1//===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ access control semantics.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclFriend.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DependentDiagnostic.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/Sema/DelayedDiagnostic.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Lookup.h"
25
26using namespace clang;
27using namespace sema;
28
29/// A copy of Sema's enum without AR_delayed.
30enum AccessResult {
31  AR_accessible,
32  AR_inaccessible,
33  AR_dependent
34};
35
36/// SetMemberAccessSpecifier - Set the access specifier of a member.
37/// Returns true on error (when the previous member decl access specifier
38/// is different from the new member decl access specifier).
39bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40                                    NamedDecl *PrevMemberDecl,
41                                    AccessSpecifier LexicalAS) {
42  if (!PrevMemberDecl) {
43    // Use the lexical access specifier.
44    MemberDecl->setAccess(LexicalAS);
45    return false;
46  }
47
48  // C++ [class.access.spec]p3: When a member is redeclared its access
49  // specifier must be same as its initial declaration.
50  if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51    Diag(MemberDecl->getLocation(),
52         diag::err_class_redeclared_with_different_access)
53      << MemberDecl << LexicalAS;
54    Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55      << PrevMemberDecl << PrevMemberDecl->getAccess();
56
57    MemberDecl->setAccess(LexicalAS);
58    return true;
59  }
60
61  MemberDecl->setAccess(PrevMemberDecl->getAccess());
62  return false;
63}
64
65static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66  DeclContext *DC = D->getDeclContext();
67
68  // This can only happen at top: enum decls only "publish" their
69  // immediate members.
70  if (isa<EnumDecl>(DC))
71    DC = cast<EnumDecl>(DC)->getDeclContext();
72
73  CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74  while (DeclaringClass->isAnonymousStructOrUnion())
75    DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76  return DeclaringClass;
77}
78
79namespace {
80struct EffectiveContext {
81  EffectiveContext() : Inner(nullptr), Dependent(false) {}
82
83  explicit EffectiveContext(DeclContext *DC)
84    : Inner(DC),
85      Dependent(DC->isDependentContext()) {
86
87    // C++11 [class.access.nest]p1:
88    //   A nested class is a member and as such has the same access
89    //   rights as any other member.
90    // C++11 [class.access]p2:
91    //   A member of a class can also access all the names to which
92    //   the class has access.  A local class of a member function
93    //   may access the same names that the member function itself
94    //   may access.
95    // This almost implies that the privileges of nesting are transitive.
96    // Technically it says nothing about the local classes of non-member
97    // functions (which can gain privileges through friendship), but we
98    // take that as an oversight.
99    while (true) {
100      // We want to add canonical declarations to the EC lists for
101      // simplicity of checking, but we need to walk up through the
102      // actual current DC chain.  Otherwise, something like a local
103      // extern or friend which happens to be the canonical
104      // declaration will really mess us up.
105
106      if (isa<CXXRecordDecl>(DC)) {
107        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
108        Records.push_back(Record->getCanonicalDecl());
109        DC = Record->getDeclContext();
110      } else if (isa<FunctionDecl>(DC)) {
111        FunctionDecl *Function = cast<FunctionDecl>(DC);
112        Functions.push_back(Function->getCanonicalDecl());
113        if (Function->getFriendObjectKind())
114          DC = Function->getLexicalDeclContext();
115        else
116          DC = Function->getDeclContext();
117      } else if (DC->isFileContext()) {
118        break;
119      } else {
120        DC = DC->getParent();
121      }
122    }
123  }
124
125  bool isDependent() const { return Dependent; }
126
127  bool includesClass(const CXXRecordDecl *R) const {
128    R = R->getCanonicalDecl();
129    return std::find(Records.begin(), Records.end(), R)
130             != Records.end();
131  }
132
133  /// Retrieves the innermost "useful" context.  Can be null if we're
134  /// doing access-control without privileges.
135  DeclContext *getInnerContext() const {
136    return Inner;
137  }
138
139  typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
140
141  DeclContext *Inner;
142  SmallVector<FunctionDecl*, 4> Functions;
143  SmallVector<CXXRecordDecl*, 4> Records;
144  bool Dependent;
145};
146
147/// Like sema::AccessedEntity, but kindly lets us scribble all over
148/// it.
149struct AccessTarget : public AccessedEntity {
150  AccessTarget(const AccessedEntity &Entity)
151    : AccessedEntity(Entity) {
152    initialize();
153  }
154
155  AccessTarget(ASTContext &Context,
156               MemberNonce _,
157               CXXRecordDecl *NamingClass,
158               DeclAccessPair FoundDecl,
159               QualType BaseObjectType)
160    : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
161                     FoundDecl, BaseObjectType) {
162    initialize();
163  }
164
165  AccessTarget(ASTContext &Context,
166               BaseNonce _,
167               CXXRecordDecl *BaseClass,
168               CXXRecordDecl *DerivedClass,
169               AccessSpecifier Access)
170    : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
171                     Access) {
172    initialize();
173  }
174
175  bool isInstanceMember() const {
176    return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
177  }
178
179  bool hasInstanceContext() const {
180    return HasInstanceContext;
181  }
182
183  class SavedInstanceContext {
184  public:
185    SavedInstanceContext(SavedInstanceContext &&S)
186        : Target(S.Target), Has(S.Has) {
187      S.Target = nullptr;
188    }
189    ~SavedInstanceContext() {
190      if (Target)
191        Target->HasInstanceContext = Has;
192    }
193
194  private:
195    friend struct AccessTarget;
196    explicit SavedInstanceContext(AccessTarget &Target)
197        : Target(&Target), Has(Target.HasInstanceContext) {}
198    AccessTarget *Target;
199    bool Has;
200  };
201
202  SavedInstanceContext saveInstanceContext() {
203    return SavedInstanceContext(*this);
204  }
205
206  void suppressInstanceContext() {
207    HasInstanceContext = false;
208  }
209
210  const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
211    assert(HasInstanceContext);
212    if (CalculatedInstanceContext)
213      return InstanceContext;
214
215    CalculatedInstanceContext = true;
216    DeclContext *IC = S.computeDeclContext(getBaseObjectType());
217    InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
218                          : nullptr);
219    return InstanceContext;
220  }
221
222  const CXXRecordDecl *getDeclaringClass() const {
223    return DeclaringClass;
224  }
225
226  /// The "effective" naming class is the canonical non-anonymous
227  /// class containing the actual naming class.
228  const CXXRecordDecl *getEffectiveNamingClass() const {
229    const CXXRecordDecl *namingClass = getNamingClass();
230    while (namingClass->isAnonymousStructOrUnion())
231      namingClass = cast<CXXRecordDecl>(namingClass->getParent());
232    return namingClass->getCanonicalDecl();
233  }
234
235private:
236  void initialize() {
237    HasInstanceContext = (isMemberAccess() &&
238                          !getBaseObjectType().isNull() &&
239                          getTargetDecl()->isCXXInstanceMember());
240    CalculatedInstanceContext = false;
241    InstanceContext = nullptr;
242
243    if (isMemberAccess())
244      DeclaringClass = FindDeclaringClass(getTargetDecl());
245    else
246      DeclaringClass = getBaseClass();
247    DeclaringClass = DeclaringClass->getCanonicalDecl();
248  }
249
250  bool HasInstanceContext : 1;
251  mutable bool CalculatedInstanceContext : 1;
252  mutable const CXXRecordDecl *InstanceContext;
253  const CXXRecordDecl *DeclaringClass;
254};
255
256}
257
258/// Checks whether one class might instantiate to the other.
259static bool MightInstantiateTo(const CXXRecordDecl *From,
260                               const CXXRecordDecl *To) {
261  // Declaration names are always preserved by instantiation.
262  if (From->getDeclName() != To->getDeclName())
263    return false;
264
265  const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
266  const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
267  if (FromDC == ToDC) return true;
268  if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
269
270  // Be conservative.
