method_verifier.cc revision 639815628cf52a4a944a4322cb09da37cded2de9
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "gc/accounting/card_table-inl.h"
29#include "indenter.h"
30#include "intern_table.h"
31#include "leb128.h"
32#include "mirror/art_field-inl.h"
33#include "mirror/art_method-inl.h"
34#include "mirror/class.h"
35#include "mirror/class-inl.h"
36#include "mirror/dex_cache-inl.h"
37#include "mirror/object-inl.h"
38#include "mirror/object_array-inl.h"
39#include "object_utils.h"
40#include "register_line-inl.h"
41#include "runtime.h"
42#include "scoped_thread_state_change.h"
43#include "sirt_ref-inl.h"
44#include "verifier/dex_gc_map.h"
45
46namespace art {
47namespace verifier {
48
49static const bool gDebugVerify = false;
50// TODO: Add a constant to method_verifier to turn on verbose logging?
51
52void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
53                                 uint32_t insns_size, uint16_t registers_size,
54                                 MethodVerifier* verifier) {
55  DCHECK_GT(insns_size, 0U);
56  register_lines_.reset(new RegisterLine*[insns_size]());
57  size_ = insns_size;
58  for (uint32_t i = 0; i < insns_size; i++) {
59    bool interesting = false;
60    switch (mode) {
61      case kTrackRegsAll:
62        interesting = flags[i].IsOpcode();
63        break;
64      case kTrackCompilerInterestPoints:
65        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
66        break;
67      case kTrackRegsBranches:
68        interesting = flags[i].IsBranchTarget();
69        break;
70      default:
71        break;
72    }
73    if (interesting) {
74      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
75    }
76  }
77}
78
79PcToRegisterLineTable::~PcToRegisterLineTable() {
80  for (size_t i = 0; i < size_; i++) {
81    delete register_lines_[i];
82    if (kIsDebugBuild) {
83      register_lines_[i] = nullptr;
84    }
85  }
86}
87
88MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
89                                                        bool allow_soft_failures,
90                                                        std::string* error) {
91  if (klass->IsVerified()) {
92    return kNoFailure;
93  }
94  bool early_failure = false;
95  std::string failure_message;
96  ClassHelper kh(klass);
97  const DexFile& dex_file = kh.GetDexFile();
98  const DexFile::ClassDef* class_def = kh.GetClassDef();
99  mirror::Class* super = klass->GetSuperClass();
100  if (super == NULL && strcmp("Ljava/lang/Object;", kh.GetDescriptor()) != 0) {
101    early_failure = true;
102    failure_message = " that has no super class";
103  } else if (super != NULL && super->IsFinal()) {
104    early_failure = true;
105    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
106  } else if (class_def == NULL) {
107    early_failure = true;
108    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
109  }
110  if (early_failure) {
111    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
112    if (Runtime::Current()->IsCompiler()) {
113      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
114      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
115    }
116    return kHardFailure;
117  }
118  Thread* self = Thread::Current();
119  SirtRef<mirror::DexCache> dex_cache(self, kh.GetDexCache());
120  SirtRef<mirror::ClassLoader> class_loader(self, klass->GetClassLoader());
121  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
122}
123
124MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
125                                                        SirtRef<mirror::DexCache>& dex_cache,
126                                                        SirtRef<mirror::ClassLoader>& class_loader,
127                                                        const DexFile::ClassDef* class_def,
128                                                        bool allow_soft_failures,
129                                                        std::string* error) {
130  DCHECK(class_def != nullptr);
131  const byte* class_data = dex_file->GetClassData(*class_def);
132  if (class_data == NULL) {
133    // empty class, probably a marker interface
134    return kNoFailure;
135  }
136  ClassDataItemIterator it(*dex_file, class_data);
137  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
138    it.Next();
139  }
140  size_t error_count = 0;
141  bool hard_fail = false;
142  ClassLinker* linker = Runtime::Current()->GetClassLinker();
143  int64_t previous_direct_method_idx = -1;
144  while (it.HasNextDirectMethod()) {
145    uint32_t method_idx = it.GetMemberIndex();
146    if (method_idx == previous_direct_method_idx) {
147      // smali can create dex files with two encoded_methods sharing the same method_idx
148      // http://code.google.com/p/smali/issues/detail?id=119
149      it.Next();
150      continue;
151    }
152    previous_direct_method_idx = method_idx;
153    InvokeType type = it.GetMethodInvokeType(*class_def);
154    mirror::ArtMethod* method =
155        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
156    if (method == NULL) {
157      DCHECK(Thread::Current()->IsExceptionPending());
158      // We couldn't resolve the method, but continue regardless.
159      Thread::Current()->ClearException();
160    }
161    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
162                                                      dex_file,
163                                                      dex_cache,
164                                                      class_loader,
165                                                      class_def,
166                                                      it.GetMethodCodeItem(),
167                                                      method,
168                                                      it.GetMemberAccessFlags(),
169                                                      allow_soft_failures);
170    if (result != kNoFailure) {
171      if (result == kHardFailure) {
172        hard_fail = true;
173        if (error_count > 0) {
174          *error += "\n";
175        }
176        *error = "Verifier rejected class ";
177        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
178        *error += " due to bad method ";
179        *error += PrettyMethod(method_idx, *dex_file);
180      }
181      ++error_count;
182    }
183    it.Next();
184  }
185  int64_t previous_virtual_method_idx = -1;
186  while (it.HasNextVirtualMethod()) {
187    uint32_t method_idx = it.GetMemberIndex();
188    if (method_idx == previous_virtual_method_idx) {
189      // smali can create dex files with two encoded_methods sharing the same method_idx
190      // http://code.google.com/p/smali/issues/detail?id=119
191      it.Next();
192      continue;
193    }
194    previous_virtual_method_idx = method_idx;
195    InvokeType type = it.GetMethodInvokeType(*class_def);
196    mirror::ArtMethod* method =
197        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader, NULL, type);
198    if (method == NULL) {
199      DCHECK(Thread::Current()->IsExceptionPending());
200      // We couldn't resolve the method, but continue regardless.
201      Thread::Current()->ClearException();
202    }
203    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
204                                                      dex_file,
205                                                      dex_cache,
206                                                      class_loader,
207                                                      class_def,
208                                                      it.GetMethodCodeItem(),
209                                                      method,
210                                                      it.GetMemberAccessFlags(),
211                                                      allow_soft_failures);
212    if (result != kNoFailure) {
213      if (result == kHardFailure) {
214        hard_fail = true;
215        if (error_count > 0) {
216          *error += "\n";
217        }
218        *error = "Verifier rejected class ";
219        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
220        *error += " due to bad method ";
221        *error += PrettyMethod(method_idx, *dex_file);
222      }
223      ++error_count;
224    }
225    it.Next();
226  }
227  if (error_count == 0) {
228    return kNoFailure;
229  } else {
230    return hard_fail ? kHardFailure : kSoftFailure;
231  }
232}
233
234MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
235                                                         const DexFile* dex_file,
236                                                         SirtRef<mirror::DexCache>& dex_cache,
237                                                         SirtRef<mirror::ClassLoader>& class_loader,
238                                                         const DexFile::ClassDef* class_def,
239                                                         const DexFile::CodeItem* code_item,
240                                                         mirror::ArtMethod* method,
241                                                         uint32_t method_access_flags,
242                                                         bool allow_soft_failures) {
243  MethodVerifier::FailureKind result = kNoFailure;
244  uint64_t start_ns = NanoTime();
245
246  MethodVerifier verifier_(dex_file, &dex_cache, &class_loader, class_def, code_item,
247                           method_idx, method, method_access_flags, true, allow_soft_failures);
248  if (verifier_.Verify()) {
249    // Verification completed, however failures may be pending that didn't cause the verification
250    // to hard fail.
251    CHECK(!verifier_.have_pending_hard_failure_);
252    if (verifier_.failures_.size() != 0) {
253      if (VLOG_IS_ON(verifier)) {
254          verifier_.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
255                                << PrettyMethod(method_idx, *dex_file) << "\n");
256      }
257      result = kSoftFailure;
258    }
259  } else {
260    // Bad method data.
261    CHECK_NE(verifier_.failures_.size(), 0U);
262    CHECK(verifier_.have_pending_hard_failure_);
263    verifier_.DumpFailures(LOG(INFO) << "Verification error in "
264                                    << PrettyMethod(method_idx, *dex_file) << "\n");
265    if (gDebugVerify) {
266      std::cout << "\n" << verifier_.info_messages_.str();
267      verifier_.Dump(std::cout);
268    }
269    result = kHardFailure;
270  }
271  uint64_t duration_ns = NanoTime() - start_ns;
272  if (duration_ns > MsToNs(100)) {
273    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
274                 << " took " << PrettyDuration(duration_ns);
275  }
276  return result;
277}
278
279void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
280                                         const DexFile* dex_file,
281                                         SirtRef<mirror::DexCache>& dex_cache,
282                                         SirtRef<mirror::ClassLoader>& class_loader,
283                                         const DexFile::ClassDef* class_def,
284                                         const DexFile::CodeItem* code_item,
285                                         mirror::ArtMethod* method,
286                                         uint32_t method_access_flags) {
287  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
288                          dex_method_idx, method, method_access_flags, true, true);
289  verifier.Verify();
290  verifier.DumpFailures(os);
291  os << verifier.info_messages_.str();
292  verifier.Dump(os);
293}
294
295MethodVerifier::MethodVerifier(const DexFile* dex_file, SirtRef<mirror::DexCache>* dex_cache,
296                               SirtRef<mirror::ClassLoader>* class_loader,
297                               const DexFile::ClassDef* class_def,
298                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
299                               mirror::ArtMethod* method, uint32_t method_access_flags,
300                               bool can_load_classes, bool allow_soft_failures)
301    : reg_types_(can_load_classes),
302      work_insn_idx_(-1),
303      dex_method_idx_(dex_method_idx),
304      mirror_method_(method),
305      method_access_flags_(method_access_flags),
306      return_type_(nullptr),
307      dex_file_(dex_file),
308      dex_cache_(dex_cache),
309      class_loader_(class_loader),
310      class_def_(class_def),
311      code_item_(code_item),
312      declaring_class_(NULL),
313      interesting_dex_pc_(-1),
314      monitor_enter_dex_pcs_(nullptr),
315      have_pending_hard_failure_(false),
316      have_pending_runtime_throw_failure_(false),
317      new_instance_count_(0),
318      monitor_enter_count_(0),
319      can_load_classes_(can_load_classes),
320      allow_soft_failures_(allow_soft_failures),
321      has_check_casts_(false),
322      has_virtual_or_interface_invokes_(false) {
323  Runtime::Current()->AddMethodVerifier(this);
324  DCHECK(class_def != nullptr);
325}
326
327MethodVerifier::~MethodVerifier() {
328  Runtime::Current()->RemoveMethodVerifier(this);
329  STLDeleteElements(&failure_messages_);
330}
331
332void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
333                                      std::vector<uint32_t>& monitor_enter_dex_pcs) {
334  MethodHelper mh(m);
335  Thread* self = Thread::Current();
336  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
337  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
338  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
339                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
340                          true);
341  verifier.interesting_dex_pc_ = dex_pc;
342  verifier.monitor_enter_dex_pcs_ = &monitor_enter_dex_pcs;
343  verifier.FindLocksAtDexPc();
344}
345
346void MethodVerifier::FindLocksAtDexPc() {
347  CHECK(monitor_enter_dex_pcs_ != NULL);
348  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
349
350  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
351  // verification. In practice, the phase we want relies on data structures set up by all the
352  // earlier passes, so we just run the full method verification and bail out early when we've
353  // got what we wanted.
354  Verify();
355}
356
357mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
358                                                        uint32_t dex_pc) {
359  MethodHelper mh(m);
360  Thread* self = Thread::Current();
361  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
362  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
363  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
364                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
365                          true);
366  return verifier.FindAccessedFieldAtDexPc(dex_pc);
367}
368
369mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
370  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
371
372  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
373  // verification. In practice, the phase we want relies on data structures set up by all the
374  // earlier passes, so we just run the full method verification and bail out early when we've
375  // got what we wanted.
376  bool success = Verify();
377  if (!success) {
378    return NULL;
379  }
380  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
381  if (register_line == NULL) {
382    return NULL;
383  }
384  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
385  return GetQuickFieldAccess(inst, register_line);
386}
387
388mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
389                                                            uint32_t dex_pc) {
390  MethodHelper mh(m);
391  Thread* self = Thread::Current();
392  SirtRef<mirror::DexCache> dex_cache(self, mh.GetDexCache());
393  SirtRef<mirror::ClassLoader> class_loader(self, mh.GetClassLoader());
394  MethodVerifier verifier(&mh.GetDexFile(), &dex_cache, &class_loader, &mh.GetClassDef(),
395                          mh.GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
396                          true);
397  return verifier.FindInvokedMethodAtDexPc(dex_pc);
398}
399
400mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
401  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
402
403  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
404  // verification. In practice, the phase we want relies on data structures set up by all the
405  // earlier passes, so we just run the full method verification and bail out early when we've
406  // got what we wanted.
407  bool success = Verify();
408  if (!success) {
409    return NULL;
410  }
411  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
412  if (register_line == NULL) {
413    return NULL;
414  }
415  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
416  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
417  return GetQuickInvokedMethod(inst, register_line, is_range);
418}
419
420bool MethodVerifier::Verify() {
421  // If there aren't any instructions, make sure that's expected, then exit successfully.
422  if (code_item_ == NULL) {
423    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
424      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
425      return false;
426    } else {
427      return true;
428    }
429  }
430  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
431  if (code_item_->ins_size_ > code_item_->registers_size_) {
432    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
433                                      << " regs=" << code_item_->registers_size_;
434    return false;
435  }
436  // Allocate and initialize an array to hold instruction data.
437  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
438  // Run through the instructions and see if the width checks out.
439  bool result = ComputeWidthsAndCountOps();
440  // Flag instructions guarded by a "try" block and check exception handlers.
441  result = result && ScanTryCatchBlocks();
442  // Perform static instruction verification.
443  result = result && VerifyInstructions();
444  // Perform code-flow analysis and return.
445  result = result && VerifyCodeFlow();
446  // Compute information for compiler.
447  if (result && Runtime::Current()->IsCompiler()) {
448    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
449  }
450  return result;
451}
452
453std::ostream& MethodVerifier::Fail(VerifyError error) {
454  switch (error) {
455    case VERIFY_ERROR_NO_CLASS:
456    case VERIFY_ERROR_NO_FIELD:
457    case VERIFY_ERROR_NO_METHOD:
458    case VERIFY_ERROR_ACCESS_CLASS:
459    case VERIFY_ERROR_ACCESS_FIELD:
460    case VERIFY_ERROR_ACCESS_METHOD:
461    case VERIFY_ERROR_INSTANTIATION:
462    case VERIFY_ERROR_CLASS_CHANGE:
463      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
464        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
465        // class change and instantiation errors into soft verification errors so that we re-verify
466        // at runtime. We may fail to find or to agree on access because of not yet available class
467        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
468        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
469        // paths" that dynamically perform the verification and cause the behavior to be that akin
470        // to an interpreter.
471        error = VERIFY_ERROR_BAD_CLASS_SOFT;
472      } else {
473        // If we fail again at runtime, mark that this instruction would throw and force this
474        // method to be executed using the interpreter with checks.
475        have_pending_runtime_throw_failure_ = true;
476      }
477      break;
478      // Indication that verification should be retried at runtime.
