1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclLookups.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/Basic/Builtins.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "clang/Lex/ModuleLoader.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ExternalSemaSource.h"
33#include "clang/Sema/Overload.h"
34#include "clang/Sema/Scope.h"
35#include "clang/Sema/ScopeInfo.h"
36#include "clang/Sema/Sema.h"
37#include "clang/Sema/SemaInternal.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "clang/Sema/TypoCorrection.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SetVector.h"
42#include "llvm/ADT/SmallPtrSet.h"
43#include "llvm/ADT/StringMap.h"
44#include "llvm/ADT/TinyPtrVector.h"
45#include "llvm/ADT/edit_distance.h"
46#include "llvm/Support/ErrorHandling.h"
47#include <algorithm>
48#include <iterator>
49#include <limits>
50#include <list>
51#include <map>
52#include <set>
53#include <utility>
54#include <vector>
55
56using namespace clang;
57using namespace sema;
58
59namespace {
60  class UnqualUsingEntry {
61    const DeclContext *Nominated;
62    const DeclContext *CommonAncestor;
63
64  public:
65    UnqualUsingEntry(const DeclContext *Nominated,
66                     const DeclContext *CommonAncestor)
67      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
68    }
69
70    const DeclContext *getCommonAncestor() const {
71      return CommonAncestor;
72    }
73
74    const DeclContext *getNominatedNamespace() const {
75      return Nominated;
76    }
77
78    // Sort by the pointer value of the common ancestor.
79    struct Comparator {
80      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
81        return L.getCommonAncestor() < R.getCommonAncestor();
82      }
83
84      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
85        return E.getCommonAncestor() < DC;
86      }
87
88      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
89        return DC < E.getCommonAncestor();
90      }
91    };
92  };
93
94  /// A collection of using directives, as used by C++ unqualified
95  /// lookup.
96  class UnqualUsingDirectiveSet {
97    typedef SmallVector<UnqualUsingEntry, 8> ListTy;
98
99    ListTy list;
100    llvm::SmallPtrSet<DeclContext*, 8> visited;
101
102  public:
103    UnqualUsingDirectiveSet() {}
104
105    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
106      // C++ [namespace.udir]p1:
107      //   During unqualified name lookup, the names appear as if they
108      //   were declared in the nearest enclosing namespace which contains
109      //   both the using-directive and the nominated namespace.
110      DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
111      assert(InnermostFileDC && InnermostFileDC->isFileContext());
112
113      for (; S; S = S->getParent()) {
114        // C++ [namespace.udir]p1:
115        //   A using-directive shall not appear in class scope, but may
116        //   appear in namespace scope or in block scope.
117        DeclContext *Ctx = S->getEntity();
118        if (Ctx && Ctx->isFileContext()) {
119          visit(Ctx, Ctx);
120        } else if (!Ctx || Ctx->isFunctionOrMethod()) {
121          for (auto *I : S->using_directives())
122            visit(I, InnermostFileDC);
123        }
124      }
125    }
126
127    // Visits a context and collect all of its using directives
128    // recursively.  Treats all using directives as if they were
129    // declared in the context.
130    //
131    // A given context is only every visited once, so it is important
132    // that contexts be visited from the inside out in order to get
133    // the effective DCs right.
134    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
135      if (!visited.insert(DC).second)
136        return;
137
138      addUsingDirectives(DC, EffectiveDC);
139    }
140
141    // Visits a using directive and collects all of its using
142    // directives recursively.  Treats all using directives as if they
143    // were declared in the effective DC.
144    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
145      DeclContext *NS = UD->getNominatedNamespace();
146      if (!visited.insert(NS).second)
147        return;
148
149      addUsingDirective(UD, EffectiveDC);
150      addUsingDirectives(NS, EffectiveDC);
151    }
152
153    // Adds all the using directives in a context (and those nominated
154    // by its using directives, transitively) as if they appeared in
155    // the given effective context.