271  return true;
272}
273
274/// Checks whether one class is derived from another, inclusively.
275/// Properly indicates when it couldn't be determined due to
276/// dependence.
277///
278/// This should probably be donated to AST or at least Sema.
279static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
280                                           const CXXRecordDecl *Target) {
281  assert(Derived->getCanonicalDecl() == Derived);
282  assert(Target->getCanonicalDecl() == Target);
283
284  if (Derived == Target) return AR_accessible;
285
286  bool CheckDependent = Derived->isDependentContext();
287  if (CheckDependent && MightInstantiateTo(Derived, Target))
288    return AR_dependent;
289
290  AccessResult OnFailure = AR_inaccessible;
291  SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
292
293  while (true) {
294    if (Derived->isDependentContext() && !Derived->hasDefinition())
295      return AR_dependent;
296
297    for (const auto &I : Derived->bases()) {
298      const CXXRecordDecl *RD;
299
300      QualType T = I.getType();
301      if (const RecordType *RT = T->getAs<RecordType>()) {
302        RD = cast<CXXRecordDecl>(RT->getDecl());
303      } else if (const InjectedClassNameType *IT
304                   = T->getAs<InjectedClassNameType>()) {
305        RD = IT->getDecl();
306      } else {
307        assert(T->isDependentType() && "non-dependent base wasn't a record?");
308        OnFailure = AR_dependent;
309        continue;
310      }
311
312      RD = RD->getCanonicalDecl();
313      if (RD == Target) return AR_accessible;
314      if (CheckDependent && MightInstantiateTo(RD, Target))
315        OnFailure = AR_dependent;
316
317      Queue.push_back(RD);
318    }
319
320    if (Queue.empty()) break;
321
322    Derived = Queue.pop_back_val();
323  }
324
325  return OnFailure;
326}
327
328
329static bool MightInstantiateTo(Sema &S, DeclContext *Context,
330                               DeclContext *Friend) {
331  if (Friend == Context)
332    return true;
333
334  assert(!Friend->isDependentContext() &&
335         "can't handle friends with dependent contexts here");
336
337  if (!Context->isDependentContext())
338    return false;
339
340  if (Friend->isFileContext())
341    return false;
342
343  // TODO: this is very conservative
344  return true;
345}
346
347// Asks whether the type in 'context' can ever instantiate to the type
348// in 'friend'.
349static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
350  if (Friend == Context)
351    return true;
352
353  if (!Friend->isDependentType() && !Context->isDependentType())
354    return false;
355
356  // TODO: this is very conservative.
357  return true;
358}
359
360static bool MightInstantiateTo(Sema &S,
361                               FunctionDecl *Context,
362                               FunctionDecl *Friend) {
363  if (Context->getDeclName() != Friend->getDeclName())
364    return false;
365
366  if (!MightInstantiateTo(S,
367                          Context->getDeclContext(),
368                          Friend->getDeclContext()))
369    return false;
370
371  CanQual<FunctionProtoType> FriendTy
372    = S.Context.getCanonicalType(Friend->getType())
373         ->getAs<FunctionProtoType>();
374  CanQual<FunctionProtoType> ContextTy
375    = S.Context.getCanonicalType(Context->getType())
376         ->getAs<FunctionProtoType>();
377
378  // There isn't any way that I know of to add qualifiers
379  // during instantiation.
380  if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
381    return false;
382
383  if (FriendTy->getNumParams() != ContextTy->getNumParams())
384    return false;
385
386  if (!MightInstantiateTo(S, ContextTy->getReturnType(),
387                          FriendTy->getReturnType()))
388    return false;
389
390  for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
391    if (!MightInstantiateTo(S, ContextTy->getParamType(I),
392                            FriendTy->getParamType(I)))
393      return false;
394
395  return true;
396}
397
398static bool MightInstantiateTo(Sema &S,
399                               FunctionTemplateDecl *Context,
400                               FunctionTemplateDecl *Friend) {
401  return MightInstantiateTo(S,
402                            Context->getTemplatedDecl(),
403                            Friend->getTemplatedDecl());
404}
405
406static AccessResult MatchesFriend(Sema &S,
407                                  const EffectiveContext &EC,
408                                  const CXXRecordDecl *Friend) {
409  if (EC.includesClass(Friend))
410    return AR_accessible;
411
412  if (EC.isDependent()) {
413    CanQualType FriendTy
414      = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
415
416    for (EffectiveContext::record_iterator
417           I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
418      CanQualType ContextTy
419        = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
420      if (MightInstantiateTo(S, ContextTy, FriendTy))
421        return AR_dependent;
422    }
423  }
424
425  return AR_inaccessible;
426}
427
428static AccessResult MatchesFriend(Sema &S,
429                                  const EffectiveContext &EC,
430                                  CanQualType Friend) {
431  if (const RecordType *RT = Friend->getAs<RecordType>())
432    return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
433
434  // TODO: we can do better than this
435  if (Friend->isDependentType())
436    return AR_dependent;
437
438  return AR_inaccessible;
439}
440
441/// Determines whether the given friend class template matches
442/// anything in the effective context.
443static AccessResult MatchesFriend(Sema &S,
444                                  const EffectiveContext &EC,
445                                  ClassTemplateDecl *Friend) {
446  AccessResult OnFailure = AR_inaccessible;
447
448  // Check whether the friend is the template of a class in the
449  // context chain.
450  for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
451         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
452    CXXRecordDecl *Record = *I;
453
454    // Figure out whether the current class has a template:
455    ClassTemplateDecl *CTD;
456
457    // A specialization of the template...
458    if (isa<ClassTemplateSpecializationDecl>(Record)) {
459      CTD = cast<ClassTemplateSpecializationDecl>(Record)
460        ->getSpecializedTemplate();
461
462    // ... or the template pattern itself.
463    } else {
464      CTD = Record->getDescribedClassTemplate();
465      if (!CTD) continue;
466    }
467
468    // It's a match.
469    if (Friend == CTD->getCanonicalDecl())
470      return AR_accessible;
471
472    // If the context isn't dependent, it can't be a dependent match.
473    if (!EC.isDependent())
474      continue;
475
476    // If the template names don't match, it can't be a dependent
477    // match.
478    if (CTD->getDeclName() != Friend->getDeclName())
479      continue;
480
481    // If the class's context can't instantiate to the friend's
482    // context, it can't be a dependent match.
483    if (!MightInstantiateTo(S, CTD->getDeclContext(),
484                            Friend->getDeclContext()))
485      continue;
486
487    // Otherwise, it's a dependent match.
488    OnFailure = AR_dependent;
489  }
490
491  return OnFailure;
492}
493
494/// Determines whether the given friend function matches anything in
495/// the effective context.
496static AccessResult MatchesFriend(Sema &S,
497                                  const EffectiveContext &EC,
498                                  FunctionDecl *Friend) {
499  AccessResult OnFailure = AR_inaccessible;
500
501  for (SmallVectorImpl<FunctionDecl*>::const_iterator
502         I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
503    if (Friend == *I)
504      return AR_accessible;
505
506    if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
507      OnFailure = AR_dependent;
508  }
509
510  return OnFailure;
511}
512
513/// Determines whether the given friend function template matches
514/// anything in the effective context.
515static AccessResult MatchesFriend(Sema &S,
516                                  const EffectiveContext &EC,
517                                  FunctionTemplateDecl *Friend) {
518  if (EC.Functions.empty()) return AR_inaccessible;
519
520  AccessResult OnFailure = AR_inaccessible;
521
522  for (SmallVectorImpl<FunctionDecl*>::const_iterator
523         I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
524
525    FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
526    if (!FTD)
527      FTD = (*I)->getDescribedFunctionTemplate();
528    if (!FTD)
529      continue;
530
531    FTD = FTD->getCanonicalDecl();
532
533    if (Friend == FTD)
534      return AR_accessible;
535
536    if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
537      OnFailure = AR_dependent;
538  }
539
540  return OnFailure;
541}
542
543/// Determines whether the given friend declaration matches anything
544/// in the effective context.
