1//===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the Expr interface and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_EXPR_H
15#define LLVM_CLANG_AST_EXPR_H
16
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTVector.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclAccessPair.h"
21#include "clang/AST/OperationKinds.h"
22#include "clang/AST/Stmt.h"
23#include "clang/AST/TemplateBase.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/CharInfo.h"
26#include "clang/Basic/LangOptions.h"
27#include "clang/Basic/TypeTraits.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/APSInt.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringRef.h"
32#include "llvm/Support/Compiler.h"
33
34namespace clang {
35  class APValue;
36  class ASTContext;
37  class BlockDecl;
38  class CXXBaseSpecifier;
39  class CXXMemberCallExpr;
40  class CXXOperatorCallExpr;
41  class CastExpr;
42  class Decl;
43  class IdentifierInfo;
44  class MaterializeTemporaryExpr;
45  class NamedDecl;
46  class ObjCPropertyRefExpr;
47  class OpaqueValueExpr;
48  class ParmVarDecl;
49  class StringLiteral;
50  class TargetInfo;
51  class ValueDecl;
52
53/// \brief A simple array of base specifiers.
54typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
55
56/// \brief An adjustment to be made to the temporary created when emitting a
57/// reference binding, which accesses a particular subobject of that temporary.
58struct SubobjectAdjustment {
59  enum {
60    DerivedToBaseAdjustment,
61    FieldAdjustment,
62    MemberPointerAdjustment
63  } Kind;
64
65  struct DTB {
66    const CastExpr *BasePath;
67    const CXXRecordDecl *DerivedClass;
68  };
69
70  struct P {
71    const MemberPointerType *MPT;
72    Expr *RHS;
73  };
74
75  union {
76    struct DTB DerivedToBase;
77    FieldDecl *Field;
78    struct P Ptr;
79  };
80
81  SubobjectAdjustment(const CastExpr *BasePath,
82                      const CXXRecordDecl *DerivedClass)
83    : Kind(DerivedToBaseAdjustment) {
84    DerivedToBase.BasePath = BasePath;
85    DerivedToBase.DerivedClass = DerivedClass;
86  }
87
88  SubobjectAdjustment(FieldDecl *Field)
89    : Kind(FieldAdjustment) {
90    this->Field = Field;
91  }
92
93  SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
94    : Kind(MemberPointerAdjustment) {
95    this->Ptr.MPT = MPT;
96    this->Ptr.RHS = RHS;
97  }
98};
99
100/// Expr - This represents one expression.  Note that Expr's are subclasses of
101/// Stmt.  This allows an expression to be transparently used any place a Stmt
102/// is required.
103///
104class Expr : public Stmt {
105  QualType TR;
106
107protected:
108  Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
109       bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
110    : Stmt(SC)
111  {
112    ExprBits.TypeDependent = TD;
113    ExprBits.ValueDependent = VD;
114    ExprBits.InstantiationDependent = ID;
115    ExprBits.ValueKind = VK;
116    ExprBits.ObjectKind = OK;
117    ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
118    setType(T);
119  }
120
121  /// \brief Construct an empty expression.
122  explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
123
124public:
125  QualType getType() const { return TR; }
126  void setType(QualType t) {
127    // In C++, the type of an expression is always adjusted so that it
128    // will not have reference type (C++ [expr]p6). Use
129    // QualType::getNonReferenceType() to retrieve the non-reference
130    // type. Additionally, inspect Expr::isLvalue to determine whether
131    // an expression that is adjusted in this manner should be
132    // considered an lvalue.
133    assert((t.isNull() || !t->isReferenceType()) &&
134           "Expressions can't have reference type");
135
136    TR = t;
137  }
138
139  /// isValueDependent - Determines whether this expression is
140  /// value-dependent (C++ [temp.dep.constexpr]). For example, the
141  /// array bound of "Chars" in the following example is
142  /// value-dependent.
143  /// @code
144  /// template<int Size, char (&Chars)[Size]> struct meta_string;
145  /// @endcode
146  bool isValueDependent() const { return ExprBits.ValueDependent; }
147
148  /// \brief Set whether this expression is value-dependent or not.
149  void setValueDependent(bool VD) {
150    ExprBits.ValueDependent = VD;
151  }
152
153  /// isTypeDependent - Determines whether this expression is
154  /// type-dependent (C++ [temp.dep.expr]), which means that its type
155  /// could change from one template instantiation to the next. For
156  /// example, the expressions "x" and "x + y" are type-dependent in
157  /// the following code, but "y" is not type-dependent:
158  /// @code
159  /// template<typename T>
160  /// void add(T x, int y) {
161  ///   x + y;
162  /// }
163  /// @endcode
164  bool isTypeDependent() const { return ExprBits.TypeDependent; }
165
166  /// \brief Set whether this expression is type-dependent or not.
167  void setTypeDependent(bool TD) {
168    ExprBits.TypeDependent = TD;
169  }
170
171  /// \brief Whether this expression is instantiation-dependent, meaning that
172  /// it depends in some way on a template parameter, even if neither its type
173  /// nor (constant) value can change due to the template instantiation.
174  ///
175  /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
176  /// instantiation-dependent (since it involves a template parameter \c T), but
177  /// is neither type- nor value-dependent, since the type of the inner
178  /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
179  /// \c sizeof is known.
180  ///
181  /// \code
182  /// template<typename T>
183  /// void f(T x, T y) {
184  ///   sizeof(sizeof(T() + T());
185  /// }
186  /// \endcode
187  ///
188  bool isInstantiationDependent() const {
189    return ExprBits.InstantiationDependent;
190  }
191
192  /// \brief Set whether this expression is instantiation-dependent or not.
193  void setInstantiationDependent(bool ID) {
194    ExprBits.InstantiationDependent = ID;
195  }
196
197  /// \brief Whether this expression contains an unexpanded parameter
198  /// pack (for C++11 variadic templates).
199  ///
200  /// Given the following function template:
201  ///
202  /// \code
203  /// template<typename F, typename ...Types>
204  /// void forward(const F &f, Types &&...args) {
205  ///   f(static_cast<Types&&>(args)...);
206  /// }
207  /// \endcode
208  ///
209  /// The expressions \c args and \c static_cast<Types&&>(args) both
210  /// contain parameter packs.
211  bool containsUnexpandedParameterPack() const {
212    return ExprBits.ContainsUnexpandedParameterPack;
213  }
214
215  /// \brief Set the bit that describes whether this expression
216  /// contains an unexpanded parameter pack.
217  void setContainsUnexpandedParameterPack(bool PP = true) {
218    ExprBits.ContainsUnexpandedParameterPack = PP;
219  }
220
221  /// getExprLoc - Return the preferred location for the arrow when diagnosing
222  /// a problem with a generic expression.
223  SourceLocation getExprLoc() const LLVM_READONLY;
224
225  /// isUnusedResultAWarning - Return true if this immediate expression should
226  /// be warned about if the result is unused.  If so, fill in expr, location,
227  /// and ranges with expr to warn on and source locations/ranges appropriate
228  /// for a warning.
229  bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
230                              SourceRange &R1, SourceRange &R2,
231                              ASTContext &Ctx) const;
232
233  /// isLValue - True if this expression is an "l-value" according to
234  /// the rules of the current language.  C and C++ give somewhat
235  /// different rules for this concept, but in general, the result of
236  /// an l-value expression identifies a specific object whereas the
237  /// result of an r-value expression is a value detached from any
238  /// specific storage.
239  ///
240  /// C++11 divides the concept of "r-value" into pure r-values
241  /// ("pr-values") and so-called expiring values ("x-values"), which
242  /// identify specific objects that can be safely cannibalized for
243  /// their resources.  This is an unfortunate abuse of terminology on
244  /// the part of the C++ committee.  In Clang, when we say "r-value",
245  /// we generally mean a pr-value.
246  bool isLValue() const { return getValueKind() == VK_LValue; }
247  bool isRValue() const { return getValueKind() == VK_RValue; }
248  bool isXValue() const { return getValueKind() == VK_XValue; }
249  bool isGLValue() const { return getValueKind() != VK_RValue; }
250
251  enum LValueClassification {
252    LV_Valid,
253    LV_NotObjectType,
254    LV_IncompleteVoidType,
255    LV_DuplicateVectorComponents,
256    LV_InvalidExpression,
257    LV_InvalidMessageExpression,
258    LV_MemberFunction,
259    LV_SubObjCPropertySetting,
260    LV_ClassTemporary,
261    LV_ArrayTemporary
262  };
263  /// Reasons why an expression might not be an l-value.
264  LValueClassification ClassifyLValue(ASTContext &Ctx) const;
265
266  enum isModifiableLvalueResult {
267    MLV_Valid,
268    MLV_NotObjectType,
269    MLV_IncompleteVoidType,
270    MLV_DuplicateVectorComponents,
271    MLV_InvalidExpression,
272    MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
273    MLV_IncompleteType,
274    MLV_ConstQualified,
275    MLV_ConstAddrSpace,
276    MLV_ArrayType,
277    MLV_NoSetterProperty,
278    MLV_MemberFunction,
279    MLV_SubObjCPropertySetting,
280    MLV_InvalidMessageExpression,
281    MLV_ClassTemporary,
282    MLV_ArrayTemporary
283  };
284  /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
285  /// does not have an incomplete type, does not have a const-qualified type,
286  /// and if it is a structure or union, does not have any member (including,
287  /// recursively, any member or element of all contained aggregates or unions)
288  /// with a const-qualified type.
289  ///
290  /// \param Loc [in,out] - A source location which *may* be filled
291  /// in with the location of the expression making this a
292  /// non-modifiable lvalue, if specified.
293  isModifiableLvalueResult
294  isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
295
296  /// \brief The return type of classify(). Represents the C++11 expression
297  ///        taxonomy.
298  class Classification {
299  public:
300    /// \brief The various classification results. Most of these mean prvalue.
301    enum Kinds {
302      CL_LValue,
303      CL_XValue,
304      CL_Function, // Functions cannot be lvalues in C.
305      CL_Void, // Void cannot be an lvalue in C.
306      CL_AddressableVoid, // Void expression whose address can be taken in C.
307      CL_DuplicateVectorComponents, // A vector shuffle with dupes.
308      CL_MemberFunction, // An expression referring to a member function
309      CL_SubObjCPropertySetting,
310      CL_ClassTemporary, // A temporary of class type, or subobject thereof.
311      CL_ArrayTemporary, // A temporary of array type.
312      CL_ObjCMessageRValue, // ObjC message is an rvalue
313      CL_PRValue // A prvalue for any other reason, of any other type
314    };
315    /// \brief The results of modification testing.
316    enum ModifiableType {
317      CM_Untested, // testModifiable was false.
318      CM_Modifiable,
319      CM_RValue, // Not modifiable because it's an rvalue
320      CM_Function, // Not modifiable because it's a function; C++ only
321      CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
322      CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
323      CM_ConstQualified,
324      CM_ConstAddrSpace,
325      CM_ArrayType,
326      CM_IncompleteType
327    };
328
329  private:
330    friend class Expr;
331
332    unsigned short Kind;
333    unsigned short Modifiable;
334
335    explicit Classification(Kinds k, ModifiableType m)
336      : Kind(k), Modifiable(m)
337    {}
338
339  public:
340    Classification() {}
341
342    Kinds getKind() const { return static_cast<Kinds>(Kind); }
343    ModifiableType getModifiable() const {
344      assert(Modifiable != CM_Untested && "Did not test for modifiability.");
345      return static_cast<ModifiableType>(Modifiable);
346    }
347    bool isLValue() const { return Kind == CL_LValue; }
348    bool isXValue() const { return Kind == CL_XValue; }
349    bool isGLValue() const { return Kind <= CL_XValue; }
350    bool isPRValue() const { return Kind >= CL_Function; }
351    bool isRValue() const { return Kind >= CL_XValue; }
352    bool isModifiable() const { return getModifiable() == CM_Modifiable; }
353
354    /// \brief Create a simple, modifiably lvalue
355    static Classification makeSimpleLValue() {
356      return Classification(CL_LValue, CM_Modifiable);
357    }
358
359  };
360  /// \brief Classify - Classify this expression according to the C++11
361  ///        expression taxonomy.
362  ///
363  /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
364  /// old lvalue vs rvalue. This function determines the type of expression this
365  /// is. There are three expression types:
366  /// - lvalues are classical lvalues as in C++03.
367  /// - prvalues are equivalent to rvalues in C++03.
368  /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
369  ///   function returning an rvalue reference.
370  /// lvalues and xvalues are collectively referred to as glvalues, while
371  /// prvalues and xvalues together form rvalues.
372  Classification Classify(ASTContext &Ctx) const {
373    return ClassifyImpl(Ctx, nullptr);
374  }
375
376  /// \brief ClassifyModifiable - Classify this expression according to the
377  ///        C++11 expression taxonomy, and see if it is valid on the left side
378  ///        of an assignment.
379  ///
380  /// This function extends classify in that it also tests whether the
381  /// expression is modifiable (C99 6.3.2.1p1).
382  /// \param Loc A source location that might be filled with a relevant location
383  ///            if the expression is not modifiable.
384  Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
385    return ClassifyImpl(Ctx, &Loc);
386  }
387
388  /// getValueKindForType - Given a formal return or parameter type,
389  /// give its value kind.
390  static ExprValueKind getValueKindForType(QualType T) {
391    if (const ReferenceType *RT = T->getAs<ReferenceType>())
392      return (isa<LValueReferenceType>(RT)
393                ? VK_LValue
394                : (RT->getPointeeType()->isFunctionType()
395                     ? VK_LValue : VK_XValue));
396    return VK_RValue;
397  }
398
399  /// getValueKind - The value kind that this expression produces.
400  ExprValueKind getValueKind() const {
401    return static_cast<ExprValueKind>(ExprBits.ValueKind);
402  }
403
404  /// getObjectKind - The object kind that this expression produces.
405  /// Object kinds are meaningful only for expressions that yield an
406  /// l-value or x-value.
407  ExprObjectKind getObjectKind() const {
408    return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
409  }
410
411  bool isOrdinaryOrBitFieldObject() const {
412    ExprObjectKind OK = getObjectKind();
413    return (OK == OK_Ordinary || OK == OK_BitField);
414  }
415
416  /// setValueKind - Set the value kind produced by this expression.
417  void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
418
419  /// setObjectKind - Set the object kind produced by this expression.
420  void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
421
422private:
423  Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
424
425public:
426
427  /// \brief Returns true if this expression is a gl-value that
428  /// potentially refers to a bit-field.
429  ///
430  /// In C++, whether a gl-value refers to a bitfield is essentially
431  /// an aspect of the value-kind type system.
432  bool refersToBitField() const { return getObjectKind() == OK_BitField; }
433
434  /// \brief If this expression refers to a bit-field, retrieve the
435  /// declaration of that bit-field.
436  ///
437  /// Note that this returns a non-null pointer in subtly different
438  /// places than refersToBitField returns true.  In particular, this can
439  /// return a non-null pointer even for r-values loaded from
440  /// bit-fields, but it will return null for a conditional bit-field.
441  FieldDecl *getSourceBitField();
442
443  const FieldDecl *getSourceBitField() const {
444    return const_cast<Expr*>(this)->getSourceBitField();
445  }
446
447  /// \brief If this expression is an l-value for an Objective C
448  /// property, find the underlying property reference expression.
449  const ObjCPropertyRefExpr *getObjCProperty() const;
450
451  /// \brief Check if this expression is the ObjC 'self' implicit parameter.
452  bool isObjCSelfExpr() const;
453
454  /// \brief Returns whether this expression refers to a vector element.
455  bool refersToVectorElement() const;
456
457  /// \brief Returns whether this expression refers to a global register
458  /// variable.
459  bool refersToGlobalRegisterVar() const;
460
461  /// \brief Returns whether this expression has a placeholder type.
462  bool hasPlaceholderType() const {
463    return getType()->isPlaceholderType();
464  }
465
466  /// \brief Returns whether this expression has a specific placeholder type.
467  bool hasPlaceholderType(BuiltinType::Kind K) const {
468    assert(BuiltinType::isPlaceholderTypeKind(K));
469    if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
470      return BT->getKind() == K;
471    return false;
472  }
473
474  /// isKnownToHaveBooleanValue - Return true if this is an integer expression
475  /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
476  /// but also int expressions which are produced by things like comparisons in
477  /// C.
478  bool isKnownToHaveBooleanValue() const;
479
480  /// isIntegerConstantExpr - Return true if this expression is a valid integer
481  /// constant expression, and, if so, return its value in Result.  If not a
482  /// valid i-c-e, return false and fill in Loc (if specified) with the location
483  /// of the invalid expression.
484  ///
485  /// Note: This does not perform the implicit conversions required by C++11
486  /// [expr.const]p5.
487  bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
488                             SourceLocation *Loc = nullptr,
489                             bool isEvaluated = true) const;
490  bool isIntegerConstantExpr(const ASTContext &Ctx,
491                             SourceLocation *Loc = nullptr) const;
492
493  /// isCXX98IntegralConstantExpr - Return true if this expression is an
494  /// integral constant expression in C++98. Can only be used in C++.
495  bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
496
497  /// isCXX11ConstantExpr - Return true if this expression is a constant
498  /// expression in C++11. Can only be used in C++.
499  ///
500  /// Note: This does not perform the implicit conversions required by C++11
501  /// [expr.const]p5.
502  bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
503                           SourceLocation *Loc = nullptr) const;
504
505  /// isPotentialConstantExpr - Return true if this function's definition
506  /// might be usable in a constant expression in C++11, if it were marked
507  /// constexpr. Return false if the function can never produce a constant
508  /// expression, along with diagnostics describing why not.
509  static bool isPotentialConstantExpr(const FunctionDecl *FD,
510                                      SmallVectorImpl<
511                                        PartialDiagnosticAt> &Diags);
512
513  /// isPotentialConstantExprUnevaluted - Return true if this expression might
514  /// be usable in a constant expression in C++11 in an unevaluated context, if
515  /// it were in function FD marked constexpr. Return false if the function can
516  /// never produce a constant expression, along with diagnostics describing
517  /// why not.
518  static bool isPotentialConstantExprUnevaluated(Expr *E,
519                                                 const FunctionDecl *FD,
520                                                 SmallVectorImpl<
521                                                   PartialDiagnosticAt> &Diags);
522
523  /// isConstantInitializer - Returns true if this expression can be emitted to
524  /// IR as a constant, and thus can be used as a constant initializer in C.
525  /// If this expression is not constant and Culprit is non-null,
526  /// it is used to store the address of first non constant expr.
527  bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
528                             const Expr **Culprit = nullptr) const;
529
530  /// EvalStatus is a struct with detailed info about an evaluation in progress.
531  struct EvalStatus {
532    /// \brief Whether the evaluated expression has side effects.
533    /// For example, (f() && 0) can be folded, but it still has side effects.
534    bool HasSideEffects;
535
536    /// \brief Whether the evaluation hit undefined behavior.
537    /// For example, 1.0 / 0.0 can be folded to Inf, but has undefined behavior.
538    /// Likewise, INT_MAX + 1 can be folded to INT_MIN, but has UB.
539    bool HasUndefinedBehavior;
540
541    /// Diag - If this is non-null, it will be filled in with a stack of notes
542    /// indicating why evaluation failed (or why it failed to produce a constant
543    /// expression).
544    /// If the expression is unfoldable, the notes will indicate why it's not
545    /// foldable. If the expression is foldable, but not a constant expression,
546    /// the notes will describes why it isn't a constant expression. If the
547    /// expression *is* a constant expression, no notes will be produced.
548    SmallVectorImpl<PartialDiagnosticAt> *Diag;
549
550    EvalStatus()
551        : HasSideEffects(false), HasUndefinedBehavior(false), Diag(nullptr) {}
552
553    // hasSideEffects - Return true if the evaluated expression has
554    // side effects.
555    bool hasSideEffects() const {
556      return HasSideEffects;
557    }
558  };
559
560  /// EvalResult is a struct with detailed info about an evaluated expression.
561  struct EvalResult : EvalStatus {
562    /// Val - This is the value the expression can be folded to.
563    APValue Val;
564
565    // isGlobalLValue - Return true if the evaluated lvalue expression
566    // is global.
567    bool isGlobalLValue() const;
568  };
569
570  /// EvaluateAsRValue - Return true if this is a constant which we can fold to
571  /// an rvalue using any crazy technique (that has nothing to do with language
572  /// standards) that we want to, even if the expression has side-effects. If
573  /// this function returns true, it returns the folded constant in Result. If
574  /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
575  /// applied.
576  bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
577
578  /// EvaluateAsBooleanCondition - Return true if this is a constant
579  /// which we we can fold and convert to a boolean condition using
580  /// any crazy technique that we want to, even if the expression has
581  /// side-effects.
582  bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
583
584  enum SideEffectsKind {
585    SE_NoSideEffects,          ///< Strictly evaluate the expression.
586    SE_AllowUndefinedBehavior, ///< Allow UB that we can give a value, but not
587                               ///< arbitrary unmodeled side effects.
588    SE_AllowSideEffects        ///< Allow any unmodeled side effect.
589  };
590
591  /// EvaluateAsInt - Return true if this is a constant which we can fold and
592  /// convert to an integer, using any crazy technique that we want to.
593  bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
594                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
595
596  /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
597  /// constant folded without side-effects, but discard the result.
598  bool isEvaluatable(const ASTContext &Ctx,
599                     SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
600
601  /// HasSideEffects - This routine returns true for all those expressions
602  /// which have any effect other than producing a value. Example is a function
603  /// call, volatile variable read, or throwing an exception. If
604  /// IncludePossibleEffects is false, this call treats certain expressions with
605  /// potential side effects (such as function call-like expressions,
606  /// instantiation-dependent expressions, or invocations from a macro) as not
607  /// having side effects.
608  bool HasSideEffects(const ASTContext &Ctx,
609                      bool IncludePossibleEffects = true) const;
610
611  /// \brief Determine whether this expression involves a call to any function
612  /// that is not trivial.