156    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
157      SmallVector<DeclContext*, 4> queue;
158      while (true) {
159        for (auto UD : DC->using_directives()) {
160          DeclContext *NS = UD->getNominatedNamespace();
161          if (visited.insert(NS).second) {
162            addUsingDirective(UD, EffectiveDC);
163            queue.push_back(NS);
164          }
165        }
166
167        if (queue.empty())
168          return;
169
170        DC = queue.pop_back_val();
171      }
172    }
173
174    // Add a using directive as if it had been declared in the given
175    // context.  This helps implement C++ [namespace.udir]p3:
176    //   The using-directive is transitive: if a scope contains a
177    //   using-directive that nominates a second namespace that itself
178    //   contains using-directives, the effect is as if the
179    //   using-directives from the second namespace also appeared in
180    //   the first.
181    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
182      // Find the common ancestor between the effective context and
183      // the nominated namespace.
184      DeclContext *Common = UD->getNominatedNamespace();
185      while (!Common->Encloses(EffectiveDC))
186        Common = Common->getParent();
187      Common = Common->getPrimaryContext();
188
189      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
190    }
191
192    void done() {
193      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
194    }
195
196    typedef ListTy::const_iterator const_iterator;
197
198    const_iterator begin() const { return list.begin(); }
199    const_iterator end() const { return list.end(); }
200
201    llvm::iterator_range<const_iterator>
202    getNamespacesFor(DeclContext *DC) const {
203      return llvm::make_range(std::equal_range(begin(), end(),
204                                               DC->getPrimaryContext(),
205                                               UnqualUsingEntry::Comparator()));
206    }
207  };
208} // end anonymous namespace
209
210// Retrieve the set of identifier namespaces that correspond to a
211// specific kind of name lookup.
212static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
213                               bool CPlusPlus,
214                               bool Redeclaration) {
215  unsigned IDNS = 0;
216  switch (NameKind) {
217  case Sema::LookupObjCImplicitSelfParam:
218  case Sema::LookupOrdinaryName:
219  case Sema::LookupRedeclarationWithLinkage:
220  case Sema::LookupLocalFriendName:
221    IDNS = Decl::IDNS_Ordinary;
222    if (CPlusPlus) {
223      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
224      if (Redeclaration)
225        IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
226    }
227    if (Redeclaration)
228      IDNS |= Decl::IDNS_LocalExtern;
229    break;
230
231  case Sema::LookupOperatorName:
232    // Operator lookup is its own crazy thing;  it is not the same
233    // as (e.g.) looking up an operator name for redeclaration.
234    assert(!Redeclaration && "cannot do redeclaration operator lookup");
235    IDNS = Decl::IDNS_NonMemberOperator;
236    break;
237
238  case Sema::LookupTagName:
239    if (CPlusPlus) {
240      IDNS = Decl::IDNS_Type;
241
242      // When looking for a redeclaration of a tag name, we add:
243      // 1) TagFriend to find undeclared friend decls
244      // 2) Namespace because they can't "overload" with tag decls.
245      // 3) Tag because it includes class templates, which can't
246      //    "overload" with tag decls.
247      if (Redeclaration)
248        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
249    } else {
250      IDNS = Decl::IDNS_Tag;
251    }
252    break;
253
254  case Sema::LookupLabel:
255    IDNS = Decl::IDNS_Label;
256    break;
257
258  case Sema::LookupMemberName:
259    IDNS = Decl::IDNS_Member;
260    if (CPlusPlus)
261      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
262    break;
263
264  case Sema::LookupNestedNameSpecifierName:
265    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
266    break;
267
268  case Sema::LookupNamespaceName:
269    IDNS = Decl::IDNS_Namespace;
270    break;
271
272  case Sema::LookupUsingDeclName:
273    assert(Redeclaration && "should only be used for redecl lookup");
274    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
275           Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
276           Decl::IDNS_LocalExtern;
277    break;
278
279  case Sema::LookupObjCProtocolName:
280    IDNS = Decl::IDNS_ObjCProtocol;
281    break;
282
283  case Sema::LookupAnyName:
284    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
285      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
286      | Decl::IDNS_Type;
287    break;
288  }
289  return IDNS;
290}
291
292void LookupResult::configure() {
293  IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
294                 isForRedeclaration());
295
296  // If we're looking for one of the allocation or deallocation
297  // operators, make sure that the implicitly-declared new and delete
298  // operators can be found.