479    case VERIFY_ERROR_BAD_CLASS_SOFT:
480      if (!allow_soft_failures_) {
481        have_pending_hard_failure_ = true;
482      }
483      break;
484      // Hard verification failures at compile time will still fail at runtime, so the class is
485      // marked as rejected to prevent it from being compiled.
486    case VERIFY_ERROR_BAD_CLASS_HARD: {
487      if (Runtime::Current()->IsCompiler()) {
488        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
489        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
490      }
491      have_pending_hard_failure_ = true;
492      break;
493    }
494  }
495  failures_.push_back(error);
496  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
497                                    work_insn_idx_));
498  std::ostringstream* failure_message = new std::ostringstream(location);
499  failure_messages_.push_back(failure_message);
500  return *failure_message;
501}
502
503void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
504  size_t failure_num = failure_messages_.size();
505  DCHECK_NE(failure_num, 0U);
506  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
507  prepend += last_fail_message->str();
508  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
509  delete last_fail_message;
510}
511
512void MethodVerifier::AppendToLastFailMessage(std::string append) {
513  size_t failure_num = failure_messages_.size();
514  DCHECK_NE(failure_num, 0U);
515  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
516  (*last_fail_message) << append;
517}
518
519bool MethodVerifier::ComputeWidthsAndCountOps() {
520  const uint16_t* insns = code_item_->insns_;
521  size_t insns_size = code_item_->insns_size_in_code_units_;
522  const Instruction* inst = Instruction::At(insns);
523  size_t new_instance_count = 0;
524  size_t monitor_enter_count = 0;
525  size_t dex_pc = 0;
526
527  while (dex_pc < insns_size) {
528    Instruction::Code opcode = inst->Opcode();
529    switch (opcode) {
530      case Instruction::APUT_OBJECT:
531      case Instruction::CHECK_CAST:
532        has_check_casts_ = true;
533        break;
534      case Instruction::INVOKE_VIRTUAL:
535      case Instruction::INVOKE_VIRTUAL_RANGE:
536      case Instruction::INVOKE_INTERFACE:
537      case Instruction::INVOKE_INTERFACE_RANGE:
538        has_virtual_or_interface_invokes_ = true;
539        break;
540      case Instruction::MONITOR_ENTER:
541        monitor_enter_count++;
542        break;
543      case Instruction::NEW_INSTANCE:
544        new_instance_count++;
545        break;
546      default:
547        break;
548    }
549    size_t inst_size = inst->SizeInCodeUnits();
550    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
551    dex_pc += inst_size;
552    inst = inst->Next();
553  }
554
555  if (dex_pc != insns_size) {
556    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
557                                      << dex_pc << " vs. " << insns_size << ")";
558    return false;
559  }
560
561  new_instance_count_ = new_instance_count;
562  monitor_enter_count_ = monitor_enter_count;
563  return true;
564}
565
566bool MethodVerifier::ScanTryCatchBlocks() {
567  uint32_t tries_size = code_item_->tries_size_;
568  if (tries_size == 0) {
569    return true;
570  }
571  uint32_t insns_size = code_item_->insns_size_in_code_units_;
572  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
573
574  for (uint32_t idx = 0; idx < tries_size; idx++) {
575    const DexFile::TryItem* try_item = &tries[idx];
576    uint32_t start = try_item->start_addr_;
577    uint32_t end = start + try_item->insn_count_;
578    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
579      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
580                                        << " endAddr=" << end << " (size=" << insns_size << ")";
581      return false;
582    }
583    if (!insn_flags_[start].IsOpcode()) {
584      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
585          << "'try' block starts inside an instruction (" << start << ")";
586      return false;
587    }
588    for (uint32_t dex_pc = start; dex_pc < end;
589        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
590      insn_flags_[dex_pc].SetInTry();
591    }
592  }
593  // Iterate over each of the handlers to verify target addresses.
594  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
595  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
596  ClassLinker* linker = Runtime::Current()->GetClassLinker();
597  for (uint32_t idx = 0; idx < handlers_size; idx++) {
598    CatchHandlerIterator iterator(handlers_ptr);
599    for (; iterator.HasNext(); iterator.Next()) {
600      uint32_t dex_pc= iterator.GetHandlerAddress();
601      if (!insn_flags_[dex_pc].IsOpcode()) {
602        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
603            << "exception handler starts at bad address (" << dex_pc << ")";
604        return false;
605      }
606      insn_flags_[dex_pc].SetBranchTarget();
607      // Ensure exception types are resolved so that they don't need resolution to be delivered,
608      // unresolved exception types will be ignored by exception delivery
609      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
610        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
611                                                            iterator.GetHandlerTypeIndex(),
612                                                            *dex_cache_, *class_loader_);
613        if (exception_type == NULL) {
614          DCHECK(Thread::Current()->IsExceptionPending());
615          Thread::Current()->ClearException();
616        }
617      }
618    }
619    handlers_ptr = iterator.EndDataPointer();
620  }
621  return true;
622}
623
624bool MethodVerifier::VerifyInstructions() {
625  const Instruction* inst = Instruction::At(code_item_->insns_);
626
627  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
628  insn_flags_[0].SetBranchTarget();
629  insn_flags_[0].SetCompileTimeInfoPoint();
630
631  uint32_t insns_size = code_item_->insns_size_in_code_units_;
632  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
633    if (!VerifyInstruction(inst, dex_pc)) {
634      DCHECK_NE(failures_.size(), 0U);
635      return false;
636    }
637    /* Flag instructions that are garbage collection points */
638    // All invoke points are marked as "Throw" points already.
639    // We are relying on this to also count all the invokes as interesting.
640    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
641      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
642    } else if (inst->IsReturn()) {
643      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
644    }
645    dex_pc += inst->SizeInCodeUnits();
646    inst = inst->Next();
647  }
648  return true;
649}
650
651bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
652  DecodedInstruction dec_insn(inst);
653  bool result = true;
654  switch (inst->GetVerifyTypeArgumentA()) {
655    case Instruction::kVerifyRegA:
656      result = result && CheckRegisterIndex(dec_insn.vA);
657      break;
658    case Instruction::kVerifyRegAWide:
659      result = result && CheckWideRegisterIndex(dec_insn.vA);
660      break;
661  }
662  switch (inst->GetVerifyTypeArgumentB()) {
663    case Instruction::kVerifyRegB:
664      result = result && CheckRegisterIndex(dec_insn.vB);
665      break;
666    case Instruction::kVerifyRegBField:
667      result = result && CheckFieldIndex(dec_insn.vB);
668      break;
669    case Instruction::kVerifyRegBMethod:
670      result = result && CheckMethodIndex(dec_insn.vB);
671      break;
672    case Instruction::kVerifyRegBNewInstance:
673      result = result && CheckNewInstance(dec_insn.vB);
674      break;
675    case Instruction::kVerifyRegBString:
676      result = result && CheckStringIndex(dec_insn.vB);
677      break;
678    case Instruction::kVerifyRegBType:
679      result = result && CheckTypeIndex(dec_insn.vB);
680      break;
681    case Instruction::kVerifyRegBWide:
682      result = result && CheckWideRegisterIndex(dec_insn.vB);
683      break;
684  }
685  switch (inst->GetVerifyTypeArgumentC()) {
686    case Instruction::kVerifyRegC:
687      result = result && CheckRegisterIndex(dec_insn.vC);
688      break;
689    case Instruction::kVerifyRegCField:
690      result = result && CheckFieldIndex(dec_insn.vC);
691      break;
692    case Instruction::kVerifyRegCNewArray:
693      result = result && CheckNewArray(dec_insn.vC);
694      break;
695    case Instruction::kVerifyRegCType:
696      result = result && CheckTypeIndex(dec_insn.vC);
697      break;
698    case Instruction::kVerifyRegCWide:
699      result = result && CheckWideRegisterIndex(dec_insn.vC);
700      break;
701  }
702  switch (inst->GetVerifyExtraFlags()) {
703    case Instruction::kVerifyArrayData:
704      result = result && CheckArrayData(code_offset);
705      break;
706    case Instruction::kVerifyBranchTarget:
707      result = result && CheckBranchTarget(code_offset);
708      break;
709    case Instruction::kVerifySwitchTargets:
710      result = result && CheckSwitchTargets(code_offset);
711      break;
712    case Instruction::kVerifyVarArg:
713      result = result && CheckVarArgRegs(dec_insn.vA, dec_insn.arg);
714      break;
715    case Instruction::kVerifyVarArgRange:
716      result = result && CheckVarArgRangeRegs(dec_insn.vA, dec_insn.vC);
717      break;
718    case Instruction::kVerifyError:
719      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
720      result = false;
721      break;
722  }
723  return result;
724}
725
726bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
727  if (idx >= code_item_->registers_size_) {
728    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
729                                      << code_item_->registers_size_ << ")";
730    return false;
731  }
732  return true;
733}
734
735bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
736  if (idx + 1 >= code_item_->registers_size_) {
737    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
738                                      << "+1 >= " << code_item_->registers_size_ << ")";
739    return false;
740  }
741  return true;
742}
743
744bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
745  if (idx >= dex_file_->GetHeader().field_ids_size_) {
746    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
747                                      << dex_file_->GetHeader().field_ids_size_ << ")";
748    return false;
749  }
750  return true;
751}
752
753bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
754  if (idx >= dex_file_->GetHeader().method_ids_size_) {
755    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
756                                      << dex_file_->GetHeader().method_ids_size_ << ")";
757    return false;
758  }
759  return true;
760}
761
762bool MethodVerifier::CheckNewInstance(uint32_t idx) {
763  if (idx >= dex_file_->GetHeader().type_ids_size_) {
764    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
765                                      << dex_file_->GetHeader().type_ids_size_ << ")";
766    return false;
767  }
768  // We don't need the actual class, just a pointer to the class name.
769  const char* descriptor = dex_file_->StringByTypeIdx(idx);
770  if (descriptor[0] != 'L') {
771    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
772    return false;
773  }
774  return true;
775}
776
777bool MethodVerifier::CheckStringIndex(uint32_t idx) {
778  if (idx >= dex_file_->GetHeader().string_ids_size_) {
779    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
780                                      << dex_file_->GetHeader().string_ids_size_ << ")";
781    return false;
782  }
783  return true;
784}
785
786bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
787  if (idx >= dex_file_->GetHeader().type_ids_size_) {
788    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
789                                      << dex_file_->GetHeader().type_ids_size_ << ")";
790    return false;
791  }
792  return true;
793}
794
795bool MethodVerifier::CheckNewArray(uint32_t idx) {
796  if (idx >= dex_file_->GetHeader().type_ids_size_) {
797    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
798                                      << dex_file_->GetHeader().type_ids_size_ << ")";
799    return false;
800  }
801  int bracket_count = 0;
802  const char* descriptor = dex_file_->StringByTypeIdx(idx);
803  const char* cp = descriptor;
804  while (*cp++ == '[') {
805    bracket_count++;
806  }
807  if (bracket_count == 0) {
808    /* The given class must be an array type. */
809    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
810        << "can't new-array class '" << descriptor << "' (not an array)";
811    return false;
812  } else if (bracket_count > 255) {
813    /* It is illegal to create an array of more than 255 dimensions. */
814    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
815        << "can't new-array class '" << descriptor << "' (exceeds limit)";
816    return false;
817  }
818  return true;
819}
820
821bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
822  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
823  const uint16_t* insns = code_item_->insns_ + cur_offset;
824  const uint16_t* array_data;
825  int32_t array_data_offset;
826
827  DCHECK_LT(cur_offset, insn_count);
828  /* make sure the start of the array data table is in range */
829  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
830  if ((int32_t) cur_offset + array_data_offset < 0 ||
831      cur_offset + array_data_offset + 2 >= insn_count) {
832    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
833                                      << ", data offset " << array_data_offset
834                                      << ", count " << insn_count;
835    return false;
836  }
837  /* offset to array data table is a relative branch-style offset */
838  array_data = insns + array_data_offset;
839  /* make sure the table is 32-bit aligned */
840  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
841    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
842                                      << ", data offset " << array_data_offset;
843    return false;
844  }
845  uint32_t value_width = array_data[1];
846  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
847  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
848  /* make sure the end of the switch is in range */
849  if (cur_offset + array_data_offset + table_size > insn_count) {
850    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
851                                      << ", data offset " << array_data_offset << ", end "
852                                      << cur_offset + array_data_offset + table_size
853                                      << ", count " << insn_count;
854    return false;
855  }
856  return true;
857}
858
859bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
860  int32_t offset;
861  bool isConditional, selfOkay;
862  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
863    return false;
864  }
865  if (!selfOkay && offset == 0) {
866    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
867                                      << reinterpret_cast<void*>(cur_offset);
868    return false;
869  }
870  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
871  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
872  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
873    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
874                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
875    return false;
876  }
877  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
878  int32_t abs_offset = cur_offset + offset;
879  if (abs_offset < 0 ||
880      (uint32_t) abs_offset >= insn_count ||
881      !insn_flags_[abs_offset].IsOpcode()) {
882    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
883                                      << reinterpret_cast<void*>(abs_offset) << ") at "
884                                      << reinterpret_cast<void*>(cur_offset);
885    return false;
886  }
887  insn_flags_[abs_offset].SetBranchTarget();
888  return true;
889}
890
891bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
892                                  bool* selfOkay) {
893  const uint16_t* insns = code_item_->insns_ + cur_offset;
894  *pConditional = false;
895  *selfOkay = false;
896  switch (*insns & 0xff) {
897    case Instruction::GOTO:
898      *pOffset = ((int16_t) *insns) >> 8;
899      break;
900    case Instruction::GOTO_32:
901      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
902      *selfOkay = true;
903      break;
904    case Instruction::GOTO_16:
905      *pOffset = (int16_t) insns[1];
906      break;
907    case Instruction::IF_EQ:
908    case Instruction::IF_NE:
909    case Instruction::IF_LT:
910    case Instruction::IF_GE:
911    case Instruction::IF_GT:
912    case Instruction::IF_LE:
913    case Instruction::IF_EQZ:
914    case Instruction::IF_NEZ:
915    case Instruction::IF_LTZ:
916    case Instruction::IF_GEZ:
917    case Instruction::IF_GTZ:
918    case Instruction::IF_LEZ:
919      *pOffset = (int16_t) insns[1];
920      *pConditional = true;
921      break;
922    default:
923      return false;
924      break;
925  }
926  return true;
927}
928
929bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
930  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
931  DCHECK_LT(cur_offset, insn_count);
932  const uint16_t* insns = code_item_->insns_ + cur_offset;
933  /* make sure the start of the switch is in range */
934  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
935  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
936    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
937                                      << ", switch offset " << switch_offset
938                                      << ", count " << insn_count;
939    return false;
940  }
941  /* offset to switch table is a relative branch-style offset */
942  const uint16_t* switch_insns = insns + switch_offset;
943  /* make sure the table is 32-bit aligned */
944  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
945    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
946                                      << ", switch offset " << switch_offset;
947    return false;
948  }
949  uint32_t switch_count = switch_insns[1];
950  int32_t keys_offset, targets_offset;
951  uint16_t expected_signature;
952  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
953    /* 0=sig, 1=count, 2/3=firstKey */
954    targets_offset = 4;
955    keys_offset = -1;
956    expected_signature = Instruction::kPackedSwitchSignature;
957  } else {
958    /* 0=sig, 1=count, 2..count*2 = keys */
959    keys_offset = 2;
960    targets_offset = 2 + 2 * switch_count;
961    expected_signature = Instruction::kSparseSwitchSignature;
962  }
963  uint32_t table_size = targets_offset + switch_count * 2;
964  if (switch_insns[0] != expected_signature) {
965    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
966        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
967                        switch_insns[0], expected_signature);
968    return false;
969  }
970  /* make sure the end of the switch is in range */
971  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
972    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
973                                      << ", switch offset " << switch_offset
974                                      << ", end " << (cur_offset + switch_offset + table_size)
975                                      << ", count " << insn_count;
976    return false;
977  }
978  /* for a sparse switch, verify the keys are in ascending order */
979  if (keys_offset > 0 && switch_count > 1) {
980    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
981    for (uint32_t targ = 1; targ < switch_count; targ++) {
982      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
983                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
984      if (key <= last_key) {
985        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
986                                          << ", this=" << key;
987        return false;
988      }
989      last_key = key;
990    }
991  }
992  /* verify each switch target */
993  for (uint32_t targ = 0; targ < switch_count; targ++) {
994    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
995                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
996    int32_t abs_offset = cur_offset + offset;
997    if (abs_offset < 0 ||
998        abs_offset >= (int32_t) insn_count ||
999        !insn_flags_[abs_offset].IsOpcode()) {
1000      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1001                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1002                                        << reinterpret_cast<void*>(cur_offset)
1003                                        << "[" << targ << "]";
1004      return false;
1005    }
1006    insn_flags_[abs_offset].SetBranchTarget();
1007  }
1008  return true;
1009}
1010
1011bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1012  if (vA > 5) {
1013    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1014    return false;
1015  }
1016  uint16_t registers_size = code_item_->registers_size_;
1017  for (uint32_t idx = 0; idx < vA; idx++) {
1018    if (arg[idx] >= registers_size) {
1019      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1020                                        << ") in non-range invoke (>= " << registers_size << ")";
1021      return false;
1022    }
1023  }
1024
1025  return true;
1026}
1027
1028bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1029  uint16_t registers_size = code_item_->registers_size_;
1030  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1031  // integer overflow when adding them here.