613  bool hasNonTrivialCall(const ASTContext &Ctx) const;
614
615  /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
616  /// integer. This must be called on an expression that constant folds to an
617  /// integer.
618  llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
619                    SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
620
621  void EvaluateForOverflow(const ASTContext &Ctx) const;
622
623  /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
624  /// lvalue with link time known address, with no side-effects.
625  bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
626
627  /// EvaluateAsInitializer - Evaluate an expression as if it were the
628  /// initializer of the given declaration. Returns true if the initializer
629  /// can be folded to a constant, and produces any relevant notes. In C++11,
630  /// notes will be produced if the expression is not a constant expression.
631  bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
632                             const VarDecl *VD,
633                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
634
635  /// EvaluateWithSubstitution - Evaluate an expression as if from the context
636  /// of a call to the given function with the given arguments, inside an
637  /// unevaluated context. Returns true if the expression could be folded to a
638  /// constant.
639  bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
640                                const FunctionDecl *Callee,
641                                ArrayRef<const Expr*> Args) const;
642
643  /// \brief If the current Expr is a pointer, this will try to statically
644  /// determine the number of bytes available where the pointer is pointing.
645  /// Returns true if all of the above holds and we were able to figure out the
646  /// size, false otherwise.
647  ///
648  /// \param Type - How to evaluate the size of the Expr, as defined by the
649  /// "type" parameter of __builtin_object_size
650  bool tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
651                             unsigned Type) const;
652
653  /// \brief Enumeration used to describe the kind of Null pointer constant
654  /// returned from \c isNullPointerConstant().
655  enum NullPointerConstantKind {
656    /// \brief Expression is not a Null pointer constant.
657    NPCK_NotNull = 0,
658
659    /// \brief Expression is a Null pointer constant built from a zero integer
660    /// expression that is not a simple, possibly parenthesized, zero literal.
661    /// C++ Core Issue 903 will classify these expressions as "not pointers"
662    /// once it is adopted.
663    /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
664    NPCK_ZeroExpression,
665
666    /// \brief Expression is a Null pointer constant built from a literal zero.
667    NPCK_ZeroLiteral,
668
669    /// \brief Expression is a C++11 nullptr.
670    NPCK_CXX11_nullptr,
671
672    /// \brief Expression is a GNU-style __null constant.
673    NPCK_GNUNull
674  };
675
676  /// \brief Enumeration used to describe how \c isNullPointerConstant()
677  /// should cope with value-dependent expressions.
678  enum NullPointerConstantValueDependence {
679    /// \brief Specifies that the expression should never be value-dependent.
680    NPC_NeverValueDependent = 0,
681
682    /// \brief Specifies that a value-dependent expression of integral or
683    /// dependent type should be considered a null pointer constant.
684    NPC_ValueDependentIsNull,
685
686    /// \brief Specifies that a value-dependent expression should be considered
687    /// to never be a null pointer constant.
688    NPC_ValueDependentIsNotNull
689  };
690
691  /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
692  /// a Null pointer constant. The return value can further distinguish the
693  /// kind of NULL pointer constant that was detected.
694  NullPointerConstantKind isNullPointerConstant(
695      ASTContext &Ctx,
696      NullPointerConstantValueDependence NPC) const;
697
698  /// isOBJCGCCandidate - Return true if this expression may be used in a read/
699  /// write barrier.
700  bool isOBJCGCCandidate(ASTContext &Ctx) const;
701
702  /// \brief Returns true if this expression is a bound member function.
703  bool isBoundMemberFunction(ASTContext &Ctx) const;
704
705  /// \brief Given an expression of bound-member type, find the type
706  /// of the member.  Returns null if this is an *overloaded* bound
707  /// member expression.
708  static QualType findBoundMemberType(const Expr *expr);
709
710  /// IgnoreImpCasts - Skip past any implicit casts which might
711  /// surround this expression.  Only skips ImplicitCastExprs.
712  Expr *IgnoreImpCasts() LLVM_READONLY;
713
714  /// IgnoreImplicit - Skip past any implicit AST nodes which might
715  /// surround this expression.
716  Expr *IgnoreImplicit() LLVM_READONLY {
717    return cast<Expr>(Stmt::IgnoreImplicit());
718  }
719
720  const Expr *IgnoreImplicit() const LLVM_READONLY {
721    return const_cast<Expr*>(this)->IgnoreImplicit();
722  }
723
724  /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
725  ///  its subexpression.  If that subexpression is also a ParenExpr,
726  ///  then this method recursively returns its subexpression, and so forth.
727  ///  Otherwise, the method returns the current Expr.
728  Expr *IgnoreParens() LLVM_READONLY;
729
730  /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
731  /// or CastExprs, returning their operand.
732  Expr *IgnoreParenCasts() LLVM_READONLY;
733
734  /// Ignore casts.  Strip off any CastExprs, returning their operand.
735  Expr *IgnoreCasts() LLVM_READONLY;
736
737  /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
738  /// any ParenExpr or ImplicitCastExprs, returning their operand.
739  Expr *IgnoreParenImpCasts() LLVM_READONLY;
740
741  /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
742  /// call to a conversion operator, return the argument.
743  Expr *IgnoreConversionOperator() LLVM_READONLY;
744
745  const Expr *IgnoreConversionOperator() const LLVM_READONLY {
746    return const_cast<Expr*>(this)->IgnoreConversionOperator();
747  }
748
749  const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
750    return const_cast<Expr*>(this)->IgnoreParenImpCasts();
751  }
752
753  /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
754  /// CastExprs that represent lvalue casts, returning their operand.
755  Expr *IgnoreParenLValueCasts() LLVM_READONLY;
756
757  const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
758    return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
759  }
760
761  /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
762  /// value (including ptr->int casts of the same size).  Strip off any
763  /// ParenExpr or CastExprs, returning their operand.
764  Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
765
766  /// Ignore parentheses and derived-to-base casts.
767  Expr *ignoreParenBaseCasts() LLVM_READONLY;
768
769  const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
770    return const_cast<Expr*>(this)->ignoreParenBaseCasts();
771  }
772
773  /// \brief Determine whether this expression is a default function argument.
774  ///
775  /// Default arguments are implicitly generated in the abstract syntax tree
776  /// by semantic analysis for function calls, object constructions, etc. in
777  /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
778  /// this routine also looks through any implicit casts to determine whether
779  /// the expression is a default argument.
780  bool isDefaultArgument() const;
781
782  /// \brief Determine whether the result of this expression is a
783  /// temporary object of the given class type.
784  bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
785
786  /// \brief Whether this expression is an implicit reference to 'this' in C++.
787  bool isImplicitCXXThis() const;
788
789  const Expr *IgnoreImpCasts() const LLVM_READONLY {
790    return const_cast<Expr*>(this)->IgnoreImpCasts();
791  }
792  const Expr *IgnoreParens() const LLVM_READONLY {
793    return const_cast<Expr*>(this)->IgnoreParens();
794  }
795  const Expr *IgnoreParenCasts() const LLVM_READONLY {
796    return const_cast<Expr*>(this)->IgnoreParenCasts();
797  }
798  /// Strip off casts, but keep parentheses.
799  const Expr *IgnoreCasts() const LLVM_READONLY {
800    return const_cast<Expr*>(this)->IgnoreCasts();
801  }
802
803  const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
804    return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
805  }
806
807  static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
808
809  /// \brief For an expression of class type or pointer to class type,
810  /// return the most derived class decl the expression is known to refer to.
811  ///
812  /// If this expression is a cast, this method looks through it to find the
813  /// most derived decl that can be inferred from the expression.
814  /// This is valid because derived-to-base conversions have undefined
815  /// behavior if the object isn't dynamically of the derived type.
816  const CXXRecordDecl *getBestDynamicClassType() const;
817
818  /// Walk outwards from an expression we want to bind a reference to and
819  /// find the expression whose lifetime needs to be extended. Record
820  /// the LHSs of comma expressions and adjustments needed along the path.
821  const Expr *skipRValueSubobjectAdjustments(
822      SmallVectorImpl<const Expr *> &CommaLHS,
823      SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
824
825  static bool classof(const Stmt *T) {
826    return T->getStmtClass() >= firstExprConstant &&
827           T->getStmtClass() <= lastExprConstant;
828  }
829};
830
831//===----------------------------------------------------------------------===//
832// Primary Expressions.
833//===----------------------------------------------------------------------===//
834
835/// OpaqueValueExpr - An expression referring to an opaque object of a
836/// fixed type and value class.  These don't correspond to concrete
837/// syntax; instead they're used to express operations (usually copy
838/// operations) on values whose source is generally obvious from
839/// context.
840class OpaqueValueExpr : public Expr {
841  friend class ASTStmtReader;
842  Expr *SourceExpr;
843  SourceLocation Loc;
844
845public:
846  OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
847                  ExprObjectKind OK = OK_Ordinary,
848                  Expr *SourceExpr = nullptr)
849    : Expr(OpaqueValueExprClass, T, VK, OK,
850           T->isDependentType(),
851           T->isDependentType() ||
852           (SourceExpr && SourceExpr->isValueDependent()),
853           T->isInstantiationDependentType(),
854           false),
855      SourceExpr(SourceExpr), Loc(Loc) {
856  }
857
858  /// Given an expression which invokes a copy constructor --- i.e.  a
859  /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
860  /// find the OpaqueValueExpr that's the source of the construction.
861  static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
862
863  explicit OpaqueValueExpr(EmptyShell Empty)
864    : Expr(OpaqueValueExprClass, Empty) { }
865
866  /// \brief Retrieve the location of this expression.
867  SourceLocation getLocation() const { return Loc; }
868
869  SourceLocation getLocStart() const LLVM_READONLY {
870    return SourceExpr ? SourceExpr->getLocStart() : Loc;
871  }
872  SourceLocation getLocEnd() const LLVM_READONLY {
873    return SourceExpr ? SourceExpr->getLocEnd() : Loc;
874  }
875  SourceLocation getExprLoc() const LLVM_READONLY {
876    if (SourceExpr) return SourceExpr->getExprLoc();
877    return Loc;
878  }
879
880  child_range children() {
881    return child_range(child_iterator(), child_iterator());
882  }
883
884  /// The source expression of an opaque value expression is the
885  /// expression which originally generated the value.  This is
886  /// provided as a convenience for analyses that don't wish to
887  /// precisely model the execution behavior of the program.
888  ///
889  /// The source expression is typically set when building the
890  /// expression which binds the opaque value expression in the first
891  /// place.
892  Expr *getSourceExpr() const { return SourceExpr; }
893
894  static bool classof(const Stmt *T) {
895    return T->getStmtClass() == OpaqueValueExprClass;
896  }
897};
898
899/// \brief A reference to a declared variable, function, enum, etc.
900/// [C99 6.5.1p2]
901///
902/// This encodes all the information about how a declaration is referenced
903/// within an expression.
904///
905/// There are several optional constructs attached to DeclRefExprs only when
906/// they apply in order to conserve memory. These are laid out past the end of
907/// the object, and flags in the DeclRefExprBitfield track whether they exist:
908///
909///   DeclRefExprBits.HasQualifier:
910///       Specifies when this declaration reference expression has a C++
911///       nested-name-specifier.
912///   DeclRefExprBits.HasFoundDecl:
913///       Specifies when this declaration reference expression has a record of
914///       a NamedDecl (different from the referenced ValueDecl) which was found
915///       during name lookup and/or overload resolution.
916///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
917///       Specifies when this declaration reference expression has an explicit
918///       C++ template keyword and/or template argument list.
919///   DeclRefExprBits.RefersToEnclosingVariableOrCapture
920///       Specifies when this declaration reference expression (validly)
921///       refers to an enclosed local or a captured variable.
922class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) DeclRefExpr : public Expr {
923  /// \brief The declaration that we are referencing.
924  ValueDecl *D;
925
926  /// \brief The location of the declaration name itself.
927  SourceLocation Loc;
928
929  /// \brief Provides source/type location info for the declaration name
930  /// embedded in D.
931  DeclarationNameLoc DNLoc;
932
933  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
934  NestedNameSpecifierLoc &getInternalQualifierLoc() {
935    assert(hasQualifier());
936    return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
937  }
938
939  /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
940  const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
941    return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
942  }
943
944  /// \brief Test whether there is a distinct FoundDecl attached to the end of
945  /// this DRE.
946  bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
947
948  /// \brief Helper to retrieve the optional NamedDecl through which this
949  /// reference occurred.
950  NamedDecl *&getInternalFoundDecl() {
951    assert(hasFoundDecl());
952    if (hasQualifier())
953      return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
954    return *reinterpret_cast<NamedDecl **>(this + 1);
955  }
956
957  /// \brief Helper to retrieve the optional NamedDecl through which this
958  /// reference occurred.
959  NamedDecl *getInternalFoundDecl() const {
960    return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
961  }
962
963  DeclRefExpr(const ASTContext &Ctx,
964              NestedNameSpecifierLoc QualifierLoc,
965              SourceLocation TemplateKWLoc,
966              ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
967              const DeclarationNameInfo &NameInfo,
968              NamedDecl *FoundD,
969              const TemplateArgumentListInfo *TemplateArgs,
970              QualType T, ExprValueKind VK);
971
972  /// \brief Construct an empty declaration reference expression.
973  explicit DeclRefExpr(EmptyShell Empty)
974    : Expr(DeclRefExprClass, Empty) { }
975
976  /// \brief Computes the type- and value-dependence flags for this
977  /// declaration reference expression.
978  void computeDependence(const ASTContext &C);
979
980public:
981  DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
982              ExprValueKind VK, SourceLocation L,
983              const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
984    : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
985      D(D), Loc(L), DNLoc(LocInfo) {
986    DeclRefExprBits.HasQualifier = 0;
987    DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
988    DeclRefExprBits.HasFoundDecl = 0;
989    DeclRefExprBits.HadMultipleCandidates = 0;
990    DeclRefExprBits.RefersToEnclosingVariableOrCapture =
991        RefersToEnclosingVariableOrCapture;
992    computeDependence(D->getASTContext());
993  }
994
995  static DeclRefExpr *
996  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
997         SourceLocation TemplateKWLoc, ValueDecl *D,
998         bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
999         QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
1000         const TemplateArgumentListInfo *TemplateArgs = nullptr);
1001
1002  static DeclRefExpr *
1003  Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
1004         SourceLocation TemplateKWLoc, ValueDecl *D,
1005         bool RefersToEnclosingVariableOrCapture,
1006         const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
1007         NamedDecl *FoundD = nullptr,
1008         const TemplateArgumentListInfo *TemplateArgs = nullptr);
1009
1010  /// \brief Construct an empty declaration reference expression.
1011  static DeclRefExpr *CreateEmpty(const ASTContext &Context,
1012                                  bool HasQualifier,
1013                                  bool HasFoundDecl,
1014                                  bool HasTemplateKWAndArgsInfo,
1015                                  unsigned NumTemplateArgs);
1016
1017  ValueDecl *getDecl() { return D; }
1018  const ValueDecl *getDecl() const { return D; }
1019  void setDecl(ValueDecl *NewD) { D = NewD; }
1020
1021  DeclarationNameInfo getNameInfo() const {
1022    return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
1023  }
1024
1025  SourceLocation getLocation() const { return Loc; }
1026  void setLocation(SourceLocation L) { Loc = L; }
1027  SourceLocation getLocStart() const LLVM_READONLY;
1028  SourceLocation getLocEnd() const LLVM_READONLY;
1029
1030  /// \brief Determine whether this declaration reference was preceded by a
1031  /// C++ nested-name-specifier, e.g., \c N::foo.
1032  bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
1033
1034  /// \brief If the name was qualified, retrieves the nested-name-specifier
1035  /// that precedes the name. Otherwise, returns NULL.
1036  NestedNameSpecifier *getQualifier() const {
1037    if (!hasQualifier())
1038      return nullptr;
1039
1040    return getInternalQualifierLoc().getNestedNameSpecifier();
1041  }
1042
1043  /// \brief If the name was qualified, retrieves the nested-name-specifier
1044  /// that precedes the name, with source-location information.
1045  NestedNameSpecifierLoc getQualifierLoc() const {
1046    if (!hasQualifier())
1047      return NestedNameSpecifierLoc();
1048
1049    return getInternalQualifierLoc();
1050  }
1051
1052  /// \brief Get the NamedDecl through which this reference occurred.
1053  ///
1054  /// This Decl may be different from the ValueDecl actually referred to in the
1055  /// presence of using declarations, etc. It always returns non-NULL, and may
1056  /// simple return the ValueDecl when appropriate.
1057  NamedDecl *getFoundDecl() {
1058    return hasFoundDecl() ? getInternalFoundDecl() : D;
1059  }
1060
1061  /// \brief Get the NamedDecl through which this reference occurred.
1062  /// See non-const variant.
1063  const NamedDecl *getFoundDecl() const {
1064    return hasFoundDecl() ? getInternalFoundDecl() : D;
1065  }
1066
1067  bool hasTemplateKWAndArgsInfo() const {
1068    return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1069  }
1070
1071  /// \brief Return the optional template keyword and arguments info.
1072  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
1073    if (!hasTemplateKWAndArgsInfo())
1074      return nullptr;
1075
1076    if (hasFoundDecl()) {
1077      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1078          llvm::alignAddr(&getInternalFoundDecl() + 1,
1079                          llvm::alignOf<ASTTemplateKWAndArgsInfo>()));
1080    }
1081
1082    if (hasQualifier()) {
1083      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1084          llvm::alignAddr(&getInternalQualifierLoc() + 1,
1085                          llvm::alignOf<ASTTemplateKWAndArgsInfo>()));
1086    }
1087
1088    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
1089  }
1090
1091  /// \brief Return the optional template keyword and arguments info.
1092  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
1093    return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
1094  }
1095
1096  /// \brief Retrieve the location of the template keyword preceding
1097  /// this name, if any.
1098  SourceLocation getTemplateKeywordLoc() const {
1099    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1100    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
1101  }
1102
1103  /// \brief Retrieve the location of the left angle bracket starting the
1104  /// explicit template argument list following the name, if any.
1105  SourceLocation getLAngleLoc() const {
1106    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1107    return getTemplateKWAndArgsInfo()->LAngleLoc;
1108  }
1109
1110  /// \brief Retrieve the location of the right angle bracket ending the
1111  /// explicit template argument list following the name, if any.
1112  SourceLocation getRAngleLoc() const {
1113    if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1114    return getTemplateKWAndArgsInfo()->RAngleLoc;
1115  }
1116
1117  /// \brief Determines whether the name in this declaration reference
1118  /// was preceded by the template keyword.
1119  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1120
1121  /// \brief Determines whether this declaration reference was followed by an
1122  /// explicit template argument list.
1123  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1124
1125  /// \brief Retrieve the explicit template argument list that followed the
1126  /// member template name.
1127  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
1128    assert(hasExplicitTemplateArgs());
1129    return *getTemplateKWAndArgsInfo();
1130  }
1131
1132  /// \brief Retrieve the explicit template argument list that followed the
1133  /// member template name.
1134  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1135    return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
1136  }
1137
1138  /// \brief Retrieves the optional explicit template arguments.
1139  /// This points to the same data as getExplicitTemplateArgs(), but
1140  /// returns null if there are no explicit template arguments.
1141  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
1142    if (!hasExplicitTemplateArgs()) return nullptr;
1143    return &getExplicitTemplateArgs();
1144  }
1145
1146  /// \brief Copies the template arguments (if present) into the given
1147  /// structure.
1148  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1149    if (hasExplicitTemplateArgs())
1150      getExplicitTemplateArgs().copyInto(List);
1151  }
1152
1153  /// \brief Retrieve the template arguments provided as part of this
1154  /// template-id.
1155  const TemplateArgumentLoc *getTemplateArgs() const {
1156    if (!hasExplicitTemplateArgs())
1157      return nullptr;
1158
1159    return getExplicitTemplateArgs().getTemplateArgs();
1160  }
1161
1162  /// \brief Retrieve the number of template arguments provided as part of this
1163  /// template-id.
1164  unsigned getNumTemplateArgs() const {
1165    if (!hasExplicitTemplateArgs())
1166      return 0;
1167
1168    return getExplicitTemplateArgs().NumTemplateArgs;
1169  }
1170
1171  /// \brief Returns true if this expression refers to a function that
1172  /// was resolved from an overloaded set having size greater than 1.
1173  bool hadMultipleCandidates() const {
1174    return DeclRefExprBits.HadMultipleCandidates;
1175  }
1176  /// \brief Sets the flag telling whether this expression refers to
1177  /// a function that was resolved from an overloaded set having size
1178  /// greater than 1.
1179  void setHadMultipleCandidates(bool V = true) {
1180    DeclRefExprBits.HadMultipleCandidates = V;
1181  }
1182
1183  /// \brief Does this DeclRefExpr refer to an enclosing local or a captured
1184  /// variable?
1185  bool refersToEnclosingVariableOrCapture() const {
1186    return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
1187  }
1188
1189  static bool classof(const Stmt *T) {
1190    return T->getStmtClass() == DeclRefExprClass;
1191  }
1192
1193  // Iterators
1194  child_range children() {
1195    return child_range(child_iterator(), child_iterator());
1196  }
1197
1198  friend class ASTStmtReader;
1199  friend class ASTStmtWriter;
1200};
1201
1202/// \brief [C99 6.4.2.2] - A predefined identifier such as __func__.
1203class PredefinedExpr : public Expr {
1204public:
1205  enum IdentType {
1206    Func,
1207    Function,
1208    LFunction,  // Same as Function, but as wide string.
1209    FuncDName,
1210    FuncSig,
1211    PrettyFunction,
1212    /// \brief The same as PrettyFunction, except that the
1213    /// 'virtual' keyword is omitted for virtual member functions.
