_set_result = true;
2462      }
2463      break;
2464    case Instruction::INVOKE_INTERFACE:
2465    case Instruction::INVOKE_INTERFACE_RANGE: {
2466      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2467      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2468                                                                METHOD_INTERFACE,
2469                                                                is_range,
2470                                                                false);
2471      if (abs_method != nullptr) {
2472        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2473        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2474          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2475              << PrettyMethod(abs_method) << "'";
2476          break;
2477        }
2478      }
2479      /* Get the type of the "this" arg, which should either be a sub-interface of called
2480       * interface or Object (see comments in RegType::JoinClass).
2481       */
2482      const RegType& this_type = work_line_->GetInvocationThis(this, inst, is_range);
2483      if (this_type.IsZero()) {
2484        /* null pointer always passes (and always fails at runtime) */
2485      } else {
2486        if (this_type.IsUninitializedTypes()) {
2487          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2488              << this_type;
2489          break;
2490        }
2491        // In the past we have tried to assert that "called_interface" is assignable
2492        // from "this_type.GetClass()", however, as we do an imprecise Join
2493        // (RegType::JoinClass) we don't have full information on what interfaces are
2494        // implemented by "this_type". For example, two classes may implement the same
2495        // interfaces and have a common parent that doesn't implement the interface. The
2496        // join will set "this_type" to the parent class and a test that this implements
2497        // the interface will incorrectly fail.
2498      }
2499      /*
2500       * We don't have an object instance, so we can't find the concrete method. However, all of
2501       * the type information is in the abstract method, so we're good.
2502       */
2503      const char* descriptor;
2504      if (abs_method == nullptr) {
2505        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2506        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2507        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2508        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2509      } else {
2510        descriptor = abs_method->GetReturnTypeDescriptor();
2511      }
2512      const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2513      if (!return_type.IsLowHalf()) {
2514        work_line_->SetResultRegisterType(this, return_type);
2515      } else {
2516        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2517      }
2518      just_set_result = true;
2519      break;
2520    }
2521    case Instruction::NEG_INT:
2522    case Instruction::NOT_INT:
2523      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer());
2524      break;
2525    case Instruction::NEG_LONG:
2526    case Instruction::NOT_LONG:
2527      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2528                                   reg_types_.LongLo(), reg_types_.LongHi());
2529      break;
2530    case Instruction::NEG_FLOAT:
2531      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Float());
2532      break;
2533    case Instruction::NEG_DOUBLE:
2534      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2535                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2536      break;
2537    case Instruction::INT_TO_LONG:
2538      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2539                                     reg_types_.Integer());
2540      break;
2541    case Instruction::INT_TO_FLOAT:
2542      work_line_->CheckUnaryOp(this, inst, reg_types_.Float(), reg_types_.Integer());
2543      break;
2544    case Instruction::INT_TO_DOUBLE:
2545      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2546                                     reg_types_.Integer());
2547      break;
2548    case Instruction::LONG_TO_INT:
2549      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2550                                       reg_types_.LongLo(), reg_types_.LongHi());
2551      break;
2552    case Instruction::LONG_TO_FLOAT:
2553      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2554                                       reg_types_.LongLo(), reg_types_.LongHi());
2555      break;
2556    case Instruction::LONG_TO_DOUBLE:
2557      work_line_->CheckUnaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2558                                   reg_types_.LongLo(), reg_types_.LongHi());
2559      break;
2560    case Instruction::FLOAT_TO_INT:
2561      work_line_->CheckUnaryOp(this, inst, reg_types_.Integer(), reg_types_.Float());
2562      break;
2563    case Instruction::FLOAT_TO_LONG:
2564      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2565                                     reg_types_.Float());
2566      break;
2567    case Instruction::FLOAT_TO_DOUBLE:
2568      work_line_->CheckUnaryOpToWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2569                                     reg_types_.Float());
2570      break;
2571    case Instruction::DOUBLE_TO_INT:
2572      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Integer(),
2573                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2574      break;
2575    case Instruction::DOUBLE_TO_LONG:
2576      work_line_->CheckUnaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2577                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2578      break;
2579    case Instruction::DOUBLE_TO_FLOAT:
2580      work_line_->CheckUnaryOpFromWide(this, inst, reg_types_.Float(),
2581                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2582      break;
2583    case Instruction::INT_TO_BYTE:
2584      work_line_->CheckUnaryOp(this, inst, reg_types_.Byte(), reg_types_.Integer());
2585      break;
2586    case Instruction::INT_TO_CHAR:
2587      work_line_->CheckUnaryOp(this, inst, reg_types_.Char(), reg_types_.Integer());
2588      break;
2589    case Instruction::INT_TO_SHORT:
2590      work_line_->CheckUnaryOp(this, inst, reg_types_.Short(), reg_types_.Integer());
2591      break;
2592
2593    case Instruction::ADD_INT:
2594    case Instruction::SUB_INT:
2595    case Instruction::MUL_INT:
2596    case Instruction::REM_INT:
2597    case Instruction::DIV_INT:
2598    case Instruction::SHL_INT:
2599    case Instruction::SHR_INT:
2600    case Instruction::USHR_INT:
2601      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2602                                reg_types_.Integer(), false);
2603      break;
2604    case Instruction::AND_INT:
2605    case Instruction::OR_INT:
2606    case Instruction::XOR_INT:
2607      work_line_->CheckBinaryOp(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2608                                reg_types_.Integer(), true);
2609      break;
2610    case Instruction::ADD_LONG:
2611    case Instruction::SUB_LONG:
2612    case Instruction::MUL_LONG:
2613    case Instruction::DIV_LONG:
2614    case Instruction::REM_LONG:
2615    case Instruction::AND_LONG:
2616    case Instruction::OR_LONG:
2617    case Instruction::XOR_LONG:
2618      work_line_->CheckBinaryOpWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2619                                    reg_types_.LongLo(), reg_types_.LongHi(),
2620                                    reg_types_.LongLo(), reg_types_.LongHi());
2621      break;
2622    case Instruction::SHL_LONG:
2623    case Instruction::SHR_LONG:
2624    case Instruction::USHR_LONG:
2625      /* shift distance is Int, making these different from other binary operations */
2626      work_line_->CheckBinaryOpWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2627                                         reg_types_.Integer());
2628      break;
2629    case Instruction::ADD_FLOAT:
2630    case Instruction::SUB_FLOAT:
2631    case Instruction::MUL_FLOAT:
2632    case Instruction::DIV_FLOAT:
2633    case Instruction::REM_FLOAT:
2634      work_line_->CheckBinaryOp(this, inst, reg_types_.Float(), reg_types_.Float(),
2635                                reg_types_.Float(), false);
2636      break;
2637    case Instruction::ADD_DOUBLE:
2638    case Instruction::SUB_DOUBLE:
2639    case Instruction::MUL_DOUBLE:
2640    case Instruction::DIV_DOUBLE:
2641    case Instruction::REM_DOUBLE:
2642      work_line_->CheckBinaryOpWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2643                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2644                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2645      break;
2646    case Instruction::ADD_INT_2ADDR:
2647    case Instruction::SUB_INT_2ADDR:
2648    case Instruction::MUL_INT_2ADDR:
2649    case Instruction::REM_INT_2ADDR:
2650    case Instruction::SHL_INT_2ADDR:
2651    case Instruction::SHR_INT_2ADDR:
2652    case Instruction::USHR_INT_2ADDR:
2653      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2654                                     reg_types_.Integer(), false);
2655      break;
2656    case Instruction::AND_INT_2ADDR:
2657    case Instruction::OR_INT_2ADDR:
