1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Initialization.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Basic/TargetInfo.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// \brief Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38  if (Context.typesAreCompatible(Context.getWideCharType(), T))
39    return true;
40  if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41    return Context.typesAreCompatible(Context.Char16Ty, T) ||
42           Context.typesAreCompatible(Context.Char32Ty, T);
43  }
44  return false;
45}
46
47enum StringInitFailureKind {
48  SIF_None,
49  SIF_NarrowStringIntoWideChar,
50  SIF_WideStringIntoChar,
51  SIF_IncompatWideStringIntoWideChar,
52  SIF_Other
53};
54
55/// \brief Check whether the array of type AT can be initialized by the Init
56/// expression by means of string initialization. Returns SIF_None if so,
57/// otherwise returns a StringInitFailureKind that describes why the
58/// initialization would not work.
59static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                          ASTContext &Context) {
61  if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62    return SIF_Other;
63
64  // See if this is a string literal or @encode.
65  Init = Init->IgnoreParens();
66
67  // Handle @encode, which is a narrow string.
68  if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69    return SIF_None;
70
71  // Otherwise we can only handle string literals.
72  StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73  if (!SL)
74    return SIF_Other;
75
76  const QualType ElemTy =
77      Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79  switch (SL->getKind()) {
80  case StringLiteral::Ascii:
81  case StringLiteral::UTF8:
82    // char array can be initialized with a narrow string.
83    // Only allow char x[] = "foo";  not char x[] = L"foo";
84    if (ElemTy->isCharType())
85      return SIF_None;
86    if (IsWideCharCompatible(ElemTy, Context))
87      return SIF_NarrowStringIntoWideChar;
88    return SIF_Other;
89  // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90  // "An array with element type compatible with a qualified or unqualified
91  // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92  // string literal with the corresponding encoding prefix (L, u, or U,
93  // respectively), optionally enclosed in braces.
94  case StringLiteral::UTF16:
95    if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96      return SIF_None;
97    if (ElemTy->isCharType())
98      return SIF_WideStringIntoChar;
99    if (IsWideCharCompatible(ElemTy, Context))
100      return SIF_IncompatWideStringIntoWideChar;
101    return SIF_Other;
102  case StringLiteral::UTF32:
103    if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104      return SIF_None;
105    if (ElemTy->isCharType())
106      return SIF_WideStringIntoChar;
107    if (IsWideCharCompatible(ElemTy, Context))
108      return SIF_IncompatWideStringIntoWideChar;
109    return SIF_Other;
110  case StringLiteral::Wide:
111    if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112      return SIF_None;
113    if (ElemTy->isCharType())
114      return SIF_WideStringIntoChar;
115    if (IsWideCharCompatible(ElemTy, Context))
116      return SIF_IncompatWideStringIntoWideChar;
117    return SIF_Other;
118  }
119
120  llvm_unreachable("missed a StringLiteral kind?");
121}
122
123static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                          ASTContext &Context) {
125  const ArrayType *arrayType = Context.getAsArrayType(declType);
126  if (!arrayType)
127    return SIF_Other;
128  return IsStringInit(init, arrayType, Context);
129}
130
131/// Update the type of a string literal, including any surrounding parentheses,
132/// to match the type of the object which it is initializing.
133static void updateStringLiteralType(Expr *E, QualType Ty) {
134  while (true) {
135    E->setType(Ty);
136    if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137      break;
138    else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139      E = PE->getSubExpr();
140    else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141      E = UO->getSubExpr();
142    else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143      E = GSE->getResultExpr();
144    else
145      llvm_unreachable("unexpected expr in string literal init");
146  }
147}
148
149static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                            Sema &S) {
151  // Get the length of the string as parsed.
152  auto *ConstantArrayTy =
153      cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
154  uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
155
156  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157    // C99 6.7.8p14. We have an array of character type with unknown size
158    // being initialized to a string literal.
159    llvm::APInt ConstVal(32, StrLength);
160    // Return a new array type (C99 6.7.8p22).
161    DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                           ConstVal,
163                                           ArrayType::Normal, 0);
164    updateStringLiteralType(Str, DeclT);
165    return;
166  }
167
168  const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170  // We have an array of character type with known size.  However,
171  // the size may be smaller or larger than the string we are initializing.
172  // FIXME: Avoid truncation for 64-bit length strings.
173  if (S.getLangOpts().CPlusPlus) {
174    if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175      // For Pascal strings it's OK to strip off the terminating null character,
176      // so the example below is valid:
177      //
178      // unsigned char a[2] = "\pa";
179      if (SL->isPascal())
180        StrLength--;
181    }
182
183    // [dcl.init.string]p2
184    if (StrLength > CAT->getSize().getZExtValue())
185      S.Diag(Str->getLocStart(),
186             diag::err_initializer_string_for_char_array_too_long)
187        << Str->getSourceRange();
188  } else {
189    // C99 6.7.8p14.
190    if (StrLength-1 > CAT->getSize().getZExtValue())
191      S.Diag(Str->getLocStart(),
192             diag::ext_initializer_string_for_char_array_too_long)
193        << Str->getSourceRange();
194  }
195
196  // Set the type to the actual size that we are initializing.  If we have
197  // something like:
198  //   char x[1] = "foo";
199  // then this will set the string literal's type to char[1].
200  updateStringLiteralType(Str, DeclT);
201}
202
203//===----------------------------------------------------------------------===//
204// Semantic checking for initializer lists.
205//===----------------------------------------------------------------------===//
206
207/// @brief Semantic checking for initializer lists.
208///
209/// The InitListChecker class contains a set of routines that each
210/// handle the initialization of a certain kind of entity, e.g.,
211/// arrays, vectors, struct/union types, scalars, etc. The
212/// InitListChecker itself performs a recursive walk of the subobject
213/// structure of the type to be initialized, while stepping through
214/// the initializer list one element at a time. The IList and Index
215/// parameters to each of the Check* routines contain the active
216/// (syntactic) initializer list and the index into that initializer
217/// list that represents the current initializer. Each routine is
218/// responsible for moving that Index forward as it consumes elements.
219///
220/// Each Check* routine also has a StructuredList/StructuredIndex
221/// arguments, which contains the current "structured" (semantic)
222/// initializer list and the index into that initializer list where we
223/// are copying initializers as we map them over to the semantic
224/// list. Once we have completed our recursive walk of the subobject
225/// structure, we will have constructed a full semantic initializer
226/// list.
227///
228/// C99 designators cause changes in the initializer list traversal,
229/// because they make the initialization "jump" into a specific
230/// subobject and then continue the initialization from that
231/// point. CheckDesignatedInitializer() recursively steps into the
232/// designated subobject and manages backing out the recursion to
233/// initialize the subobjects after the one designated.
234namespace {
235class InitListChecker {
236  Sema &SemaRef;
237  bool hadError;
238  bool VerifyOnly; // no diagnostics, no structure building
239  llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240  InitListExpr *FullyStructuredList;
241
242  void CheckImplicitInitList(const InitializedEntity &Entity,
243                             InitListExpr *ParentIList, QualType T,
244                             unsigned &Index, InitListExpr *StructuredList,
245                             unsigned &StructuredIndex);
246  void CheckExplicitInitList(const InitializedEntity &Entity,
247                             InitListExpr *IList, QualType &T,
248                             InitListExpr *StructuredList,
249                             bool TopLevelObject = false);
250  void CheckListElementTypes(const InitializedEntity &Entity,
251                             InitListExpr *IList, QualType &DeclType,
252                             bool SubobjectIsDesignatorContext,
253                             unsigned &Index,
254                             InitListExpr *StructuredList,
255                             unsigned &StructuredIndex,
256                             bool TopLevelObject = false);
257  void CheckSubElementType(const InitializedEntity &Entity,
258                           InitListExpr *IList, QualType ElemType,
259                           unsigned &Index,
260                           InitListExpr *StructuredList,
261                           unsigned &StructuredIndex);
262  void CheckComplexType(const InitializedEntity &Entity,
263                        InitListExpr *IList, QualType DeclType,
264                        unsigned &Index,
265                        InitListExpr *StructuredList,
266                        unsigned &StructuredIndex);
267  void CheckScalarType(const InitializedEntity &Entity,
268                       InitListExpr *IList, QualType DeclType,
269                       unsigned &Index,
270                       InitListExpr *StructuredList,
271                       unsigned &StructuredIndex);
272  void CheckReferenceType(const InitializedEntity &Entity,
273                          InitListExpr *IList, QualType DeclType,
274                          unsigned &Index,
275                          InitListExpr *StructuredList,
276                          unsigned &StructuredIndex);
277  void CheckVectorType(const InitializedEntity &Entity,
278                       InitListExpr *IList, QualType DeclType, unsigned &Index,
279                       InitListExpr *StructuredList,
280                       unsigned &StructuredIndex);
281  void CheckStructUnionTypes(const InitializedEntity &Entity,
282                             InitListExpr *IList, QualType DeclType,
283                             RecordDecl::field_iterator Field,
284                             bool SubobjectIsDesignatorContext, unsigned &Index,
285                             InitListExpr *StructuredList,
286                             unsigned &StructuredIndex,
287                             bool TopLevelObject = false);
288  void CheckArrayType(const InitializedEntity &Entity,
289                      InitListExpr *IList, QualType &DeclType,
290                      llvm::APSInt elementIndex,
291                      bool SubobjectIsDesignatorContext, unsigned &Index,
292                      InitListExpr *StructuredList,
293                      unsigned &StructuredIndex);
294  bool CheckDesignatedInitializer(const InitializedEntity &Entity,
295                                  InitListExpr *IList, DesignatedInitExpr *DIE,
296                                  unsigned DesigIdx,
297                                  QualType &CurrentObjectType,
298                                  RecordDecl::field_iterator *NextField,
299                                  llvm::APSInt *NextElementIndex,
300                                  unsigned &Index,
301                                  InitListExpr *StructuredList,
302                                  unsigned &StructuredIndex,
303                                  bool FinishSubobjectInit,
304                                  bool TopLevelObject);
305  InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
306                                           QualType CurrentObjectType,
307                                           InitListExpr *StructuredList,
308                                           unsigned StructuredIndex,
309                                           SourceRange InitRange,
310                                           bool IsFullyOverwritten = false);
311  void UpdateStructuredListElement(InitListExpr *StructuredList,
312                                   unsigned &StructuredIndex,
313                                   Expr *expr);
314  int numArrayElements(QualType DeclType);
315  int numStructUnionElements(QualType DeclType);
316
317  static ExprResult PerformEmptyInit(Sema &SemaRef,
318                                     SourceLocation Loc,
319                                     const InitializedEntity &Entity,
320                                     bool VerifyOnly);
321
322  // Explanation on the "FillWithNoInit" mode:
323  //
324  // Assume we have the following definitions (Case#1):
325  // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
326  // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
327  //
328  // l.lp.x[1][0..1] should not be filled with implicit initializers because the
329  // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
330  //
331  // But if we have (Case#2):
332  // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
333  //
334  // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
335  // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
336  //
337  // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
338  // in the InitListExpr, the "holes" in Case#1 are filled not with empty
339  // initializers but with special "NoInitExpr" place holders, which tells the
340  // CodeGen not to generate any initializers for these parts.
341  void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
342                               const InitializedEntity &ParentEntity,
343                               InitListExpr *ILE, bool &RequiresSecondPass,
344                               bool FillWithNoInit = false);
345  void FillInEmptyInitializations(const InitializedEntity &Entity,
346                                  InitListExpr *ILE, bool &RequiresSecondPass,
347                                  bool FillWithNoInit = false);
348  bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
349                              Expr *InitExpr, FieldDecl *Field,
350                              bool TopLevelObject);
351  void CheckEmptyInitializable(const InitializedEntity &Entity,
352                               SourceLocation Loc);
353
354public:
355  InitListChecker(Sema &S, const InitializedEntity &Entity,
356                  InitListExpr *IL, QualType &T, bool VerifyOnly);
357  bool HadError() { return hadError; }
358
359  // @brief Retrieves the fully-structured initializer list used for
360  // semantic analysis and code generation.
361  InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
362};
363} // end anonymous namespace
364
365ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
366                                             SourceLocation Loc,
367                                             const InitializedEntity &Entity,
368                                             bool VerifyOnly) {
369  InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
370                                                            true);
371  MultiExprArg SubInit;
372  Expr *InitExpr;
373  InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
374
375  // C++ [dcl.init.aggr]p7:
376  //   If there are fewer initializer-clauses in the list than there are
377  //   members in the aggregate, then each member not explicitly initialized
378  //   ...
379  bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
380      Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
381  if (EmptyInitList) {
382    // C++1y / DR1070:
383    //   shall be initialized [...] from an empty initializer list.
384    //
385    // We apply the resolution of this DR to C++11 but not C++98, since C++98
386    // does not have useful semantics for initialization from an init list.
387    // We treat this as copy-initialization, because aggregate initialization
388    // always performs copy-initialization on its elements.
389    //
390    // Only do this if we're initializing a class type, to avoid filling in
391    // the initializer list where possible.
392    InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
393                   InitListExpr(SemaRef.Context, Loc, None, Loc);
394    InitExpr->setType(SemaRef.Context.VoidTy);
395    SubInit = InitExpr;
396    Kind = InitializationKind::CreateCopy(Loc, Loc);
397  } else {
398    // C++03:
399    //   shall be value-initialized.
400  }
401
402  InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
403  // libstdc++4.6 marks the vector default constructor as explicit in
404  // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
405  // stlport does so too. Look for std::__debug for libstdc++, and for
406  // std:: for stlport.  This is effectively a compiler-side implementation of
407  // LWG2193.
408  if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
409          InitializationSequence::FK_ExplicitConstructor) {
410    OverloadCandidateSet::iterator Best;
411    OverloadingResult O =
412        InitSeq.getFailedCandidateSet()
413            .BestViableFunction(SemaRef, Kind.getLocation(), Best);
414    (void)O;
415    assert(O == OR_Success && "Inconsistent overload resolution");
416    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
417    CXXRecordDecl *R = CtorDecl->getParent();
418
419    if (CtorDecl->getMinRequiredArguments() == 0 &&
420        CtorDecl->isExplicit() && R->getDeclName() &&
421        SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
422
423
424      bool IsInStd = false;
425      for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
426           ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
427        if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
428          IsInStd = true;
429      }
430
431      if (IsInStd && llvm::StringSwitch<bool>(R->getName())
432              .Cases("basic_string", "deque", "forward_list", true)
433              .Cases("list", "map", "multimap", "multiset", true)
434              .Cases("priority_queue", "queue", "set", "stack", true)
435              .Cases("unordered_map", "unordered_set", "vector", true)
436              .Default(false)) {
437        InitSeq.InitializeFrom(
438            SemaRef, Entity,
439            InitializationKind::CreateValue(Loc, Loc, Loc, true),
440            MultiExprArg(), /*TopLevelOfInitList=*/false);
441        // Emit a warning for this.  System header warnings aren't shown
442        // by default, but people working on system headers should see it.
443        if (!VerifyOnly) {
444          SemaRef.Diag(CtorDecl->getLocation(),
445                       diag::warn_invalid_initializer_from_system_header);
446          if (Entity.getKind() == InitializedEntity::EK_Member)
447            SemaRef.Diag(Entity.getDecl()->getLocation(),
448                         diag::note_used_in_initialization_here);
449          else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
450            SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
451        }
452      }
453    }
454  }
455  if (!InitSeq) {
456    if (!VerifyOnly) {
457      InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
458      if (Entity.getKind() == InitializedEntity::EK_Member)
459        SemaRef.Diag(Entity.getDecl()->getLocation(),
460                     diag::note_in_omitted_aggregate_initializer)
461          << /*field*/1 << Entity.getDecl();
462      else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
463        SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
464          << /*array element*/0 << Entity.getElementIndex();
465    }
466    return ExprError();
467  }
468
469  return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
470                    : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
471}
472
473void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
474                                              SourceLocation Loc) {
475  assert(VerifyOnly &&
476         "CheckEmptyInitializable is only inteded for verification mode.");
477  if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid())
478    hadError = true;
479}
480
481void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
482                                        const InitializedEntity &ParentEntity,
483                                              InitListExpr *ILE,
484                                              bool &RequiresSecondPass,
485                                              bool FillWithNoInit) {
486  SourceLocation Loc = ILE->getLocEnd();
487  unsigned NumInits = ILE->getNumInits();
488  InitializedEntity MemberEntity
489    = InitializedEntity::InitializeMember(Field, &ParentEntity);
490
491  if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
492    if (!RType->getDecl()->isUnion())
493      assert(Init < NumInits && "This ILE should have been expanded");
494
495  if (Init >= NumInits || !ILE->getInit(Init)) {
496    if (FillWithNoInit) {
497      Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
498      if (Init < NumInits)
499        ILE->setInit(Init, Filler);
500      else
501        ILE->updateInit(SemaRef.Context, Init, Filler);
502      return;
503    }
504    // C++1y [dcl.init.aggr]p7:
505    //   If there are fewer initializer-clauses in the list than there are
506    //   members in the aggregate, then each member not explicitly initialized
507    //   shall be initialized from its brace-or-equal-initializer [...]
508    if (Field->hasInClassInitializer()) {
509      ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
510      if (DIE.isInvalid()) {
511        hadError = true;
512        return;
513      }
514      if (Init < NumInits)
515        ILE->setInit(Init, DIE.get());
516      else {
517        ILE->updateInit(SemaRef.Context, Init, DIE.get());
518        RequiresSecondPass = true;
519      }
520      return;
521    }
522
523    if (Field->getType()->isReferenceType()) {
524      // C++ [dcl.init.aggr]p9:
525      //   If an incomplete or empty initializer-list leaves a
526      //   member of reference type uninitialized, the program is
527      //   ill-formed.
528      SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
529        << Field->getType()
530        << ILE->getSyntacticForm()->getSourceRange();
531      SemaRef.Diag(Field->getLocation(),
532                   diag::note_uninit_reference_member);
533      hadError = true;
534      return;
535    }
536
537    ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
538                                             /*VerifyOnly*/false);
539    if (MemberInit.isInvalid()) {
540      hadError = true;
541      return;
542    }
543
544    if (hadError) {
545      // Do nothing
546    } else if (Init < NumInits) {
547      ILE->setInit(Init, MemberInit.getAs<Expr>());
548    } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
549      // Empty initialization requires a constructor call, so
550      // extend the initializer list to include the constructor
551      // call and make a note that we'll need to take another pass
552      // through the initializer list.
553      ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
554      RequiresSecondPass = true;
555    }
556  } else if (InitListExpr *InnerILE
557               = dyn_cast<InitListExpr>(ILE->getInit(Init)))
558    FillInEmptyInitializations(MemberEntity, InnerILE,
559                               RequiresSecondPass, FillWithNoInit);
560  else if (DesignatedInitUpdateExpr *InnerDIUE
561               = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
562    FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
563                               RequiresSecondPass, /*FillWithNoInit =*/ true);
564}
565
566/// Recursively replaces NULL values within the given initializer list
567/// with expressions that perform value-initialization of the
568/// appropriate type.
569void
570InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
571                                            InitListExpr *ILE,
572                                            bool &RequiresSecondPass,
573                                            bool FillWithNoInit) {
574  assert((ILE->getType() != SemaRef.Context.VoidTy) &&
575         "Should not have void type");
576
577  if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
578    const RecordDecl *RDecl = RType->getDecl();
579    if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
580      FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
581                              Entity, ILE, RequiresSecondPass, FillWithNoInit);
582    else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
583             cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
584      for (auto *Field : RDecl->fields()) {
585        if (Field->hasInClassInitializer()) {
586          FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
587                                  FillWithNoInit);
588          break;
589        }
590      }
591    } else {
592      // The fields beyond ILE->getNumInits() are default initialized, so in
593      // order to leave them uninitialized, the ILE is expanded and the extra
594      // fields are then filled with NoInitExpr.
595      unsigned NumFields = 0;
596      for (auto *Field : RDecl->fields())
597        if (!Field->isUnnamedBitfield())
598          ++NumFields;
599      if (ILE->getNumInits() < NumFields)
600        ILE->resizeInits(SemaRef.Context, NumFields);
601
602      unsigned Init = 0;
603      for (auto *Field : RDecl->fields()) {
604        if (Field->isUnnamedBitfield())
605          continue;
606
607        if (hadError)
608          return;
609
610        FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
611                                FillWithNoInit);
612        if (hadError)
613          return;
614
615        ++Init;
616
617        // Only look at the first initialization of a union.
618        if (RDecl->isUnion())
619          break;
620      }
621    }
622
623    return;
624  }
625
626  QualType ElementType;
627
628  InitializedEntity ElementEntity = Entity;
629  unsigned NumInits = ILE->getNumInits();
630  unsigned NumElements = NumInits;
631  if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
632    ElementType = AType->getElementType();
633    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
634      NumElements = CAType->getSize().getZExtValue();
635    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
636                                                         0, Entity);
637  } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
638    ElementType = VType->getElementType();
639    NumElements = VType->getNumElements();
640    ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
641                                                         0, Entity);
642  } else
643    ElementType = ILE->getType();
644
645  for (unsigned Init = 0; Init != NumElements; ++Init) {
646    if (hadError)
647      return;
648
649    if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
650        ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
651      ElementEntity.setElementIndex(Init);
652
653    Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
654    if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
655      ILE->setInit(Init, ILE->getArrayFiller());
656    else if (!InitExpr && !ILE->hasArrayFiller()) {
657      Expr *Filler = nullptr;
658
659      if (FillWithNoInit)
660        Filler = new (SemaRef.Context) NoInitExpr(ElementType);
661      else {
662        ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
663                                                  ElementEntity,
664                                                  /*VerifyOnly*/false);
665        if (ElementInit.isInvalid()) {
666          hadError = true;
667          return;
668        }
669
670        Filler = ElementInit.getAs<Expr>();
671      }
672
673      if (hadError) {
674        // Do nothing
675      } else if (Init < NumInits) {
676        // For arrays, just set the expression used for value-initialization
677        // of the "holes" in the array.
678        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
679          ILE->setArrayFiller(Filler);
680        else
681          ILE->setInit(Init, Filler);
682      } else {
683        // For arrays, just set the expression used for value-initialization
684        // of the rest of elements and exit.
685        if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
686          ILE->setArrayFiller(Filler);
687          return;
688        }
689
690        if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
691          // Empty initialization requires a constructor call, so
692          // extend the initializer list to include the constructor
693          // call and make a note that we'll need to take another pass
694          // through the initializer list.
695          ILE->updateInit(SemaRef.Context, Init, Filler);
696          RequiresSecondPass = true;
697        }
698      }
699    } else if (InitListExpr *InnerILE
700                 = dyn_cast_or_null<InitListExpr>(InitExpr))
701      FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
702                                 FillWithNoInit);
703    else if (DesignatedInitUpdateExpr *InnerDIUE
704                 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
705      FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
706                                 RequiresSecondPass, /*FillWithNoInit =*/ true);
707  }
708}
709
710
711InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
712                                 InitListExpr *IL, QualType &T,
713                                 bool VerifyOnly)
714  : SemaRef(S), VerifyOnly(VerifyOnly) {
715  // FIXME: Check that IL isn't already the semantic form of some other
716  // InitListExpr. If it is, we'd create a broken AST.
717
718  hadError = false;
719
720  FullyStructuredList =
721      getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
722  CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
723                        /*TopLevelObject=*/true);
724
725  if (!hadError && !VerifyOnly) {
726    bool RequiresSecondPass = false;
727    FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
728    if (RequiresSecondPass && !hadError)
729      FillInEmptyInitializations(Entity, FullyStructuredList,
730                                 RequiresSecondPass);
731  }
732}
733
734int InitListChecker::numArrayElements(QualType DeclType) {
735  // FIXME: use a proper constant
736  int maxElements = 0x7FFFFFFF;
737  if (const ConstantArrayType *CAT =
738        SemaRef.Context.getAsConstantArrayType(DeclType)) {
739    maxElements = static_cast<int>(CAT->getSize().getZExtValue());
740  }
741  return maxElements;
742}
743
744int InitListChecker::numStructUnionElements(QualType DeclType) {
745  RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
746  int InitializableMembers = 0;
747  for (const auto *Field : structDecl->fields())
748    if (!Field->isUnnamedBitfield())
749      ++InitializableMembers;
750
751  if (structDecl->isUnion())
752    return std::min(InitializableMembers, 1);
753  return InitializableMembers - structDecl->hasFlexibleArrayMember();
754}
755
756/// Check whether the range of the initializer \p ParentIList from element
757/// \p Index onwards can be used to initialize an object of type \p T. Update
758/// \p Index to indicate how many elements of the list were consumed.
759///
760/// This also fills in \p StructuredList, from element \p StructuredIndex
761/// onwards, with the fully-braced, desugared form of the initialization.
762void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
763                                            InitListExpr *ParentIList,
764                                            QualType T, unsigned &Index,
765                                            InitListExpr *StructuredList,
766                                            unsigned &StructuredIndex) {
767  int maxElements = 0;
768
769  if (T->isArrayType())
770    maxElements = numArrayElements(T);
771  else if (T->isRecordType())
772    maxElements = numStructUnionElements(T);
773  else if (T->isVectorType())
774    maxElements = T->getAs<VectorType>()->getNumElements();
775  else
776    llvm_unreachable("CheckImplicitInitList(): Illegal type");
777
778  if (maxElements == 0) {
779    if (!VerifyOnly)
780      SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
781                   diag::err_implicit_empty_initializer);
782    ++Index;
783    hadError = true;
784    return;
785  }
786
787  // Build a structured initializer list corresponding to this subobject.
788  InitListExpr *StructuredSubobjectInitList
789    = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
790                                 StructuredIndex,
791          SourceRange(ParentIList->getInit(Index)->getLocStart(),
792                      ParentIList->getSourceRange().getEnd()));
793  unsigned StructuredSubobjectInitIndex = 0;
794
795  // Check the element types and build the structural subobject.
796  unsigned StartIndex = Index;
797  CheckListElementTypes(Entity, ParentIList, T,
798                        /*SubobjectIsDesignatorContext=*/false, Index,
799                        StructuredSubobjectInitList,
800                        StructuredSubobjectInitIndex);
801
802  if (!VerifyOnly) {
803    StructuredSubobjectInitList->setType(T);
804
805    unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
806    // Update the structured sub-object initializer so that it's ending
807    // range corresponds with the end of the last initializer it used.
808    if (EndIndex < ParentIList->getNumInits() &&
809        ParentIList->getInit(EndIndex)) {
810      SourceLocation EndLoc
811        = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
812      StructuredSubobjectInitList->setRBraceLoc(EndLoc);
813    }
814
815    // Complain about missing braces.
816    if (T->isArrayType() || T->isRecordType()) {
817      SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
818                   diag::warn_missing_braces)
819          << StructuredSubobjectInitList->getSourceRange()
820          << FixItHint::CreateInsertion(
821                 StructuredSubobjectInitList->getLocStart(), "{")
822          << FixItHint::CreateInsertion(
823                 SemaRef.getLocForEndOfToken(
824                     StructuredSubobjectInitList->getLocEnd()),
825                 "}");
826    }
827  }
828}
829
830/// Warn that \p Entity was of scalar type and was initialized by a
831/// single-element braced initializer list.
832static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
833                                 SourceRange Braces) {
834  // Don't warn during template instantiation. If the initialization was
835  // non-dependent, we warned during the initial parse; otherwise, the
836  // type might not be scalar in some uses of the template.
837  if (!S.ActiveTemplateInstantiations.empty())
838    return;
839
840  unsigned DiagID = 0;
841
842  switch (Entity.getKind()) {
843  case InitializedEntity::EK_VectorElement:
844  case InitializedEntity::EK_ComplexElement:
845  case InitializedEntity::EK_ArrayElement:
846  case InitializedEntity::EK_Parameter:
847  case InitializedEntity::EK_Parameter_CF_Audited:
848  case InitializedEntity::EK_Result:
849    // Extra braces here are suspicious.
850    DiagID = diag::warn_braces_around_scalar_init;
851    break;
852
853  case InitializedEntity::EK_Member:
854    // Warn on aggregate initialization but not on ctor init list or
855    // default member initializer.
856    if (Entity.getParent())
857      DiagID = diag::warn_braces_around_scalar_init;
858    break;
859
860  case InitializedEntity::EK_Variable:
861  case InitializedEntity::EK_LambdaCapture:
862    // No warning, might be direct-list-initialization.
863    // FIXME: Should we warn for copy-list-initialization in these cases?
864    break;
865
866  case InitializedEntity::EK_New:
867  case InitializedEntity::EK_Temporary:
868  case InitializedEntity::EK_CompoundLiteralInit:
869    // No warning, braces are part of the syntax of the underlying construct.
870    break;
871
872  case InitializedEntity::EK_RelatedResult:
873    // No warning, we already warned when initializing the result.
874    break;
875
876  case InitializedEntity::EK_Exception:
877  case InitializedEntity::EK_Base:
878  case InitializedEntity::EK_Delegating:
879  case InitializedEntity::EK_BlockElement:
880    llvm_unreachable("unexpected braced scalar init");
881  }
882
883  if (DiagID) {
884    S.Diag(Braces.getBegin(), DiagID)
885      << Braces
886      << FixItHint::CreateRemoval(Braces.getBegin())
887      << FixItHint::CreateRemoval(Braces.getEnd());
888  }
889}
890
891
892/// Check whether the initializer \p IList (that was written with explicit
893/// braces) can be used to initialize an object of type \p T.
894///
895/// This also fills in \p StructuredList with the fully-braced, desugared
896/// form of the initialization.
897void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
898                                            InitListExpr *IList, QualType &T,
899                                            InitListExpr *StructuredList,
900                                            bool TopLevelObject) {
901  if (!VerifyOnly) {
902    SyntacticToSemantic[IList] = StructuredList;
903    StructuredList->setSyntacticForm(IList);
904  }
905
906  unsigned Index = 0, StructuredIndex = 0;
907  CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
908                        Index, StructuredList, StructuredIndex, TopLevelObject);
909  if (!VerifyOnly) {
910    QualType ExprTy = T;
911    if (!ExprTy->isArrayType())
912      ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
913    IList->setType(ExprTy);
914    StructuredList->setType(ExprTy);
915  }
916  if (hadError)
917    return;
918
919  if (Index < IList->getNumInits()) {
920    // We have leftover initializers
921    if (VerifyOnly) {
922      if (SemaRef.getLangOpts().CPlusPlus ||
923          (SemaRef.getLangOpts().OpenCL &&
924           IList->getType()->isVectorType())) {
925        hadError = true;
926      }
927      return;
928    }
929
930    if (StructuredIndex == 1 &&
931        IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
932            SIF_None) {
933      unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
934      if (SemaRef.getLangOpts().CPlusPlus) {
935        DK = diag::err_excess_initializers_in_char_array_initializer;
936        hadError = true;
937      }
938      // Special-case
939      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
940        << IList->getInit(Index)->getSourceRange();
941    } else if (!T->isIncompleteType()) {
942      // Don't complain for incomplete types, since we'll get an error
943      // elsewhere
944      QualType CurrentObjectType = StructuredList->getType();
945      int initKind =
946        CurrentObjectType->isArrayType()? 0 :
947        CurrentObjectType->isVectorType()? 1 :
948        CurrentObjectType->isScalarType()? 2 :
949        CurrentObjectType->isUnionType()? 3 :
950        4;
951
952      unsigned DK = diag::ext_excess_initializers;
953      if (SemaRef.getLangOpts().CPlusPlus) {
954        DK = diag::err_excess_initializers;
955        hadError = true;
956      }
957      if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
958        DK = diag::err_excess_initializers;
959        hadError = true;
960      }
961
962      SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
963        << initKind << IList->getInit(Index)->getSourceRange();
964    }
965  }
966
967  if (!VerifyOnly && T->isScalarType() &&
968      IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
969    warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
970}
971
972void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
973                                            InitListExpr *IList,
974                                            QualType &DeclType,
975                                            bool SubobjectIsDesignatorContext,
976                                            unsigned &Index,
977                                            InitListExpr *StructuredList,
978                                            unsigned &StructuredIndex,
979                                            bool TopLevelObject) {
980  if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
981    // Explicitly braced initializer for complex type can be real+imaginary
982    // parts.