1214    PrettyFunctionNoVirtual
1215  };
1216
1217private:
1218  SourceLocation Loc;
1219  IdentType Type;
1220  Stmt *FnName;
1221
1222public:
1223  PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
1224                 StringLiteral *SL);
1225
1226  /// \brief Construct an empty predefined expression.
1227  explicit PredefinedExpr(EmptyShell Empty)
1228      : Expr(PredefinedExprClass, Empty), Loc(), Type(Func), FnName(nullptr) {}
1229
1230  IdentType getIdentType() const { return Type; }
1231
1232  SourceLocation getLocation() const { return Loc; }
1233  void setLocation(SourceLocation L) { Loc = L; }
1234
1235  StringLiteral *getFunctionName();
1236  const StringLiteral *getFunctionName() const {
1237    return const_cast<PredefinedExpr *>(this)->getFunctionName();
1238  }
1239
1240  static StringRef getIdentTypeName(IdentType IT);
1241  static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1242
1243  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1244  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1245
1246  static bool classof(const Stmt *T) {
1247    return T->getStmtClass() == PredefinedExprClass;
1248  }
1249
1250  // Iterators
1251  child_range children() { return child_range(&FnName, &FnName + 1); }
1252
1253  friend class ASTStmtReader;
1254};
1255
1256/// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1257/// leaking memory.
1258///
1259/// For large floats/integers, APFloat/APInt will allocate memory from the heap
1260/// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
1261/// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1262/// the APFloat/APInt values will never get freed. APNumericStorage uses
1263/// ASTContext's allocator for memory allocation.
1264class APNumericStorage {
1265  union {
1266    uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
1267    uint64_t *pVal;  ///< Used to store the >64 bits integer value.
1268  };
1269  unsigned BitWidth;
1270
1271  bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1272
1273  APNumericStorage(const APNumericStorage &) = delete;
1274  void operator=(const APNumericStorage &) = delete;
1275
1276protected:
1277  APNumericStorage() : VAL(0), BitWidth(0) { }
1278
1279  llvm::APInt getIntValue() const {
1280    unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1281    if (NumWords > 1)
1282      return llvm::APInt(BitWidth, NumWords, pVal);
1283    else
1284      return llvm::APInt(BitWidth, VAL);
1285  }
1286  void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1287};
1288
1289class APIntStorage : private APNumericStorage {
1290public:
1291  llvm::APInt getValue() const { return getIntValue(); }
1292  void setValue(const ASTContext &C, const llvm::APInt &Val) {
1293    setIntValue(C, Val);
1294  }
1295};
1296
1297class APFloatStorage : private APNumericStorage {
1298public:
1299  llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1300    return llvm::APFloat(Semantics, getIntValue());
1301  }
1302  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1303    setIntValue(C, Val.bitcastToAPInt());
1304  }
1305};
1306
1307class IntegerLiteral : public Expr, public APIntStorage {
1308  SourceLocation Loc;
1309
1310  /// \brief Construct an empty integer literal.
1311  explicit IntegerLiteral(EmptyShell Empty)
1312    : Expr(IntegerLiteralClass, Empty) { }
1313
1314public:
1315  // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1316  // or UnsignedLongLongTy
1317  IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1318                 SourceLocation l);
1319
1320  /// \brief Returns a new integer literal with value 'V' and type 'type'.
1321  /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1322  /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1323  /// \param V - the value that the returned integer literal contains.
1324  static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1325                                QualType type, SourceLocation l);
1326  /// \brief Returns a new empty integer literal.
1327  static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1328
1329  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1330  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1331
1332  /// \brief Retrieve the location of the literal.
1333  SourceLocation getLocation() const { return Loc; }
1334
1335  void setLocation(SourceLocation Location) { Loc = Location; }
1336
1337  static bool classof(const Stmt *T) {
1338    return T->getStmtClass() == IntegerLiteralClass;
1339  }
1340
1341  // Iterators
1342  child_range children() {
1343    return child_range(child_iterator(), child_iterator());
1344  }
1345};
1346
1347class CharacterLiteral : public Expr {
1348public:
1349  enum CharacterKind {
1350    Ascii,
1351    Wide,
1352    UTF16,
1353    UTF32
1354  };
1355
1356private:
1357  unsigned Value;
1358  SourceLocation Loc;
1359public:
1360  // type should be IntTy
1361  CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1362                   SourceLocation l)
1363    : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1364           false, false),
1365      Value(value), Loc(l) {
1366    CharacterLiteralBits.Kind = kind;
1367  }
1368
1369  /// \brief Construct an empty character literal.
1370  CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1371
1372  SourceLocation getLocation() const { return Loc; }
1373  CharacterKind getKind() const {
1374    return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1375  }
1376
1377  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1378  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1379
1380  unsigned getValue() const { return Value; }
1381
1382  void setLocation(SourceLocation Location) { Loc = Location; }
1383  void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1384  void setValue(unsigned Val) { Value = Val; }
1385
1386  static bool classof(const Stmt *T) {
1387    return T->getStmtClass() == CharacterLiteralClass;
1388  }
1389
1390  // Iterators
1391  child_range children() {
1392    return child_range(child_iterator(), child_iterator());
1393  }
1394};
1395
1396class FloatingLiteral : public Expr, private APFloatStorage {
1397  SourceLocation Loc;
1398
1399  FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1400                  QualType Type, SourceLocation L);
1401
1402  /// \brief Construct an empty floating-point literal.
1403  explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1404
1405public:
1406  static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1407                                 bool isexact, QualType Type, SourceLocation L);
1408  static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1409
1410  llvm::APFloat getValue() const {
1411    return APFloatStorage::getValue(getSemantics());
1412  }
1413  void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1414    assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1415    APFloatStorage::setValue(C, Val);
1416  }
1417
1418  /// Get a raw enumeration value representing the floating-point semantics of
1419  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1420  APFloatSemantics getRawSemantics() const {
1421    return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1422  }
1423
1424  /// Set the raw enumeration value representing the floating-point semantics of
1425  /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1426  void setRawSemantics(APFloatSemantics Sem) {
1427    FloatingLiteralBits.Semantics = Sem;
1428  }
1429
1430  /// Return the APFloat semantics this literal uses.
1431  const llvm::fltSemantics &getSemantics() const;
1432
1433  /// Set the APFloat semantics this literal uses.
1434  void setSemantics(const llvm::fltSemantics &Sem);
1435
1436  bool isExact() const { return FloatingLiteralBits.IsExact; }
1437  void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1438
1439  /// getValueAsApproximateDouble - This returns the value as an inaccurate
1440  /// double.  Note that this may cause loss of precision, but is useful for
1441  /// debugging dumps, etc.
1442  double getValueAsApproximateDouble() const;
1443
1444  SourceLocation getLocation() const { return Loc; }
1445  void setLocation(SourceLocation L) { Loc = L; }
1446
1447  SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1448  SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1449
1450  static bool classof(const Stmt *T) {
1451    return T->getStmtClass() == FloatingLiteralClass;
1452  }
1453
1454  // Iterators
1455  child_range children() {
1456    return child_range(child_iterator(), child_iterator());
1457  }
1458};
1459
1460/// ImaginaryLiteral - We support imaginary integer and floating point literals,
1461/// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
1462/// IntegerLiteral classes.  Instances of this class always have a Complex type
1463/// whose element type matches the subexpression.
1464///
1465class ImaginaryLiteral : public Expr {
1466  Stmt *Val;
1467public:
1468  ImaginaryLiteral(Expr *val, QualType Ty)
1469    : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1470           false, false),
1471      Val(val) {}
1472
1473  /// \brief Build an empty imaginary literal.
1474  explicit ImaginaryLiteral(EmptyShell Empty)
1475    : Expr(ImaginaryLiteralClass, Empty) { }
1476
1477  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1478  Expr *getSubExpr() { return cast<Expr>(Val); }
1479  void setSubExpr(Expr *E) { Val = E; }
1480
1481  SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1482  SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1483
1484  static bool classof(const Stmt *T) {
1485    return T->getStmtClass() == ImaginaryLiteralClass;
1486  }
1487
1488  // Iterators
1489  child_range children() { return child_range(&Val, &Val+1); }
1490};
1491
1492/// StringLiteral - This represents a string literal expression, e.g. "foo"
1493/// or L"bar" (wide strings).  The actual string is returned by getBytes()
1494/// is NOT null-terminated, and the length of the string is determined by
1495/// calling getByteLength().  The C type for a string is always a
1496/// ConstantArrayType.  In C++, the char type is const qualified, in C it is
1497/// not.
1498///
1499/// Note that strings in C can be formed by concatenation of multiple string
1500/// literal pptokens in translation phase #6.  This keeps track of the locations
1501/// of each of these pieces.
1502///
1503/// Strings in C can also be truncated and extended by assigning into arrays,
1504/// e.g. with constructs like:
1505///   char X[2] = "foobar";
1506/// In this case, getByteLength() will return 6, but the string literal will
1507/// have type "char[2]".
1508class StringLiteral : public Expr {
1509public:
1510  enum StringKind {
1511    Ascii,
1512    Wide,
1513    UTF8,
1514    UTF16,
1515    UTF32
1516  };
1517
1518private:
1519  friend class ASTStmtReader;
1520
1521  union {
1522    const char *asChar;
1523    const uint16_t *asUInt16;
1524    const uint32_t *asUInt32;
1525  } StrData;
1526  unsigned Length;
1527  unsigned CharByteWidth : 4;
1528  unsigned Kind : 3;
1529  unsigned IsPascal : 1;
1530  unsigned NumConcatenated;
1531  SourceLocation TokLocs[1];
1532
1533  StringLiteral(QualType Ty) :
1534    Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1535         false) {}
1536
1537  static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1538
1539public:
1540  /// This is the "fully general" constructor that allows representation of
1541  /// strings formed from multiple concatenated tokens.
1542  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1543                               StringKind Kind, bool Pascal, QualType Ty,
1544                               const SourceLocation *Loc, unsigned NumStrs);
1545
1546  /// Simple constructor for string literals made from one token.
1547  static StringLiteral *Create(const ASTContext &C, StringRef Str,
1548                               StringKind Kind, bool Pascal, QualType Ty,
1549                               SourceLocation Loc) {
1550    return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1551  }
1552
1553  /// \brief Construct an empty string literal.
1554  static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
1555
1556  StringRef getString() const {
1557    assert(CharByteWidth==1
1558           && "This function is used in places that assume strings use char");
1559    return StringRef(StrData.asChar, getByteLength());
1560  }
1561
1562  /// Allow access to clients that need the byte representation, such as
1563  /// ASTWriterStmt::VisitStringLiteral().
1564  StringRef getBytes() const {
1565    // FIXME: StringRef may not be the right type to use as a result for this.
1566    if (CharByteWidth == 1)
1567      return StringRef(StrData.asChar, getByteLength());
1568    if (CharByteWidth == 4)
1569      return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1570                       getByteLength());
1571    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1572    return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1573                     getByteLength());
1574  }
1575
1576  void outputString(raw_ostream &OS) const;
1577
1578  uint32_t getCodeUnit(size_t i) const {
1579    assert(i < Length && "out of bounds access");
1580    if (CharByteWidth == 1)
1581      return static_cast<unsigned char>(StrData.asChar[i]);
1582    if (CharByteWidth == 4)
1583      return StrData.asUInt32[i];
1584    assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1585    return StrData.asUInt16[i];
1586  }
1587
1588  unsigned getByteLength() const { return CharByteWidth*Length; }
1589  unsigned getLength() const { return Length; }
1590  unsigned getCharByteWidth() const { return CharByteWidth; }
1591
1592  /// \brief Sets the string data to the given string data.
1593  void setString(const ASTContext &C, StringRef Str,
1594                 StringKind Kind, bool IsPascal);
1595
1596  StringKind getKind() const { return static_cast<StringKind>(Kind); }
1597
1598
1599  bool isAscii() const { return Kind == Ascii; }
1600  bool isWide() const { return Kind == Wide; }
1601  bool isUTF8() const { return Kind == UTF8; }
1602  bool isUTF16() const { return Kind == UTF16; }
1603  bool isUTF32() const { return Kind == UTF32; }
1604  bool isPascal() const { return IsPascal; }
1605
1606  bool containsNonAsciiOrNull() const {
1607    StringRef Str = getString();
1608    for (unsigned i = 0, e = Str.size(); i != e; ++i)
1609      if (!isASCII(Str[i]) || !Str[i])
1610        return true;
1611    return false;
1612  }
1613
1614  /// getNumConcatenated - Get the number of string literal tokens that were
1615  /// concatenated in translation phase #6 to form this string literal.
1616  unsigned getNumConcatenated() const { return NumConcatenated; }
1617
1618  SourceLocation getStrTokenLoc(unsigned TokNum) const {
1619    assert(TokNum < NumConcatenated && "Invalid tok number");
1620    return TokLocs[TokNum];
1621  }
1622  void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1623    assert(TokNum < NumConcatenated && "Invalid tok number");
1624    TokLocs[TokNum] = L;
1625  }
1626
1627  /// getLocationOfByte - Return a source location that points to the specified
1628  /// byte of this string literal.
1629  ///
1630  /// Strings are amazingly complex.  They can be formed from multiple tokens
1631  /// and can have escape sequences in them in addition to the usual trigraph
1632  /// and escaped newline business.  This routine handles this complexity.
1633  ///
1634  SourceLocation
1635  getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1636                    const LangOptions &Features, const TargetInfo &Target,
1637                    unsigned *StartToken = nullptr,
1638                    unsigned *StartTokenByteOffset = nullptr) const;
1639
1640  typedef const SourceLocation *tokloc_iterator;
1641  tokloc_iterator tokloc_begin() const { return TokLocs; }
1642  tokloc_iterator tokloc_end() const { return TokLocs + NumConcatenated; }
1643
1644  SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1645  SourceLocation getLocEnd() const LLVM_READONLY {
1646    return TokLocs[NumConcatenated - 1];
1647  }
1648
1649  static bool classof(const Stmt *T) {
1650    return T->getStmtClass() == StringLiteralClass;
1651  }
1652
1653  // Iterators
1654  child_range children() {
1655    return child_range(child_iterator(), child_iterator());
1656  }
1657};
1658
1659/// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
1660/// AST node is only formed if full location information is requested.
1661class ParenExpr : public Expr {
1662  SourceLocation L, R;
1663  Stmt *Val;
1664public:
1665  ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1666    : Expr(ParenExprClass, val->getType(),
1667           val->getValueKind(), val->getObjectKind(),
1668           val->isTypeDependent(), val->isValueDependent(),
1669           val->isInstantiationDependent(),
1670           val->containsUnexpandedParameterPack()),
1671      L(l), R(r), Val(val) {}
1672
1673  /// \brief Construct an empty parenthesized expression.
1674  explicit ParenExpr(EmptyShell Empty)
1675    : Expr(ParenExprClass, Empty) { }
1676
1677  const Expr *getSubExpr() const { return cast<Expr>(Val); }
1678  Expr *getSubExpr() { return cast<Expr>(Val); }
1679  void setSubExpr(Expr *E) { Val = E; }
1680
1681  SourceLocation getLocStart() const LLVM_READONLY { return L; }
1682  SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1683
1684  /// \brief Get the location of the left parentheses '('.
1685  SourceLocation getLParen() const { return L; }
1686  void setLParen(SourceLocation Loc) { L = Loc; }
1687
1688  /// \brief Get the location of the right parentheses ')'.
1689  SourceLocation getRParen() const { return R; }
1690  void setRParen(SourceLocation Loc) { R = Loc; }
1691
1692  static bool classof(const Stmt *T) {
1693    return T->getStmtClass() == ParenExprClass;
1694  }
1695
1696  // Iterators
1697  child_range children() { return child_range(&Val, &Val+1); }
1698};
1699
1700/// UnaryOperator - This represents the unary-expression's (except sizeof and
1701/// alignof), the postinc/postdec operators from postfix-expression, and various
1702/// extensions.
1703///
1704/// Notes on various nodes:
1705///
1706/// Real/Imag - These return the real/imag part of a complex operand.  If
1707///   applied to a non-complex value, the former returns its operand and the
1708///   later returns zero in the type of the operand.
1709///
1710class UnaryOperator : public Expr {
1711public:
1712  typedef UnaryOperatorKind Opcode;
1713
1714private:
1715  unsigned Opc : 5;
1716  SourceLocation Loc;
1717  Stmt *Val;
1718public:
1719
1720  UnaryOperator(Expr *input, Opcode opc, QualType type,
1721                ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1722    : Expr(UnaryOperatorClass, type, VK, OK,
1723           input->isTypeDependent() || type->isDependentType(),
1724           input->isValueDependent(),
1725           (input->isInstantiationDependent() ||
1726            type->isInstantiationDependentType()),
1727           input->containsUnexpandedParameterPack()),
1728      Opc(opc), Loc(l), Val(input) {}
1729
1730  /// \brief Build an empty unary operator.
1731  explicit UnaryOperator(EmptyShell Empty)
1732    : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1733
1734  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1735  void setOpcode(Opcode O) { Opc = O; }
1736
1737  Expr *getSubExpr() const { return cast<Expr>(Val); }
1738  void setSubExpr(Expr *E) { Val = E; }
1739
1740  /// getOperatorLoc - Return the location of the operator.
1741  SourceLocation getOperatorLoc() const { return Loc; }
1742  void setOperatorLoc(SourceLocation L) { Loc = L; }
1743
1744  /// isPostfix - Return true if this is a postfix operation, like x++.
1745  static bool isPostfix(Opcode Op) {
1746    return Op == UO_PostInc || Op == UO_PostDec;
1747  }
1748
1749  /// isPrefix - Return true if this is a prefix operation, like --x.
1750  static bool isPrefix(Opcode Op) {
1751    return Op == UO_PreInc || Op == UO_PreDec;
1752  }
1753
1754  bool isPrefix() const { return isPrefix(getOpcode()); }
1755  bool isPostfix() const { return isPostfix(getOpcode()); }
1756
1757  static bool isIncrementOp(Opcode Op) {
1758    return Op == UO_PreInc || Op == UO_PostInc;
1759  }
1760  bool isIncrementOp() const {
1761    return isIncrementOp(getOpcode());
1762  }
1763
1764  static bool isDecrementOp(Opcode Op) {
1765    return Op == UO_PreDec || Op == UO_PostDec;
1766  }
1767  bool isDecrementOp() const {
1768    return isDecrementOp(getOpcode());
1769  }
1770
1771  static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1772  bool isIncrementDecrementOp() const {
1773    return isIncrementDecrementOp(getOpcode());
1774  }
1775
1776  static bool isArithmeticOp(Opcode Op) {
1777    return Op >= UO_Plus && Op <= UO_LNot;
1778  }
1779  bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1780
1781  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1782  /// corresponds to, e.g. "sizeof" or "[pre]++"
1783  static StringRef getOpcodeStr(Opcode Op);
1784
1785  /// \brief Retrieve the unary opcode that corresponds to the given
1786  /// overloaded operator.
1787  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1788
1789  /// \brief Retrieve the overloaded operator kind that corresponds to
1790  /// the given unary opcode.
1791  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1792
1793  SourceLocation getLocStart() const LLVM_READONLY {
1794    return isPostfix() ? Val->getLocStart() : Loc;
1795  }
1796  SourceLocation getLocEnd() const LLVM_READONLY {
1797    return isPostfix() ? Loc : Val->getLocEnd();
1798  }
1799  SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1800
1801  static bool classof(const Stmt *T) {
1802    return T->getStmtClass() == UnaryOperatorClass;
1803  }
1804
1805  // Iterators
1806  child_range children() { return child_range(&Val, &Val+1); }
1807};
1808
1809/// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1810/// offsetof(record-type, member-designator). For example, given:
1811/// @code
1812/// struct S {
1813///   float f;
1814///   double d;
1815/// };
1816/// struct T {
1817///   int i;
1818///   struct S s[10];
1819/// };
1820/// @endcode
1821/// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1822
1823class OffsetOfExpr : public Expr {
1824public:
1825  // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1826  class OffsetOfNode {
1827  public:
1828    /// \brief The kind of offsetof node we have.
1829    enum Kind {
1830      /// \brief An index into an array.
1831      Array = 0x00,
1832      /// \brief A field.
1833      Field = 0x01,
1834      /// \brief A field in a dependent type, known only by its name.
1835      Identifier = 0x02,
1836      /// \brief An implicit indirection through a C++ base class, when the
1837      /// field found is in a base class.
1838      Base = 0x03
1839    };
1840
1841  private:
1842    enum { MaskBits = 2, Mask = 0x03 };
1843
1844    /// \brief The source range that covers this part of the designator.
1845    SourceRange Range;
1846
1847    /// \brief The data describing the designator, which comes in three
1848    /// different forms, depending on the lower two bits.
1849    ///   - An unsigned index into the array of Expr*'s stored after this node
1850    ///     in memory, for [constant-expression] designators.
1851    ///   - A FieldDecl*, for references to a known field.
1852    ///   - An IdentifierInfo*, for references to a field with a given name
1853    ///     when the class type is dependent.
1854    ///   - A CXXBaseSpecifier*, for references that look at a field in a
1855    ///     base class.
1856    uintptr_t Data;
1857
1858  public:
1859    /// \brief Create an offsetof node that refers to an array element.
1860    OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1861                 SourceLocation RBracketLoc)
1862      : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1863
1864    /// \brief Create an offsetof node that refers to a field.
1865    OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1866                 SourceLocation NameLoc)
1867      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1868        Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1869
1870    /// \brief Create an offsetof node that refers to an identifier.
1871    OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1872                 SourceLocation NameLoc)
1873      : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1874        Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1875
1876    /// \brief Create an offsetof node that refers into a C++ base class.
1877    explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1878      : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1879
1880    /// \brief Determine what kind of offsetof node this is.
1881    Kind getKind() const {
1882      return static_cast<Kind>(Data & Mask);
1883    }
1884
1885    /// \brief For an array element node, returns the index into the array
1886    /// of expressions.
