1/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to.  The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 *    notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 *    notice, this list of conditions and the following disclaimer in the
29 *    documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 *    must display the following acknowledgement:
32 *    "This product includes cryptographic software written by
33 *     Eric Young (eay@cryptsoft.com)"
34 *    The word 'cryptographic' can be left out if the rouines from the library
35 *    being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 *    the apps directory (application code) you must include an acknowledgement:
38 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed.  i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.]
56 */
57/* ====================================================================
58 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
59 *
60 * Redistribution and use in source and binary forms, with or without
61 * modification, are permitted provided that the following conditions
62 * are met:
63 *
64 * 1. Redistributions of source code must retain the above copyright
65 *    notice, this list of conditions and the following disclaimer.
66 *
67 * 2. Redistributions in binary form must reproduce the above copyright
68 *    notice, this list of conditions and the following disclaimer in
69 *    the documentation and/or other materials provided with the
70 *    distribution.
71 *
72 * 3. All advertising materials mentioning features or use of this
73 *    software must display the following acknowledgment:
74 *    "This product includes software developed by the OpenSSL Project
75 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76 *
77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78 *    endorse or promote products derived from this software without
79 *    prior written permission. For written permission, please contact
80 *    openssl-core@openssl.org.
81 *
82 * 5. Products derived from this software may not be called "OpenSSL"
83 *    nor may "OpenSSL" appear in their names without prior written
84 *    permission of the OpenSSL Project.
85 *
86 * 6. Redistributions of any form whatsoever must retain the following
87 *    acknowledgment:
88 *    "This product includes software developed by the OpenSSL Project
89 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90 *
91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102 * OF THE POSSIBILITY OF SUCH DAMAGE.
103 * ====================================================================
104 *
105 * This product includes cryptographic software written by Eric Young
106 * (eay@cryptsoft.com).  This product includes software written by Tim
107 * Hudson (tjh@cryptsoft.com). */
108
109#include <openssl/bn.h>
110
111#include <openssl/err.h>
112
113#include "internal.h"
114
115static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) {
116  BIGNUM *t;
117  int shifts = 0;
118
119  /* 0 <= b <= a */
120  while (!BN_is_zero(b)) {
121    /* 0 < b <= a */
122
123    if (BN_is_odd(a)) {
124      if (BN_is_odd(b)) {
125        if (!BN_sub(a, a, b)) {
126          goto err;
127        }
128        if (!BN_rshift1(a, a)) {
129          goto err;
130        }
131        if (BN_cmp(a, b) < 0) {
132          t = a;
133          a = b;
134          b = t;
135        }
136      } else {
137        /* a odd - b even */
138        if (!BN_rshift1(b, b)) {
139          goto err;
140        }
141        if (BN_cmp(a, b) < 0) {
142          t = a;
143          a = b;
144          b = t;
145        }
146      }
147    } else {
148      /* a is even */
149      if (BN_is_odd(b)) {
150        if (!BN_rshift1(a, a)) {
151          goto err;
152        }
153        if (BN_cmp(a, b) < 0) {
154          t = a;
155          a = b;
156          b = t;
157        }
158      } else {
159        /* a even - b even */
160        if (!BN_rshift1(a, a)) {
161          goto err;
162        }
163        if (!BN_rshift1(b, b)) {
164          goto err;
165        }
166        shifts++;
167      }
168    }
169    /* 0 <= b <= a */
170  }
171
172  if (shifts) {