2658    case Instruction::XOR_INT_2ADDR:
2659      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2660                                     reg_types_.Integer(), true);
2661      break;
2662    case Instruction::DIV_INT_2ADDR:
2663      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Integer(), reg_types_.Integer(),
2664                                     reg_types_.Integer(), false);
2665      break;
2666    case Instruction::ADD_LONG_2ADDR:
2667    case Instruction::SUB_LONG_2ADDR:
2668    case Instruction::MUL_LONG_2ADDR:
2669    case Instruction::DIV_LONG_2ADDR:
2670    case Instruction::REM_LONG_2ADDR:
2671    case Instruction::AND_LONG_2ADDR:
2672    case Instruction::OR_LONG_2ADDR:
2673    case Instruction::XOR_LONG_2ADDR:
2674      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2675                                         reg_types_.LongLo(), reg_types_.LongHi(),
2676                                         reg_types_.LongLo(), reg_types_.LongHi());
2677      break;
2678    case Instruction::SHL_LONG_2ADDR:
2679    case Instruction::SHR_LONG_2ADDR:
2680    case Instruction::USHR_LONG_2ADDR:
2681      work_line_->CheckBinaryOp2addrWideShift(this, inst, reg_types_.LongLo(), reg_types_.LongHi(),
2682                                              reg_types_.Integer());
2683      break;
2684    case Instruction::ADD_FLOAT_2ADDR:
2685    case Instruction::SUB_FLOAT_2ADDR:
2686    case Instruction::MUL_FLOAT_2ADDR:
2687    case Instruction::DIV_FLOAT_2ADDR:
2688    case Instruction::REM_FLOAT_2ADDR:
2689      work_line_->CheckBinaryOp2addr(this, inst, reg_types_.Float(), reg_types_.Float(),
2690                                     reg_types_.Float(), false);
2691      break;
2692    case Instruction::ADD_DOUBLE_2ADDR:
2693    case Instruction::SUB_DOUBLE_2ADDR:
2694    case Instruction::MUL_DOUBLE_2ADDR:
2695    case Instruction::DIV_DOUBLE_2ADDR:
2696    case Instruction::REM_DOUBLE_2ADDR:
2697      work_line_->CheckBinaryOp2addrWide(this, inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2698                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2699                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2700      break;
2701    case Instruction::ADD_INT_LIT16:
2702    case Instruction::RSUB_INT_LIT16:
2703    case Instruction::MUL_INT_LIT16:
2704    case Instruction::DIV_INT_LIT16:
2705    case Instruction::REM_INT_LIT16:
2706      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2707                                 true);
2708      break;
2709    case Instruction::AND_INT_LIT16:
2710    case Instruction::OR_INT_LIT16:
2711    case Instruction::XOR_INT_LIT16:
2712      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2713                                 true);
2714      break;
2715    case Instruction::ADD_INT_LIT8:
2716    case Instruction::RSUB_INT_LIT8:
2717    case Instruction::MUL_INT_LIT8:
2718    case Instruction::DIV_INT_LIT8:
2719    case Instruction::REM_INT_LIT8:
2720    case Instruction::SHL_INT_LIT8:
2721    case Instruction::SHR_INT_LIT8:
2722    case Instruction::USHR_INT_LIT8:
2723      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), false,
2724                                 false);
2725      break;
2726    case Instruction::AND_INT_LIT8:
2727    case Instruction::OR_INT_LIT8:
2728    case Instruction::XOR_INT_LIT8:
2729      work_line_->CheckLiteralOp(this, inst, reg_types_.Integer(), reg_types_.Integer(), true,
2730                                 false);
2731      break;
2732
2733    // Special instructions.
2734    case Instruction::RETURN_VOID_BARRIER:
2735      if (!IsConstructor() || IsStatic()) {
2736          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2737      }
2738      break;
2739    // Note: the following instructions encode offsets derived from class linking.
2740    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2741    // meaning if the class linking and resolution were successful.
2742    case Instruction::IGET_QUICK:
2743      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Integer(), true);
2744      break;
2745    case Instruction::IGET_WIDE_QUICK:
2746      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.LongLo(), true);
2747      break;
2748    case Instruction::IGET_OBJECT_QUICK:
2749      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.JavaLangObject(false), false);
2750      break;
2751    case Instruction::IGET_BOOLEAN_QUICK:
2752      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Boolean(), true);
2753      break;
2754    case Instruction::IGET_BYTE_QUICK:
2755      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Byte(), true);
2756      break;
2757    case Instruction::IGET_CHAR_QUICK:
2758      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Char(), true);
2759      break;
2760    case Instruction::IGET_SHORT_QUICK:
2761      VerifyQuickFieldAccess<FieldAccessType::kAccGet>(inst, reg_types_.Short(), true);
2762      break;
2763    case Instruction::IPUT_QUICK:
2764      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Integer(), true);
2765      break;
2766    case Instruction::IPUT_BOOLEAN_QUICK:
2767      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Boolean(), true);
2768      break;
2769    case Instruction::IPUT_BYTE_QUICK:
2770      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Byte(), true);
2771      break;
2772    case Instruction::IPUT_CHAR_QUICK:
2773      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Char(), true);
2774      break;
2775    case Instruction::IPUT_SHORT_QUICK:
2776      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.Short(), true);
2777      break;
2778    case Instruction::IPUT_WIDE_QUICK:
2779      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.LongLo(), true);
2780      break;
2781    case Instruction::IPUT_OBJECT_QUICK:
2782      VerifyQuickFieldAccess<FieldAccessType::kAccPut>(inst, reg_types_.JavaLangObject(false), false);
2783      break;
2784    case Instruction::INVOKE_VIRTUAL_QUICK:
2785    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2786      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2787      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2788      if (called_method != nullptr) {
2789        const char* descriptor = called_method->GetReturnTypeDescriptor();
2790        const RegType& return_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
2791        if (!return_type.IsLowHalf()) {
2792          work_line_->SetResultRegisterType(this, return_type);
2793        } else {
2794          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2795        }
2796        just_set_result = true;
2797      }
2798      break;
2799    }
2800
2801    /* These should never appear during verification. */
2802    case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
2803    case Instruction::UNUSED_F3 ... Instruction::UNUSED_FF:
2804    case Instruction::UNUSED_79:
2805    case Instruction::UNUSED_7A:
2806      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2807      break;
2808
2809    /*
2810     * DO NOT add a "default" clause here. Without it the compiler will
2811     * complain if an instruction is missing (which is desirable).
2812     */
2813  }  // end - switch (dec_insn.opcode)
2814
2815  /*
2816   * If we are in a constructor, and we had an UninitializedThis type
2817   * in a register somewhere, we need to make sure it wasn't overwritten.
2818   */
2819  if (track_uninitialized_this) {
2820    bool was_invoke_direct = (inst->Opcode() == Instruction::INVOKE_DIRECT ||
2821                              inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2822    if (work_line_->WasUninitializedThisOverwritten(this, uninitialized_this_loc,
2823                                                    was_invoke_direct)) {
2824      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2825          << "Constructor failed to initialize this object";
2826    }
2827  }
2828
2829  if (have_pending_hard_failure_) {
2830    if (Runtime::Current()->IsAotCompiler()) {
2831      /* When AOT compiling, check that the last failure is a hard failure */
2832      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2833    }
2834    /* immediate failure, reject class */
2835    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2836    return false;
2837  } else if (have_pending_runtime_throw_failure_) {
2838    /* checking interpreter will throw, mark following code as unreachable */
2839    opcode_flags = Instruction::kThrow;
2840  }
2841  /*
2842   * If we didn't just set the result register, clear it out. This ensures that you can only use
2843   * "move-result" immediately after the result is set. (We could check this statically, but it's
2844   * not expensive and it makes our debugging output cleaner.)
2845   */
2846  if (!just_set_result) {
2847    work_line_->SetResultTypeToUnknown(this);
2848  }
2849
2850
2851
2852  /*
2853   * Handle "branch". Tag the branch target.
2854   *
2855   * NOTE: instructions like Instruction::EQZ provide information about the
2856   * state of the register when the branch is taken or not taken. For example,
2857   * somebody could get a reference field, check it for zero, and if the
2858   * branch is taken immediately store that register in a boolean field
2859   * since the value is known to be zero. We do not currently account for
2860   * that, and will reject the code.