1887    unsigned getArrayExprIndex() const {
1888      assert(getKind() == Array);
1889      return Data >> 2;
1890    }
1891
1892    /// \brief For a field offsetof node, returns the field.
1893    FieldDecl *getField() const {
1894      assert(getKind() == Field);
1895      return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1896    }
1897
1898    /// \brief For a field or identifier offsetof node, returns the name of
1899    /// the field.
1900    IdentifierInfo *getFieldName() const;
1901
1902    /// \brief For a base class node, returns the base specifier.
1903    CXXBaseSpecifier *getBase() const {
1904      assert(getKind() == Base);
1905      return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1906    }
1907
1908    /// \brief Retrieve the source range that covers this offsetof node.
1909    ///
1910    /// For an array element node, the source range contains the locations of
1911    /// the square brackets. For a field or identifier node, the source range
1912    /// contains the location of the period (if there is one) and the
1913    /// identifier.
1914    SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1915    SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1916    SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1917  };
1918
1919private:
1920
1921  SourceLocation OperatorLoc, RParenLoc;
1922  // Base type;
1923  TypeSourceInfo *TSInfo;
1924  // Number of sub-components (i.e. instances of OffsetOfNode).
1925  unsigned NumComps;
1926  // Number of sub-expressions (i.e. array subscript expressions).
1927  unsigned NumExprs;
1928
1929  OffsetOfExpr(const ASTContext &C, QualType type,
1930               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1931               ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1932               SourceLocation RParenLoc);
1933
1934  explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1935    : Expr(OffsetOfExprClass, EmptyShell()),
1936      TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
1937
1938public:
1939
1940  static OffsetOfExpr *Create(const ASTContext &C, QualType type,
1941                              SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1942                              ArrayRef<OffsetOfNode> comps,
1943                              ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1944
1945  static OffsetOfExpr *CreateEmpty(const ASTContext &C,
1946                                   unsigned NumComps, unsigned NumExprs);
1947
1948  /// getOperatorLoc - Return the location of the operator.
1949  SourceLocation getOperatorLoc() const { return OperatorLoc; }
1950  void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1951
1952  /// \brief Return the location of the right parentheses.
1953  SourceLocation getRParenLoc() const { return RParenLoc; }
1954  void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1955
1956  TypeSourceInfo *getTypeSourceInfo() const {
1957    return TSInfo;
1958  }
1959  void setTypeSourceInfo(TypeSourceInfo *tsi) {
1960    TSInfo = tsi;
1961  }
1962
1963  const OffsetOfNode &getComponent(unsigned Idx) const {
1964    assert(Idx < NumComps && "Subscript out of range");
1965    return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1966  }
1967
1968  void setComponent(unsigned Idx, OffsetOfNode ON) {
1969    assert(Idx < NumComps && "Subscript out of range");
1970    reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1971  }
1972
1973  unsigned getNumComponents() const {
1974    return NumComps;
1975  }
1976
1977  Expr* getIndexExpr(unsigned Idx) {
1978    assert(Idx < NumExprs && "Subscript out of range");
1979    return reinterpret_cast<Expr **>(
1980                    reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1981  }
1982  const Expr *getIndexExpr(unsigned Idx) const {
1983    return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1984  }
1985
1986  void setIndexExpr(unsigned Idx, Expr* E) {
1987    assert(Idx < NumComps && "Subscript out of range");
1988    reinterpret_cast<Expr **>(
1989                reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1990  }
1991
1992  unsigned getNumExpressions() const {
1993    return NumExprs;
1994  }
1995
1996  SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
1997  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1998
1999  static bool classof(const Stmt *T) {
2000    return T->getStmtClass() == OffsetOfExprClass;
2001  }
2002
2003  // Iterators
2004  child_range children() {
2005    Stmt **begin =
2006      reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
2007                               + NumComps);
2008    return child_range(begin, begin + NumExprs);
2009  }
2010};
2011
2012/// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
2013/// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
2014/// vec_step (OpenCL 1.1 6.11.12).
2015class UnaryExprOrTypeTraitExpr : public Expr {
2016  union {
2017    TypeSourceInfo *Ty;
2018    Stmt *Ex;
2019  } Argument;
2020  SourceLocation OpLoc, RParenLoc;
2021
2022public:
2023  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
2024                           QualType resultType, SourceLocation op,
2025                           SourceLocation rp) :
2026      Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
2027           false, // Never type-dependent (C++ [temp.dep.expr]p3).
2028           // Value-dependent if the argument is type-dependent.
2029           TInfo->getType()->isDependentType(),
2030           TInfo->getType()->isInstantiationDependentType(),
2031           TInfo->getType()->containsUnexpandedParameterPack()),
2032      OpLoc(op), RParenLoc(rp) {
2033    UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
2034    UnaryExprOrTypeTraitExprBits.IsType = true;
2035    Argument.Ty = TInfo;
2036  }
2037
2038  UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
2039                           QualType resultType, SourceLocation op,
2040                           SourceLocation rp);
2041
2042  /// \brief Construct an empty sizeof/alignof expression.
2043  explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
2044    : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
2045
2046  UnaryExprOrTypeTrait getKind() const {
2047    return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
2048  }
2049  void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
2050
2051  bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
2052  QualType getArgumentType() const {
2053    return getArgumentTypeInfo()->getType();
2054  }
2055  TypeSourceInfo *getArgumentTypeInfo() const {
2056    assert(isArgumentType() && "calling getArgumentType() when arg is expr");
2057    return Argument.Ty;
2058  }
2059  Expr *getArgumentExpr() {
2060    assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2061    return static_cast<Expr*>(Argument.Ex);
2062  }
2063  const Expr *getArgumentExpr() const {
2064    return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2065  }
2066
2067  void setArgument(Expr *E) {
2068    Argument.Ex = E;
2069    UnaryExprOrTypeTraitExprBits.IsType = false;
2070  }
2071  void setArgument(TypeSourceInfo *TInfo) {
2072    Argument.Ty = TInfo;
2073    UnaryExprOrTypeTraitExprBits.IsType = true;
2074  }
2075
2076  /// Gets the argument type, or the type of the argument expression, whichever
2077  /// is appropriate.
2078  QualType getTypeOfArgument() const {
2079    return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2080  }
2081
2082  SourceLocation getOperatorLoc() const { return OpLoc; }
2083  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2084
2085  SourceLocation getRParenLoc() const { return RParenLoc; }
2086  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2087
2088  SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
2089  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2090
2091  static bool classof(const Stmt *T) {
2092    return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2093  }
2094
2095  // Iterators
2096  child_range children();
2097};
2098
2099//===----------------------------------------------------------------------===//
2100// Postfix Operators.
2101//===----------------------------------------------------------------------===//
2102
2103/// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2104class ArraySubscriptExpr : public Expr {
2105  enum { LHS, RHS, END_EXPR=2 };
2106  Stmt* SubExprs[END_EXPR];
2107  SourceLocation RBracketLoc;
2108public:
2109  ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
2110                     ExprValueKind VK, ExprObjectKind OK,
2111                     SourceLocation rbracketloc)
2112  : Expr(ArraySubscriptExprClass, t, VK, OK,
2113         lhs->isTypeDependent() || rhs->isTypeDependent(),
2114         lhs->isValueDependent() || rhs->isValueDependent(),
2115         (lhs->isInstantiationDependent() ||
2116          rhs->isInstantiationDependent()),
2117         (lhs->containsUnexpandedParameterPack() ||
2118          rhs->containsUnexpandedParameterPack())),
2119    RBracketLoc(rbracketloc) {
2120    SubExprs[LHS] = lhs;
2121    SubExprs[RHS] = rhs;
2122  }
2123
2124  /// \brief Create an empty array subscript expression.
2125  explicit ArraySubscriptExpr(EmptyShell Shell)
2126    : Expr(ArraySubscriptExprClass, Shell) { }
2127
2128  /// An array access can be written A[4] or 4[A] (both are equivalent).
2129  /// - getBase() and getIdx() always present the normalized view: A[4].
2130  ///    In this case getBase() returns "A" and getIdx() returns "4".
2131  /// - getLHS() and getRHS() present the syntactic view. e.g. for
2132  ///    4[A] getLHS() returns "4".
2133  /// Note: Because vector element access is also written A[4] we must
2134  /// predicate the format conversion in getBase and getIdx only on the
2135  /// the type of the RHS, as it is possible for the LHS to be a vector of
2136  /// integer type
2137  Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2138  const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2139  void setLHS(Expr *E) { SubExprs[LHS] = E; }
2140
2141  Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2142  const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2143  void setRHS(Expr *E) { SubExprs[RHS] = E; }
2144
2145  Expr *getBase() {
2146    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2147  }
2148
2149  const Expr *getBase() const {
2150    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2151  }
2152
2153  Expr *getIdx() {
2154    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2155  }
2156
2157  const Expr *getIdx() const {
2158    return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2159  }
2160
2161  SourceLocation getLocStart() const LLVM_READONLY {
2162    return getLHS()->getLocStart();
2163  }
2164  SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2165
2166  SourceLocation getRBracketLoc() const { return RBracketLoc; }
2167  void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2168
2169  SourceLocation getExprLoc() const LLVM_READONLY {
2170    return getBase()->getExprLoc();
2171  }
2172
2173  static bool classof(const Stmt *T) {
2174    return T->getStmtClass() == ArraySubscriptExprClass;
2175  }
2176
2177  // Iterators
2178  child_range children() {
2179    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2180  }
2181};
2182
2183/// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2184/// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2185/// while its subclasses may represent alternative syntax that (semantically)
2186/// results in a function call. For example, CXXOperatorCallExpr is
2187/// a subclass for overloaded operator calls that use operator syntax, e.g.,
2188/// "str1 + str2" to resolve to a function call.
2189class CallExpr : public Expr {
2190  enum { FN=0, PREARGS_START=1 };
2191  Stmt **SubExprs;
2192  unsigned NumArgs;
2193  SourceLocation RParenLoc;
2194
2195protected:
2196  // These versions of the constructor are for derived classes.
2197  CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2198           ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
2199           SourceLocation rparenloc);
2200  CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
2201           EmptyShell Empty);
2202
2203  Stmt *getPreArg(unsigned i) {
2204    assert(i < getNumPreArgs() && "Prearg access out of range!");
2205    return SubExprs[PREARGS_START+i];
2206  }
2207  const Stmt *getPreArg(unsigned i) const {
2208    assert(i < getNumPreArgs() && "Prearg access out of range!");
2209    return SubExprs[PREARGS_START+i];
2210  }
2211  void setPreArg(unsigned i, Stmt *PreArg) {
2212    assert(i < getNumPreArgs() && "Prearg access out of range!");
2213    SubExprs[PREARGS_START+i] = PreArg;
2214  }
2215
2216  unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2217
2218public:
2219  CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2220           ExprValueKind VK, SourceLocation rparenloc);
2221
2222  /// \brief Build an empty call expression.
2223  CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
2224
2225  const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2226  Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2227  void setCallee(Expr *F) { SubExprs[FN] = F; }
2228
2229  Decl *getCalleeDecl();
2230  const Decl *getCalleeDecl() const {
2231    return const_cast<CallExpr*>(this)->getCalleeDecl();
2232  }
2233
2234  /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2235  FunctionDecl *getDirectCallee();
2236  const FunctionDecl *getDirectCallee() const {
2237    return const_cast<CallExpr*>(this)->getDirectCallee();
2238  }
2239
2240  /// getNumArgs - Return the number of actual arguments to this call.
2241  ///
2242  unsigned getNumArgs() const { return NumArgs; }
2243
2244  /// \brief Retrieve the call arguments.
2245  Expr **getArgs() {
2246    return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2247  }
2248  const Expr *const *getArgs() const {
2249    return const_cast<CallExpr*>(this)->getArgs();
2250  }
2251
2252  /// getArg - Return the specified argument.
2253  Expr *getArg(unsigned Arg) {
2254    assert(Arg < NumArgs && "Arg access out of range!");
2255    return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2256  }
2257  const Expr *getArg(unsigned Arg) const {
2258    assert(Arg < NumArgs && "Arg access out of range!");
2259    return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2260  }
2261
2262  /// setArg - Set the specified argument.
2263  void setArg(unsigned Arg, Expr *ArgExpr) {
2264    assert(Arg < NumArgs && "Arg access out of range!");
2265    SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2266  }
2267
2268  /// setNumArgs - This changes the number of arguments present in this call.
2269  /// Any orphaned expressions are deleted by this, and any new operands are set
2270  /// to null.
2271  void setNumArgs(const ASTContext& C, unsigned NumArgs);
2272
2273  typedef ExprIterator arg_iterator;
2274  typedef ConstExprIterator const_arg_iterator;
2275  typedef llvm::iterator_range<arg_iterator> arg_range;
2276  typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
2277
2278  arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
2279  arg_const_range arguments() const {
2280    return arg_const_range(arg_begin(), arg_end());
2281  }
2282
2283  arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2284  arg_iterator arg_end() {
2285    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2286  }
2287  const_arg_iterator arg_begin() const {
2288    return SubExprs+PREARGS_START+getNumPreArgs();
2289  }
2290  const_arg_iterator arg_end() const {
2291    return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2292  }
2293
2294  /// This method provides fast access to all the subexpressions of
2295  /// a CallExpr without going through the slower virtual child_iterator
2296  /// interface.  This provides efficient reverse iteration of the
2297  /// subexpressions.  This is currently used for CFG construction.
2298  ArrayRef<Stmt*> getRawSubExprs() {
2299    return llvm::makeArrayRef(SubExprs,
2300                              getNumPreArgs() + PREARGS_START + getNumArgs());
2301  }
2302
2303  /// getNumCommas - Return the number of commas that must have been present in
2304  /// this function call.
2305  unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2306
2307  /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
2308  /// of the callee. If not, return 0.
2309  unsigned getBuiltinCallee() const;
2310
2311  /// \brief Returns \c true if this is a call to a builtin which does not
2312  /// evaluate side-effects within its arguments.
2313  bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
2314
2315  /// getCallReturnType - Get the return type of the call expr. This is not
2316  /// always the type of the expr itself, if the return type is a reference
2317  /// type.
2318  QualType getCallReturnType(const ASTContext &Ctx) const;
2319
2320  SourceLocation getRParenLoc() const { return RParenLoc; }
2321  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2322
2323  SourceLocation getLocStart() const LLVM_READONLY;
2324  SourceLocation getLocEnd() const LLVM_READONLY;
2325
2326  static bool classof(const Stmt *T) {
2327    return T->getStmtClass() >= firstCallExprConstant &&
2328           T->getStmtClass() <= lastCallExprConstant;
2329  }
2330
2331  // Iterators
2332  child_range children() {
2333    return child_range(&SubExprs[0],
2334                       &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2335  }
2336};
2337
2338/// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
2339///
2340class LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) MemberExpr : public Expr {
2341  /// Extra data stored in some member expressions.
2342  struct LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) MemberNameQualifier {
2343    /// \brief The nested-name-specifier that qualifies the name, including
2344    /// source-location information.
2345    NestedNameSpecifierLoc QualifierLoc;
2346
2347    /// \brief The DeclAccessPair through which the MemberDecl was found due to
2348    /// name qualifiers.
2349    DeclAccessPair FoundDecl;
2350  };
2351
2352  /// Base - the expression for the base pointer or structure references.  In
2353  /// X.F, this is "X".
2354  Stmt *Base;
2355
2356  /// MemberDecl - This is the decl being referenced by the field/member name.
2357  /// In X.F, this is the decl referenced by F.
2358  ValueDecl *MemberDecl;
2359
2360  /// MemberDNLoc - Provides source/type location info for the
2361  /// declaration name embedded in MemberDecl.
2362  DeclarationNameLoc MemberDNLoc;
2363
2364  /// MemberLoc - This is the location of the member name.
2365  SourceLocation MemberLoc;
2366
2367  /// This is the location of the -> or . in the expression.
2368  SourceLocation OperatorLoc;
2369
2370  /// IsArrow - True if this is "X->F", false if this is "X.F".
2371  bool IsArrow : 1;
2372
2373  /// \brief True if this member expression used a nested-name-specifier to
2374  /// refer to the member, e.g., "x->Base::f", or found its member via a using
2375  /// declaration.  When true, a MemberNameQualifier
2376  /// structure is allocated immediately after the MemberExpr.
2377  bool HasQualifierOrFoundDecl : 1;
2378
2379  /// \brief True if this member expression specified a template keyword
2380  /// and/or a template argument list explicitly, e.g., x->f<int>,
2381  /// x->template f, x->template f<int>.
2382  /// When true, an ASTTemplateKWAndArgsInfo structure and its
2383  /// TemplateArguments (if any) are allocated immediately after
2384  /// the MemberExpr or, if the member expression also has a qualifier,
2385  /// after the MemberNameQualifier structure.
2386  bool HasTemplateKWAndArgsInfo : 1;
2387
2388  /// \brief True if this member expression refers to a method that
2389  /// was resolved from an overloaded set having size greater than 1.
2390  bool HadMultipleCandidates : 1;
2391
2392  /// \brief Retrieve the qualifier that preceded the member name, if any.
2393  MemberNameQualifier *getMemberQualifier() {
2394    assert(HasQualifierOrFoundDecl);
2395    return reinterpret_cast<MemberNameQualifier *> (this + 1);
2396  }
2397
2398  /// \brief Retrieve the qualifier that preceded the member name, if any.
2399  const MemberNameQualifier *getMemberQualifier() const {
2400    return const_cast<MemberExpr *>(this)->getMemberQualifier();
2401  }
2402
2403public:
2404  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2405             ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
2406             QualType ty, ExprValueKind VK, ExprObjectKind OK)
2407      : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2408             base->isValueDependent(), base->isInstantiationDependent(),
2409             base->containsUnexpandedParameterPack()),
2410        Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2411        MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
2412        IsArrow(isarrow), HasQualifierOrFoundDecl(false),
2413        HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
2414    assert(memberdecl->getDeclName() == NameInfo.getName());
2415  }
2416
2417  // NOTE: this constructor should be used only when it is known that
2418  // the member name can not provide additional syntactic info
2419  // (i.e., source locations for C++ operator names or type source info
2420  // for constructors, destructors and conversion operators).
2421  MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2422             ValueDecl *memberdecl, SourceLocation l, QualType ty,
2423             ExprValueKind VK, ExprObjectKind OK)
2424      : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2425             base->isValueDependent(), base->isInstantiationDependent(),
2426             base->containsUnexpandedParameterPack()),
2427        Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2428        OperatorLoc(operatorloc), IsArrow(isarrow),
2429        HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2430        HadMultipleCandidates(false) {}
2431
2432  static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
2433                            SourceLocation OperatorLoc,
2434                            NestedNameSpecifierLoc QualifierLoc,
2435                            SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
2436                            DeclAccessPair founddecl,
2437                            DeclarationNameInfo MemberNameInfo,
2438                            const TemplateArgumentListInfo *targs, QualType ty,
2439                            ExprValueKind VK, ExprObjectKind OK);
2440
2441  void setBase(Expr *E) { Base = E; }
2442  Expr *getBase() const { return cast<Expr>(Base); }
2443
2444  /// \brief Retrieve the member declaration to which this expression refers.
2445  ///
2446  /// The returned declaration will either be a FieldDecl or (in C++)
2447  /// a CXXMethodDecl.
2448  ValueDecl *getMemberDecl() const { return MemberDecl; }
2449  void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2450
2451  /// \brief Retrieves the declaration found by lookup.
2452  DeclAccessPair getFoundDecl() const {
2453    if (!HasQualifierOrFoundDecl)
2454      return DeclAccessPair::make(getMemberDecl(),
2455                                  getMemberDecl()->getAccess());
2456    return getMemberQualifier()->FoundDecl;
2457  }
2458
2459  /// \brief Determines whether this member expression actually had
2460  /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2461  /// x->Base::foo.
2462  bool hasQualifier() const { return getQualifier() != nullptr; }
2463
2464  /// \brief If the member name was qualified, retrieves the
2465  /// nested-name-specifier that precedes the member name. Otherwise, returns
2466  /// NULL.
2467  NestedNameSpecifier *getQualifier() const {
2468    if (!HasQualifierOrFoundDecl)
2469      return nullptr;
2470
2471    return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2472  }
2473
2474  /// \brief If the member name was qualified, retrieves the
2475  /// nested-name-specifier that precedes the member name, with source-location
2476  /// information.
2477  NestedNameSpecifierLoc getQualifierLoc() const {
2478    if (!hasQualifier())
2479      return NestedNameSpecifierLoc();
2480
2481    return getMemberQualifier()->QualifierLoc;
2482  }
2483
2484  /// \brief Return the optional template keyword and arguments info.
2485  ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2486    if (!HasTemplateKWAndArgsInfo)
2487      return nullptr;
2488
2489    if (!HasQualifierOrFoundDecl)
2490      return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2491
2492    return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2493                                                      getMemberQualifier() + 1);
2494  }
2495
2496  /// \brief Return the optional template keyword and arguments info.
2497  const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2498    return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2499  }
2500
2501  /// \brief Retrieve the location of the template keyword preceding
2502  /// the member name, if any.
2503  SourceLocation getTemplateKeywordLoc() const {
2504    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2505    return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2506  }
2507
2508  /// \brief Retrieve the location of the left angle bracket starting the
2509  /// explicit template argument list following the member name, if any.
2510  SourceLocation getLAngleLoc() const {
2511    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2512    return getTemplateKWAndArgsInfo()->LAngleLoc;
2513  }
2514
2515  /// \brief Retrieve the location of the right angle bracket ending the
2516  /// explicit template argument list following the member name, if any.
2517  SourceLocation getRAngleLoc() const {
2518    if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2519    return getTemplateKWAndArgsInfo()->RAngleLoc;
2520  }
2521
2522  /// Determines whether the member name was preceded by the template keyword.
2523  bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2524
2525  /// \brief Determines whether the member name was followed by an
2526  /// explicit template argument list.
2527  bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2528
2529  /// \brief Copies the template arguments (if present) into the given
2530  /// structure.