983    CheckComplexType(Entity, IList, DeclType, Index,
984                     StructuredList, StructuredIndex);
985  } else if (DeclType->isScalarType()) {
986    CheckScalarType(Entity, IList, DeclType, Index,
987                    StructuredList, StructuredIndex);
988  } else if (DeclType->isVectorType()) {
989    CheckVectorType(Entity, IList, DeclType, Index,
990                    StructuredList, StructuredIndex);
991  } else if (DeclType->isRecordType()) {
992    assert(DeclType->isAggregateType() &&
993           "non-aggregate records should be handed in CheckSubElementType");
994    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
995    CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
996                          SubobjectIsDesignatorContext, Index,
997                          StructuredList, StructuredIndex,
998                          TopLevelObject);
999  } else if (DeclType->isArrayType()) {
1000    llvm::APSInt Zero(
1001                    SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1002                    false);
1003    CheckArrayType(Entity, IList, DeclType, Zero,
1004                   SubobjectIsDesignatorContext, Index,
1005                   StructuredList, StructuredIndex);
1006  } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1007    // This type is invalid, issue a diagnostic.
1008    ++Index;
1009    if (!VerifyOnly)
1010      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1011        << DeclType;
1012    hadError = true;
1013  } else if (DeclType->isReferenceType()) {
1014    CheckReferenceType(Entity, IList, DeclType, Index,
1015                       StructuredList, StructuredIndex);
1016  } else if (DeclType->isObjCObjectType()) {
1017    if (!VerifyOnly)
1018      SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1019        << DeclType;
1020    hadError = true;
1021  } else {
1022    if (!VerifyOnly)
1023      SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1024        << DeclType;
1025    hadError = true;
1026  }
1027}
1028
1029void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1030                                          InitListExpr *IList,
1031                                          QualType ElemType,
1032                                          unsigned &Index,
1033                                          InitListExpr *StructuredList,
1034                                          unsigned &StructuredIndex) {
1035  Expr *expr = IList->getInit(Index);
1036
1037  if (ElemType->isReferenceType())
1038    return CheckReferenceType(Entity, IList, ElemType, Index,
1039                              StructuredList, StructuredIndex);
1040
1041  if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1042    if (SubInitList->getNumInits() == 1 &&
1043        IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1044        SIF_None) {
1045      expr = SubInitList->getInit(0);
1046    } else if (!SemaRef.getLangOpts().CPlusPlus) {
1047      InitListExpr *InnerStructuredList
1048        = getStructuredSubobjectInit(IList, Index, ElemType,
1049                                     StructuredList, StructuredIndex,
1050                                     SubInitList->getSourceRange(), true);
1051      CheckExplicitInitList(Entity, SubInitList, ElemType,
1052                            InnerStructuredList);
1053
1054      if (!hadError && !VerifyOnly) {
1055        bool RequiresSecondPass = false;
1056        FillInEmptyInitializations(Entity, InnerStructuredList,
1057                                   RequiresSecondPass);
1058        if (RequiresSecondPass && !hadError)
1059          FillInEmptyInitializations(Entity, InnerStructuredList,
1060                                     RequiresSecondPass);
1061      }
1062      ++StructuredIndex;
1063      ++Index;
1064      return;
1065    }
1066    // C++ initialization is handled later.
1067  } else if (isa<ImplicitValueInitExpr>(expr)) {
1068    // This happens during template instantiation when we see an InitListExpr
1069    // that we've already checked once.
1070    assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1071           "found implicit initialization for the wrong type");
1072    if (!VerifyOnly)
1073      UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1074    ++Index;
1075    return;
1076  }
1077
1078  if (SemaRef.getLangOpts().CPlusPlus) {
1079    // C++ [dcl.init.aggr]p2:
1080    //   Each member is copy-initialized from the corresponding
1081    //   initializer-clause.
1082
1083    // FIXME: Better EqualLoc?
1084    InitializationKind Kind =
1085      InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1086    InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1087                               /*TopLevelOfInitList*/ true);
1088
1089    // C++14 [dcl.init.aggr]p13:
1090    //   If the assignment-expression can initialize a member, the member is
1091    //   initialized. Otherwise [...] brace elision is assumed
1092    //
1093    // Brace elision is never performed if the element is not an
1094    // assignment-expression.
1095    if (Seq || isa<InitListExpr>(expr)) {
1096      if (!VerifyOnly) {
1097        ExprResult Result =
1098          Seq.Perform(SemaRef, Entity, Kind, expr);
1099        if (Result.isInvalid())
1100          hadError = true;
1101
1102        UpdateStructuredListElement(StructuredList, StructuredIndex,
1103                                    Result.getAs<Expr>());
1104      } else if (!Seq)
1105        hadError = true;
1106      ++Index;
1107      return;
1108    }
1109
1110    // Fall through for subaggregate initialization
1111  } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1112    // FIXME: Need to handle atomic aggregate types with implicit init lists.
1113    return CheckScalarType(Entity, IList, ElemType, Index,
1114                           StructuredList, StructuredIndex);
1115  } else if (const ArrayType *arrayType =
1116                 SemaRef.Context.getAsArrayType(ElemType)) {
1117    // arrayType can be incomplete if we're initializing a flexible
1118    // array member.  There's nothing we can do with the completed
1119    // type here, though.
1120
1121    if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1122      if (!VerifyOnly) {
1123        CheckStringInit(expr, ElemType, arrayType, SemaRef);
1124        UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1125      }
1126      ++Index;
1127      return;
1128    }
1129
1130    // Fall through for subaggregate initialization.
1131
1132  } else {
1133    assert((ElemType->isRecordType() || ElemType->isVectorType()) &&
1134           "Unexpected type");
1135
1136    // C99 6.7.8p13:
1137    //
1138    //   The initializer for a structure or union object that has
1139    //   automatic storage duration shall be either an initializer
1140    //   list as described below, or a single expression that has
1141    //   compatible structure or union type. In the latter case, the
1142    //   initial value of the object, including unnamed members, is
1143    //   that of the expression.
1144    ExprResult ExprRes = expr;
1145    if (SemaRef.CheckSingleAssignmentConstraints(
1146            ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1147      if (ExprRes.isInvalid())
1148        hadError = true;
1149      else {
1150        ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1151          if (ExprRes.isInvalid())
1152            hadError = true;
1153      }
1154      UpdateStructuredListElement(StructuredList, StructuredIndex,
1155                                  ExprRes.getAs<Expr>());
1156      ++Index;
1157      return;
1158    }
1159    ExprRes.get();
1160    // Fall through for subaggregate initialization
1161  }
1162
1163  // C++ [dcl.init.aggr]p12:
1164  //
1165  //   [...] Otherwise, if the member is itself a non-empty
1166  //   subaggregate, brace elision is assumed and the initializer is
1167  //   considered for the initialization of the first member of
1168  //   the subaggregate.
1169  if (!SemaRef.getLangOpts().OpenCL &&
1170      (ElemType->isAggregateType() || ElemType->isVectorType())) {
1171    CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1172                          StructuredIndex);
1173    ++StructuredIndex;
1174  } else {
1175    if (!VerifyOnly) {
1176      // We cannot initialize this element, so let
1177      // PerformCopyInitialization produce the appropriate diagnostic.
1178      SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1179                                        /*TopLevelOfInitList=*/true);
1180    }
1181    hadError = true;
1182    ++Index;
1183    ++StructuredIndex;
1184  }
1185}
1186
1187void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1188                                       InitListExpr *IList, QualType DeclType,
1189                                       unsigned &Index,
1190                                       InitListExpr *StructuredList,
1191                                       unsigned &StructuredIndex) {
1192  assert(Index == 0 && "Index in explicit init list must be zero");
1193
1194  // As an extension, clang supports complex initializers, which initialize
1195  // a complex number component-wise.  When an explicit initializer list for
1196  // a complex number contains two two initializers, this extension kicks in:
1197  // it exepcts the initializer list to contain two elements convertible to
1198  // the element type of the complex type. The first element initializes
1199  // the real part, and the second element intitializes the imaginary part.
1200
1201  if (IList->getNumInits() != 2)
1202    return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1203                           StructuredIndex);
1204
1205  // This is an extension in C.  (The builtin _Complex type does not exist
1206  // in the C++ standard.)
1207  if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1208    SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1209      << IList->getSourceRange();
1210
1211  // Initialize the complex number.
1212  QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1213  InitializedEntity ElementEntity =
1214    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1215
1216  for (unsigned i = 0; i < 2; ++i) {
1217    ElementEntity.setElementIndex(Index);
1218    CheckSubElementType(ElementEntity, IList, elementType, Index,
1219                        StructuredList, StructuredIndex);
1220  }
1221}
1222
1223
1224void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1225                                      InitListExpr *IList, QualType DeclType,
1226                                      unsigned &Index,
1227                                      InitListExpr *StructuredList,
1228                                      unsigned &StructuredIndex) {
1229  if (Index >= IList->getNumInits()) {
1230    if (!VerifyOnly)
1231      SemaRef.Diag(IList->getLocStart(),
1232                   SemaRef.getLangOpts().CPlusPlus11 ?
1233                     diag::warn_cxx98_compat_empty_scalar_initializer :
1234                     diag::err_empty_scalar_initializer)
1235        << IList->getSourceRange();
1236    hadError = !SemaRef.getLangOpts().CPlusPlus11;
1237    ++Index;
1238    ++StructuredIndex;
1239    return;
1240  }
1241
1242  Expr *expr = IList->getInit(Index);
1243  if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1244    // FIXME: This is invalid, and accepting it causes overload resolution
1245    // to pick the wrong overload in some corner cases.
1246    if (!VerifyOnly)
1247      SemaRef.Diag(SubIList->getLocStart(),
1248                   diag::ext_many_braces_around_scalar_init)
1249        << SubIList->getSourceRange();
1250
1251    CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1252                    StructuredIndex);
1253    return;
1254  } else if (isa<DesignatedInitExpr>(expr)) {
1255    if (!VerifyOnly)
1256      SemaRef.Diag(expr->getLocStart(),
1257                   diag::err_designator_for_scalar_init)
1258        << DeclType << expr->getSourceRange();
1259    hadError = true;
1260    ++Index;
1261    ++StructuredIndex;
1262    return;
1263  }
1264
1265  if (VerifyOnly) {
1266    if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1267      hadError = true;
1268    ++Index;
1269    return;
1270  }
1271
1272  ExprResult Result =
1273    SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1274                                      /*TopLevelOfInitList=*/true);
1275
1276  Expr *ResultExpr = nullptr;
1277
1278  if (Result.isInvalid())
1279    hadError = true; // types weren't compatible.
1280  else {
1281    ResultExpr = Result.getAs<Expr>();
1282
1283    if (ResultExpr != expr) {
1284      // The type was promoted, update initializer list.
1285      IList->setInit(Index, ResultExpr);
1286    }
1287  }
1288  if (hadError)
1289    ++StructuredIndex;
1290  else
1291    UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1292  ++Index;
1293}
1294
1295void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1296                                         InitListExpr *IList, QualType DeclType,
1297                                         unsigned &Index,
1298                                         InitListExpr *StructuredList,
1299                                         unsigned &StructuredIndex) {
1300  if (Index >= IList->getNumInits()) {
1301    // FIXME: It would be wonderful if we could point at the actual member. In
1302    // general, it would be useful to pass location information down the stack,
1303    // so that we know the location (or decl) of the "current object" being
1304    // initialized.
1305    if (!VerifyOnly)
1306      SemaRef.Diag(IList->getLocStart(),
1307                    diag::err_init_reference_member_uninitialized)
1308        << DeclType
1309        << IList->getSourceRange();
1310    hadError = true;
1311    ++Index;
1312    ++StructuredIndex;
1313    return;
1314  }
1315
1316  Expr *expr = IList->getInit(Index);
1317  if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1318    if (!VerifyOnly)
1319      SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1320        << DeclType << IList->getSourceRange();
1321    hadError = true;
1322    ++Index;
1323    ++StructuredIndex;
1324    return;
1325  }
1326
1327  if (VerifyOnly) {
1328    if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1329      hadError = true;
1330    ++Index;
1331    return;
1332  }
1333
1334  ExprResult Result =
1335      SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1336                                        /*TopLevelOfInitList=*/true);
1337
1338  if (Result.isInvalid())
1339    hadError = true;
1340
1341  expr = Result.getAs<Expr>();
1342  IList->setInit(Index, expr);
1343
1344  if (hadError)
1345    ++StructuredIndex;
1346  else
1347    UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1348  ++Index;
1349}
1350
1351void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1352                                      InitListExpr *IList, QualType DeclType,
1353                                      unsigned &Index,
1354                                      InitListExpr *StructuredList,
1355                                      unsigned &StructuredIndex) {
1356  const VectorType *VT = DeclType->getAs<VectorType>();
1357  unsigned maxElements = VT->getNumElements();
1358  unsigned numEltsInit = 0;
1359  QualType elementType = VT->getElementType();
1360
1361  if (Index >= IList->getNumInits()) {
1362    // Make sure the element type can be value-initialized.
1363    if (VerifyOnly)
1364      CheckEmptyInitializable(
1365          InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1366          IList->getLocEnd());
1367    return;
1368  }
1369
1370  if (!SemaRef.getLangOpts().OpenCL) {
1371    // If the initializing element is a vector, try to copy-initialize
1372    // instead of breaking it apart (which is doomed to failure anyway).
1373    Expr *Init = IList->getInit(Index);
1374    if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1375      if (VerifyOnly) {
1376        if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1377          hadError = true;
1378        ++Index;
1379        return;
1380      }
1381
1382  ExprResult Result =
1383      SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1384                                        /*TopLevelOfInitList=*/true);
1385
1386      Expr *ResultExpr = nullptr;
1387      if (Result.isInvalid())
1388        hadError = true; // types weren't compatible.
1389      else {
1390        ResultExpr = Result.getAs<Expr>();
1391
1392        if (ResultExpr != Init) {
1393          // The type was promoted, update initializer list.
1394          IList->setInit(Index, ResultExpr);
1395        }
1396      }
1397      if (hadError)
1398        ++StructuredIndex;
1399      else
1400        UpdateStructuredListElement(StructuredList, StructuredIndex,
1401                                    ResultExpr);
1402      ++Index;
1403      return;
1404    }
1405
1406    InitializedEntity ElementEntity =
1407      InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1408
1409    for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1410      // Don't attempt to go past the end of the init list
1411      if (Index >= IList->getNumInits()) {
1412        if (VerifyOnly)
1413          CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1414        break;
1415      }
1416
1417      ElementEntity.setElementIndex(Index);
1418      CheckSubElementType(ElementEntity, IList, elementType, Index,
1419                          StructuredList, StructuredIndex);
1420    }
1421
1422    if (VerifyOnly)
1423      return;
1424
1425    bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1426    const VectorType *T = Entity.getType()->getAs<VectorType>();
1427    if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1428                        T->getVectorKind() == VectorType::NeonPolyVector)) {
1429      // The ability to use vector initializer lists is a GNU vector extension
1430      // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1431      // endian machines it works fine, however on big endian machines it
1432      // exhibits surprising behaviour:
1433      //
1434      //   uint32x2_t x = {42, 64};
1435      //   return vget_lane_u32(x, 0); // Will return 64.
1436      //
1437      // Because of this, explicitly call out that it is non-portable.
1438      //
1439      SemaRef.Diag(IList->getLocStart(),
1440                   diag::warn_neon_vector_initializer_non_portable);
1441
1442      const char *typeCode;
1443      unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1444
1445      if (elementType->isFloatingType())
1446        typeCode = "f";
1447      else if (elementType->isSignedIntegerType())
1448        typeCode = "s";
1449      else if (elementType->isUnsignedIntegerType())
1450        typeCode = "u";
1451      else
1452        llvm_unreachable("Invalid element type!");
1453
1454      SemaRef.Diag(IList->getLocStart(),
1455                   SemaRef.Context.getTypeSize(VT) > 64 ?
1456                   diag::note_neon_vector_initializer_non_portable_q :
1457                   diag::note_neon_vector_initializer_non_portable)
1458        << typeCode << typeSize;
1459    }
1460
1461    return;
1462  }
1463
1464  InitializedEntity ElementEntity =
1465    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1466
1467  // OpenCL initializers allows vectors to be constructed from vectors.
1468  for (unsigned i = 0; i < maxElements; ++i) {
1469    // Don't attempt to go past the end of the init list
1470    if (Index >= IList->getNumInits())
1471      break;
1472
1473    ElementEntity.setElementIndex(Index);
1474
1475    QualType IType = IList->getInit(Index)->getType();
1476    if (!IType->isVectorType()) {
1477      CheckSubElementType(ElementEntity, IList, elementType, Index,
1478                          StructuredList, StructuredIndex);
1479      ++numEltsInit;
1480    } else {
1481      QualType VecType;
1482      const VectorType *IVT = IType->getAs<VectorType>();
1483      unsigned numIElts = IVT->getNumElements();
1484
1485      if (IType->isExtVectorType())
1486        VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1487      else
1488        VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1489                                                IVT->getVectorKind());
1490      CheckSubElementType(ElementEntity, IList, VecType, Index,
1491                          StructuredList, StructuredIndex);
1492      numEltsInit += numIElts;
1493    }
1494  }
1495
1496  // OpenCL requires all elements to be initialized.
1497  if (numEltsInit != maxElements) {
1498    if (!VerifyOnly)
1499      SemaRef.Diag(IList->getLocStart(),
1500                   diag::err_vector_incorrect_num_initializers)
1501        << (numEltsInit < maxElements) << maxElements << numEltsInit;
1502    hadError = true;
1503  }
1504}
1505
1506void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1507                                     InitListExpr *IList, QualType &DeclType,
1508                                     llvm::APSInt elementIndex,
1509                                     bool SubobjectIsDesignatorContext,
1510                                     unsigned &Index,
1511                                     InitListExpr *StructuredList,
1512                                     unsigned &StructuredIndex) {
1513  const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1514
1515  // Check for the special-case of initializing an array with a string.
1516  if (Index < IList->getNumInits()) {
1517    if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1518        SIF_None) {
1519      // We place the string literal directly into the resulting
1520      // initializer list. This is the only place where the structure
1521      // of the structured initializer list doesn't match exactly,
1522      // because doing so would involve allocating one character
1523      // constant for each string.
1524      if (!VerifyOnly) {
1525        CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1526        UpdateStructuredListElement(StructuredList, StructuredIndex,
1527                                    IList->getInit(Index));
1528        StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1529      }
1530      ++Index;
1531      return;
1532    }
1533  }
1534  if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1535    // Check for VLAs; in standard C it would be possible to check this
1536    // earlier, but I don't know where clang accepts VLAs (gcc accepts
1537    // them in all sorts of strange places).
1538    if (!VerifyOnly)
1539      SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1540                    diag::err_variable_object_no_init)
1541        << VAT->getSizeExpr()->getSourceRange();
1542    hadError = true;
1543    ++Index;
1544    ++StructuredIndex;
1545    return;
1546  }
1547
1548  // We might know the maximum number of elements in advance.
1549  llvm::APSInt maxElements(elementIndex.getBitWidth(),
1550                           elementIndex.isUnsigned());
1551  bool maxElementsKnown = false;
1552  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1553    maxElements = CAT->getSize();
1554    elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1555    elementIndex.setIsUnsigned(maxElements.isUnsigned());
1556    maxElementsKnown = true;
1557  }
1558
1559  QualType elementType = arrayType->getElementType();
1560  while (Index < IList->getNumInits()) {
1561    Expr *Init = IList->getInit(Index);
1562    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1563      // If we're not the subobject that matches up with the '{' for
1564      // the designator, we shouldn't be handling the
1565      // designator. Return immediately.
1566      if (!SubobjectIsDesignatorContext)
1567        return;
1568
1569      // Handle this designated initializer. elementIndex will be
1570      // updated to be the next array element we'll initialize.
1571      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1572                                     DeclType, nullptr, &elementIndex, Index,
1573                                     StructuredList, StructuredIndex, true,
1574                                     false)) {
1575        hadError = true;
1576        continue;
1577      }
1578
1579      if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1580        maxElements = maxElements.extend(elementIndex.getBitWidth());
1581      else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1582        elementIndex = elementIndex.extend(maxElements.getBitWidth());
1583      elementIndex.setIsUnsigned(maxElements.isUnsigned());
1584
1585      // If the array is of incomplete type, keep track of the number of
1586      // elements in the initializer.
1587      if (!maxElementsKnown && elementIndex > maxElements)
1588        maxElements = elementIndex;
1589
1590      continue;
1591    }
1592
1593    // If we know the maximum number of elements, and we've already
1594    // hit it, stop consuming elements in the initializer list.
1595    if (maxElementsKnown && elementIndex == maxElements)
1596      break;
1597
1598    InitializedEntity ElementEntity =
1599      InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1600                                           Entity);
1601    // Check this element.
1602    CheckSubElementType(ElementEntity, IList, elementType, Index,
1603                        StructuredList, StructuredIndex);
1604    ++elementIndex;
1605
1606    // If the array is of incomplete type, keep track of the number of
1607    // elements in the initializer.
1608    if (!maxElementsKnown && elementIndex > maxElements)
1609      maxElements = elementIndex;
1610  }
1611  if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1612    // If this is an incomplete array type, the actual type needs to
1613    // be calculated here.
1614    llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1615    if (maxElements == Zero) {
1616      // Sizing an array implicitly to zero is not allowed by ISO C,
1617      // but is supported by GNU.
1618      SemaRef.Diag(IList->getLocStart(),
1619                    diag::ext_typecheck_zero_array_size);
1620    }
1621
1622    DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1623                                                     ArrayType::Normal, 0);
1624  }
1625  if (!hadError && VerifyOnly) {
1626    // Check if there are any members of the array that get value-initialized.
1627    // If so, check if doing that is possible.
1628    // FIXME: This needs to detect holes left by designated initializers too.
1629    if (maxElementsKnown && elementIndex < maxElements)
1630      CheckEmptyInitializable(InitializedEntity::InitializeElement(
1631                                                  SemaRef.Context, 0, Entity),
1632                              IList->getLocEnd());
1633  }
1634}
1635
1636bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1637                                             Expr *InitExpr,
1638                                             FieldDecl *Field,
1639                                             bool TopLevelObject) {
1640  // Handle GNU flexible array initializers.
1641  unsigned FlexArrayDiag;
1642  if (isa<InitListExpr>(InitExpr) &&
1643      cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1644    // Empty flexible array init always allowed as an extension
1645    FlexArrayDiag = diag::ext_flexible_array_init;
1646  } else if (SemaRef.getLangOpts().CPlusPlus) {
1647    // Disallow flexible array init in C++; it is not required for gcc
1648    // compatibility, and it needs work to IRGen correctly in general.
1649    FlexArrayDiag = diag::err_flexible_array_init;
1650  } else if (!TopLevelObject) {
1651    // Disallow flexible array init on non-top-level object
1652    FlexArrayDiag = diag::err_flexible_array_init;
1653  } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1654    // Disallow flexible array init on anything which is not a variable.
1655    FlexArrayDiag = diag::err_flexible_array_init;
1656  } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1657    // Disallow flexible array init on local variables.
1658    FlexArrayDiag = diag::err_flexible_array_init;
1659  } else {
1660    // Allow other cases.
1661    FlexArrayDiag = diag::ext_flexible_array_init;
1662  }
1663
1664  if (!VerifyOnly) {
1665    SemaRef.Diag(InitExpr->getLocStart(),
1666                 FlexArrayDiag)
1667      << InitExpr->getLocStart();
1668    SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1669      << Field;
1670  }
1671
1672  return FlexArrayDiag != diag::ext_flexible_array_init;
1673}
1674
1675void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1676                                            InitListExpr *IList,
1677                                            QualType DeclType,
1678                                            RecordDecl::field_iterator Field,
1679                                            bool SubobjectIsDesignatorContext,
1680                                            unsigned &Index,
1681                                            InitListExpr *StructuredList,
1682                                            unsigned &StructuredIndex,
1683                                            bool TopLevelObject) {
1684  RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1685
1686  // If the record is invalid, some of it's members are invalid. To avoid
1687  // confusion, we forgo checking the intializer for the entire record.
1688  if (structDecl->isInvalidDecl()) {
1689    // Assume it was supposed to consume a single initializer.
1690    ++Index;
1691    hadError = true;
1692    return;
1693  }
1694
1695  if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1696    RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1697
1698    // If there's a default initializer, use it.
1699    if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1700      if (VerifyOnly)
1701        return;
1702      for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1703           Field != FieldEnd; ++Field) {
1704        if (Field->hasInClassInitializer()) {
1705          StructuredList->setInitializedFieldInUnion(*Field);
1706          // FIXME: Actually build a CXXDefaultInitExpr?
1707          return;
1708        }
1709      }
1710    }
1711
1712    // Value-initialize the first member of the union that isn't an unnamed
1713    // bitfield.
1714    for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1715         Field != FieldEnd; ++Field) {
1716      if (!Field->isUnnamedBitfield()) {
1717        if (VerifyOnly)
1718          CheckEmptyInitializable(
1719              InitializedEntity::InitializeMember(*Field, &Entity),
1720              IList->getLocEnd());
1721        else
1722          StructuredList->setInitializedFieldInUnion(*Field);
1723        break;
1724      }
1725    }
1726    return;
1727  }
1728
1729  // If structDecl is a forward declaration, this loop won't do
1730  // anything except look at designated initializers; That's okay,
1731  // because an error should get printed out elsewhere. It might be
1732  // worthwhile to skip over the rest of the initializer, though.
1733  RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1734  RecordDecl::field_iterator FieldEnd = RD->field_end();
1735  bool InitializedSomething = false;
1736  bool CheckForMissingFields = true;
1737  while (Index < IList->getNumInits()) {
1738    Expr *Init = IList->getInit(Index);
1739
1740    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1741      // If we're not the subobject that matches up with the '{' for
1742      // the designator, we shouldn't be handling the
1743      // designator. Return immediately.
1744      if (!SubobjectIsDesignatorContext)
1745        return;
1746
1747      // Handle this designated initializer. Field will be updated to
1748      // the next field that we'll be initializing.
1749      if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1750                                     DeclType, &Field, nullptr, Index,
1751                                     StructuredList, StructuredIndex,
1752                                     true, TopLevelObject))
1753        hadError = true;
1754
1755      InitializedSomething = true;
1756
1757      // Disable check for missing fields when designators are used.
1758      // This matches gcc behaviour.
1759      CheckForMissingFields = false;
1760      continue;
1761    }
1762
1763    if (Field == FieldEnd) {
1764      // We've run out of fields. We're done.
1765      break;
1766    }
1767
1768    // We've already initialized a member of a union. We're done.
1769    if (InitializedSomething && DeclType->isUnionType())
1770      break;
1771
1772    // If we've hit the flexible array member at the end, we're done.
1773    if (Field->getType()->isIncompleteArrayType())
1774      break;
1775
1776    if (Field->isUnnamedBitfield()) {
1777      // Don't initialize unnamed bitfields, e.g. "int : 20;"
1778      ++Field;
1779      continue;
1780    }
1781
1782    // Make sure we can use this declaration.
1783    bool InvalidUse;
1784    if (VerifyOnly)
1785      InvalidUse = !SemaRef.CanUseDecl(*Field);
1786    else
1787      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1788                                          IList->getInit(Index)->getLocStart());
1789    if (InvalidUse) {
1790      ++Index;
1791      ++Field;
1792      hadError = true;
1793      continue;
1794    }
1795
1796    InitializedEntity MemberEntity =
1797      InitializedEntity::InitializeMember(*Field, &Entity);
1798    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1799                        StructuredList, StructuredIndex);
1800    InitializedSomething = true;
1801
1802    if (DeclType->isUnionType() && !VerifyOnly) {
1803      // Initialize the first field within the union.
1804      StructuredList->setInitializedFieldInUnion(*Field);
1805    }
1806
1807    ++Field;
1808  }
1809
1810  // Emit warnings for missing struct field initializers.
1811  if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1812      Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1813      !DeclType->isUnionType()) {
1814    // It is possible we have one or more unnamed bitfields remaining.
1815    // Find first (if any) named field and emit warning.
1816    for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1817         it != end; ++it) {
1818      if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1819        SemaRef.Diag(IList->getSourceRange().getEnd(),
1820                     diag::warn_missing_field_initializers) << *it;
1821        break;
1822      }
1823    }
1824  }
1825
1826  // Check that any remaining fields can be value-initialized.
1827  if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1828      !Field->getType()->isIncompleteArrayType()) {
1829    // FIXME: Should check for holes left by designated initializers too.
1830    for (; Field != FieldEnd && !hadError; ++Field) {
1831      if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1832        CheckEmptyInitializable(
1833            InitializedEntity::InitializeMember(*Field, &Entity),
1834            IList->getLocEnd());
1835    }
1836  }
1837
1838  if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1839      Index >= IList->getNumInits())
1840    return;
1841
1842  if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1843                             TopLevelObject)) {
1844    hadError = true;
1845    ++Index;
1846    return;
1847  }
1848
1849  InitializedEntity MemberEntity =
1850    InitializedEntity::InitializeMember(*Field, &Entity);
1851
1852  if (isa<InitListExpr>(IList->getInit(Index)))
1853    CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1854                        StructuredList, StructuredIndex);
1855  else
1856    CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1857                          StructuredList, StructuredIndex);
1858}
1859
1860/// \brief Expand a field designator that refers to a member of an
1861/// anonymous struct or union into a series of field designators that
1862/// refers to the field within the appropriate subobject.
1863///
1864static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1865                                           DesignatedInitExpr *DIE,
1866                                           unsigned DesigIdx,
1867                                           IndirectFieldDecl *IndirectField) {
1868  typedef DesignatedInitExpr::Designator Designator;
1869
1870  // Build the replacement designators.
1871  SmallVector<Designator, 4> Replacements;
1872  for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1873       PE = IndirectField->chain_end(); PI != PE; ++PI) {
1874    if (PI + 1 == PE)
1875      Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1876                                    DIE->getDesignator(DesigIdx)->getDotLoc(),
1877                                DIE->getDesignator(DesigIdx)->getFieldLoc()));
1878    else
1879      Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1880                                        SourceLocation(), SourceLocation()));
1881    assert(isa<FieldDecl>(*PI));
1882    Replacements.back().setField(cast<FieldDecl>(*PI));
1883  }
1884
1885  // Expand the current designator into the set of replacement
1886  // designators, so we have a full subobject path down to where the
1887  // member of the anonymous struct/union is actually stored.
1888  DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1889                        &Replacements[0] + Replacements.size());
1890}
1891
1892static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1893                                                   DesignatedInitExpr *DIE) {
1894  unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1895  SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1896  for (unsigned I = 0; I < NumIndexExprs; ++I)
1897    IndexExprs[I] = DIE->getSubExpr(I + 1);
1898  return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1899                                    DIE->size(), IndexExprs,
1900                                    DIE->getEqualOrColonLoc(),
1901                                    DIE->usesGNUSyntax(), DIE->getInit());
1902}
1903
1904namespace {
1905
1906// Callback to only accept typo corrections that are for field members of
1907// the given struct or union.
1908class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1909 public:
1910  explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1911      : Record(RD) {}
1912
1913  bool ValidateCandidate(const TypoCorrection &candidate) override {
1914    FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1915    return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1916  }
1917
1918 private:
1919  RecordDecl *Record;
1920};
1921
1922}
1923
1924/// @brief Check the well-formedness of a C99 designated initializer.
1925///
1926/// Determines whether the designated initializer @p DIE, which
1927/// resides at the given @p Index within the initializer list @p
1928/// IList, is well-formed for a current object of type @p DeclType
1929/// (C99 6.7.8). The actual subobject that this designator refers to
1930/// within the current subobject is returned in either
1931/// @p NextField or @p NextElementIndex (whichever is appropriate).
1932///
1933/// @param IList  The initializer list in which this designated
1934/// initializer occurs.
1935///
1936/// @param DIE The designated initializer expression.
1937///
1938/// @param DesigIdx  The index of the current designator.
1939///
1940/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1941/// into which the designation in @p DIE should refer.
1942///
1943/// @param NextField  If non-NULL and the first designator in @p DIE is
1944/// a field, this will be set to the field declaration corresponding
1945/// to the field named by the designator.
1946///
1947/// @param NextElementIndex  If non-NULL and the first designator in @p
1948/// DIE is an array designator or GNU array-range designator, this
1949/// will be set to the last index initialized by this designator.
1950///
1951/// @param Index  Index into @p IList where the designated initializer
1952/// @p DIE occurs.
1953///
1954/// @param StructuredList  The initializer list expression that
1955/// describes all of the subobject initializers in the order they'll
1956/// actually be initialized.
1957///
1958/// @returns true if there was an error, false otherwise.