2861   *
2862   * TODO: avoid re-fetching the branch target
2863   */
2864  if ((opcode_flags & Instruction::kBranch) != 0) {
2865    bool isConditional, selfOkay;
2866    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2867      /* should never happen after static verification */
2868      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2869      return false;
2870    }
2871    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2872    if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, work_insn_idx_ + branch_target)) {
2873      return false;
2874    }
2875    /* update branch target, set "changed" if appropriate */
2876    if (nullptr != branch_line.get()) {
2877      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2878        return false;
2879      }
2880    } else {
2881      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2882        return false;
2883      }
2884    }
2885  }
2886
2887  /*
2888   * Handle "switch". Tag all possible branch targets.
2889   *
2890   * We've already verified that the table is structurally sound, so we
2891   * just need to walk through and tag the targets.
2892   */
2893  if ((opcode_flags & Instruction::kSwitch) != 0) {
2894    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2895    const uint16_t* switch_insns = insns + offset_to_switch;
2896    int switch_count = switch_insns[1];
2897    int offset_to_targets, targ;
2898
2899    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2900      /* 0 = sig, 1 = count, 2/3 = first key */
2901      offset_to_targets = 4;
2902    } else {
2903      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2904      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2905      offset_to_targets = 2 + 2 * switch_count;
2906    }
2907
2908    /* verify each switch target */
2909    for (targ = 0; targ < switch_count; targ++) {
2910      int offset;
2911      uint32_t abs_offset;
2912
2913      /* offsets are 32-bit, and only partly endian-swapped */
2914      offset = switch_insns[offset_to_targets + targ * 2] |
2915         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2916      abs_offset = work_insn_idx_ + offset;
2917      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2918      if (!CheckNotMoveExceptionOrMoveResult(code_item_->insns_, abs_offset)) {
2919        return false;
2920      }
2921      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2922        return false;
2923      }
2924    }
2925  }
2926
2927  /*
2928   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2929   * "try" block when they throw, control transfers out of the method.)
2930   */
2931  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2932    bool has_catch_all_handler = false;
2933    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2934
2935    // Need the linker to try and resolve the handled class to check if it's Throwable.
2936    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2937
2938    for (; iterator.HasNext(); iterator.Next()) {
2939      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2940      if (handler_type_idx == DexFile::kDexNoIndex16) {
2941        has_catch_all_handler = true;
2942      } else {
2943        // It is also a catch-all if it is java.lang.Throwable.
2944        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, dex_cache_,
2945                                                   class_loader_);
2946        if (klass != nullptr) {
2947          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2948            has_catch_all_handler = true;
2949          }
2950        } else {
2951          // Clear exception.
2952          DCHECK(self_->IsExceptionPending());
2953          self_->ClearException();
2954        }
2955      }
2956      /*
2957       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2958       * "work_regs", because at runtime the exception will be thrown before the instruction
2959       * modifies any registers.
2960       */
2961      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2962        return false;
2963      }
2964    }
2965
2966    /*
2967     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2968     * instruction. This does apply to monitor-exit because of async exception handling.
2969     */
2970    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2971      /*
2972       * The state in work_line reflects the post-execution state. If the current instruction is a
2973       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2974       * it will do so before grabbing the lock).
2975       */
2976      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2977        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2978            << "expected to be within a catch-all for an instruction where a monitor is held";
2979        return false;
2980      }
2981    }
2982  }
2983
2984  /* Handle "continue". Tag the next consecutive instruction.
2985   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2986   *        because it changes work_line_ when performing peephole optimization
2987   *        and this change should not be used in those cases.
2988   */
2989  if ((opcode_flags & Instruction::kContinue) != 0) {
2990    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
2991    uint32_t next_insn_idx = work_insn_idx_ + inst->SizeInCodeUnits();
2992    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2993      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2994      return false;
2995    }
2996    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2997    // next instruction isn't one.
2998    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2999      return false;
3000    }
3001    if (nullptr != fallthrough_line.get()) {
3002      // Make workline consistent with fallthrough computed from peephole optimization.
3003      work_line_->CopyFromLine(fallthrough_line.get());
3004    }
3005    if (insn_flags_[next_insn_idx].IsReturn()) {
3006      // For returns we only care about the operand to the return, all other registers are dead.
3007      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
3008      Instruction::Code opcode = ret_inst->Opcode();
3009      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3010        SafelyMarkAllRegistersAsConflicts(this, work_line_.get());
3011      } else {
3012        if (opcode == Instruction::RETURN_WIDE) {
3013          work_line_->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
3014        } else {
3015          work_line_->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
3016        }
3017      }
3018    }
3019    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
3020    if (next_line != nullptr) {
3021      // Merge registers into what we have for the next instruction, and set the "changed" flag if
3022      // needed. If the merge changes the state of the registers then the work line will be
3023      // updated.
3024      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
3025        return false;
3026      }
3027    } else {
3028      /*
3029       * We're not recording register data for the next instruction, so we don't know what the
3030       * prior state was. We have to assume that something has changed and re-evaluate it.
3031       */
3032      insn_flags_[next_insn_idx].SetChanged();
3033    }
3034  }
3035
3036  /* If we're returning from the method, make sure monitor stack is empty. */
3037  if ((opcode_flags & Instruction::kReturn) != 0) {
3038    if (!work_line_->VerifyMonitorStackEmpty(this)) {
3039      return false;
3040    }
3041  }
3042
3043  /*
3044   * Update start_guess. Advance to the next instruction of that's
3045   * possible, otherwise use the branch target if one was found. If
3046   * neither of those exists we're in a return or throw; leave start_guess
3047   * alone and let the caller sort it out.
3048   */
3049  if ((opcode_flags & Instruction::kContinue) != 0) {
3050    DCHECK_EQ(Instruction::At(code_item_->insns_ + work_insn_idx_), inst);
3051    *start_guess = work_insn_idx_ + inst->SizeInCodeUnits();
3052  } else if ((opcode_flags & Instruction::kBranch) != 0) {
3053    /* we're still okay if branch_target is zero */
3054    *start_guess = work_insn_idx_ + branch_target;
3055  }
3056
3057  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
3058  DCHECK(insn_flags_[*start_guess].IsOpcode());
3059
3060  return true;
3061}  // NOLINT(readability/fn_size)
3062
3063const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
3064  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
3065  const RegType& referrer = GetDeclaringClass();
3066  mirror::Class* klass = dex_cache_->GetResolvedType(class_idx);
3067  const RegType& result = klass != nullptr ?
3068      reg_types_.FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes()) :
3069      reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3070  if (result.IsConflict()) {
3071    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
3072        << "' in " << referrer;
3073    return result;
3074  }
3075  if (klass == nullptr && !result.IsUnresolvedTypes()) {
3076    dex_cache_->SetResolvedType(class_idx, result.GetClass());
3077  }
3078  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
3079  // check at runtime if access is allowed and so pass here. If result is
3080  // primitive, skip the access check.
3081  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
3082      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
3083    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
3084                                    << referrer << "' -> '" << result << "'";
3085  }
3086  return result;
3087}
3088
3089const RegType& MethodVerifier::GetCaughtExceptionType() {
3090  const RegType* common_super = nullptr;
3091  if (code_item_->tries_size_ != 0) {
3092    const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
3093    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
3094    for (uint32_t i = 0; i < handlers_size; i++) {
3095      CatchHandlerIterator iterator(handlers_ptr);
3096      for (; iterator.HasNext(); iterator.Next()) {
3097        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
3098          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
3099            common_super = &reg_types_.JavaLangThrowable(false);
3100          } else {
3101            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
3102            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
3103              if (exception.IsUnresolvedTypes()) {
3104                // We don't know enough about the type. Fail here and let runtime handle it.