545static AccessResult MatchesFriend(Sema &S,
546                                  const EffectiveContext &EC,
547                                  FriendDecl *FriendD) {
548  // Whitelist accesses if there's an invalid or unsupported friend
549  // declaration.
550  if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
551    return AR_accessible;
552
553  if (TypeSourceInfo *T = FriendD->getFriendType())
554    return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
555
556  NamedDecl *Friend
557    = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
558
559  // FIXME: declarations with dependent or templated scope.
560
561  if (isa<ClassTemplateDecl>(Friend))
562    return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
563
564  if (isa<FunctionTemplateDecl>(Friend))
565    return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
566
567  if (isa<CXXRecordDecl>(Friend))
568    return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
569
570  assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
571  return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
572}
573
574static AccessResult GetFriendKind(Sema &S,
575                                  const EffectiveContext &EC,
576                                  const CXXRecordDecl *Class) {
577  AccessResult OnFailure = AR_inaccessible;
578
579  // Okay, check friends.
580  for (auto *Friend : Class->friends()) {
581    switch (MatchesFriend(S, EC, Friend)) {
582    case AR_accessible:
583      return AR_accessible;
584
585    case AR_inaccessible:
586      continue;
587
588    case AR_dependent:
589      OnFailure = AR_dependent;
590      break;
591    }
592  }
593
594  // That's it, give up.
595  return OnFailure;
596}
597
598namespace {
599
600/// A helper class for checking for a friend which will grant access
601/// to a protected instance member.
602struct ProtectedFriendContext {
603  Sema &S;
604  const EffectiveContext &EC;
605  const CXXRecordDecl *NamingClass;
606  bool CheckDependent;
607  bool EverDependent;
608
609  /// The path down to the current base class.
610  SmallVector<const CXXRecordDecl*, 20> CurPath;
611
612  ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
613                         const CXXRecordDecl *InstanceContext,
614                         const CXXRecordDecl *NamingClass)
615    : S(S), EC(EC), NamingClass(NamingClass),
616      CheckDependent(InstanceContext->isDependentContext() ||
617                     NamingClass->isDependentContext()),
618      EverDependent(false) {}
619
620  /// Check classes in the current path for friendship, starting at
621  /// the given index.
622  bool checkFriendshipAlongPath(unsigned I) {
623    assert(I < CurPath.size());
624    for (unsigned E = CurPath.size(); I != E; ++I) {
625      switch (GetFriendKind(S, EC, CurPath[I])) {
626      case AR_accessible:   return true;
627      case AR_inaccessible: continue;
628      case AR_dependent:    EverDependent = true; continue;
629      }
630    }
631    return false;
632  }
633
634  /// Perform a search starting at the given class.
635  ///
636  /// PrivateDepth is the index of the last (least derived) class
637  /// along the current path such that a notional public member of
638  /// the final class in the path would have access in that class.
639  bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
640    // If we ever reach the naming class, check the current path for
641    // friendship.  We can also stop recursing because we obviously
642    // won't find the naming class there again.
643    if (Cur == NamingClass)
644      return checkFriendshipAlongPath(PrivateDepth);
645
646    if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
647      EverDependent = true;
648
649    // Recurse into the base classes.
650    for (const auto &I : Cur->bases()) {
651      // If this is private inheritance, then a public member of the
652      // base will not have any access in classes derived from Cur.
653      unsigned BasePrivateDepth = PrivateDepth;
654      if (I.getAccessSpecifier() == AS_private)
655        BasePrivateDepth = CurPath.size() - 1;
656
657      const CXXRecordDecl *RD;
658
659      QualType T = I.getType();
660      if (const RecordType *RT = T->getAs<RecordType>()) {
661        RD = cast<CXXRecordDecl>(RT->getDecl());
662      } else if (const InjectedClassNameType *IT
663                   = T->getAs<InjectedClassNameType>()) {
664        RD = IT->getDecl();
665      } else {
666        assert(T->isDependentType() && "non-dependent base wasn't a record?");
667        EverDependent = true;
668        continue;
669      }
670
671      // Recurse.  We don't need to clean up if this returns true.
672      CurPath.push_back(RD);
673      if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
674        return true;
675      CurPath.pop_back();
676    }
677
678    return false;
679  }
680
681  bool findFriendship(const CXXRecordDecl *Cur) {
682    assert(CurPath.empty());
683    CurPath.push_back(Cur);
684    return findFriendship(Cur, 0);
685  }
686};
687}
688
689/// Search for a class P that EC is a friend of, under the constraint
690///   InstanceContext <= P
691/// if InstanceContext exists, or else
692///   NamingClass <= P
693/// and with the additional restriction that a protected member of
694/// NamingClass would have some natural access in P, which implicitly
695/// imposes the constraint that P <= NamingClass.
696///
697/// This isn't quite the condition laid out in the standard.
698/// Instead of saying that a notional protected member of NamingClass
699/// would have to have some natural access in P, it says the actual
700/// target has to have some natural access in P, which opens up the
701/// possibility that the target (which is not necessarily a member
702/// of NamingClass) might be more accessible along some path not
703/// passing through it.  That's really a bad idea, though, because it
704/// introduces two problems:
705///   - Most importantly, it breaks encapsulation because you can
706///     access a forbidden base class's members by directly subclassing
707///     it elsewhere.
708///   - It also makes access substantially harder to compute because it
709///     breaks the hill-climbing algorithm: knowing that the target is
710///     accessible in some base class would no longer let you change
711///     the question solely to whether the base class is accessible,
712///     because the original target might have been more accessible
713///     because of crazy subclassing.
714/// So we don't implement that.
715static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
716                                           const CXXRecordDecl *InstanceContext,
717                                           const CXXRecordDecl *NamingClass) {
718  assert(InstanceContext == nullptr ||
719         InstanceContext->getCanonicalDecl() == InstanceContext);
720  assert(NamingClass->getCanonicalDecl() == NamingClass);
721
722  // If we don't have an instance context, our constraints give us
723  // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
724  // This is just the usual friendship check.
725  if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
726
727  ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
728  if (PRC.findFriendship(InstanceContext)) return AR_accessible;
729  if (PRC.EverDependent) return AR_dependent;
730  return AR_inaccessible;
731}
732
733static AccessResult HasAccess(Sema &S,
734                              const EffectiveContext &EC,
735                              const CXXRecordDecl *NamingClass,
736                              AccessSpecifier Access,
737                              const AccessTarget &Target) {
738  assert(NamingClass->getCanonicalDecl() == NamingClass &&
739         "declaration should be canonicalized before being passed here");
740
741  if (Access == AS_public) return AR_accessible;
742  assert(Access == AS_private || Access == AS_protected);
743
744  AccessResult OnFailure = AR_inaccessible;
745
746  for (EffectiveContext::record_iterator
747         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
748    // All the declarations in EC have been canonicalized, so pointer
749    // equality from this point on will work fine.
750    const CXXRecordDecl *ECRecord = *I;
751
752    // [B2] and [M2]
753    if (Access == AS_private) {
754      if (ECRecord == NamingClass)
755        return AR_accessible;
756
757      if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
758        OnFailure = AR_dependent;
759
760    // [B3] and [M3]
761    } else {
762      assert(Access == AS_protected);
763      switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
764      case AR_accessible: break;
765      case AR_inaccessible: continue;
766      case AR_dependent: OnFailure = AR_dependent; continue;
767      }
768
769      // C++ [class.protected]p1:
770      //   An additional access check beyond those described earlier in
771      //   [class.access] is applied when a non-static data member or
772      //   non-static member function is a protected member of its naming
773      //   class.  As described earlier, access to a protected member is
774      //   granted because the reference occurs in a friend or member of
775      //   some class C.  If the access is to form a pointer to member,
776      //   the nested-name-specifier shall name C or a class derived from
777      //   C. All other accesses involve a (possibly implicit) object
778      //   expression. In this case, the class of the object expression
779      //   shall be C or a class derived from C.