1959bool
1960InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1961                                            InitListExpr *IList,
1962                                            DesignatedInitExpr *DIE,
1963                                            unsigned DesigIdx,
1964                                            QualType &CurrentObjectType,
1965                                          RecordDecl::field_iterator *NextField,
1966                                            llvm::APSInt *NextElementIndex,
1967                                            unsigned &Index,
1968                                            InitListExpr *StructuredList,
1969                                            unsigned &StructuredIndex,
1970                                            bool FinishSubobjectInit,
1971                                            bool TopLevelObject) {
1972  if (DesigIdx == DIE->size()) {
1973    // Check the actual initialization for the designated object type.
1974    bool prevHadError = hadError;
1975
1976    // Temporarily remove the designator expression from the
1977    // initializer list that the child calls see, so that we don't try
1978    // to re-process the designator.
1979    unsigned OldIndex = Index;
1980    IList->setInit(OldIndex, DIE->getInit());
1981
1982    CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1983                        StructuredList, StructuredIndex);
1984
1985    // Restore the designated initializer expression in the syntactic
1986    // form of the initializer list.
1987    if (IList->getInit(OldIndex) != DIE->getInit())
1988      DIE->setInit(IList->getInit(OldIndex));
1989    IList->setInit(OldIndex, DIE);
1990
1991    return hadError && !prevHadError;
1992  }
1993
1994  DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1995  bool IsFirstDesignator = (DesigIdx == 0);
1996  if (!VerifyOnly) {
1997    assert((IsFirstDesignator || StructuredList) &&
1998           "Need a non-designated initializer list to start from");
1999
2000    // Determine the structural initializer list that corresponds to the
2001    // current subobject.
2002    if (IsFirstDesignator)
2003      StructuredList = SyntacticToSemantic.lookup(IList);
2004    else {
2005      Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2006          StructuredList->getInit(StructuredIndex) : nullptr;
2007      if (!ExistingInit && StructuredList->hasArrayFiller())
2008        ExistingInit = StructuredList->getArrayFiller();
2009
2010      if (!ExistingInit)
2011        StructuredList =
2012          getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2013                                     StructuredList, StructuredIndex,
2014                                     SourceRange(D->getLocStart(),
2015                                                 DIE->getLocEnd()));
2016      else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2017        StructuredList = Result;
2018      else {
2019        if (DesignatedInitUpdateExpr *E =
2020                dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2021          StructuredList = E->getUpdater();
2022        else {
2023          DesignatedInitUpdateExpr *DIUE =
2024              new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2025                                        D->getLocStart(), ExistingInit,
2026                                        DIE->getLocEnd());
2027          StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2028          StructuredList = DIUE->getUpdater();
2029        }
2030
2031        // We need to check on source range validity because the previous
2032        // initializer does not have to be an explicit initializer. e.g.,
2033        //
2034        // struct P { int a, b; };
2035        // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2036        //
2037        // There is an overwrite taking place because the first braced initializer
2038        // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2039        if (ExistingInit->getSourceRange().isValid()) {
2040          // We are creating an initializer list that initializes the
2041          // subobjects of the current object, but there was already an
2042          // initialization that completely initialized the current
2043          // subobject, e.g., by a compound literal:
2044          //
2045          // struct X { int a, b; };
2046          // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2047          //
2048          // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2049          // designated initializer re-initializes the whole
2050          // subobject [0], overwriting previous initializers.
2051          SemaRef.Diag(D->getLocStart(),
2052                       diag::warn_subobject_initializer_overrides)
2053            << SourceRange(D->getLocStart(), DIE->getLocEnd());
2054
2055          SemaRef.Diag(ExistingInit->getLocStart(),
2056                       diag::note_previous_initializer)
2057            << /*FIXME:has side effects=*/0
2058            << ExistingInit->getSourceRange();
2059        }
2060      }
2061    }
2062    assert(StructuredList && "Expected a structured initializer list");
2063  }
2064
2065  if (D->isFieldDesignator()) {
2066    // C99 6.7.8p7:
2067    //
2068    //   If a designator has the form
2069    //
2070    //      . identifier
2071    //
2072    //   then the current object (defined below) shall have
2073    //   structure or union type and the identifier shall be the
2074    //   name of a member of that type.
2075    const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2076    if (!RT) {
2077      SourceLocation Loc = D->getDotLoc();
2078      if (Loc.isInvalid())
2079        Loc = D->getFieldLoc();
2080      if (!VerifyOnly)
2081        SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2082          << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2083      ++Index;
2084      return true;
2085    }
2086
2087    FieldDecl *KnownField = D->getField();
2088    if (!KnownField) {
2089      IdentifierInfo *FieldName = D->getFieldName();
2090      DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2091      for (NamedDecl *ND : Lookup) {
2092        if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2093          KnownField = FD;
2094          break;
2095        }
2096        if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2097          // In verify mode, don't modify the original.
2098          if (VerifyOnly)
2099            DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2100          ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2101          D = DIE->getDesignator(DesigIdx);
2102          KnownField = cast<FieldDecl>(*IFD->chain_begin());
2103          break;
2104        }
2105      }
2106      if (!KnownField) {
2107        if (VerifyOnly) {
2108          ++Index;
2109          return true;  // No typo correction when just trying this out.
2110        }
2111
2112        // Name lookup found something, but it wasn't a field.
2113        if (!Lookup.empty()) {
2114          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2115            << FieldName;
2116          SemaRef.Diag(Lookup.front()->getLocation(),
2117                       diag::note_field_designator_found);
2118          ++Index;
2119          return true;
2120        }
2121
2122        // Name lookup didn't find anything.
2123        // Determine whether this was a typo for another field name.
2124        if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2125                DeclarationNameInfo(FieldName, D->getFieldLoc()),
2126                Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2127                llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2128                Sema::CTK_ErrorRecovery, RT->getDecl())) {
2129          SemaRef.diagnoseTypo(
2130              Corrected,
2131              SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2132                << FieldName << CurrentObjectType);
2133          KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2134          hadError = true;
2135        } else {
2136          // Typo correction didn't find anything.
2137          SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2138            << FieldName << CurrentObjectType;
2139          ++Index;
2140          return true;
2141        }
2142      }
2143    }
2144
2145    unsigned FieldIndex = 0;
2146    for (auto *FI : RT->getDecl()->fields()) {
2147      if (FI->isUnnamedBitfield())
2148        continue;
2149      if (KnownField == FI)
2150        break;
2151      ++FieldIndex;
2152    }
2153
2154    RecordDecl::field_iterator Field =
2155        RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2156
2157    // All of the fields of a union are located at the same place in
2158    // the initializer list.
2159    if (RT->getDecl()->isUnion()) {
2160      FieldIndex = 0;
2161      if (!VerifyOnly) {
2162        FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2163        if (CurrentField && CurrentField != *Field) {
2164          assert(StructuredList->getNumInits() == 1
2165                 && "A union should never have more than one initializer!");
2166
2167          // we're about to throw away an initializer, emit warning
2168          SemaRef.Diag(D->getFieldLoc(),
2169                       diag::warn_initializer_overrides)
2170            << D->getSourceRange();
2171          Expr *ExistingInit = StructuredList->getInit(0);
2172          SemaRef.Diag(ExistingInit->getLocStart(),
2173                       diag::note_previous_initializer)
2174            << /*FIXME:has side effects=*/0
2175            << ExistingInit->getSourceRange();
2176
2177          // remove existing initializer
2178          StructuredList->resizeInits(SemaRef.Context, 0);
2179          StructuredList->setInitializedFieldInUnion(nullptr);
2180        }
2181
2182        StructuredList->setInitializedFieldInUnion(*Field);
2183      }
2184    }
2185
2186    // Make sure we can use this declaration.
2187    bool InvalidUse;
2188    if (VerifyOnly)
2189      InvalidUse = !SemaRef.CanUseDecl(*Field);
2190    else
2191      InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2192    if (InvalidUse) {
2193      ++Index;
2194      return true;
2195    }
2196
2197    if (!VerifyOnly) {
2198      // Update the designator with the field declaration.
2199      D->setField(*Field);
2200
2201      // Make sure that our non-designated initializer list has space
2202      // for a subobject corresponding to this field.
2203      if (FieldIndex >= StructuredList->getNumInits())
2204        StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2205    }
2206
2207    // This designator names a flexible array member.
2208    if (Field->getType()->isIncompleteArrayType()) {
2209      bool Invalid = false;
2210      if ((DesigIdx + 1) != DIE->size()) {
2211        // We can't designate an object within the flexible array
2212        // member (because GCC doesn't allow it).
2213        if (!VerifyOnly) {
2214          DesignatedInitExpr::Designator *NextD
2215            = DIE->getDesignator(DesigIdx + 1);
2216          SemaRef.Diag(NextD->getLocStart(),
2217                        diag::err_designator_into_flexible_array_member)
2218            << SourceRange(NextD->getLocStart(),
2219                           DIE->getLocEnd());
2220          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2221            << *Field;
2222        }
2223        Invalid = true;
2224      }
2225
2226      if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2227          !isa<StringLiteral>(DIE->getInit())) {
2228        // The initializer is not an initializer list.
2229        if (!VerifyOnly) {
2230          SemaRef.Diag(DIE->getInit()->getLocStart(),
2231                        diag::err_flexible_array_init_needs_braces)
2232            << DIE->getInit()->getSourceRange();
2233          SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2234            << *Field;
2235        }
2236        Invalid = true;
2237      }
2238
2239      // Check GNU flexible array initializer.
2240      if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2241                                             TopLevelObject))
2242        Invalid = true;
2243
2244      if (Invalid) {
2245        ++Index;
2246        return true;
2247      }
2248
2249      // Initialize the array.
2250      bool prevHadError = hadError;
2251      unsigned newStructuredIndex = FieldIndex;
2252      unsigned OldIndex = Index;
2253      IList->setInit(Index, DIE->getInit());
2254
2255      InitializedEntity MemberEntity =
2256        InitializedEntity::InitializeMember(*Field, &Entity);
2257      CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2258                          StructuredList, newStructuredIndex);
2259
2260      IList->setInit(OldIndex, DIE);
2261      if (hadError && !prevHadError) {
2262        ++Field;
2263        ++FieldIndex;
2264        if (NextField)
2265          *NextField = Field;
2266        StructuredIndex = FieldIndex;
2267        return true;
2268      }
2269    } else {
2270      // Recurse to check later designated subobjects.
2271      QualType FieldType = Field->getType();
2272      unsigned newStructuredIndex = FieldIndex;
2273
2274      InitializedEntity MemberEntity =
2275        InitializedEntity::InitializeMember(*Field, &Entity);
2276      if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2277                                     FieldType, nullptr, nullptr, Index,
2278                                     StructuredList, newStructuredIndex,
2279                                     true, false))
2280        return true;
2281    }
2282
2283    // Find the position of the next field to be initialized in this
2284    // subobject.
2285    ++Field;
2286    ++FieldIndex;
2287
2288    // If this the first designator, our caller will continue checking
2289    // the rest of this struct/class/union subobject.
2290    if (IsFirstDesignator) {
2291      if (NextField)
2292        *NextField = Field;
2293      StructuredIndex = FieldIndex;
2294      return false;
2295    }
2296
2297    if (!FinishSubobjectInit)
2298      return false;
2299
2300    // We've already initialized something in the union; we're done.
2301    if (RT->getDecl()->isUnion())
2302      return hadError;
2303
2304    // Check the remaining fields within this class/struct/union subobject.
2305    bool prevHadError = hadError;
2306
2307    CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
2308                          StructuredList, FieldIndex);
2309    return hadError && !prevHadError;
2310  }
2311
2312  // C99 6.7.8p6:
2313  //
2314  //   If a designator has the form
2315  //
2316  //      [ constant-expression ]
2317  //
2318  //   then the current object (defined below) shall have array
2319  //   type and the expression shall be an integer constant
2320  //   expression. If the array is of unknown size, any
2321  //   nonnegative value is valid.
2322  //
2323  // Additionally, cope with the GNU extension that permits
2324  // designators of the form
2325  //
2326  //      [ constant-expression ... constant-expression ]
2327  const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2328  if (!AT) {
2329    if (!VerifyOnly)
2330      SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2331        << CurrentObjectType;
2332    ++Index;
2333    return true;
2334  }
2335
2336  Expr *IndexExpr = nullptr;
2337  llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2338  if (D->isArrayDesignator()) {
2339    IndexExpr = DIE->getArrayIndex(*D);
2340    DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2341    DesignatedEndIndex = DesignatedStartIndex;
2342  } else {
2343    assert(D->isArrayRangeDesignator() && "Need array-range designator");
2344
2345    DesignatedStartIndex =
2346      DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2347    DesignatedEndIndex =
2348      DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2349    IndexExpr = DIE->getArrayRangeEnd(*D);
2350
2351    // Codegen can't handle evaluating array range designators that have side
2352    // effects, because we replicate the AST value for each initialized element.
2353    // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2354    // elements with something that has a side effect, so codegen can emit an
2355    // "error unsupported" error instead of miscompiling the app.
2356    if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2357        DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2358      FullyStructuredList->sawArrayRangeDesignator();
2359  }
2360
2361  if (isa<ConstantArrayType>(AT)) {
2362    llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2363    DesignatedStartIndex
2364      = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2365    DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2366    DesignatedEndIndex
2367      = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2368    DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2369    if (DesignatedEndIndex >= MaxElements) {
2370      if (!VerifyOnly)
2371        SemaRef.Diag(IndexExpr->getLocStart(),
2372                      diag::err_array_designator_too_large)
2373          << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2374          << IndexExpr->getSourceRange();
2375      ++Index;
2376      return true;
2377    }
2378  } else {
2379    unsigned DesignatedIndexBitWidth =
2380      ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2381    DesignatedStartIndex =
2382      DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2383    DesignatedEndIndex =
2384      DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2385    DesignatedStartIndex.setIsUnsigned(true);
2386    DesignatedEndIndex.setIsUnsigned(true);
2387  }
2388
2389  if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2390    // We're modifying a string literal init; we have to decompose the string
2391    // so we can modify the individual characters.
2392    ASTContext &Context = SemaRef.Context;
2393    Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2394
2395    // Compute the character type
2396    QualType CharTy = AT->getElementType();
2397
2398    // Compute the type of the integer literals.
2399    QualType PromotedCharTy = CharTy;
2400    if (CharTy->isPromotableIntegerType())
2401      PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2402    unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2403
2404    if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2405      // Get the length of the string.
2406      uint64_t StrLen = SL->getLength();
2407      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2408        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2409      StructuredList->resizeInits(Context, StrLen);
2410
2411      // Build a literal for each character in the string, and put them into
2412      // the init list.
2413      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2414        llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2415        Expr *Init = new (Context) IntegerLiteral(
2416            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2417        if (CharTy != PromotedCharTy)
2418          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2419                                          Init, nullptr, VK_RValue);
2420        StructuredList->updateInit(Context, i, Init);
2421      }
2422    } else {
2423      ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2424      std::string Str;
2425      Context.getObjCEncodingForType(E->getEncodedType(), Str);
2426
2427      // Get the length of the string.
2428      uint64_t StrLen = Str.size();
2429      if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2430        StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2431      StructuredList->resizeInits(Context, StrLen);
2432
2433      // Build a literal for each character in the string, and put them into
2434      // the init list.
2435      for (unsigned i = 0, e = StrLen; i != e; ++i) {
2436        llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2437        Expr *Init = new (Context) IntegerLiteral(
2438            Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2439        if (CharTy != PromotedCharTy)
2440          Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2441                                          Init, nullptr, VK_RValue);
2442        StructuredList->updateInit(Context, i, Init);
2443      }
2444    }
2445  }
2446
2447  // Make sure that our non-designated initializer list has space
2448  // for a subobject corresponding to this array element.
2449  if (!VerifyOnly &&
2450      DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2451    StructuredList->resizeInits(SemaRef.Context,
2452                                DesignatedEndIndex.getZExtValue() + 1);
2453
2454  // Repeatedly perform subobject initializations in the range
2455  // [DesignatedStartIndex, DesignatedEndIndex].
2456
2457  // Move to the next designator
2458  unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2459  unsigned OldIndex = Index;
2460
2461  InitializedEntity ElementEntity =
2462    InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2463
2464  while (DesignatedStartIndex <= DesignatedEndIndex) {
2465    // Recurse to check later designated subobjects.
2466    QualType ElementType = AT->getElementType();
2467    Index = OldIndex;
2468
2469    ElementEntity.setElementIndex(ElementIndex);
2470    if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2471                                   ElementType, nullptr, nullptr, Index,
2472                                   StructuredList, ElementIndex,
2473                                   (DesignatedStartIndex == DesignatedEndIndex),
2474                                   false))
2475      return true;
2476
2477    // Move to the next index in the array that we'll be initializing.
2478    ++DesignatedStartIndex;
2479    ElementIndex = DesignatedStartIndex.getZExtValue();
2480  }
2481
2482  // If this the first designator, our caller will continue checking
2483  // the rest of this array subobject.
2484  if (IsFirstDesignator) {
2485    if (NextElementIndex)
2486      *NextElementIndex = DesignatedStartIndex;
2487    StructuredIndex = ElementIndex;
2488    return false;
2489  }
2490
2491  if (!FinishSubobjectInit)
2492    return false;
2493
2494  // Check the remaining elements within this array subobject.
2495  bool prevHadError = hadError;
2496  CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2497                 /*SubobjectIsDesignatorContext=*/false, Index,
2498                 StructuredList, ElementIndex);
2499  return hadError && !prevHadError;
2500}
2501
2502// Get the structured initializer list for a subobject of type
2503// @p CurrentObjectType.
2504InitListExpr *
2505InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2506                                            QualType CurrentObjectType,
2507                                            InitListExpr *StructuredList,
2508                                            unsigned StructuredIndex,
2509                                            SourceRange InitRange,
2510                                            bool IsFullyOverwritten) {
2511  if (VerifyOnly)
2512    return nullptr; // No structured list in verification-only mode.
2513  Expr *ExistingInit = nullptr;
2514  if (!StructuredList)
2515    ExistingInit = SyntacticToSemantic.lookup(IList);
2516  else if (StructuredIndex < StructuredList->getNumInits())
2517    ExistingInit = StructuredList->getInit(StructuredIndex);
2518
2519  if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2520    // There might have already been initializers for subobjects of the current
2521    // object, but a subsequent initializer list will overwrite the entirety
2522    // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2523    //
2524    // struct P { char x[6]; };
2525    // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2526    //
2527    // The first designated initializer is ignored, and l.x is just "f".
2528    if (!IsFullyOverwritten)
2529      return Result;
2530
2531  if (ExistingInit) {
2532    // We are creating an initializer list that initializes the
2533    // subobjects of the current object, but there was already an
2534    // initialization that completely initialized the current
2535    // subobject, e.g., by a compound literal:
2536    //
2537    // struct X { int a, b; };
2538    // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2539    //
2540    // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2541    // designated initializer re-initializes the whole
2542    // subobject [0], overwriting previous initializers.
2543    SemaRef.Diag(InitRange.getBegin(),
2544                 diag::warn_subobject_initializer_overrides)
2545      << InitRange;
2546    SemaRef.Diag(ExistingInit->getLocStart(),
2547                  diag::note_previous_initializer)
2548      << /*FIXME:has side effects=*/0
2549      << ExistingInit->getSourceRange();
2550  }
2551
2552  InitListExpr *Result
2553    = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2554                                         InitRange.getBegin(), None,
2555                                         InitRange.getEnd());
2556
2557  QualType ResultType = CurrentObjectType;
2558  if (!ResultType->isArrayType())
2559    ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2560  Result->setType(ResultType);
2561
2562  // Pre-allocate storage for the structured initializer list.
2563  unsigned NumElements = 0;
2564  unsigned NumInits = 0;
2565  bool GotNumInits = false;
2566  if (!StructuredList) {
2567    NumInits = IList->getNumInits();
2568    GotNumInits = true;
2569  } else if (Index < IList->getNumInits()) {
2570    if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2571      NumInits = SubList->getNumInits();
2572      GotNumInits = true;
2573    }
2574  }
2575
2576  if (const ArrayType *AType
2577      = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2578    if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2579      NumElements = CAType->getSize().getZExtValue();
2580      // Simple heuristic so that we don't allocate a very large
2581      // initializer with many empty entries at the end.
2582      if (GotNumInits && NumElements > NumInits)
2583        NumElements = 0;
2584    }
2585  } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2586    NumElements = VType->getNumElements();
2587  else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2588    RecordDecl *RDecl = RType->getDecl();
2589    if (RDecl->isUnion())
2590      NumElements = 1;
2591    else
2592      NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2593  }
2594
2595  Result->reserveInits(SemaRef.Context, NumElements);
2596
2597  // Link this new initializer list into the structured initializer
2598  // lists.
2599  if (StructuredList)
2600    StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2601  else {
2602    Result->setSyntacticForm(IList);
2603    SyntacticToSemantic[IList] = Result;
2604  }
2605
2606  return Result;
2607}
2608
2609/// Update the initializer at index @p StructuredIndex within the
2610/// structured initializer list to the value @p expr.
2611void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2612                                                  unsigned &StructuredIndex,
2613                                                  Expr *expr) {
2614  // No structured initializer list to update
2615  if (!StructuredList)
2616    return;
2617
2618  if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2619                                                  StructuredIndex, expr)) {
2620    // This initializer overwrites a previous initializer. Warn.
2621    // We need to check on source range validity because the previous
2622    // initializer does not have to be an explicit initializer.
2623    // struct P { int a, b; };
2624    // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2625    // There is an overwrite taking place because the first braced initializer
2626    // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2627    if (PrevInit->getSourceRange().isValid()) {
2628      SemaRef.Diag(expr->getLocStart(),
2629                   diag::warn_initializer_overrides)
2630        << expr->getSourceRange();
2631
2632      SemaRef.Diag(PrevInit->getLocStart(),
2633                   diag::note_previous_initializer)
2634        << /*FIXME:has side effects=*/0
2635        << PrevInit->getSourceRange();
2636    }
2637  }
2638
2639  ++StructuredIndex;
2640}
2641
2642/// Check that the given Index expression is a valid array designator
2643/// value. This is essentially just a wrapper around
2644/// VerifyIntegerConstantExpression that also checks for negative values
2645/// and produces a reasonable diagnostic if there is a
2646/// failure. Returns the index expression, possibly with an implicit cast
2647/// added, on success.  If everything went okay, Value will receive the
2648/// value of the constant expression.
2649static ExprResult
2650CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2651  SourceLocation Loc = Index->getLocStart();
2652
2653  // Make sure this is an integer constant expression.
2654  ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2655  if (Result.isInvalid())
2656    return Result;
2657
2658  if (Value.isSigned() && Value.isNegative())
2659    return S.Diag(Loc, diag::err_array_designator_negative)
2660      << Value.toString(10) << Index->getSourceRange();
2661
2662  Value.setIsUnsigned(true);
2663  return Result;
2664}
2665
2666ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2667                                            SourceLocation Loc,
2668                                            bool GNUSyntax,
2669                                            ExprResult Init) {
2670  typedef DesignatedInitExpr::Designator ASTDesignator;
2671
2672  bool Invalid = false;
2673  SmallVector<ASTDesignator, 32> Designators;
2674  SmallVector<Expr *, 32> InitExpressions;
2675
2676  // Build designators and check array designator expressions.
2677  for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2678    const Designator &D = Desig.getDesignator(Idx);
2679    switch (D.getKind()) {
2680    case Designator::FieldDesignator:
2681      Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2682                                          D.getFieldLoc()));
2683      break;
2684
2685    case Designator::ArrayDesignator: {
2686      Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2687      llvm::APSInt IndexValue;
2688      if (!Index->isTypeDependent() && !Index->isValueDependent())
2689        Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2690      if (!Index)
2691        Invalid = true;
2692      else {
2693        Designators.push_back(ASTDesignator(InitExpressions.size(),
2694                                            D.getLBracketLoc(),
2695                                            D.getRBracketLoc()));
2696        InitExpressions.push_back(Index);
2697      }
2698      break;
2699    }
2700
2701    case Designator::ArrayRangeDesignator: {
2702      Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2703      Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2704      llvm::APSInt StartValue;
2705      llvm::APSInt EndValue;
2706      bool StartDependent = StartIndex->isTypeDependent() ||
2707                            StartIndex->isValueDependent();
2708      bool EndDependent = EndIndex->isTypeDependent() ||
2709                          EndIndex->isValueDependent();
2710      if (!StartDependent)
2711        StartIndex =
2712            CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2713      if (!EndDependent)
2714        EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2715
2716      if (!StartIndex || !EndIndex)
2717        Invalid = true;
2718      else {
2719        // Make sure we're comparing values with the same bit width.
2720        if (StartDependent || EndDependent) {
2721          // Nothing to compute.
2722        } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2723          EndValue = EndValue.extend(StartValue.getBitWidth());
2724        else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2725          StartValue = StartValue.extend(EndValue.getBitWidth());
2726
2727        if (!StartDependent && !EndDependent && EndValue < StartValue) {
2728          Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2729            << StartValue.toString(10) << EndValue.toString(10)
2730            << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2731          Invalid = true;
2732        } else {
2733          Designators.push_back(ASTDesignator(InitExpressions.size(),
2734                                              D.getLBracketLoc(),
2735                                              D.getEllipsisLoc(),
2736                                              D.getRBracketLoc()));
2737          InitExpressions.push_back(StartIndex);
2738          InitExpressions.push_back(EndIndex);
2739        }
2740      }
2741      break;
2742    }
2743    }
2744  }
2745
2746  if (Invalid || Init.isInvalid())
2747    return ExprError();
2748
2749  // Clear out the expressions within the designation.