3105                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
3106                return exception;
3107              } else {
3108                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
3109                return reg_types_.Conflict();
3110              }
3111            } else if (common_super == nullptr) {
3112              common_super = &exception;
3113            } else if (common_super->Equals(exception)) {
3114              // odd case, but nothing to do
3115            } else {
3116              common_super = &common_super->Merge(exception, &reg_types_);
3117              if (FailOrAbort(this,
3118                              reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super),
3119                              "java.lang.Throwable is not assignable-from common_super at ",
3120                              work_insn_idx_)) {
3121                break;
3122              }
3123            }
3124          }
3125        }
3126      }
3127      handlers_ptr = iterator.EndDataPointer();
3128    }
3129  }
3130  if (common_super == nullptr) {
3131    /* no catch blocks, or no catches with classes we can find */
3132    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
3133    return reg_types_.Conflict();
3134  }
3135  return *common_super;
3136}
3137
3138mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
3139                                                               MethodType method_type) {
3140  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3141  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3142  if (klass_type.IsConflict()) {
3143    std::string append(" in attempt to access method ");
3144    append += dex_file_->GetMethodName(method_id);
3145    AppendToLastFailMessage(append);
3146    return nullptr;
3147  }
3148  if (klass_type.IsUnresolvedTypes()) {
3149    return nullptr;  // Can't resolve Class so no more to do here
3150  }
3151  mirror::Class* klass = klass_type.GetClass();
3152  const RegType& referrer = GetDeclaringClass();
3153  mirror::ArtMethod* res_method = dex_cache_->GetResolvedMethod(dex_method_idx);
3154  if (res_method == nullptr) {
3155    const char* name = dex_file_->GetMethodName(method_id);
3156    const Signature signature = dex_file_->GetMethodSignature(method_id);
3157
3158    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3159      res_method = klass->FindDirectMethod(name, signature);
3160    } else if (method_type == METHOD_INTERFACE) {
3161      res_method = klass->FindInterfaceMethod(name, signature);
3162    } else {
3163      res_method = klass->FindVirtualMethod(name, signature);
3164    }
3165    if (res_method != nullptr) {
3166      dex_cache_->SetResolvedMethod(dex_method_idx, res_method);
3167    } else {
3168      // If a virtual or interface method wasn't found with the expected type, look in
3169      // the direct methods. This can happen when the wrong invoke type is used or when
3170      // a class has changed, and will be flagged as an error in later checks.
3171      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3172        res_method = klass->FindDirectMethod(name, signature);
3173      }
3174      if (res_method == nullptr) {
3175        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3176                                     << PrettyDescriptor(klass) << "." << name
3177                                     << " " << signature;
3178        return nullptr;
3179      }
3180    }
3181  }
3182  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3183  // enforce them here.
3184  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3185    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3186                                      << PrettyMethod(res_method);
3187    return nullptr;
3188  }
3189  // Disallow any calls to class initializers.
3190  if (res_method->IsClassInitializer()) {
3191    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3192                                      << PrettyMethod(res_method);
3193    return nullptr;
3194  }
3195  // Check if access is allowed.
3196  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3197    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3198                                     << " from " << referrer << ")";
3199    return res_method;
3200  }
3201  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3202  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3203    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3204                                      << PrettyMethod(res_method);
3205    return nullptr;
3206  }
3207  // Check that interface methods match interface classes.
3208  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3209    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3210                                    << " is in an interface class " << PrettyClass(klass);
3211    return nullptr;
3212  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3213    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3214                                    << " is in a non-interface class " << PrettyClass(klass);
3215    return nullptr;
3216  }
3217  // See if the method type implied by the invoke instruction matches the access flags for the
3218  // target method.
3219  if ((method_type == METHOD_DIRECT && (!res_method->IsDirect() || res_method->IsStatic())) ||
3220      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3221      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3222      ) {
3223    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3224                                       " type of " << PrettyMethod(res_method);
3225    return nullptr;
3226  }
3227  return res_method;
3228}
3229
3230template <class T>
3231mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3232                                                                    MethodType method_type,
3233                                                                    bool is_range,
3234                                                                    mirror::ArtMethod* res_method) {
3235  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3236  // match the call to the signature. Also, we might be calling through an abstract method
3237  // definition (which doesn't have register count values).
3238  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3239  /* caught by static verifier */
3240  DCHECK(is_range || expected_args <= 5);
3241  if (expected_args > code_item_->outs_size_) {
3242    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3243        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3244    return nullptr;
3245  }
3246
3247  uint32_t arg[5];
3248  if (!is_range) {
3249    inst->GetVarArgs(arg);
3250  }
3251  uint32_t sig_registers = 0;
3252
3253  /*
3254   * Check the "this" argument, which must be an instance of the class that declared the method.
3255   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3256   * rigorous check here (which is okay since we have to do it at runtime).
3257   */
3258  if (method_type != METHOD_STATIC) {
3259    const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3260    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3261      CHECK(have_pending_hard_failure_);
3262      return nullptr;
3263    }
3264    if (actual_arg_type.IsUninitializedReference()) {
3265      if (res_method) {
3266        if (!res_method->IsConstructor()) {
3267          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3268          return nullptr;
3269        }
3270      } else {
3271        // Check whether the name of the called method is "<init>"
3272        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3273        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3274          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3275          return nullptr;
3276        }
3277      }
3278    }
3279    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3280      const RegType* res_method_class;
3281      if (res_method != nullptr) {
3282        mirror::Class* klass = res_method->GetDeclaringClass();
3283        std::string temp;
3284        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3285                                                 klass->CannotBeAssignedFromOtherTypes());
3286      } else {
3287        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3288        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3289        res_method_class = &reg_types_.FromDescriptor(GetClassLoader(),
3290                                                      dex_file_->StringByTypeIdx(class_idx),
3291                                                      false);
3292      }
3293      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3294        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3295            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3296                << "' not instance of '" << *res_method_class << "'";
3297        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3298        // the compiler.
3299        if (have_pending_hard_failure_) {
3300          return nullptr;
3301        }
3302      }
3303    }
3304    sig_registers = 1;
3305  }
3306
3307  for ( ; it->HasNext(); it->Next()) {
3308    if (sig_registers >= expected_args) {
3309      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3310          " arguments, found " << sig_registers << " or more.";
3311      return nullptr;
3312    }
3313
3314    const char* param_descriptor = it->GetDescriptor();
3315
3316    if (param_descriptor == nullptr) {
3317      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3318          "component";
3319      return nullptr;
3320    }
3321
3322    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), param_descriptor, false);
3323    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3324        arg[sig_registers];
3325    if (reg_type.IsIntegralTypes()) {
3326      const RegType& src_type = work_line_->GetRegisterType(this, get_reg);
3327      if (!src_type.IsIntegralTypes()) {
3328        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3329            << " but expected " << reg_type;
3330        return res_method;
3331      }
3332    } else if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3333      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3334      // compiler.
3335      if (have_pending_hard_failure_) {
3336        return res_method;
3337      }
3338    }
3339    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3340  }
3341  if (expected_args != sig_registers) {
3342    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3343        " arguments, found " << sig_registers;
3344    return nullptr;
3345  }
3346  return res_method;
3347}
3348
3349void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3350                                                          MethodType method_type,
3351                                                          bool is_range) {
3352  // As the method may not have been resolved, make this static check against what we expect.
3353  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3354  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3355  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3356  DexFileParameterIterator it(*dex_file_,
3357                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3358  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3359                                                             nullptr);
3360}
3361
3362class MethodParamListDescriptorIterator {
3363 public:
3364  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3365      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3366      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3367  }
3368
3369  bool HasNext() {
3370    return pos_ < params_size_;
3371  }
3372
3373  void Next() {
3374    ++pos_;
3375  }
3376
3377  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3378    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3379  }
3380
3381 private:
3382  mirror::ArtMethod* res_method_;
3383  size_t pos_;
3384  const DexFile::TypeList* params_;
3385  const size_t params_size_;
3386};
3387
3388mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3389                                                             MethodType method_type,
3390                                                             bool is_range,
3391                                                             bool is_super) {
3392  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3393  // we're making.