1032  if (vA + vC > registers_size) {
1033    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1034                                      << " in range invoke (> " << registers_size << ")";
1035    return false;
1036  }
1037  return true;
1038}
1039
1040bool MethodVerifier::VerifyCodeFlow() {
1041  uint16_t registers_size = code_item_->registers_size_;
1042  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1043
1044  if (registers_size * insns_size > 4*1024*1024) {
1045    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1046                 << " insns_size=" << insns_size << ")";
1047  }
1048  /* Create and initialize table holding register status */
1049  reg_table_.Init(kTrackCompilerInterestPoints,
1050                  insn_flags_.get(),
1051                  insns_size,
1052                  registers_size,
1053                  this);
1054
1055
1056  work_line_.reset(RegisterLine::Create(registers_size, this));
1057  saved_line_.reset(RegisterLine::Create(registers_size, this));
1058
1059  /* Initialize register types of method arguments. */
1060  if (!SetTypesFromSignature()) {
1061    DCHECK_NE(failures_.size(), 0U);
1062    std::string prepend("Bad signature in ");
1063    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1064    PrependToLastFailMessage(prepend);
1065    return false;
1066  }
1067  /* Perform code flow verification. */
1068  if (!CodeFlowVerifyMethod()) {
1069    DCHECK_NE(failures_.size(), 0U);
1070    return false;
1071  }
1072  return true;
1073}
1074
1075std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1076  DCHECK_EQ(failures_.size(), failure_messages_.size());
1077  for (size_t i = 0; i < failures_.size(); ++i) {
1078      os << failure_messages_[i]->str() << "\n";
1079  }
1080  return os;
1081}
1082
1083extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1084    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1085  v->Dump(std::cerr);
1086}
1087
1088void MethodVerifier::Dump(std::ostream& os) {
1089  if (code_item_ == NULL) {
1090    os << "Native method\n";
1091    return;
1092  }
1093  {
1094    os << "Register Types:\n";
1095    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1096    std::ostream indent_os(&indent_filter);
1097    reg_types_.Dump(indent_os);
1098  }
1099  os << "Dumping instructions and register lines:\n";
1100  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1101  std::ostream indent_os(&indent_filter);
1102  const Instruction* inst = Instruction::At(code_item_->insns_);
1103  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1104      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1105    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1106    if (reg_line != NULL) {
1107      indent_os << reg_line->Dump() << "\n";
1108    }
1109    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1110    const bool kDumpHexOfInstruction = false;
1111    if (kDumpHexOfInstruction) {
1112      indent_os << inst->DumpHex(5) << " ";
1113    }
1114    indent_os << inst->DumpString(dex_file_) << "\n";
1115    inst = inst->Next();
1116  }
1117}
1118
1119static bool IsPrimitiveDescriptor(char descriptor) {
1120  switch (descriptor) {
1121    case 'I':
1122    case 'C':
1123    case 'S':
1124    case 'B':
1125    case 'Z':
1126    case 'F':
1127    case 'D':
1128    case 'J':
1129      return true;
1130    default:
1131      return false;
1132  }
1133}
1134
1135bool MethodVerifier::SetTypesFromSignature() {
1136  RegisterLine* reg_line = reg_table_.GetLine(0);
1137  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1138  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1139
1140  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1141  // Include the "this" pointer.
1142  size_t cur_arg = 0;
1143  if (!IsStatic()) {
1144    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1145    // argument as uninitialized. This restricts field access until the superclass constructor is
1146    // called.
1147    const RegType& declaring_class = GetDeclaringClass();
1148    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1149      reg_line->SetRegisterType(arg_start + cur_arg,
1150                                reg_types_.UninitializedThisArgument(declaring_class));
1151    } else {
1152      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1153    }
1154    cur_arg++;
1155  }
1156
1157  const DexFile::ProtoId& proto_id =
1158      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1159  DexFileParameterIterator iterator(*dex_file_, proto_id);
1160
1161  for (; iterator.HasNext(); iterator.Next()) {
1162    const char* descriptor = iterator.GetDescriptor();
1163    if (descriptor == NULL) {
1164      LOG(FATAL) << "Null descriptor";
1165    }
1166    if (cur_arg >= expected_args) {
1167      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1168                                        << " args, found more (" << descriptor << ")";
1169      return false;
1170    }
1171    switch (descriptor[0]) {
1172      case 'L':
1173      case '[':
1174        // We assume that reference arguments are initialized. The only way it could be otherwise
1175        // (assuming the caller was verified) is if the current method is <init>, but in that case
1176        // it's effectively considered initialized the instant we reach here (in the sense that we
1177        // can return without doing anything or call virtual methods).
1178        {
1179          const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
1180                                                              false);
1181          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1182        }
1183        break;
1184      case 'Z':
1185        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1186        break;
1187      case 'C':
1188        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1189        break;
1190      case 'B':
1191        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1192        break;
1193      case 'I':
1194        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1195        break;
1196      case 'S':
1197        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1198        break;
1199      case 'F':
1200        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1201        break;
1202      case 'J':
1203      case 'D': {
1204        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1205        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1206        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1207        cur_arg++;
1208        break;
1209      }
1210      default:
1211        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1212                                          << descriptor << "'";
1213        return false;
1214    }
1215    cur_arg++;
1216  }
1217  if (cur_arg != expected_args) {
1218    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1219                                      << " arguments, found " << cur_arg;
1220    return false;
1221  }
1222  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1223  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1224  // format. Only major difference from the method argument format is that 'V' is supported.
1225  bool result;
1226  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1227    result = descriptor[1] == '\0';
1228  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1229    size_t i = 0;
1230    do {
1231      i++;
1232    } while (descriptor[i] == '[');  // process leading [
1233    if (descriptor[i] == 'L') {  // object array
1234      do {
1235        i++;  // find closing ;
1236      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1237      result = descriptor[i] == ';';
1238    } else {  // primitive array
1239      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1240    }
1241  } else if (descriptor[0] == 'L') {
1242    // could be more thorough here, but shouldn't be required
1243    size_t i = 0;
1244    do {
1245      i++;
1246    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1247    result = descriptor[i] == ';';
1248  } else {
1249    result = false;
1250  }
1251  if (!result) {
1252    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1253                                      << descriptor << "'";
1254  }
1255  return result;
1256}
1257
1258bool MethodVerifier::CodeFlowVerifyMethod() {
1259  const uint16_t* insns = code_item_->insns_;
1260  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1261
1262  /* Begin by marking the first instruction as "changed". */
1263  insn_flags_[0].SetChanged();
1264  uint32_t start_guess = 0;
1265
1266  /* Continue until no instructions are marked "changed". */
1267  while (true) {
1268    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1269    uint32_t insn_idx = start_guess;
1270    for (; insn_idx < insns_size; insn_idx++) {
1271      if (insn_flags_[insn_idx].IsChanged())
1272        break;
1273    }
1274    if (insn_idx == insns_size) {
1275      if (start_guess != 0) {
1276        /* try again, starting from the top */
1277        start_guess = 0;
1278        continue;
1279      } else {
1280        /* all flags are clear */
1281        break;
1282      }
1283    }
1284    // We carry the working set of registers from instruction to instruction. If this address can
1285    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1286    // "changed" flags, we need to load the set of registers from the table.
1287    // Because we always prefer to continue on to the next instruction, we should never have a
1288    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1289    // target.
1290    work_insn_idx_ = insn_idx;
1291    if (insn_flags_[insn_idx].IsBranchTarget()) {
1292      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1293    } else {
1294#ifndef NDEBUG
1295      /*
1296       * Sanity check: retrieve the stored register line (assuming
1297       * a full table) and make sure it actually matches.
1298       */
1299      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1300      if (register_line != NULL) {
1301        if (work_line_->CompareLine(register_line) != 0) {
1302          Dump(std::cout);
1303          std::cout << info_messages_.str();
1304          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1305                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1306                     << " work_line=" << *work_line_ << "\n"
1307                     << "  expected=" << *register_line;
1308        }
1309      }
1310#endif
1311    }
1312    if (!CodeFlowVerifyInstruction(&start_guess)) {
1313      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1314      prepend += " failed to verify: ";
1315      PrependToLastFailMessage(prepend);
1316      return false;
1317    }
1318    /* Clear "changed" and mark as visited. */
1319    insn_flags_[insn_idx].SetVisited();
1320    insn_flags_[insn_idx].ClearChanged();
1321  }
1322
1323  if (gDebugVerify) {
1324    /*
1325     * Scan for dead code. There's nothing "evil" about dead code
1326     * (besides the wasted space), but it indicates a flaw somewhere
1327     * down the line, possibly in the verifier.
1328     *
1329     * If we've substituted "always throw" instructions into the stream,
1330     * we are almost certainly going to have some dead code.
1331     */
1332    int dead_start = -1;
1333    uint32_t insn_idx = 0;
1334    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1335      /*
1336       * Switch-statement data doesn't get "visited" by scanner. It
1337       * may or may not be preceded by a padding NOP (for alignment).
1338       */
1339      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1340          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1341          insns[insn_idx] == Instruction::kArrayDataSignature ||
1342          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1343           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1344            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1345            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1346        insn_flags_[insn_idx].SetVisited();
1347      }
1348
1349      if (!insn_flags_[insn_idx].IsVisited()) {
1350        if (dead_start < 0)
1351          dead_start = insn_idx;
1352      } else if (dead_start >= 0) {
1353        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1354                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1355        dead_start = -1;
1356      }
1357    }
1358    if (dead_start >= 0) {
1359      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1360                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1361    }
1362    // To dump the state of the verify after a method, do something like:
1363    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1364    //     "boolean java.lang.String.equals(java.lang.Object)") {
1365    //   LOG(INFO) << info_messages_.str();
1366    // }
1367  }
1368  return true;
1369}
1370
1371bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1372  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1373  // We want the state _before_ the instruction, for the case where the dex pc we're
1374  // interested in is itself a monitor-enter instruction (which is a likely place
1375  // for a thread to be suspended).
1376  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1377    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1378    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1379      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1380    }
1381  }
1382
1383  /*
1384   * Once we finish decoding the instruction, we need to figure out where
1385   * we can go from here. There are three possible ways to transfer
1386   * control to another statement:
1387   *
1388   * (1) Continue to the next instruction. Applies to all but
1389   *     unconditional branches, method returns, and exception throws.
1390   * (2) Branch to one or more possible locations. Applies to branches
1391   *     and switch statements.
1392   * (3) Exception handlers. Applies to any instruction that can
1393   *     throw an exception that is handled by an encompassing "try"
1394   *     block.
1395   *
1396   * We can also return, in which case there is no successor instruction
1397   * from this point.
1398   *
1399   * The behavior can be determined from the opcode flags.
1400   */
1401  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1402  const Instruction* inst = Instruction::At(insns);
1403  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1404
1405  int32_t branch_target = 0;
1406  bool just_set_result = false;
1407  if (gDebugVerify) {
1408    // Generate processing back trace to debug verifier
1409    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1410                    << *work_line_.get() << "\n";
1411  }
1412
1413  /*
1414   * Make a copy of the previous register state. If the instruction
1415   * can throw an exception, we will copy/merge this into the "catch"
1416   * address rather than work_line, because we don't want the result
1417   * from the "successful" code path (e.g. a check-cast that "improves"
1418   * a type) to be visible to the exception handler.
1419   */
1420  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1421    saved_line_->CopyFromLine(work_line_.get());
1422  } else {
1423#ifndef NDEBUG
1424    saved_line_->FillWithGarbage();
1425#endif
1426  }
1427
1428
1429  // We need to ensure the work line is consistent while performing validation. When we spot a
1430  // peephole pattern we compute a new line for either the fallthrough instruction or the
1431  // branch target.
1432  UniquePtr<RegisterLine> branch_line;
1433  UniquePtr<RegisterLine> fallthrough_line;
1434
1435  // We need precise constant types only for deoptimization which happens at runtime.
1436  const bool need_precise_constant = !Runtime::Current()->IsCompiler();
1437
1438  switch (inst->Opcode()) {
1439    case Instruction::NOP:
1440      /*
1441       * A "pure" NOP has no effect on anything. Data tables start with
1442       * a signature that looks like a NOP; if we see one of these in
1443       * the course of executing code then we have a problem.
1444       */
1445      if (inst->VRegA_10x() != 0) {
1446        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1447      }
1448      break;
1449
1450    case Instruction::MOVE:
1451      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1452      break;
1453    case Instruction::MOVE_FROM16:
1454      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1455      break;
1456    case Instruction::MOVE_16:
1457      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1458      break;
1459    case Instruction::MOVE_WIDE:
1460      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1461      break;
1462    case Instruction::MOVE_WIDE_FROM16:
1463      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1464      break;
1465    case Instruction::MOVE_WIDE_16:
1466      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1467      break;
1468    case Instruction::MOVE_OBJECT:
1469      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1470      break;
1471    case Instruction::MOVE_OBJECT_FROM16:
1472      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1473      break;
1474    case Instruction::MOVE_OBJECT_16:
1475      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1476      break;
1477
1478    /*
1479     * The move-result instructions copy data out of a "pseudo-register"
1480     * with the results from the last method invocation. In practice we
1481     * might want to hold the result in an actual CPU register, so the
1482     * Dalvik spec requires that these only appear immediately after an
1483     * invoke or filled-new-array.
1484     *
1485     * These calls invalidate the "result" register. (This is now
1486     * redundant with the reset done below, but it can make the debug info
1487     * easier to read in some cases.)
1488     */
1489    case Instruction::MOVE_RESULT:
1490      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1491      break;
1492    case Instruction::MOVE_RESULT_WIDE:
1493      work_line_->CopyResultRegister2(inst->VRegA_11x());
1494      break;
1495    case Instruction::MOVE_RESULT_OBJECT:
1496      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1497      break;
1498
1499    case Instruction::MOVE_EXCEPTION: {
1500      /*
1501       * This statement can only appear as the first instruction in an exception handler. We verify
1502       * that as part of extracting the exception type from the catch block list.