2531  void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2532    if (hasExplicitTemplateArgs())
2533      getExplicitTemplateArgs().copyInto(List);
2534  }
2535
2536  /// \brief Retrieve the explicit template argument list that
2537  /// follow the member template name.  This must only be called on an
2538  /// expression with explicit template arguments.
2539  ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2540    assert(hasExplicitTemplateArgs());
2541    return *getTemplateKWAndArgsInfo();
2542  }
2543
2544  /// \brief Retrieve the explicit template argument list that
2545  /// followed the member template name.  This must only be called on
2546  /// an expression with explicit template arguments.
2547  const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2548    return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2549  }
2550
2551  /// \brief Retrieves the optional explicit template arguments.
2552  /// This points to the same data as getExplicitTemplateArgs(), but
2553  /// returns null if there are no explicit template arguments.
2554  const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2555    if (!hasExplicitTemplateArgs()) return nullptr;
2556    return &getExplicitTemplateArgs();
2557  }
2558
2559  /// \brief Retrieve the template arguments provided as part of this
2560  /// template-id.
2561  const TemplateArgumentLoc *getTemplateArgs() const {
2562    if (!hasExplicitTemplateArgs())
2563      return nullptr;
2564
2565    return getExplicitTemplateArgs().getTemplateArgs();
2566  }
2567
2568  /// \brief Retrieve the number of template arguments provided as part of this
2569  /// template-id.
2570  unsigned getNumTemplateArgs() const {
2571    if (!hasExplicitTemplateArgs())
2572      return 0;
2573
2574    return getExplicitTemplateArgs().NumTemplateArgs;
2575  }
2576
2577  /// \brief Retrieve the member declaration name info.
2578  DeclarationNameInfo getMemberNameInfo() const {
2579    return DeclarationNameInfo(MemberDecl->getDeclName(),
2580                               MemberLoc, MemberDNLoc);
2581  }
2582
2583  SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
2584
2585  bool isArrow() const { return IsArrow; }
2586  void setArrow(bool A) { IsArrow = A; }
2587
2588  /// getMemberLoc - Return the location of the "member", in X->F, it is the
2589  /// location of 'F'.
2590  SourceLocation getMemberLoc() const { return MemberLoc; }
2591  void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2592
2593  SourceLocation getLocStart() const LLVM_READONLY;
2594  SourceLocation getLocEnd() const LLVM_READONLY;
2595
2596  SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2597
2598  /// \brief Determine whether the base of this explicit is implicit.
2599  bool isImplicitAccess() const {
2600    return getBase() && getBase()->isImplicitCXXThis();
2601  }
2602
2603  /// \brief Returns true if this member expression refers to a method that
2604  /// was resolved from an overloaded set having size greater than 1.
2605  bool hadMultipleCandidates() const {
2606    return HadMultipleCandidates;
2607  }
2608  /// \brief Sets the flag telling whether this expression refers to
2609  /// a method that was resolved from an overloaded set having size
2610  /// greater than 1.
2611  void setHadMultipleCandidates(bool V = true) {
2612    HadMultipleCandidates = V;
2613  }
2614
2615  /// \brief Returns true if virtual dispatch is performed.
2616  /// If the member access is fully qualified, (i.e. X::f()), virtual
2617  /// dispatching is not performed. In -fapple-kext mode qualified
2618  /// calls to virtual method will still go through the vtable.
2619  bool performsVirtualDispatch(const LangOptions &LO) const {
2620    return LO.AppleKext || !hasQualifier();
2621  }
2622
2623  static bool classof(const Stmt *T) {
2624    return T->getStmtClass() == MemberExprClass;
2625  }
2626
2627  // Iterators
2628  child_range children() { return child_range(&Base, &Base+1); }
2629
2630  friend class ASTReader;
2631  friend class ASTStmtWriter;
2632};
2633
2634/// CompoundLiteralExpr - [C99 6.5.2.5]
2635///
2636class CompoundLiteralExpr : public Expr {
2637  /// LParenLoc - If non-null, this is the location of the left paren in a
2638  /// compound literal like "(int){4}".  This can be null if this is a
2639  /// synthesized compound expression.
2640  SourceLocation LParenLoc;
2641
2642  /// The type as written.  This can be an incomplete array type, in
2643  /// which case the actual expression type will be different.
2644  /// The int part of the pair stores whether this expr is file scope.
2645  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2646  Stmt *Init;
2647public:
2648  CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2649                      QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2650    : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2651           tinfo->getType()->isDependentType(),
2652           init->isValueDependent(),
2653           (init->isInstantiationDependent() ||
2654            tinfo->getType()->isInstantiationDependentType()),
2655           init->containsUnexpandedParameterPack()),
2656      LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2657
2658  /// \brief Construct an empty compound literal.
2659  explicit CompoundLiteralExpr(EmptyShell Empty)
2660    : Expr(CompoundLiteralExprClass, Empty) { }
2661
2662  const Expr *getInitializer() const { return cast<Expr>(Init); }
2663  Expr *getInitializer() { return cast<Expr>(Init); }
2664  void setInitializer(Expr *E) { Init = E; }
2665
2666  bool isFileScope() const { return TInfoAndScope.getInt(); }
2667  void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2668
2669  SourceLocation getLParenLoc() const { return LParenLoc; }
2670  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2671
2672  TypeSourceInfo *getTypeSourceInfo() const {
2673    return TInfoAndScope.getPointer();
2674  }
2675  void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2676    TInfoAndScope.setPointer(tinfo);
2677  }
2678
2679  SourceLocation getLocStart() const LLVM_READONLY {
2680    // FIXME: Init should never be null.
2681    if (!Init)
2682      return SourceLocation();
2683    if (LParenLoc.isInvalid())
2684      return Init->getLocStart();
2685    return LParenLoc;
2686  }
2687  SourceLocation getLocEnd() const LLVM_READONLY {
2688    // FIXME: Init should never be null.
2689    if (!Init)
2690      return SourceLocation();
2691    return Init->getLocEnd();
2692  }
2693
2694  static bool classof(const Stmt *T) {
2695    return T->getStmtClass() == CompoundLiteralExprClass;
2696  }
2697
2698  // Iterators
2699  child_range children() { return child_range(&Init, &Init+1); }
2700};
2701
2702/// CastExpr - Base class for type casts, including both implicit
2703/// casts (ImplicitCastExpr) and explicit casts that have some
2704/// representation in the source code (ExplicitCastExpr's derived
2705/// classes).
2706class CastExpr : public Expr {
2707private:
2708  Stmt *Op;
2709
2710  bool CastConsistency() const;
2711
2712  const CXXBaseSpecifier * const *path_buffer() const {
2713    return const_cast<CastExpr*>(this)->path_buffer();
2714  }
2715  CXXBaseSpecifier **path_buffer();
2716
2717  void setBasePathSize(unsigned basePathSize) {
2718    CastExprBits.BasePathSize = basePathSize;
2719    assert(CastExprBits.BasePathSize == basePathSize &&
2720           "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2721  }
2722
2723protected:
2724  CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
2725           Expr *op, unsigned BasePathSize)
2726      : Expr(SC, ty, VK, OK_Ordinary,
2727             // Cast expressions are type-dependent if the type is
2728             // dependent (C++ [temp.dep.expr]p3).
2729             ty->isDependentType(),
2730             // Cast expressions are value-dependent if the type is
2731             // dependent or if the subexpression is value-dependent.
2732             ty->isDependentType() || (op && op->isValueDependent()),
2733             (ty->isInstantiationDependentType() ||
2734              (op && op->isInstantiationDependent())),
2735             // An implicit cast expression doesn't (lexically) contain an
2736             // unexpanded pack, even if its target type does.
2737             ((SC != ImplicitCastExprClass &&
2738               ty->containsUnexpandedParameterPack()) ||
2739              (op && op->containsUnexpandedParameterPack()))),
2740        Op(op) {
2741    assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2742    CastExprBits.Kind = kind;
2743    setBasePathSize(BasePathSize);
2744    assert(CastConsistency());
2745  }
2746
2747  /// \brief Construct an empty cast.
2748  CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2749    : Expr(SC, Empty) {
2750    setBasePathSize(BasePathSize);
2751  }
2752
2753public:
2754  CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2755  void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2756  const char *getCastKindName() const;
2757
2758  Expr *getSubExpr() { return cast<Expr>(Op); }
2759  const Expr *getSubExpr() const { return cast<Expr>(Op); }
2760  void setSubExpr(Expr *E) { Op = E; }
2761
2762  /// \brief Retrieve the cast subexpression as it was written in the source
2763  /// code, looking through any implicit casts or other intermediate nodes
2764  /// introduced by semantic analysis.
2765  Expr *getSubExprAsWritten();
2766  const Expr *getSubExprAsWritten() const {
2767    return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2768  }
2769
2770  typedef CXXBaseSpecifier **path_iterator;
2771  typedef const CXXBaseSpecifier * const *path_const_iterator;
2772  bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2773  unsigned path_size() const { return CastExprBits.BasePathSize; }
2774  path_iterator path_begin() { return path_buffer(); }
2775  path_iterator path_end() { return path_buffer() + path_size(); }
2776  path_const_iterator path_begin() const { return path_buffer(); }
2777  path_const_iterator path_end() const { return path_buffer() + path_size(); }
2778
2779  void setCastPath(const CXXCastPath &Path);
2780
2781  static bool classof(const Stmt *T) {
2782    return T->getStmtClass() >= firstCastExprConstant &&
2783           T->getStmtClass() <= lastCastExprConstant;
2784  }
2785
2786  // Iterators
2787  child_range children() { return child_range(&Op, &Op+1); }
2788};
2789
2790/// ImplicitCastExpr - Allows us to explicitly represent implicit type
2791/// conversions, which have no direct representation in the original
2792/// source code. For example: converting T[]->T*, void f()->void
2793/// (*f)(), float->double, short->int, etc.
2794///
2795/// In C, implicit casts always produce rvalues. However, in C++, an
2796/// implicit cast whose result is being bound to a reference will be
2797/// an lvalue or xvalue. For example:
2798///
2799/// @code
2800/// class Base { };
2801/// class Derived : public Base { };
2802/// Derived &&ref();
2803/// void f(Derived d) {
2804///   Base& b = d; // initializer is an ImplicitCastExpr
2805///                // to an lvalue of type Base
2806///   Base&& r = ref(); // initializer is an ImplicitCastExpr
2807///                     // to an xvalue of type Base
2808/// }
2809/// @endcode
2810class ImplicitCastExpr : public CastExpr {
2811private:
2812  ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2813                   unsigned BasePathLength, ExprValueKind VK)
2814    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2815  }
2816
2817  /// \brief Construct an empty implicit cast.
2818  explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2819    : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2820
2821public:
2822  enum OnStack_t { OnStack };
2823  ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2824                   ExprValueKind VK)
2825    : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2826  }
2827
2828  static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
2829                                  CastKind Kind, Expr *Operand,
2830                                  const CXXCastPath *BasePath,
2831                                  ExprValueKind Cat);
2832
2833  static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
2834                                       unsigned PathSize);
2835
2836  SourceLocation getLocStart() const LLVM_READONLY {
2837    return getSubExpr()->getLocStart();
2838  }
2839  SourceLocation getLocEnd() const LLVM_READONLY {
2840    return getSubExpr()->getLocEnd();
2841  }
2842
2843  static bool classof(const Stmt *T) {
2844    return T->getStmtClass() == ImplicitCastExprClass;
2845  }
2846};
2847
2848inline Expr *Expr::IgnoreImpCasts() {
2849  Expr *e = this;
2850  while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2851    e = ice->getSubExpr();
2852  return e;
2853}
2854
2855/// ExplicitCastExpr - An explicit cast written in the source
2856/// code.
2857///
2858/// This class is effectively an abstract class, because it provides
2859/// the basic representation of an explicitly-written cast without
2860/// specifying which kind of cast (C cast, functional cast, static
2861/// cast, etc.) was written; specific derived classes represent the
2862/// particular style of cast and its location information.
2863///
2864/// Unlike implicit casts, explicit cast nodes have two different
2865/// types: the type that was written into the source code, and the
2866/// actual type of the expression as determined by semantic
2867/// analysis. These types may differ slightly. For example, in C++ one
2868/// can cast to a reference type, which indicates that the resulting
2869/// expression will be an lvalue or xvalue. The reference type, however,
2870/// will not be used as the type of the expression.
2871class ExplicitCastExpr : public CastExpr {
2872  /// TInfo - Source type info for the (written) type
2873  /// this expression is casting to.
2874  TypeSourceInfo *TInfo;
2875
2876protected:
2877  ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2878                   CastKind kind, Expr *op, unsigned PathSize,
2879                   TypeSourceInfo *writtenTy)
2880    : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2881
2882  /// \brief Construct an empty explicit cast.
2883  ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2884    : CastExpr(SC, Shell, PathSize) { }
2885
2886public:
2887  /// getTypeInfoAsWritten - Returns the type source info for the type
2888  /// that this expression is casting to.
2889  TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2890  void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2891
2892  /// getTypeAsWritten - Returns the type that this expression is
2893  /// casting to, as written in the source code.
2894  QualType getTypeAsWritten() const { return TInfo->getType(); }
2895
2896  static bool classof(const Stmt *T) {
2897     return T->getStmtClass() >= firstExplicitCastExprConstant &&
2898            T->getStmtClass() <= lastExplicitCastExprConstant;
2899  }
2900};
2901
2902/// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2903/// cast in C++ (C++ [expr.cast]), which uses the syntax
2904/// (Type)expr. For example: @c (int)f.
2905class CStyleCastExpr : public ExplicitCastExpr {
2906  SourceLocation LPLoc; // the location of the left paren
2907  SourceLocation RPLoc; // the location of the right paren
2908
2909  CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2910                 unsigned PathSize, TypeSourceInfo *writtenTy,
2911                 SourceLocation l, SourceLocation r)
2912    : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2913                       writtenTy), LPLoc(l), RPLoc(r) {}
2914
2915  /// \brief Construct an empty C-style explicit cast.
2916  explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2917    : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2918
2919public:
2920  static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
2921                                ExprValueKind VK, CastKind K,
2922                                Expr *Op, const CXXCastPath *BasePath,
2923                                TypeSourceInfo *WrittenTy, SourceLocation L,
2924                                SourceLocation R);
2925
2926  static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
2927                                     unsigned PathSize);
2928
2929  SourceLocation getLParenLoc() const { return LPLoc; }
2930  void setLParenLoc(SourceLocation L) { LPLoc = L; }
2931
2932  SourceLocation getRParenLoc() const { return RPLoc; }
2933  void setRParenLoc(SourceLocation L) { RPLoc = L; }
2934
2935  SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2936  SourceLocation getLocEnd() const LLVM_READONLY {
2937    return getSubExpr()->getLocEnd();
2938  }
2939
2940  static bool classof(const Stmt *T) {
2941    return T->getStmtClass() == CStyleCastExprClass;
2942  }
2943};
2944
2945/// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2946///
2947/// This expression node kind describes a builtin binary operation,
2948/// such as "x + y" for integer values "x" and "y". The operands will
2949/// already have been converted to appropriate types (e.g., by
2950/// performing promotions or conversions).
2951///
2952/// In C++, where operators may be overloaded, a different kind of
2953/// expression node (CXXOperatorCallExpr) is used to express the
2954/// invocation of an overloaded operator with operator syntax. Within
2955/// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2956/// used to store an expression "x + y" depends on the subexpressions
2957/// for x and y. If neither x or y is type-dependent, and the "+"
2958/// operator resolves to a built-in operation, BinaryOperator will be
2959/// used to express the computation (x and y may still be
2960/// value-dependent). If either x or y is type-dependent, or if the
2961/// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2962/// be used to express the computation.
2963class BinaryOperator : public Expr {
2964public:
2965  typedef BinaryOperatorKind Opcode;
2966
2967private:
2968  unsigned Opc : 6;
2969
2970  // Records the FP_CONTRACT pragma status at the point that this binary
2971  // operator was parsed. This bit is only meaningful for operations on
2972  // floating point types. For all other types it should default to
2973  // false.
2974  unsigned FPContractable : 1;
2975  SourceLocation OpLoc;
2976
2977  enum { LHS, RHS, END_EXPR };
2978  Stmt* SubExprs[END_EXPR];
2979public:
2980
2981  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2982                 ExprValueKind VK, ExprObjectKind OK,
2983                 SourceLocation opLoc, bool fpContractable)
2984    : Expr(BinaryOperatorClass, ResTy, VK, OK,
2985           lhs->isTypeDependent() || rhs->isTypeDependent(),
2986           lhs->isValueDependent() || rhs->isValueDependent(),
2987           (lhs->isInstantiationDependent() ||
2988            rhs->isInstantiationDependent()),
2989           (lhs->containsUnexpandedParameterPack() ||
2990            rhs->containsUnexpandedParameterPack())),
2991      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
2992    SubExprs[LHS] = lhs;
2993    SubExprs[RHS] = rhs;
2994    assert(!isCompoundAssignmentOp() &&
2995           "Use CompoundAssignOperator for compound assignments");
2996  }
2997
2998  /// \brief Construct an empty binary operator.
2999  explicit BinaryOperator(EmptyShell Empty)
3000    : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
3001
3002  SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
3003  SourceLocation getOperatorLoc() const { return OpLoc; }
3004  void setOperatorLoc(SourceLocation L) { OpLoc = L; }
3005
3006  Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
3007  void setOpcode(Opcode O) { Opc = O; }
3008
3009  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3010  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3011  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3012  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3013
3014  SourceLocation getLocStart() const LLVM_READONLY {
3015    return getLHS()->getLocStart();
3016  }
3017  SourceLocation getLocEnd() const LLVM_READONLY {
3018    return getRHS()->getLocEnd();
3019  }
3020
3021  /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
3022  /// corresponds to, e.g. "<<=".
3023  static StringRef getOpcodeStr(Opcode Op);
3024
3025  StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
3026
3027  /// \brief Retrieve the binary opcode that corresponds to the given
3028  /// overloaded operator.
3029  static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
3030
3031  /// \brief Retrieve the overloaded operator kind that corresponds to
3032  /// the given binary opcode.
3033  static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
3034
3035  /// predicates to categorize the respective opcodes.
3036  bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
3037  static bool isMultiplicativeOp(Opcode Opc) {
3038    return Opc >= BO_Mul && Opc <= BO_Rem;
3039  }
3040  bool isMultiplicativeOp() const { return isMultiplicativeOp(getOpcode()); }
3041  static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
3042  bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
3043  static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
3044  bool isShiftOp() const { return isShiftOp(getOpcode()); }
3045
3046  static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
3047  bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
3048
3049  static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
3050  bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
3051
3052  static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
3053  bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
3054
3055  static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
3056  bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
3057
3058  static Opcode negateComparisonOp(Opcode Opc) {
3059    switch (Opc) {
3060    default:
3061      llvm_unreachable("Not a comparsion operator.");
3062    case BO_LT: return BO_GE;
3063    case BO_GT: return BO_LE;
3064    case BO_LE: return BO_GT;
3065    case BO_GE: return BO_LT;
3066    case BO_EQ: return BO_NE;
3067    case BO_NE: return BO_EQ;
3068    }
3069  }
3070
3071  static Opcode reverseComparisonOp(Opcode Opc) {
3072    switch (Opc) {
3073    default:
3074      llvm_unreachable("Not a comparsion operator.");
3075    case BO_LT: return BO_GT;
3076    case BO_GT: return BO_LT;
3077    case BO_LE: return BO_GE;
3078    case BO_GE: return BO_LE;
3079    case BO_EQ:
3080    case BO_NE:
3081      return Opc;
3082    }
3083  }
3084
3085  static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3086  bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3087
3088  static bool isAssignmentOp(Opcode Opc) {
3089    return Opc >= BO_Assign && Opc <= BO_OrAssign;
3090  }
3091  bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3092
3093  static bool isCompoundAssignmentOp(Opcode Opc) {
3094    return Opc > BO_Assign && Opc <= BO_OrAssign;
3095  }
3096  bool isCompoundAssignmentOp() const {
3097    return isCompoundAssignmentOp(getOpcode());
3098  }
3099  static Opcode getOpForCompoundAssignment(Opcode Opc) {
3100    assert(isCompoundAssignmentOp(Opc));
3101    if (Opc >= BO_AndAssign)
3102      return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3103    else
3104      return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3105  }
3106
3107  static bool isShiftAssignOp(Opcode Opc) {
3108    return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3109  }
3110  bool isShiftAssignOp() const {
3111    return isShiftAssignOp(getOpcode());
3112  }
3113
3114  static bool classof(const Stmt *S) {
3115    return S->getStmtClass() >= firstBinaryOperatorConstant &&
3116           S->getStmtClass() <= lastBinaryOperatorConstant;
3117  }
3118
3119  // Iterators
3120  child_range children() {
3121    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3122  }
3123
3124  // Set the FP contractability status of this operator. Only meaningful for
3125  // operations on floating point types.
3126  void setFPContractable(bool FPC) { FPContractable = FPC; }
3127
3128  // Get the FP contractability status of this operator. Only meaningful for
3129  // operations on floating point types.
3130  bool isFPContractable() const { return FPContractable; }
3131
3132protected:
3133  BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3134                 ExprValueKind VK, ExprObjectKind OK,
3135                 SourceLocation opLoc, bool fpContractable, bool dead2)
3136    : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3137           lhs->isTypeDependent() || rhs->isTypeDependent(),
3138           lhs->isValueDependent() || rhs->isValueDependent(),
3139           (lhs->isInstantiationDependent() ||
3140            rhs->isInstantiationDependent()),
3141           (lhs->containsUnexpandedParameterPack() ||
3142            rhs->containsUnexpandedParameterPack())),
3143      Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
3144    SubExprs[LHS] = lhs;
3145    SubExprs[RHS] = rhs;
3146  }
3147
3148  BinaryOperator(StmtClass SC, EmptyShell Empty)
3149    : Expr(SC, Empty), Opc(BO_MulAssign) { }
3150};
3151
3152/// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3153/// track of the type the operation is performed in.  Due to the semantics of
3154/// these operators, the operands are promoted, the arithmetic performed, an
3155/// implicit conversion back to the result type done, then the assignment takes
3156/// place.  This captures the intermediate type which the computation is done
3157/// in.