2750  Desig.ClearExprs(*this);
2751
2752  DesignatedInitExpr *DIE
2753    = DesignatedInitExpr::Create(Context,
2754                                 Designators.data(), Designators.size(),
2755                                 InitExpressions, Loc, GNUSyntax,
2756                                 Init.getAs<Expr>());
2757
2758  if (!getLangOpts().C99)
2759    Diag(DIE->getLocStart(), diag::ext_designated_init)
2760      << DIE->getSourceRange();
2761
2762  return DIE;
2763}
2764
2765//===----------------------------------------------------------------------===//
2766// Initialization entity
2767//===----------------------------------------------------------------------===//
2768
2769InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2770                                     const InitializedEntity &Parent)
2771  : Parent(&Parent), Index(Index)
2772{
2773  if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2774    Kind = EK_ArrayElement;
2775    Type = AT->getElementType();
2776  } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2777    Kind = EK_VectorElement;
2778    Type = VT->getElementType();
2779  } else {
2780    const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2781    assert(CT && "Unexpected type");
2782    Kind = EK_ComplexElement;
2783    Type = CT->getElementType();
2784  }
2785}
2786
2787InitializedEntity
2788InitializedEntity::InitializeBase(ASTContext &Context,
2789                                  const CXXBaseSpecifier *Base,
2790                                  bool IsInheritedVirtualBase) {
2791  InitializedEntity Result;
2792  Result.Kind = EK_Base;
2793  Result.Parent = nullptr;
2794  Result.Base = reinterpret_cast<uintptr_t>(Base);
2795  if (IsInheritedVirtualBase)
2796    Result.Base |= 0x01;
2797
2798  Result.Type = Base->getType();
2799  return Result;
2800}
2801
2802DeclarationName InitializedEntity::getName() const {
2803  switch (getKind()) {
2804  case EK_Parameter:
2805  case EK_Parameter_CF_Audited: {
2806    ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2807    return (D ? D->getDeclName() : DeclarationName());
2808  }
2809
2810  case EK_Variable:
2811  case EK_Member:
2812    return VariableOrMember->getDeclName();
2813
2814  case EK_LambdaCapture:
2815    return DeclarationName(Capture.VarID);
2816
2817  case EK_Result:
2818  case EK_Exception:
2819  case EK_New:
2820  case EK_Temporary:
2821  case EK_Base:
2822  case EK_Delegating:
2823  case EK_ArrayElement:
2824  case EK_VectorElement:
2825  case EK_ComplexElement:
2826  case EK_BlockElement:
2827  case EK_CompoundLiteralInit:
2828  case EK_RelatedResult:
2829    return DeclarationName();
2830  }
2831
2832  llvm_unreachable("Invalid EntityKind!");
2833}
2834
2835DeclaratorDecl *InitializedEntity::getDecl() const {
2836  switch (getKind()) {
2837  case EK_Variable:
2838  case EK_Member:
2839    return VariableOrMember;
2840
2841  case EK_Parameter:
2842  case EK_Parameter_CF_Audited:
2843    return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2844
2845  case EK_Result:
2846  case EK_Exception:
2847  case EK_New:
2848  case EK_Temporary:
2849  case EK_Base:
2850  case EK_Delegating:
2851  case EK_ArrayElement:
2852  case EK_VectorElement:
2853  case EK_ComplexElement:
2854  case EK_BlockElement:
2855  case EK_LambdaCapture:
2856  case EK_CompoundLiteralInit:
2857  case EK_RelatedResult:
2858    return nullptr;
2859  }
2860
2861  llvm_unreachable("Invalid EntityKind!");
2862}
2863
2864bool InitializedEntity::allowsNRVO() const {
2865  switch (getKind()) {
2866  case EK_Result:
2867  case EK_Exception:
2868    return LocAndNRVO.NRVO;
2869
2870  case EK_Variable:
2871  case EK_Parameter:
2872  case EK_Parameter_CF_Audited:
2873  case EK_Member:
2874  case EK_New:
2875  case EK_Temporary:
2876  case EK_CompoundLiteralInit:
2877  case EK_Base:
2878  case EK_Delegating:
2879  case EK_ArrayElement:
2880  case EK_VectorElement:
2881  case EK_ComplexElement:
2882  case EK_BlockElement:
2883  case EK_LambdaCapture:
2884  case EK_RelatedResult:
2885    break;
2886  }
2887
2888  return false;
2889}
2890
2891unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2892  assert(getParent() != this);
2893  unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2894  for (unsigned I = 0; I != Depth; ++I)
2895    OS << "`-";
2896
2897  switch (getKind()) {
2898  case EK_Variable: OS << "Variable"; break;
2899  case EK_Parameter: OS << "Parameter"; break;
2900  case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2901    break;
2902  case EK_Result: OS << "Result"; break;
2903  case EK_Exception: OS << "Exception"; break;
2904  case EK_Member: OS << "Member"; break;
2905  case EK_New: OS << "New"; break;
2906  case EK_Temporary: OS << "Temporary"; break;
2907  case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2908  case EK_RelatedResult: OS << "RelatedResult"; break;
2909  case EK_Base: OS << "Base"; break;
2910  case EK_Delegating: OS << "Delegating"; break;
2911  case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2912  case EK_VectorElement: OS << "VectorElement " << Index; break;
2913  case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2914  case EK_BlockElement: OS << "Block"; break;
2915  case EK_LambdaCapture:
2916    OS << "LambdaCapture ";
2917    OS << DeclarationName(Capture.VarID);
2918    break;
2919  }
2920
2921  if (Decl *D = getDecl()) {
2922    OS << " ";
2923    cast<NamedDecl>(D)->printQualifiedName(OS);
2924  }
2925
2926  OS << " '" << getType().getAsString() << "'\n";
2927
2928  return Depth + 1;
2929}
2930
2931void InitializedEntity::dump() const {
2932  dumpImpl(llvm::errs());
2933}
2934
2935//===----------------------------------------------------------------------===//
2936// Initialization sequence
2937//===----------------------------------------------------------------------===//
2938
2939void InitializationSequence::Step::Destroy() {
2940  switch (Kind) {
2941  case SK_ResolveAddressOfOverloadedFunction:
2942  case SK_CastDerivedToBaseRValue:
2943  case SK_CastDerivedToBaseXValue:
2944  case SK_CastDerivedToBaseLValue:
2945  case SK_BindReference:
2946  case SK_BindReferenceToTemporary:
2947  case SK_ExtraneousCopyToTemporary:
2948  case SK_UserConversion:
2949  case SK_QualificationConversionRValue:
2950  case SK_QualificationConversionXValue:
2951  case SK_QualificationConversionLValue:
2952  case SK_AtomicConversion:
2953  case SK_LValueToRValue:
2954  case SK_ListInitialization:
2955  case SK_UnwrapInitList:
2956  case SK_RewrapInitList:
2957  case SK_ConstructorInitialization:
2958  case SK_ConstructorInitializationFromList:
2959  case SK_ZeroInitialization:
2960  case SK_CAssignment:
2961  case SK_StringInit:
2962  case SK_ObjCObjectConversion:
2963  case SK_ArrayInit:
2964  case SK_ParenthesizedArrayInit:
2965  case SK_PassByIndirectCopyRestore:
2966  case SK_PassByIndirectRestore:
2967  case SK_ProduceObjCObject:
2968  case SK_StdInitializerList:
2969  case SK_StdInitializerListConstructorCall:
2970  case SK_OCLSamplerInit:
2971  case SK_OCLZeroEvent:
2972    break;
2973
2974  case SK_ConversionSequence:
2975  case SK_ConversionSequenceNoNarrowing:
2976    delete ICS;
2977  }
2978}
2979
2980bool InitializationSequence::isDirectReferenceBinding() const {
2981  return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2982}
2983
2984bool InitializationSequence::isAmbiguous() const {
2985  if (!Failed())
2986    return false;
2987
2988  switch (getFailureKind()) {
2989  case FK_TooManyInitsForReference:
2990  case FK_ArrayNeedsInitList:
2991  case FK_ArrayNeedsInitListOrStringLiteral:
2992  case FK_ArrayNeedsInitListOrWideStringLiteral:
2993  case FK_NarrowStringIntoWideCharArray:
2994  case FK_WideStringIntoCharArray:
2995  case FK_IncompatWideStringIntoWideChar:
2996  case FK_AddressOfOverloadFailed: // FIXME: Could do better
2997  case FK_NonConstLValueReferenceBindingToTemporary:
2998  case FK_NonConstLValueReferenceBindingToUnrelated:
2999  case FK_RValueReferenceBindingToLValue:
3000  case FK_ReferenceInitDropsQualifiers:
3001  case FK_ReferenceInitFailed:
3002  case FK_ConversionFailed:
3003  case FK_ConversionFromPropertyFailed:
3004  case FK_TooManyInitsForScalar:
3005  case FK_ReferenceBindingToInitList:
3006  case FK_InitListBadDestinationType:
3007  case FK_DefaultInitOfConst:
3008  case FK_Incomplete:
3009  case FK_ArrayTypeMismatch:
3010  case FK_NonConstantArrayInit:
3011  case FK_ListInitializationFailed:
3012  case FK_VariableLengthArrayHasInitializer:
3013  case FK_PlaceholderType:
3014  case FK_ExplicitConstructor:
3015  case FK_AddressOfUnaddressableFunction:
3016    return false;
3017
3018  case FK_ReferenceInitOverloadFailed:
3019  case FK_UserConversionOverloadFailed:
3020  case FK_ConstructorOverloadFailed:
3021  case FK_ListConstructorOverloadFailed:
3022    return FailedOverloadResult == OR_Ambiguous;
3023  }
3024
3025  llvm_unreachable("Invalid EntityKind!");
3026}
3027
3028bool InitializationSequence::isConstructorInitialization() const {
3029  return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3030}
3031
3032void
3033InitializationSequence
3034::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3035                                   DeclAccessPair Found,
3036                                   bool HadMultipleCandidates) {
3037  Step S;
3038  S.Kind = SK_ResolveAddressOfOverloadedFunction;
3039  S.Type = Function->getType();
3040  S.Function.HadMultipleCandidates = HadMultipleCandidates;
3041  S.Function.Function = Function;
3042  S.Function.FoundDecl = Found;
3043  Steps.push_back(S);
3044}
3045
3046void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3047                                                      ExprValueKind VK) {
3048  Step S;
3049  switch (VK) {
3050  case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3051  case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3052  case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3053  }
3054  S.Type = BaseType;
3055  Steps.push_back(S);
3056}
3057
3058void InitializationSequence::AddReferenceBindingStep(QualType T,
3059                                                     bool BindingTemporary) {
3060  Step S;
3061  S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3062  S.Type = T;
3063  Steps.push_back(S);
3064}
3065
3066void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3067  Step S;
3068  S.Kind = SK_ExtraneousCopyToTemporary;
3069  S.Type = T;
3070  Steps.push_back(S);
3071}
3072
3073void
3074InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3075                                              DeclAccessPair FoundDecl,
3076                                              QualType T,
3077                                              bool HadMultipleCandidates) {
3078  Step S;
3079  S.Kind = SK_UserConversion;
3080  S.Type = T;
3081  S.Function.HadMultipleCandidates = HadMultipleCandidates;
3082  S.Function.Function = Function;
3083  S.Function.FoundDecl = FoundDecl;
3084  Steps.push_back(S);
3085}
3086
3087void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3088                                                            ExprValueKind VK) {
3089  Step S;
3090  S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3091  switch (VK) {
3092  case VK_RValue:
3093    S.Kind = SK_QualificationConversionRValue;
3094    break;
3095  case VK_XValue:
3096    S.Kind = SK_QualificationConversionXValue;
3097    break;
3098  case VK_LValue:
3099    S.Kind = SK_QualificationConversionLValue;
3100    break;
3101  }
3102  S.Type = Ty;
3103  Steps.push_back(S);
3104}
3105
3106void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3107  Step S;
3108  S.Kind = SK_AtomicConversion;
3109  S.Type = Ty;
3110  Steps.push_back(S);
3111}
3112
3113void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3114  assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3115
3116  Step S;
3117  S.Kind = SK_LValueToRValue;
3118  S.Type = Ty;
3119  Steps.push_back(S);
3120}
3121
3122void InitializationSequence::AddConversionSequenceStep(
3123    const ImplicitConversionSequence &ICS, QualType T,
3124    bool TopLevelOfInitList) {
3125  Step S;
3126  S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3127                              : SK_ConversionSequence;
3128  S.Type = T;
3129  S.ICS = new ImplicitConversionSequence(ICS);
3130  Steps.push_back(S);
3131}
3132
3133void InitializationSequence::AddListInitializationStep(QualType T) {
3134  Step S;
3135  S.Kind = SK_ListInitialization;
3136  S.Type = T;
3137  Steps.push_back(S);
3138}
3139
3140void
3141InitializationSequence
3142::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
3143                                   AccessSpecifier Access,
3144                                   QualType T,
3145                                   bool HadMultipleCandidates,
3146                                   bool FromInitList, bool AsInitList) {
3147  Step S;
3148  S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3149                                     : SK_ConstructorInitializationFromList
3150                        : SK_ConstructorInitialization;
3151  S.Type = T;
3152  S.Function.HadMultipleCandidates = HadMultipleCandidates;
3153  S.Function.Function = Constructor;
3154  S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
3155  Steps.push_back(S);
3156}
3157
3158void InitializationSequence::AddZeroInitializationStep(QualType T) {
3159  Step S;
3160  S.Kind = SK_ZeroInitialization;
3161  S.Type = T;
3162  Steps.push_back(S);
3163}
3164
3165void InitializationSequence::AddCAssignmentStep(QualType T) {
3166  Step S;
3167  S.Kind = SK_CAssignment;
3168  S.Type = T;
3169  Steps.push_back(S);
3170}
3171
3172void InitializationSequence::AddStringInitStep(QualType T) {
3173  Step S;
3174  S.Kind = SK_StringInit;
3175  S.Type = T;
3176  Steps.push_back(S);
3177}
3178
3179void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3180  Step S;
3181  S.Kind = SK_ObjCObjectConversion;
3182  S.Type = T;
3183  Steps.push_back(S);
3184}
3185
3186void InitializationSequence::AddArrayInitStep(QualType T) {
3187  Step S;
3188  S.Kind = SK_ArrayInit;
3189  S.Type = T;
3190  Steps.push_back(S);
3191}
3192
3193void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3194  Step S;
3195  S.Kind = SK_ParenthesizedArrayInit;
3196  S.Type = T;
3197  Steps.push_back(S);
3198}
3199
3200void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3201                                                              bool shouldCopy) {
3202  Step s;
3203  s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3204                       : SK_PassByIndirectRestore);
3205  s.Type = type;
3206  Steps.push_back(s);
3207}
3208
3209void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3210  Step S;
3211  S.Kind = SK_ProduceObjCObject;
3212  S.Type = T;
3213  Steps.push_back(S);
3214}
3215
3216void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3217  Step S;
3218  S.Kind = SK_StdInitializerList;
3219  S.Type = T;
3220  Steps.push_back(S);
3221}
3222
3223void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3224  Step S;
3225  S.Kind = SK_OCLSamplerInit;
3226  S.Type = T;
3227  Steps.push_back(S);
3228}
3229
3230void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3231  Step S;
3232  S.Kind = SK_OCLZeroEvent;
3233  S.Type = T;
3234  Steps.push_back(S);
3235}
3236
3237void InitializationSequence::RewrapReferenceInitList(QualType T,
3238                                                     InitListExpr *Syntactic) {
3239  assert(Syntactic->getNumInits() == 1 &&
3240         "Can only rewrap trivial init lists.");
3241  Step S;
3242  S.Kind = SK_UnwrapInitList;
3243  S.Type = Syntactic->getInit(0)->getType();
3244  Steps.insert(Steps.begin(), S);
3245
3246  S.Kind = SK_RewrapInitList;
3247  S.Type = T;
3248  S.WrappingSyntacticList = Syntactic;
3249  Steps.push_back(S);
3250}
3251
3252void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3253                                                OverloadingResult Result) {
3254  setSequenceKind(FailedSequence);
3255  this->Failure = Failure;
3256  this->FailedOverloadResult = Result;
3257}
3258
3259//===----------------------------------------------------------------------===//
3260// Attempt initialization
3261//===----------------------------------------------------------------------===//
3262
3263/// Tries to add a zero initializer. Returns true if that worked.
3264static bool
3265maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3266                                   const InitializedEntity &Entity) {
3267  if (Entity.getKind() != InitializedEntity::EK_Variable)
3268    return false;
3269
3270  VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3271  if (VD->getInit() || VD->getLocEnd().isMacroID())
3272    return false;
3273
3274  QualType VariableTy = VD->getType().getCanonicalType();
3275  SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3276  std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3277  if (!Init.empty()) {
3278    Sequence.AddZeroInitializationStep(Entity.getType());
3279    Sequence.SetZeroInitializationFixit(Init, Loc);
3280    return true;
3281  }
3282  return false;
3283}
3284
3285static void MaybeProduceObjCObject(Sema &S,
3286                                   InitializationSequence &Sequence,
3287                                   const InitializedEntity &Entity) {
3288  if (!S.getLangOpts().ObjCAutoRefCount) return;
3289
3290  /// When initializing a parameter, produce the value if it's marked
3291  /// __attribute__((ns_consumed)).
3292  if (Entity.isParameterKind()) {
3293    if (!Entity.isParameterConsumed())
3294      return;
3295
3296    assert(Entity.getType()->isObjCRetainableType() &&
3297           "consuming an object of unretainable type?");
3298    Sequence.AddProduceObjCObjectStep(Entity.getType());
3299
3300  /// When initializing a return value, if the return type is a
3301  /// retainable type, then returns need to immediately retain the
3302  /// object.  If an autorelease is required, it will be done at the
3303  /// last instant.
3304  } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3305    if (!Entity.getType()->isObjCRetainableType())
3306      return;
3307
3308    Sequence.AddProduceObjCObjectStep(Entity.getType());
3309  }
3310}
3311
3312static void TryListInitialization(Sema &S,
3313                                  const InitializedEntity &Entity,
3314                                  const InitializationKind &Kind,
3315                                  InitListExpr *InitList,
3316                                  InitializationSequence &Sequence);
3317
3318/// \brief When initializing from init list via constructor, handle
3319/// initialization of an object of type std::initializer_list<T>.
3320///
3321/// \return true if we have handled initialization of an object of type
3322/// std::initializer_list<T>, false otherwise.
3323static bool TryInitializerListConstruction(Sema &S,
3324                                           InitListExpr *List,
3325                                           QualType DestType,
3326                                           InitializationSequence &Sequence) {
3327  QualType E;
3328  if (!S.isStdInitializerList(DestType, &E))
3329    return false;
3330
3331  if (!S.isCompleteType(List->getExprLoc(), E)) {
3332    Sequence.setIncompleteTypeFailure(E);
3333    return true;
3334  }
3335
3336  // Try initializing a temporary array from the init list.
3337  QualType ArrayType = S.Context.getConstantArrayType(
3338      E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3339                                 List->getNumInits()),
3340      clang::ArrayType::Normal, 0);
3341  InitializedEntity HiddenArray =
3342      InitializedEntity::InitializeTemporary(ArrayType);
3343  InitializationKind Kind =
3344      InitializationKind::CreateDirectList(List->getExprLoc());
3345  TryListInitialization(S, HiddenArray, Kind, List, Sequence);
3346  if (Sequence)
3347    Sequence.AddStdInitializerListConstructionStep(DestType);
3348  return true;
3349}
3350
3351static OverloadingResult
3352ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3353                           MultiExprArg Args,
3354                           OverloadCandidateSet &CandidateSet,
3355                           DeclContext::lookup_result Ctors,
3356                           OverloadCandidateSet::iterator &Best,
3357                           bool CopyInitializing, bool AllowExplicit,
3358                           bool OnlyListConstructors, bool IsListInit) {
3359  CandidateSet.clear();
3360
3361  for (NamedDecl *D : Ctors) {
3362    DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3363    bool SuppressUserConversions = false;
3364
3365    // Find the constructor (which may be a template).
3366    CXXConstructorDecl *Constructor = nullptr;
3367    FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3368    if (ConstructorTmpl)
3369      Constructor = cast<CXXConstructorDecl>(
3370                                           ConstructorTmpl->getTemplatedDecl());
3371    else {
3372      Constructor = cast<CXXConstructorDecl>(D);
3373
3374      // C++11 [over.best.ics]p4:
3375      //   ... and the constructor or user-defined conversion function is a
3376      //   candidate by
3377      //   - 13.3.1.3, when the argument is the temporary in the second step
3378      //     of a class copy-initialization, or
3379      //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases),
3380      //   user-defined conversion sequences are not considered.
3381      // FIXME: This breaks backward compatibility, e.g. PR12117. As a
3382      //        temporary fix, let's re-instate the third bullet above until
3383      //        there is a resolution in the standard, i.e.,
3384      //   - 13.3.1.7 when the initializer list has exactly one element that is
3385      //     itself an initializer list and a conversion to some class X or
3386      //     reference to (possibly cv-qualified) X is considered for the first
3387      //     parameter of a constructor of X.
3388      if ((CopyInitializing ||
3389           (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3390          Constructor->isCopyOrMoveConstructor())
3391        SuppressUserConversions = true;
3392    }
3393
3394    if (!Constructor->isInvalidDecl() &&
3395        (AllowExplicit || !Constructor->isExplicit()) &&
3396        (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3397      if (ConstructorTmpl)
3398        S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3399                                       /*ExplicitArgs*/ nullptr, Args,
3400                                       CandidateSet, SuppressUserConversions);
3401      else {
3402        // C++ [over.match.copy]p1:
3403        //   - When initializing a temporary to be bound to the first parameter
3404        //     of a constructor that takes a reference to possibly cv-qualified
3405        //     T as its first argument, called with a single argument in the
3406        //     context of direct-initialization, explicit conversion functions
3407        //     are also considered.
3408        bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3409                                 Args.size() == 1 &&
3410                                 Constructor->isCopyOrMoveConstructor();
3411        S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3412                               SuppressUserConversions,
3413                               /*PartialOverloading=*/false,
3414                               /*AllowExplicit=*/AllowExplicitConv);
3415      }
3416    }
3417  }
3418
3419  // Perform overload resolution and return the result.
3420  return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3421}
3422
3423/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3424/// enumerates the constructors of the initialized entity and performs overload
3425/// resolution to select the best.
3426/// \param IsListInit     Is this list-initialization?
3427/// \param IsInitListCopy Is this non-list-initialization resulting from a
3428///                       list-initialization from {x} where x is the same
3429///                       type as the entity?
3430static void TryConstructorInitialization(Sema &S,
3431                                         const InitializedEntity &Entity,
3432                                         const InitializationKind &Kind,
3433                                         MultiExprArg Args, QualType DestType,
3434                                         InitializationSequence &Sequence,
3435                                         bool IsListInit = false,
3436                                         bool IsInitListCopy = false) {
3437  assert((!IsListInit || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3438         "IsListInit must come with a single initializer list argument.");
3439
3440  // The type we're constructing needs to be complete.
3441  if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3442    Sequence.setIncompleteTypeFailure(DestType);
3443    return;
3444  }
3445
3446  const RecordType *DestRecordType = DestType->getAs<RecordType>();
3447  assert(DestRecordType && "Constructor initialization requires record type");
3448  CXXRecordDecl *DestRecordDecl
3449    = cast<CXXRecordDecl>(DestRecordType->getDecl());
3450
3451  // Build the candidate set directly in the initialization sequence
3452  // structure, so that it will persist if we fail.
3453  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3454
3455  // Determine whether we are allowed to call explicit constructors or
3456  // explicit conversion operators.
3457  bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3458  bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3459
3460  //   - Otherwise, if T is a class type, constructors are considered. The
3461  //     applicable constructors are enumerated, and the best one is chosen
3462  //     through overload resolution.
3463  DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3464
3465  OverloadingResult Result = OR_No_Viable_Function;
3466  OverloadCandidateSet::iterator Best;
3467  bool AsInitializerList = false;
3468
3469  // C++11 [over.match.list]p1, per DR1467:
3470  //   When objects of non-aggregate type T are list-initialized, such that
3471  //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3472  //   according to the rules in this section, overload resolution selects
3473  //   the constructor in two phases:
3474  //
3475  //   - Initially, the candidate functions are the initializer-list
3476  //     constructors of the class T and the argument list consists of the
3477  //     initializer list as a single argument.
3478  if (IsListInit) {
3479    InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3480    AsInitializerList = true;
3481
3482    // If the initializer list has no elements and T has a default constructor,
3483    // the first phase is omitted.
3484    if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3485      Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3486                                          CandidateSet, Ctors, Best,
3487                                          CopyInitialization, AllowExplicit,
3488                                          /*OnlyListConstructor=*/true,
3489                                          IsListInit);
3490
3491    // Time to unwrap the init list.
3492    Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3493  }
3494
3495  // C++11 [over.match.list]p1:
3496  //   - If no viable initializer-list constructor is found, overload resolution
3497  //     is performed again, where the candidate functions are all the
3498  //     constructors of the class T and the argument list consists of the
3499  //     elements of the initializer list.
3500  if (Result == OR_No_Viable_Function) {
3501    AsInitializerList = false;
3502    Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3503                                        CandidateSet, Ctors, Best,
3504                                        CopyInitialization, AllowExplicit,
3505                                        /*OnlyListConstructors=*/false,
3506                                        IsListInit);
3507  }
3508  if (Result) {
3509    Sequence.SetOverloadFailure(IsListInit ?
3510                      InitializationSequence::FK_ListConstructorOverloadFailed :
3511                      InitializationSequence::FK_ConstructorOverloadFailed,
3512                                Result);
3513    return;
3514  }
3515
3516  // C++11 [dcl.init]p6:
3517  //   If a program calls for the default initialization of an object
3518  //   of a const-qualified type T, T shall be a class type with a
3519  //   user-provided default constructor.
3520  if (Kind.getKind() == InitializationKind::IK_Default &&
3521      Entity.getType().isConstQualified() &&
3522      !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3523    if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3524      Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3525    return;
3526  }
3527
3528  // C++11 [over.match.list]p1:
3529  //   In copy-list-initialization, if an explicit constructor is chosen, the
3530  //   initializer is ill-formed.
3531  CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3532  if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3533    Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3534    return;
3535  }
3536
3537  // Add the constructor initialization step. Any cv-qualification conversion is
3538  // subsumed by the initialization.
3539  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3540  Sequence.AddConstructorInitializationStep(
3541      CtorDecl, Best->FoundDecl.getAccess(), DestType, HadMultipleCandidates,
3542      IsListInit | IsInitListCopy, AsInitializerList);
3543}
3544
3545static bool
3546ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3547                                             Expr *Initializer,
3548                                             QualType &SourceType,
3549                                             QualType &UnqualifiedSourceType,
3550                                             QualType UnqualifiedTargetType,
3551                                             InitializationSequence &Sequence) {
3552  if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3553        S.Context.OverloadTy) {
3554    DeclAccessPair Found;
3555    bool HadMultipleCandidates = false;
3556    if (FunctionDecl *Fn
3557        = S.ResolveAddressOfOverloadedFunction(Initializer,
3558                                               UnqualifiedTargetType,
3559                                               false, Found,
3560                                               &HadMultipleCandidates)) {
3561      Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3562                                                HadMultipleCandidates);
3563      SourceType = Fn->getType();
3564      UnqualifiedSourceType = SourceType.getUnqualifiedType();
3565    } else if (!UnqualifiedTargetType->isRecordType()) {
3566      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3567      return true;
3568    }
3569  }
3570  return false;
3571}
3572
3573static void TryReferenceInitializationCore(Sema &S,
3574                                           const InitializedEntity &Entity,
3575                                           const InitializationKind &Kind,
3576                                           Expr *Initializer,
3577                                           QualType cv1T1, QualType T1,
3578                                           Qualifiers T1Quals,
3579                                           QualType cv2T2, QualType T2,
3580                                           Qualifiers T2Quals,
3581                                           InitializationSequence &Sequence);
3582
3583static void TryValueInitialization(Sema &S,
3584                                   const InitializedEntity &Entity,
3585                                   const InitializationKind &Kind,
3586                                   InitializationSequence &Sequence,
3587                                   InitListExpr *InitList = nullptr);
3588
3589/// \brief Attempt list initialization of a reference.
3590static void TryReferenceListInitialization(Sema &S,
3591                                           const InitializedEntity &Entity,
3592                                           const InitializationKind &Kind,
3593                                           InitListExpr *InitList,
3594                                           InitializationSequence &Sequence) {
3595  // First, catch C++03 where this isn't possible.
3596  if (!S.getLangOpts().CPlusPlus11) {
3597    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3598    return;
3599  }
3600  // Can't reference initialize a compound literal.
3601  if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3602    Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3603    return;
3604  }
3605
3606  QualType DestType = Entity.getType();
3607  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3608  Qualifiers T1Quals;
3609  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3610
3611  // Reference initialization via an initializer list works thus:
3612  // If the initializer list consists of a single element that is
3613  // reference-related to the referenced type, bind directly to that element
3614  // (possibly creating temporaries).
3615  // Otherwise, initialize a temporary with the initializer list and
3616  // bind to that.
3617  if (InitList->getNumInits() == 1) {
3618    Expr *Initializer = InitList->getInit(0);
3619    QualType cv2T2 = Initializer->getType();
3620    Qualifiers T2Quals;
3621    QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3622
3623    // If this fails, creating a temporary wouldn't work either.
3624    if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3625                                                     T1, Sequence))
3626      return;
3627
3628    SourceLocation DeclLoc = Initializer->getLocStart();
3629    bool dummy1, dummy2, dummy3;
3630    Sema::ReferenceCompareResult RefRelationship
3631      = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3632                                       dummy2, dummy3);
3633    if (RefRelationship >= Sema::Ref_Related) {
3634      // Try to bind the reference here.
3635      TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3636                                     T1Quals, cv2T2, T2, T2Quals, Sequence);
3637      if (Sequence)
3638        Sequence.RewrapReferenceInitList(cv1T1, InitList);
3639      return;
3640    }
3641
3642    // Update the initializer if we've resolved an overloaded function.
3643    if (Sequence.step_begin() != Sequence.step_end())
3644      Sequence.RewrapReferenceInitList(cv1T1, InitList);
3645  }
3646
3647  // Not reference-related. Create a temporary and bind to that.
3648  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3649
3650  TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3651  if (Sequence) {
3652    if (DestType->isRValueReferenceType() ||
3653        (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3654      Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3655    else
3656      Sequence.SetFailed(
3657          InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3658  }
3659}
3660
3661/// \brief Attempt list initialization (C++0x [dcl.init.list])
3662static void TryListInitialization(Sema &S,
3663                                  const InitializedEntity &Entity,
3664                                  const InitializationKind &Kind,
3665                                  InitListExpr *InitList,
3666                                  InitializationSequence &Sequence) {
3667  QualType DestType = Entity.getType();
3668
3669  // C++ doesn't allow scalar initialization with more than one argument.
3670  // But C99 complex numbers are scalars and it makes sense there.
3671  if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3672      !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3673    Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3674    return;
3675  }
3676  if (DestType->isReferenceType()) {
3677    TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3678    return;
3679  }
3680
3681  if (DestType->isRecordType() &&
3682      !S.isCompleteType(InitList->getLocStart(), DestType)) {
3683    Sequence.setIncompleteTypeFailure(DestType);
3684    return;
3685  }
3686
3687  // C++11 [dcl.init.list]p3, per DR1467:
3688  // - If T is a class type and the initializer list has a single element of
3689  //   type cv U, where U is T or a class derived from T, the object is
3690  //   initialized from that element (by copy-initialization for
3691  //   copy-list-initialization, or by direct-initialization for
3692  //   direct-list-initialization).
3693  // - Otherwise, if T is a character array and the initializer list has a
3694  //   single element that is an appropriately-typed string literal
3695  //   (8.5.2 [dcl.init.string]), initialization is performed as described
3696  //   in that section.
3697  // - Otherwise, if T is an aggregate, [...] (continue below).
3698  if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
3699    if (DestType->isRecordType()) {
3700      QualType InitType = InitList->getInit(0)->getType();
3701      if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
3702          S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) {
3703        Expr *InitAsExpr = InitList->getInit(0);
3704        TryConstructorInitialization(S, Entity, Kind, InitAsExpr, DestType,
3705                                     Sequence, /*InitListSyntax*/ false,
3706                                     /*IsInitListCopy*/ true);
3707        return;
3708      }
3709    }
3710    if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
3711      Expr *SubInit[1] = {InitList->getInit(0)};
3712      if (!isa<VariableArrayType>(DestAT) &&
3713          IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
3714        InitializationKind SubKind =
3715            Kind.getKind() == InitializationKind::IK_DirectList
3716                ? InitializationKind::CreateDirect(Kind.getLocation(),
3717                                                   InitList->getLBraceLoc(),
3718                                                   InitList->getRBraceLoc())
3719                : Kind;
3720        Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3721                                /*TopLevelOfInitList*/ true);
3722
3723        // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
3724        // the element is not an appropriately-typed string literal, in which
3725        // case we should proceed as in C++11 (below).
3726        if (Sequence) {
3727          Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3728          return;
3729        }
3730      }
3731    }
3732  }
3733
3734  // C++11 [dcl.init.list]p3:
3735  //   - If T is an aggregate, aggregate initialization is performed.
3736  if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
3737      (S.getLangOpts().CPlusPlus11 &&
3738       S.isStdInitializerList(DestType, nullptr))) {
3739    if (S.getLangOpts().CPlusPlus11) {
3740      //   - Otherwise, if the initializer list has no elements and T is a
3741      //     class type with a default constructor, the object is
3742      //     value-initialized.
3743      if (InitList->getNumInits() == 0) {
3744        CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3745        if (RD->hasDefaultConstructor()) {
3746          TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3747          return;
3748        }
3749      }
3750
3751      //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3752      //     an initializer_list object constructed [...]
3753      if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3754        return;
3755
3756      //   - Otherwise, if T is a class type, constructors are considered.
3757      Expr *InitListAsExpr = InitList;
3758      TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3759                                   Sequence, /*InitListSyntax*/ true);
3760    } else
3761      Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
3762    return;
3763  }
3764
3765  if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3766      InitList->getNumInits() == 1 &&
3767      InitList->getInit(0)->getType()->isRecordType()) {
3768    //   - Otherwise, if the initializer list has a single element of type E
3769    //     [...references are handled above...], the object or reference is
3770    //     initialized from that element (by copy-initialization for
3771    //     copy-list-initialization, or by direct-initialization for
3772    //     direct-list-initialization); if a narrowing conversion is required
3773    //     to convert the element to T, the program is ill-formed.
3774    //
3775    // Per core-24034, this is direct-initialization if we were performing
3776    // direct-list-initialization and copy-initialization otherwise.
3777    // We can't use InitListChecker for this, because it always performs
3778    // copy-initialization. This only matters if we might use an 'explicit'
3779    // conversion operator, so we only need to handle the cases where the source
3780    // is of record type.
3781    InitializationKind SubKind =
3782        Kind.getKind() == InitializationKind::IK_DirectList
3783            ? InitializationKind::CreateDirect(Kind.getLocation(),
3784                                               InitList->getLBraceLoc(),
3785                                               InitList->getRBraceLoc())
3786            : Kind;
3787    Expr *SubInit[1] = { InitList->getInit(0) };
3788    Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3789                            /*TopLevelOfInitList*/true);
3790    if (Sequence)
3791      Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3792    return;
3793  }
3794
3795  InitListChecker CheckInitList(S, Entity, InitList,
3796          DestType, /*VerifyOnly=*/true);
3797  if (CheckInitList.HadError()) {
3798    Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3799    return;
3800  }
3801
3802  // Add the list initialization step with the built init list.
3803  Sequence.AddListInitializationStep(DestType);
3804}
3805
3806/// \brief Try a reference initialization that involves calling a conversion
3807/// function.
3808static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3809                                             const InitializedEntity &Entity,
3810                                             const InitializationKind &Kind,
3811                                             Expr *Initializer,
3812                                             bool AllowRValues,
3813                                             InitializationSequence &Sequence) {
3814  QualType DestType = Entity.getType();
3815  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3816  QualType T1 = cv1T1.getUnqualifiedType();
3817  QualType cv2T2 = Initializer->getType();
3818  QualType T2 = cv2T2.getUnqualifiedType();
3819
3820  bool DerivedToBase;
3821  bool ObjCConversion;
3822  bool ObjCLifetimeConversion;
3823  assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3824                                         T1, T2, DerivedToBase,
3825                                         ObjCConversion,
3826                                         ObjCLifetimeConversion) &&
3827         "Must have incompatible references when binding via conversion");
3828  (void)DerivedToBase;
3829  (void)ObjCConversion;
3830  (void)ObjCLifetimeConversion;
3831
3832  // Build the candidate set directly in the initialization sequence
3833  // structure, so that it will persist if we fail.
3834  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3835  CandidateSet.clear();
3836
3837  // Determine whether we are allowed to call explicit constructors or
3838  // explicit conversion operators.
3839  bool AllowExplicit = Kind.AllowExplicit();
3840  bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
3841
3842  const RecordType *T1RecordType = nullptr;
3843  if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3844      S.isCompleteType(Kind.getLocation(), T1)) {
3845    // The type we're converting to is a class type. Enumerate its constructors
3846    // to see if there is a suitable conversion.
3847    CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3848
3849    for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
3850      DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3851
3852      // Find the constructor (which may be a template).
3853      CXXConstructorDecl *Constructor = nullptr;
3854      FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3855      if (ConstructorTmpl)
3856        Constructor = cast<CXXConstructorDecl>(
3857                                         ConstructorTmpl->getTemplatedDecl());
3858      else
3859        Constructor = cast<CXXConstructorDecl>(D);
3860
3861      if (!Constructor->isInvalidDecl() &&
3862          Constructor->isConvertingConstructor(AllowExplicit)) {
3863        if (ConstructorTmpl)
3864          S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3865                                         /*ExplicitArgs*/ nullptr,
3866                                         Initializer, CandidateSet,
3867                                         /*SuppressUserConversions=*/true);
3868        else
3869          S.AddOverloadCandidate(Constructor, FoundDecl,
3870                                 Initializer, CandidateSet,
3871                                 /*SuppressUserConversions=*/true);
3872      }
3873    }
3874  }
3875  if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3876    return OR_No_Viable_Function;
3877
3878  const RecordType *T2RecordType = nullptr;
3879  if ((T2RecordType = T2->getAs<RecordType>()) &&
3880      S.isCompleteType(Kind.getLocation(), T2)) {
3881    // The type we're converting from is a class type, enumerate its conversion
3882    // functions.
3883    CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3884
3885    const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
3886    for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3887      NamedDecl *D = *I;
3888      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3889      if (isa<UsingShadowDecl>(D))
3890        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3891
3892      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3893      CXXConversionDecl *Conv;
3894      if (ConvTemplate)
3895        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3896      else
3897        Conv = cast<CXXConversionDecl>(D);
3898
3899      // If the conversion function doesn't return a reference type,
3900      // it can't be considered for this conversion unless we're allowed to
3901      // consider rvalues.
3902      // FIXME: Do we need to make sure that we only consider conversion
3903      // candidates with reference-compatible results? That might be needed to
3904      // break recursion.
3905      if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3906          (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3907        if (ConvTemplate)
3908          S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3909                                           ActingDC, Initializer,
3910                                           DestType, CandidateSet,
3911                                           /*AllowObjCConversionOnExplicit=*/
3912                                             false);
3913        else
3914          S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3915                                   Initializer, DestType, CandidateSet,
3916                                   /*AllowObjCConversionOnExplicit=*/false);
3917      }
3918    }
3919  }
3920  if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3921    return OR_No_Viable_Function;
3922
3923  SourceLocation DeclLoc = Initializer->getLocStart();
3924
3925  // Perform overload resolution. If it fails, return the failed result.