173    if (!BN_lshift(a, a, shifts)) {
174      goto err;
175    }
176  }
177
178  return a;
179
180err:
181  return NULL;
182}
183
184int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) {
185  BIGNUM *a, *b, *t;
186  int ret = 0;
187
188  BN_CTX_start(ctx);
189  a = BN_CTX_get(ctx);
190  b = BN_CTX_get(ctx);
191
192  if (a == NULL || b == NULL) {
193    goto err;
194  }
195  if (BN_copy(a, in_a) == NULL) {
196    goto err;
197  }
198  if (BN_copy(b, in_b) == NULL) {
199    goto err;
200  }
201
202  a->neg = 0;
203  b->neg = 0;
204
205  if (BN_cmp(a, b) < 0) {
206    t = a;
207    a = b;
208    b = t;
209  }
210  t = euclid(a, b);
211  if (t == NULL) {
212    goto err;
213  }
214
215  if (BN_copy(r, t) == NULL) {
216    goto err;
217  }
218  ret = 1;
219
220err:
221  BN_CTX_end(ctx);
222  return ret;
223}
224
225/* solves ax == 1 (mod n) */
226static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *out, int *out_no_inverse,
227                                        const BIGNUM *a, const BIGNUM *n,
228                                        BN_CTX *ctx);
229
230BIGNUM *BN_mod_inverse_ex(BIGNUM *out, int *out_no_inverse, const BIGNUM *a,
231                          const BIGNUM *n, BN_CTX *ctx) {
232  BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
233  BIGNUM *ret = NULL;
234  int sign;
235
236  if ((a->flags & BN_FLG_CONSTTIME) != 0 ||
237      (n->flags & BN_FLG_CONSTTIME) != 0) {
238    return BN_mod_inverse_no_branch(out, out_no_inverse, a, n, ctx);
239  }
240
241  *out_no_inverse = 0;
242
243  BN_CTX_start(ctx);
244  A = BN_CTX_get(ctx);
245  B = BN_CTX_get(ctx);
246  X = BN_CTX_get(ctx);
247  D = BN_CTX_get(ctx);
248  M = BN_CTX_get(ctx);
249  Y = BN_CTX_get(ctx);
250  T = BN_CTX_get(ctx);
251  if (T == NULL) {
252    goto err;
253  }
254
255  if (out == NULL) {
256    R = BN_new();
257  } else {
258    R = out;
259  }
260  if (R == NULL) {
261    goto err;
262  }
263
264  BN_zero(Y);
265  if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) {
266    goto err;
267  }
268  A->neg = 0;
269  if (B->neg || (BN_ucmp(B, A) >= 0)) {
270    if (!BN_nnmod(B, B, A, ctx)) {
271      goto err;
272    }
273  }
274  sign = -1;
275  /* From  B = a mod |n|,  A = |n|  it follows that
276   *
277   *      0 <= B < A,
278   *     -sign*X*a  ==  B   (mod |n|),
279   *      sign*Y*a  ==  A   (mod |n|).
280   */
281
282  if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS2 <= 32 ? 450 : 2048))) {
283    /* Binary inversion algorithm; requires odd modulus.
284     * This is faster than the general algorithm if the modulus
285     * is sufficiently small (about 400 .. 500 bits on 32-bit
286     * sytems, but much more on 64-bit systems) */
287    int shift;
288
289    while (!BN_is_zero(B)) {
290      /*      0 < B < |n|,
291       *      0 < A <= |n|,
292       * (1) -sign*X*a  ==  B   (mod |n|),
293       * (2)  sign*Y*a  ==  A   (mod |n|) */
294
295      /* Now divide  B  by the maximum possible power of two in the integers,
296       * and divide  X  by the same value mod |n|.
297       * When we're done, (1) still holds. */
298      shift = 0;
299      while (!BN_is_bit_set(B, shift)) {
300        /* note that 0 < B */
301        shift++;
302
303        if (BN_is_odd(X)) {
304          if (!BN_uadd(X, X, n)) {
305            goto err;
306          }
307        }
308        /* now X is even, so we can easily divide it by two */
309        if (!BN_rshift1(X, X)) {
310          goto err;
311        }
312      }
313      if (shift > 0) {
314        if (!BN_rshift(B, B, shift)) {
315          goto err;
316        }
317      }
318
319      /* Same for A and Y. Afterwards, (2) still holds. */
320      shift = 0;
321      while (!BN_is_bit_set(A, shift)) {
322        /* note that 0 < A */
323        shift++;
324
325        if (BN_is_odd(Y)) {
326          if (!BN_uadd(Y, Y, n)) {
327            goto err;
328          }
329        }
330        /* now Y is even */
331        if (!BN_rshift1(Y, Y)) {
332          goto err;
333        }
334      }
335      if (shift > 0) {
336        if (!BN_rshift(A, A, shift)) {
337          goto err;
338        }
339      }
340
341      /* We still have (1) and (2).