3158class CompoundAssignOperator : public BinaryOperator {
3159  QualType ComputationLHSType;
3160  QualType ComputationResultType;
3161public:
3162  CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3163                         ExprValueKind VK, ExprObjectKind OK,
3164                         QualType CompLHSType, QualType CompResultType,
3165                         SourceLocation OpLoc, bool fpContractable)
3166    : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
3167                     true),
3168      ComputationLHSType(CompLHSType),
3169      ComputationResultType(CompResultType) {
3170    assert(isCompoundAssignmentOp() &&
3171           "Only should be used for compound assignments");
3172  }
3173
3174  /// \brief Build an empty compound assignment operator expression.
3175  explicit CompoundAssignOperator(EmptyShell Empty)
3176    : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3177
3178  // The two computation types are the type the LHS is converted
3179  // to for the computation and the type of the result; the two are
3180  // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3181  QualType getComputationLHSType() const { return ComputationLHSType; }
3182  void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3183
3184  QualType getComputationResultType() const { return ComputationResultType; }
3185  void setComputationResultType(QualType T) { ComputationResultType = T; }
3186
3187  static bool classof(const Stmt *S) {
3188    return S->getStmtClass() == CompoundAssignOperatorClass;
3189  }
3190};
3191
3192/// AbstractConditionalOperator - An abstract base class for
3193/// ConditionalOperator and BinaryConditionalOperator.
3194class AbstractConditionalOperator : public Expr {
3195  SourceLocation QuestionLoc, ColonLoc;
3196  friend class ASTStmtReader;
3197
3198protected:
3199  AbstractConditionalOperator(StmtClass SC, QualType T,
3200                              ExprValueKind VK, ExprObjectKind OK,
3201                              bool TD, bool VD, bool ID,
3202                              bool ContainsUnexpandedParameterPack,
3203                              SourceLocation qloc,
3204                              SourceLocation cloc)
3205    : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3206      QuestionLoc(qloc), ColonLoc(cloc) {}
3207
3208  AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
3209    : Expr(SC, Empty) { }
3210
3211public:
3212  // getCond - Return the expression representing the condition for
3213  //   the ?: operator.
3214  Expr *getCond() const;
3215
3216  // getTrueExpr - Return the subexpression representing the value of
3217  //   the expression if the condition evaluates to true.
3218  Expr *getTrueExpr() const;
3219
3220  // getFalseExpr - Return the subexpression representing the value of
3221  //   the expression if the condition evaluates to false.  This is
3222  //   the same as getRHS.
3223  Expr *getFalseExpr() const;
3224
3225  SourceLocation getQuestionLoc() const { return QuestionLoc; }
3226  SourceLocation getColonLoc() const { return ColonLoc; }
3227
3228  static bool classof(const Stmt *T) {
3229    return T->getStmtClass() == ConditionalOperatorClass ||
3230           T->getStmtClass() == BinaryConditionalOperatorClass;
3231  }
3232};
3233
3234/// ConditionalOperator - The ?: ternary operator.  The GNU "missing
3235/// middle" extension is a BinaryConditionalOperator.
3236class ConditionalOperator : public AbstractConditionalOperator {
3237  enum { COND, LHS, RHS, END_EXPR };
3238  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3239
3240  friend class ASTStmtReader;
3241public:
3242  ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3243                      SourceLocation CLoc, Expr *rhs,
3244                      QualType t, ExprValueKind VK, ExprObjectKind OK)
3245    : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3246           // FIXME: the type of the conditional operator doesn't
3247           // depend on the type of the conditional, but the standard
3248           // seems to imply that it could. File a bug!
3249           (lhs->isTypeDependent() || rhs->isTypeDependent()),
3250           (cond->isValueDependent() || lhs->isValueDependent() ||
3251            rhs->isValueDependent()),
3252           (cond->isInstantiationDependent() ||
3253            lhs->isInstantiationDependent() ||
3254            rhs->isInstantiationDependent()),
3255           (cond->containsUnexpandedParameterPack() ||
3256            lhs->containsUnexpandedParameterPack() ||
3257            rhs->containsUnexpandedParameterPack()),
3258                                  QLoc, CLoc) {
3259    SubExprs[COND] = cond;
3260    SubExprs[LHS] = lhs;
3261    SubExprs[RHS] = rhs;
3262  }
3263
3264  /// \brief Build an empty conditional operator.
3265  explicit ConditionalOperator(EmptyShell Empty)
3266    : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3267
3268  // getCond - Return the expression representing the condition for
3269  //   the ?: operator.
3270  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3271
3272  // getTrueExpr - Return the subexpression representing the value of
3273  //   the expression if the condition evaluates to true.
3274  Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3275
3276  // getFalseExpr - Return the subexpression representing the value of
3277  //   the expression if the condition evaluates to false.  This is
3278  //   the same as getRHS.
3279  Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3280
3281  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3282  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3283
3284  SourceLocation getLocStart() const LLVM_READONLY {
3285    return getCond()->getLocStart();
3286  }
3287  SourceLocation getLocEnd() const LLVM_READONLY {
3288    return getRHS()->getLocEnd();
3289  }
3290
3291  static bool classof(const Stmt *T) {
3292    return T->getStmtClass() == ConditionalOperatorClass;
3293  }
3294
3295  // Iterators
3296  child_range children() {
3297    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3298  }
3299};
3300
3301/// BinaryConditionalOperator - The GNU extension to the conditional
3302/// operator which allows the middle operand to be omitted.
3303///
3304/// This is a different expression kind on the assumption that almost
3305/// every client ends up needing to know that these are different.
3306class BinaryConditionalOperator : public AbstractConditionalOperator {
3307  enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3308
3309  /// - the common condition/left-hand-side expression, which will be
3310  ///   evaluated as the opaque value
3311  /// - the condition, expressed in terms of the opaque value
3312  /// - the left-hand-side, expressed in terms of the opaque value
3313  /// - the right-hand-side
3314  Stmt *SubExprs[NUM_SUBEXPRS];
3315  OpaqueValueExpr *OpaqueValue;
3316
3317  friend class ASTStmtReader;
3318public:
3319  BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3320                            Expr *cond, Expr *lhs, Expr *rhs,
3321                            SourceLocation qloc, SourceLocation cloc,
3322                            QualType t, ExprValueKind VK, ExprObjectKind OK)
3323    : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3324           (common->isTypeDependent() || rhs->isTypeDependent()),
3325           (common->isValueDependent() || rhs->isValueDependent()),
3326           (common->isInstantiationDependent() ||
3327            rhs->isInstantiationDependent()),
3328           (common->containsUnexpandedParameterPack() ||
3329            rhs->containsUnexpandedParameterPack()),
3330                                  qloc, cloc),
3331      OpaqueValue(opaqueValue) {
3332    SubExprs[COMMON] = common;
3333    SubExprs[COND] = cond;
3334    SubExprs[LHS] = lhs;
3335    SubExprs[RHS] = rhs;
3336    assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3337  }
3338
3339  /// \brief Build an empty conditional operator.
3340  explicit BinaryConditionalOperator(EmptyShell Empty)
3341    : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3342
3343  /// \brief getCommon - Return the common expression, written to the
3344  ///   left of the condition.  The opaque value will be bound to the
3345  ///   result of this expression.
3346  Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3347
3348  /// \brief getOpaqueValue - Return the opaque value placeholder.
3349  OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3350
3351  /// \brief getCond - Return the condition expression; this is defined
3352  ///   in terms of the opaque value.
3353  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3354
3355  /// \brief getTrueExpr - Return the subexpression which will be
3356  ///   evaluated if the condition evaluates to true;  this is defined
3357  ///   in terms of the opaque value.
3358  Expr *getTrueExpr() const {
3359    return cast<Expr>(SubExprs[LHS]);
3360  }
3361
3362  /// \brief getFalseExpr - Return the subexpression which will be
3363  ///   evaluated if the condnition evaluates to false; this is
3364  ///   defined in terms of the opaque value.
3365  Expr *getFalseExpr() const {
3366    return cast<Expr>(SubExprs[RHS]);
3367  }
3368
3369  SourceLocation getLocStart() const LLVM_READONLY {
3370    return getCommon()->getLocStart();
3371  }
3372  SourceLocation getLocEnd() const LLVM_READONLY {
3373    return getFalseExpr()->getLocEnd();
3374  }
3375
3376  static bool classof(const Stmt *T) {
3377    return T->getStmtClass() == BinaryConditionalOperatorClass;
3378  }
3379
3380  // Iterators
3381  child_range children() {
3382    return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3383  }
3384};
3385
3386inline Expr *AbstractConditionalOperator::getCond() const {
3387  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3388    return co->getCond();
3389  return cast<BinaryConditionalOperator>(this)->getCond();
3390}
3391
3392inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3393  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3394    return co->getTrueExpr();
3395  return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3396}
3397
3398inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3399  if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3400    return co->getFalseExpr();
3401  return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3402}
3403
3404/// AddrLabelExpr - The GNU address of label extension, representing &&label.
3405class AddrLabelExpr : public Expr {
3406  SourceLocation AmpAmpLoc, LabelLoc;
3407  LabelDecl *Label;
3408public:
3409  AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3410                QualType t)
3411    : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3412           false),
3413      AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3414
3415  /// \brief Build an empty address of a label expression.
3416  explicit AddrLabelExpr(EmptyShell Empty)
3417    : Expr(AddrLabelExprClass, Empty) { }
3418
3419  SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3420  void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3421  SourceLocation getLabelLoc() const { return LabelLoc; }
3422  void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3423
3424  SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3425  SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3426
3427  LabelDecl *getLabel() const { return Label; }
3428  void setLabel(LabelDecl *L) { Label = L; }
3429
3430  static bool classof(const Stmt *T) {
3431    return T->getStmtClass() == AddrLabelExprClass;
3432  }
3433
3434  // Iterators
3435  child_range children() {
3436    return child_range(child_iterator(), child_iterator());
3437  }
3438};
3439
3440/// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3441/// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3442/// takes the value of the last subexpression.
3443///
3444/// A StmtExpr is always an r-value; values "returned" out of a
3445/// StmtExpr will be copied.
3446class StmtExpr : public Expr {
3447  Stmt *SubStmt;
3448  SourceLocation LParenLoc, RParenLoc;
3449public:
3450  // FIXME: Does type-dependence need to be computed differently?
3451  // FIXME: Do we need to compute instantiation instantiation-dependence for
3452  // statements? (ugh!)
3453  StmtExpr(CompoundStmt *substmt, QualType T,
3454           SourceLocation lp, SourceLocation rp) :
3455    Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3456         T->isDependentType(), false, false, false),
3457    SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3458
3459  /// \brief Build an empty statement expression.
3460  explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3461
3462  CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3463  const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3464  void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3465
3466  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3467  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3468
3469  SourceLocation getLParenLoc() const { return LParenLoc; }
3470  void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3471  SourceLocation getRParenLoc() const { return RParenLoc; }
3472  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3473
3474  static bool classof(const Stmt *T) {
3475    return T->getStmtClass() == StmtExprClass;
3476  }
3477
3478  // Iterators
3479  child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3480};
3481
3482/// ShuffleVectorExpr - clang-specific builtin-in function
3483/// __builtin_shufflevector.
3484/// This AST node represents a operator that does a constant
3485/// shuffle, similar to LLVM's shufflevector instruction. It takes
3486/// two vectors and a variable number of constant indices,
3487/// and returns the appropriately shuffled vector.
3488class ShuffleVectorExpr : public Expr {
3489  SourceLocation BuiltinLoc, RParenLoc;
3490
3491  // SubExprs - the list of values passed to the __builtin_shufflevector
3492  // function. The first two are vectors, and the rest are constant
3493  // indices.  The number of values in this list is always
3494  // 2+the number of indices in the vector type.
3495  Stmt **SubExprs;
3496  unsigned NumExprs;
3497
3498public:
3499  ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
3500                    SourceLocation BLoc, SourceLocation RP);
3501
3502  /// \brief Build an empty vector-shuffle expression.
3503  explicit ShuffleVectorExpr(EmptyShell Empty)
3504    : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
3505
3506  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3507  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3508
3509  SourceLocation getRParenLoc() const { return RParenLoc; }
3510  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3511
3512  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3513  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3514
3515  static bool classof(const Stmt *T) {
3516    return T->getStmtClass() == ShuffleVectorExprClass;
3517  }
3518
3519  /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
3520  /// constant expression, the actual arguments passed in, and the function
3521  /// pointers.
3522  unsigned getNumSubExprs() const { return NumExprs; }
3523
3524  /// \brief Retrieve the array of expressions.
3525  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3526
3527  /// getExpr - Return the Expr at the specified index.
3528  Expr *getExpr(unsigned Index) {
3529    assert((Index < NumExprs) && "Arg access out of range!");
3530    return cast<Expr>(SubExprs[Index]);
3531  }
3532  const Expr *getExpr(unsigned Index) const {
3533    assert((Index < NumExprs) && "Arg access out of range!");
3534    return cast<Expr>(SubExprs[Index]);
3535  }
3536
3537  void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
3538
3539  llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
3540    assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3541    return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
3542  }
3543
3544  // Iterators
3545  child_range children() {
3546    return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3547  }
3548};
3549
3550/// ConvertVectorExpr - Clang builtin function __builtin_convertvector
3551/// This AST node provides support for converting a vector type to another
3552/// vector type of the same arity.
3553class ConvertVectorExpr : public Expr {
3554private:
3555  Stmt *SrcExpr;
3556  TypeSourceInfo *TInfo;
3557  SourceLocation BuiltinLoc, RParenLoc;
3558
3559  friend class ASTReader;
3560  friend class ASTStmtReader;
3561  explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
3562
3563public:
3564  ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
3565             ExprValueKind VK, ExprObjectKind OK,
3566             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
3567    : Expr(ConvertVectorExprClass, DstType, VK, OK,
3568           DstType->isDependentType(),
3569           DstType->isDependentType() || SrcExpr->isValueDependent(),
3570           (DstType->isInstantiationDependentType() ||
3571            SrcExpr->isInstantiationDependent()),
3572           (DstType->containsUnexpandedParameterPack() ||
3573            SrcExpr->containsUnexpandedParameterPack())),
3574  SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
3575
3576  /// getSrcExpr - Return the Expr to be converted.
3577  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
3578
3579  /// getTypeSourceInfo - Return the destination type.
3580  TypeSourceInfo *getTypeSourceInfo() const {
3581    return TInfo;
3582  }
3583  void setTypeSourceInfo(TypeSourceInfo *ti) {
3584    TInfo = ti;
3585  }
3586
3587  /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
3588  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3589
3590  /// getRParenLoc - Return the location of final right parenthesis.
3591  SourceLocation getRParenLoc() const { return RParenLoc; }
3592
3593  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3594  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3595
3596  static bool classof(const Stmt *T) {
3597    return T->getStmtClass() == ConvertVectorExprClass;
3598  }
3599
3600  // Iterators
3601  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
3602};
3603
3604/// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3605/// This AST node is similar to the conditional operator (?:) in C, with
3606/// the following exceptions:
3607/// - the test expression must be a integer constant expression.
3608/// - the expression returned acts like the chosen subexpression in every
3609///   visible way: the type is the same as that of the chosen subexpression,
3610///   and all predicates (whether it's an l-value, whether it's an integer
3611///   constant expression, etc.) return the same result as for the chosen
3612///   sub-expression.
3613class ChooseExpr : public Expr {
3614  enum { COND, LHS, RHS, END_EXPR };
3615  Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3616  SourceLocation BuiltinLoc, RParenLoc;
3617  bool CondIsTrue;
3618public:
3619  ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3620             QualType t, ExprValueKind VK, ExprObjectKind OK,
3621             SourceLocation RP, bool condIsTrue,
3622             bool TypeDependent, bool ValueDependent)
3623    : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3624           (cond->isInstantiationDependent() ||
3625            lhs->isInstantiationDependent() ||
3626            rhs->isInstantiationDependent()),
3627           (cond->containsUnexpandedParameterPack() ||
3628            lhs->containsUnexpandedParameterPack() ||
3629            rhs->containsUnexpandedParameterPack())),
3630      BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
3631      SubExprs[COND] = cond;
3632      SubExprs[LHS] = lhs;
3633      SubExprs[RHS] = rhs;
3634    }
3635
3636  /// \brief Build an empty __builtin_choose_expr.
3637  explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3638
3639  /// isConditionTrue - Return whether the condition is true (i.e. not
3640  /// equal to zero).
3641  bool isConditionTrue() const {
3642    assert(!isConditionDependent() &&
3643           "Dependent condition isn't true or false");
3644    return CondIsTrue;
3645  }
3646  void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
3647
3648  bool isConditionDependent() const {
3649    return getCond()->isTypeDependent() || getCond()->isValueDependent();
3650  }
3651
3652  /// getChosenSubExpr - Return the subexpression chosen according to the
3653  /// condition.
3654  Expr *getChosenSubExpr() const {
3655    return isConditionTrue() ? getLHS() : getRHS();
3656  }
3657
3658  Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3659  void setCond(Expr *E) { SubExprs[COND] = E; }
3660  Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3661  void setLHS(Expr *E) { SubExprs[LHS] = E; }
3662  Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3663  void setRHS(Expr *E) { SubExprs[RHS] = E; }
3664
3665  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3666  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3667
3668  SourceLocation getRParenLoc() const { return RParenLoc; }
3669  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3670
3671  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3672  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3673
3674  static bool classof(const Stmt *T) {
3675    return T->getStmtClass() == ChooseExprClass;
3676  }
3677
3678  // Iterators
3679  child_range children() {
3680    return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3681  }
3682};
3683
3684/// GNUNullExpr - Implements the GNU __null extension, which is a name
3685/// for a null pointer constant that has integral type (e.g., int or
3686/// long) and is the same size and alignment as a pointer. The __null
3687/// extension is typically only used by system headers, which define
3688/// NULL as __null in C++ rather than using 0 (which is an integer
3689/// that may not match the size of a pointer).
3690class GNUNullExpr : public Expr {
3691  /// TokenLoc - The location of the __null keyword.
3692  SourceLocation TokenLoc;
3693
3694public:
3695  GNUNullExpr(QualType Ty, SourceLocation Loc)
3696    : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3697           false),
3698      TokenLoc(Loc) { }
3699
3700  /// \brief Build an empty GNU __null expression.
3701  explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3702
3703  /// getTokenLocation - The location of the __null token.
3704  SourceLocation getTokenLocation() const { return TokenLoc; }
3705  void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3706
3707  SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3708  SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3709
3710  static bool classof(const Stmt *T) {
3711    return T->getStmtClass() == GNUNullExprClass;
3712  }
3713
3714  // Iterators
3715  child_range children() {
3716    return child_range(child_iterator(), child_iterator());
3717  }
3718};
3719
3720/// Represents a call to the builtin function \c __builtin_va_arg.
3721class VAArgExpr : public Expr {
3722  Stmt *Val;
3723  llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfo;
3724  SourceLocation BuiltinLoc, RParenLoc;
3725public:
3726  VAArgExpr(SourceLocation BLoc, Expr *e, TypeSourceInfo *TInfo,
3727            SourceLocation RPLoc, QualType t, bool IsMS)
3728      : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary, t->isDependentType(),
3729             false, (TInfo->getType()->isInstantiationDependentType() ||
3730                     e->isInstantiationDependent()),
3731             (TInfo->getType()->containsUnexpandedParameterPack() ||
3732              e->containsUnexpandedParameterPack())),
3733        Val(e), TInfo(TInfo, IsMS), BuiltinLoc(BLoc), RParenLoc(RPLoc) {}
3734
3735  /// Create an empty __builtin_va_arg expression.
3736  explicit VAArgExpr(EmptyShell Empty)
3737      : Expr(VAArgExprClass, Empty), Val(nullptr), TInfo(nullptr, false) {}
3738
3739  const Expr *getSubExpr() const { return cast<Expr>(Val); }
3740  Expr *getSubExpr() { return cast<Expr>(Val); }
3741  void setSubExpr(Expr *E) { Val = E; }
3742
3743  /// Returns whether this is really a Win64 ABI va_arg expression.
3744  bool isMicrosoftABI() const { return TInfo.getInt(); }
3745  void setIsMicrosoftABI(bool IsMS) { TInfo.setInt(IsMS); }
3746
3747  TypeSourceInfo *getWrittenTypeInfo() const { return TInfo.getPointer(); }
3748  void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo.setPointer(TI); }
3749
3750  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3751  void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3752
3753  SourceLocation getRParenLoc() const { return RParenLoc; }
3754  void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3755
3756  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3757  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3758
3759  static bool classof(const Stmt *T) {
3760    return T->getStmtClass() == VAArgExprClass;
3761  }
3762
3763  // Iterators
3764  child_range children() { return child_range(&Val, &Val+1); }
3765};
3766
3767/// @brief Describes an C or C++ initializer list.
3768///
3769/// InitListExpr describes an initializer list, which can be used to
3770/// initialize objects of different types, including
3771/// struct/class/union types, arrays, and vectors. For example:
3772///
3773/// @code
3774/// struct foo x = { 1, { 2, 3 } };
3775/// @endcode
3776///
3777/// Prior to semantic analysis, an initializer list will represent the
3778/// initializer list as written by the user, but will have the
3779/// placeholder type "void". This initializer list is called the
3780/// syntactic form of the initializer, and may contain C99 designated
3781/// initializers (represented as DesignatedInitExprs), initializations
3782/// of subobject members without explicit braces, and so on. Clients
3783/// interested in the original syntax of the initializer list should
3784/// use the syntactic form of the initializer list.