1503       */
1504      const RegType& res_type = GetCaughtExceptionType();
1505      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1506      break;
1507    }
1508    case Instruction::RETURN_VOID:
1509      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1510        if (!GetMethodReturnType().IsConflict()) {
1511          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1512        }
1513      }
1514      break;
1515    case Instruction::RETURN:
1516      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1517        /* check the method signature */
1518        const RegType& return_type = GetMethodReturnType();
1519        if (!return_type.IsCategory1Types()) {
1520          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1521                                            << return_type;
1522        } else {
1523          // Compilers may generate synthetic functions that write byte values into boolean fields.
1524          // Also, it may use integer values for boolean, byte, short, and character return types.
1525          const uint32_t vregA = inst->VRegA_11x();
1526          const RegType& src_type = work_line_->GetRegisterType(vregA);
1527          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1528                          ((return_type.IsBoolean() || return_type.IsByte() ||
1529                           return_type.IsShort() || return_type.IsChar()) &&
1530                           src_type.IsInteger()));
1531          /* check the register contents */
1532          bool success =
1533              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1534          if (!success) {
1535            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1536          }
1537        }
1538      }
1539      break;
1540    case Instruction::RETURN_WIDE:
1541      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1542        /* check the method signature */
1543        const RegType& return_type = GetMethodReturnType();
1544        if (!return_type.IsCategory2Types()) {
1545          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1546        } else {
1547          /* check the register contents */
1548          const uint32_t vregA = inst->VRegA_11x();
1549          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1550          if (!success) {
1551            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1552          }
1553        }
1554      }
1555      break;
1556    case Instruction::RETURN_OBJECT:
1557      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1558        const RegType& return_type = GetMethodReturnType();
1559        if (!return_type.IsReferenceTypes()) {
1560          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1561        } else {
1562          /* return_type is the *expected* return type, not register value */
1563          DCHECK(!return_type.IsZero());
1564          DCHECK(!return_type.IsUninitializedReference());
1565          const uint32_t vregA = inst->VRegA_11x();
1566          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1567          // Disallow returning uninitialized values and verify that the reference in vAA is an
1568          // instance of the "return_type"
1569          if (reg_type.IsUninitializedTypes()) {
1570            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1571                                              << reg_type << "'";
1572          } else if (!return_type.IsAssignableFrom(reg_type)) {
1573            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1574              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1575                  << "' or '" << reg_type << "'";
1576            } else {
1577              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1578                  << "', but expected from declaration '" << return_type << "'";
1579            }
1580          }
1581        }
1582      }
1583      break;
1584
1585      /* could be boolean, int, float, or a null reference */
1586    case Instruction::CONST_4: {
1587      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1588      work_line_->SetRegisterType(inst->VRegA_11n(),
1589                                  DetermineCat1Constant(val, need_precise_constant));
1590      break;
1591    }
1592    case Instruction::CONST_16: {
1593      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1594      work_line_->SetRegisterType(inst->VRegA_21s(),
1595                                  DetermineCat1Constant(val, need_precise_constant));
1596      break;
1597    }
1598    case Instruction::CONST: {
1599      int32_t val = inst->VRegB_31i();
1600      work_line_->SetRegisterType(inst->VRegA_31i(),
1601                                  DetermineCat1Constant(val, need_precise_constant));
1602      break;
1603    }
1604    case Instruction::CONST_HIGH16: {
1605      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1606      work_line_->SetRegisterType(inst->VRegA_21h(),
1607                                  DetermineCat1Constant(val, need_precise_constant));
1608      break;
1609    }
1610      /* could be long or double; resolved upon use */
1611    case Instruction::CONST_WIDE_16: {
1612      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1613      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1614      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1615      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1616      break;
1617    }
1618    case Instruction::CONST_WIDE_32: {
1619      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1620      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1621      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1622      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1623      break;
1624    }
1625    case Instruction::CONST_WIDE: {
1626      int64_t val = inst->VRegB_51l();
1627      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1628      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1629      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1630      break;
1631    }
1632    case Instruction::CONST_WIDE_HIGH16: {
1633      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1634      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1635      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1636      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1637      break;
1638    }
1639    case Instruction::CONST_STRING:
1640      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1641      break;
1642    case Instruction::CONST_STRING_JUMBO:
1643      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1644      break;
1645    case Instruction::CONST_CLASS: {
1646      // Get type from instruction if unresolved then we need an access check
1647      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1648      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1649      // Register holds class, ie its type is class, on error it will hold Conflict.
1650      work_line_->SetRegisterType(inst->VRegA_21c(),
1651                                  res_type.IsConflict() ? res_type
1652                                                        : reg_types_.JavaLangClass(true));
1653      break;
1654    }
1655    case Instruction::MONITOR_ENTER:
1656      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1657      break;
1658    case Instruction::MONITOR_EXIT:
1659      /*
1660       * monitor-exit instructions are odd. They can throw exceptions,
1661       * but when they do they act as if they succeeded and the PC is
1662       * pointing to the following instruction. (This behavior goes back
1663       * to the need to handle asynchronous exceptions, a now-deprecated
1664       * feature that Dalvik doesn't support.)
1665       *
1666       * In practice we don't need to worry about this. The only
1667       * exceptions that can be thrown from monitor-exit are for a
1668       * null reference and -exit without a matching -enter. If the
1669       * structured locking checks are working, the former would have
1670       * failed on the -enter instruction, and the latter is impossible.
1671       *
1672       * This is fortunate, because issue 3221411 prevents us from
1673       * chasing the "can throw" path when monitor verification is
1674       * enabled. If we can fully verify the locking we can ignore
1675       * some catch blocks (which will show up as "dead" code when
1676       * we skip them here); if we can't, then the code path could be
1677       * "live" so we still need to check it.
1678       */
1679      opcode_flags &= ~Instruction::kThrow;
1680      work_line_->PopMonitor(inst->VRegA_11x());
1681      break;
1682
1683    case Instruction::CHECK_CAST:
1684    case Instruction::INSTANCE_OF: {
1685      /*
1686       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1687       * could be a "upcast" -- not expected, so we don't try to address it.)
1688       *
1689       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1690       * dec_insn.vA when branching to a handler.
1691       */
1692      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1693      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1694      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1695      if (res_type.IsConflict()) {
1696        DCHECK_NE(failures_.size(), 0U);
1697        if (!is_checkcast) {
1698          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1699        }
1700        break;  // bad class
1701      }
1702      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1703      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1704      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1705      if (!res_type.IsNonZeroReferenceTypes()) {
1706        if (is_checkcast) {
1707          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1708        } else {
1709          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1710        }
1711      } else if (!orig_type.IsReferenceTypes()) {
1712        if (is_checkcast) {
1713          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1714        } else {
1715          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1716        }
1717      } else {
1718        if (is_checkcast) {
1719          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1720        } else {
1721          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1722        }
1723      }
1724      break;
1725    }
1726    case Instruction::ARRAY_LENGTH: {
1727      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1728      if (res_type.IsReferenceTypes()) {
1729        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1730          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1731        } else {
1732          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1733        }
1734      }
1735      break;
1736    }
1737    case Instruction::NEW_INSTANCE: {
1738      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1739      if (res_type.IsConflict()) {
1740        DCHECK_NE(failures_.size(), 0U);
1741        break;  // bad class
1742      }
1743      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1744      // can't create an instance of an interface or abstract class */
1745      if (!res_type.IsInstantiableTypes()) {
1746        Fail(VERIFY_ERROR_INSTANTIATION)
1747            << "new-instance on primitive, interface or abstract class" << res_type;
1748        // Soft failure so carry on to set register type.
1749      }
1750      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1751      // Any registers holding previous allocations from this address that have not yet been
1752      // initialized must be marked invalid.
1753      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1754      // add the new uninitialized reference to the register state
1755      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1756      break;
1757    }
1758    case Instruction::NEW_ARRAY:
1759      VerifyNewArray(inst, false, false);
1760      break;
1761    case Instruction::FILLED_NEW_ARRAY:
1762      VerifyNewArray(inst, true, false);
1763      just_set_result = true;  // Filled new array sets result register
1764      break;
1765    case Instruction::FILLED_NEW_ARRAY_RANGE:
1766      VerifyNewArray(inst, true, true);
1767      just_set_result = true;  // Filled new array range sets result register
1768      break;
1769    case Instruction::CMPL_FLOAT:
1770    case Instruction::CMPG_FLOAT:
1771      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1772        break;
1773      }
1774      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1775        break;
1776      }
1777      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1778      break;
1779    case Instruction::CMPL_DOUBLE:
1780    case Instruction::CMPG_DOUBLE:
1781      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1782                                              reg_types_.DoubleHi())) {
1783        break;
1784      }
1785      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1786                                              reg_types_.DoubleHi())) {
1787        break;
1788      }
1789      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1790      break;
1791    case Instruction::CMP_LONG:
1792      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1793                                              reg_types_.LongHi())) {
1794        break;
1795      }
1796      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1797                                              reg_types_.LongHi())) {
1798        break;
1799      }
1800      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1801      break;
1802    case Instruction::THROW: {
1803      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1804      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1805        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1806            << "thrown class " << res_type << " not instanceof Throwable";
1807      }
1808      break;
1809    }
1810    case Instruction::GOTO:
1811    case Instruction::GOTO_16:
1812    case Instruction::GOTO_32:
1813      /* no effect on or use of registers */
1814      break;
1815
1816    case Instruction::PACKED_SWITCH:
1817    case Instruction::SPARSE_SWITCH:
1818      /* verify that vAA is an integer, or can be converted to one */
1819      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1820      break;
1821
1822    case Instruction::FILL_ARRAY_DATA: {
1823      /* Similar to the verification done for APUT */
1824      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1825      /* array_type can be null if the reg type is Zero */
1826      if (!array_type.IsZero()) {
1827        if (!array_type.IsArrayTypes()) {
1828          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1829                                            << array_type;
1830        } else {
1831          const RegType& component_type = reg_types_.GetComponentType(array_type,
1832                                                                      class_loader_->get());
1833          DCHECK(!component_type.IsConflict());
1834          if (component_type.IsNonZeroReferenceTypes()) {
1835            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1836                                              << component_type;
1837          } else {
1838            // Now verify if the element width in the table matches the element width declared in
1839            // the array
1840            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1841            if (array_data[0] != Instruction::kArrayDataSignature) {
1842              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1843            } else {
1844              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1845              // Since we don't compress the data in Dex, expect to see equal width of data stored
1846              // in the table and expected from the array class.
1847              if (array_data[1] != elem_width) {
1848                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1849                                                  << " vs " << elem_width << ")";
1850              }
1851            }
1852          }
1853        }
1854      }
1855      break;
1856    }
1857    case Instruction::IF_EQ:
1858    case Instruction::IF_NE: {
1859      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1860      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1861      bool mismatch = false;
1862      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1863        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1864      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1865        mismatch = !reg_type2.IsReferenceTypes();
1866      } else {  // both integral?
1867        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1868      }
1869      if (mismatch) {
1870        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1871                                          << reg_type2 << ") must both be references or integral";
1872      }
1873      break;
1874    }
1875    case Instruction::IF_LT:
1876    case Instruction::IF_GE:
1877    case Instruction::IF_GT:
1878    case Instruction::IF_LE: {
1879      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1880      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1881      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1882        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1883                                          << reg_type2 << ") must be integral";
1884      }
1885      break;
1886    }
1887    case Instruction::IF_EQZ:
1888    case Instruction::IF_NEZ: {
1889      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1890      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1891        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1892                                          << " unexpected as arg to if-eqz/if-nez";
1893      }
1894
1895      // Find previous instruction - its existence is a precondition to peephole optimization.
1896      uint32_t instance_of_idx = 0;
1897      if (0 != work_insn_idx_) {
1898        instance_of_idx = work_insn_idx_ - 1;
1899        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1900          instance_of_idx--;
1901        }
1902        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1903      } else {
1904        break;
1905      }
1906
1907      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1908
1909      /* Check for peep-hole pattern of:
1910       *    ...;
1911       *    instance-of vX, vY, T;
1912       *    ifXXX vX, label ;
1913       *    ...;
1914       * label:
1915       *    ...;
1916       * and sharpen the type of vY to be type T.
1917       * Note, this pattern can't be if:
1918       *  - if there are other branches to this branch,
1919       *  - when vX == vY.
1920       */
1921      if (!CurrentInsnFlags()->IsBranchTarget() &&
1922          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1923          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1924          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1925        // Check that the we are not attempting conversion to interface types,
1926        // which is not done because of the multiple inheritance implications.
1927        // Also don't change the type if it would result in an upcast.
1928        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1929        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1930
1931        if (!cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1932            !cast_type.GetClass()->IsInterface() && !cast_type.IsAssignableFrom(orig_type)) {
1933          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1934          if (inst->Opcode() == Instruction::IF_EQZ) {
1935            fallthrough_line.reset(update_line);
1936          } else {
1937            branch_line.reset(update_line);
1938          }
1939          update_line->CopyFromLine(work_line_.get());
1940          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1941          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1942            // See if instance-of was preceded by a move-object operation, common due to the small
1943            // register encoding space of instance-of, and propagate type information to the source
1944            // of the move-object.