342       * Both  A  and  B  are odd.
343       * The following computations ensure that
344       *
345       *     0 <= B < |n|,
346       *      0 < A < |n|,
347       * (1) -sign*X*a  ==  B   (mod |n|),
348       * (2)  sign*Y*a  ==  A   (mod |n|),
349       *
350       * and that either  A  or  B  is even in the next iteration. */
351      if (BN_ucmp(B, A) >= 0) {
352        /* -sign*(X + Y)*a == B - A  (mod |n|) */
353        if (!BN_uadd(X, X, Y)) {
354          goto err;
355        }
356        /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
357         * actually makes the algorithm slower */
358        if (!BN_usub(B, B, A)) {
359          goto err;
360        }
361      } else {
362        /*  sign*(X + Y)*a == A - B  (mod |n|) */
363        if (!BN_uadd(Y, Y, X)) {
364          goto err;
365        }
366        /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
367        if (!BN_usub(A, A, B)) {
368          goto err;
369        }
370      }
371    }
372  } else {
373    /* general inversion algorithm */
374
375    while (!BN_is_zero(B)) {
376      BIGNUM *tmp;
377
378      /*
379       *      0 < B < A,
380       * (*) -sign*X*a  ==  B   (mod |n|),
381       *      sign*Y*a  ==  A   (mod |n|) */
382
383      /* (D, M) := (A/B, A%B) ... */
384      if (BN_num_bits(A) == BN_num_bits(B)) {
385        if (!BN_one(D)) {
386          goto err;
387        }
388        if (!BN_sub(M, A, B)) {
389          goto err;
390        }
391      } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
392        /* A/B is 1, 2, or 3 */
393        if (!BN_lshift1(T, B)) {
394          goto err;
395        }
396        if (BN_ucmp(A, T) < 0) {
397          /* A < 2*B, so D=1 */
398          if (!BN_one(D)) {
399            goto err;
400          }
401          if (!BN_sub(M, A, B)) {
402            goto err;
403          }
404        } else {
405          /* A >= 2*B, so D=2 or D=3 */
406          if (!BN_sub(M, A, T)) {
407            goto err;
408          }
409          if (!BN_add(D, T, B)) {
410            goto err; /* use D (:= 3*B) as temp */
411          }
412          if (BN_ucmp(A, D) < 0) {
413            /* A < 3*B, so D=2 */
414            if (!BN_set_word(D, 2)) {
415              goto err;
416            }
417            /* M (= A - 2*B) already has the correct value */
418          } else {
419            /* only D=3 remains */
420            if (!BN_set_word(D, 3)) {
421              goto err;
422            }
423            /* currently  M = A - 2*B,  but we need  M = A - 3*B */
424            if (!BN_sub(M, M, B)) {
425              goto err;
426            }
427          }
428        }
429      } else {
430        if (!BN_div(D, M, A, B, ctx)) {
431          goto err;
432        }
433      }
434
435      /* Now
436       *      A = D*B + M;
437       * thus we have
438       * (**)  sign*Y*a  ==  D*B + M   (mod |n|). */
439
440      tmp = A; /* keep the BIGNUM object, the value does not matter */
441
442      /* (A, B) := (B, A mod B) ... */
443      A = B;
444      B = M;
445      /* ... so we have  0 <= B < A  again */
446
447      /* Since the former  M  is now  B  and the former  B  is now  A,
448       * (**) translates into
449       *       sign*Y*a  ==  D*A + B    (mod |n|),
450       * i.e.