3785///
3786/// After semantic analysis, the initializer list will represent the
3787/// semantic form of the initializer, where the initializations of all
3788/// subobjects are made explicit with nested InitListExpr nodes and
3789/// C99 designators have been eliminated by placing the designated
3790/// initializations into the subobject they initialize. Additionally,
3791/// any "holes" in the initialization, where no initializer has been
3792/// specified for a particular subobject, will be replaced with
3793/// implicitly-generated ImplicitValueInitExpr expressions that
3794/// value-initialize the subobjects. Note, however, that the
3795/// initializer lists may still have fewer initializers than there are
3796/// elements to initialize within the object.
3797///
3798/// After semantic analysis has completed, given an initializer list,
3799/// method isSemanticForm() returns true if and only if this is the
3800/// semantic form of the initializer list (note: the same AST node
3801/// may at the same time be the syntactic form).
3802/// Given the semantic form of the initializer list, one can retrieve
3803/// the syntactic form of that initializer list (when different)
3804/// using method getSyntacticForm(); the method returns null if applied
3805/// to a initializer list which is already in syntactic form.
3806/// Similarly, given the syntactic form (i.e., an initializer list such
3807/// that isSemanticForm() returns false), one can retrieve the semantic
3808/// form using method getSemanticForm().
3809/// Since many initializer lists have the same syntactic and semantic forms,
3810/// getSyntacticForm() may return NULL, indicating that the current
3811/// semantic initializer list also serves as its syntactic form.
3812class InitListExpr : public Expr {
3813  // FIXME: Eliminate this vector in favor of ASTContext allocation
3814  typedef ASTVector<Stmt *> InitExprsTy;
3815  InitExprsTy InitExprs;
3816  SourceLocation LBraceLoc, RBraceLoc;
3817
3818  /// The alternative form of the initializer list (if it exists).
3819  /// The int part of the pair stores whether this initializer list is
3820  /// in semantic form. If not null, the pointer points to:
3821  ///   - the syntactic form, if this is in semantic form;
3822  ///   - the semantic form, if this is in syntactic form.
3823  llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3824
3825  /// \brief Either:
3826  ///  If this initializer list initializes an array with more elements than
3827  ///  there are initializers in the list, specifies an expression to be used
3828  ///  for value initialization of the rest of the elements.
3829  /// Or
3830  ///  If this initializer list initializes a union, specifies which
3831  ///  field within the union will be initialized.
3832  llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3833
3834public:
3835  InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
3836               ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3837
3838  /// \brief Build an empty initializer list.
3839  explicit InitListExpr(EmptyShell Empty)
3840    : Expr(InitListExprClass, Empty) { }
3841
3842  unsigned getNumInits() const { return InitExprs.size(); }
3843
3844  /// \brief Retrieve the set of initializers.
3845  Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3846
3847  ArrayRef<Expr *> inits() {
3848    return llvm::makeArrayRef(getInits(), getNumInits());
3849  }
3850
3851  const Expr *getInit(unsigned Init) const {
3852    assert(Init < getNumInits() && "Initializer access out of range!");
3853    return cast_or_null<Expr>(InitExprs[Init]);
3854  }
3855
3856  Expr *getInit(unsigned Init) {
3857    assert(Init < getNumInits() && "Initializer access out of range!");
3858    return cast_or_null<Expr>(InitExprs[Init]);
3859  }
3860
3861  void setInit(unsigned Init, Expr *expr) {
3862    assert(Init < getNumInits() && "Initializer access out of range!");
3863    InitExprs[Init] = expr;
3864
3865    if (expr) {
3866      ExprBits.TypeDependent |= expr->isTypeDependent();
3867      ExprBits.ValueDependent |= expr->isValueDependent();
3868      ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
3869      ExprBits.ContainsUnexpandedParameterPack |=
3870          expr->containsUnexpandedParameterPack();
3871    }
3872  }
3873
3874  /// \brief Reserve space for some number of initializers.
3875  void reserveInits(const ASTContext &C, unsigned NumInits);
3876
3877  /// @brief Specify the number of initializers
3878  ///
3879  /// If there are more than @p NumInits initializers, the remaining
3880  /// initializers will be destroyed. If there are fewer than @p
3881  /// NumInits initializers, NULL expressions will be added for the
3882  /// unknown initializers.
3883  void resizeInits(const ASTContext &Context, unsigned NumInits);
3884
3885  /// @brief Updates the initializer at index @p Init with the new
3886  /// expression @p expr, and returns the old expression at that
3887  /// location.
3888  ///
3889  /// When @p Init is out of range for this initializer list, the
3890  /// initializer list will be extended with NULL expressions to
3891  /// accommodate the new entry.
3892  Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
3893
3894  /// \brief If this initializer list initializes an array with more elements
3895  /// than there are initializers in the list, specifies an expression to be
3896  /// used for value initialization of the rest of the elements.
3897  Expr *getArrayFiller() {
3898    return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3899  }
3900  const Expr *getArrayFiller() const {
3901    return const_cast<InitListExpr *>(this)->getArrayFiller();
3902  }
3903  void setArrayFiller(Expr *filler);
3904
3905  /// \brief Return true if this is an array initializer and its array "filler"
3906  /// has been set.
3907  bool hasArrayFiller() const { return getArrayFiller(); }
3908
3909  /// \brief If this initializes a union, specifies which field in the
3910  /// union to initialize.
3911  ///
3912  /// Typically, this field is the first named field within the
3913  /// union. However, a designated initializer can specify the
3914  /// initialization of a different field within the union.
3915  FieldDecl *getInitializedFieldInUnion() {
3916    return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3917  }
3918  const FieldDecl *getInitializedFieldInUnion() const {
3919    return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3920  }
3921  void setInitializedFieldInUnion(FieldDecl *FD) {
3922    assert((FD == nullptr
3923            || getInitializedFieldInUnion() == nullptr
3924            || getInitializedFieldInUnion() == FD)
3925           && "Only one field of a union may be initialized at a time!");
3926    ArrayFillerOrUnionFieldInit = FD;
3927  }
3928
3929  // Explicit InitListExpr's originate from source code (and have valid source
3930  // locations). Implicit InitListExpr's are created by the semantic analyzer.
3931  bool isExplicit() {
3932    return LBraceLoc.isValid() && RBraceLoc.isValid();
3933  }
3934
3935  // Is this an initializer for an array of characters, initialized by a string
3936  // literal or an @encode?
3937  bool isStringLiteralInit() const;
3938
3939  SourceLocation getLBraceLoc() const { return LBraceLoc; }
3940  void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3941  SourceLocation getRBraceLoc() const { return RBraceLoc; }
3942  void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3943
3944  bool isSemanticForm() const { return AltForm.getInt(); }
3945  InitListExpr *getSemanticForm() const {
3946    return isSemanticForm() ? nullptr : AltForm.getPointer();
3947  }
3948  InitListExpr *getSyntacticForm() const {
3949    return isSemanticForm() ? AltForm.getPointer() : nullptr;
3950  }
3951
3952  void setSyntacticForm(InitListExpr *Init) {
3953    AltForm.setPointer(Init);
3954    AltForm.setInt(true);
3955    Init->AltForm.setPointer(this);
3956    Init->AltForm.setInt(false);
3957  }
3958
3959  bool hadArrayRangeDesignator() const {
3960    return InitListExprBits.HadArrayRangeDesignator != 0;
3961  }
3962  void sawArrayRangeDesignator(bool ARD = true) {
3963    InitListExprBits.HadArrayRangeDesignator = ARD;
3964  }
3965
3966  SourceLocation getLocStart() const LLVM_READONLY;
3967  SourceLocation getLocEnd() const LLVM_READONLY;
3968
3969  static bool classof(const Stmt *T) {
3970    return T->getStmtClass() == InitListExprClass;
3971  }
3972
3973  // Iterators
3974  child_range children() {
3975    // FIXME: This does not include the array filler expression.
3976    if (InitExprs.empty())
3977      return child_range(child_iterator(), child_iterator());
3978    return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3979  }
3980
3981  typedef InitExprsTy::iterator iterator;
3982  typedef InitExprsTy::const_iterator const_iterator;
3983  typedef InitExprsTy::reverse_iterator reverse_iterator;
3984  typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3985
3986  iterator begin() { return InitExprs.begin(); }
3987  const_iterator begin() const { return InitExprs.begin(); }
3988  iterator end() { return InitExprs.end(); }
3989  const_iterator end() const { return InitExprs.end(); }
3990  reverse_iterator rbegin() { return InitExprs.rbegin(); }
3991  const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3992  reverse_iterator rend() { return InitExprs.rend(); }
3993  const_reverse_iterator rend() const { return InitExprs.rend(); }
3994
3995  friend class ASTStmtReader;
3996  friend class ASTStmtWriter;
3997};
3998
3999/// @brief Represents a C99 designated initializer expression.
4000///
4001/// A designated initializer expression (C99 6.7.8) contains one or
4002/// more designators (which can be field designators, array
4003/// designators, or GNU array-range designators) followed by an
4004/// expression that initializes the field or element(s) that the
4005/// designators refer to. For example, given:
4006///
4007/// @code
4008/// struct point {
4009///   double x;
4010///   double y;
4011/// };
4012/// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
4013/// @endcode
4014///
4015/// The InitListExpr contains three DesignatedInitExprs, the first of
4016/// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
4017/// designators, one array designator for @c [2] followed by one field
4018/// designator for @c .y. The initialization expression will be 1.0.
4019class DesignatedInitExpr : public Expr {
4020public:
4021  /// \brief Forward declaration of the Designator class.
4022  class Designator;
4023
4024private:
4025  /// The location of the '=' or ':' prior to the actual initializer
4026  /// expression.
4027  SourceLocation EqualOrColonLoc;
4028
4029  /// Whether this designated initializer used the GNU deprecated
4030  /// syntax rather than the C99 '=' syntax.
4031  bool GNUSyntax : 1;
4032
4033  /// The number of designators in this initializer expression.
4034  unsigned NumDesignators : 15;
4035
4036  /// The number of subexpressions of this initializer expression,
4037  /// which contains both the initializer and any additional
4038  /// expressions used by array and array-range designators.
4039  unsigned NumSubExprs : 16;
4040
4041  /// \brief The designators in this designated initialization
4042  /// expression.
4043  Designator *Designators;
4044
4045
4046  DesignatedInitExpr(const ASTContext &C, QualType Ty, unsigned NumDesignators,
4047                     const Designator *Designators,
4048                     SourceLocation EqualOrColonLoc, bool GNUSyntax,
4049                     ArrayRef<Expr*> IndexExprs, Expr *Init);
4050
4051  explicit DesignatedInitExpr(unsigned NumSubExprs)
4052    : Expr(DesignatedInitExprClass, EmptyShell()),
4053      NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
4054
4055public:
4056  /// A field designator, e.g., ".x".
4057  struct FieldDesignator {
4058    /// Refers to the field that is being initialized. The low bit
4059    /// of this field determines whether this is actually a pointer
4060    /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
4061    /// initially constructed, a field designator will store an
4062    /// IdentifierInfo*. After semantic analysis has resolved that
4063    /// name, the field designator will instead store a FieldDecl*.
4064    uintptr_t NameOrField;
4065
4066    /// The location of the '.' in the designated initializer.
4067    unsigned DotLoc;
4068
4069    /// The location of the field name in the designated initializer.
4070    unsigned FieldLoc;
4071  };
4072
4073  /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4074  struct ArrayOrRangeDesignator {
4075    /// Location of the first index expression within the designated
4076    /// initializer expression's list of subexpressions.
4077    unsigned Index;
4078    /// The location of the '[' starting the array range designator.
4079    unsigned LBracketLoc;
4080    /// The location of the ellipsis separating the start and end
4081    /// indices. Only valid for GNU array-range designators.
4082    unsigned EllipsisLoc;
4083    /// The location of the ']' terminating the array range designator.
4084    unsigned RBracketLoc;
4085  };
4086
4087  /// @brief Represents a single C99 designator.
4088  ///
4089  /// @todo This class is infuriatingly similar to clang::Designator,
4090  /// but minor differences (storing indices vs. storing pointers)
4091  /// keep us from reusing it. Try harder, later, to rectify these
4092  /// differences.
4093  class Designator {
4094    /// @brief The kind of designator this describes.
4095    enum {
4096      FieldDesignator,
4097      ArrayDesignator,
4098      ArrayRangeDesignator
4099    } Kind;
4100
4101    union {
4102      /// A field designator, e.g., ".x".
4103      struct FieldDesignator Field;
4104      /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4105      struct ArrayOrRangeDesignator ArrayOrRange;
4106    };
4107    friend class DesignatedInitExpr;
4108
4109  public:
4110    Designator() {}
4111
4112    /// @brief Initializes a field designator.
4113    Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4114               SourceLocation FieldLoc)
4115      : Kind(FieldDesignator) {
4116      Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4117      Field.DotLoc = DotLoc.getRawEncoding();
4118      Field.FieldLoc = FieldLoc.getRawEncoding();
4119    }
4120
4121    /// @brief Initializes an array designator.
4122    Designator(unsigned Index, SourceLocation LBracketLoc,
4123               SourceLocation RBracketLoc)
4124      : Kind(ArrayDesignator) {
4125      ArrayOrRange.Index = Index;
4126      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4127      ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4128      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4129    }
4130
4131    /// @brief Initializes a GNU array-range designator.
4132    Designator(unsigned Index, SourceLocation LBracketLoc,
4133               SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4134      : Kind(ArrayRangeDesignator) {
4135      ArrayOrRange.Index = Index;
4136      ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4137      ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4138      ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4139    }
4140
4141    bool isFieldDesignator() const { return Kind == FieldDesignator; }
4142    bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4143    bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4144
4145    IdentifierInfo *getFieldName() const;
4146
4147    FieldDecl *getField() const {
4148      assert(Kind == FieldDesignator && "Only valid on a field designator");
4149      if (Field.NameOrField & 0x01)
4150        return nullptr;
4151      else
4152        return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4153    }
4154
4155    void setField(FieldDecl *FD) {
4156      assert(Kind == FieldDesignator && "Only valid on a field designator");
4157      Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4158    }
4159
4160    SourceLocation getDotLoc() const {
4161      assert(Kind == FieldDesignator && "Only valid on a field designator");
4162      return SourceLocation::getFromRawEncoding(Field.DotLoc);
4163    }
4164
4165    SourceLocation getFieldLoc() const {
4166      assert(Kind == FieldDesignator && "Only valid on a field designator");
4167      return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4168    }
4169
4170    SourceLocation getLBracketLoc() const {
4171      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4172             "Only valid on an array or array-range designator");
4173      return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4174    }
4175
4176    SourceLocation getRBracketLoc() const {
4177      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4178             "Only valid on an array or array-range designator");
4179      return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4180    }
4181
4182    SourceLocation getEllipsisLoc() const {
4183      assert(Kind == ArrayRangeDesignator &&
4184             "Only valid on an array-range designator");
4185      return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4186    }
4187
4188    unsigned getFirstExprIndex() const {
4189      assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4190             "Only valid on an array or array-range designator");
4191      return ArrayOrRange.Index;
4192    }
4193
4194    SourceLocation getLocStart() const LLVM_READONLY {
4195      if (Kind == FieldDesignator)
4196        return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4197      else
4198        return getLBracketLoc();
4199    }
4200    SourceLocation getLocEnd() const LLVM_READONLY {
4201      return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4202    }
4203    SourceRange getSourceRange() const LLVM_READONLY {
4204      return SourceRange(getLocStart(), getLocEnd());
4205    }
4206  };
4207
4208  static DesignatedInitExpr *Create(const ASTContext &C,
4209                                    Designator *Designators,
4210                                    unsigned NumDesignators,
4211                                    ArrayRef<Expr*> IndexExprs,
4212                                    SourceLocation EqualOrColonLoc,
4213                                    bool GNUSyntax, Expr *Init);
4214
4215  static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4216                                         unsigned NumIndexExprs);
4217
4218  /// @brief Returns the number of designators in this initializer.
4219  unsigned size() const { return NumDesignators; }
4220
4221  // Iterator access to the designators.
4222  typedef Designator *designators_iterator;
4223  designators_iterator designators_begin() { return Designators; }
4224  designators_iterator designators_end() {
4225    return Designators + NumDesignators;
4226  }
4227
4228  typedef const Designator *const_designators_iterator;
4229  const_designators_iterator designators_begin() const { return Designators; }
4230  const_designators_iterator designators_end() const {
4231    return Designators + NumDesignators;
4232  }
4233
4234  typedef llvm::iterator_range<designators_iterator> designators_range;
4235  designators_range designators() {
4236    return designators_range(designators_begin(), designators_end());
4237  }
4238
4239  typedef llvm::iterator_range<const_designators_iterator>
4240          designators_const_range;
4241  designators_const_range designators() const {
4242    return designators_const_range(designators_begin(), designators_end());
4243  }
4244
4245  typedef std::reverse_iterator<designators_iterator>
4246          reverse_designators_iterator;
4247  reverse_designators_iterator designators_rbegin() {
4248    return reverse_designators_iterator(designators_end());
4249  }
4250  reverse_designators_iterator designators_rend() {
4251    return reverse_designators_iterator(designators_begin());
4252  }
4253
4254  typedef std::reverse_iterator<const_designators_iterator>
4255          const_reverse_designators_iterator;
4256  const_reverse_designators_iterator designators_rbegin() const {
4257    return const_reverse_designators_iterator(designators_end());
4258  }
4259  const_reverse_designators_iterator designators_rend() const {
4260    return const_reverse_designators_iterator(designators_begin());
4261  }
4262
4263  Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
4264
4265  void setDesignators(const ASTContext &C, const Designator *Desigs,
4266                      unsigned NumDesigs);
4267
4268  Expr *getArrayIndex(const Designator &D) const;
4269  Expr *getArrayRangeStart(const Designator &D) const;
4270  Expr *getArrayRangeEnd(const Designator &D) const;
4271
4272  /// @brief Retrieve the location of the '=' that precedes the
4273  /// initializer value itself, if present.
4274  SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4275  void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4276
4277  /// @brief Determines whether this designated initializer used the
4278  /// deprecated GNU syntax for designated initializers.
4279  bool usesGNUSyntax() const { return GNUSyntax; }
4280  void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4281
4282  /// @brief Retrieve the initializer value.
4283  Expr *getInit() const {
4284    return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4285  }
4286
4287  void setInit(Expr *init) {
4288    *child_begin() = init;
4289  }
4290
4291  /// \brief Retrieve the total number of subexpressions in this
4292  /// designated initializer expression, including the actual
4293  /// initialized value and any expressions that occur within array
4294  /// and array-range designators.
4295  unsigned getNumSubExprs() const { return NumSubExprs; }
4296
4297  Expr *getSubExpr(unsigned Idx) const {
4298    assert(Idx < NumSubExprs && "Subscript out of range");
4299    return cast<Expr>(reinterpret_cast<Stmt *const *>(this + 1)[Idx]);
4300  }
4301
4302  void setSubExpr(unsigned Idx, Expr *E) {
4303    assert(Idx < NumSubExprs && "Subscript out of range");
4304    reinterpret_cast<Stmt **>(this + 1)[Idx] = E;
4305  }
4306
4307  /// \brief Replaces the designator at index @p Idx with the series
4308  /// of designators in [First, Last).
4309  void ExpandDesignator(const ASTContext &C, unsigned Idx,
4310                        const Designator *First, const Designator *Last);
4311
4312  SourceRange getDesignatorsSourceRange() const;
4313
4314  SourceLocation getLocStart() const LLVM_READONLY;
4315  SourceLocation getLocEnd() const LLVM_READONLY;
4316
4317  static bool classof(const Stmt *T) {
4318    return T->getStmtClass() == DesignatedInitExprClass;
4319  }
4320
4321  // Iterators
4322  child_range children() {
4323    Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
4324    return child_range(begin, begin + NumSubExprs);
4325  }
4326};
4327
4328/// \brief Represents a place-holder for an object not to be initialized by
4329/// anything.
4330///
4331/// This only makes sense when it appears as part of an updater of a
4332/// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
4333/// initializes a big object, and the NoInitExpr's mark the spots within the
4334/// big object not to be overwritten by the updater.
4335///
4336/// \see DesignatedInitUpdateExpr
4337class NoInitExpr : public Expr {
4338public:
4339  explicit NoInitExpr(QualType ty)
4340    : Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
4341           false, false, ty->isInstantiationDependentType(), false) { }
4342
4343  explicit NoInitExpr(EmptyShell Empty)
4344    : Expr(NoInitExprClass, Empty) { }
4345
4346  static bool classof(const Stmt *T) {
4347    return T->getStmtClass() == NoInitExprClass;
4348  }
4349
4350  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4351  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4352
4353  // Iterators
4354  child_range children() {
4355    return child_range(child_iterator(), child_iterator());
4356  }
4357};
4358
4359// In cases like:
4360//   struct Q { int a, b, c; };
4361//   Q *getQ();
4362//   void foo() {
4363//     struct A { Q q; } a = { *getQ(), .q.b = 3 };
4364//   }
4365//
4366// We will have an InitListExpr for a, with type A, and then a
4367// DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
4368// is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
4369//
4370class DesignatedInitUpdateExpr : public Expr {
4371  // BaseAndUpdaterExprs[0] is the base expression;
4372  // BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
4373  Stmt *BaseAndUpdaterExprs[2];
4374
4375public:
4376  DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc,
4377                           Expr *baseExprs, SourceLocation rBraceLoc);
4378
4379  explicit DesignatedInitUpdateExpr(EmptyShell Empty)
4380    : Expr(DesignatedInitUpdateExprClass, Empty) { }
4381
4382  SourceLocation getLocStart() const LLVM_READONLY;
4383  SourceLocation getLocEnd() const LLVM_READONLY;
4384
4385  static bool classof(const Stmt *T) {
4386    return T->getStmtClass() == DesignatedInitUpdateExprClass;
4387  }
4388
4389  Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
4390  void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
4391
4392  InitListExpr *getUpdater() const {
4393    return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
4394  }
4395  void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
4396
4397  // Iterators
4398  // children = the base and the updater
4399  child_range children() {
4400    return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
4401  }
4402};
4403
4404/// \brief Represents an implicitly-generated value initialization of
4405/// an object of a given type.