780      //
781      // We interpret this as a restriction on [M3].
782
783      // In this part of the code, 'C' is just our context class ECRecord.
784
785      // These rules are different if we don't have an instance context.
786      if (!Target.hasInstanceContext()) {
787        // If it's not an instance member, these restrictions don't apply.
788        if (!Target.isInstanceMember()) return AR_accessible;
789
790        // If it's an instance member, use the pointer-to-member rule
791        // that the naming class has to be derived from the effective
792        // context.
793
794        // Emulate a MSVC bug where the creation of pointer-to-member
795        // to protected member of base class is allowed but only from
796        // static member functions.
797        if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
798          if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
799            if (MD->isStatic()) return AR_accessible;
800
801        // Despite the standard's confident wording, there is a case
802        // where you can have an instance member that's neither in a
803        // pointer-to-member expression nor in a member access:  when
804        // it names a field in an unevaluated context that can't be an
805        // implicit member.  Pending clarification, we just apply the
806        // same naming-class restriction here.
807        //   FIXME: we're probably not correctly adding the
808        //   protected-member restriction when we retroactively convert
809        //   an expression to being evaluated.
810
811        // We know that ECRecord derives from NamingClass.  The
812        // restriction says to check whether NamingClass derives from
813        // ECRecord, but that's not really necessary: two distinct
814        // classes can't be recursively derived from each other.  So
815        // along this path, we just need to check whether the classes
816        // are equal.
817        if (NamingClass == ECRecord) return AR_accessible;
818
819        // Otherwise, this context class tells us nothing;  on to the next.
820        continue;
821      }
822
823      assert(Target.isInstanceMember());
824
825      const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
826      if (!InstanceContext) {
827        OnFailure = AR_dependent;
828        continue;
829      }
830
831      switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
832      case AR_accessible: return AR_accessible;
833      case AR_inaccessible: continue;
834      case AR_dependent: OnFailure = AR_dependent; continue;
835      }
836    }
837  }
838
839  // [M3] and [B3] say that, if the target is protected in N, we grant
840  // access if the access occurs in a friend or member of some class P
841  // that's a subclass of N and where the target has some natural
842  // access in P.  The 'member' aspect is easy to handle because P
843  // would necessarily be one of the effective-context records, and we
844  // address that above.  The 'friend' aspect is completely ridiculous
845  // to implement because there are no restrictions at all on P
846  // *unless* the [class.protected] restriction applies.  If it does,
847  // however, we should ignore whether the naming class is a friend,
848  // and instead rely on whether any potential P is a friend.
849  if (Access == AS_protected && Target.isInstanceMember()) {
850    // Compute the instance context if possible.
851    const CXXRecordDecl *InstanceContext = nullptr;
852    if (Target.hasInstanceContext()) {
853      InstanceContext = Target.resolveInstanceContext(S);
854      if (!InstanceContext) return AR_dependent;
855    }
856
857    switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
858    case AR_accessible: return AR_accessible;
859    case AR_inaccessible: return OnFailure;
860    case AR_dependent: return AR_dependent;
861    }
862    llvm_unreachable("impossible friendship kind");
863  }
864
865  switch (GetFriendKind(S, EC, NamingClass)) {
866  case AR_accessible: return AR_accessible;
867  case AR_inaccessible: return OnFailure;
868  case AR_dependent: return AR_dependent;
869  }
870
871  // Silence bogus warnings
872  llvm_unreachable("impossible friendship kind");
873}
874
875/// Finds the best path from the naming class to the declaring class,
876/// taking friend declarations into account.
877///
878/// C++0x [class.access.base]p5:
879///   A member m is accessible at the point R when named in class N if
880///   [M1] m as a member of N is public, or
881///   [M2] m as a member of N is private, and R occurs in a member or
882///        friend of class N, or
883///   [M3] m as a member of N is protected, and R occurs in a member or
884///        friend of class N, or in a member or friend of a class P
885///        derived from N, where m as a member of P is public, private,
886///        or protected, or
887///   [M4] there exists a base class B of N that is accessible at R, and
888///        m is accessible at R when named in class B.
889///
890/// C++0x [class.access.base]p4:
891///   A base class B of N is accessible at R, if
892///   [B1] an invented public member of B would be a public member of N, or
893///   [B2] R occurs in a member or friend of class N, and an invented public
894///        member of B would be a private or protected member of N, or
895///   [B3] R occurs in a member or friend of a class P derived from N, and an
896///        invented public member of B would be a private or protected member
897///        of P, or
898///   [B4] there exists a class S such that B is a base class of S accessible
899///        at R and S is a base class of N accessible at R.
900///
901/// Along a single inheritance path we can restate both of these
902/// iteratively:
903///
904/// First, we note that M1-4 are equivalent to B1-4 if the member is
905/// treated as a notional base of its declaring class with inheritance
906/// access equivalent to the member's access.  Therefore we need only
907/// ask whether a class B is accessible from a class N in context R.
908///
909/// Let B_1 .. B_n be the inheritance path in question (i.e. where
910/// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
911/// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
912/// closest accessible base in the path:
913///   Access(a, b) = (* access on the base specifier from a to b *)
914///   Merge(a, forbidden) = forbidden
915///   Merge(a, private) = forbidden
916///   Merge(a, b) = min(a,b)
917///   Accessible(c, forbidden) = false
918///   Accessible(c, private) = (R is c) || IsFriend(c, R)
919///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
920///   Accessible(c, public) = true
921///   ACAB(n) = public
922///   ACAB(i) =
923///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
924///     if Accessible(B_i, AccessToBase) then public else AccessToBase
925///
926/// B is an accessible base of N at R iff ACAB(1) = public.
927///
928/// \param FinalAccess the access of the "final step", or AS_public if
929///   there is no final step.
930/// \return null if friendship is dependent
931static CXXBasePath *FindBestPath(Sema &S,
932                                 const EffectiveContext &EC,
933                                 AccessTarget &Target,
934                                 AccessSpecifier FinalAccess,
935                                 CXXBasePaths &Paths) {
936  // Derive the paths to the desired base.
937  const CXXRecordDecl *Derived = Target.getNamingClass();
938  const CXXRecordDecl *Base = Target.getDeclaringClass();
939
940  // FIXME: fail correctly when there are dependent paths.
941  bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
942                                          Paths);
943  assert(isDerived && "derived class not actually derived from base");
944  (void) isDerived;
945
946  CXXBasePath *BestPath = nullptr;
947
948  assert(FinalAccess != AS_none && "forbidden access after declaring class");
949
950  bool AnyDependent = false;
951
952  // Derive the friend-modified access along each path.
953  for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
954         PI != PE; ++PI) {
955    AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
956
957    // Walk through the path backwards.
958    AccessSpecifier PathAccess = FinalAccess;
959    CXXBasePath::iterator I = PI->end(), E = PI->begin();
960    while (I != E) {
961      --I;
962
963      assert(PathAccess != AS_none);
964
965      // If the declaration is a private member of a base class, there
966      // is no level of friendship in derived classes that can make it
967      // accessible.
968      if (PathAccess == AS_private) {
969        PathAccess = AS_none;
970        break;
971      }
972
973      const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
974
975      AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
976      PathAccess = std::max(PathAccess, BaseAccess);
977
978      switch (HasAccess(S, EC, NC, PathAccess, Target)) {
979      case AR_inaccessible: break;
980      case AR_accessible:
981        PathAccess = AS_public;
982
983        // Future tests are not against members and so do not have
984        // instance context.