299  switch (NameInfo.getName().getCXXOverloadedOperator()) {
300  case OO_New:
301  case OO_Delete:
302  case OO_Array_New:
303  case OO_Array_Delete:
304    getSema().DeclareGlobalNewDelete();
305    break;
306
307  default:
308    break;
309  }
310
311  // Compiler builtins are always visible, regardless of where they end
312  // up being declared.
313  if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
314    if (unsigned BuiltinID = Id->getBuiltinID()) {
315      if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
316        AllowHidden = true;
317    }
318  }
319}
320
321bool LookupResult::sanity() const {
322  // This function is never called by NDEBUG builds.
323  assert(ResultKind != NotFound || Decls.size() == 0);
324  assert(ResultKind != Found || Decls.size() == 1);
325  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
326         (Decls.size() == 1 &&
327          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
328  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
329  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
330         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
331                                Ambiguity == AmbiguousBaseSubobjectTypes)));
332  assert((Paths != nullptr) == (ResultKind == Ambiguous &&
333                                (Ambiguity == AmbiguousBaseSubobjectTypes ||
334                                 Ambiguity == AmbiguousBaseSubobjects)));
335  return true;
336}
337
338// Necessary because CXXBasePaths is not complete in Sema.h
339void LookupResult::deletePaths(CXXBasePaths *Paths) {
340  delete Paths;
341}
342
343/// Get a representative context for a declaration such that two declarations
344/// will have the same context if they were found within the same scope.
345static DeclContext *getContextForScopeMatching(Decl *D) {
346  // For function-local declarations, use that function as the context. This
347  // doesn't account for scopes within the function; the caller must deal with
348  // those.
349  DeclContext *DC = D->getLexicalDeclContext();
350  if (DC->isFunctionOrMethod())
351    return DC;
352
353  // Otherwise, look at the semantic context of the declaration. The
354  // declaration must have been found there.
355  return D->getDeclContext()->getRedeclContext();
356}
357
358/// \brief Determine whether \p D is a better lookup result than \p Existing,
359/// given that they declare the same entity.
360static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
361                                    NamedDecl *D, NamedDecl *Existing) {
362  // When looking up redeclarations of a using declaration, prefer a using
363  // shadow declaration over any other declaration of the same entity.
364  if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
365      !isa<UsingShadowDecl>(Existing))
366    return true;
367
368  auto *DUnderlying = D->getUnderlyingDecl();
369  auto *EUnderlying = Existing->getUnderlyingDecl();
370
371  // If they have different underlying declarations, prefer a typedef over the
372  // original type (this happens when two type declarations denote the same
373  // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
374  // might carry additional semantic information, such as an alignment override.
375  // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
376  // declaration over a typedef.
377  if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
378    assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
379    bool HaveTag = isa<TagDecl>(EUnderlying);
380    bool WantTag = Kind == Sema::LookupTagName;
381    return HaveTag != WantTag;
382  }
383
384  // Pick the function with more default arguments.
385  // FIXME: In the presence of ambiguous default arguments, we should keep both,
386  //        so we can diagnose the ambiguity if the default argument is needed.
387  //        See C++ [over.match.best]p3.
388  if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
389    auto *EFD = cast<FunctionDecl>(EUnderlying);
390    unsigned DMin = DFD->getMinRequiredArguments();
391    unsigned EMin = EFD->getMinRequiredArguments();
392    // If D has more default arguments, it is preferred.
393    if (DMin != EMin)
394      return DMin < EMin;
395    // FIXME: When we track visibility for default function arguments, check
396    // that we pick the declaration with more visible default arguments.
397  }
398
399  // Pick the template with more default template arguments.
400  if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
401    auto *ETD = cast<TemplateDecl>(EUnderlying);
402    unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
403    unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
404    // If D has more default arguments, it is preferred. Note that default
405    // arguments (and their visibility) is monotonically increasing across the
406    // redeclaration chain, so this is a quick proxy for "is more recent".
407    if (DMin != EMin)
408      return DMin < EMin;
409    // If D has more *visible* default arguments, it is preferred. Note, an
410    // earlier default argument being visible does not imply that a later
411    // default argument is visible, so we can't just check the first one.