4406///
4407/// Implicit value initializations occur within semantic initializer
4408/// list expressions (InitListExpr) as placeholders for subobject
4409/// initializations not explicitly specified by the user.
4410///
4411/// \see InitListExpr
4412class ImplicitValueInitExpr : public Expr {
4413public:
4414  explicit ImplicitValueInitExpr(QualType ty)
4415    : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4416           false, false, ty->isInstantiationDependentType(), false) { }
4417
4418  /// \brief Construct an empty implicit value initialization.
4419  explicit ImplicitValueInitExpr(EmptyShell Empty)
4420    : Expr(ImplicitValueInitExprClass, Empty) { }
4421
4422  static bool classof(const Stmt *T) {
4423    return T->getStmtClass() == ImplicitValueInitExprClass;
4424  }
4425
4426  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4427  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4428
4429  // Iterators
4430  child_range children() {
4431    return child_range(child_iterator(), child_iterator());
4432  }
4433};
4434
4435class ParenListExpr : public Expr {
4436  Stmt **Exprs;
4437  unsigned NumExprs;
4438  SourceLocation LParenLoc, RParenLoc;
4439
4440public:
4441  ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
4442                ArrayRef<Expr*> exprs, SourceLocation rparenloc);
4443
4444  /// \brief Build an empty paren list.
4445  explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4446
4447  unsigned getNumExprs() const { return NumExprs; }
4448
4449  const Expr* getExpr(unsigned Init) const {
4450    assert(Init < getNumExprs() && "Initializer access out of range!");
4451    return cast_or_null<Expr>(Exprs[Init]);
4452  }
4453
4454  Expr* getExpr(unsigned Init) {
4455    assert(Init < getNumExprs() && "Initializer access out of range!");
4456    return cast_or_null<Expr>(Exprs[Init]);
4457  }
4458
4459  Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4460
4461  ArrayRef<Expr *> exprs() {
4462    return llvm::makeArrayRef(getExprs(), getNumExprs());
4463  }
4464
4465  SourceLocation getLParenLoc() const { return LParenLoc; }
4466  SourceLocation getRParenLoc() const { return RParenLoc; }
4467
4468  SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4469  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4470
4471  static bool classof(const Stmt *T) {
4472    return T->getStmtClass() == ParenListExprClass;
4473  }
4474
4475  // Iterators
4476  child_range children() {
4477    return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4478  }
4479
4480  friend class ASTStmtReader;
4481  friend class ASTStmtWriter;
4482};
4483
4484/// \brief Represents a C11 generic selection.
4485///
4486/// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4487/// expression, followed by one or more generic associations.  Each generic
4488/// association specifies a type name and an expression, or "default" and an
4489/// expression (in which case it is known as a default generic association).
4490/// The type and value of the generic selection are identical to those of its
4491/// result expression, which is defined as the expression in the generic
4492/// association with a type name that is compatible with the type of the
4493/// controlling expression, or the expression in the default generic association
4494/// if no types are compatible.  For example:
4495///
4496/// @code
4497/// _Generic(X, double: 1, float: 2, default: 3)
4498/// @endcode
4499///
4500/// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4501/// or 3 if "hello".
4502///
4503/// As an extension, generic selections are allowed in C++, where the following
4504/// additional semantics apply:
4505///
4506/// Any generic selection whose controlling expression is type-dependent or
4507/// which names a dependent type in its association list is result-dependent,
4508/// which means that the choice of result expression is dependent.
4509/// Result-dependent generic associations are both type- and value-dependent.
4510class GenericSelectionExpr : public Expr {
4511  enum { CONTROLLING, END_EXPR };
4512  TypeSourceInfo **AssocTypes;
4513  Stmt **SubExprs;
4514  unsigned NumAssocs, ResultIndex;
4515  SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4516
4517public:
4518  GenericSelectionExpr(const ASTContext &Context,
4519                       SourceLocation GenericLoc, Expr *ControllingExpr,
4520                       ArrayRef<TypeSourceInfo*> AssocTypes,
4521                       ArrayRef<Expr*> AssocExprs,
4522                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4523                       bool ContainsUnexpandedParameterPack,
4524                       unsigned ResultIndex);
4525
4526  /// This constructor is used in the result-dependent case.
4527  GenericSelectionExpr(const ASTContext &Context,
4528                       SourceLocation GenericLoc, Expr *ControllingExpr,
4529                       ArrayRef<TypeSourceInfo*> AssocTypes,
4530                       ArrayRef<Expr*> AssocExprs,
4531                       SourceLocation DefaultLoc, SourceLocation RParenLoc,
4532                       bool ContainsUnexpandedParameterPack);
4533
4534  explicit GenericSelectionExpr(EmptyShell Empty)
4535    : Expr(GenericSelectionExprClass, Empty) { }
4536
4537  unsigned getNumAssocs() const { return NumAssocs; }
4538
4539  SourceLocation getGenericLoc() const { return GenericLoc; }
4540  SourceLocation getDefaultLoc() const { return DefaultLoc; }
4541  SourceLocation getRParenLoc() const { return RParenLoc; }
4542
4543  const Expr *getAssocExpr(unsigned i) const {
4544    return cast<Expr>(SubExprs[END_EXPR+i]);
4545  }
4546  Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4547
4548  const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4549    return AssocTypes[i];
4550  }
4551  TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4552
4553  QualType getAssocType(unsigned i) const {
4554    if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4555      return TS->getType();
4556    else
4557      return QualType();
4558  }
4559
4560  const Expr *getControllingExpr() const {
4561    return cast<Expr>(SubExprs[CONTROLLING]);
4562  }
4563  Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4564
4565  /// Whether this generic selection is result-dependent.
4566  bool isResultDependent() const { return ResultIndex == -1U; }
4567
4568  /// The zero-based index of the result expression's generic association in
4569  /// the generic selection's association list.  Defined only if the
4570  /// generic selection is not result-dependent.
4571  unsigned getResultIndex() const {
4572    assert(!isResultDependent() && "Generic selection is result-dependent");
4573    return ResultIndex;
4574  }
4575
4576  /// The generic selection's result expression.  Defined only if the
4577  /// generic selection is not result-dependent.
4578  const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4579  Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4580
4581  SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4582  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4583
4584  static bool classof(const Stmt *T) {
4585    return T->getStmtClass() == GenericSelectionExprClass;
4586  }
4587
4588  child_range children() {
4589    return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4590  }
4591
4592  friend class ASTStmtReader;
4593};
4594
4595//===----------------------------------------------------------------------===//
4596// Clang Extensions
4597//===----------------------------------------------------------------------===//
4598
4599/// ExtVectorElementExpr - This represents access to specific elements of a
4600/// vector, and may occur on the left hand side or right hand side.  For example
4601/// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
4602///
4603/// Note that the base may have either vector or pointer to vector type, just
4604/// like a struct field reference.
4605///
4606class ExtVectorElementExpr : public Expr {
4607  Stmt *Base;
4608  IdentifierInfo *Accessor;
4609  SourceLocation AccessorLoc;
4610public:
4611  ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4612                       IdentifierInfo &accessor, SourceLocation loc)
4613    : Expr(ExtVectorElementExprClass, ty, VK,
4614           (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4615           base->isTypeDependent(), base->isValueDependent(),
4616           base->isInstantiationDependent(),
4617           base->containsUnexpandedParameterPack()),
4618      Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4619
4620  /// \brief Build an empty vector element expression.
4621  explicit ExtVectorElementExpr(EmptyShell Empty)
4622    : Expr(ExtVectorElementExprClass, Empty) { }
4623
4624  const Expr *getBase() const { return cast<Expr>(Base); }
4625  Expr *getBase() { return cast<Expr>(Base); }
4626  void setBase(Expr *E) { Base = E; }
4627
4628  IdentifierInfo &getAccessor() const { return *Accessor; }
4629  void setAccessor(IdentifierInfo *II) { Accessor = II; }
4630
4631  SourceLocation getAccessorLoc() const { return AccessorLoc; }
4632  void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4633
4634  /// getNumElements - Get the number of components being selected.
4635  unsigned getNumElements() const;
4636
4637  /// containsDuplicateElements - Return true if any element access is
4638  /// repeated.
4639  bool containsDuplicateElements() const;
4640
4641  /// getEncodedElementAccess - Encode the elements accessed into an llvm
4642  /// aggregate Constant of ConstantInt(s).
4643  void getEncodedElementAccess(SmallVectorImpl<uint32_t> &Elts) const;
4644
4645  SourceLocation getLocStart() const LLVM_READONLY {
4646    return getBase()->getLocStart();
4647  }
4648  SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
4649
4650  /// isArrow - Return true if the base expression is a pointer to vector,
4651  /// return false if the base expression is a vector.
4652  bool isArrow() const;
4653
4654  static bool classof(const Stmt *T) {
4655    return T->getStmtClass() == ExtVectorElementExprClass;
4656  }
4657
4658  // Iterators
4659  child_range children() { return child_range(&Base, &Base+1); }
4660};
4661
4662/// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4663/// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
4664class BlockExpr : public Expr {
4665protected:
4666  BlockDecl *TheBlock;
4667public:
4668  BlockExpr(BlockDecl *BD, QualType ty)
4669    : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4670           ty->isDependentType(), ty->isDependentType(),
4671           ty->isInstantiationDependentType() || BD->isDependentContext(),
4672           false),
4673      TheBlock(BD) {}
4674
4675  /// \brief Build an empty block expression.
4676  explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4677
4678  const BlockDecl *getBlockDecl() const { return TheBlock; }
4679  BlockDecl *getBlockDecl() { return TheBlock; }
4680  void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4681
4682  // Convenience functions for probing the underlying BlockDecl.
4683  SourceLocation getCaretLocation() const;
4684  const Stmt *getBody() const;
4685  Stmt *getBody();
4686
4687  SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
4688  SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
4689
4690  /// getFunctionType - Return the underlying function type for this block.
4691  const FunctionProtoType *getFunctionType() const;
4692
4693  static bool classof(const Stmt *T) {
4694    return T->getStmtClass() == BlockExprClass;
4695  }
4696
4697  // Iterators
4698  child_range children() {
4699    return child_range(child_iterator(), child_iterator());
4700  }
4701};
4702
4703/// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4704/// This AST node provides support for reinterpreting a type to another
4705/// type of the same size.
4706class AsTypeExpr : public Expr {
4707private:
4708  Stmt *SrcExpr;
4709  SourceLocation BuiltinLoc, RParenLoc;
4710
4711  friend class ASTReader;
4712  friend class ASTStmtReader;
4713  explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4714
4715public:
4716  AsTypeExpr(Expr* SrcExpr, QualType DstType,
4717             ExprValueKind VK, ExprObjectKind OK,
4718             SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4719    : Expr(AsTypeExprClass, DstType, VK, OK,
4720           DstType->isDependentType(),
4721           DstType->isDependentType() || SrcExpr->isValueDependent(),
4722           (DstType->isInstantiationDependentType() ||
4723            SrcExpr->isInstantiationDependent()),
4724           (DstType->containsUnexpandedParameterPack() ||
4725            SrcExpr->containsUnexpandedParameterPack())),
4726  SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4727
4728  /// getSrcExpr - Return the Expr to be converted.
4729  Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4730
4731  /// getBuiltinLoc - Return the location of the __builtin_astype token.
4732  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4733
4734  /// getRParenLoc - Return the location of final right parenthesis.
4735  SourceLocation getRParenLoc() const { return RParenLoc; }
4736
4737  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4738  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4739
4740  static bool classof(const Stmt *T) {
4741    return T->getStmtClass() == AsTypeExprClass;
4742  }
4743
4744  // Iterators
4745  child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4746};
4747
4748/// PseudoObjectExpr - An expression which accesses a pseudo-object
4749/// l-value.  A pseudo-object is an abstract object, accesses to which
4750/// are translated to calls.  The pseudo-object expression has a
4751/// syntactic form, which shows how the expression was actually
4752/// written in the source code, and a semantic form, which is a series
4753/// of expressions to be executed in order which detail how the
4754/// operation is actually evaluated.  Optionally, one of the semantic
4755/// forms may also provide a result value for the expression.
4756///
4757/// If any of the semantic-form expressions is an OpaqueValueExpr,
4758/// that OVE is required to have a source expression, and it is bound
4759/// to the result of that source expression.  Such OVEs may appear
4760/// only in subsequent semantic-form expressions and as
4761/// sub-expressions of the syntactic form.
4762///
4763/// PseudoObjectExpr should be used only when an operation can be
4764/// usefully described in terms of fairly simple rewrite rules on
4765/// objects and functions that are meant to be used by end-developers.
4766/// For example, under the Itanium ABI, dynamic casts are implemented
4767/// as a call to a runtime function called __dynamic_cast; using this
4768/// class to describe that would be inappropriate because that call is
4769/// not really part of the user-visible semantics, and instead the
4770/// cast is properly reflected in the AST and IR-generation has been
4771/// taught to generate the call as necessary.  In contrast, an
4772/// Objective-C property access is semantically defined to be
4773/// equivalent to a particular message send, and this is very much
4774/// part of the user model.  The name of this class encourages this
4775/// modelling design.
4776class PseudoObjectExpr : public Expr {
4777  // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4778  // Always at least two, because the first sub-expression is the
4779  // syntactic form.
4780
4781  // PseudoObjectExprBits.ResultIndex - The index of the
4782  // sub-expression holding the result.  0 means the result is void,
4783  // which is unambiguous because it's the index of the syntactic
4784  // form.  Note that this is therefore 1 higher than the value passed
4785  // in to Create, which is an index within the semantic forms.
4786  // Note also that ASTStmtWriter assumes this encoding.
4787
4788  Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4789  const Expr * const *getSubExprsBuffer() const {
4790    return reinterpret_cast<const Expr * const *>(this + 1);
4791  }
4792
4793  friend class ASTStmtReader;
4794
4795  PseudoObjectExpr(QualType type, ExprValueKind VK,
4796                   Expr *syntactic, ArrayRef<Expr*> semantic,
4797                   unsigned resultIndex);
4798
4799  PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4800
4801  unsigned getNumSubExprs() const {
4802    return PseudoObjectExprBits.NumSubExprs;
4803  }
4804
4805public:
4806  /// NoResult - A value for the result index indicating that there is
4807  /// no semantic result.
4808  enum : unsigned { NoResult = ~0U };
4809
4810  static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
4811                                  ArrayRef<Expr*> semantic,
4812                                  unsigned resultIndex);
4813
4814  static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
4815                                  unsigned numSemanticExprs);
4816
4817  /// Return the syntactic form of this expression, i.e. the
4818  /// expression it actually looks like.  Likely to be expressed in
4819  /// terms of OpaqueValueExprs bound in the semantic form.
4820  Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4821  const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4822
4823  /// Return the index of the result-bearing expression into the semantics
4824  /// expressions, or PseudoObjectExpr::NoResult if there is none.
4825  unsigned getResultExprIndex() const {
4826    if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4827    return PseudoObjectExprBits.ResultIndex - 1;
4828  }
4829
4830  /// Return the result-bearing expression, or null if there is none.
4831  Expr *getResultExpr() {
4832    if (PseudoObjectExprBits.ResultIndex == 0)
4833      return nullptr;
4834    return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4835  }
4836  const Expr *getResultExpr() const {
4837    return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4838  }
4839
4840  unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4841
4842  typedef Expr * const *semantics_iterator;
4843  typedef const Expr * const *const_semantics_iterator;
4844  semantics_iterator semantics_begin() {
4845    return getSubExprsBuffer() + 1;
4846  }
4847  const_semantics_iterator semantics_begin() const {
4848    return getSubExprsBuffer() + 1;
4849  }
4850  semantics_iterator semantics_end() {
4851    return getSubExprsBuffer() + getNumSubExprs();
4852  }
4853  const_semantics_iterator semantics_end() const {
4854    return getSubExprsBuffer() + getNumSubExprs();
4855  }
4856
4857  llvm::iterator_range<semantics_iterator> semantics() {
4858    return llvm::make_range(semantics_begin(), semantics_end());
4859  }
4860  llvm::iterator_range<const_semantics_iterator> semantics() const {
4861    return llvm::make_range(semantics_begin(), semantics_end());
4862  }
4863
4864  Expr *getSemanticExpr(unsigned index) {
4865    assert(index + 1 < getNumSubExprs());
4866    return getSubExprsBuffer()[index + 1];
4867  }
4868  const Expr *getSemanticExpr(unsigned index) const {
4869    return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4870  }
4871
4872  SourceLocation getExprLoc() const LLVM_READONLY {
4873    return getSyntacticForm()->getExprLoc();
4874  }
4875
4876  SourceLocation getLocStart() const LLVM_READONLY {
4877    return getSyntacticForm()->getLocStart();
4878  }
4879  SourceLocation getLocEnd() const LLVM_READONLY {
4880    return getSyntacticForm()->getLocEnd();
4881  }
4882
4883  child_range children() {
4884    Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4885    return child_range(cs, cs + getNumSubExprs());
4886  }
4887
4888  static bool classof(const Stmt *T) {
4889    return T->getStmtClass() == PseudoObjectExprClass;
4890  }
4891};
4892
4893/// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4894/// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4895/// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4896/// All of these instructions take one primary pointer and at least one memory
4897/// order.
4898class AtomicExpr : public Expr {
4899public:
4900  enum AtomicOp {
4901#define BUILTIN(ID, TYPE, ATTRS)
4902#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4903#include "clang/Basic/Builtins.def"
4904    // Avoid trailing comma
4905    BI_First = 0
4906  };
4907
4908  // The ABI values for various atomic memory orderings.
4909  enum AtomicOrderingKind {
4910    AO_ABI_memory_order_relaxed = 0,
4911    AO_ABI_memory_order_consume = 1,
4912    AO_ABI_memory_order_acquire = 2,
4913    AO_ABI_memory_order_release = 3,
4914    AO_ABI_memory_order_acq_rel = 4,
4915    AO_ABI_memory_order_seq_cst = 5
4916  };
4917
4918private:
4919  enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4920  Stmt* SubExprs[END_EXPR];
4921  unsigned NumSubExprs;
4922  SourceLocation BuiltinLoc, RParenLoc;
4923  AtomicOp Op;
4924
4925  friend class ASTStmtReader;
4926
4927public:
4928  AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
4929             AtomicOp op, SourceLocation RP);
4930
4931  /// \brief Determine the number of arguments the specified atomic builtin
4932  /// should have.
4933  static unsigned getNumSubExprs(AtomicOp Op);
4934
4935  /// \brief Build an empty AtomicExpr.
4936  explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4937
4938  Expr *getPtr() const {
4939    return cast<Expr>(SubExprs[PTR]);
4940  }
4941  Expr *getOrder() const {
4942    return cast<Expr>(SubExprs[ORDER]);
4943  }
4944  Expr *getVal1() const {
4945    if (Op == AO__c11_atomic_init)
4946      return cast<Expr>(SubExprs[ORDER]);
4947    assert(NumSubExprs > VAL1);
4948    return cast<Expr>(SubExprs[VAL1]);
4949  }
4950  Expr *getOrderFail() const {
4951    assert(NumSubExprs > ORDER_FAIL);
4952    return cast<Expr>(SubExprs[ORDER_FAIL]);
4953  }
4954  Expr *getVal2() const {
4955    if (Op == AO__atomic_exchange)
4956      return cast<Expr>(SubExprs[ORDER_FAIL]);
4957    assert(NumSubExprs > VAL2);
4958    return cast<Expr>(SubExprs[VAL2]);
4959  }
4960  Expr *getWeak() const {
4961    assert(NumSubExprs > WEAK);
4962    return cast<Expr>(SubExprs[WEAK]);
4963  }
4964
4965  AtomicOp getOp() const { return Op; }
4966  unsigned getNumSubExprs() { return NumSubExprs; }
4967
4968  Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4969
4970  bool isVolatile() const {
4971    return getPtr()->getType()->getPointeeType().isVolatileQualified();
4972  }
4973
4974  bool isCmpXChg() const {
4975    return getOp() == AO__c11_atomic_compare_exchange_strong ||
4976           getOp() == AO__c11_atomic_compare_exchange_weak ||
4977           getOp() == AO__atomic_compare_exchange ||
4978           getOp() == AO__atomic_compare_exchange_n;
4979  }
4980
4981  SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4982  SourceLocation getRParenLoc() const { return RParenLoc; }
4983
4984  SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4985  SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4986
4987  static bool classof(const Stmt *T) {
4988    return T->getStmtClass() == AtomicExprClass;
4989  }
4990
4991  // Iterators
4992  child_range children() {
4993    return child_range(SubExprs, SubExprs+NumSubExprs);
4994  }
4995};
4996
4997/// TypoExpr - Internal placeholder for expressions where typo correction
4998/// still needs to be performed and/or an error diagnostic emitted.
4999class TypoExpr : public Expr {
5000public:
5001  TypoExpr(QualType T)
5002      : Expr(TypoExprClass, T, VK_LValue, OK_Ordinary,
5003             /*isTypeDependent*/ true,
5004             /*isValueDependent*/ true,
5005             /*isInstantiationDependent*/ true,
5006             /*containsUnexpandedParameterPack*/ false) {
5007    assert(T->isDependentType() && "TypoExpr given a non-dependent type");
5008  }
5009
5010  child_range children() {
5011    return child_range(child_iterator(), child_iterator());
5012  }
5013  SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
5014  SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
5015
5016  static bool classof(const Stmt *T) {
5017    return T->getStmtClass() == TypoExprClass;
5018  }
5019
5020};
5021} // end namespace clang
5022
5023#endif // LLVM_CLANG_AST_EXPR_H
5024