3926  OverloadCandidateSet::iterator Best;
3927  if (OverloadingResult Result
3928        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3929    return Result;
3930
3931  FunctionDecl *Function = Best->Function;
3932  // This is the overload that will be used for this initialization step if we
3933  // use this initialization. Mark it as referenced.
3934  Function->setReferenced();
3935
3936  // Compute the returned type of the conversion.
3937  if (isa<CXXConversionDecl>(Function))
3938    T2 = Function->getReturnType();
3939  else
3940    T2 = cv1T1;
3941
3942  // Add the user-defined conversion step.
3943  bool HadMultipleCandidates = (CandidateSet.size() > 1);
3944  Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3945                                 T2.getNonLValueExprType(S.Context),
3946                                 HadMultipleCandidates);
3947
3948  // Determine whether we need to perform derived-to-base or
3949  // cv-qualification adjustments.
3950  ExprValueKind VK = VK_RValue;
3951  if (T2->isLValueReferenceType())
3952    VK = VK_LValue;
3953  else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3954    VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3955
3956  bool NewDerivedToBase = false;
3957  bool NewObjCConversion = false;
3958  bool NewObjCLifetimeConversion = false;
3959  Sema::ReferenceCompareResult NewRefRelationship
3960    = S.CompareReferenceRelationship(DeclLoc, T1,
3961                                     T2.getNonLValueExprType(S.Context),
3962                                     NewDerivedToBase, NewObjCConversion,
3963                                     NewObjCLifetimeConversion);
3964  if (NewRefRelationship == Sema::Ref_Incompatible) {
3965    // If the type we've converted to is not reference-related to the
3966    // type we're looking for, then there is another conversion step
3967    // we need to perform to produce a temporary of the right type
3968    // that we'll be binding to.
3969    ImplicitConversionSequence ICS;
3970    ICS.setStandard();
3971    ICS.Standard = Best->FinalConversion;
3972    T2 = ICS.Standard.getToType(2);
3973    Sequence.AddConversionSequenceStep(ICS, T2);
3974  } else if (NewDerivedToBase)
3975    Sequence.AddDerivedToBaseCastStep(
3976                                S.Context.getQualifiedType(T1,
3977                                  T2.getNonReferenceType().getQualifiers()),
3978                                      VK);
3979  else if (NewObjCConversion)
3980    Sequence.AddObjCObjectConversionStep(
3981                                S.Context.getQualifiedType(T1,
3982                                  T2.getNonReferenceType().getQualifiers()));
3983
3984  if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3985    Sequence.AddQualificationConversionStep(cv1T1, VK);
3986
3987  Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3988  return OR_Success;
3989}
3990
3991static void CheckCXX98CompatAccessibleCopy(Sema &S,
3992                                           const InitializedEntity &Entity,
3993                                           Expr *CurInitExpr);
3994
3995/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3996static void TryReferenceInitialization(Sema &S,
3997                                       const InitializedEntity &Entity,
3998                                       const InitializationKind &Kind,
3999                                       Expr *Initializer,
4000                                       InitializationSequence &Sequence) {
4001  QualType DestType = Entity.getType();
4002  QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4003  Qualifiers T1Quals;
4004  QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4005  QualType cv2T2 = Initializer->getType();
4006  Qualifiers T2Quals;
4007  QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4008
4009  // If the initializer is the address of an overloaded function, try
4010  // to resolve the overloaded function. If all goes well, T2 is the
4011  // type of the resulting function.
4012  if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4013                                                   T1, Sequence))
4014    return;
4015
4016  // Delegate everything else to a subfunction.
4017  TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4018                                 T1Quals, cv2T2, T2, T2Quals, Sequence);
4019}
4020
4021/// Converts the target of reference initialization so that it has the
4022/// appropriate qualifiers and value kind.
4023///
4024/// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
4025/// \code
4026///   int x;
4027///   const int &r = x;
4028/// \endcode
4029///
4030/// In this case the reference is binding to a bitfield lvalue, which isn't
4031/// valid. Perform a load to create a lifetime-extended temporary instead.
4032/// \code
4033///   const int &r = someStruct.bitfield;
4034/// \endcode
4035static ExprValueKind
4036convertQualifiersAndValueKindIfNecessary(Sema &S,
4037                                         InitializationSequence &Sequence,
4038                                         Expr *Initializer,
4039                                         QualType cv1T1,
4040                                         Qualifiers T1Quals,
4041                                         Qualifiers T2Quals,
4042                                         bool IsLValueRef) {
4043  bool IsNonAddressableType = Initializer->refersToBitField() ||
4044                              Initializer->refersToVectorElement();
4045
4046  if (IsNonAddressableType) {
4047    // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
4048    // lvalue reference to a non-volatile const type, or the reference shall be
4049    // an rvalue reference.
4050    //
4051    // If not, we can't make a temporary and bind to that. Give up and allow the
4052    // error to be diagnosed later.
4053    if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
4054      assert(Initializer->isGLValue());
4055      return Initializer->getValueKind();
4056    }
4057
4058    // Force a load so we can materialize a temporary.
4059    Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
4060    return VK_RValue;
4061  }
4062
4063  if (T1Quals != T2Quals) {
4064    Sequence.AddQualificationConversionStep(cv1T1,
4065                                            Initializer->getValueKind());
4066  }
4067
4068  return Initializer->getValueKind();
4069}
4070
4071
4072/// \brief Reference initialization without resolving overloaded functions.
4073static void TryReferenceInitializationCore(Sema &S,
4074                                           const InitializedEntity &Entity,
4075                                           const InitializationKind &Kind,
4076                                           Expr *Initializer,
4077                                           QualType cv1T1, QualType T1,
4078                                           Qualifiers T1Quals,
4079                                           QualType cv2T2, QualType T2,
4080                                           Qualifiers T2Quals,
4081                                           InitializationSequence &Sequence) {
4082  QualType DestType = Entity.getType();
4083  SourceLocation DeclLoc = Initializer->getLocStart();
4084  // Compute some basic properties of the types and the initializer.
4085  bool isLValueRef = DestType->isLValueReferenceType();
4086  bool isRValueRef = !isLValueRef;
4087  bool DerivedToBase = false;
4088  bool ObjCConversion = false;
4089  bool ObjCLifetimeConversion = false;
4090  Expr::Classification InitCategory = Initializer->Classify(S.Context);
4091  Sema::ReferenceCompareResult RefRelationship
4092    = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4093                                     ObjCConversion, ObjCLifetimeConversion);
4094
4095  // C++0x [dcl.init.ref]p5:
4096  //   A reference to type "cv1 T1" is initialized by an expression of type
4097  //   "cv2 T2" as follows:
4098  //
4099  //     - If the reference is an lvalue reference and the initializer
4100  //       expression
4101  // Note the analogous bullet points for rvalue refs to functions. Because
4102  // there are no function rvalues in C++, rvalue refs to functions are treated
4103  // like lvalue refs.
4104  OverloadingResult ConvOvlResult = OR_Success;
4105  bool T1Function = T1->isFunctionType();
4106  if (isLValueRef || T1Function) {
4107    if (InitCategory.isLValue() &&
4108        (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
4109         (Kind.isCStyleOrFunctionalCast() &&
4110          RefRelationship == Sema::Ref_Related))) {
4111      //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4112      //     reference-compatible with "cv2 T2," or
4113      //
4114      // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
4115      // bit-field when we're determining whether the reference initialization
4116      // can occur. However, we do pay attention to whether it is a bit-field
4117      // to decide whether we're actually binding to a temporary created from
4118      // the bit-field.
4119      if (DerivedToBase)
4120        Sequence.AddDerivedToBaseCastStep(
4121                         S.Context.getQualifiedType(T1, T2Quals),
4122                         VK_LValue);
4123      else if (ObjCConversion)
4124        Sequence.AddObjCObjectConversionStep(
4125                                     S.Context.getQualifiedType(T1, T2Quals));
4126
4127      ExprValueKind ValueKind =
4128        convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
4129                                                 cv1T1, T1Quals, T2Quals,
4130                                                 isLValueRef);
4131      Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
4132      return;
4133    }
4134
4135    //     - has a class type (i.e., T2 is a class type), where T1 is not
4136    //       reference-related to T2, and can be implicitly converted to an
4137    //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4138    //       with "cv3 T3" (this conversion is selected by enumerating the
4139    //       applicable conversion functions (13.3.1.6) and choosing the best
4140    //       one through overload resolution (13.3)),
4141    // If we have an rvalue ref to function type here, the rhs must be
4142    // an rvalue. DR1287 removed the "implicitly" here.
4143    if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4144        (isLValueRef || InitCategory.isRValue())) {
4145      ConvOvlResult = TryRefInitWithConversionFunction(
4146          S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence);
4147      if (ConvOvlResult == OR_Success)
4148        return;
4149      if (ConvOvlResult != OR_No_Viable_Function)
4150        Sequence.SetOverloadFailure(
4151            InitializationSequence::FK_ReferenceInitOverloadFailed,
4152            ConvOvlResult);
4153    }
4154  }
4155
4156  //     - Otherwise, the reference shall be an lvalue reference to a
4157  //       non-volatile const type (i.e., cv1 shall be const), or the reference
4158  //       shall be an rvalue reference.
4159  if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4160    if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4161      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4162    else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4163      Sequence.SetOverloadFailure(
4164                        InitializationSequence::FK_ReferenceInitOverloadFailed,
4165                                  ConvOvlResult);
4166    else
4167      Sequence.SetFailed(InitCategory.isLValue()
4168        ? (RefRelationship == Sema::Ref_Related
4169             ? InitializationSequence::FK_ReferenceInitDropsQualifiers
4170             : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
4171        : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4172
4173    return;
4174  }
4175
4176  //    - If the initializer expression
4177  //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
4178  //        "cv1 T1" is reference-compatible with "cv2 T2"
4179  // Note: functions are handled below.
4180  if (!T1Function &&
4181      (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
4182       (Kind.isCStyleOrFunctionalCast() &&
4183        RefRelationship == Sema::Ref_Related)) &&
4184      (InitCategory.isXValue() ||
4185       (InitCategory.isPRValue() && T2->isRecordType()) ||
4186       (InitCategory.isPRValue() && T2->isArrayType()))) {
4187    ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
4188    if (InitCategory.isPRValue() && T2->isRecordType()) {
4189      // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4190      // compiler the freedom to perform a copy here or bind to the
4191      // object, while C++0x requires that we bind directly to the
4192      // object. Hence, we always bind to the object without making an
4193      // extra copy. However, in C++03 requires that we check for the
4194      // presence of a suitable copy constructor:
4195      //
4196      //   The constructor that would be used to make the copy shall
4197      //   be callable whether or not the copy is actually done.
4198      if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4199        Sequence.AddExtraneousCopyToTemporary(cv2T2);
4200      else if (S.getLangOpts().CPlusPlus11)
4201        CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4202    }
4203
4204    if (DerivedToBase)
4205      Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
4206                                        ValueKind);
4207    else if (ObjCConversion)
4208      Sequence.AddObjCObjectConversionStep(
4209                                       S.Context.getQualifiedType(T1, T2Quals));
4210
4211    ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
4212                                                         Initializer, cv1T1,
4213                                                         T1Quals, T2Quals,
4214                                                         isLValueRef);
4215
4216    Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
4217    return;
4218  }
4219
4220  //       - has a class type (i.e., T2 is a class type), where T1 is not
4221  //         reference-related to T2, and can be implicitly converted to an
4222  //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4223  //         where "cv1 T1" is reference-compatible with "cv3 T3",
4224  //
4225  // DR1287 removes the "implicitly" here.
4226  if (T2->isRecordType()) {
4227    if (RefRelationship == Sema::Ref_Incompatible) {
4228      ConvOvlResult = TryRefInitWithConversionFunction(
4229          S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence);
4230      if (ConvOvlResult)
4231        Sequence.SetOverloadFailure(
4232            InitializationSequence::FK_ReferenceInitOverloadFailed,
4233            ConvOvlResult);
4234
4235      return;
4236    }
4237
4238    if ((RefRelationship == Sema::Ref_Compatible ||
4239         RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
4240        isRValueRef && InitCategory.isLValue()) {
4241      Sequence.SetFailed(
4242        InitializationSequence::FK_RValueReferenceBindingToLValue);
4243      return;
4244    }
4245
4246    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4247    return;
4248  }
4249
4250  //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4251  //        from the initializer expression using the rules for a non-reference
4252  //        copy-initialization (8.5). The reference is then bound to the
4253  //        temporary. [...]
4254
4255  InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4256
4257  // FIXME: Why do we use an implicit conversion here rather than trying
4258  // copy-initialization?
4259  ImplicitConversionSequence ICS
4260    = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4261                              /*SuppressUserConversions=*/false,
4262                              /*AllowExplicit=*/false,
4263                              /*FIXME:InOverloadResolution=*/false,
4264                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4265                              /*AllowObjCWritebackConversion=*/false);
4266
4267  if (ICS.isBad()) {
4268    // FIXME: Use the conversion function set stored in ICS to turn
4269    // this into an overloading ambiguity diagnostic. However, we need
4270    // to keep that set as an OverloadCandidateSet rather than as some
4271    // other kind of set.
4272    if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4273      Sequence.SetOverloadFailure(
4274                        InitializationSequence::FK_ReferenceInitOverloadFailed,
4275                                  ConvOvlResult);
4276    else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4277      Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4278    else
4279      Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4280    return;
4281  } else {
4282    Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4283  }
4284
4285  //        [...] If T1 is reference-related to T2, cv1 must be the
4286  //        same cv-qualification as, or greater cv-qualification
4287  //        than, cv2; otherwise, the program is ill-formed.
4288  unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4289  unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4290  if (RefRelationship == Sema::Ref_Related &&
4291      (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4292    Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4293    return;
4294  }
4295
4296  //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4297  //   reference, the initializer expression shall not be an lvalue.
4298  if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4299      InitCategory.isLValue()) {
4300    Sequence.SetFailed(
4301                    InitializationSequence::FK_RValueReferenceBindingToLValue);
4302    return;
4303  }
4304
4305  Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4306  return;
4307}
4308
4309/// \brief Attempt character array initialization from a string literal
4310/// (C++ [dcl.init.string], C99 6.7.8).
4311static void TryStringLiteralInitialization(Sema &S,
4312                                           const InitializedEntity &Entity,
4313                                           const InitializationKind &Kind,
4314                                           Expr *Initializer,
4315                                       InitializationSequence &Sequence) {
4316  Sequence.AddStringInitStep(Entity.getType());
4317}
4318
4319/// \brief Attempt value initialization (C++ [dcl.init]p7).
4320static void TryValueInitialization(Sema &S,
4321                                   const InitializedEntity &Entity,
4322                                   const InitializationKind &Kind,
4323                                   InitializationSequence &Sequence,
4324                                   InitListExpr *InitList) {
4325  assert((!InitList || InitList->getNumInits() == 0) &&
4326         "Shouldn't use value-init for non-empty init lists");
4327
4328  // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4329  //
4330  //   To value-initialize an object of type T means:
4331  QualType T = Entity.getType();
4332
4333  //     -- if T is an array type, then each element is value-initialized;
4334  T = S.Context.getBaseElementType(T);
4335
4336  if (const RecordType *RT = T->getAs<RecordType>()) {
4337    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4338      bool NeedZeroInitialization = true;
4339      if (!S.getLangOpts().CPlusPlus11) {
4340        // C++98:
4341        // -- if T is a class type (clause 9) with a user-declared constructor
4342        //    (12.1), then the default constructor for T is called (and the
4343        //    initialization is ill-formed if T has no accessible default
4344        //    constructor);
4345        if (ClassDecl->hasUserDeclaredConstructor())
4346          NeedZeroInitialization = false;
4347      } else {
4348        // C++11:
4349        // -- if T is a class type (clause 9) with either no default constructor
4350        //    (12.1 [class.ctor]) or a default constructor that is user-provided
4351        //    or deleted, then the object is default-initialized;
4352        CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4353        if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4354          NeedZeroInitialization = false;
4355      }
4356
4357      // -- if T is a (possibly cv-qualified) non-union class type without a
4358      //    user-provided or deleted default constructor, then the object is
4359      //    zero-initialized and, if T has a non-trivial default constructor,
4360      //    default-initialized;
4361      // The 'non-union' here was removed by DR1502. The 'non-trivial default
4362      // constructor' part was removed by DR1507.
4363      if (NeedZeroInitialization)
4364        Sequence.AddZeroInitializationStep(Entity.getType());
4365
4366      // C++03:
4367      // -- if T is a non-union class type without a user-declared constructor,
4368      //    then every non-static data member and base class component of T is
4369      //    value-initialized;
4370      // [...] A program that calls for [...] value-initialization of an
4371      // entity of reference type is ill-formed.
4372      //
4373      // C++11 doesn't need this handling, because value-initialization does not
4374      // occur recursively there, and the implicit default constructor is
4375      // defined as deleted in the problematic cases.
4376      if (!S.getLangOpts().CPlusPlus11 &&
4377          ClassDecl->hasUninitializedReferenceMember()) {
4378        Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4379        return;
4380      }
4381
4382      // If this is list-value-initialization, pass the empty init list on when
4383      // building the constructor call. This affects the semantics of a few
4384      // things (such as whether an explicit default constructor can be called).
4385      Expr *InitListAsExpr = InitList;
4386      MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4387      bool InitListSyntax = InitList;
4388
4389      return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
4390                                          InitListSyntax);
4391    }
4392  }
4393
4394  Sequence.AddZeroInitializationStep(Entity.getType());
4395}
4396
4397/// \brief Attempt default initialization (C++ [dcl.init]p6).
4398static void TryDefaultInitialization(Sema &S,
4399                                     const InitializedEntity &Entity,
4400                                     const InitializationKind &Kind,
4401                                     InitializationSequence &Sequence) {
4402  assert(Kind.getKind() == InitializationKind::IK_Default);
4403
4404  // C++ [dcl.init]p6:
4405  //   To default-initialize an object of type T means:
4406  //     - if T is an array type, each element is default-initialized;
4407  QualType DestType = S.Context.getBaseElementType(Entity.getType());
4408
4409  //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4410  //       constructor for T is called (and the initialization is ill-formed if
4411  //       T has no accessible default constructor);
4412  if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4413    TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
4414    return;
4415  }
4416
4417  //     - otherwise, no initialization is performed.
4418
4419  //   If a program calls for the default initialization of an object of
4420  //   a const-qualified type T, T shall be a class type with a user-provided
4421  //   default constructor.
4422  if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4423    if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4424      Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4425    return;
4426  }
4427
4428  // If the destination type has a lifetime property, zero-initialize it.
4429  if (DestType.getQualifiers().hasObjCLifetime()) {
4430    Sequence.AddZeroInitializationStep(Entity.getType());
4431    return;
4432  }
4433}
4434
4435/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4436/// which enumerates all conversion functions and performs overload resolution
4437/// to select the best.
4438static void TryUserDefinedConversion(Sema &S,
4439                                     QualType DestType,
4440                                     const InitializationKind &Kind,
4441                                     Expr *Initializer,
4442                                     InitializationSequence &Sequence,
4443                                     bool TopLevelOfInitList) {
4444  assert(!DestType->isReferenceType() && "References are handled elsewhere");
4445  QualType SourceType = Initializer->getType();
4446  assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4447         "Must have a class type to perform a user-defined conversion");
4448
4449  // Build the candidate set directly in the initialization sequence
4450  // structure, so that it will persist if we fail.
4451  OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4452  CandidateSet.clear();
4453
4454  // Determine whether we are allowed to call explicit constructors or
4455  // explicit conversion operators.
4456  bool AllowExplicit = Kind.AllowExplicit();
4457
4458  if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4459    // The type we're converting to is a class type. Enumerate its constructors
4460    // to see if there is a suitable conversion.
4461    CXXRecordDecl *DestRecordDecl
4462      = cast<CXXRecordDecl>(DestRecordType->getDecl());
4463
4464    // Try to complete the type we're converting to.
4465    if (S.isCompleteType(Kind.getLocation(), DestType)) {
4466      DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4467      // The container holding the constructors can under certain conditions
4468      // be changed while iterating. To be safe we copy the lookup results
4469      // to a new container.
4470      SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4471      for (SmallVectorImpl<NamedDecl *>::iterator
4472             Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4473           Con != ConEnd; ++Con) {
4474        NamedDecl *D = *Con;
4475        DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4476
4477        // Find the constructor (which may be a template).
4478        CXXConstructorDecl *Constructor = nullptr;
4479        FunctionTemplateDecl *ConstructorTmpl
4480          = dyn_cast<FunctionTemplateDecl>(D);
4481        if (ConstructorTmpl)
4482          Constructor = cast<CXXConstructorDecl>(
4483                                           ConstructorTmpl->getTemplatedDecl());
4484        else
4485          Constructor = cast<CXXConstructorDecl>(D);
4486
4487        if (!Constructor->isInvalidDecl() &&
4488            Constructor->isConvertingConstructor(AllowExplicit)) {
4489          if (ConstructorTmpl)
4490            S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4491                                           /*ExplicitArgs*/ nullptr,
4492                                           Initializer, CandidateSet,
4493                                           /*SuppressUserConversions=*/true);
4494          else
4495            S.AddOverloadCandidate(Constructor, FoundDecl,
4496                                   Initializer, CandidateSet,
4497                                   /*SuppressUserConversions=*/true);
4498        }
4499      }
4500    }
4501  }
4502
4503  SourceLocation DeclLoc = Initializer->getLocStart();
4504
4505  if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4506    // The type we're converting from is a class type, enumerate its conversion
4507    // functions.
4508
4509    // We can only enumerate the conversion functions for a complete type; if
4510    // the type isn't complete, simply skip this step.
4511    if (S.isCompleteType(DeclLoc, SourceType)) {
4512      CXXRecordDecl *SourceRecordDecl
4513        = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4514
4515      const auto &Conversions =
4516          SourceRecordDecl->getVisibleConversionFunctions();
4517      for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4518        NamedDecl *D = *I;
4519        CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4520        if (isa<UsingShadowDecl>(D))
4521          D = cast<UsingShadowDecl>(D)->getTargetDecl();
4522
4523        FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4524        CXXConversionDecl *Conv;
4525        if (ConvTemplate)
4526          Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4527        else
4528          Conv = cast<CXXConversionDecl>(D);
4529
4530        if (AllowExplicit || !Conv->isExplicit()) {
4531          if (ConvTemplate)
4532            S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4533                                             ActingDC, Initializer, DestType,
4534                                             CandidateSet, AllowExplicit);
4535          else
4536            S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4537                                     Initializer, DestType, CandidateSet,
4538                                     AllowExplicit);
4539        }
4540      }
4541    }
4542  }
4543
4544  // Perform overload resolution. If it fails, return the failed result.
4545  OverloadCandidateSet::iterator Best;
4546  if (OverloadingResult Result
4547        = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4548    Sequence.SetOverloadFailure(
4549                        InitializationSequence::FK_UserConversionOverloadFailed,
4550                                Result);
4551    return;
4552  }
4553
4554  FunctionDecl *Function = Best->Function;
4555  Function->setReferenced();
4556  bool HadMultipleCandidates = (CandidateSet.size() > 1);
4557
4558  if (isa<CXXConstructorDecl>(Function)) {
4559    // Add the user-defined conversion step. Any cv-qualification conversion is
4560    // subsumed by the initialization. Per DR5, the created temporary is of the
4561    // cv-unqualified type of the destination.
4562    Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4563                                   DestType.getUnqualifiedType(),
4564                                   HadMultipleCandidates);
4565    return;
4566  }
4567
4568  // Add the user-defined conversion step that calls the conversion function.
4569  QualType ConvType = Function->getCallResultType();
4570  if (ConvType->getAs<RecordType>()) {
4571    // If we're converting to a class type, there may be an copy of
4572    // the resulting temporary object (possible to create an object of
4573    // a base class type). That copy is not a separate conversion, so
4574    // we just make a note of the actual destination type (possibly a
4575    // base class of the type returned by the conversion function) and
4576    // let the user-defined conversion step handle the conversion.
4577    Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4578                                   HadMultipleCandidates);
4579    return;
4580  }
4581
4582  Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4583                                 HadMultipleCandidates);
4584
4585  // If the conversion following the call to the conversion function
4586  // is interesting, add it as a separate step.
4587  if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4588      Best->FinalConversion.Third) {
4589    ImplicitConversionSequence ICS;
4590    ICS.setStandard();
4591    ICS.Standard = Best->FinalConversion;
4592    Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4593  }
4594}
4595
4596/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4597/// a function with a pointer return type contains a 'return false;' statement.
4598/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4599/// code using that header.
4600///
4601/// Work around this by treating 'return false;' as zero-initializing the result
4602/// if it's used in a pointer-returning function in a system header.
4603static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4604                                              const InitializedEntity &Entity,
4605                                              const Expr *Init) {
4606  return S.getLangOpts().CPlusPlus11 &&
4607         Entity.getKind() == InitializedEntity::EK_Result &&
4608         Entity.getType()->isPointerType() &&
4609         isa<CXXBoolLiteralExpr>(Init) &&
4610         !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4611         S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4612}
4613
4614/// The non-zero enum values here are indexes into diagnostic alternatives.
4615enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4616
4617/// Determines whether this expression is an acceptable ICR source.
4618static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4619                                         bool isAddressOf, bool &isWeakAccess) {
4620  // Skip parens.
4621  e = e->IgnoreParens();
4622
4623  // Skip address-of nodes.
4624  if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4625    if (op->getOpcode() == UO_AddrOf)
4626      return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4627                                isWeakAccess);
4628
4629  // Skip certain casts.
4630  } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4631    switch (ce->getCastKind()) {
4632    case CK_Dependent:
4633    case CK_BitCast:
4634    case CK_LValueBitCast:
4635    case CK_NoOp:
4636      return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4637
4638    case CK_ArrayToPointerDecay:
4639      return IIK_nonscalar;
4640
4641    case CK_NullToPointer:
4642      return IIK_okay;
4643
4644    default:
4645      break;
4646    }
4647
4648  // If we have a declaration reference, it had better be a local variable.
4649  } else if (isa<DeclRefExpr>(e)) {
4650    // set isWeakAccess to true, to mean that there will be an implicit
4651    // load which requires a cleanup.
4652    if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4653      isWeakAccess = true;
4654
4655    if (!isAddressOf) return IIK_nonlocal;
4656
4657    VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4658    if (!var) return IIK_nonlocal;
4659
4660    return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4661
4662  // If we have a conditional operator, check both sides.
4663  } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4664    if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4665                                                isWeakAccess))
4666      return iik;
4667
4668    return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4669
4670  // These are never scalar.
4671  } else if (isa<ArraySubscriptExpr>(e)) {
4672    return IIK_nonscalar;
4673
4674  // Otherwise, it needs to be a null pointer constant.
4675  } else {
4676    return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4677            ? IIK_okay : IIK_nonlocal);
4678  }
4679
4680  return IIK_nonlocal;
4681}
4682
4683/// Check whether the given expression is a valid operand for an
4684/// indirect copy/restore.
4685static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4686  assert(src->isRValue());
4687  bool isWeakAccess = false;
4688  InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4689  // If isWeakAccess to true, there will be an implicit
4690  // load which requires a cleanup.
4691  if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4692    S.ExprNeedsCleanups = true;
4693
4694  if (iik == IIK_okay) return;
4695
4696  S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4697    << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4698    << src->getSourceRange();
4699}
4700
4701/// \brief Determine whether we have compatible array types for the
4702/// purposes of GNU by-copy array initialization.
4703static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
4704                                    const ArrayType *Source) {
4705  // If the source and destination array types are equivalent, we're
4706  // done.
4707  if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4708    return true;
4709
4710  // Make sure that the element types are the same.
4711  if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4712    return false;
4713
4714  // The only mismatch we allow is when the destination is an
4715  // incomplete array type and the source is a constant array type.
4716  return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4717}
4718
4719static bool tryObjCWritebackConversion(Sema &S,
4720                                       InitializationSequence &Sequence,
4721                                       const InitializedEntity &Entity,
4722                                       Expr *Initializer) {
4723  bool ArrayDecay = false;
4724  QualType ArgType = Initializer->getType();
4725  QualType ArgPointee;
4726  if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4727    ArrayDecay = true;
4728    ArgPointee = ArgArrayType->getElementType();
4729    ArgType = S.Context.getPointerType(ArgPointee);
4730  }
4731
4732  // Handle write-back conversion.
4733  QualType ConvertedArgType;
4734  if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4735                                   ConvertedArgType))
4736    return false;
4737
4738  // We should copy unless we're passing to an argument explicitly
4739  // marked 'out'.
4740  bool ShouldCopy = true;
4741  if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4742    ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4743
4744  // Do we need an lvalue conversion?
4745  if (ArrayDecay || Initializer->isGLValue()) {
4746    ImplicitConversionSequence ICS;
4747    ICS.setStandard();
4748    ICS.Standard.setAsIdentityConversion();
4749
4750    QualType ResultType;
4751    if (ArrayDecay) {
4752      ICS.Standard.First = ICK_Array_To_Pointer;
4753      ResultType = S.Context.getPointerType(ArgPointee);
4754    } else {
4755      ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4756      ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4757    }
4758
4759    Sequence.AddConversionSequenceStep(ICS, ResultType);
4760  }
4761
4762  Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4763  return true;
4764}
4765
4766static bool TryOCLSamplerInitialization(Sema &S,
4767                                        InitializationSequence &Sequence,
4768                                        QualType DestType,
4769                                        Expr *Initializer) {
4770  if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4771    !Initializer->isIntegerConstantExpr(S.getASTContext()))
4772    return false;
4773
4774  Sequence.AddOCLSamplerInitStep(DestType);
4775  return true;
4776}
4777
4778//
4779// OpenCL 1.2 spec, s6.12.10
4780//
4781// The event argument can also be used to associate the
4782// async_work_group_copy with a previous async copy allowing
4783// an event to be shared by multiple async copies; otherwise
4784// event should be zero.
4785//
4786static bool TryOCLZeroEventInitialization(Sema &S,
4787                                          InitializationSequence &Sequence,
4788                                          QualType DestType,
4789                                          Expr *Initializer) {
4790  if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4791      !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4792      (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4793    return false;
4794
4795  Sequence.AddOCLZeroEventStep(DestType);
4796  return true;
4797}
4798
4799InitializationSequence::InitializationSequence(Sema &S,
4800                                               const InitializedEntity &Entity,
4801                                               const InitializationKind &Kind,
4802                                               MultiExprArg Args,
4803                                               bool TopLevelOfInitList)
4804    : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
4805  InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList);
4806}
4807
4808/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
4809/// address of that function, this returns true. Otherwise, it returns false.
4810static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
4811  auto *DRE = dyn_cast<DeclRefExpr>(E);
4812  if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
4813    return false;
4814
4815  return !S.checkAddressOfFunctionIsAvailable(
4816      cast<FunctionDecl>(DRE->getDecl()));
4817}
4818
4819void InitializationSequence::InitializeFrom(Sema &S,
4820                                            const InitializedEntity &Entity,
4821                                            const InitializationKind &Kind,
4822                                            MultiExprArg Args,
4823                                            bool TopLevelOfInitList) {
4824  ASTContext &Context = S.Context;
4825
4826  // Eliminate non-overload placeholder types in the arguments.  We
4827  // need to do this before checking whether types are dependent
4828  // because lowering a pseudo-object expression might well give us
4829  // something of dependent type.
4830  for (unsigned I = 0, E = Args.size(); I != E; ++I)
4831    if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4832      // FIXME: should we be doing this here?
4833      ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4834      if (result.isInvalid()) {
4835        SetFailed(FK_PlaceholderType);
4836        return;
4837      }
4838      Args[I] = result.get();
4839    }
4840
4841  // C++0x [dcl.init]p16:
4842  //   The semantics of initializers are as follows. The destination type is
4843  //   the type of the object or reference being initialized and the source
4844  //   type is the type of the initializer expression. The source type is not
4845  //   defined when the initializer is a braced-init-list or when it is a
4846  //   parenthesized list of expressions.
4847  QualType DestType = Entity.getType();
4848
4849  if (DestType->isDependentType() ||
4850      Expr::hasAnyTypeDependentArguments(Args)) {
4851    SequenceKind = DependentSequence;
4852    return;
4853  }
4854
4855  // Almost everything is a normal sequence.