412    for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
413        I != N; ++I) {
414      if (!S.hasVisibleDefaultArgument(
415              ETD->getTemplateParameters()->getParam(I)) &&
416          S.hasVisibleDefaultArgument(
417              DTD->getTemplateParameters()->getParam(I)))
418        return true;
419    }
420  }
421
422  // For most kinds of declaration, it doesn't really matter which one we pick.
423  if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
424    // If the existing declaration is hidden, prefer the new one. Otherwise,
425    // keep what we've got.
426    return !S.isVisible(Existing);
427  }
428
429  // Pick the newer declaration; it might have a more precise type.
430  for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
431       Prev = Prev->getPreviousDecl())
432    if (Prev == EUnderlying)
433      return true;
434  return false;
435
436  // If the existing declaration is hidden, prefer the new one. Otherwise,
437  // keep what we've got.
438  return !S.isVisible(Existing);
439}
440
441/// Determine whether \p D can hide a tag declaration.
442static bool canHideTag(NamedDecl *D) {
443  // C++ [basic.scope.declarative]p4:
444  //   Given a set of declarations in a single declarative region [...]
445  //   exactly one declaration shall declare a class name or enumeration name
446  //   that is not a typedef name and the other declarations shall all refer to
447  //   the same variable or enumerator, or all refer to functions and function
448  //   templates; in this case the class name or enumeration name is hidden.
449  // C++ [basic.scope.hiding]p2:
450  //   A class name or enumeration name can be hidden by the name of a
451  //   variable, data member, function, or enumerator declared in the same
452  //   scope.
453  D = D->getUnderlyingDecl();
454  return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
455         isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D);
456}
457
458/// Resolves the result kind of this lookup.
459void LookupResult::resolveKind() {
460  unsigned N = Decls.size();
461
462  // Fast case: no possible ambiguity.
463  if (N == 0) {
464    assert(ResultKind == NotFound ||
465           ResultKind == NotFoundInCurrentInstantiation);
466    return;
467  }
468
469  // If there's a single decl, we need to examine it to decide what
470  // kind of lookup this is.
471  if (N == 1) {
472    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
473    if (isa<FunctionTemplateDecl>(D))
474      ResultKind = FoundOverloaded;
475    else if (isa<UnresolvedUsingValueDecl>(D))
476      ResultKind = FoundUnresolvedValue;
477    return;
478  }
479
480  // Don't do any extra resolution if we've already resolved as ambiguous.
481  if (ResultKind == Ambiguous) return;
482
483  llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
484  llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
485
486  bool Ambiguous = false;
487  bool HasTag = false, HasFunction = false;
488  bool HasFunctionTemplate = false, HasUnresolved = false;
489  NamedDecl *HasNonFunction = nullptr;
490
491  llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
492
493  unsigned UniqueTagIndex = 0;
494
495  unsigned I = 0;
496  while (I < N) {
497    NamedDecl *D = Decls[I]->getUnderlyingDecl();
498    D = cast<NamedDecl>(D->getCanonicalDecl());
499
500    // Ignore an invalid declaration unless it's the only one left.
501    if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
502      Decls[I] = Decls[--N];
503      continue;
504    }
505
506    llvm::Optional<unsigned> ExistingI;
507
508    // Redeclarations of types via typedef can occur both within a scope
509    // and, through using declarations and directives, across scopes. There is
510    // no ambiguity if they all refer to the same type, so unique based on the
511    // canonical type.
512    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
513      QualType T = getSema().Context.getTypeDeclType(TD);
514      auto UniqueResult = UniqueTypes.insert(
515          std::make_pair(getSema().Context.getCanonicalType(T), I));
516      if (!UniqueResult.second) {
517        // The type is not unique.
518        ExistingI = UniqueResult.first->second;
519      }
520    }
521
522    // For non-type declarations, check for a prior lookup result naming this
523    // canonical declaration.
524    if (!ExistingI) {
525      auto UniqueResult = Unique.insert(std::make_pair(D, I));
526      if (!UniqueResult.second) {
527        // We've seen this entity before.
528        ExistingI = UniqueResult.first->second;
529      }
530    }
531
532    if (ExistingI) {
533      // This is not a unique lookup result. Pick one of the results and
534      // discard the other.