1945            uint32_t move_idx = instance_of_idx - 1;
1946            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
1947              move_idx--;
1948            }
1949            CHECK(insn_flags_[move_idx].IsOpcode());
1950            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
1951            switch (move_inst->Opcode()) {
1952              case Instruction::MOVE_OBJECT:
1953                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
1954                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
1955                }
1956                break;
1957              case Instruction::MOVE_OBJECT_FROM16:
1958                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
1959                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
1960                }
1961                break;
1962              case Instruction::MOVE_OBJECT_16:
1963                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
1964                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
1965                }
1966                break;
1967              default:
1968                break;
1969            }
1970          }
1971        }
1972      }
1973
1974      break;
1975    }
1976    case Instruction::IF_LTZ:
1977    case Instruction::IF_GEZ:
1978    case Instruction::IF_GTZ:
1979    case Instruction::IF_LEZ: {
1980      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1981      if (!reg_type.IsIntegralTypes()) {
1982        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1983                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
1984      }
1985      break;
1986    }
1987    case Instruction::AGET_BOOLEAN:
1988      VerifyAGet(inst, reg_types_.Boolean(), true);
1989      break;
1990    case Instruction::AGET_BYTE:
1991      VerifyAGet(inst, reg_types_.Byte(), true);
1992      break;
1993    case Instruction::AGET_CHAR:
1994      VerifyAGet(inst, reg_types_.Char(), true);
1995      break;
1996    case Instruction::AGET_SHORT:
1997      VerifyAGet(inst, reg_types_.Short(), true);
1998      break;
1999    case Instruction::AGET:
2000      VerifyAGet(inst, reg_types_.Integer(), true);
2001      break;
2002    case Instruction::AGET_WIDE:
2003      VerifyAGet(inst, reg_types_.LongLo(), true);
2004      break;
2005    case Instruction::AGET_OBJECT:
2006      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2007      break;
2008
2009    case Instruction::APUT_BOOLEAN:
2010      VerifyAPut(inst, reg_types_.Boolean(), true);
2011      break;
2012    case Instruction::APUT_BYTE:
2013      VerifyAPut(inst, reg_types_.Byte(), true);
2014      break;
2015    case Instruction::APUT_CHAR:
2016      VerifyAPut(inst, reg_types_.Char(), true);
2017      break;
2018    case Instruction::APUT_SHORT:
2019      VerifyAPut(inst, reg_types_.Short(), true);
2020      break;
2021    case Instruction::APUT:
2022      VerifyAPut(inst, reg_types_.Integer(), true);
2023      break;
2024    case Instruction::APUT_WIDE:
2025      VerifyAPut(inst, reg_types_.LongLo(), true);
2026      break;
2027    case Instruction::APUT_OBJECT:
2028      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2029      break;
2030
2031    case Instruction::IGET_BOOLEAN:
2032      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2033      break;
2034    case Instruction::IGET_BYTE:
2035      VerifyISGet(inst, reg_types_.Byte(), true, false);
2036      break;
2037    case Instruction::IGET_CHAR:
2038      VerifyISGet(inst, reg_types_.Char(), true, false);
2039      break;
2040    case Instruction::IGET_SHORT:
2041      VerifyISGet(inst, reg_types_.Short(), true, false);
2042      break;
2043    case Instruction::IGET:
2044      VerifyISGet(inst, reg_types_.Integer(), true, false);
2045      break;
2046    case Instruction::IGET_WIDE:
2047      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2048      break;
2049    case Instruction::IGET_OBJECT:
2050      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2051      break;
2052
2053    case Instruction::IPUT_BOOLEAN:
2054      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2055      break;
2056    case Instruction::IPUT_BYTE:
2057      VerifyISPut(inst, reg_types_.Byte(), true, false);
2058      break;
2059    case Instruction::IPUT_CHAR:
2060      VerifyISPut(inst, reg_types_.Char(), true, false);
2061      break;
2062    case Instruction::IPUT_SHORT:
2063      VerifyISPut(inst, reg_types_.Short(), true, false);
2064      break;
2065    case Instruction::IPUT:
2066      VerifyISPut(inst, reg_types_.Integer(), true, false);
2067      break;
2068    case Instruction::IPUT_WIDE:
2069      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2070      break;
2071    case Instruction::IPUT_OBJECT:
2072      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2073      break;
2074
2075    case Instruction::SGET_BOOLEAN:
2076      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2077      break;
2078    case Instruction::SGET_BYTE:
2079      VerifyISGet(inst, reg_types_.Byte(), true, true);
2080      break;
2081    case Instruction::SGET_CHAR:
2082      VerifyISGet(inst, reg_types_.Char(), true, true);
2083      break;
2084    case Instruction::SGET_SHORT:
2085      VerifyISGet(inst, reg_types_.Short(), true, true);
2086      break;
2087    case Instruction::SGET:
2088      VerifyISGet(inst, reg_types_.Integer(), true, true);
2089      break;
2090    case Instruction::SGET_WIDE:
2091      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2092      break;
2093    case Instruction::SGET_OBJECT:
2094      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2095      break;
2096
2097    case Instruction::SPUT_BOOLEAN:
2098      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2099      break;
2100    case Instruction::SPUT_BYTE:
2101      VerifyISPut(inst, reg_types_.Byte(), true, true);
2102      break;
2103    case Instruction::SPUT_CHAR:
2104      VerifyISPut(inst, reg_types_.Char(), true, true);
2105      break;
2106    case Instruction::SPUT_SHORT:
2107      VerifyISPut(inst, reg_types_.Short(), true, true);
2108      break;
2109    case Instruction::SPUT:
2110      VerifyISPut(inst, reg_types_.Integer(), true, true);
2111      break;
2112    case Instruction::SPUT_WIDE:
2113      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2114      break;
2115    case Instruction::SPUT_OBJECT:
2116      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2117      break;
2118
2119    case Instruction::INVOKE_VIRTUAL:
2120    case Instruction::INVOKE_VIRTUAL_RANGE:
2121    case Instruction::INVOKE_SUPER:
2122    case Instruction::INVOKE_SUPER_RANGE: {
2123      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2124                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2125      bool is_super =  (inst->Opcode() == Instruction::INVOKE_SUPER ||
2126                        inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2127      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL,
2128                                                                   is_range, is_super);
2129      const RegType* return_type = nullptr;
2130      if (called_method != nullptr) {
2131        MethodHelper mh(called_method);
2132        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2133        if (return_type_class != nullptr) {
2134          return_type = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
2135                                              return_type_class->CannotBeAssignedFromOtherTypes());
2136        } else {
2137          Thread* self = Thread::Current();
2138          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2139          self->ClearException();
2140        }
2141      }
2142      if (return_type == nullptr) {
2143        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2144        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2145        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2146        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2147        return_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
2148      }
2149      if (!return_type->IsLowHalf()) {
2150        work_line_->SetResultRegisterType(*return_type);
2151      } else {
2152        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2153      }
2154      just_set_result = true;
2155      break;
2156    }
2157    case Instruction::INVOKE_DIRECT:
2158    case Instruction::INVOKE_DIRECT_RANGE: {
2159      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2160      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2161                                                                   is_range, false);
2162      const char* return_type_descriptor;
2163      bool is_constructor;
2164      if (called_method == NULL) {
2165        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2166        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2167        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2168        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2169        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2170      } else {
2171        is_constructor = called_method->IsConstructor();
2172        return_type_descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2173      }
2174      if (is_constructor) {
2175        /*
2176         * Some additional checks when calling a constructor. We know from the invocation arg check
2177         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2178         * that to require that called_method->klass is the same as this->klass or this->super,
2179         * allowing the latter only if the "this" argument is the same as the "this" argument to
2180         * this method (which implies that we're in a constructor ourselves).
2181         */
2182        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2183        if (this_type.IsConflict())  // failure.
2184          break;
2185
2186        /* no null refs allowed (?) */
2187        if (this_type.IsZero()) {
2188          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2189          break;
2190        }
2191
2192        /* must be in same class or in superclass */
2193        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2194        // TODO: re-enable constructor type verification
2195        // if (this_super_klass.IsConflict()) {
2196          // Unknown super class, fail so we re-check at runtime.
2197          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2198          // break;
2199        // }
2200
2201        /* arg must be an uninitialized reference */
2202        if (!this_type.IsUninitializedTypes()) {
2203          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2204              << this_type;
2205          break;
2206        }
2207
2208        /*
2209         * Replace the uninitialized reference with an initialized one. We need to do this for all
2210         * registers that have the same object instance in them, not just the "this" register.
2211         */
2212        work_line_->MarkRefsAsInitialized(this_type);
2213      }
2214      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(),
2215                                                             return_type_descriptor, false);
2216      if (!return_type.IsLowHalf()) {
2217        work_line_->SetResultRegisterType(return_type);
2218      } else {
2219        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2220      }
2221      just_set_result = true;
2222      break;
2223    }
2224    case Instruction::INVOKE_STATIC:
2225    case Instruction::INVOKE_STATIC_RANGE: {
2226        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2227        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2228                                                                     METHOD_STATIC,
2229                                                                     is_range,
2230                                                                     false);
2231        const char* descriptor;
2232        if (called_method == NULL) {
2233          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2234          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2235          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2236          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2237        } else {
2238          descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2239        }
2240        const RegType& return_type =  reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2241                                                                false);
2242        if (!return_type.IsLowHalf()) {
2243          work_line_->SetResultRegisterType(return_type);
2244        } else {
2245          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2246        }
2247        just_set_result = true;
2248      }
2249      break;
2250    case Instruction::INVOKE_INTERFACE:
2251    case Instruction::INVOKE_INTERFACE_RANGE: {
2252      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2253      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2254                                                                METHOD_INTERFACE,
2255                                                                is_range,
2256                                                                false);
2257      if (abs_method != NULL) {
2258        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2259        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2260          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2261              << PrettyMethod(abs_method) << "'";
2262          break;
2263        }
2264      }
2265      /* Get the type of the "this" arg, which should either be a sub-interface of called
2266       * interface or Object (see comments in RegType::JoinClass).
2267       */
2268      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2269      if (this_type.IsZero()) {
2270        /* null pointer always passes (and always fails at runtime) */
2271      } else {
2272        if (this_type.IsUninitializedTypes()) {
2273          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2274              << this_type;
2275          break;
2276        }
2277        // In the past we have tried to assert that "called_interface" is assignable
2278        // from "this_type.GetClass()", however, as we do an imprecise Join
2279        // (RegType::JoinClass) we don't have full information on what interfaces are
2280        // implemented by "this_type". For example, two classes may implement the same
2281        // interfaces and have a common parent that doesn't implement the interface. The
2282        // join will set "this_type" to the parent class and a test that this implements
2283        // the interface will incorrectly fail.
2284      }
2285      /*
2286       * We don't have an object instance, so we can't find the concrete method. However, all of
2287       * the type information is in the abstract method, so we're good.
2288       */
2289      const char* descriptor;
2290      if (abs_method == NULL) {
2291        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2292        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2293        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2294        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2295      } else {
2296        descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor();
2297      }
2298      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2299                                                             false);
2300      if (!return_type.IsLowHalf()) {
2301        work_line_->SetResultRegisterType(return_type);
2302      } else {
2303        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2304      }
2305      just_set_result = true;
2306      break;
2307    }
2308    case Instruction::NEG_INT:
2309    case Instruction::NOT_INT:
2310      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2311      break;
2312    case Instruction::NEG_LONG:
2313    case Instruction::NOT_LONG:
2314      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2315                                   reg_types_.LongLo(), reg_types_.LongHi());
2316      break;
2317    case Instruction::NEG_FLOAT:
2318      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2319      break;
2320    case Instruction::NEG_DOUBLE:
2321      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2322                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2323      break;
2324    case Instruction::INT_TO_LONG:
2325      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2326                                     reg_types_.Integer());
2327      break;
2328    case Instruction::INT_TO_FLOAT:
2329      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2330      break;
2331    case Instruction::INT_TO_DOUBLE:
2332      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2333                                     reg_types_.Integer());
2334      break;
2335    case Instruction::LONG_TO_INT:
2336      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2337                                       reg_types_.LongLo(), reg_types_.LongHi());
2338      break;
2339    case Instruction::LONG_TO_FLOAT:
2340      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2341                                       reg_types_.LongLo(), reg_types_.LongHi());
2342      break;
2343    case Instruction::LONG_TO_DOUBLE:
2344      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2345                                   reg_types_.LongLo(), reg_types_.LongHi());
2346      break;
2347    case Instruction::FLOAT_TO_INT:
2348      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2349      break;
2350    case Instruction::FLOAT_TO_LONG:
2351      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2352                                     reg_types_.Float());
2353      break;
2354    case Instruction::FLOAT_TO_DOUBLE:
2355      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2356                                     reg_types_.Float());
2357      break;
2358    case Instruction::DOUBLE_TO_INT:
2359      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2360                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2361      break;
2362    case Instruction::DOUBLE_TO_LONG:
2363      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2364                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2365      break;
2366    case Instruction::DOUBLE_TO_FLOAT:
2367      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2368                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2369      break;
2370    case Instruction::INT_TO_BYTE:
2371      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2372      break;
2373    case Instruction::INT_TO_CHAR:
2374      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2375      break;
2376    case Instruction::INT_TO_SHORT:
2377      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2378      break;
2379
2380    case Instruction::ADD_INT:
2381    case Instruction::SUB_INT:
2382    case Instruction::MUL_INT:
2383    case Instruction::REM_INT:
2384    case Instruction::DIV_INT:
2385    case Instruction::SHL_INT:
2386    case Instruction::SHR_INT:
2387    case Instruction::USHR_INT:
2388      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2389                                reg_types_.Integer(), false);
2390      break;
2391    case Instruction::AND_INT:
2392    case Instruction::OR_INT:
2393    case Instruction::XOR_INT:
2394      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2395                                reg_types_.Integer(), true);
2396      break;
2397    case Instruction::ADD_LONG:
2398    case Instruction::SUB_LONG:
2399    case Instruction::MUL_LONG:
2400    case Instruction::DIV_LONG:
2401    case Instruction::REM_LONG:
2402    case Instruction::AND_LONG:
2403    case Instruction::OR_LONG:
2404    case Instruction::XOR_LONG:
2405      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2406                                    reg_types_.LongLo(), reg_types_.LongHi(),
2407                                    reg_types_.LongLo(), reg_types_.LongHi());
2408      break;
2409    case Instruction::SHL_LONG:
2410    case Instruction::SHR_LONG:
2411    case Instruction::USHR_LONG:
2412      /* shift distance is Int, making these different from other binary operations */
2413      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2414                                         reg_types_.Integer());
2415      break;
2416    case Instruction::ADD_FLOAT:
2417    case Instruction::SUB_FLOAT:
2418    case Instruction::MUL_FLOAT:
2419    case Instruction::DIV_FLOAT:
2420    case Instruction::REM_FLOAT:
2421      work_line_->CheckBinaryOp(inst,
2422                                reg_types_.Float(),
2423                                reg_types_.Float(),
2424                                reg_types_.Float(),
2425                                false);
2426      break;
2427    case Instruction::ADD_DOUBLE:
2428    case Instruction::SUB_DOUBLE:
2429    case Instruction::MUL_DOUBLE:
2430    case Instruction::DIV_DOUBLE:
2431    case Instruction::REM_DOUBLE:
2432      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2433                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2434                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2435      break;
2436    case Instruction::ADD_INT_2ADDR:
2437    case Instruction::SUB_INT_2ADDR:
2438    case Instruction::MUL_INT_2ADDR:
2439    case Instruction::REM_INT_2ADDR:
2440    case Instruction::SHL_INT_2ADDR:
2441    case Instruction::SHR_INT_2ADDR:
2442    case Instruction::USHR_INT_2ADDR:
2443      work_line_->CheckBinaryOp2addr(inst,
2444                                     reg_types_.Integer(),
2445                                     reg_types_.Integer(),
2446                                     reg_types_.Integer(),
2447                                     false);
2448      break;
2449    case Instruction::AND_INT_2ADDR:
2450    case Instruction::OR_INT_2ADDR:
2451    case Instruction::XOR_INT_2ADDR:
2452      work_line_->CheckBinaryOp2addr(inst,
2453                                     reg_types_.Integer(),
2454                                     reg_types_.Integer(),
2455                                     reg_types_.Integer(),
2456                                     true);
2457      break;
2458    case Instruction::DIV_INT_2ADDR:
2459      work_line_->CheckBinaryOp2addr(inst,
2460                                     reg_types_.Integer(),
2461                                     reg_types_.Integer(),
2462                                     reg_types_.Integer(),
2463                                     false);
2464      break;
2465    case Instruction::ADD_LONG_2ADDR:
2466    case Instruction::SUB_LONG_2ADDR:
2467    case Instruction::MUL_LONG_2ADDR:
2468    case Instruction::DIV_LONG_2ADDR:
2469    case Instruction::REM_LONG_2ADDR:
2470    case Instruction::AND_LONG_2ADDR:
2471    case Instruction::OR_LONG_2ADDR:
2472    case Instruction::XOR_LONG_2ADDR:
2473      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2474                                         reg_types_.LongLo(), reg_types_.LongHi(),
2475                                         reg_types_.LongLo(), reg_types_.LongHi());
2476      break;
2477    case Instruction::SHL_LONG_2ADDR:
2478    case Instruction::SHR_LONG_2ADDR:
2479    case Instruction::USHR_LONG_2ADDR:
2480      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2481                                              reg_types_.Integer());
2482      break;
2483    case Instruction::ADD_FLOAT_2ADDR:
2484    case Instruction::SUB_FLOAT_2ADDR:
2485    case Instruction::MUL_FLOAT_2ADDR:
2486    case Instruction::DIV_FLOAT_2ADDR:
2487    case Instruction::REM_FLOAT_2ADDR:
2488      work_line_->CheckBinaryOp2addr(inst,
2489                                     reg_types_.Float(),
2490                                     reg_types_.Float(),
2491                                     reg_types_.Float(),
2492                                     false);
2493      break;
2494    case Instruction::ADD_DOUBLE_2ADDR:
2495    case Instruction::SUB_DOUBLE_2ADDR:
2496    case Instruction::MUL_DOUBLE_2ADDR:
2497    case Instruction::DIV_DOUBLE_2ADDR:
2498    case Instruction::REM_DOUBLE_2ADDR:
2499      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2500                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2501                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2502      break;
2503    case Instruction::ADD_INT_LIT16:
2504    case Instruction::RSUB_INT:
2505    case Instruction::MUL_INT_LIT16:
2506    case Instruction::DIV_INT_LIT16:
2507    case Instruction::REM_INT_LIT16:
2508      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2509      break;
2510    case Instruction::AND_INT_LIT16:
2511    case Instruction::OR_INT_LIT16:
2512    case Instruction::XOR_INT_LIT16:
2513      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2514      break;
2515    case Instruction::ADD_INT_LIT8:
2516    case Instruction::RSUB_INT_LIT8:
2517    case Instruction::MUL_INT_LIT8:
2518    case Instruction::DIV_INT_LIT8:
2519    case Instruction::REM_INT_LIT8:
2520    case Instruction::SHL_INT_LIT8:
2521    case Instruction::SHR_INT_LIT8:
2522    case Instruction::USHR_INT_LIT8:
2523      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2524      break;
2525    case Instruction::AND_INT_LIT8:
2526    case Instruction::OR_INT_LIT8:
2527    case Instruction::XOR_INT_LIT8:
2528      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2529      break;
2530
2531    // Special instructions.