985        Target.suppressInstanceContext();
986        break;
987      case AR_dependent:
988        AnyDependent = true;
989        goto Next;
990      }
991    }
992
993    // Note that we modify the path's Access field to the
994    // friend-modified access.
995    if (BestPath == nullptr || PathAccess < BestPath->Access) {
996      BestPath = &*PI;
997      BestPath->Access = PathAccess;
998
999      // Short-circuit if we found a public path.
1000      if (BestPath->Access == AS_public)
1001        return BestPath;
1002    }
1003
1004  Next: ;
1005  }
1006
1007  assert((!BestPath || BestPath->Access != AS_public) &&
1008         "fell out of loop with public path");
1009
1010  // We didn't find a public path, but at least one path was subject
1011  // to dependent friendship, so delay the check.
1012  if (AnyDependent)
1013    return nullptr;
1014
1015  return BestPath;
1016}
1017
1018/// Given that an entity has protected natural access, check whether
1019/// access might be denied because of the protected member access
1020/// restriction.
1021///
1022/// \return true if a note was emitted
1023static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1024                                       AccessTarget &Target) {
1025  // Only applies to instance accesses.
1026  if (!Target.isInstanceMember())
1027    return false;
1028
1029  assert(Target.isMemberAccess());
1030
1031  const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
1032
1033  for (EffectiveContext::record_iterator
1034         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1035    const CXXRecordDecl *ECRecord = *I;
1036    switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1037    case AR_accessible: break;
1038    case AR_inaccessible: continue;
1039    case AR_dependent: continue;
1040    }
1041
1042    // The effective context is a subclass of the declaring class.
1043    // Check whether the [class.protected] restriction is limiting
1044    // access.
1045
1046    // To get this exactly right, this might need to be checked more
1047    // holistically;  it's not necessarily the case that gaining
1048    // access here would grant us access overall.
1049
1050    NamedDecl *D = Target.getTargetDecl();
1051
1052    // If we don't have an instance context, [class.protected] says the
1053    // naming class has to equal the context class.
1054    if (!Target.hasInstanceContext()) {
1055      // If it does, the restriction doesn't apply.
1056      if (NamingClass == ECRecord) continue;
1057
1058      // TODO: it would be great to have a fixit here, since this is
1059      // such an obvious error.
1060      S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1061        << S.Context.getTypeDeclType(ECRecord);
1062      return true;
1063    }
1064
1065    const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1066    assert(InstanceContext && "diagnosing dependent access");
1067
1068    switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1069    case AR_accessible: continue;
1070    case AR_dependent: continue;
1071    case AR_inaccessible:
1072      break;
1073    }
1074
1075    // Okay, the restriction seems to be what's limiting us.
1076
1077    // Use a special diagnostic for constructors and destructors.
1078    if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1079        (isa<FunctionTemplateDecl>(D) &&
1080         isa<CXXConstructorDecl>(
1081                cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1082      return S.Diag(D->getLocation(),
1083                    diag::note_access_protected_restricted_ctordtor)
1084             << isa<CXXDestructorDecl>(D->getAsFunction());
1085    }
1086
1087    // Otherwise, use the generic diagnostic.
1088    return S.Diag(D->getLocation(),
1089                  diag::note_access_protected_restricted_object)
1090           << S.Context.getTypeDeclType(ECRecord);
1091  }
1092
1093  return false;
1094}
1095
1096/// We are unable to access a given declaration due to its direct
1097/// access control;  diagnose that.
1098static void diagnoseBadDirectAccess(Sema &S,
1099                                    const EffectiveContext &EC,
1100                                    AccessTarget &entity) {
1101  assert(entity.isMemberAccess());
1102  NamedDecl *D = entity.getTargetDecl();
1103
1104  if (D->getAccess() == AS_protected &&
1105      TryDiagnoseProtectedAccess(S, EC, entity))
1106    return;
1107
1108  // Find an original declaration.
1109  while (D->isOutOfLine()) {
1110    NamedDecl *PrevDecl = nullptr;
1111    if (VarDecl *VD = dyn_cast<VarDecl>(D))
1112      PrevDecl = VD->getPreviousDecl();
1113    else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1114      PrevDecl = FD->getPreviousDecl();
1115    else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1116      PrevDecl = TND->getPreviousDecl();
1117    else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1118      if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1119        break;
1120      PrevDecl = TD->getPreviousDecl();
1121    }
1122    if (!PrevDecl) break;
1123    D = PrevDecl;
1124  }
1125
1126  CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1127  Decl *ImmediateChild;
1128  if (D->getDeclContext() == DeclaringClass)
1129    ImmediateChild = D;
1130  else {
1131    DeclContext *DC = D->getDeclContext();
1132    while (DC->getParent() != DeclaringClass)
1133      DC = DC->getParent();
1134    ImmediateChild = cast<Decl>(DC);
1135  }
1136
1137  // Check whether there's an AccessSpecDecl preceding this in the
1138  // chain of the DeclContext.
1139  bool isImplicit = true;
1140  for (const auto *I : DeclaringClass->decls()) {
1141    if (I == ImmediateChild) break;
1142    if (isa<AccessSpecDecl>(I)) {
1143      isImplicit = false;
1144      break;
1145    }
1146  }
1147
1148  S.Diag(D->getLocation(), diag::note_access_natural)
1149    << (unsigned) (D->getAccess() == AS_protected)
1150    << isImplicit;
1151}
1152
1153/// Diagnose the path which caused the given declaration or base class
1154/// to become inaccessible.
1155static void DiagnoseAccessPath(Sema &S,
1156                               const EffectiveContext &EC,
1157                               AccessTarget &entity) {
1158  // Save the instance context to preserve invariants.
1159  AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
1160
1161  // This basically repeats the main algorithm but keeps some more
1162  // information.
1163
1164  // The natural access so far.
1165  AccessSpecifier accessSoFar = AS_public;
1166
1167  // Check whether we have special rights to the declaring class.
1168  if (entity.isMemberAccess()) {
1169    NamedDecl *D = entity.getTargetDecl();
1170    accessSoFar = D->getAccess();
1171    const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
1172
1173    switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
1174    // If the declaration is accessible when named in its declaring
1175    // class, then we must be constrained by the path.
1176    case AR_accessible:
1177      accessSoFar = AS_public;
1178      entity.suppressInstanceContext();
1179      break;
1180
1181    case AR_inaccessible:
1182      if (accessSoFar == AS_private ||
1183          declaringClass == entity.getEffectiveNamingClass())
1184        return diagnoseBadDirectAccess(S, EC, entity);
1185      break;
1186
1187    case AR_dependent:
1188      llvm_unreachable("cannot diagnose dependent access");
1189    }
1190  }
1191
1192  CXXBasePaths paths;
1193  CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
1194  assert(path.Access != AS_public);
1195
1196  CXXBasePath::iterator i = path.end(), e = path.begin();
1197  CXXBasePath::iterator constrainingBase = i;
1198  while (i != e) {
1199    --i;
1200
1201    assert(accessSoFar != AS_none && accessSoFar != AS_private);
1202
1203    // Is the entity accessible when named in the deriving class, as
1204    // modified by the base specifier?
1205    const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
1206    const CXXBaseSpecifier *base = i->Base;
1207
1208    // If the access to this base is worse than the access we have to
1209    // the declaration, remember it.
1210    AccessSpecifier baseAccess = base->getAccessSpecifier();
1211    if (baseAccess > accessSoFar) {
1212      constrainingBase = i;
1213      accessSoFar = baseAccess;
1214    }
1215
1216    switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
1217    case AR_inaccessible: break;
1218    case AR_accessible:
1219      accessSoFar = AS_public;
1220      entity.suppressInstanceContext();
1221      constrainingBase = nullptr;
1222      break;
1223    case AR_dependent:
1224      llvm_unreachable("cannot diagnose dependent access");
1225    }
1226
1227    // If this was private inheritance, but we don't have access to
1228    // the deriving class, we're done.