451       *       sign*Y*a - D*A  ==  B    (mod |n|).
452       * Similarly, (*) translates into
453       *      -sign*X*a  ==  A          (mod |n|).
454       *
455       * Thus,
456       *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
457       * i.e.
458       *        sign*(Y + D*X)*a  ==  B  (mod |n|).
459       *
460       * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
461       *      -sign*X*a  ==  B   (mod |n|),
462       *       sign*Y*a  ==  A   (mod |n|).
463       * Note that  X  and  Y  stay non-negative all the time. */
464
465      /* most of the time D is very small, so we can optimize tmp := D*X+Y */
466      if (BN_is_one(D)) {
467        if (!BN_add(tmp, X, Y)) {
468          goto err;
469        }
470      } else {
471        if (BN_is_word(D, 2)) {
472          if (!BN_lshift1(tmp, X)) {
473            goto err;
474          }
475        } else if (BN_is_word(D, 4)) {
476          if (!BN_lshift(tmp, X, 2)) {
477            goto err;
478          }
479        } else if (D->top == 1) {
480          if (!BN_copy(tmp, X)) {
481            goto err;
482          }
483          if (!BN_mul_word(tmp, D->d[0])) {
484            goto err;
485          }
486        } else {
487          if (!BN_mul(tmp, D, X, ctx)) {
488            goto err;
489          }
490        }
491        if (!BN_add(tmp, tmp, Y)) {
492          goto err;
493        }
494      }
495
496      M = Y; /* keep the BIGNUM object, the value does not matter */
497      Y = X;
498      X = tmp;
499      sign = -sign;
500    }
501  }
502
503  /* The while loop (Euclid's algorithm) ends when
504   *      A == gcd(a,n);
505   * we have
506   *       sign*Y*a  ==  A  (mod |n|),
507   * where  Y  is non-negative. */
508
509  if (sign < 0) {
510    if (!BN_sub(Y, n, Y)) {
511      goto err;
512    }
513  }
514  /* Now  Y*a  ==  A  (mod |n|).  */
515
516  if (BN_is_one(A)) {
517    /* Y*a == 1  (mod |n|) */
518    if (!Y->neg && BN_ucmp(Y, n) < 0) {
519      if (!BN_copy(R, Y)) {
520        goto err;
521      }
522    } else {
523      if (!BN_nnmod(R, Y, n, ctx)) {
524        goto err;
525      }
526    }
527  } else {
528    *out_no_inverse = 1;
529    OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
530    goto err;
531  }
532  ret = R;
533
534err:
535  if (ret == NULL && out == NULL) {
536    BN_free(R);
537  }
538  BN_CTX_end(ctx);
539  return ret;
540}
541
542BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n,
543                       BN_CTX *ctx) {
544  int no_inverse;
545  return BN_mod_inverse_ex(out, &no_inverse, a, n, ctx);
546}
547
548/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
549 * It does not contain branches that may leak sensitive information. */
550static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *out, int *out_no_inverse,
551                                        const BIGNUM *a, const BIGNUM *n,
552                                        BN_CTX *ctx) {
553  BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL;
554  BIGNUM local_A, local_B;
555  BIGNUM *pA, *pB;
556  BIGNUM *ret = NULL;
557  int sign;
558
559  *out_no_inverse = 0;
560
561  BN_CTX_start(ctx);
562  A = BN_CTX_get(ctx);
563  B = BN_CTX_get(ctx);
564  X = BN_CTX_get(ctx);
565  D = BN_CTX_get(ctx);
566  M = BN_CTX_get(ctx);
567  Y = BN_CTX_get(ctx);
568  T = BN_CTX_get(ctx);
569  if (T == NULL) {
570    goto err;
571  }
572
573  if (out == NULL) {
574    R = BN_new();
575  } else {
576    R = out;
577  }
578  if (R == NULL) {
579    goto err;
580  }
581
582  BN_zero(Y);
583  if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) {
584    goto err;
585  }
586  A->neg = 0;
587
588  if (B->neg || (BN_ucmp(B, A) >= 0)) {
589    /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
590     * BN_div_no_branch will be called eventually.