2532    case Instruction::RETURN_VOID_BARRIER:
2533      if (!IsConstructor() || IsStatic()) {
2534          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2535      }
2536      break;
2537    // Note: the following instructions encode offsets derived from class linking.
2538    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2539    // meaning if the class linking and resolution were successful.
2540    case Instruction::IGET_QUICK:
2541      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2542      break;
2543    case Instruction::IGET_WIDE_QUICK:
2544      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2545      break;
2546    case Instruction::IGET_OBJECT_QUICK:
2547      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2548      break;
2549    case Instruction::IPUT_QUICK:
2550      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2551      break;
2552    case Instruction::IPUT_WIDE_QUICK:
2553      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2554      break;
2555    case Instruction::IPUT_OBJECT_QUICK:
2556      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2557      break;
2558    case Instruction::INVOKE_VIRTUAL_QUICK:
2559    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2560      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2561      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2562      if (called_method != NULL) {
2563        const char* descriptor = MethodHelper(called_method).GetReturnTypeDescriptor();
2564        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor,
2565                                                               false);
2566        if (!return_type.IsLowHalf()) {
2567          work_line_->SetResultRegisterType(return_type);
2568        } else {
2569          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2570        }
2571        just_set_result = true;
2572      }
2573      break;
2574    }
2575
2576    /* These should never appear during verification. */
2577    case Instruction::UNUSED_3E:
2578    case Instruction::UNUSED_3F:
2579    case Instruction::UNUSED_40:
2580    case Instruction::UNUSED_41:
2581    case Instruction::UNUSED_42:
2582    case Instruction::UNUSED_43:
2583    case Instruction::UNUSED_79:
2584    case Instruction::UNUSED_7A:
2585    case Instruction::UNUSED_EB:
2586    case Instruction::UNUSED_EC:
2587    case Instruction::UNUSED_ED:
2588    case Instruction::UNUSED_EE:
2589    case Instruction::UNUSED_EF:
2590    case Instruction::UNUSED_F0:
2591    case Instruction::UNUSED_F1:
2592    case Instruction::UNUSED_F2:
2593    case Instruction::UNUSED_F3:
2594    case Instruction::UNUSED_F4:
2595    case Instruction::UNUSED_F5:
2596    case Instruction::UNUSED_F6:
2597    case Instruction::UNUSED_F7:
2598    case Instruction::UNUSED_F8:
2599    case Instruction::UNUSED_F9:
2600    case Instruction::UNUSED_FA:
2601    case Instruction::UNUSED_FB:
2602    case Instruction::UNUSED_FC:
2603    case Instruction::UNUSED_FD:
2604    case Instruction::UNUSED_FE:
2605    case Instruction::UNUSED_FF:
2606      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2607      break;
2608
2609    /*
2610     * DO NOT add a "default" clause here. Without it the compiler will
2611     * complain if an instruction is missing (which is desirable).
2612     */
2613  }  // end - switch (dec_insn.opcode)
2614
2615  if (have_pending_hard_failure_) {
2616    if (Runtime::Current()->IsCompiler()) {
2617      /* When compiling, check that the last failure is a hard failure */
2618      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2619    }
2620    /* immediate failure, reject class */
2621    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2622    return false;
2623  } else if (have_pending_runtime_throw_failure_) {
2624    /* checking interpreter will throw, mark following code as unreachable */
2625    opcode_flags = Instruction::kThrow;
2626  }
2627  /*
2628   * If we didn't just set the result register, clear it out. This ensures that you can only use
2629   * "move-result" immediately after the result is set. (We could check this statically, but it's
2630   * not expensive and it makes our debugging output cleaner.)
2631   */
2632  if (!just_set_result) {
2633    work_line_->SetResultTypeToUnknown();
2634  }
2635
2636
2637
2638  /*
2639   * Handle "branch". Tag the branch target.
2640   *
2641   * NOTE: instructions like Instruction::EQZ provide information about the
2642   * state of the register when the branch is taken or not taken. For example,
2643   * somebody could get a reference field, check it for zero, and if the
2644   * branch is taken immediately store that register in a boolean field
2645   * since the value is known to be zero. We do not currently account for
2646   * that, and will reject the code.
2647   *
2648   * TODO: avoid re-fetching the branch target
2649   */
2650  if ((opcode_flags & Instruction::kBranch) != 0) {
2651    bool isConditional, selfOkay;
2652    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2653      /* should never happen after static verification */
2654      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2655      return false;
2656    }
2657    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2658    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2659      return false;
2660    }
2661    /* update branch target, set "changed" if appropriate */
2662    if (NULL != branch_line.get()) {
2663      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get())) {
2664        return false;
2665      }
2666    } else {
2667      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) {
2668        return false;
2669      }
2670    }
2671  }
2672
2673  /*
2674   * Handle "switch". Tag all possible branch targets.
2675   *
2676   * We've already verified that the table is structurally sound, so we
2677   * just need to walk through and tag the targets.
2678   */
2679  if ((opcode_flags & Instruction::kSwitch) != 0) {
2680    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2681    const uint16_t* switch_insns = insns + offset_to_switch;
2682    int switch_count = switch_insns[1];
2683    int offset_to_targets, targ;
2684
2685    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2686      /* 0 = sig, 1 = count, 2/3 = first key */
2687      offset_to_targets = 4;
2688    } else {
2689      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2690      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2691      offset_to_targets = 2 + 2 * switch_count;
2692    }
2693
2694    /* verify each switch target */
2695    for (targ = 0; targ < switch_count; targ++) {
2696      int offset;
2697      uint32_t abs_offset;
2698
2699      /* offsets are 32-bit, and only partly endian-swapped */
2700      offset = switch_insns[offset_to_targets + targ * 2] |
2701         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2702      abs_offset = work_insn_idx_ + offset;
2703      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2704      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2705        return false;
2706      }
2707      if (!UpdateRegisters(abs_offset, work_line_.get()))
2708        return false;
2709    }
2710  }
2711
2712  /*
2713   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2714   * "try" block when they throw, control transfers out of the method.)
2715   */
2716  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2717    bool within_catch_all = false;
2718    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2719
2720    for (; iterator.HasNext(); iterator.Next()) {
2721      if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2722        within_catch_all = true;
2723      }
2724      /*
2725       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2726       * "work_regs", because at runtime the exception will be thrown before the instruction
2727       * modifies any registers.
2728       */
2729      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) {
2730        return false;
2731      }
2732    }
2733
2734    /*
2735     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2736     * instruction. This does apply to monitor-exit because of async exception handling.
2737     */
2738    if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) {
2739      /*
2740       * The state in work_line reflects the post-execution state. If the current instruction is a
2741       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2742       * it will do so before grabbing the lock).
2743       */
2744      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2745        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2746            << "expected to be within a catch-all for an instruction where a monitor is held";
2747        return false;
2748      }
2749    }
2750  }
2751
2752  /* Handle "continue". Tag the next consecutive instruction.
2753   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2754   *        because it changes work_line_ when performing peephole optimization
2755   *        and this change should not be used in those cases.
2756   */
2757  if ((opcode_flags & Instruction::kContinue) != 0) {
2758    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2759    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2760      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2761      return false;
2762    }
2763    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2764    // next instruction isn't one.
2765    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2766      return false;
2767    }
2768    if (NULL != fallthrough_line.get()) {
2769      // Make workline consistent with fallthrough computed from peephole optimization.
2770      work_line_->CopyFromLine(fallthrough_line.get());
2771    }
2772    if (insn_flags_[next_insn_idx].IsReturn()) {
2773      // For returns we only care about the operand to the return, all other registers are dead.
2774      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2775      Instruction::Code opcode = ret_inst->Opcode();
2776      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2777        work_line_->MarkAllRegistersAsConflicts();
2778      } else {
2779        if (opcode == Instruction::RETURN_WIDE) {
2780          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2781        } else {
2782          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2783        }
2784      }
2785    }
2786    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2787    if (next_line != NULL) {
2788      // Merge registers into what we have for the next instruction,
2789      // and set the "changed" flag if needed.
2790      if (!UpdateRegisters(next_insn_idx, work_line_.get())) {
2791        return false;
2792      }
2793    } else {
2794      /*
2795       * We're not recording register data for the next instruction, so we don't know what the
2796       * prior state was. We have to assume that something has changed and re-evaluate it.
2797       */
2798      insn_flags_[next_insn_idx].SetChanged();
2799    }
2800  }
2801
2802  /* If we're returning from the method, make sure monitor stack is empty. */
2803  if ((opcode_flags & Instruction::kReturn) != 0) {
2804    if (!work_line_->VerifyMonitorStackEmpty()) {
2805      return false;
2806    }
2807  }
2808
2809  /*
2810   * Update start_guess. Advance to the next instruction of that's
2811   * possible, otherwise use the branch target if one was found. If
2812   * neither of those exists we're in a return or throw; leave start_guess
2813   * alone and let the caller sort it out.
2814   */
2815  if ((opcode_flags & Instruction::kContinue) != 0) {
2816    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2817  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2818    /* we're still okay if branch_target is zero */
2819    *start_guess = work_insn_idx_ + branch_target;
2820  }
2821
2822  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2823  DCHECK(insn_flags_[*start_guess].IsOpcode());
2824
2825  return true;
2826}  // NOLINT(readability/fn_size)
2827
2828const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2829  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2830  const RegType& referrer = GetDeclaringClass();
2831  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2832  const RegType& result =
2833      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2834                                           klass->CannotBeAssignedFromOtherTypes())
2835                    : reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
2836  if (result.IsConflict()) {
2837    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2838        << "' in " << referrer;
2839    return result;
2840  }
2841  if (klass == NULL && !result.IsUnresolvedTypes()) {
2842    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2843  }
2844  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2845  // check at runtime if access is allowed and so pass here. If result is
2846  // primitive, skip the access check.
2847  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2848      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2849    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2850                                    << referrer << "' -> '" << result << "'";
2851  }
2852  return result;
2853}
2854
2855const RegType& MethodVerifier::GetCaughtExceptionType() {
2856  const RegType* common_super = NULL;
2857  if (code_item_->tries_size_ != 0) {
2858    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2859    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2860    for (uint32_t i = 0; i < handlers_size; i++) {
2861      CatchHandlerIterator iterator(handlers_ptr);
2862      for (; iterator.HasNext(); iterator.Next()) {
2863        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2864          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2865            common_super = &reg_types_.JavaLangThrowable(false);
2866          } else {
2867            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2868            if (common_super == NULL) {
2869              // Unconditionally assign for the first handler. We don't assert this is a Throwable
2870              // as that is caught at runtime
2871              common_super = &exception;
2872            } else if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2873              if (exception.IsUnresolvedTypes()) {
2874                // We don't know enough about the type. Fail here and let runtime handle it.
2875                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2876                return exception;
2877              } else {
2878                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2879                return reg_types_.Conflict();
2880              }
2881            } else if (common_super->Equals(exception)) {
2882              // odd case, but nothing to do
2883            } else {
2884              common_super = &common_super->Merge(exception, &reg_types_);
2885              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2886            }
2887          }
2888        }
2889      }
2890      handlers_ptr = iterator.EndDataPointer();
2891    }
2892  }
2893  if (common_super == NULL) {
2894    /* no catch blocks, or no catches with classes we can find */
2895    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2896    return reg_types_.Conflict();
2897  }
2898  return *common_super;
2899}
2900
2901mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2902                                                               MethodType method_type) {
2903  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2904  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2905  if (klass_type.IsConflict()) {
2906    std::string append(" in attempt to access method ");
2907    append += dex_file_->GetMethodName(method_id);
2908    AppendToLastFailMessage(append);
2909    return NULL;
2910  }
2911  if (klass_type.IsUnresolvedTypes()) {
2912    return NULL;  // Can't resolve Class so no more to do here
2913  }
2914  mirror::Class* klass = klass_type.GetClass();
2915  const RegType& referrer = GetDeclaringClass();
2916  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
2917  if (res_method == NULL) {
2918    const char* name = dex_file_->GetMethodName(method_id);
2919    const Signature signature = dex_file_->GetMethodSignature(method_id);
2920
2921    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
2922      res_method = klass->FindDirectMethod(name, signature);
2923    } else if (method_type == METHOD_INTERFACE) {
2924      res_method = klass->FindInterfaceMethod(name, signature);
2925    } else {
2926      res_method = klass->FindVirtualMethod(name, signature);
2927    }
2928    if (res_method != NULL) {
2929      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
2930    } else {
2931      // If a virtual or interface method wasn't found with the expected type, look in
2932      // the direct methods. This can happen when the wrong invoke type is used or when
2933      // a class has changed, and will be flagged as an error in later checks.
2934      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
2935        res_method = klass->FindDirectMethod(name, signature);
2936      }
2937      if (res_method == NULL) {
2938        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
2939                                     << PrettyDescriptor(klass) << "." << name
2940                                     << " " << signature;
2941        return NULL;
2942      }
2943    }
2944  }
2945  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
2946  // enforce them here.
2947  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
2948    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
2949                                      << PrettyMethod(res_method);
2950    return NULL;
2951  }
2952  // Disallow any calls to class initializers.
2953  if (MethodHelper(res_method).IsClassInitializer()) {
2954    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
2955                                      << PrettyMethod(res_method);
2956    return NULL;
2957  }
2958  // Check if access is allowed.
2959  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
2960    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
2961                                     << " from " << referrer << ")";
2962    return res_method;
2963  }
2964  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
2965  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
2966    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
2967                                      << PrettyMethod(res_method);
2968    return NULL;
2969  }
2970  // Check that interface methods match interface classes.
2971  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
2972    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
2973                                    << " is in an interface class " << PrettyClass(klass);
2974    return NULL;
2975  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
2976    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
2977                                    << " is in a non-interface class " << PrettyClass(klass);
2978    return NULL;
2979  }
2980  // See if the method type implied by the invoke instruction matches the access flags for the
2981  // target method.
2982  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
2983      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
2984      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
2985      ) {
2986    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
2987                                       " type of " << PrettyMethod(res_method);
2988    return NULL;
2989  }
2990  return res_method;
2991}
2992
2993mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
2994                                                             MethodType method_type,
2995                                                             bool is_range,
2996                                                             bool is_super) {
2997  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
2998  // we're making.