1229    if (accessSoFar == AS_private) {
1230      assert(baseAccess == AS_private);
1231      assert(constrainingBase == i);
1232      break;
1233    }
1234  }
1235
1236  // If we don't have a constraining base, the access failure must be
1237  // due to the original declaration.
1238  if (constrainingBase == path.end())
1239    return diagnoseBadDirectAccess(S, EC, entity);
1240
1241  // We're constrained by inheritance, but we want to say
1242  // "declared private here" if we're diagnosing a hierarchy
1243  // conversion and this is the final step.
1244  unsigned diagnostic;
1245  if (entity.isMemberAccess() ||
1246      constrainingBase + 1 != path.end()) {
1247    diagnostic = diag::note_access_constrained_by_path;
1248  } else {
1249    diagnostic = diag::note_access_natural;
1250  }
1251
1252  const CXXBaseSpecifier *base = constrainingBase->Base;
1253
1254  S.Diag(base->getSourceRange().getBegin(), diagnostic)
1255    << base->getSourceRange()
1256    << (base->getAccessSpecifier() == AS_protected)
1257    << (base->getAccessSpecifierAsWritten() == AS_none);
1258
1259  if (entity.isMemberAccess())
1260    S.Diag(entity.getTargetDecl()->getLocation(),
1261           diag::note_member_declared_at);
1262}
1263
1264static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1265                              const EffectiveContext &EC,
1266                              AccessTarget &Entity) {
1267  const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1268  const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1269  NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
1270
1271  S.Diag(Loc, Entity.getDiag())
1272    << (Entity.getAccess() == AS_protected)
1273    << (D ? D->getDeclName() : DeclarationName())
1274    << S.Context.getTypeDeclType(NamingClass)
1275    << S.Context.getTypeDeclType(DeclaringClass);
1276  DiagnoseAccessPath(S, EC, Entity);
1277}
1278
1279/// MSVC has a bug where if during an using declaration name lookup,
1280/// the declaration found is unaccessible (private) and that declaration
1281/// was bring into scope via another using declaration whose target
1282/// declaration is accessible (public) then no error is generated.
1283/// Example:
1284///   class A {
1285///   public:
1286///     int f();
1287///   };
1288///   class B : public A {
1289///   private:
1290///     using A::f;
1291///   };
1292///   class C : public B {
1293///   private:
1294///     using B::f;
1295///   };
1296///
1297/// Here, B::f is private so this should fail in Standard C++, but
1298/// because B::f refers to A::f which is public MSVC accepts it.
1299static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1300                                                 SourceLocation AccessLoc,
1301                                                 AccessTarget &Entity) {
1302  if (UsingShadowDecl *Shadow =
1303                         dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1304    const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1305    if (Entity.getTargetDecl()->getAccess() == AS_private &&
1306        (OrigDecl->getAccess() == AS_public ||
1307         OrigDecl->getAccess() == AS_protected)) {
1308      S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1309        << Shadow->getUsingDecl()->getQualifiedNameAsString()
1310        << OrigDecl->getQualifiedNameAsString();
1311      return true;
1312    }
1313  }
1314  return false;
1315}
1316
1317/// Determines whether the accessed entity is accessible.  Public members
1318/// have been weeded out by this point.
1319static AccessResult IsAccessible(Sema &S,
1320                                 const EffectiveContext &EC,
1321                                 AccessTarget &Entity) {
1322  // Determine the actual naming class.
1323  const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
1324
1325  AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1326  assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1327
1328  // Before we try to recalculate access paths, try to white-list
1329  // accesses which just trade in on the final step, i.e. accesses
1330  // which don't require [M4] or [B4]. These are by far the most
1331  // common forms of privileged access.
1332  if (UnprivilegedAccess != AS_none) {
1333    switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1334    case AR_dependent:
1335      // This is actually an interesting policy decision.  We don't
1336      // *have* to delay immediately here: we can do the full access
1337      // calculation in the hope that friendship on some intermediate
1338      // class will make the declaration accessible non-dependently.
1339      // But that's not cheap, and odds are very good (note: assertion
1340      // made without data) that the friend declaration will determine
1341      // access.
1342      return AR_dependent;
1343
1344    case AR_accessible: return AR_accessible;
1345    case AR_inaccessible: break;
1346    }
1347  }
1348
1349  AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1350
1351  // We lower member accesses to base accesses by pretending that the
1352  // member is a base class of its declaring class.
1353  AccessSpecifier FinalAccess;
1354
1355  if (Entity.isMemberAccess()) {
1356    // Determine if the declaration is accessible from EC when named
1357    // in its declaring class.
1358    NamedDecl *Target = Entity.getTargetDecl();
1359    const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1360
1361    FinalAccess = Target->getAccess();
1362    switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1363    case AR_accessible:
1364      // Target is accessible at EC when named in its declaring class.
1365      // We can now hill-climb and simply check whether the declaring
1366      // class is accessible as a base of the naming class.  This is
1367      // equivalent to checking the access of a notional public
1368      // member with no instance context.
1369      FinalAccess = AS_public;
1370      Entity.suppressInstanceContext();
1371      break;
1372    case AR_inaccessible: break;
1373    case AR_dependent: return AR_dependent; // see above
1374    }
1375
1376    if (DeclaringClass == NamingClass)
1377      return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1378  } else {
1379    FinalAccess = AS_public;
1380  }
1381
1382  assert(Entity.getDeclaringClass() != NamingClass);
1383
1384  // Append the declaration's access if applicable.
1385  CXXBasePaths Paths;
1386  CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1387  if (!Path)
1388    return AR_dependent;
1389
1390  assert(Path->Access <= UnprivilegedAccess &&
1391         "access along best path worse than direct?");
1392  if (Path->Access == AS_public)
1393    return AR_accessible;
1394  return AR_inaccessible;
1395}
1396
1397static void DelayDependentAccess(Sema &S,
1398                                 const EffectiveContext &EC,
1399                                 SourceLocation Loc,
1400                                 const AccessTarget &Entity) {
1401  assert(EC.isDependent() && "delaying non-dependent access");
1402  DeclContext *DC = EC.getInnerContext();
1403  assert(DC->isDependentContext() && "delaying non-dependent access");
1404  DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1405                              Loc,
1406                              Entity.isMemberAccess(),
1407                              Entity.getAccess(),
1408                              Entity.getTargetDecl(),
1409                              Entity.getNamingClass(),
1410                              Entity.getBaseObjectType(),
1411                              Entity.getDiag());
1412}
1413
1414/// Checks access to an entity from the given effective context.
1415static AccessResult CheckEffectiveAccess(Sema &S,
1416                                         const EffectiveContext &EC,
1417                                         SourceLocation Loc,
1418                                         AccessTarget &Entity) {
1419  assert(Entity.getAccess() != AS_public && "called for public access!");
1420
1421  switch (IsAccessible(S, EC, Entity)) {
1422  case AR_dependent:
1423    DelayDependentAccess(S, EC, Loc, Entity);
1424    return AR_dependent;
1425
1426  case AR_inaccessible:
1427    if (S.getLangOpts().MSVCCompat &&
1428        IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1429      return AR_accessible;
1430    if (!Entity.isQuiet())
1431      DiagnoseBadAccess(S, Loc, EC, Entity);
1432    return AR_inaccessible;
1433
1434  case AR_accessible:
1435    return AR_accessible;
1436  }
1437
1438  // silence unnecessary warning
1439  llvm_unreachable("invalid access result");
1440}
1441
1442static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1443                                      AccessTarget &Entity) {
1444  // If the access path is public, it's accessible everywhere.
1445  if (Entity.getAccess() == AS_public)
1446    return Sema::AR_accessible;
1447
1448  // If we're currently parsing a declaration, we may need to delay
1449  // access control checking, because our effective context might be
1450  // different based on what the declaration comes out as.