3394  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3395
3396  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3397  if (res_method == nullptr) {  // error or class is unresolved
3398    // Check what we can statically.
3399    if (!have_pending_hard_failure_) {
3400      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3401    }
3402    return nullptr;
3403  }
3404
3405  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3406  // has a vtable entry for the target method.
3407  if (is_super) {
3408    DCHECK(method_type == METHOD_VIRTUAL);
3409    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3410    if (super.IsUnresolvedTypes()) {
3411      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3412                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3413                                   << " to super " << PrettyMethod(res_method);
3414      return nullptr;
3415    }
3416    mirror::Class* super_klass = super.GetClass();
3417    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3418      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3419                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3420                                   << " to super " << super
3421                                   << "." << res_method->GetName()
3422                                   << res_method->GetSignature();
3423      return nullptr;
3424    }
3425  }
3426
3427  // Process the target method's signature. This signature may or may not
3428  MethodParamListDescriptorIterator it(res_method);
3429  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3430                                                                             is_range, res_method);
3431}
3432
3433mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3434                                                         RegisterLine* reg_line, bool is_range) {
3435  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3436         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3437  const RegType& actual_arg_type = reg_line->GetInvocationThis(this, inst, is_range);
3438  if (!actual_arg_type.HasClass()) {
3439    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3440    return nullptr;
3441  }
3442  mirror::Class* klass = actual_arg_type.GetClass();
3443  mirror::Class* dispatch_class;
3444  if (klass->IsInterface()) {
3445    // Derive Object.class from Class.class.getSuperclass().
3446    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3447    if (FailOrAbort(this, object_klass->IsObjectClass(),
3448                    "Failed to find Object class in quickened invoke receiver",
3449                    work_insn_idx_)) {
3450      return nullptr;
3451    }
3452    dispatch_class = object_klass;
3453  } else {
3454    dispatch_class = klass;
3455  }
3456  if (FailOrAbort(this, dispatch_class->HasVTable(),
3457                  "Receiver class has no vtable for quickened invoke at ",
3458                  work_insn_idx_)) {
3459    return nullptr;
3460  }
3461  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3462  if (FailOrAbort(this, static_cast<int32_t>(vtable_index) < dispatch_class->GetVTableLength(),
3463                  "Receiver class has not enough vtable slots for quickened invoke at ",
3464                  work_insn_idx_)) {
3465    return nullptr;
3466  }
3467  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3468  if (FailOrAbort(this, !self_->IsExceptionPending(),
3469                  "Unexpected exception pending for quickened invoke at ",
3470                  work_insn_idx_)) {
3471    return nullptr;
3472  }
3473  return res_method;
3474}
3475
3476mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3477                                                                bool is_range) {
3478  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_)
3479      << PrettyMethod(dex_method_idx_, *dex_file_, true) << "@" << work_insn_idx_;
3480
3481  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3482                                                             is_range);
3483  if (res_method == nullptr) {
3484    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3485    return nullptr;
3486  }
3487  if (FailOrAbort(this, !res_method->IsDirect(), "Quick-invoked method is direct at ",
3488                  work_insn_idx_)) {
3489    return nullptr;
3490  }
3491  if (FailOrAbort(this, !res_method->IsStatic(), "Quick-invoked method is static at ",
3492                  work_insn_idx_)) {
3493    return nullptr;
3494  }
3495
3496  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3497  // match the call to the signature. Also, we might be calling through an abstract method
3498  // definition (which doesn't have register count values).
3499  const RegType& actual_arg_type = work_line_->GetInvocationThis(this, inst, is_range);
3500  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3501    return nullptr;
3502  }
3503  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3504  /* caught by static verifier */
3505  DCHECK(is_range || expected_args <= 5);
3506  if (expected_args > code_item_->outs_size_) {
3507    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3508        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3509    return nullptr;
3510  }
3511
3512  /*
3513   * Check the "this" argument, which must be an instance of the class that declared the method.
3514   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3515   * rigorous check here (which is okay since we have to do it at runtime).
3516   */
3517  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3518    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3519    return nullptr;
3520  }
3521  if (!actual_arg_type.IsZero()) {
3522    mirror::Class* klass = res_method->GetDeclaringClass();
3523    std::string temp;
3524    const RegType& res_method_class =
3525        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3526                             klass->CannotBeAssignedFromOtherTypes());
3527    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3528      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3529          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3530          << "' not instance of '" << res_method_class << "'";
3531      return nullptr;
3532    }
3533  }
3534  /*
3535   * Process the target method's signature. This signature may or may not
3536   * have been verified, so we can't assume it's properly formed.
3537   */
3538  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3539  size_t params_size = params == nullptr ? 0 : params->Size();
3540  uint32_t arg[5];
3541  if (!is_range) {
3542    inst->GetVarArgs(arg);
3543  }
3544  size_t actual_args = 1;
3545  for (size_t param_index = 0; param_index < params_size; param_index++) {
3546    if (actual_args >= expected_args) {
3547      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3548                                        << "'. Expected " << expected_args
3549                                         << " arguments, processing argument " << actual_args
3550                                        << " (where longs/doubles count twice).";
3551      return nullptr;
3552    }
3553    const char* descriptor =
3554        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3555    if (descriptor == nullptr) {
3556      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3557                                        << " missing signature component";
3558      return nullptr;
3559    }
3560    const RegType& reg_type = reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3561    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3562    if (!work_line_->VerifyRegisterType(this, get_reg, reg_type)) {
3563      return res_method;
3564    }
3565    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3566  }
3567  if (actual_args != expected_args) {
3568    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3569              << " expected " << expected_args << " arguments, found " << actual_args;
3570    return nullptr;
3571  } else {
3572    return res_method;
3573  }
3574}
3575
3576void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3577  uint32_t type_idx;
3578  if (!is_filled) {
3579    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3580    type_idx = inst->VRegC_22c();
3581  } else if (!is_range) {
3582    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3583    type_idx = inst->VRegB_35c();
3584  } else {
3585    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3586    type_idx = inst->VRegB_3rc();
3587  }
3588  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3589  if (res_type.IsConflict()) {  // bad class
3590    DCHECK_NE(failures_.size(), 0U);
3591  } else {
3592    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3593    if (!res_type.IsArrayTypes()) {
3594      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3595    } else if (!is_filled) {
3596      /* make sure "size" register is valid type */
3597      work_line_->VerifyRegisterType(this, inst->VRegB_22c(), reg_types_.Integer());
3598      /* set register type to array class */
3599      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3600      work_line_->SetRegisterType(this, inst->VRegA_22c(), precise_type);
3601    } else {
3602      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3603      // the list and fail. It's legal, if silly, for arg_count to be zero.
3604      const RegType& expected_type = reg_types_.GetComponentType(res_type, GetClassLoader());
3605      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3606      uint32_t arg[5];
3607      if (!is_range) {
3608        inst->GetVarArgs(arg);
3609      }
3610      for (size_t ui = 0; ui < arg_count; ui++) {
3611        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3612        if (!work_line_->VerifyRegisterType(this, get_reg, expected_type)) {
3613          work_line_->SetResultRegisterType(this, reg_types_.Conflict());
3614          return;
3615        }
3616      }
3617      // filled-array result goes into "result" register
3618      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3619      work_line_->SetResultRegisterType(this, precise_type);
3620    }
3621  }
3622}
3623
3624void MethodVerifier::VerifyAGet(const Instruction* inst,
3625                                const RegType& insn_type, bool is_primitive) {
3626  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3627  if (!index_type.IsArrayIndexTypes()) {
3628    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3629  } else {
3630    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3631    if (array_type.IsZero()) {
3632      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3633      // instruction type. TODO: have a proper notion of bottom here.