2999  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3000  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3001  if (res_method == NULL) {  // error or class is unresolved
3002    return NULL;
3003  }
3004
3005  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3006  // has a vtable entry for the target method.
3007  if (is_super) {
3008    DCHECK(method_type == METHOD_VIRTUAL);
3009    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3010    if (super.IsUnresolvedTypes()) {
3011      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3012                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3013                                   << " to super " << PrettyMethod(res_method);
3014      return NULL;
3015    }
3016    mirror::Class* super_klass = super.GetClass();
3017    if (res_method->GetMethodIndex() >= super_klass->GetVTable()->GetLength()) {
3018      MethodHelper mh(res_method);
3019      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3020                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3021                                   << " to super " << super
3022                                   << "." << mh.GetName()
3023                                   << mh.GetSignature();
3024      return NULL;
3025    }
3026  }
3027  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3028  // match the call to the signature. Also, we might be calling through an abstract method
3029  // definition (which doesn't have register count values).
3030  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3031  /* caught by static verifier */
3032  DCHECK(is_range || expected_args <= 5);
3033  if (expected_args > code_item_->outs_size_) {
3034    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3035        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3036    return NULL;
3037  }
3038
3039  /*
3040   * Check the "this" argument, which must be an instance of the class that declared the method.
3041   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3042   * rigorous check here (which is okay since we have to do it at runtime).
3043   */
3044  size_t actual_args = 0;
3045  if (!res_method->IsStatic()) {
3046    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3047    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3048      return NULL;
3049    }
3050    if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3051      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3052      return NULL;
3053    }
3054    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3055      mirror::Class* klass = res_method->GetDeclaringClass();
3056      const RegType& res_method_class =
3057          reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3058                               klass->CannotBeAssignedFromOtherTypes());
3059      if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3060        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3061            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3062            << "' not instance of '" << res_method_class << "'";
3063        return NULL;
3064      }
3065    }
3066    actual_args++;
3067  }
3068  /*
3069   * Process the target method's signature. This signature may or may not
3070   * have been verified, so we can't assume it's properly formed.
3071   */
3072  MethodHelper mh(res_method);
3073  const DexFile::TypeList* params = mh.GetParameterTypeList();
3074  size_t params_size = params == NULL ? 0 : params->Size();
3075  uint32_t arg[5];
3076  if (!is_range) {
3077    inst->GetArgs(arg);
3078  }
3079  for (size_t param_index = 0; param_index < params_size; param_index++) {
3080    if (actual_args >= expected_args) {
3081      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3082          << "'. Expected " << expected_args << " arguments, processing argument " << actual_args
3083          << " (where longs/doubles count twice).";
3084      return NULL;
3085    }
3086    const char* descriptor =
3087        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3088    if (descriptor == NULL) {
3089      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3090          << " missing signature component";
3091      return NULL;
3092    }
3093    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3094    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3095    if (reg_type.IsIntegralTypes()) {
3096      const RegType& src_type = work_line_->GetRegisterType(get_reg);
3097      if (!src_type.IsIntegralTypes()) {
3098        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3099                                          << " but expected " << reg_type;
3100        return res_method;
3101      }
3102    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3103      return res_method;
3104    }
3105    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3106  }
3107  if (actual_args != expected_args) {
3108    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3109        << " expected " << expected_args << " arguments, found " << actual_args;
3110    return NULL;
3111  } else {
3112    return res_method;
3113  }
3114}
3115
3116mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3117                                                         RegisterLine* reg_line, bool is_range) {
3118  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3119         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3120  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3121  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3122    return nullptr;
3123  } else if (actual_arg_type.IsZero()) {  // Invoke on "null" instance: we can't go further.
3124    return nullptr;
3125  }
3126  mirror::Class* this_class = NULL;
3127  if (!actual_arg_type.IsUnresolvedTypes()) {
3128    this_class = actual_arg_type.GetClass();
3129  } else {
3130    const std::string& descriptor(actual_arg_type.GetDescriptor());
3131    // Try to resolve type.
3132    const RegType& resolved_arg_type = reg_types_.FromDescriptor(class_loader_->get(),
3133                                                                 descriptor.c_str(), false);
3134    if (!resolved_arg_type.HasClass()) {
3135      return nullptr;  // Resolution failed.
3136    }
3137    this_class = resolved_arg_type.GetClass();
3138    if (this_class == NULL) {
3139      Thread* self = Thread::Current();
3140      self->ClearException();
3141      // Look for a system class
3142      this_class = reg_types_.FromDescriptor(nullptr, descriptor.c_str(), false).GetClass();
3143    }
3144  }
3145  if (this_class == NULL) {
3146    return NULL;
3147  }
3148  mirror::ObjectArray<mirror::ArtMethod>* vtable = this_class->GetVTable();
3149  CHECK(vtable != NULL);
3150  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3151  CHECK(vtable_index < vtable->GetLength());
3152  mirror::ArtMethod* res_method = vtable->Get(vtable_index);
3153  CHECK(!Thread::Current()->IsExceptionPending());
3154  return res_method;
3155}
3156
3157mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3158                                                                     bool is_range) {
3159  DCHECK(Runtime::Current()->IsStarted());
3160  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3161                                                             is_range);
3162  if (res_method == NULL) {
3163    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3164    return NULL;
3165  }
3166  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3167
3168  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3169  // match the call to the signature. Also, we might be calling through an abstract method
3170  // definition (which doesn't have register count values).
3171  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3172  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3173    return NULL;
3174  }
3175  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3176  /* caught by static verifier */
3177  DCHECK(is_range || expected_args <= 5);
3178  if (expected_args > code_item_->outs_size_) {
3179    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3180        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3181    return NULL;
3182  }
3183
3184  /*
3185   * Check the "this" argument, which must be an instance of the class that declared the method.
3186   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3187   * rigorous check here (which is okay since we have to do it at runtime).
3188   */
3189  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3190    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3191    return NULL;
3192  }
3193  if (!actual_arg_type.IsZero()) {
3194    mirror::Class* klass = res_method->GetDeclaringClass();
3195    const RegType& res_method_class =
3196        reg_types_.FromClass(ClassHelper(klass).GetDescriptor(), klass,
3197                             klass->CannotBeAssignedFromOtherTypes());
3198    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3199      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3200          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3201          << "' not instance of '" << res_method_class << "'";
3202      return NULL;
3203    }
3204  }
3205  /*
3206   * Process the target method's signature. This signature may or may not
3207   * have been verified, so we can't assume it's properly formed.
3208   */
3209  MethodHelper mh(res_method);
3210  const DexFile::TypeList* params = mh.GetParameterTypeList();
3211  size_t params_size = params == NULL ? 0 : params->Size();
3212  uint32_t arg[5];
3213  if (!is_range) {
3214    inst->GetArgs(arg);
3215  }
3216  size_t actual_args = 1;
3217  for (size_t param_index = 0; param_index < params_size; param_index++) {
3218    if (actual_args >= expected_args) {
3219      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3220                                        << "'. Expected " << expected_args
3221                                         << " arguments, processing argument " << actual_args
3222                                        << " (where longs/doubles count twice).";
3223      return NULL;
3224    }
3225    const char* descriptor =
3226        mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3227    if (descriptor == NULL) {
3228      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3229                                        << " missing signature component";
3230      return NULL;
3231    }
3232    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3233    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3234    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3235      return res_method;
3236    }
3237    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3238  }
3239  if (actual_args != expected_args) {
3240    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3241              << " expected " << expected_args << " arguments, found " << actual_args;
3242    return NULL;
3243  } else {
3244    return res_method;
3245  }
3246}
3247
3248void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3249  uint32_t type_idx;
3250  if (!is_filled) {
3251    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3252    type_idx = inst->VRegC_22c();
3253  } else if (!is_range) {
3254    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3255    type_idx = inst->VRegB_35c();
3256  } else {
3257    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3258    type_idx = inst->VRegB_3rc();
3259  }
3260  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3261  if (res_type.IsConflict()) {  // bad class
3262    DCHECK_NE(failures_.size(), 0U);
3263  } else {
3264    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3265    if (!res_type.IsArrayTypes()) {
3266      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3267    } else if (!is_filled) {
3268      /* make sure "size" register is valid type */
3269      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3270      /* set register type to array class */
3271      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3272      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3273    } else {
3274      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3275      // the list and fail. It's legal, if silly, for arg_count to be zero.
3276      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->get());
3277      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3278      uint32_t arg[5];
3279      if (!is_range) {
3280        inst->GetArgs(arg);
3281      }
3282      for (size_t ui = 0; ui < arg_count; ui++) {
3283        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3284        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3285          work_line_->SetResultRegisterType(reg_types_.Conflict());
3286          return;
3287        }
3288      }
3289      // filled-array result goes into "result" register
3290      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3291      work_line_->SetResultRegisterType(precise_type);
3292    }
3293  }
3294}
3295
3296void MethodVerifier::VerifyAGet(const Instruction* inst,
3297                                const RegType& insn_type, bool is_primitive) {
3298  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3299  if (!index_type.IsArrayIndexTypes()) {
3300    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3301  } else {
3302    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3303    if (array_type.IsZero()) {
3304      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3305      // instruction type. TODO: have a proper notion of bottom here.
3306      if (!is_primitive || insn_type.IsCategory1Types()) {
3307        // Reference or category 1
3308        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3309      } else {
3310        // Category 2
3311        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3312                                        reg_types_.FromCat2ConstHi(0, false));
3313      }
3314    } else if (!array_type.IsArrayTypes()) {
3315      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3316    } else {
3317      /* verify the class */
3318      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->get());
3319      if (!component_type.IsReferenceTypes() && !is_primitive) {
3320        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3321            << " source for aget-object";
3322      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3323        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3324            << " source for category 1 aget";
3325      } else if (is_primitive && !insn_type.Equals(component_type) &&
3326                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3327                 (insn_type.IsLong() && component_type.IsDouble()))) {
3328        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3329            << " incompatible with aget of type " << insn_type;
3330      } else {
3331        // Use knowledge of the field type which is stronger than the type inferred from the
3332        // instruction, which can't differentiate object types and ints from floats, longs from
3333        // doubles.
3334        if (!component_type.IsLowHalf()) {
3335          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3336        } else {
3337          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3338                                          component_type.HighHalf(&reg_types_));
3339        }
3340      }
3341    }
3342  }
3343}
3344
3345void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3346                                        const uint32_t vregA) {
3347  // Primitive assignability rules are weaker than regular assignability rules.
3348  bool instruction_compatible;
3349  bool value_compatible;
3350  const RegType& value_type = work_line_->GetRegisterType(vregA);
3351  if (target_type.IsIntegralTypes()) {
3352    instruction_compatible = target_type.Equals(insn_type);
3353    value_compatible = value_type.IsIntegralTypes();
3354  } else if (target_type.IsFloat()) {
3355    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3356    value_compatible = value_type.IsFloatTypes();
3357  } else if (target_type.IsLong()) {
3358    instruction_compatible = insn_type.IsLong();
3359    value_compatible = value_type.IsLongTypes();
3360  } else if (target_type.IsDouble()) {
3361    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3362    value_compatible = value_type.IsDoubleTypes();
3363  } else {
3364    instruction_compatible = false;  // reference with primitive store
3365    value_compatible = false;  // unused
3366  }
3367  if (!instruction_compatible) {
3368    // This is a global failure rather than a class change failure as the instructions and
3369    // the descriptors for the type should have been consistent within the same file at
3370    // compile time.
3371    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3372        << "' but expected type '" << target_type << "'";
3373    return;
3374  }
3375  if (!value_compatible) {
3376    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3377        << " of type " << value_type << " but expected " << target_type << " for put";
3378    return;
3379  }
3380}
3381
3382void MethodVerifier::VerifyAPut(const Instruction* inst,
3383                                const RegType& insn_type, bool is_primitive) {
3384  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3385  if (!index_type.IsArrayIndexTypes()) {
3386    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3387  } else {
3388    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3389    if (array_type.IsZero()) {
3390      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3391      // instruction type.
3392    } else if (!array_type.IsArrayTypes()) {
3393      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3394    } else {
3395      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->get());
3396      const uint32_t vregA = inst->VRegA_23x();
3397      if (is_primitive) {
3398        VerifyPrimitivePut(component_type, insn_type, vregA);
3399      } else {
3400        if (!component_type.IsReferenceTypes()) {
3401          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3402              << " source for aput-object";
3403        } else {
3404          // The instruction agrees with the type of array, confirm the value to be stored does too
3405          // Note: we use the instruction type (rather than the component type) for aput-object as
3406          // incompatible classes will be caught at runtime as an array store exception
3407          work_line_->VerifyRegisterType(vregA, insn_type);
3408        }
3409      }
3410    }
3411  }
3412}
3413
3414mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3415  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3416  // Check access to class
3417  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3418  if (klass_type.IsConflict()) {  // bad class
3419    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3420                                         field_idx, dex_file_->GetFieldName(field_id),
3421                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3422    return NULL;
3423  }
3424  if (klass_type.IsUnresolvedTypes()) {
3425    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3426  }
3427  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3428  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3429                                                          *class_loader_);
3430  if (field == NULL) {
3431    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3432              << dex_file_->GetFieldName(field_id) << ") in "
3433              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3434    DCHECK(Thread::Current()->IsExceptionPending());
3435    Thread::Current()->ClearException();
3436    return NULL;
3437  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3438                                                  field->GetAccessFlags())) {
3439    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3440                                    << " from " << GetDeclaringClass();
3441    return NULL;
3442  } else if (!field->IsStatic()) {
3443    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3444    return NULL;
3445  }
3446  return field;
3447}
3448
3449mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3450  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3451  // Check access to class
3452  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3453  if (klass_type.IsConflict()) {
3454    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3455                                         field_idx, dex_file_->GetFieldName(field_id),
3456                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3457    return NULL;
3458  }
3459  if (klass_type.IsUnresolvedTypes()) {
3460    return NULL;  // Can't resolve Class so no more to do here
3461  }
3462  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3463  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3464                                                          *class_loader_);
3465  if (field == NULL) {
3466    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3467              << dex_file_->GetFieldName(field_id) << ") in "
3468              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3469    DCHECK(Thread::Current()->IsExceptionPending());
3470    Thread::Current()->ClearException();
3471    return NULL;
3472  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3473                                                  field->GetAccessFlags())) {
3474    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3475                                    << " from " << GetDeclaringClass();
3476    return NULL;
3477  } else if (field->IsStatic()) {
3478    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3479                                    << " to not be static";
3480    return NULL;
3481  } else if (obj_type.IsZero()) {
3482    // Cannot infer and check type, however, access will cause null pointer exception
3483    return field;
3484  } else {
3485    mirror::Class* klass = field->GetDeclaringClass();
3486    const RegType& field_klass =
3487        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3488                             klass, klass->CannotBeAssignedFromOtherTypes());
3489    if (obj_type.IsUninitializedTypes() &&
3490        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3491            !field_klass.Equals(GetDeclaringClass()))) {
3492      // Field accesses through uninitialized references are only allowable for constructors where
3493      // the field is declared in this class
3494      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3495                                        << " of a not fully initialized object within the context"
3496                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3497      return NULL;
3498    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3499      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3500      // of C1. For resolution to occur the declared class of the field must be compatible with
3501      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3502      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3503                                  << " from object of type " << obj_type;
3504      return NULL;
3505    } else {
3506      return field;
3507    }
3508  }
3509}
3510
3511void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3512                                 bool is_primitive, bool is_static) {
3513  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3514  mirror::ArtField* field;
3515  if (is_static) {
3516    field = GetStaticField(field_idx);
3517  } else {
3518    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3519    field = GetInstanceField(object_type, field_idx);
3520  }
3521  const RegType* field_type = nullptr;
3522  if (field != NULL) {
3523    FieldHelper fh(field);
3524    mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3525    if (field_type_class != nullptr) {
3526      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3527                                         field_type_class->CannotBeAssignedFromOtherTypes());
3528    } else {
3529      Thread* self = Thread::Current();
3530      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3531      self->ClearException();
3532    }
3533  }
3534  if (field_type == nullptr) {
3535    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3536    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3537    field_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3538  }
3539  DCHECK(field_type != nullptr);
3540  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3541  if (is_primitive) {
3542    if (field_type->Equals(insn_type) ||
3543        (field_type->IsFloat() && insn_type.IsInteger()) ||
3544        (field_type->IsDouble() && insn_type.IsLong())) {
3545      // expected that read is of the correct primitive type or that int reads are reading
3546      // floats or long reads are reading doubles
3547    } else {
3548      // This is a global failure rather than a class change failure as the instructions and
3549      // the descriptors for the type should have been consistent within the same file at
3550      // compile time
3551      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3552                                        << " to be of type '" << insn_type
3553                                        << "' but found type '" << *field_type << "' in get";
3554      return;
3555    }
3556  } else {
3557    if (!insn_type.IsAssignableFrom(*field_type)) {
3558      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3559                                        << " to be compatible with type '" << insn_type
3560                                        << "' but found type '" << *field_type
3561                                        << "' in get-object";
3562      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3563      return;
3564    }
3565  }
3566  if (!field_type->IsLowHalf()) {
3567    work_line_->SetRegisterType(vregA, *field_type);
3568  } else {
3569    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3570  }
3571}
3572
3573void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3574                                 bool is_primitive, bool is_static) {
3575  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3576  mirror::ArtField* field;
3577  if (is_static) {
3578    field = GetStaticField(field_idx);
3579  } else {
3580    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3581    field = GetInstanceField(object_type, field_idx);
3582  }
3583  const RegType* field_type = nullptr;
3584  if (field != NULL) {
3585    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3586      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3587                                      << " from other class " << GetDeclaringClass();
3588      return;
3589    }
3590    FieldHelper fh(field);
3591    mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3592    if (field_type_class != nullptr) {
3593      field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3594                                         field_type_class->CannotBeAssignedFromOtherTypes());
3595    } else {
3596      Thread* self = Thread::Current();
3597      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3598      self->ClearException();
3599    }
3600  }
3601  if (field_type == nullptr) {
3602    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3603    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3604    field_type = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3605  }
3606  DCHECK(field_type != nullptr);
3607  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3608  if (is_primitive) {
3609    VerifyPrimitivePut(*field_type, insn_type, vregA);
3610  } else {
3611    if (!insn_type.IsAssignableFrom(*field_type)) {
3612      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3613                                        << " to be compatible with type '" << insn_type
3614                                        << "' but found type '" << *field_type
3615                                        << "' in put-object";
3616      return;
3617    }
3618    work_line_->VerifyRegisterType(vregA, *field_type);
3619  }
3620}
3621
3622// Look for an instance field with this offset.