1451  //
1452  // For example, we might be parsing a declaration with a scope
1453  // specifier, like this:
1454  //   A::private_type A::foo() { ... }
1455  //
1456  // Or we might be parsing something that will turn out to be a friend:
1457  //   void foo(A::private_type);
1458  //   void B::foo(A::private_type);
1459  if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1460    S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1461    return Sema::AR_delayed;
1462  }
1463
1464  EffectiveContext EC(S.CurContext);
1465  switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1466  case AR_accessible: return Sema::AR_accessible;
1467  case AR_inaccessible: return Sema::AR_inaccessible;
1468  case AR_dependent: return Sema::AR_dependent;
1469  }
1470  llvm_unreachable("invalid access result");
1471}
1472
1473void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
1474  // Access control for names used in the declarations of functions
1475  // and function templates should normally be evaluated in the context
1476  // of the declaration, just in case it's a friend of something.
1477  // However, this does not apply to local extern declarations.
1478
1479  DeclContext *DC = D->getDeclContext();
1480  if (D->isLocalExternDecl()) {
1481    DC = D->getLexicalDeclContext();
1482  } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
1483    DC = FN;
1484  } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
1485    DC = cast<DeclContext>(TD->getTemplatedDecl());
1486  }
1487
1488  EffectiveContext EC(DC);
1489
1490  AccessTarget Target(DD.getAccessData());
1491
1492  if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1493    DD.Triggered = true;
1494}
1495
1496void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1497                        const MultiLevelTemplateArgumentList &TemplateArgs) {
1498  SourceLocation Loc = DD.getAccessLoc();
1499  AccessSpecifier Access = DD.getAccess();
1500
1501  Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1502                                       TemplateArgs);
1503  if (!NamingD) return;
1504  Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1505                                       TemplateArgs);
1506  if (!TargetD) return;
1507
1508  if (DD.isAccessToMember()) {
1509    CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1510    NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1511    QualType BaseObjectType = DD.getAccessBaseObjectType();
1512    if (!BaseObjectType.isNull()) {
1513      BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1514                                 DeclarationName());
1515      if (BaseObjectType.isNull()) return;
1516    }
1517
1518    AccessTarget Entity(Context,
1519                        AccessTarget::Member,
1520                        NamingClass,
1521                        DeclAccessPair::make(TargetDecl, Access),
1522                        BaseObjectType);
1523    Entity.setDiag(DD.getDiagnostic());
1524    CheckAccess(*this, Loc, Entity);
1525  } else {
1526    AccessTarget Entity(Context,
1527                        AccessTarget::Base,
1528                        cast<CXXRecordDecl>(TargetD),
1529                        cast<CXXRecordDecl>(NamingD),
1530                        Access);
1531    Entity.setDiag(DD.getDiagnostic());
1532    CheckAccess(*this, Loc, Entity);
1533  }
1534}
1535
1536Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1537                                                     DeclAccessPair Found) {
1538  if (!getLangOpts().AccessControl ||
1539      !E->getNamingClass() ||
1540      Found.getAccess() == AS_public)
1541    return AR_accessible;
1542
1543  AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1544                      Found, QualType());
1545  Entity.setDiag(diag::err_access) << E->getSourceRange();
1546
1547  return CheckAccess(*this, E->getNameLoc(), Entity);
1548}
1549
1550/// Perform access-control checking on a previously-unresolved member
1551/// access which has now been resolved to a member.
1552Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1553                                                     DeclAccessPair Found) {
1554  if (!getLangOpts().AccessControl ||
1555      Found.getAccess() == AS_public)
1556    return AR_accessible;
1557
1558  QualType BaseType = E->getBaseType();
1559  if (E->isArrow())
1560    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1561
1562  AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1563                      Found, BaseType);
1564  Entity.setDiag(diag::err_access) << E->getSourceRange();
1565
1566  return CheckAccess(*this, E->getMemberLoc(), Entity);
1567}
1568
1569/// Is the given special member function accessible for the purposes of
1570/// deciding whether to define a special member function as deleted?
1571bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
1572                                                AccessSpecifier access,
1573                                                QualType objectType) {
1574  // Fast path.
1575  if (access == AS_public || !getLangOpts().AccessControl) return true;
1576
1577  AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
1578                      DeclAccessPair::make(decl, access), objectType);
1579
1580  // Suppress diagnostics.
1581  entity.setDiag(PDiag());
1582
1583  switch (CheckAccess(*this, SourceLocation(), entity)) {
1584  case AR_accessible: return true;
1585  case AR_inaccessible: return false;
1586  case AR_dependent: llvm_unreachable("dependent for =delete computation");
1587  case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1588  }
1589  llvm_unreachable("bad access result");
1590}
1591
1592Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1593                                               CXXDestructorDecl *Dtor,
1594                                               const PartialDiagnostic &PDiag,
1595                                               QualType ObjectTy) {
1596  if (!getLangOpts().AccessControl)
1597    return AR_accessible;
1598
1599  // There's never a path involved when checking implicit destructor access.
1600  AccessSpecifier Access = Dtor->getAccess();
1601  if (Access == AS_public)
1602    return AR_accessible;
1603
1604  CXXRecordDecl *NamingClass = Dtor->getParent();
1605  if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1606
1607  AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1608                      DeclAccessPair::make(Dtor, Access),
1609                      ObjectTy);
1610  Entity.setDiag(PDiag); // TODO: avoid copy
1611
1612  return CheckAccess(*this, Loc, Entity);
1613}
1614
1615/// Checks access to a constructor.
1616Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1617                                                CXXConstructorDecl *Constructor,
1618                                                const InitializedEntity &Entity,
1619                                                AccessSpecifier Access,
1620                                                bool IsCopyBindingRefToTemp) {
1621  if (!getLangOpts().AccessControl || Access == AS_public)
1622    return AR_accessible;
1623
1624  PartialDiagnostic PD(PDiag());
1625  switch (Entity.getKind()) {
1626  default:
1627    PD = PDiag(IsCopyBindingRefToTemp
1628                 ? diag::ext_rvalue_to_reference_access_ctor
1629                 : diag::err_access_ctor);
1630
1631    break;
1632
1633  case InitializedEntity::EK_Base:
1634    PD = PDiag(diag::err_access_base_ctor);
1635    PD << Entity.isInheritedVirtualBase()
1636       << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1637    break;
1638
1639  case InitializedEntity::EK_Member: {
1640    const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1641    PD = PDiag(diag::err_access_field_ctor);
1642    PD << Field->getType() << getSpecialMember(Constructor);
1643    break;
1644  }
1645
1646  case InitializedEntity::EK_LambdaCapture: {
1647    StringRef VarName = Entity.getCapturedVarName();
1648    PD = PDiag(diag::err_access_lambda_capture);
1649    PD << VarName << Entity.getType() << getSpecialMember(Constructor);
1650    break;
1651  }
1652
1653  }
1654
1655  return CheckConstructorAccess(UseLoc, Constructor, Entity, Access, PD);
1656}
1657
1658/// Checks access to a constructor.
1659Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1660                                                CXXConstructorDecl *Constructor,
1661                                                const InitializedEntity &Entity,
1662                                                AccessSpecifier Access,
1663                                                const PartialDiagnostic &PD) {
1664  if (!getLangOpts().AccessControl ||
1665      Access == AS_public)
1666    return AR_accessible;
1667
1668  CXXRecordDecl *NamingClass = Constructor->getParent();
1669
1670  // Initializing a base sub-object is an instance method call on an
1671  // object of the derived class.  Otherwise, we have an instance method
1672  // call on an object of the constructed type.
1673  CXXRecordDecl *ObjectClass;
1674  if (Entity.getKind() == InitializedEntity::EK_Base) {
1675    ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1676  } else {
1677    ObjectClass = NamingClass;
1678  }
1679
1680  AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1681                            DeclAccessPair::make(Constructor, Access),
1682                            Context.getTypeDeclType(ObjectClass));
1683  AccessEntity.setDiag(PD);
1684
1685  return CheckAccess(*this, UseLoc, AccessEntity);
1686}
1687
1688/// Checks access to an overloaded operator new or delete.