3634      if (!is_primitive || insn_type.IsCategory1Types()) {
3635        // Reference or category 1
3636        work_line_->SetRegisterType(this, inst->VRegA_23x(), reg_types_.Zero());
3637      } else {
3638        // Category 2
3639        work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(),
3640                                        reg_types_.FromCat2ConstLo(0, false),
3641                                        reg_types_.FromCat2ConstHi(0, false));
3642      }
3643    } else if (!array_type.IsArrayTypes()) {
3644      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3645    } else {
3646      /* verify the class */
3647      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3648      if (!component_type.IsReferenceTypes() && !is_primitive) {
3649        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3650            << " source for aget-object";
3651      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3652        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3653            << " source for category 1 aget";
3654      } else if (is_primitive && !insn_type.Equals(component_type) &&
3655                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3656                 (insn_type.IsLong() && component_type.IsDouble()))) {
3657        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3658            << " incompatible with aget of type " << insn_type;
3659      } else {
3660        // Use knowledge of the field type which is stronger than the type inferred from the
3661        // instruction, which can't differentiate object types and ints from floats, longs from
3662        // doubles.
3663        if (!component_type.IsLowHalf()) {
3664          work_line_->SetRegisterType(this, inst->VRegA_23x(), component_type);
3665        } else {
3666          work_line_->SetRegisterTypeWide(this, inst->VRegA_23x(), component_type,
3667                                          component_type.HighHalf(&reg_types_));
3668        }
3669      }
3670    }
3671  }
3672}
3673
3674void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3675                                        const uint32_t vregA) {
3676  // Primitive assignability rules are weaker than regular assignability rules.
3677  bool instruction_compatible;
3678  bool value_compatible;
3679  const RegType& value_type = work_line_->GetRegisterType(this, vregA);
3680  if (target_type.IsIntegralTypes()) {
3681    instruction_compatible = target_type.Equals(insn_type);
3682    value_compatible = value_type.IsIntegralTypes();
3683  } else if (target_type.IsFloat()) {
3684    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3685    value_compatible = value_type.IsFloatTypes();
3686  } else if (target_type.IsLong()) {
3687    instruction_compatible = insn_type.IsLong();
3688    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3689    // as target_type depends on the resolved type of the field.
3690    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3691      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3692      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3693    } else {
3694      value_compatible = false;
3695    }
3696  } else if (target_type.IsDouble()) {
3697    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3698    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3699    // as target_type depends on the resolved type of the field.
3700    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3701      const RegType& value_type_hi = work_line_->GetRegisterType(this, vregA + 1);
3702      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3703    } else {
3704      value_compatible = false;
3705    }
3706  } else {
3707    instruction_compatible = false;  // reference with primitive store
3708    value_compatible = false;  // unused
3709  }
3710  if (!instruction_compatible) {
3711    // This is a global failure rather than a class change failure as the instructions and
3712    // the descriptors for the type should have been consistent within the same file at
3713    // compile time.
3714    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3715        << "' but expected type '" << target_type << "'";
3716    return;
3717  }
3718  if (!value_compatible) {
3719    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3720        << " of type " << value_type << " but expected " << target_type << " for put";
3721    return;
3722  }
3723}
3724
3725void MethodVerifier::VerifyAPut(const Instruction* inst,
3726                                const RegType& insn_type, bool is_primitive) {
3727  const RegType& index_type = work_line_->GetRegisterType(this, inst->VRegC_23x());
3728  if (!index_type.IsArrayIndexTypes()) {
3729    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3730  } else {
3731    const RegType& array_type = work_line_->GetRegisterType(this, inst->VRegB_23x());
3732    if (array_type.IsZero()) {
3733      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3734      // instruction type.
3735    } else if (!array_type.IsArrayTypes()) {
3736      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3737    } else {
3738      const RegType& component_type = reg_types_.GetComponentType(array_type, GetClassLoader());
3739      const uint32_t vregA = inst->VRegA_23x();
3740      if (is_primitive) {
3741        VerifyPrimitivePut(component_type, insn_type, vregA);
3742      } else {
3743        if (!component_type.IsReferenceTypes()) {
3744          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3745              << " source for aput-object";
3746        } else {
3747          // The instruction agrees with the type of array, confirm the value to be stored does too
3748          // Note: we use the instruction type (rather than the component type) for aput-object as
3749          // incompatible classes will be caught at runtime as an array store exception
3750          work_line_->VerifyRegisterType(this, vregA, insn_type);
3751        }
3752      }
3753    }
3754  }
3755}
3756
3757mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3758  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3759  // Check access to class
3760  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3761  if (klass_type.IsConflict()) {  // bad class
3762    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3763                                         field_idx, dex_file_->GetFieldName(field_id),
3764                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3765    return nullptr;
3766  }
3767  if (klass_type.IsUnresolvedTypes()) {
3768    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3769  }
3770  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3771  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3772                                                          class_loader_);
3773  if (field == nullptr) {
3774    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3775              << dex_file_->GetFieldName(field_id) << ") in "
3776              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3777    DCHECK(self_->IsExceptionPending());
3778    self_->ClearException();
3779    return nullptr;
3780  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3781                                                  field->GetAccessFlags())) {
3782    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3783                                    << " from " << GetDeclaringClass();
3784    return nullptr;
3785  } else if (!field->IsStatic()) {
3786    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3787    return nullptr;
3788  }
3789  return field;
3790}
3791
3792mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3793  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3794  // Check access to class
3795  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3796  if (klass_type.IsConflict()) {
3797    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3798                                         field_idx, dex_file_->GetFieldName(field_id),
3799                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3800    return nullptr;
3801  }
3802  if (klass_type.IsUnresolvedTypes()) {
3803    return nullptr;  // Can't resolve Class so no more to do here
3804  }
3805  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3806  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, dex_cache_,
3807                                                          class_loader_);
3808  if (field == nullptr) {
3809    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3810              << dex_file_->GetFieldName(field_id) << ") in "
3811              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3812    DCHECK(self_->IsExceptionPending());
3813    self_->ClearException();
3814    return nullptr;
3815  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3816                                                  field->GetAccessFlags())) {
3817    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3818                                    << " from " << GetDeclaringClass();
3819    return nullptr;
3820  } else if (field->IsStatic()) {
3821    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3822                                    << " to not be static";
3823    return nullptr;
3824  } else if (obj_type.IsZero()) {
3825    // Cannot infer and check type, however, access will cause null pointer exception
3826    return field;
3827  } else if (!obj_type.IsReferenceTypes()) {
3828    // Trying to read a field from something that isn't a reference
3829    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3830                                      << "non-reference type " << obj_type;
3831    return nullptr;
3832  } else {
3833    mirror::Class* klass = field->GetDeclaringClass();
3834    const RegType& field_klass =
3835        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3836                             klass, klass->CannotBeAssignedFromOtherTypes());
3837    if (obj_type.IsUninitializedTypes() &&
3838        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3839            !field_klass.Equals(GetDeclaringClass()))) {
3840      // Field accesses through uninitialized references are only allowable for constructors where
3841      // the field is declared in this class
3842      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3843                                        << " of a not fully initialized object within the context"
3844                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3845      return nullptr;
3846    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3847      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3848      // of C1. For resolution to occur the declared class of the field must be compatible with
3849      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3850      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3851                                  << " from object of type " << obj_type;
3852      return nullptr;
3853    } else {
3854      return field;
3855    }
3856  }
3857}
3858
3859template <MethodVerifier::FieldAccessType kAccType>
3860void MethodVerifier::VerifyISFieldAccess(const Instruction* inst, const RegType& insn_type,
3861                                         bool is_primitive, bool is_static) {
3862  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3863  mirror::ArtField* field;
3864  if (is_static) {
3865    field = GetStaticField(field_idx);
3866  } else {
3867    const RegType& object_type = work_line_->GetRegisterType(this, inst->VRegB_22c());
3868    field = GetInstanceField(object_type, field_idx);
3869    if (UNLIKELY(have_pending_hard_failure_)) {
3870      return;
3871    }
3872  }
3873  const RegType* field_type = nullptr;
3874  if (field != nullptr) {
3875    if (kAccType == FieldAccessType::kAccPut) {
3876      if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3877        Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3878                                        << " from other class " << GetDeclaringClass();
3879        return;
3880      }
3881    }
3882
3883    mirror::Class* field_type_class;
3884    {
3885      StackHandleScope<1> hs(self_);
3886      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3887      field_type_class = h_field->GetType(can_load_classes_);
3888    }
3889    if (field_type_class != nullptr) {
3890      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3891                                         field_type_class->CannotBeAssignedFromOtherTypes());
3892    } else {
3893      DCHECK(!can_load_classes_ || self_->IsExceptionPending());
3894      self_->ClearException();
3895    }
3896  }
3897  if (field_type == nullptr) {
3898    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3899    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3900    field_type = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
3901  }
3902  DCHECK(field_type != nullptr);
3903  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3904  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
3905                "Unexpected third access type");
3906  if (kAccType == FieldAccessType::kAccPut) {
3907    // sput or iput.