591     */
592    pB = &local_B;
593    BN_with_flags(pB, B, BN_FLG_CONSTTIME);
594    if (!BN_nnmod(B, pB, A, ctx)) {
595      goto err;
596    }
597  }
598  sign = -1;
599  /* From  B = a mod |n|,  A = |n|  it follows that
600   *
601   *      0 <= B < A,
602   *     -sign*X*a  ==  B   (mod |n|),
603   *      sign*Y*a  ==  A   (mod |n|).
604   */
605
606  while (!BN_is_zero(B)) {
607    BIGNUM *tmp;
608
609    /*
610     *      0 < B < A,
611     * (*) -sign*X*a  ==  B   (mod |n|),
612     *      sign*Y*a  ==  A   (mod |n|)
613     */
614
615    /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
616     * BN_div_no_branch will be called eventually.
617     */
618    pA = &local_A;
619    BN_with_flags(pA, A, BN_FLG_CONSTTIME);
620
621    /* (D, M) := (A/B, A%B) ... */
622    if (!BN_div(D, M, pA, B, ctx)) {
623      goto err;
624    }
625
626    /* Now
627     *      A = D*B + M;
628     * thus we have
629     * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
630     */
631
632    tmp = A; /* keep the BIGNUM object, the value does not matter */
633
634    /* (A, B) := (B, A mod B) ... */
635    A = B;
636    B = M;
637    /* ... so we have  0 <= B < A  again */
638
639    /* Since the former  M  is now  B  and the former  B  is now  A,
640     * (**) translates into
641     *       sign*Y*a  ==  D*A + B    (mod |n|),
642     * i.e.
643     *       sign*Y*a - D*A  ==  B    (mod |n|).
644     * Similarly, (*) translates into
645     *      -sign*X*a  ==  A          (mod |n|).
646     *
647     * Thus,
648     *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
649     * i.e.
650     *        sign*(Y + D*X)*a  ==  B  (mod |n|).
651     *
652     * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
653     *      -sign*X*a  ==  B   (mod |n|),
654     *       sign*Y*a  ==  A   (mod |n|).
655     * Note that  X  and  Y  stay non-negative all the time.
656     */
657
658    if (!BN_mul(tmp, D, X, ctx)) {
659      goto err;
660    }
661    if (!BN_add(tmp, tmp, Y)) {
662      goto err;
663    }
664
665    M = Y; /* keep the BIGNUM object, the value does not matter */
666    Y = X;
667    X = tmp;
668    sign = -sign;
669  }
670
671  /*
672   * The while loop (Euclid's algorithm) ends when
673   *      A == gcd(a,n);
674   * we have
675   *       sign*Y*a  ==  A  (mod |n|),
676   * where  Y  is non-negative.
677   */
678
679  if (sign < 0) {
680    if (!BN_sub(Y, n, Y)) {
681      goto err;
682    }
683  }
684  /* Now  Y*a  ==  A  (mod |n|).  */
685
686  if (BN_is_one(A)) {
687    /* Y*a == 1  (mod |n|) */
688    if (!Y->neg && BN_ucmp(Y, n) < 0) {
689      if (!BN_copy(R, Y)) {
690        goto err;
691      }
692    } else {
693      if (!BN_nnmod(R, Y, n, ctx)) {
694        goto err;
695      }
696    }
697  } else {
698    *out_no_inverse = 1;
699    OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE);
700    goto err;
701  }
702  ret = R;
703
704err:
705  if (ret == NULL && out == NULL) {
706    BN_free(R);
707  }
708
709  BN_CTX_end(ctx);
710  return ret;
711}
712