4856  setSequenceKind(NormalSequence);
4857
4858  QualType SourceType;
4859  Expr *Initializer = nullptr;
4860  if (Args.size() == 1) {
4861    Initializer = Args[0];
4862    if (S.getLangOpts().ObjC1) {
4863      if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
4864                                              DestType, Initializer->getType(),
4865                                              Initializer) ||
4866          S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
4867        Args[0] = Initializer;
4868    }
4869    if (!isa<InitListExpr>(Initializer))
4870      SourceType = Initializer->getType();
4871  }
4872
4873  //     - If the initializer is a (non-parenthesized) braced-init-list, the
4874  //       object is list-initialized (8.5.4).
4875  if (Kind.getKind() != InitializationKind::IK_Direct) {
4876    if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4877      TryListInitialization(S, Entity, Kind, InitList, *this);
4878      return;
4879    }
4880  }
4881
4882  //     - If the destination type is a reference type, see 8.5.3.
4883  if (DestType->isReferenceType()) {
4884    // C++0x [dcl.init.ref]p1:
4885    //   A variable declared to be a T& or T&&, that is, "reference to type T"
4886    //   (8.3.2), shall be initialized by an object, or function, of type T or
4887    //   by an object that can be converted into a T.
4888    // (Therefore, multiple arguments are not permitted.)
4889    if (Args.size() != 1)
4890      SetFailed(FK_TooManyInitsForReference);
4891    else
4892      TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4893    return;
4894  }
4895
4896  //     - If the initializer is (), the object is value-initialized.
4897  if (Kind.getKind() == InitializationKind::IK_Value ||
4898      (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4899    TryValueInitialization(S, Entity, Kind, *this);
4900    return;
4901  }
4902
4903  // Handle default initialization.
4904  if (Kind.getKind() == InitializationKind::IK_Default) {
4905    TryDefaultInitialization(S, Entity, Kind, *this);
4906    return;
4907  }
4908
4909  //     - If the destination type is an array of characters, an array of
4910  //       char16_t, an array of char32_t, or an array of wchar_t, and the
4911  //       initializer is a string literal, see 8.5.2.
4912  //     - Otherwise, if the destination type is an array, the program is
4913  //       ill-formed.
4914  if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4915    if (Initializer && isa<VariableArrayType>(DestAT)) {
4916      SetFailed(FK_VariableLengthArrayHasInitializer);
4917      return;
4918    }
4919
4920    if (Initializer) {
4921      switch (IsStringInit(Initializer, DestAT, Context)) {
4922      case SIF_None:
4923        TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4924        return;
4925      case SIF_NarrowStringIntoWideChar:
4926        SetFailed(FK_NarrowStringIntoWideCharArray);
4927        return;
4928      case SIF_WideStringIntoChar:
4929        SetFailed(FK_WideStringIntoCharArray);
4930        return;
4931      case SIF_IncompatWideStringIntoWideChar:
4932        SetFailed(FK_IncompatWideStringIntoWideChar);
4933        return;
4934      case SIF_Other:
4935        break;
4936      }
4937    }
4938
4939    // Note: as an GNU C extension, we allow initialization of an
4940    // array from a compound literal that creates an array of the same
4941    // type, so long as the initializer has no side effects.
4942    if (!S.getLangOpts().CPlusPlus && Initializer &&
4943        isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4944        Initializer->getType()->isArrayType()) {
4945      const ArrayType *SourceAT
4946        = Context.getAsArrayType(Initializer->getType());
4947      if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4948        SetFailed(FK_ArrayTypeMismatch);
4949      else if (Initializer->HasSideEffects(S.Context))
4950        SetFailed(FK_NonConstantArrayInit);
4951      else {
4952        AddArrayInitStep(DestType);
4953      }
4954    }
4955    // Note: as a GNU C++ extension, we allow list-initialization of a
4956    // class member of array type from a parenthesized initializer list.
4957    else if (S.getLangOpts().CPlusPlus &&
4958             Entity.getKind() == InitializedEntity::EK_Member &&
4959             Initializer && isa<InitListExpr>(Initializer)) {
4960      TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4961                            *this);
4962      AddParenthesizedArrayInitStep(DestType);
4963    } else if (DestAT->getElementType()->isCharType())
4964      SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4965    else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4966      SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4967    else
4968      SetFailed(FK_ArrayNeedsInitList);
4969
4970    return;
4971  }
4972
4973  // Determine whether we should consider writeback conversions for
4974  // Objective-C ARC.
4975  bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4976         Entity.isParameterKind();
4977
4978  // We're at the end of the line for C: it's either a write-back conversion
4979  // or it's a C assignment. There's no need to check anything else.
4980  if (!S.getLangOpts().CPlusPlus) {
4981    // If allowed, check whether this is an Objective-C writeback conversion.
4982    if (allowObjCWritebackConversion &&
4983        tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4984      return;
4985    }
4986
4987    if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4988      return;
4989
4990    if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4991      return;
4992
4993    // Handle initialization in C
4994    AddCAssignmentStep(DestType);
4995    MaybeProduceObjCObject(S, *this, Entity);
4996    return;
4997  }
4998
4999  assert(S.getLangOpts().CPlusPlus);
5000
5001  //     - If the destination type is a (possibly cv-qualified) class type:
5002  if (DestType->isRecordType()) {
5003    //     - If the initialization is direct-initialization, or if it is
5004    //       copy-initialization where the cv-unqualified version of the
5005    //       source type is the same class as, or a derived class of, the
5006    //       class of the destination, constructors are considered. [...]
5007    if (Kind.getKind() == InitializationKind::IK_Direct ||
5008        (Kind.getKind() == InitializationKind::IK_Copy &&
5009         (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5010          S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType))))
5011      TryConstructorInitialization(S, Entity, Kind, Args,
5012                                   DestType, *this);
5013    //     - Otherwise (i.e., for the remaining copy-initialization cases),
5014    //       user-defined conversion sequences that can convert from the source
5015    //       type to the destination type or (when a conversion function is
5016    //       used) to a derived class thereof are enumerated as described in
5017    //       13.3.1.4, and the best one is chosen through overload resolution
5018    //       (13.3).
5019    else
5020      TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5021                               TopLevelOfInitList);
5022    return;
5023  }
5024
5025  if (Args.size() > 1) {
5026    SetFailed(FK_TooManyInitsForScalar);
5027    return;
5028  }
5029  assert(Args.size() == 1 && "Zero-argument case handled above");
5030
5031  //    - Otherwise, if the source type is a (possibly cv-qualified) class
5032  //      type, conversion functions are considered.
5033  if (!SourceType.isNull() && SourceType->isRecordType()) {
5034    // For a conversion to _Atomic(T) from either T or a class type derived
5035    // from T, initialize the T object then convert to _Atomic type.
5036    bool NeedAtomicConversion = false;
5037    if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5038      if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5039          S.IsDerivedFrom(Initializer->getLocStart(), SourceType,
5040                          Atomic->getValueType())) {
5041        DestType = Atomic->getValueType();
5042        NeedAtomicConversion = true;
5043      }
5044    }
5045
5046    TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5047                             TopLevelOfInitList);
5048    MaybeProduceObjCObject(S, *this, Entity);
5049    if (!Failed() && NeedAtomicConversion)
5050      AddAtomicConversionStep(Entity.getType());
5051    return;
5052  }
5053
5054  //    - Otherwise, the initial value of the object being initialized is the
5055  //      (possibly converted) value of the initializer expression. Standard
5056  //      conversions (Clause 4) will be used, if necessary, to convert the
5057  //      initializer expression to the cv-unqualified version of the
5058  //      destination type; no user-defined conversions are considered.
5059
5060  ImplicitConversionSequence ICS
5061    = S.TryImplicitConversion(Initializer, DestType,
5062                              /*SuppressUserConversions*/true,
5063                              /*AllowExplicitConversions*/ false,
5064                              /*InOverloadResolution*/ false,
5065                              /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5066                              allowObjCWritebackConversion);
5067
5068  if (ICS.isStandard() &&
5069      ICS.Standard.Second == ICK_Writeback_Conversion) {
5070    // Objective-C ARC writeback conversion.
5071
5072    // We should copy unless we're passing to an argument explicitly
5073    // marked 'out'.
5074    bool ShouldCopy = true;
5075    if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5076      ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5077
5078    // If there was an lvalue adjustment, add it as a separate conversion.
5079    if (ICS.Standard.First == ICK_Array_To_Pointer ||
5080        ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5081      ImplicitConversionSequence LvalueICS;
5082      LvalueICS.setStandard();
5083      LvalueICS.Standard.setAsIdentityConversion();
5084      LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5085      LvalueICS.Standard.First = ICS.Standard.First;
5086      AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5087    }
5088
5089    AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5090  } else if (ICS.isBad()) {
5091    DeclAccessPair dap;
5092    if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5093      AddZeroInitializationStep(Entity.getType());
5094    } else if (Initializer->getType() == Context.OverloadTy &&
5095               !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5096                                                     false, dap))
5097      SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5098    else if (Initializer->getType()->isFunctionType() &&
5099             isExprAnUnaddressableFunction(S, Initializer))
5100      SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5101    else
5102      SetFailed(InitializationSequence::FK_ConversionFailed);
5103  } else {
5104    AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5105
5106    MaybeProduceObjCObject(S, *this, Entity);
5107  }
5108}
5109
5110InitializationSequence::~InitializationSequence() {
5111  for (auto &S : Steps)
5112    S.Destroy();
5113}
5114
5115//===----------------------------------------------------------------------===//
5116// Perform initialization
5117//===----------------------------------------------------------------------===//
5118static Sema::AssignmentAction
5119getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5120  switch(Entity.getKind()) {
5121  case InitializedEntity::EK_Variable:
5122  case InitializedEntity::EK_New:
5123  case InitializedEntity::EK_Exception:
5124  case InitializedEntity::EK_Base:
5125  case InitializedEntity::EK_Delegating:
5126    return Sema::AA_Initializing;
5127
5128  case InitializedEntity::EK_Parameter:
5129    if (Entity.getDecl() &&
5130        isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5131      return Sema::AA_Sending;
5132
5133    return Sema::AA_Passing;
5134
5135  case InitializedEntity::EK_Parameter_CF_Audited:
5136    if (Entity.getDecl() &&
5137      isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5138      return Sema::AA_Sending;
5139
5140    return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5141
5142  case InitializedEntity::EK_Result:
5143    return Sema::AA_Returning;
5144
5145  case InitializedEntity::EK_Temporary:
5146  case InitializedEntity::EK_RelatedResult:
5147    // FIXME: Can we tell apart casting vs. converting?
5148    return Sema::AA_Casting;
5149
5150  case InitializedEntity::EK_Member:
5151  case InitializedEntity::EK_ArrayElement:
5152  case InitializedEntity::EK_VectorElement:
5153  case InitializedEntity::EK_ComplexElement:
5154  case InitializedEntity::EK_BlockElement:
5155  case InitializedEntity::EK_LambdaCapture:
5156  case InitializedEntity::EK_CompoundLiteralInit:
5157    return Sema::AA_Initializing;
5158  }
5159
5160  llvm_unreachable("Invalid EntityKind!");
5161}
5162
5163/// \brief Whether we should bind a created object as a temporary when
5164/// initializing the given entity.
5165static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5166  switch (Entity.getKind()) {
5167  case InitializedEntity::EK_ArrayElement:
5168  case InitializedEntity::EK_Member:
5169  case InitializedEntity::EK_Result:
5170  case InitializedEntity::EK_New:
5171  case InitializedEntity::EK_Variable:
5172  case InitializedEntity::EK_Base:
5173  case InitializedEntity::EK_Delegating:
5174  case InitializedEntity::EK_VectorElement:
5175  case InitializedEntity::EK_ComplexElement:
5176  case InitializedEntity::EK_Exception:
5177  case InitializedEntity::EK_BlockElement:
5178  case InitializedEntity::EK_LambdaCapture:
5179  case InitializedEntity::EK_CompoundLiteralInit:
5180    return false;
5181
5182  case InitializedEntity::EK_Parameter:
5183  case InitializedEntity::EK_Parameter_CF_Audited:
5184  case InitializedEntity::EK_Temporary:
5185  case InitializedEntity::EK_RelatedResult:
5186    return true;
5187  }
5188
5189  llvm_unreachable("missed an InitializedEntity kind?");
5190}
5191
5192/// \brief Whether the given entity, when initialized with an object
5193/// created for that initialization, requires destruction.
5194static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
5195  switch (Entity.getKind()) {
5196    case InitializedEntity::EK_Result:
5197    case InitializedEntity::EK_New:
5198    case InitializedEntity::EK_Base:
5199    case InitializedEntity::EK_Delegating:
5200    case InitializedEntity::EK_VectorElement:
5201    case InitializedEntity::EK_ComplexElement:
5202    case InitializedEntity::EK_BlockElement:
5203    case InitializedEntity::EK_LambdaCapture:
5204      return false;
5205
5206    case InitializedEntity::EK_Member:
5207    case InitializedEntity::EK_Variable:
5208    case InitializedEntity::EK_Parameter:
5209    case InitializedEntity::EK_Parameter_CF_Audited:
5210    case InitializedEntity::EK_Temporary:
5211    case InitializedEntity::EK_ArrayElement:
5212    case InitializedEntity::EK_Exception:
5213    case InitializedEntity::EK_CompoundLiteralInit:
5214    case InitializedEntity::EK_RelatedResult:
5215      return true;
5216  }
5217
5218  llvm_unreachable("missed an InitializedEntity kind?");
5219}
5220
5221/// \brief Look for copy and move constructors and constructor templates, for
5222/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
5223static void LookupCopyAndMoveConstructors(Sema &S,
5224                                          OverloadCandidateSet &CandidateSet,
5225                                          CXXRecordDecl *Class,
5226                                          Expr *CurInitExpr) {
5227  DeclContext::lookup_result R = S.LookupConstructors(Class);
5228  // The container holding the constructors can under certain conditions
5229  // be changed while iterating (e.g. because of deserialization).
5230  // To be safe we copy the lookup results to a new container.
5231  SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
5232  for (SmallVectorImpl<NamedDecl *>::iterator
5233         CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
5234    NamedDecl *D = *CI;
5235    CXXConstructorDecl *Constructor = nullptr;
5236
5237    if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
5238      // Handle copy/moveconstructors, only.
5239      if (!Constructor || Constructor->isInvalidDecl() ||
5240          !Constructor->isCopyOrMoveConstructor() ||
5241          !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
5242        continue;
5243
5244      DeclAccessPair FoundDecl
5245        = DeclAccessPair::make(Constructor, Constructor->getAccess());
5246      S.AddOverloadCandidate(Constructor, FoundDecl,
5247                             CurInitExpr, CandidateSet);
5248      continue;
5249    }
5250
5251    // Handle constructor templates.
5252    FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
5253    if (ConstructorTmpl->isInvalidDecl())
5254      continue;
5255
5256    Constructor = cast<CXXConstructorDecl>(
5257                                         ConstructorTmpl->getTemplatedDecl());
5258    if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
5259      continue;
5260
5261    // FIXME: Do we need to limit this to copy-constructor-like
5262    // candidates?
5263    DeclAccessPair FoundDecl
5264      = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
5265    S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr,
5266                                   CurInitExpr, CandidateSet, true);
5267  }
5268}
5269
5270/// \brief Get the location at which initialization diagnostics should appear.
5271static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5272                                           Expr *Initializer) {
5273  switch (Entity.getKind()) {
5274  case InitializedEntity::EK_Result:
5275    return Entity.getReturnLoc();
5276
5277  case InitializedEntity::EK_Exception:
5278    return Entity.getThrowLoc();
5279
5280  case InitializedEntity::EK_Variable:
5281    return Entity.getDecl()->getLocation();
5282
5283  case InitializedEntity::EK_LambdaCapture:
5284    return Entity.getCaptureLoc();
5285
5286  case InitializedEntity::EK_ArrayElement:
5287  case InitializedEntity::EK_Member:
5288  case InitializedEntity::EK_Parameter:
5289  case InitializedEntity::EK_Parameter_CF_Audited:
5290  case InitializedEntity::EK_Temporary:
5291  case InitializedEntity::EK_New:
5292  case InitializedEntity::EK_Base:
5293  case InitializedEntity::EK_Delegating:
5294  case InitializedEntity::EK_VectorElement:
5295  case InitializedEntity::EK_ComplexElement:
5296  case InitializedEntity::EK_BlockElement:
5297  case InitializedEntity::EK_CompoundLiteralInit:
5298  case InitializedEntity::EK_RelatedResult:
5299    return Initializer->getLocStart();
5300  }
5301  llvm_unreachable("missed an InitializedEntity kind?");
5302}
5303
5304/// \brief Make a (potentially elidable) temporary copy of the object
5305/// provided by the given initializer by calling the appropriate copy
5306/// constructor.
5307///
5308/// \param S The Sema object used for type-checking.
5309///
5310/// \param T The type of the temporary object, which must either be
5311/// the type of the initializer expression or a superclass thereof.
5312///
5313/// \param Entity The entity being initialized.
5314///
5315/// \param CurInit The initializer expression.
5316///
5317/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5318/// is permitted in C++03 (but not C++0x) when binding a reference to
5319/// an rvalue.
5320///
5321/// \returns An expression that copies the initializer expression into
5322/// a temporary object, or an error expression if a copy could not be
5323/// created.
5324static ExprResult CopyObject(Sema &S,
5325                             QualType T,
5326                             const InitializedEntity &Entity,
5327                             ExprResult CurInit,
5328                             bool IsExtraneousCopy) {
5329  if (CurInit.isInvalid())
5330    return CurInit;
5331  // Determine which class type we're copying to.
5332  Expr *CurInitExpr = (Expr *)CurInit.get();
5333  CXXRecordDecl *Class = nullptr;
5334  if (const RecordType *Record = T->getAs<RecordType>())
5335    Class = cast<CXXRecordDecl>(Record->getDecl());
5336  if (!Class)
5337    return CurInit;
5338
5339  // C++0x [class.copy]p32:
5340  //   When certain criteria are met, an implementation is allowed to
5341  //   omit the copy/move construction of a class object, even if the
5342  //   copy/move constructor and/or destructor for the object have
5343  //   side effects. [...]
5344  //     - when a temporary class object that has not been bound to a
5345  //       reference (12.2) would be copied/moved to a class object
5346  //       with the same cv-unqualified type, the copy/move operation
5347  //       can be omitted by constructing the temporary object
5348  //       directly into the target of the omitted copy/move
5349  //
5350  // Note that the other three bullets are handled elsewhere. Copy
5351  // elision for return statements and throw expressions are handled as part
5352  // of constructor initialization, while copy elision for exception handlers
5353  // is handled by the run-time.
5354  bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
5355  SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5356
5357  // Make sure that the type we are copying is complete.
5358  if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5359    return CurInit;
5360
5361  // Perform overload resolution using the class's copy/move constructors.
5362  // Only consider constructors and constructor templates. Per
5363  // C++0x [dcl.init]p16, second bullet to class types, this initialization
5364  // is direct-initialization.
5365  OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5366  LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
5367
5368  bool HadMultipleCandidates = (CandidateSet.size() > 1);
5369
5370  OverloadCandidateSet::iterator Best;
5371  switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
5372  case OR_Success:
5373    break;
5374
5375  case OR_No_Viable_Function:
5376    S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5377           ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5378           : diag::err_temp_copy_no_viable)
5379      << (int)Entity.getKind() << CurInitExpr->getType()
5380      << CurInitExpr->getSourceRange();
5381    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5382    if (!IsExtraneousCopy || S.isSFINAEContext())
5383      return ExprError();
5384    return CurInit;
5385
5386  case OR_Ambiguous:
5387    S.Diag(Loc, diag::err_temp_copy_ambiguous)
5388      << (int)Entity.getKind() << CurInitExpr->getType()
5389      << CurInitExpr->getSourceRange();
5390    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5391    return ExprError();
5392
5393  case OR_Deleted:
5394    S.Diag(Loc, diag::err_temp_copy_deleted)
5395      << (int)Entity.getKind() << CurInitExpr->getType()
5396      << CurInitExpr->getSourceRange();
5397    S.NoteDeletedFunction(Best->Function);
5398    return ExprError();
5399  }
5400
5401  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5402  SmallVector<Expr*, 8> ConstructorArgs;
5403  CurInit.get(); // Ownership transferred into MultiExprArg, below.
5404
5405  S.CheckConstructorAccess(Loc, Constructor, Entity,
5406                           Best->FoundDecl.getAccess(), IsExtraneousCopy);
5407
5408  if (IsExtraneousCopy) {
5409    // If this is a totally extraneous copy for C++03 reference
5410    // binding purposes, just return the original initialization
5411    // expression. We don't generate an (elided) copy operation here
5412    // because doing so would require us to pass down a flag to avoid
5413    // infinite recursion, where each step adds another extraneous,
5414    // elidable copy.
5415
5416    // Instantiate the default arguments of any extra parameters in
5417    // the selected copy constructor, as if we were going to create a
5418    // proper call to the copy constructor.
5419    for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5420      ParmVarDecl *Parm = Constructor->getParamDecl(I);
5421      if (S.RequireCompleteType(Loc, Parm->getType(),
5422                                diag::err_call_incomplete_argument))
5423        break;
5424
5425      // Build the default argument expression; we don't actually care
5426      // if this succeeds or not, because this routine will complain
5427      // if there was a problem.
5428      S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5429    }
5430
5431    return CurInitExpr;
5432  }
5433
5434  // Determine the arguments required to actually perform the
5435  // constructor call (we might have derived-to-base conversions, or
5436  // the copy constructor may have default arguments).
5437  if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5438    return ExprError();
5439
5440  // Actually perform the constructor call.
5441  CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
5442                                    ConstructorArgs,
5443                                    HadMultipleCandidates,
5444                                    /*ListInit*/ false,
5445                                    /*StdInitListInit*/ false,
5446                                    /*ZeroInit*/ false,
5447                                    CXXConstructExpr::CK_Complete,
5448                                    SourceRange());
5449
5450  // If we're supposed to bind temporaries, do so.
5451  if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5452    CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5453  return CurInit;
5454}
5455
5456/// \brief Check whether elidable copy construction for binding a reference to
5457/// a temporary would have succeeded if we were building in C++98 mode, for
5458/// -Wc++98-compat.
5459static void CheckCXX98CompatAccessibleCopy(Sema &S,
5460                                           const InitializedEntity &Entity,
5461                                           Expr *CurInitExpr) {
5462  assert(S.getLangOpts().CPlusPlus11);
5463
5464  const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5465  if (!Record)
5466    return;
5467
5468  SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5469  if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5470    return;
5471
5472  // Find constructors which would have been considered.
5473  OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5474  LookupCopyAndMoveConstructors(
5475      S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
5476
5477  // Perform overload resolution.
5478  OverloadCandidateSet::iterator Best;
5479  OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
5480
5481  PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5482    << OR << (int)Entity.getKind() << CurInitExpr->getType()
5483    << CurInitExpr->getSourceRange();
5484
5485  switch (OR) {
5486  case OR_Success:
5487    S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5488                             Entity, Best->FoundDecl.getAccess(), Diag);
5489    // FIXME: Check default arguments as far as that's possible.
5490    break;
5491
5492  case OR_No_Viable_Function:
5493    S.Diag(Loc, Diag);
5494    CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5495    break;
5496
5497  case OR_Ambiguous:
5498    S.Diag(Loc, Diag);
5499    CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5500    break;
5501
5502  case OR_Deleted:
5503    S.Diag(Loc, Diag);
5504    S.NoteDeletedFunction(Best->Function);
5505    break;
5506  }
5507}
5508
5509void InitializationSequence::PrintInitLocationNote(Sema &S,
5510                                              const InitializedEntity &Entity) {
5511  if (Entity.isParameterKind() && Entity.getDecl()) {
5512    if (Entity.getDecl()->getLocation().isInvalid())
5513      return;
5514
5515    if (Entity.getDecl()->getDeclName())
5516      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5517        << Entity.getDecl()->getDeclName();
5518    else
5519      S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5520  }
5521  else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5522           Entity.getMethodDecl())
5523    S.Diag(Entity.getMethodDecl()->getLocation(),
5524           diag::note_method_return_type_change)
5525      << Entity.getMethodDecl()->getDeclName();
5526}
5527
5528static bool isReferenceBinding(const InitializationSequence::Step &s) {
5529  return s.Kind == InitializationSequence::SK_BindReference ||
5530         s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5531}
5532
5533/// Returns true if the parameters describe a constructor initialization of
5534/// an explicit temporary object, e.g. "Point(x, y)".
5535static bool isExplicitTemporary(const InitializedEntity &Entity,
5536                                const InitializationKind &Kind,
5537                                unsigned NumArgs) {
5538  switch (Entity.getKind()) {
5539  case InitializedEntity::EK_Temporary:
5540  case InitializedEntity::EK_CompoundLiteralInit:
5541  case InitializedEntity::EK_RelatedResult:
5542    break;
5543  default:
5544    return false;
5545  }
5546
5547  switch (Kind.getKind()) {
5548  case InitializationKind::IK_DirectList:
5549    return true;
5550  // FIXME: Hack to work around cast weirdness.
5551  case InitializationKind::IK_Direct:
5552  case InitializationKind::IK_Value:
5553    return NumArgs != 1;
5554  default:
5555    return false;
5556  }
5557}
5558
5559static ExprResult
5560PerformConstructorInitialization(Sema &S,
5561                                 const InitializedEntity &Entity,
5562                                 const InitializationKind &Kind,
5563                                 MultiExprArg Args,
5564                                 const InitializationSequence::Step& Step,
5565                                 bool &ConstructorInitRequiresZeroInit,
5566                                 bool IsListInitialization,
5567                                 bool IsStdInitListInitialization,
5568                                 SourceLocation LBraceLoc,
5569                                 SourceLocation RBraceLoc) {
5570  unsigned NumArgs = Args.size();
5571  CXXConstructorDecl *Constructor
5572    = cast<CXXConstructorDecl>(Step.Function.Function);
5573  bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5574
5575  // Build a call to the selected constructor.
5576  SmallVector<Expr*, 8> ConstructorArgs;
5577  SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5578                         ? Kind.getEqualLoc()
5579                         : Kind.getLocation();
5580
5581  if (Kind.getKind() == InitializationKind::IK_Default) {
5582    // Force even a trivial, implicit default constructor to be
5583    // semantically checked. We do this explicitly because we don't build
5584    // the definition for completely trivial constructors.
5585    assert(Constructor->getParent() && "No parent class for constructor.");
5586    if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5587        Constructor->isTrivial() && !Constructor->isUsed(false))
5588      S.DefineImplicitDefaultConstructor(Loc, Constructor);
5589  }
5590
5591  ExprResult CurInit((Expr *)nullptr);
5592
5593  // C++ [over.match.copy]p1:
5594  //   - When initializing a temporary to be bound to the first parameter
5595  //     of a constructor that takes a reference to possibly cv-qualified
5596  //     T as its first argument, called with a single argument in the
5597  //     context of direct-initialization, explicit conversion functions
5598  //     are also considered.
5599  bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5600                           Args.size() == 1 &&
5601                           Constructor->isCopyOrMoveConstructor();
5602
5603  // Determine the arguments required to actually perform the constructor
5604  // call.
5605  if (S.CompleteConstructorCall(Constructor, Args,
5606                                Loc, ConstructorArgs,
5607                                AllowExplicitConv,
5608                                IsListInitialization))
5609    return ExprError();
5610
5611
5612  if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5613    // An explicitly-constructed temporary, e.g., X(1, 2).
5614    S.MarkFunctionReferenced(Loc, Constructor);
5615    if (S.DiagnoseUseOfDecl(Constructor, Loc))
5616      return ExprError();
5617
5618    TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5619    if (!TSInfo)
5620      TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5621    SourceRange ParenOrBraceRange =
5622      (Kind.getKind() == InitializationKind::IK_DirectList)
5623      ? SourceRange(LBraceLoc, RBraceLoc)
5624      : Kind.getParenRange();
5625
5626    CurInit = new (S.Context) CXXTemporaryObjectExpr(
5627        S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange,
5628        HadMultipleCandidates, IsListInitialization,
5629        IsStdInitListInitialization, ConstructorInitRequiresZeroInit);
5630  } else {
5631    CXXConstructExpr::ConstructionKind ConstructKind =
5632      CXXConstructExpr::CK_Complete;
5633
5634    if (Entity.getKind() == InitializedEntity::EK_Base) {
5635      ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5636        CXXConstructExpr::CK_VirtualBase :
5637        CXXConstructExpr::CK_NonVirtualBase;
5638    } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5639      ConstructKind = CXXConstructExpr::CK_Delegating;
5640    }
5641
5642    // Only get the parenthesis or brace range if it is a list initialization or
5643    // direct construction.
5644    SourceRange ParenOrBraceRange;
5645    if (IsListInitialization)
5646      ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5647    else if (Kind.getKind() == InitializationKind::IK_Direct)
5648      ParenOrBraceRange = Kind.getParenRange();
5649
5650    // If the entity allows NRVO, mark the construction as elidable
5651    // unconditionally.
5652    if (Entity.allowsNRVO())
5653      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5654                                        Constructor, /*Elidable=*/true,
5655                                        ConstructorArgs,
5656                                        HadMultipleCandidates,
5657                                        IsListInitialization,
5658                                        IsStdInitListInitialization,
5659                                        ConstructorInitRequiresZeroInit,
5660                                        ConstructKind,
5661                                        ParenOrBraceRange);
5662    else
5663      CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5664                                        Constructor,
5665                                        ConstructorArgs,
5666                                        HadMultipleCandidates,
5667                                        IsListInitialization,
5668                                        IsStdInitListInitialization,
5669                                        ConstructorInitRequiresZeroInit,
5670                                        ConstructKind,
5671                                        ParenOrBraceRange);
5672  }
5673  if (CurInit.isInvalid())
5674    return ExprError();
5675
5676  // Only check access if all of that succeeded.
5677  S.CheckConstructorAccess(Loc, Constructor, Entity,
5678                           Step.Function.FoundDecl.getAccess());
5679  if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5680    return ExprError();
5681
5682  if (shouldBindAsTemporary(Entity))
5683    CurInit = S.MaybeBindToTemporary(CurInit.get());
5684
5685  return CurInit;
5686}
5687
5688/// Determine whether the specified InitializedEntity definitely has a lifetime
5689/// longer than the current full-expression. Conservatively returns false if
5690/// it's unclear.
5691static bool
5692InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5693  const InitializedEntity *Top = &Entity;
5694  while (Top->getParent())
5695    Top = Top->getParent();
5696
5697  switch (Top->getKind()) {
5698  case InitializedEntity::EK_Variable:
5699  case InitializedEntity::EK_Result:
5700  case InitializedEntity::EK_Exception:
5701  case InitializedEntity::EK_Member:
5702  case InitializedEntity::EK_New:
5703  case InitializedEntity::EK_Base:
5704  case InitializedEntity::EK_Delegating:
5705    return true;
5706
5707  case InitializedEntity::EK_ArrayElement:
5708  case InitializedEntity::EK_VectorElement:
5709  case InitializedEntity::EK_BlockElement:
5710  case InitializedEntity::EK_ComplexElement:
5711    // Could not determine what the full initialization is. Assume it might not
5712    // outlive the full-expression.
5713    return false;
5714
5715  case InitializedEntity::EK_Parameter:
5716  case InitializedEntity::EK_Parameter_CF_Audited:
5717  case InitializedEntity::EK_Temporary:
5718  case InitializedEntity::EK_LambdaCapture:
5719  case InitializedEntity::EK_CompoundLiteralInit:
5720  case InitializedEntity::EK_RelatedResult:
5721    // The entity being initialized might not outlive the full-expression.
5722    return false;
5723  }
5724
5725  llvm_unreachable("unknown entity kind");
5726}
5727
5728/// Determine the declaration which an initialized entity ultimately refers to,
5729/// for the purpose of lifetime-extending a temporary bound to a reference in
5730/// the initialization of \p Entity.
5731static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
5732    const InitializedEntity *Entity,
5733    const InitializedEntity *FallbackDecl = nullptr) {
5734  // C++11 [class.temporary]p5:
5735  switch (Entity->getKind()) {
5736  case InitializedEntity::EK_Variable:
5737    //   The temporary [...] persists for the lifetime of the reference
5738    return Entity;
5739
5740  case InitializedEntity::EK_Member:
5741    // For subobjects, we look at the complete object.
5742    if (Entity->getParent())
5743      return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5744                                                    Entity);
5745
5746    //   except:
5747    //   -- A temporary bound to a reference member in a constructor's
5748    //      ctor-initializer persists until the constructor exits.
5749    return Entity;
5750
5751  case InitializedEntity::EK_Parameter:
5752  case InitializedEntity::EK_Parameter_CF_Audited:
5753    //   -- A temporary bound to a reference parameter in a function call
5754    //      persists until the completion of the full-expression containing
5755    //      the call.