3908    if (is_primitive) {
3909      VerifyPrimitivePut(*field_type, insn_type, vregA);
3910    } else {
3911      if (!insn_type.IsAssignableFrom(*field_type)) {
3912        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3913                                                << " to be compatible with type '" << insn_type
3914                                                << "' but found type '" << *field_type
3915                                                << "' in put-object";
3916        return;
3917      }
3918      work_line_->VerifyRegisterType(this, vregA, *field_type);
3919    }
3920  } else if (kAccType == FieldAccessType::kAccGet) {
3921    // sget or iget.
3922    if (is_primitive) {
3923      if (field_type->Equals(insn_type) ||
3924          (field_type->IsFloat() && insn_type.IsInteger()) ||
3925          (field_type->IsDouble() && insn_type.IsLong())) {
3926        // expected that read is of the correct primitive type or that int reads are reading
3927        // floats or long reads are reading doubles
3928      } else {
3929        // This is a global failure rather than a class change failure as the instructions and
3930        // the descriptors for the type should have been consistent within the same file at
3931        // compile time
3932        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3933                                          << " to be of type '" << insn_type
3934                                          << "' but found type '" << *field_type << "' in get";
3935        return;
3936      }
3937    } else {
3938      if (!insn_type.IsAssignableFrom(*field_type)) {
3939        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3940                                          << " to be compatible with type '" << insn_type
3941                                          << "' but found type '" << *field_type
3942                                          << "' in get-object";
3943        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
3944        return;
3945      }
3946    }
3947    if (!field_type->IsLowHalf()) {
3948      work_line_->SetRegisterType(this, vregA, *field_type);
3949    } else {
3950      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
3951    }
3952  } else {
3953    LOG(FATAL) << "Unexpected case.";
3954  }
3955}
3956
3957mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3958                                                      RegisterLine* reg_line) {
3959  DCHECK(IsInstructionIGetQuickOrIPutQuick(inst->Opcode())) << inst->Opcode();
3960  const RegType& object_type = reg_line->GetRegisterType(this, inst->VRegB_22c());
3961  if (!object_type.HasClass()) {
3962    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3963    return nullptr;
3964  }
3965  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3966  mirror::ArtField* const f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3967                                                                            field_offset);
3968  DCHECK_EQ(f->GetOffset().Uint32Value(), field_offset);
3969  if (f == nullptr) {
3970    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3971                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3972  }
3973  return f;
3974}
3975
3976template <MethodVerifier::FieldAccessType kAccType>
3977void MethodVerifier::VerifyQuickFieldAccess(const Instruction* inst, const RegType& insn_type,
3978                                            bool is_primitive) {
3979  DCHECK(Runtime::Current()->IsStarted() || verify_to_dump_);
3980
3981  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3982  if (field == nullptr) {
3983    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3984    return;
3985  }
3986
3987  // For an IPUT_QUICK, we now test for final flag of the field.
3988  if (kAccType == FieldAccessType::kAccPut) {
3989    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3990      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3991                                      << " from other class " << GetDeclaringClass();
3992      return;
3993    }
3994  }
3995
3996  // Get the field type.
3997  const RegType* field_type;
3998  {
3999    mirror::Class* field_type_class;
4000    {
4001      StackHandleScope<1> hs(Thread::Current());
4002      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
4003      field_type_class = h_field->GetType(can_load_classes_);
4004    }
4005
4006    if (field_type_class != nullptr) {
4007      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
4008                                         field_type_class->CannotBeAssignedFromOtherTypes());
4009    } else {
4010      Thread* self = Thread::Current();
4011      DCHECK(!can_load_classes_ || self->IsExceptionPending());
4012      self->ClearException();
4013      field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
4014                                              field->GetTypeDescriptor(), false);
4015    }
4016    if (field_type == nullptr) {
4017      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field type from " << inst->Name();
4018      return;
4019    }
4020  }
4021
4022  const uint32_t vregA = inst->VRegA_22c();
4023  static_assert(kAccType == FieldAccessType::kAccPut || kAccType == FieldAccessType::kAccGet,
4024                "Unexpected third access type");
4025  if (kAccType == FieldAccessType::kAccPut) {
4026    if (is_primitive) {
4027      // Primitive field assignability rules are weaker than regular assignability rules
4028      bool instruction_compatible;
4029      bool value_compatible;
4030      const RegType& value_type = work_line_->GetRegisterType(this, vregA);
4031      if (field_type->IsIntegralTypes()) {
4032        instruction_compatible = insn_type.IsIntegralTypes();
4033        value_compatible = value_type.IsIntegralTypes();
4034      } else if (field_type->IsFloat()) {
4035        instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
4036        value_compatible = value_type.IsFloatTypes();
4037      } else if (field_type->IsLong()) {
4038        instruction_compatible = insn_type.IsLong();
4039        value_compatible = value_type.IsLongTypes();
4040      } else if (field_type->IsDouble()) {
4041        instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
4042        value_compatible = value_type.IsDoubleTypes();
4043      } else {
4044        instruction_compatible = false;  // reference field with primitive store
4045        value_compatible = false;  // unused
4046      }
4047      if (!instruction_compatible) {
4048        // This is a global failure rather than a class change failure as the instructions and
4049        // the descriptors for the type should have been consistent within the same file at
4050        // compile time
4051        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4052                                          << " to be of type '" << insn_type
4053                                          << "' but found type '" << *field_type
4054                                          << "' in put";
4055        return;
4056      }
4057      if (!value_compatible) {
4058        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
4059            << " of type " << value_type
4060            << " but expected " << *field_type
4061            << " for store to " << PrettyField(field) << " in put";
4062        return;
4063      }
4064    } else {
4065      if (!insn_type.IsAssignableFrom(*field_type)) {
4066        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4067                                          << " to be compatible with type '" << insn_type
4068                                          << "' but found type '" << *field_type
4069                                          << "' in put-object";
4070        return;
4071      }
4072      work_line_->VerifyRegisterType(this, vregA, *field_type);
4073    }
4074  } else if (kAccType == FieldAccessType::kAccGet) {
4075    if (is_primitive) {
4076      if (field_type->Equals(insn_type) ||
4077          (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
4078          (field_type->IsDouble() && insn_type.IsLongTypes())) {
4079        // expected that read is of the correct primitive type or that int reads are reading
4080        // floats or long reads are reading doubles
4081      } else {
4082        // This is a global failure rather than a class change failure as the instructions and
4083        // the descriptors for the type should have been consistent within the same file at
4084        // compile time
4085        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
4086                                          << " to be of type '" << insn_type
4087                                          << "' but found type '" << *field_type << "' in Get";
4088        return;
4089      }
4090    } else {
4091      if (!insn_type.IsAssignableFrom(*field_type)) {
4092        Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
4093                                          << " to be compatible with type '" << insn_type
4094                                          << "' but found type '" << *field_type
4095                                          << "' in get-object";
4096        work_line_->SetRegisterType(this, vregA, reg_types_.Conflict());
4097        return;
4098      }
4099    }
4100    if (!field_type->IsLowHalf()) {
4101      work_line_->SetRegisterType(this, vregA, *field_type);
4102    } else {
4103      work_line_->SetRegisterTypeWide(this, vregA, *field_type, field_type->HighHalf(&reg_types_));
4104    }
4105  } else {
4106    LOG(FATAL) << "Unexpected case.";
4107  }
4108}
4109
4110bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
4111  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
4112    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
4113    return false;
4114  }
4115  return true;
4116}
4117
4118bool MethodVerifier::CheckNotMoveResult(const uint16_t* insns, int insn_idx) {
4119  if (((insns[insn_idx] & 0xff) >= Instruction::MOVE_RESULT) &&
4120      ((insns[insn_idx] & 0xff) <= Instruction::MOVE_RESULT_OBJECT)) {
4121    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-result*";
4122    return false;
4123  }
4124  return true;
4125}
4126
4127bool MethodVerifier::CheckNotMoveExceptionOrMoveResult(const uint16_t* insns, int insn_idx) {
4128  return (CheckNotMoveException(insns, insn_idx) && CheckNotMoveResult(insns, insn_idx));
4129}
4130
4131bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
4132                                     bool update_merge_line) {
4133  bool changed = true;
4134  RegisterLine* target_line = reg_table_.GetLine(next_insn);
4135  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
4136    /*
4137     * We haven't processed this instruction before, and we haven't touched the registers here, so
4138     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
4139     * only way a register can transition out of "unknown", so this is not just an optimization.)