3623// TODO: we may speed up the search if offsets are sorted by doing a quick search.
3624static mirror::ArtField* FindInstanceFieldWithOffset(mirror::Class* klass, uint32_t field_offset)
3625    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3626  mirror::ObjectArray<mirror::ArtField>* instance_fields = klass->GetIFields();
3627  if (instance_fields != NULL) {
3628    for (int32_t i = 0, e = instance_fields->GetLength(); i < e; ++i) {
3629      mirror::ArtField* field = instance_fields->Get(i);
3630      if (field->GetOffset().Uint32Value() == field_offset) {
3631        return field;
3632      }
3633    }
3634  }
3635  // We did not find field in class: look into superclass.
3636  if (klass->GetSuperClass() != NULL) {
3637    return FindInstanceFieldWithOffset(klass->GetSuperClass(), field_offset);
3638  } else {
3639    return NULL;
3640  }
3641}
3642
3643// Returns the access field of a quick field access (iget/iput-quick) or NULL
3644// if it cannot be found.
3645mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3646                                                      RegisterLine* reg_line) {
3647  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3648         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3649         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3650         inst->Opcode() == Instruction::IPUT_QUICK ||
3651         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3652         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3653  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3654  mirror::Class* object_class = NULL;
3655  if (!object_type.IsUnresolvedTypes()) {
3656    object_class = object_type.GetClass();
3657  } else {
3658    // We need to resolve the class from its descriptor.
3659    const std::string& descriptor(object_type.GetDescriptor());
3660    Thread* self = Thread::Current();
3661    object_class = reg_types_.FromDescriptor(class_loader_->get(), descriptor.c_str(),
3662                                             false).GetClass();
3663    if (object_class == NULL) {
3664      self->ClearException();
3665      // Look for a system class
3666      object_class = reg_types_.FromDescriptor(nullptr, descriptor.c_str(),
3667                                               false).GetClass();
3668    }
3669  }
3670  if (object_class == NULL) {
3671    // Failed to get the Class* from reg type.
3672    LOG(WARNING) << "Failed to get Class* from " << object_type;
3673    return NULL;
3674  }
3675  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3676  return FindInstanceFieldWithOffset(object_class, field_offset);
3677}
3678
3679void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3680                                     bool is_primitive) {
3681  DCHECK(Runtime::Current()->IsStarted());
3682  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3683  if (field == NULL) {
3684    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3685    return;
3686  }
3687  FieldHelper fh(field);
3688  mirror::Class* field_type_class = fh.GetType(can_load_classes_);
3689  const RegType* field_type;
3690  if (field_type_class != nullptr) {
3691    field_type = &reg_types_.FromClass(fh.GetTypeDescriptor(), field_type_class,
3692                                       field_type_class->CannotBeAssignedFromOtherTypes());
3693  } else {
3694    Thread* self = Thread::Current();
3695    DCHECK(!can_load_classes_ || self->IsExceptionPending());
3696    self->ClearException();
3697    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3698                                            fh.GetTypeDescriptor(), false);
3699  }
3700  DCHECK(field_type != nullptr);
3701  const uint32_t vregA = inst->VRegA_22c();
3702  if (is_primitive) {
3703    if (field_type->Equals(insn_type) ||
3704        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3705        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3706      // expected that read is of the correct primitive type or that int reads are reading
3707      // floats or long reads are reading doubles
3708    } else {
3709      // This is a global failure rather than a class change failure as the instructions and
3710      // the descriptors for the type should have been consistent within the same file at
3711      // compile time
3712      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3713                                        << " to be of type '" << insn_type
3714                                        << "' but found type '" << *field_type << "' in get";
3715      return;
3716    }
3717  } else {
3718    if (!insn_type.IsAssignableFrom(*field_type)) {
3719      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3720                                        << " to be compatible with type '" << insn_type
3721                                        << "' but found type '" << *field_type
3722                                        << "' in get-object";
3723      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3724      return;
3725    }
3726  }
3727  if (!field_type->IsLowHalf()) {
3728    work_line_->SetRegisterType(vregA, *field_type);
3729  } else {
3730    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3731  }
3732}
3733
3734void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3735                                     bool is_primitive) {
3736  DCHECK(Runtime::Current()->IsStarted());
3737  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3738  if (field == NULL) {
3739    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3740    return;
3741  }
3742  const char* descriptor = FieldHelper(field).GetTypeDescriptor();
3743  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3744  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3745  if (field != NULL) {
3746    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3747      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3748                                      << " from other class " << GetDeclaringClass();
3749      return;
3750    }
3751  }
3752  const uint32_t vregA = inst->VRegA_22c();
3753  if (is_primitive) {
3754    // Primitive field assignability rules are weaker than regular assignability rules
3755    bool instruction_compatible;
3756    bool value_compatible;
3757    const RegType& value_type = work_line_->GetRegisterType(vregA);
3758    if (field_type.IsIntegralTypes()) {
3759      instruction_compatible = insn_type.IsIntegralTypes();
3760      value_compatible = value_type.IsIntegralTypes();
3761    } else if (field_type.IsFloat()) {
3762      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3763      value_compatible = value_type.IsFloatTypes();
3764    } else if (field_type.IsLong()) {
3765      instruction_compatible = insn_type.IsLong();
3766      value_compatible = value_type.IsLongTypes();
3767    } else if (field_type.IsDouble()) {
3768      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3769      value_compatible = value_type.IsDoubleTypes();
3770    } else {
3771      instruction_compatible = false;  // reference field with primitive store
3772      value_compatible = false;  // unused
3773    }
3774    if (!instruction_compatible) {
3775      // This is a global failure rather than a class change failure as the instructions and
3776      // the descriptors for the type should have been consistent within the same file at
3777      // compile time
3778      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3779                                        << " to be of type '" << insn_type
3780                                        << "' but found type '" << field_type
3781                                        << "' in put";
3782      return;
3783    }
3784    if (!value_compatible) {
3785      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3786          << " of type " << value_type
3787          << " but expected " << field_type
3788          << " for store to " << PrettyField(field) << " in put";
3789      return;
3790    }
3791  } else {
3792    if (!insn_type.IsAssignableFrom(field_type)) {
3793      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3794                                        << " to be compatible with type '" << insn_type
3795                                        << "' but found type '" << field_type
3796                                        << "' in put-object";
3797      return;
3798    }
3799    work_line_->VerifyRegisterType(vregA, field_type);
3800  }
3801}
3802
3803bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3804  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3805    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3806    return false;
3807  }
3808  return true;
3809}
3810
3811bool MethodVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) {
3812  bool changed = true;
3813  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3814  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3815    /*
3816     * We haven't processed this instruction before, and we haven't touched the registers here, so
3817     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3818     * only way a register can transition out of "unknown", so this is not just an optimization.)
3819     */
3820    if (!insn_flags_[next_insn].IsReturn()) {
3821      target_line->CopyFromLine(merge_line);
3822    } else {
3823      // Verify that the monitor stack is empty on return.
3824      if (!merge_line->VerifyMonitorStackEmpty()) {
3825        return false;
3826      }
3827      // For returns we only care about the operand to the return, all other registers are dead.
3828      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3829      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3830      Instruction::Code opcode = ret_inst->Opcode();
3831      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3832        target_line->MarkAllRegistersAsConflicts();
3833      } else {
3834        target_line->CopyFromLine(merge_line);
3835        if (opcode == Instruction::RETURN_WIDE) {
3836          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3837        } else {
3838          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3839        }
3840      }
3841    }
3842  } else {
3843    UniquePtr<RegisterLine> copy(gDebugVerify ?
3844                                 RegisterLine::Create(target_line->NumRegs(), this) :
3845                                 NULL);
3846    if (gDebugVerify) {
3847      copy->CopyFromLine(target_line);
3848    }
3849    changed = target_line->MergeRegisters(merge_line);
3850    if (have_pending_hard_failure_) {
3851      return false;
3852    }
3853    if (gDebugVerify && changed) {
3854      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3855                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3856                      << *copy.get() << "  MERGE\n"
3857                      << *merge_line << "  ==\n"
3858                      << *target_line << "\n";
3859    }
3860  }
3861  if (changed) {
3862    insn_flags_[next_insn].SetChanged();
3863  }
3864  return true;
3865}
3866
3867InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3868  return &insn_flags_[work_insn_idx_];
3869}
3870
3871const RegType& MethodVerifier::GetMethodReturnType() {
3872  if (return_type_ == nullptr) {
3873    if (mirror_method_ != NULL) {
3874      MethodHelper mh(mirror_method_);
3875      mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
3876      if (return_type_class != nullptr) {
3877        return_type_ = &reg_types_.FromClass(mh.GetReturnTypeDescriptor(), return_type_class,
3878                                             return_type_class->CannotBeAssignedFromOtherTypes());
3879      } else {
3880        Thread* self = Thread::Current();
3881        DCHECK(!can_load_classes_ || self->IsExceptionPending());
3882        self->ClearException();
3883      }
3884    }
3885    if (return_type_ == nullptr) {
3886      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3887      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
3888      uint16_t return_type_idx = proto_id.return_type_idx_;
3889      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
3890      return_type_ = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3891    }
3892  }
3893  return *return_type_;
3894}
3895
3896const RegType& MethodVerifier::GetDeclaringClass() {
3897  if (declaring_class_ == NULL) {
3898    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
3899    const char* descriptor
3900        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
3901    if (mirror_method_ != NULL) {
3902      mirror::Class* klass = mirror_method_->GetDeclaringClass();
3903      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
3904                                               klass->CannotBeAssignedFromOtherTypes());
3905    } else {
3906      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->get(), descriptor, false);
3907    }
3908  }
3909  return *declaring_class_;
3910}
3911
3912std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
3913  RegisterLine* line = reg_table_.GetLine(dex_pc);
3914  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
3915  std::vector<int32_t> result;
3916  for (size_t i = 0; i < line->NumRegs(); ++i) {
3917    const RegType& type = line->GetRegisterType(i);
3918    if (type.IsConstant()) {
3919      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
3920      result.push_back(type.ConstantValue());
3921    } else if (type.IsConstantLo()) {
3922      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
3923      result.push_back(type.ConstantValueLo());
3924    } else if (type.IsConstantHi()) {
3925      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
3926      result.push_back(type.ConstantValueHi());
3927    } else if (type.IsIntegralTypes()) {
3928      result.push_back(kIntVReg);
3929      result.push_back(0);
3930    } else if (type.IsFloat()) {
3931      result.push_back(kFloatVReg);
3932      result.push_back(0);
3933    } else if (type.IsLong()) {
3934      result.push_back(kLongLoVReg);
3935      result.push_back(0);
3936      result.push_back(kLongHiVReg);
3937      result.push_back(0);
3938      ++i;
3939    } else if (type.IsDouble()) {
3940      result.push_back(kDoubleLoVReg);
3941      result.push_back(0);
3942      result.push_back(kDoubleHiVReg);
3943      result.push_back(0);
3944      ++i;
3945    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
3946      result.push_back(kUndefined);
3947      result.push_back(0);
3948    } else {
3949      CHECK(type.IsNonZeroReferenceTypes());
3950      result.push_back(kReferenceVReg);
3951      result.push_back(0);
3952    }
3953  }
3954  return result;
3955}
3956
3957const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
3958  if (precise) {
3959    // Precise constant type.
3960    return reg_types_.FromCat1Const(value, true);
3961  } else {
3962    // Imprecise constant type.
3963    if (value < -32768) {
3964      return reg_types_.IntConstant();
3965    } else if (value < -128) {
3966      return reg_types_.ShortConstant();
3967    } else if (value < 0) {
3968      return reg_types_.ByteConstant();
3969    } else if (value == 0) {
3970      return reg_types_.Zero();
3971    } else if (value == 1) {
3972      return reg_types_.One();
3973    } else if (value < 128) {
3974      return reg_types_.PosByteConstant();
3975    } else if (value < 32768) {
3976      return reg_types_.PosShortConstant();
3977    } else if (value < 65536) {
3978      return reg_types_.CharConstant();
3979    } else {
3980      return reg_types_.IntConstant();
3981    }
3982  }
3983}
3984
3985void MethodVerifier::Init() {
3986  art::verifier::RegTypeCache::Init();
3987}
3988
3989void MethodVerifier::Shutdown() {
3990  verifier::RegTypeCache::ShutDown();
3991}
3992
3993void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
3994  reg_types_.VisitRoots(callback, arg);
3995}
3996
3997}  // namespace verifier
3998}  // namespace art
3999