5756  case InitializedEntity::EK_Result:
5757    //   -- The lifetime of a temporary bound to the returned value in a
5758    //      function return statement is not extended; the temporary is
5759    //      destroyed at the end of the full-expression in the return statement.
5760  case InitializedEntity::EK_New:
5761    //   -- A temporary bound to a reference in a new-initializer persists
5762    //      until the completion of the full-expression containing the
5763    //      new-initializer.
5764    return nullptr;
5765
5766  case InitializedEntity::EK_Temporary:
5767  case InitializedEntity::EK_CompoundLiteralInit:
5768  case InitializedEntity::EK_RelatedResult:
5769    // We don't yet know the storage duration of the surrounding temporary.
5770    // Assume it's got full-expression duration for now, it will patch up our
5771    // storage duration if that's not correct.
5772    return nullptr;
5773
5774  case InitializedEntity::EK_ArrayElement:
5775    // For subobjects, we look at the complete object.
5776    return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5777                                                  FallbackDecl);
5778
5779  case InitializedEntity::EK_Base:
5780  case InitializedEntity::EK_Delegating:
5781    // We can reach this case for aggregate initialization in a constructor:
5782    //   struct A { int &&r; };
5783    //   struct B : A { B() : A{0} {} };
5784    // In this case, use the innermost field decl as the context.
5785    return FallbackDecl;
5786
5787  case InitializedEntity::EK_BlockElement:
5788  case InitializedEntity::EK_LambdaCapture:
5789  case InitializedEntity::EK_Exception:
5790  case InitializedEntity::EK_VectorElement:
5791  case InitializedEntity::EK_ComplexElement:
5792    return nullptr;
5793  }
5794  llvm_unreachable("unknown entity kind");
5795}
5796
5797static void performLifetimeExtension(Expr *Init,
5798                                     const InitializedEntity *ExtendingEntity);
5799
5800/// Update a glvalue expression that is used as the initializer of a reference
5801/// to note that its lifetime is extended.
5802/// \return \c true if any temporary had its lifetime extended.
5803static bool
5804performReferenceExtension(Expr *Init,
5805                          const InitializedEntity *ExtendingEntity) {
5806  // Walk past any constructs which we can lifetime-extend across.
5807  Expr *Old;
5808  do {
5809    Old = Init;
5810
5811    if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5812      if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5813        // This is just redundant braces around an initializer. Step over it.
5814        Init = ILE->getInit(0);
5815      }
5816    }
5817
5818    // Step over any subobject adjustments; we may have a materialized
5819    // temporary inside them.
5820    SmallVector<const Expr *, 2> CommaLHSs;
5821    SmallVector<SubobjectAdjustment, 2> Adjustments;
5822    Init = const_cast<Expr *>(
5823        Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5824
5825    // Per current approach for DR1376, look through casts to reference type
5826    // when performing lifetime extension.
5827    if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5828      if (CE->getSubExpr()->isGLValue())
5829        Init = CE->getSubExpr();
5830
5831    // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5832    // It's unclear if binding a reference to that xvalue extends the array
5833    // temporary.
5834  } while (Init != Old);
5835
5836  if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5837    // Update the storage duration of the materialized temporary.
5838    // FIXME: Rebuild the expression instead of mutating it.
5839    ME->setExtendingDecl(ExtendingEntity->getDecl(),
5840                         ExtendingEntity->allocateManglingNumber());
5841    performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
5842    return true;
5843  }
5844
5845  return false;
5846}
5847
5848/// Update a prvalue expression that is going to be materialized as a
5849/// lifetime-extended temporary.
5850static void performLifetimeExtension(Expr *Init,
5851                                     const InitializedEntity *ExtendingEntity) {
5852  // Dig out the expression which constructs the extended temporary.
5853  SmallVector<const Expr *, 2> CommaLHSs;
5854  SmallVector<SubobjectAdjustment, 2> Adjustments;
5855  Init = const_cast<Expr *>(
5856      Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5857
5858  if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5859    Init = BTE->getSubExpr();
5860
5861  if (CXXStdInitializerListExpr *ILE =
5862          dyn_cast<CXXStdInitializerListExpr>(Init)) {
5863    performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
5864    return;
5865  }
5866
5867  if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5868    if (ILE->getType()->isArrayType()) {
5869      for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5870        performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
5871      return;
5872    }
5873
5874    if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5875      assert(RD->isAggregate() && "aggregate init on non-aggregate");
5876
5877      // If we lifetime-extend a braced initializer which is initializing an
5878      // aggregate, and that aggregate contains reference members which are
5879      // bound to temporaries, those temporaries are also lifetime-extended.
5880      if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5881          ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5882        performReferenceExtension(ILE->getInit(0), ExtendingEntity);
5883      else {
5884        unsigned Index = 0;
5885        for (const auto *I : RD->fields()) {
5886          if (Index >= ILE->getNumInits())
5887            break;
5888          if (I->isUnnamedBitfield())
5889            continue;
5890          Expr *SubInit = ILE->getInit(Index);
5891          if (I->getType()->isReferenceType())
5892            performReferenceExtension(SubInit, ExtendingEntity);
5893          else if (isa<InitListExpr>(SubInit) ||
5894                   isa<CXXStdInitializerListExpr>(SubInit))
5895            // This may be either aggregate-initialization of a member or
5896            // initialization of a std::initializer_list object. Either way,
5897            // we should recursively lifetime-extend that initializer.
5898            performLifetimeExtension(SubInit, ExtendingEntity);
5899          ++Index;
5900        }
5901      }
5902    }
5903  }
5904}
5905
5906static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5907                                    const Expr *Init, bool IsInitializerList,
5908                                    const ValueDecl *ExtendingDecl) {
5909  // Warn if a field lifetime-extends a temporary.
5910  if (isa<FieldDecl>(ExtendingDecl)) {
5911    if (IsInitializerList) {
5912      S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5913        << /*at end of constructor*/true;
5914      return;
5915    }
5916
5917    bool IsSubobjectMember = false;
5918    for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5919         Ent = Ent->getParent()) {
5920      if (Ent->getKind() != InitializedEntity::EK_Base) {
5921        IsSubobjectMember = true;
5922        break;
5923      }
5924    }
5925    S.Diag(Init->getExprLoc(),
5926           diag::warn_bind_ref_member_to_temporary)
5927      << ExtendingDecl << Init->getSourceRange()
5928      << IsSubobjectMember << IsInitializerList;
5929    if (IsSubobjectMember)
5930      S.Diag(ExtendingDecl->getLocation(),
5931             diag::note_ref_subobject_of_member_declared_here);
5932    else
5933      S.Diag(ExtendingDecl->getLocation(),
5934             diag::note_ref_or_ptr_member_declared_here)
5935        << /*is pointer*/false;
5936  }
5937}
5938
5939static void DiagnoseNarrowingInInitList(Sema &S,
5940                                        const ImplicitConversionSequence &ICS,
5941                                        QualType PreNarrowingType,
5942                                        QualType EntityType,
5943                                        const Expr *PostInit);
5944
5945/// Provide warnings when std::move is used on construction.
5946static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
5947                                    bool IsReturnStmt) {
5948  if (!InitExpr)
5949    return;
5950
5951  if (!S.ActiveTemplateInstantiations.empty())
5952    return;
5953
5954  QualType DestType = InitExpr->getType();
5955  if (!DestType->isRecordType())
5956    return;
5957
5958  unsigned DiagID = 0;
5959  if (IsReturnStmt) {
5960    const CXXConstructExpr *CCE =
5961        dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
5962    if (!CCE || CCE->getNumArgs() != 1)
5963      return;
5964
5965    if (!CCE->getConstructor()->isCopyOrMoveConstructor())
5966      return;
5967
5968    InitExpr = CCE->getArg(0)->IgnoreImpCasts();
5969  }
5970
5971  // Find the std::move call and get the argument.
5972  const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
5973  if (!CE || CE->getNumArgs() != 1)
5974    return;
5975
5976  const FunctionDecl *MoveFunction = CE->getDirectCallee();
5977  if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
5978      !MoveFunction->getIdentifier() ||
5979      !MoveFunction->getIdentifier()->isStr("move"))
5980    return;
5981
5982  const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
5983
5984  if (IsReturnStmt) {
5985    const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
5986    if (!DRE || DRE->refersToEnclosingVariableOrCapture())
5987      return;
5988
5989    const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
5990    if (!VD || !VD->hasLocalStorage())
5991      return;
5992
5993    QualType SourceType = VD->getType();
5994    if (!SourceType->isRecordType())
5995      return;
5996
5997    if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
5998      return;
5999    }
6000
6001    // If we're returning a function parameter, copy elision
6002    // is not possible.
6003    if (isa<ParmVarDecl>(VD))
6004      DiagID = diag::warn_redundant_move_on_return;
6005    else
6006      DiagID = diag::warn_pessimizing_move_on_return;
6007  } else {
6008    DiagID = diag::warn_pessimizing_move_on_initialization;
6009    const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
6010    if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
6011      return;
6012  }
6013
6014  S.Diag(CE->getLocStart(), DiagID);
6015
6016  // Get all the locations for a fix-it.  Don't emit the fix-it if any location
6017  // is within a macro.
6018  SourceLocation CallBegin = CE->getCallee()->getLocStart();
6019  if (CallBegin.isMacroID())
6020    return;
6021  SourceLocation RParen = CE->getRParenLoc();
6022  if (RParen.isMacroID())
6023    return;
6024  SourceLocation LParen;
6025  SourceLocation ArgLoc = Arg->getLocStart();
6026
6027  // Special testing for the argument location.  Since the fix-it needs the
6028  // location right before the argument, the argument location can be in a
6029  // macro only if it is at the beginning of the macro.
6030  while (ArgLoc.isMacroID() &&
6031         S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
6032    ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first;
6033  }
6034
6035  if (LParen.isMacroID())
6036    return;
6037
6038  LParen = ArgLoc.getLocWithOffset(-1);
6039
6040  S.Diag(CE->getLocStart(), diag::note_remove_move)
6041      << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
6042      << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
6043}
6044
6045ExprResult
6046InitializationSequence::Perform(Sema &S,
6047                                const InitializedEntity &Entity,
6048                                const InitializationKind &Kind,
6049                                MultiExprArg Args,
6050                                QualType *ResultType) {
6051  if (Failed()) {
6052    Diagnose(S, Entity, Kind, Args);
6053    return ExprError();
6054  }
6055  if (!ZeroInitializationFixit.empty()) {
6056    unsigned DiagID = diag::err_default_init_const;
6057    if (Decl *D = Entity.getDecl())
6058      if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
6059        DiagID = diag::ext_default_init_const;
6060
6061    // The initialization would have succeeded with this fixit. Since the fixit
6062    // is on the error, we need to build a valid AST in this case, so this isn't
6063    // handled in the Failed() branch above.
6064    QualType DestType = Entity.getType();
6065    S.Diag(Kind.getLocation(), DiagID)
6066        << DestType << (bool)DestType->getAs<RecordType>()
6067        << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
6068                                      ZeroInitializationFixit);
6069  }
6070
6071  if (getKind() == DependentSequence) {
6072    // If the declaration is a non-dependent, incomplete array type
6073    // that has an initializer, then its type will be completed once
6074    // the initializer is instantiated.
6075    if (ResultType && !Entity.getType()->isDependentType() &&
6076        Args.size() == 1) {
6077      QualType DeclType = Entity.getType();
6078      if (const IncompleteArrayType *ArrayT
6079                           = S.Context.getAsIncompleteArrayType(DeclType)) {
6080        // FIXME: We don't currently have the ability to accurately
6081        // compute the length of an initializer list without
6082        // performing full type-checking of the initializer list
6083        // (since we have to determine where braces are implicitly
6084        // introduced and such).  So, we fall back to making the array
6085        // type a dependently-sized array type with no specified
6086        // bound.
6087        if (isa<InitListExpr>((Expr *)Args[0])) {
6088          SourceRange Brackets;
6089
6090          // Scavange the location of the brackets from the entity, if we can.
6091          if (DeclaratorDecl *DD = Entity.getDecl()) {
6092            if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
6093              TypeLoc TL = TInfo->getTypeLoc();
6094              if (IncompleteArrayTypeLoc ArrayLoc =
6095                      TL.getAs<IncompleteArrayTypeLoc>())
6096                Brackets = ArrayLoc.getBracketsRange();
6097            }
6098          }
6099
6100          *ResultType
6101            = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
6102                                                   /*NumElts=*/nullptr,
6103                                                   ArrayT->getSizeModifier(),
6104                                       ArrayT->getIndexTypeCVRQualifiers(),
6105                                                   Brackets);
6106        }
6107
6108      }
6109    }
6110    if (Kind.getKind() == InitializationKind::IK_Direct &&
6111        !Kind.isExplicitCast()) {
6112      // Rebuild the ParenListExpr.
6113      SourceRange ParenRange = Kind.getParenRange();
6114      return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
6115                                  Args);
6116    }
6117    assert(Kind.getKind() == InitializationKind::IK_Copy ||
6118           Kind.isExplicitCast() ||
6119           Kind.getKind() == InitializationKind::IK_DirectList);
6120    return ExprResult(Args[0]);
6121  }
6122
6123  // No steps means no initialization.
6124  if (Steps.empty())
6125    return ExprResult((Expr *)nullptr);
6126
6127  if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
6128      Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
6129      !Entity.isParameterKind()) {
6130    // Produce a C++98 compatibility warning if we are initializing a reference
6131    // from an initializer list. For parameters, we produce a better warning
6132    // elsewhere.
6133    Expr *Init = Args[0];
6134    S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
6135      << Init->getSourceRange();
6136  }
6137
6138  // Diagnose cases where we initialize a pointer to an array temporary, and the
6139  // pointer obviously outlives the temporary.
6140  if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
6141      Entity.getType()->isPointerType() &&
6142      InitializedEntityOutlivesFullExpression(Entity)) {
6143    Expr *Init = Args[0];
6144    Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
6145    if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
6146      S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
6147        << Init->getSourceRange();
6148  }
6149
6150  QualType DestType = Entity.getType().getNonReferenceType();
6151  // FIXME: Ugly hack around the fact that Entity.getType() is not
6152  // the same as Entity.getDecl()->getType() in cases involving type merging,
6153  //  and we want latter when it makes sense.
6154  if (ResultType)
6155    *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
6156                                     Entity.getType();
6157
6158  ExprResult CurInit((Expr *)nullptr);
6159
6160  // For initialization steps that start with a single initializer,
6161  // grab the only argument out the Args and place it into the "current"
6162  // initializer.
6163  switch (Steps.front().Kind) {
6164  case SK_ResolveAddressOfOverloadedFunction:
6165  case SK_CastDerivedToBaseRValue:
6166  case SK_CastDerivedToBaseXValue:
6167  case SK_CastDerivedToBaseLValue:
6168  case SK_BindReference:
6169  case SK_BindReferenceToTemporary:
6170  case SK_ExtraneousCopyToTemporary:
6171  case SK_UserConversion:
6172  case SK_QualificationConversionLValue:
6173  case SK_QualificationConversionXValue:
6174  case SK_QualificationConversionRValue:
6175  case SK_AtomicConversion:
6176  case SK_LValueToRValue:
6177  case SK_ConversionSequence:
6178  case SK_ConversionSequenceNoNarrowing:
6179  case SK_ListInitialization:
6180  case SK_UnwrapInitList:
6181  case SK_RewrapInitList:
6182  case SK_CAssignment:
6183  case SK_StringInit:
6184  case SK_ObjCObjectConversion:
6185  case SK_ArrayInit:
6186  case SK_ParenthesizedArrayInit:
6187  case SK_PassByIndirectCopyRestore:
6188  case SK_PassByIndirectRestore:
6189  case SK_ProduceObjCObject:
6190  case SK_StdInitializerList:
6191  case SK_OCLSamplerInit:
6192  case SK_OCLZeroEvent: {
6193    assert(Args.size() == 1);
6194    CurInit = Args[0];
6195    if (!CurInit.get()) return ExprError();
6196    break;
6197  }
6198
6199  case SK_ConstructorInitialization:
6200  case SK_ConstructorInitializationFromList:
6201  case SK_StdInitializerListConstructorCall:
6202  case SK_ZeroInitialization:
6203    break;
6204  }
6205
6206  // Walk through the computed steps for the initialization sequence,
6207  // performing the specified conversions along the way.
6208  bool ConstructorInitRequiresZeroInit = false;
6209  for (step_iterator Step = step_begin(), StepEnd = step_end();
6210       Step != StepEnd; ++Step) {
6211    if (CurInit.isInvalid())
6212      return ExprError();
6213
6214    QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
6215
6216    switch (Step->Kind) {
6217    case SK_ResolveAddressOfOverloadedFunction:
6218      // Overload resolution determined which function invoke; update the
6219      // initializer to reflect that choice.
6220      S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
6221      if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
6222        return ExprError();
6223      CurInit = S.FixOverloadedFunctionReference(CurInit,
6224                                                 Step->Function.FoundDecl,
6225                                                 Step->Function.Function);
6226      break;
6227
6228    case SK_CastDerivedToBaseRValue:
6229    case SK_CastDerivedToBaseXValue:
6230    case SK_CastDerivedToBaseLValue: {
6231      // We have a derived-to-base cast that produces either an rvalue or an
6232      // lvalue. Perform that cast.
6233
6234      CXXCastPath BasePath;
6235
6236      // Casts to inaccessible base classes are allowed with C-style casts.
6237      bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
6238      if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
6239                                         CurInit.get()->getLocStart(),
6240                                         CurInit.get()->getSourceRange(),
6241                                         &BasePath, IgnoreBaseAccess))
6242        return ExprError();
6243
6244      ExprValueKind VK =
6245          Step->Kind == SK_CastDerivedToBaseLValue ?
6246              VK_LValue :
6247              (Step->Kind == SK_CastDerivedToBaseXValue ?
6248                   VK_XValue :
6249                   VK_RValue);
6250      CurInit =
6251          ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
6252                                   CurInit.get(), &BasePath, VK);
6253      break;
6254    }
6255
6256    case SK_BindReference:
6257      // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
6258      if (CurInit.get()->refersToBitField()) {
6259        // We don't necessarily have an unambiguous source bit-field.
6260        FieldDecl *BitField = CurInit.get()->getSourceBitField();
6261        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
6262          << Entity.getType().isVolatileQualified()
6263          << (BitField ? BitField->getDeclName() : DeclarationName())
6264          << (BitField != nullptr)
6265          << CurInit.get()->getSourceRange();
6266        if (BitField)
6267          S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
6268
6269        return ExprError();
6270      }
6271
6272      if (CurInit.get()->refersToVectorElement()) {
6273        // References cannot bind to vector elements.
6274        S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
6275          << Entity.getType().isVolatileQualified()
6276          << CurInit.get()->getSourceRange();
6277        PrintInitLocationNote(S, Entity);
6278        return ExprError();
6279      }
6280
6281      // Reference binding does not have any corresponding ASTs.
6282
6283      // Check exception specifications
6284      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6285        return ExprError();
6286
6287      // Even though we didn't materialize a temporary, the binding may still
6288      // extend the lifetime of a temporary. This happens if we bind a reference
6289      // to the result of a cast to reference type.
6290      if (const InitializedEntity *ExtendingEntity =
6291              getEntityForTemporaryLifetimeExtension(&Entity))
6292        if (performReferenceExtension(CurInit.get(), ExtendingEntity))
6293          warnOnLifetimeExtension(S, Entity, CurInit.get(),
6294                                  /*IsInitializerList=*/false,
6295                                  ExtendingEntity->getDecl());
6296
6297      break;
6298
6299    case SK_BindReferenceToTemporary: {
6300      // Make sure the "temporary" is actually an rvalue.
6301      assert(CurInit.get()->isRValue() && "not a temporary");
6302
6303      // Check exception specifications
6304      if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6305        return ExprError();
6306
6307      // Materialize the temporary into memory.
6308      MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
6309          Entity.getType().getNonReferenceType(), CurInit.get(),
6310          Entity.getType()->isLValueReferenceType());
6311
6312      // Maybe lifetime-extend the temporary's subobjects to match the
6313      // entity's lifetime.
6314      if (const InitializedEntity *ExtendingEntity =
6315              getEntityForTemporaryLifetimeExtension(&Entity))
6316        if (performReferenceExtension(MTE, ExtendingEntity))
6317          warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false,
6318                                  ExtendingEntity->getDecl());
6319
6320      // If we're binding to an Objective-C object that has lifetime, we
6321      // need cleanups. Likewise if we're extending this temporary to automatic
6322      // storage duration -- we need to register its cleanup during the
6323      // full-expression's cleanups.
6324      if ((S.getLangOpts().ObjCAutoRefCount &&
6325           MTE->getType()->isObjCLifetimeType()) ||
6326          (MTE->getStorageDuration() == SD_Automatic &&
6327           MTE->getType().isDestructedType()))
6328        S.ExprNeedsCleanups = true;
6329
6330      CurInit = MTE;
6331      break;
6332    }
6333
6334    case SK_ExtraneousCopyToTemporary:
6335      CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6336                           /*IsExtraneousCopy=*/true);
6337      break;
6338
6339    case SK_UserConversion: {
6340      // We have a user-defined conversion that invokes either a constructor
6341      // or a conversion function.
6342      CastKind CastKind;
6343      bool IsCopy = false;
6344      FunctionDecl *Fn = Step->Function.Function;
6345      DeclAccessPair FoundFn = Step->Function.FoundDecl;
6346      bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
6347      bool CreatedObject = false;
6348      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
6349        // Build a call to the selected constructor.
6350        SmallVector<Expr*, 8> ConstructorArgs;
6351        SourceLocation Loc = CurInit.get()->getLocStart();
6352        CurInit.get(); // Ownership transferred into MultiExprArg, below.
6353
6354        // Determine the arguments required to actually perform the constructor
6355        // call.
6356        Expr *Arg = CurInit.get();
6357        if (S.CompleteConstructorCall(Constructor,
6358                                      MultiExprArg(&Arg, 1),
6359                                      Loc, ConstructorArgs))
6360          return ExprError();
6361
6362        // Build an expression that constructs a temporary.
6363        CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
6364                                          ConstructorArgs,
6365                                          HadMultipleCandidates,
6366                                          /*ListInit*/ false,
6367                                          /*StdInitListInit*/ false,
6368                                          /*ZeroInit*/ false,
6369                                          CXXConstructExpr::CK_Complete,
6370                                          SourceRange());
6371        if (CurInit.isInvalid())
6372          return ExprError();
6373
6374        S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
6375                                 FoundFn.getAccess());
6376        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6377          return ExprError();
6378
6379        CastKind = CK_ConstructorConversion;
6380        QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
6381        if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
6382            S.IsDerivedFrom(Loc, SourceType, Class))
6383          IsCopy = true;
6384
6385        CreatedObject = true;
6386      } else {
6387        // Build a call to the conversion function.
6388        CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
6389        S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
6390                                    FoundFn);
6391        if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6392          return ExprError();
6393
6394        // FIXME: Should we move this initialization into a separate
6395        // derived-to-base conversion? I believe the answer is "no", because
6396        // we don't want to turn off access control here for c-style casts.
6397        ExprResult CurInitExprRes =
6398          S.PerformObjectArgumentInitialization(CurInit.get(),
6399                                                /*Qualifier=*/nullptr,
6400                                                FoundFn, Conversion);
6401        if(CurInitExprRes.isInvalid())
6402          return ExprError();
6403        CurInit = CurInitExprRes;
6404
6405        // Build the actual call to the conversion function.
6406        CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
6407                                           HadMultipleCandidates);
6408        if (CurInit.isInvalid() || !CurInit.get())
6409          return ExprError();
6410
6411        CastKind = CK_UserDefinedConversion;
6412
6413        CreatedObject = Conversion->getReturnType()->isRecordType();
6414      }
6415
6416      bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
6417      bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
6418
6419      if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
6420        QualType T = CurInit.get()->getType();
6421        if (const RecordType *Record = T->getAs<RecordType>()) {
6422          CXXDestructorDecl *Destructor
6423            = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6424          S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6425                                  S.PDiag(diag::err_access_dtor_temp) << T);
6426          S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6427          if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6428            return ExprError();
6429        }
6430      }
6431
6432      CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6433                                         CastKind, CurInit.get(), nullptr,
6434                                         CurInit.get()->getValueKind());
6435      if (MaybeBindToTemp)
6436        CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6437      if (RequiresCopy)
6438        CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
6439                             CurInit, /*IsExtraneousCopy=*/false);
6440      break;
6441    }
6442
6443    case SK_QualificationConversionLValue:
6444    case SK_QualificationConversionXValue:
6445    case SK_QualificationConversionRValue: {
6446      // Perform a qualification conversion; these can never go wrong.
6447      ExprValueKind VK =
6448          Step->Kind == SK_QualificationConversionLValue ?
6449              VK_LValue :
6450              (Step->Kind == SK_QualificationConversionXValue ?
6451                   VK_XValue :
6452                   VK_RValue);
6453      CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6454      break;
6455    }
6456
6457    case SK_AtomicConversion: {
6458      assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
6459      CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6460                                    CK_NonAtomicToAtomic, VK_RValue);
6461      break;
6462    }
6463
6464    case SK_LValueToRValue: {
6465      assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
6466      CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6467                                         CK_LValueToRValue, CurInit.get(),
6468                                         /*BasePath=*/nullptr, VK_RValue);
6469      break;
6470    }
6471
6472    case SK_ConversionSequence:
6473    case SK_ConversionSequenceNoNarrowing: {
6474      Sema::CheckedConversionKind CCK
6475        = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6476        : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6477        : Kind.isExplicitCast()? Sema::CCK_OtherCast
6478        : Sema::CCK_ImplicitConversion;
6479      ExprResult CurInitExprRes =
6480        S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6481                                    getAssignmentAction(Entity), CCK);
6482      if (CurInitExprRes.isInvalid())
6483        return ExprError();
6484      CurInit = CurInitExprRes;
6485
6486      if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6487          S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent())
6488        DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6489                                    CurInit.get());
6490      break;
6491    }
6492
6493    case SK_ListInitialization: {
6494      InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6495      // If we're not initializing the top-level entity, we need to create an
6496      // InitializeTemporary entity for our target type.
6497      QualType Ty = Step->Type;
6498      bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6499      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6500      InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6501      InitListChecker PerformInitList(S, InitEntity,
6502          InitList, Ty, /*VerifyOnly=*/false);
6503      if (PerformInitList.HadError())
6504        return ExprError();
6505
6506      // Hack: We must update *ResultType if available in order to set the
6507      // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6508      // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6509      if (ResultType &&
6510          ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6511        if ((*ResultType)->isRValueReferenceType())
6512          Ty = S.Context.getRValueReferenceType(Ty);
6513        else if ((*ResultType)->isLValueReferenceType())
6514          Ty = S.Context.getLValueReferenceType(Ty,
6515            (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6516        *ResultType = Ty;
6517      }
6518
6519      InitListExpr *StructuredInitList =
6520          PerformInitList.getFullyStructuredList();
6521      CurInit.get();
6522      CurInit = shouldBindAsTemporary(InitEntity)
6523          ? S.MaybeBindToTemporary(StructuredInitList)
6524          : StructuredInitList;
6525      break;
6526    }
6527
6528    case SK_ConstructorInitializationFromList: {
6529      // When an initializer list is passed for a parameter of type "reference
6530      // to object", we don't get an EK_Temporary entity, but instead an
6531      // EK_Parameter entity with reference type.
6532      // FIXME: This is a hack. What we really should do is create a user
6533      // conversion step for this case, but this makes it considerably more
6534      // complicated. For now, this will do.
6535      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6536                                        Entity.getType().getNonReferenceType());
6537      bool UseTemporary = Entity.getType()->isReferenceType();
6538      assert(Args.size() == 1 && "expected a single argument for list init");
6539      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6540      S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6541        << InitList->getSourceRange();
6542      MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6543      CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6544                                                                   Entity,
6545                                                 Kind, Arg, *Step,
6546                                               ConstructorInitRequiresZeroInit,
6547                                               /*IsListInitialization*/true,
6548                                               /*IsStdInitListInit*/false,
6549                                               InitList->getLBraceLoc(),
6550                                               InitList->getRBraceLoc());
6551      break;
6552    }
6553
6554    case SK_UnwrapInitList:
6555      CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6556      break;
6557
6558    case SK_RewrapInitList: {
6559      Expr *E = CurInit.get();
6560      InitListExpr *Syntactic = Step->WrappingSyntacticList;
6561      InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6562          Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6563      ILE->setSyntacticForm(Syntactic);
6564      ILE->setType(E->getType());
6565      ILE->setValueKind(E->getValueKind());
6566      CurInit = ILE;
6567      break;
6568    }
6569
6570    case SK_ConstructorInitialization:
6571    case SK_StdInitializerListConstructorCall: {
6572      // When an initializer list is passed for a parameter of type "reference
6573      // to object", we don't get an EK_Temporary entity, but instead an
6574      // EK_Parameter entity with reference type.
6575      // FIXME: This is a hack. What we really should do is create a user
6576      // conversion step for this case, but this makes it considerably more
6577      // complicated. For now, this will do.
6578      InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6579                                        Entity.getType().getNonReferenceType());
6580      bool UseTemporary = Entity.getType()->isReferenceType();
6581      bool IsStdInitListInit =
6582          Step->Kind == SK_StdInitializerListConstructorCall;
6583      CurInit = PerformConstructorInitialization(
6584          S, UseTemporary ? TempEntity : Entity, Kind, Args, *Step,
6585          ConstructorInitRequiresZeroInit,
6586          /*IsListInitialization*/IsStdInitListInit,
6587          /*IsStdInitListInitialization*/IsStdInitListInit,
6588          /*LBraceLoc*/SourceLocation(),
6589          /*RBraceLoc*/SourceLocation());
6590      break;
6591    }
6592
6593    case SK_ZeroInitialization: {
6594      step_iterator NextStep = Step;
6595      ++NextStep;
6596      if (NextStep != StepEnd &&
6597          (NextStep->Kind == SK_ConstructorInitialization ||
6598           NextStep->Kind == SK_ConstructorInitializationFromList)) {
6599        // The need for zero-initialization is recorded directly into
6600        // the call to the object's constructor within the next step.
6601        ConstructorInitRequiresZeroInit = true;
6602      } else if (Kind.getKind() == InitializationKind::IK_Value &&
6603                 S.getLangOpts().CPlusPlus &&
6604                 !Kind.isImplicitValueInit()) {
6605        TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6606        if (!TSInfo)
6607          TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6608                                                    Kind.getRange().getBegin());
6609
6610        CurInit = new (S.Context) CXXScalarValueInitExpr(
6611            TSInfo->getType().getNonLValueExprType(S.Context), TSInfo,
6612            Kind.getRange().getEnd());
6613      } else {
6614        CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
6615      }
6616      break;
6617    }
6618
6619    case SK_CAssignment: {
6620      QualType SourceType = CurInit.get()->getType();
6621      // Save off the initial CurInit in case we need to emit a diagnostic
6622      ExprResult InitialCurInit = CurInit;
6623      ExprResult Result = CurInit;
6624      Sema::AssignConvertType ConvTy =
6625        S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
6626            Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
6627      if (Result.isInvalid())
6628        return ExprError();
6629      CurInit = Result;
6630
6631      // If this is a call, allow conversion to a transparent union.
6632      ExprResult CurInitExprRes = CurInit;
6633      if (ConvTy != Sema::Compatible &&
6634          Entity.isParameterKind() &&
6635          S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
6636            == Sema::Compatible)
6637        ConvTy = Sema::Compatible;
6638      if (CurInitExprRes.isInvalid())
6639        return ExprError();
6640      CurInit = CurInitExprRes;
6641
6642      bool Complained;
6643      if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6644                                     Step->Type, SourceType,
6645                                     InitialCurInit.get(),
6646                                     getAssignmentAction(Entity, true),
6647                                     &Complained)) {
6648        PrintInitLocationNote(S, Entity);
6649        return ExprError();
6650      } else if (Complained)
6651        PrintInitLocationNote(S, Entity);
6652      break;
6653    }
6654
6655    case SK_StringInit: {
6656      QualType Ty = Step->Type;
6657      CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6658                      S.Context.getAsArrayType(Ty), S);
6659      break;
6660    }
6661
6662    case SK_ObjCObjectConversion:
6663      CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6664                          CK_ObjCObjectLValueCast,
6665                          CurInit.get()->getValueKind());
6666      break;
6667
6668    case SK_ArrayInit:
6669      // Okay: we checked everything before creating this step. Note that
6670      // this is a GNU extension.