1689Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1690                                               SourceRange PlacementRange,
1691                                               CXXRecordDecl *NamingClass,
1692                                               DeclAccessPair Found,
1693                                               bool Diagnose) {
1694  if (!getLangOpts().AccessControl ||
1695      !NamingClass ||
1696      Found.getAccess() == AS_public)
1697    return AR_accessible;
1698
1699  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1700                      QualType());
1701  if (Diagnose)
1702    Entity.setDiag(diag::err_access)
1703      << PlacementRange;
1704
1705  return CheckAccess(*this, OpLoc, Entity);
1706}
1707
1708/// \brief Checks access to a member.
1709Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
1710                                           CXXRecordDecl *NamingClass,
1711                                           DeclAccessPair Found) {
1712  if (!getLangOpts().AccessControl ||
1713      !NamingClass ||
1714      Found.getAccess() == AS_public)
1715    return AR_accessible;
1716
1717  AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1718                      Found, QualType());
1719
1720  return CheckAccess(*this, UseLoc, Entity);
1721}
1722
1723/// Checks access to an overloaded member operator, including
1724/// conversion operators.
1725Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1726                                                   Expr *ObjectExpr,
1727                                                   Expr *ArgExpr,
1728                                                   DeclAccessPair Found) {
1729  if (!getLangOpts().AccessControl ||
1730      Found.getAccess() == AS_public)
1731    return AR_accessible;
1732
1733  const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1734  CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1735
1736  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1737                      ObjectExpr->getType());
1738  Entity.setDiag(diag::err_access)
1739    << ObjectExpr->getSourceRange()
1740    << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1741
1742  return CheckAccess(*this, OpLoc, Entity);
1743}
1744
1745/// Checks access to the target of a friend declaration.
1746Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
1747  assert(isa<CXXMethodDecl>(target->getAsFunction()));
1748
1749  // Friendship lookup is a redeclaration lookup, so there's never an
1750  // inheritance path modifying access.
1751  AccessSpecifier access = target->getAccess();
1752
1753  if (!getLangOpts().AccessControl || access == AS_public)
1754    return AR_accessible;
1755
1756  CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
1757
1758  AccessTarget entity(Context, AccessTarget::Member,
1759                      cast<CXXRecordDecl>(target->getDeclContext()),
1760                      DeclAccessPair::make(target, access),
1761                      /*no instance context*/ QualType());
1762  entity.setDiag(diag::err_access_friend_function)
1763      << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
1764                                 : method->getNameInfo().getSourceRange());
1765
1766  // We need to bypass delayed-diagnostics because we might be called
1767  // while the ParsingDeclarator is active.
1768  EffectiveContext EC(CurContext);
1769  switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
1770  case AR_accessible: return Sema::AR_accessible;
1771  case AR_inaccessible: return Sema::AR_inaccessible;
1772  case AR_dependent: return Sema::AR_dependent;
1773  }
1774  llvm_unreachable("invalid access result");
1775}
1776
1777Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1778                                                    DeclAccessPair Found) {
1779  if (!getLangOpts().AccessControl ||
1780      Found.getAccess() == AS_none ||
1781      Found.getAccess() == AS_public)
1782    return AR_accessible;
1783
1784  OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1785  CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1786
1787  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1788                      /*no instance context*/ QualType());
1789  Entity.setDiag(diag::err_access)
1790    << Ovl->getSourceRange();
1791
1792  return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1793}
1794
1795/// Checks access for a hierarchy conversion.
1796///
1797/// \param ForceCheck true if this check should be performed even if access
1798///     control is disabled;  some things rely on this for semantics
1799/// \param ForceUnprivileged true if this check should proceed as if the
1800///     context had no special privileges
1801Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1802                                              QualType Base,
1803                                              QualType Derived,
1804                                              const CXXBasePath &Path,
1805                                              unsigned DiagID,
1806                                              bool ForceCheck,
1807                                              bool ForceUnprivileged) {
1808  if (!ForceCheck && !getLangOpts().AccessControl)
1809    return AR_accessible;
1810
1811  if (Path.Access == AS_public)
1812    return AR_accessible;
1813
1814  CXXRecordDecl *BaseD, *DerivedD;
1815  BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1816  DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1817
1818  AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1819                      Path.Access);
1820  if (DiagID)
1821    Entity.setDiag(DiagID) << Derived << Base;
1822
1823  if (ForceUnprivileged) {
1824    switch (CheckEffectiveAccess(*this, EffectiveContext(),
1825                                 AccessLoc, Entity)) {
1826    case ::AR_accessible: return Sema::AR_accessible;
1827    case ::AR_inaccessible: return Sema::AR_inaccessible;
1828    case ::AR_dependent: return Sema::AR_dependent;
1829    }
1830    llvm_unreachable("unexpected result from CheckEffectiveAccess");
1831  }
1832  return CheckAccess(*this, AccessLoc, Entity);
1833}
1834
1835/// Checks access to all the declarations in the given result set.
1836void Sema::CheckLookupAccess(const LookupResult &R) {
1837  assert(getLangOpts().AccessControl
1838         && "performing access check without access control");
1839  assert(R.getNamingClass() && "performing access check without naming class");
1840
1841  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1842    if (I.getAccess() != AS_public) {
1843      AccessTarget Entity(Context, AccessedEntity::Member,
1844                          R.getNamingClass(), I.getPair(),
1845                          R.getBaseObjectType());
1846      Entity.setDiag(diag::err_access);
1847      CheckAccess(*this, R.getNameLoc(), Entity);
1848    }
1849  }
1850}
1851
1852/// Checks access to Decl from the given class. The check will take access
1853/// specifiers into account, but no member access expressions and such.
1854///
1855/// \param Decl the declaration to check if it can be accessed
1856/// \param Ctx the class/context from which to start the search
1857/// \return true if the Decl is accessible from the Class, false otherwise.
1858bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
1859  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
1860    if (!Decl->isCXXClassMember())
1861      return true;
1862
1863    QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
1864    AccessTarget Entity(Context, AccessedEntity::Member, Class,
1865                        DeclAccessPair::make(Decl, Decl->getAccess()),
1866                        qType);
1867    if (Entity.getAccess() == AS_public)
1868      return true;
1869
1870    EffectiveContext EC(CurContext);
1871    return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1872  }
1873
1874  if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
1875    // @public and @package ivars are always accessible.
1876    if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1877        Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1878      return true;
1879
1880    // If we are inside a class or category implementation, determine the
1881    // interface we're in.
1882    ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1883    if (ObjCMethodDecl *MD = getCurMethodDecl())
1884      ClassOfMethodDecl =  MD->getClassInterface();
1885    else if (FunctionDecl *FD = getCurFunctionDecl()) {
1886      if (ObjCImplDecl *Impl
1887            = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1888        if (ObjCImplementationDecl *IMPD
1889              = dyn_cast<ObjCImplementationDecl>(Impl))
1890          ClassOfMethodDecl = IMPD->getClassInterface();
1891        else if (ObjCCategoryImplDecl* CatImplClass
1892                   = dyn_cast<ObjCCategoryImplDecl>(Impl))
1893          ClassOfMethodDecl = CatImplClass->getClassInterface();
1894      }
1895    }
1896
1897    // If we're not in an interface, this ivar is inaccessible.
1898    if (!ClassOfMethodDecl)
1899      return false;
1900
1901    // If we're inside the same interface that owns the ivar, we're fine.
1902    if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1903      return true;
1904
1905    // If the ivar is private, it's inaccessible.
1906    if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1907      return false;
1908
1909    return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1910  }
1911
1912  return true;
1913}
1914