4140     */
4141    if (!insn_flags_[next_insn].IsReturn()) {
4142      target_line->CopyFromLine(merge_line);
4143    } else {
4144      // Verify that the monitor stack is empty on return.
4145      if (!merge_line->VerifyMonitorStackEmpty(this)) {
4146        return false;
4147      }
4148      // For returns we only care about the operand to the return, all other registers are dead.
4149      // Initialize them as conflicts so they don't add to GC and deoptimization information.
4150      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
4151      Instruction::Code opcode = ret_inst->Opcode();
4152      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
4153        SafelyMarkAllRegistersAsConflicts(this, target_line);
4154      } else {
4155        target_line->CopyFromLine(merge_line);
4156        if (opcode == Instruction::RETURN_WIDE) {
4157          target_line->MarkAllRegistersAsConflictsExceptWide(this, ret_inst->VRegA_11x());
4158        } else {
4159          target_line->MarkAllRegistersAsConflictsExcept(this, ret_inst->VRegA_11x());
4160        }
4161      }
4162    }
4163  } else {
4164    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4165                                 RegisterLine::Create(target_line->NumRegs(), this) :
4166                                 nullptr);
4167    if (gDebugVerify) {
4168      copy->CopyFromLine(target_line);
4169    }
4170    changed = target_line->MergeRegisters(this, merge_line);
4171    if (have_pending_hard_failure_) {
4172      return false;
4173    }
4174    if (gDebugVerify && changed) {
4175      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4176                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4177                      << copy->Dump(this) << "  MERGE\n"
4178                      << merge_line->Dump(this) << "  ==\n"
4179                      << target_line->Dump(this) << "\n";
4180    }
4181    if (update_merge_line && changed) {
4182      merge_line->CopyFromLine(target_line);
4183    }
4184  }
4185  if (changed) {
4186    insn_flags_[next_insn].SetChanged();
4187  }
4188  return true;
4189}
4190
4191InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4192  return &insn_flags_[work_insn_idx_];
4193}
4194
4195const RegType& MethodVerifier::GetMethodReturnType() {
4196  if (return_type_ == nullptr) {
4197    if (mirror_method_.Get() != nullptr) {
4198      mirror::Class* return_type_class = mirror_method_->GetReturnType(can_load_classes_);
4199      if (return_type_class != nullptr) {
4200        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4201                                             return_type_class,
4202                                             return_type_class->CannotBeAssignedFromOtherTypes());
4203      } else {
4204        DCHECK(!can_load_classes_ || self_->IsExceptionPending());
4205        self_->ClearException();
4206      }
4207    }
4208    if (return_type_ == nullptr) {
4209      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4210      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4211      uint16_t return_type_idx = proto_id.return_type_idx_;
4212      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4213      return_type_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4214    }
4215  }
4216  return *return_type_;
4217}
4218
4219const RegType& MethodVerifier::GetDeclaringClass() {
4220  if (declaring_class_ == nullptr) {
4221    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4222    const char* descriptor
4223        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4224    if (mirror_method_.Get() != nullptr) {
4225      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4226      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4227                                               klass->CannotBeAssignedFromOtherTypes());
4228    } else {
4229      declaring_class_ = &reg_types_.FromDescriptor(GetClassLoader(), descriptor, false);
4230    }
4231  }
4232  return *declaring_class_;
4233}
4234
4235std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4236  RegisterLine* line = reg_table_.GetLine(dex_pc);
4237  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4238  std::vector<int32_t> result;
4239  for (size_t i = 0; i < line->NumRegs(); ++i) {
4240    const RegType& type = line->GetRegisterType(this, i);
4241    if (type.IsConstant()) {
4242      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4243      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4244      result.push_back(const_val->ConstantValue());
4245    } else if (type.IsConstantLo()) {
4246      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4247      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4248      result.push_back(const_val->ConstantValueLo());
4249    } else if (type.IsConstantHi()) {
4250      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4251      const ConstantType* const_val = down_cast<const ConstantType*>(&type);
4252      result.push_back(const_val->ConstantValueHi());
4253    } else if (type.IsIntegralTypes()) {
4254      result.push_back(kIntVReg);
4255      result.push_back(0);
4256    } else if (type.IsFloat()) {
4257      result.push_back(kFloatVReg);
4258      result.push_back(0);
4259    } else if (type.IsLong()) {
4260      result.push_back(kLongLoVReg);
4261      result.push_back(0);
4262      result.push_back(kLongHiVReg);
4263      result.push_back(0);
4264      ++i;
4265    } else if (type.IsDouble()) {
4266      result.push_back(kDoubleLoVReg);
4267      result.push_back(0);
4268      result.push_back(kDoubleHiVReg);
4269      result.push_back(0);
4270      ++i;
4271    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4272      result.push_back(kUndefined);
4273      result.push_back(0);
4274    } else {
4275      CHECK(type.IsNonZeroReferenceTypes());
4276      result.push_back(kReferenceVReg);
4277      result.push_back(0);
4278    }
4279  }
4280  return result;
4281}
4282
4283const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4284  if (precise) {
4285    // Precise constant type.
4286    return reg_types_.FromCat1Const(value, true);
4287  } else {
4288    // Imprecise constant type.
4289    if (value < -32768) {
4290      return reg_types_.IntConstant();
4291    } else if (value < -128) {
4292      return reg_types_.ShortConstant();
4293    } else if (value < 0) {
4294      return reg_types_.ByteConstant();
4295    } else if (value == 0) {
4296      return reg_types_.Zero();
4297    } else if (value == 1) {
4298      return reg_types_.One();
4299    } else if (value < 128) {
4300      return reg_types_.PosByteConstant();
4301    } else if (value < 32768) {
4302      return reg_types_.PosShortConstant();
4303    } else if (value < 65536) {
4304      return reg_types_.CharConstant();
4305    } else {
4306      return reg_types_.IntConstant();
4307    }
4308  }
4309}
4310
4311void MethodVerifier::Init() {
4312  art::verifier::RegTypeCache::Init();
4313}
4314
4315void MethodVerifier::Shutdown() {
4316  verifier::RegTypeCache::ShutDown();
4317}
4318
4319void MethodVerifier::VisitStaticRoots(RootCallback* callback, void* arg) {
4320  RegTypeCache::VisitStaticRoots(callback, arg);
4321}
4322
4323void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4324  reg_types_.VisitRoots(callback, arg);
4325}
4326
4327}  // namespace verifier
4328}  // namespace art
4329