6671      S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6672        << Step->Type << CurInit.get()->getType()
6673        << CurInit.get()->getSourceRange();
6674
6675      // If the destination type is an incomplete array type, update the
6676      // type accordingly.
6677      if (ResultType) {
6678        if (const IncompleteArrayType *IncompleteDest
6679                           = S.Context.getAsIncompleteArrayType(Step->Type)) {
6680          if (const ConstantArrayType *ConstantSource
6681                 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6682            *ResultType = S.Context.getConstantArrayType(
6683                                             IncompleteDest->getElementType(),
6684                                             ConstantSource->getSize(),
6685                                             ArrayType::Normal, 0);
6686          }
6687        }
6688      }
6689      break;
6690
6691    case SK_ParenthesizedArrayInit:
6692      // Okay: we checked everything before creating this step. Note that
6693      // this is a GNU extension.
6694      S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6695        << CurInit.get()->getSourceRange();
6696      break;
6697
6698    case SK_PassByIndirectCopyRestore:
6699    case SK_PassByIndirectRestore:
6700      checkIndirectCopyRestoreSource(S, CurInit.get());
6701      CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
6702          CurInit.get(), Step->Type,
6703          Step->Kind == SK_PassByIndirectCopyRestore);
6704      break;
6705
6706    case SK_ProduceObjCObject:
6707      CurInit =
6708          ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
6709                                   CurInit.get(), nullptr, VK_RValue);
6710      break;
6711
6712    case SK_StdInitializerList: {
6713      S.Diag(CurInit.get()->getExprLoc(),
6714             diag::warn_cxx98_compat_initializer_list_init)
6715        << CurInit.get()->getSourceRange();
6716
6717      // Materialize the temporary into memory.
6718      MaterializeTemporaryExpr *MTE = new (S.Context)
6719          MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6720                                   /*BoundToLvalueReference=*/false);
6721
6722      // Maybe lifetime-extend the array temporary's subobjects to match the
6723      // entity's lifetime.
6724      if (const InitializedEntity *ExtendingEntity =
6725              getEntityForTemporaryLifetimeExtension(&Entity))
6726        if (performReferenceExtension(MTE, ExtendingEntity))
6727          warnOnLifetimeExtension(S, Entity, CurInit.get(),
6728                                  /*IsInitializerList=*/true,
6729                                  ExtendingEntity->getDecl());
6730
6731      // Wrap it in a construction of a std::initializer_list<T>.
6732      CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
6733
6734      // Bind the result, in case the library has given initializer_list a
6735      // non-trivial destructor.
6736      if (shouldBindAsTemporary(Entity))
6737        CurInit = S.MaybeBindToTemporary(CurInit.get());
6738      break;
6739    }
6740
6741    case SK_OCLSamplerInit: {
6742      assert(Step->Type->isSamplerT() &&
6743             "Sampler initialization on non-sampler type.");
6744
6745      QualType SourceType = CurInit.get()->getType();
6746
6747      if (Entity.isParameterKind()) {
6748        if (!SourceType->isSamplerT())
6749          S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6750            << SourceType;
6751      } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6752        llvm_unreachable("Invalid EntityKind!");
6753      }
6754
6755      break;
6756    }
6757    case SK_OCLZeroEvent: {
6758      assert(Step->Type->isEventT() &&
6759             "Event initialization on non-event type.");
6760
6761      CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6762                                    CK_ZeroToOCLEvent,
6763                                    CurInit.get()->getValueKind());
6764      break;
6765    }
6766    }
6767  }
6768
6769  // Diagnose non-fatal problems with the completed initialization.
6770  if (Entity.getKind() == InitializedEntity::EK_Member &&
6771      cast<FieldDecl>(Entity.getDecl())->isBitField())
6772    S.CheckBitFieldInitialization(Kind.getLocation(),
6773                                  cast<FieldDecl>(Entity.getDecl()),
6774                                  CurInit.get());
6775
6776  // Check for std::move on construction.
6777  if (const Expr *E = CurInit.get()) {
6778    CheckMoveOnConstruction(S, E,
6779                            Entity.getKind() == InitializedEntity::EK_Result);
6780  }
6781
6782  return CurInit;
6783}
6784
6785/// Somewhere within T there is an uninitialized reference subobject.
6786/// Dig it out and diagnose it.
6787static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6788                                           QualType T) {
6789  if (T->isReferenceType()) {
6790    S.Diag(Loc, diag::err_reference_without_init)
6791      << T.getNonReferenceType();
6792    return true;
6793  }
6794
6795  CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6796  if (!RD || !RD->hasUninitializedReferenceMember())
6797    return false;
6798
6799  for (const auto *FI : RD->fields()) {
6800    if (FI->isUnnamedBitfield())
6801      continue;
6802
6803    if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6804      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6805      return true;
6806    }
6807  }
6808
6809  for (const auto &BI : RD->bases()) {
6810    if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
6811      S.Diag(Loc, diag::note_value_initialization_here) << RD;
6812      return true;
6813    }
6814  }
6815
6816  return false;
6817}
6818
6819
6820//===----------------------------------------------------------------------===//
6821// Diagnose initialization failures
6822//===----------------------------------------------------------------------===//
6823
6824/// Emit notes associated with an initialization that failed due to a
6825/// "simple" conversion failure.
6826static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6827                                   Expr *op) {
6828  QualType destType = entity.getType();
6829  if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6830      op->getType()->isObjCObjectPointerType()) {
6831
6832    // Emit a possible note about the conversion failing because the
6833    // operand is a message send with a related result type.
6834    S.EmitRelatedResultTypeNote(op);
6835
6836    // Emit a possible note about a return failing because we're
6837    // expecting a related result type.
6838    if (entity.getKind() == InitializedEntity::EK_Result)
6839      S.EmitRelatedResultTypeNoteForReturn(destType);
6840  }
6841}
6842
6843static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
6844                             InitListExpr *InitList) {
6845  QualType DestType = Entity.getType();
6846
6847  QualType E;
6848  if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
6849    QualType ArrayType = S.Context.getConstantArrayType(
6850        E.withConst(),
6851        llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6852                    InitList->getNumInits()),
6853        clang::ArrayType::Normal, 0);
6854    InitializedEntity HiddenArray =
6855        InitializedEntity::InitializeTemporary(ArrayType);
6856    return diagnoseListInit(S, HiddenArray, InitList);
6857  }
6858
6859  if (DestType->isReferenceType()) {
6860    // A list-initialization failure for a reference means that we tried to
6861    // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
6862    // inner initialization failed.
6863    QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
6864    diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
6865    SourceLocation Loc = InitList->getLocStart();
6866    if (auto *D = Entity.getDecl())
6867      Loc = D->getLocation();
6868    S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
6869    return;
6870  }
6871
6872  InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
6873                                   /*VerifyOnly=*/false);
6874  assert(DiagnoseInitList.HadError() &&
6875         "Inconsistent init list check result.");
6876}
6877
6878bool InitializationSequence::Diagnose(Sema &S,
6879                                      const InitializedEntity &Entity,
6880                                      const InitializationKind &Kind,
6881                                      ArrayRef<Expr *> Args) {
6882  if (!Failed())
6883    return false;
6884
6885  QualType DestType = Entity.getType();
6886  switch (Failure) {
6887  case FK_TooManyInitsForReference:
6888    // FIXME: Customize for the initialized entity?
6889    if (Args.empty()) {
6890      // Dig out the reference subobject which is uninitialized and diagnose it.
6891      // If this is value-initialization, this could be nested some way within
6892      // the target type.
6893      assert(Kind.getKind() == InitializationKind::IK_Value ||
6894             DestType->isReferenceType());
6895      bool Diagnosed =
6896        DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6897      assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6898      (void)Diagnosed;
6899    } else  // FIXME: diagnostic below could be better!
6900      S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6901        << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6902    break;
6903
6904  case FK_ArrayNeedsInitList:
6905    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6906    break;
6907  case FK_ArrayNeedsInitListOrStringLiteral:
6908    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6909    break;
6910  case FK_ArrayNeedsInitListOrWideStringLiteral:
6911    S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6912    break;
6913  case FK_NarrowStringIntoWideCharArray:
6914    S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6915    break;
6916  case FK_WideStringIntoCharArray:
6917    S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6918    break;
6919  case FK_IncompatWideStringIntoWideChar:
6920    S.Diag(Kind.getLocation(),
6921           diag::err_array_init_incompat_wide_string_into_wchar);
6922    break;
6923  case FK_ArrayTypeMismatch:
6924  case FK_NonConstantArrayInit:
6925    S.Diag(Kind.getLocation(),
6926           (Failure == FK_ArrayTypeMismatch
6927              ? diag::err_array_init_different_type
6928              : diag::err_array_init_non_constant_array))
6929      << DestType.getNonReferenceType()
6930      << Args[0]->getType()
6931      << Args[0]->getSourceRange();
6932    break;
6933
6934  case FK_VariableLengthArrayHasInitializer:
6935    S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6936      << Args[0]->getSourceRange();
6937    break;
6938
6939  case FK_AddressOfOverloadFailed: {
6940    DeclAccessPair Found;
6941    S.ResolveAddressOfOverloadedFunction(Args[0],
6942                                         DestType.getNonReferenceType(),
6943                                         true,
6944                                         Found);
6945    break;
6946  }
6947
6948  case FK_AddressOfUnaddressableFunction: {
6949    auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl());
6950    S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
6951                                        Args[0]->getLocStart());
6952    break;
6953  }
6954
6955  case FK_ReferenceInitOverloadFailed:
6956  case FK_UserConversionOverloadFailed:
6957    switch (FailedOverloadResult) {
6958    case OR_Ambiguous:
6959      if (Failure == FK_UserConversionOverloadFailed)
6960        S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6961          << Args[0]->getType() << DestType
6962          << Args[0]->getSourceRange();
6963      else
6964        S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6965          << DestType << Args[0]->getType()
6966          << Args[0]->getSourceRange();
6967
6968      FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6969      break;
6970
6971    case OR_No_Viable_Function:
6972      if (!S.RequireCompleteType(Kind.getLocation(),
6973                                 DestType.getNonReferenceType(),
6974                          diag::err_typecheck_nonviable_condition_incomplete,
6975                               Args[0]->getType(), Args[0]->getSourceRange()))
6976        S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6977          << (Entity.getKind() == InitializedEntity::EK_Result)
6978          << Args[0]->getType() << Args[0]->getSourceRange()
6979          << DestType.getNonReferenceType();
6980
6981      FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6982      break;
6983
6984    case OR_Deleted: {
6985      S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6986        << Args[0]->getType() << DestType.getNonReferenceType()
6987        << Args[0]->getSourceRange();
6988      OverloadCandidateSet::iterator Best;
6989      OverloadingResult Ovl
6990        = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6991                                                true);
6992      if (Ovl == OR_Deleted) {
6993        S.NoteDeletedFunction(Best->Function);
6994      } else {
6995        llvm_unreachable("Inconsistent overload resolution?");
6996      }
6997      break;
6998    }
6999
7000    case OR_Success:
7001      llvm_unreachable("Conversion did not fail!");
7002    }
7003    break;
7004
7005  case FK_NonConstLValueReferenceBindingToTemporary:
7006    if (isa<InitListExpr>(Args[0])) {
7007      S.Diag(Kind.getLocation(),
7008             diag::err_lvalue_reference_bind_to_initlist)
7009      << DestType.getNonReferenceType().isVolatileQualified()
7010      << DestType.getNonReferenceType()
7011      << Args[0]->getSourceRange();
7012      break;
7013    }
7014    // Intentional fallthrough
7015
7016  case FK_NonConstLValueReferenceBindingToUnrelated:
7017    S.Diag(Kind.getLocation(),
7018           Failure == FK_NonConstLValueReferenceBindingToTemporary
7019             ? diag::err_lvalue_reference_bind_to_temporary
7020             : diag::err_lvalue_reference_bind_to_unrelated)
7021      << DestType.getNonReferenceType().isVolatileQualified()
7022      << DestType.getNonReferenceType()
7023      << Args[0]->getType()
7024      << Args[0]->getSourceRange();
7025    break;
7026
7027  case FK_RValueReferenceBindingToLValue:
7028    S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
7029      << DestType.getNonReferenceType() << Args[0]->getType()
7030      << Args[0]->getSourceRange();
7031    break;
7032
7033  case FK_ReferenceInitDropsQualifiers: {
7034    QualType SourceType = Args[0]->getType();
7035    QualType NonRefType = DestType.getNonReferenceType();
7036    Qualifiers DroppedQualifiers =
7037        SourceType.getQualifiers() - NonRefType.getQualifiers();
7038
7039    S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
7040      << SourceType
7041      << NonRefType
7042      << DroppedQualifiers.getCVRQualifiers()
7043      << Args[0]->getSourceRange();
7044    break;
7045  }
7046
7047  case FK_ReferenceInitFailed:
7048    S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
7049      << DestType.getNonReferenceType()
7050      << Args[0]->isLValue()
7051      << Args[0]->getType()
7052      << Args[0]->getSourceRange();
7053    emitBadConversionNotes(S, Entity, Args[0]);
7054    break;
7055
7056  case FK_ConversionFailed: {
7057    QualType FromType = Args[0]->getType();
7058    PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
7059      << (int)Entity.getKind()
7060      << DestType
7061      << Args[0]->isLValue()
7062      << FromType
7063      << Args[0]->getSourceRange();
7064    S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
7065    S.Diag(Kind.getLocation(), PDiag);
7066    emitBadConversionNotes(S, Entity, Args[0]);
7067    break;
7068  }
7069
7070  case FK_ConversionFromPropertyFailed:
7071    // No-op. This error has already been reported.
7072    break;
7073
7074  case FK_TooManyInitsForScalar: {
7075    SourceRange R;
7076
7077    auto *InitList = dyn_cast<InitListExpr>(Args[0]);
7078    if (InitList && InitList->getNumInits() >= 1) {
7079      R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
7080    } else {
7081      assert(Args.size() > 1 && "Expected multiple initializers!");
7082      R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
7083    }
7084
7085    R.setBegin(S.getLocForEndOfToken(R.getBegin()));
7086    if (Kind.isCStyleOrFunctionalCast())
7087      S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
7088        << R;
7089    else
7090      S.Diag(Kind.getLocation(), diag::err_excess_initializers)
7091        << /*scalar=*/2 << R;
7092    break;
7093  }
7094
7095  case FK_ReferenceBindingToInitList:
7096    S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
7097      << DestType.getNonReferenceType() << Args[0]->getSourceRange();
7098    break;
7099
7100  case FK_InitListBadDestinationType:
7101    S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
7102      << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
7103    break;
7104
7105  case FK_ListConstructorOverloadFailed:
7106  case FK_ConstructorOverloadFailed: {
7107    SourceRange ArgsRange;
7108    if (Args.size())
7109      ArgsRange = SourceRange(Args.front()->getLocStart(),
7110                              Args.back()->getLocEnd());
7111
7112    if (Failure == FK_ListConstructorOverloadFailed) {
7113      assert(Args.size() == 1 &&
7114             "List construction from other than 1 argument.");
7115      InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7116      Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
7117    }
7118
7119    // FIXME: Using "DestType" for the entity we're printing is probably
7120    // bad.
7121    switch (FailedOverloadResult) {
7122      case OR_Ambiguous:
7123        S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
7124          << DestType << ArgsRange;
7125        FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7126        break;
7127
7128      case OR_No_Viable_Function:
7129        if (Kind.getKind() == InitializationKind::IK_Default &&
7130            (Entity.getKind() == InitializedEntity::EK_Base ||
7131             Entity.getKind() == InitializedEntity::EK_Member) &&
7132            isa<CXXConstructorDecl>(S.CurContext)) {
7133          // This is implicit default initialization of a member or
7134          // base within a constructor. If no viable function was
7135          // found, notify the user that she needs to explicitly
7136          // initialize this base/member.
7137          CXXConstructorDecl *Constructor
7138            = cast<CXXConstructorDecl>(S.CurContext);
7139          if (Entity.getKind() == InitializedEntity::EK_Base) {
7140            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7141              << (Constructor->getInheritedConstructor() ? 2 :
7142                  Constructor->isImplicit() ? 1 : 0)
7143              << S.Context.getTypeDeclType(Constructor->getParent())
7144              << /*base=*/0
7145              << Entity.getType();
7146
7147            RecordDecl *BaseDecl
7148              = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
7149                                                                  ->getDecl();
7150            S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
7151              << S.Context.getTagDeclType(BaseDecl);
7152          } else {
7153            S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7154              << (Constructor->getInheritedConstructor() ? 2 :
7155                  Constructor->isImplicit() ? 1 : 0)
7156              << S.Context.getTypeDeclType(Constructor->getParent())
7157              << /*member=*/1
7158              << Entity.getName();
7159            S.Diag(Entity.getDecl()->getLocation(),
7160                   diag::note_member_declared_at);
7161
7162            if (const RecordType *Record
7163                                 = Entity.getType()->getAs<RecordType>())
7164              S.Diag(Record->getDecl()->getLocation(),
7165                     diag::note_previous_decl)
7166                << S.Context.getTagDeclType(Record->getDecl());
7167          }
7168          break;
7169        }
7170
7171        S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
7172          << DestType << ArgsRange;
7173        FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7174        break;
7175
7176      case OR_Deleted: {
7177        OverloadCandidateSet::iterator Best;
7178        OverloadingResult Ovl
7179          = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7180        if (Ovl != OR_Deleted) {
7181          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7182            << true << DestType << ArgsRange;
7183          llvm_unreachable("Inconsistent overload resolution?");
7184          break;
7185        }
7186
7187        // If this is a defaulted or implicitly-declared function, then
7188        // it was implicitly deleted. Make it clear that the deletion was
7189        // implicit.
7190        if (S.isImplicitlyDeleted(Best->Function))
7191          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
7192            << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
7193            << DestType << ArgsRange;
7194        else
7195          S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7196            << true << DestType << ArgsRange;
7197
7198        S.NoteDeletedFunction(Best->Function);
7199        break;
7200      }
7201
7202      case OR_Success:
7203        llvm_unreachable("Conversion did not fail!");
7204    }
7205  }
7206  break;
7207
7208  case FK_DefaultInitOfConst:
7209    if (Entity.getKind() == InitializedEntity::EK_Member &&
7210        isa<CXXConstructorDecl>(S.CurContext)) {
7211      // This is implicit default-initialization of a const member in
7212      // a constructor. Complain that it needs to be explicitly
7213      // initialized.
7214      CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
7215      S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
7216        << (Constructor->getInheritedConstructor() ? 2 :
7217            Constructor->isImplicit() ? 1 : 0)
7218        << S.Context.getTypeDeclType(Constructor->getParent())
7219        << /*const=*/1
7220        << Entity.getName();
7221      S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
7222        << Entity.getName();
7223    } else {
7224      S.Diag(Kind.getLocation(), diag::err_default_init_const)
7225          << DestType << (bool)DestType->getAs<RecordType>();
7226    }
7227    break;
7228
7229  case FK_Incomplete:
7230    S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
7231                          diag::err_init_incomplete_type);
7232    break;
7233
7234  case FK_ListInitializationFailed: {
7235    // Run the init list checker again to emit diagnostics.
7236    InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7237    diagnoseListInit(S, Entity, InitList);
7238    break;
7239  }
7240
7241  case FK_PlaceholderType: {
7242    // FIXME: Already diagnosed!
7243    break;
7244  }
7245
7246  case FK_ExplicitConstructor: {
7247    S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
7248      << Args[0]->getSourceRange();
7249    OverloadCandidateSet::iterator Best;
7250    OverloadingResult Ovl
7251      = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7252    (void)Ovl;
7253    assert(Ovl == OR_Success && "Inconsistent overload resolution");
7254    CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
7255    S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
7256    break;
7257  }
7258  }
7259
7260  PrintInitLocationNote(S, Entity);
7261  return true;
7262}
7263
7264void InitializationSequence::dump(raw_ostream &OS) const {
7265  switch (SequenceKind) {
7266  case FailedSequence: {
7267    OS << "Failed sequence: ";
7268    switch (Failure) {
7269    case FK_TooManyInitsForReference:
7270      OS << "too many initializers for reference";
7271      break;
7272
7273    case FK_ArrayNeedsInitList:
7274      OS << "array requires initializer list";
7275      break;
7276
7277    case FK_AddressOfUnaddressableFunction:
7278      OS << "address of unaddressable function was taken";
7279      break;
7280
7281    case FK_ArrayNeedsInitListOrStringLiteral:
7282      OS << "array requires initializer list or string literal";
7283      break;
7284
7285    case FK_ArrayNeedsInitListOrWideStringLiteral:
7286      OS << "array requires initializer list or wide string literal";
7287      break;
7288
7289    case FK_NarrowStringIntoWideCharArray:
7290      OS << "narrow string into wide char array";
7291      break;
7292
7293    case FK_WideStringIntoCharArray:
7294      OS << "wide string into char array";
7295      break;
7296
7297    case FK_IncompatWideStringIntoWideChar:
7298      OS << "incompatible wide string into wide char array";
7299      break;
7300
7301    case FK_ArrayTypeMismatch:
7302      OS << "array type mismatch";
7303      break;
7304
7305    case FK_NonConstantArrayInit:
7306      OS << "non-constant array initializer";
7307      break;
7308
7309    case FK_AddressOfOverloadFailed:
7310      OS << "address of overloaded function failed";
7311      break;
7312
7313    case FK_ReferenceInitOverloadFailed:
7314      OS << "overload resolution for reference initialization failed";
7315      break;
7316
7317    case FK_NonConstLValueReferenceBindingToTemporary:
7318      OS << "non-const lvalue reference bound to temporary";
7319      break;
7320
7321    case FK_NonConstLValueReferenceBindingToUnrelated:
7322      OS << "non-const lvalue reference bound to unrelated type";
7323      break;
7324
7325    case FK_RValueReferenceBindingToLValue:
7326      OS << "rvalue reference bound to an lvalue";
7327      break;
7328
7329    case FK_ReferenceInitDropsQualifiers:
7330      OS << "reference initialization drops qualifiers";
7331      break;
7332
7333    case FK_ReferenceInitFailed:
7334      OS << "reference initialization failed";
7335      break;
7336
7337    case FK_ConversionFailed:
7338      OS << "conversion failed";
7339      break;
7340
7341    case FK_ConversionFromPropertyFailed:
7342      OS << "conversion from property failed";
7343      break;
7344
7345    case FK_TooManyInitsForScalar:
7346      OS << "too many initializers for scalar";
7347      break;
7348
7349    case FK_ReferenceBindingToInitList:
7350      OS << "referencing binding to initializer list";
7351      break;
7352
7353    case FK_InitListBadDestinationType:
7354      OS << "initializer list for non-aggregate, non-scalar type";
7355      break;
7356
7357    case FK_UserConversionOverloadFailed:
7358      OS << "overloading failed for user-defined conversion";
7359      break;
7360
7361    case FK_ConstructorOverloadFailed:
7362      OS << "constructor overloading failed";
7363      break;
7364
7365    case FK_DefaultInitOfConst:
7366      OS << "default initialization of a const variable";
7367      break;
7368
7369    case FK_Incomplete:
7370      OS << "initialization of incomplete type";
7371      break;
7372
7373    case FK_ListInitializationFailed:
7374      OS << "list initialization checker failure";
7375      break;
7376
7377    case FK_VariableLengthArrayHasInitializer:
7378      OS << "variable length array has an initializer";
7379      break;
7380
7381    case FK_PlaceholderType:
7382      OS << "initializer expression isn't contextually valid";
7383      break;
7384
7385    case FK_ListConstructorOverloadFailed:
7386      OS << "list constructor overloading failed";
7387      break;
7388
7389    case FK_ExplicitConstructor:
7390      OS << "list copy initialization chose explicit constructor";
7391      break;
7392    }
7393    OS << '\n';
7394    return;
7395  }
7396
7397  case DependentSequence:
7398    OS << "Dependent sequence\n";
7399    return;
7400
7401  case NormalSequence:
7402    OS << "Normal sequence: ";
7403    break;
7404  }
7405
7406  for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
7407    if (S != step_begin()) {
7408      OS << " -> ";
7409    }
7410
7411    switch (S->Kind) {
7412    case SK_ResolveAddressOfOverloadedFunction:
7413      OS << "resolve address of overloaded function";
7414      break;
7415
7416    case SK_CastDerivedToBaseRValue:
7417      OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
7418      break;
7419
7420    case SK_CastDerivedToBaseXValue:
7421      OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
7422      break;
7423
7424    case SK_CastDerivedToBaseLValue:
7425      OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
7426      break;
7427
7428    case SK_BindReference:
7429      OS << "bind reference to lvalue";
7430      break;
7431
7432    case SK_BindReferenceToTemporary:
7433      OS << "bind reference to a temporary";
7434      break;
7435
7436    case SK_ExtraneousCopyToTemporary:
7437      OS << "extraneous C++03 copy to temporary";
7438      break;
7439
7440    case SK_UserConversion:
7441      OS << "user-defined conversion via " << *S->Function.Function;
7442      break;
7443
7444    case SK_QualificationConversionRValue:
7445      OS << "qualification conversion (rvalue)";
7446      break;
7447
7448    case SK_QualificationConversionXValue:
7449      OS << "qualification conversion (xvalue)";
7450      break;
7451
7452    case SK_QualificationConversionLValue:
7453      OS << "qualification conversion (lvalue)";
7454      break;
7455
7456    case SK_AtomicConversion:
7457      OS << "non-atomic-to-atomic conversion";
7458      break;
7459
7460    case SK_LValueToRValue:
7461      OS << "load (lvalue to rvalue)";
7462      break;
7463
7464    case SK_ConversionSequence:
7465      OS << "implicit conversion sequence (";
7466      S->ICS->dump(); // FIXME: use OS
7467      OS << ")";
7468      break;
7469
7470    case SK_ConversionSequenceNoNarrowing:
7471      OS << "implicit conversion sequence with narrowing prohibited (";
7472      S->ICS->dump(); // FIXME: use OS
7473      OS << ")";
7474      break;
7475
7476    case SK_ListInitialization:
7477      OS << "list aggregate initialization";
7478      break;
7479
7480    case SK_UnwrapInitList:
7481      OS << "unwrap reference initializer list";
7482      break;
7483
7484    case SK_RewrapInitList:
7485      OS << "rewrap reference initializer list";
7486      break;
7487
7488    case SK_ConstructorInitialization:
7489      OS << "constructor initialization";
7490      break;
7491
7492    case SK_ConstructorInitializationFromList:
7493      OS << "list initialization via constructor";
7494      break;
7495
7496    case SK_ZeroInitialization:
7497      OS << "zero initialization";
7498      break;
7499
7500    case SK_CAssignment:
7501      OS << "C assignment";
7502      break;
7503
7504    case SK_StringInit:
7505      OS << "string initialization";
7506      break;
7507
7508    case SK_ObjCObjectConversion:
7509      OS << "Objective-C object conversion";
7510      break;
7511
7512    case SK_ArrayInit:
7513      OS << "array initialization";
7514      break;
7515
7516    case SK_ParenthesizedArrayInit:
7517      OS << "parenthesized array initialization";
7518      break;
7519
7520    case SK_PassByIndirectCopyRestore:
7521      OS << "pass by indirect copy and restore";
7522      break;
7523
7524    case SK_PassByIndirectRestore:
7525      OS << "pass by indirect restore";
7526      break;
7527
7528    case SK_ProduceObjCObject:
7529      OS << "Objective-C object retension";
7530      break;
7531
7532    case SK_StdInitializerList:
7533      OS << "std::initializer_list from initializer list";
7534      break;
7535
7536    case SK_StdInitializerListConstructorCall:
7537      OS << "list initialization from std::initializer_list";
7538      break;
7539
7540    case SK_OCLSamplerInit:
7541      OS << "OpenCL sampler_t from integer constant";
7542      break;
7543
7544    case SK_OCLZeroEvent:
7545      OS << "OpenCL event_t from zero";
7546      break;
7547    }
7548
7549    OS << " [" << S->Type.getAsString() << ']';
7550  }
7551
7552  OS << '\n';
7553}
7554
7555void InitializationSequence::dump() const {
7556  dump(llvm::errs());
7557}
7558
7559static void DiagnoseNarrowingInInitList(Sema &S,
7560                                        const ImplicitConversionSequence &ICS,
7561                                        QualType PreNarrowingType,
7562                                        QualType EntityType,
7563                                        const Expr *PostInit) {
7564  const StandardConversionSequence *SCS = nullptr;
7565  switch (ICS.getKind()) {
7566  case ImplicitConversionSequence::StandardConversion:
7567    SCS = &ICS.Standard;
7568    break;
7569  case ImplicitConversionSequence::UserDefinedConversion:
7570    SCS = &ICS.UserDefined.After;
7571    break;
7572  case ImplicitConversionSequence::AmbiguousConversion:
7573  case ImplicitConversionSequence::EllipsisConversion:
7574  case ImplicitConversionSequence::BadConversion:
7575    return;
7576  }
7577
7578  // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
7579  APValue ConstantValue;
7580  QualType ConstantType;
7581  switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
7582                                ConstantType)) {
7583  case NK_Not_Narrowing:
7584    // No narrowing occurred.
7585    return;
7586
7587  case NK_Type_Narrowing:
7588    // This was a floating-to-integer conversion, which is always considered a
7589    // narrowing conversion even if the value is a constant and can be
7590    // represented exactly as an integer.
7591    S.Diag(PostInit->getLocStart(),
7592           (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7593               ? diag::warn_init_list_type_narrowing
7594               : diag::ext_init_list_type_narrowing)
7595      << PostInit->getSourceRange()
7596      << PreNarrowingType.getLocalUnqualifiedType()
7597      << EntityType.getLocalUnqualifiedType();
7598    break;
7599
7600  case NK_Constant_Narrowing:
7601    // A constant value was narrowed.
7602    S.Diag(PostInit->getLocStart(),
7603           (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7604               ? diag::warn_init_list_constant_narrowing
7605               : diag::ext_init_list_constant_narrowing)
7606      << PostInit->getSourceRange()
7607      << ConstantValue.getAsString(S.getASTContext(), ConstantType)
7608      << EntityType.getLocalUnqualifiedType();
7609    break;
7610
7611  case NK_Variable_Narrowing:
7612    // A variable's value may have been narrowed.
7613    S.Diag(PostInit->getLocStart(),
7614           (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7615               ? diag::warn_init_list_variable_narrowing
7616               : diag::ext_init_list_variable_narrowing)
7617      << PostInit->getSourceRange()
7618      << PreNarrowingType.getLocalUnqualifiedType()
7619      << EntityType.getLocalUnqualifiedType();
7620    break;
7621  }
7622
7623  SmallString<128> StaticCast;
7624  llvm::raw_svector_ostream OS(StaticCast);
7625  OS << "static_cast<";
7626  if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
7627    // It's important to use the typedef's name if there is one so that the
7628    // fixit doesn't break code using types like int64_t.
7629    //
7630    // FIXME: This will break if the typedef requires qualification.  But
7631    // getQualifiedNameAsString() includes non-machine-parsable components.
7632    OS << *TT->getDecl();
7633  } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
7634    OS << BT->getName(S.getLangOpts());
7635  else {
7636    // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
7637    // with a broken cast.
7638    return;
7639  }
7640  OS << ">(";
7641  S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
7642      << PostInit->getSourceRange()
7643      << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
7644      << FixItHint::CreateInsertion(
7645             S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
7646}
7647
7648//===----------------------------------------------------------------------===//
7649// Initialization helper functions
7650//===----------------------------------------------------------------------===//
7651bool
7652Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
7653                                   ExprResult Init) {
7654  if (Init.isInvalid())
7655    return false;
7656
7657  Expr *InitE = Init.get();
7658  assert(InitE && "No initialization expression");
7659
7660  InitializationKind Kind
7661    = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
7662  InitializationSequence Seq(*this, Entity, Kind, InitE);
7663  return !Seq.Failed();
7664}
7665
7666ExprResult
7667Sema::PerformCopyInitialization(const InitializedEntity &Entity,
7668                                SourceLocation EqualLoc,
7669                                ExprResult Init,
7670                                bool TopLevelOfInitList,
7671                                bool AllowExplicit) {
7672  if (Init.isInvalid())
7673    return ExprError();
7674
7675  Expr *InitE = Init.get();
7676  assert(InitE && "No initialization expression?");
7677
7678  if (EqualLoc.isInvalid())
7679    EqualLoc = InitE->getLocStart();
7680
7681  InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
7682                                                           EqualLoc,
7683                                                           AllowExplicit);
7684  InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
7685
7686  ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
7687
7688  return Result;
7689}
7690