535      if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
536                                  Decls[*ExistingI]))
537        Decls[*ExistingI] = Decls[I];
538      Decls[I] = Decls[--N];
539      continue;
540    }
541
542    // Otherwise, do some decl type analysis and then continue.
543
544    if (isa<UnresolvedUsingValueDecl>(D)) {
545      HasUnresolved = true;
546    } else if (isa<TagDecl>(D)) {
547      if (HasTag)
548        Ambiguous = true;
549      UniqueTagIndex = I;
550      HasTag = true;
551    } else if (isa<FunctionTemplateDecl>(D)) {
552      HasFunction = true;
553      HasFunctionTemplate = true;
554    } else if (isa<FunctionDecl>(D)) {
555      HasFunction = true;
556    } else {
557      if (HasNonFunction) {
558        // If we're about to create an ambiguity between two declarations that
559        // are equivalent, but one is an internal linkage declaration from one
560        // module and the other is an internal linkage declaration from another
561        // module, just skip it.
562        if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
563                                                             D)) {
564          EquivalentNonFunctions.push_back(D);
565          Decls[I] = Decls[--N];
566          continue;
567        }
568
569        Ambiguous = true;
570      }
571      HasNonFunction = D;
572    }
573    I++;
574  }
575
576  // C++ [basic.scope.hiding]p2:
577  //   A class name or enumeration name can be hidden by the name of
578  //   an object, function, or enumerator declared in the same
579  //   scope. If a class or enumeration name and an object, function,
580  //   or enumerator are declared in the same scope (in any order)
581  //   with the same name, the class or enumeration name is hidden
582  //   wherever the object, function, or enumerator name is visible.
583  // But it's still an error if there are distinct tag types found,
584  // even if they're not visible. (ref?)
585  if (N > 1 && HideTags && HasTag && !Ambiguous &&
586      (HasFunction || HasNonFunction || HasUnresolved)) {
587    NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
588    if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
589        getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
590            getContextForScopeMatching(OtherDecl)) &&
591        canHideTag(OtherDecl))
592      Decls[UniqueTagIndex] = Decls[--N];
593    else
594      Ambiguous = true;
595  }
596
597  // FIXME: This diagnostic should really be delayed until we're done with
598  // the lookup result, in case the ambiguity is resolved by the caller.
599  if (!EquivalentNonFunctions.empty() && !Ambiguous)
600    getSema().diagnoseEquivalentInternalLinkageDeclarations(
601        getNameLoc(), HasNonFunction, EquivalentNonFunctions);
602
603  Decls.set_size(N);
604
605  if (HasNonFunction && (HasFunction || HasUnresolved))
606    Ambiguous = true;
607
608  if (Ambiguous)
609    setAmbiguous(LookupResult::AmbiguousReference);
610  else if (HasUnresolved)
611    ResultKind = LookupResult::FoundUnresolvedValue;
612  else if (N > 1 || HasFunctionTemplate)
613    ResultKind = LookupResult::FoundOverloaded;
614  else
615    ResultKind = LookupResult::Found;
616}
617
618void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
619  CXXBasePaths::const_paths_iterator I, E;
620  for (I = P.begin(), E = P.end(); I != E; ++I)
621    for (DeclContext::lookup_iterator DI = I->Decls.begin(),
622         DE = I->Decls.end(); DI != DE; ++DI)
623      addDecl(*DI);
624}
625
626void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
627  Paths = new CXXBasePaths;
628  Paths->swap(P);
629  addDeclsFromBasePaths(*Paths);
630  resolveKind();
631  setAmbiguous(AmbiguousBaseSubobjects);
632}
633
634void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
635  Paths = new CXXBasePaths;
636  Paths->swap(P);
637  addDeclsFromBasePaths(*Paths);
638  resolveKind();
639  setAmbiguous(AmbiguousBaseSubobjectTypes);
640}
641
642void LookupResult::print(raw_ostream &Out) {
643  Out << Decls.size() << " result(s)";
644  if (isAmbiguous()) Out << ", ambiguous";
645  if (Paths) Out << ", base paths present";
646
647  for (iterator I = begin(), E = end(); I != E; ++I) {
648    Out << "\n";
649    (*I)->print(Out, 2);
650  }
651}
652
653/// \brief Lookup a builtin function, when name lookup would otherwise
654/// fail.
655static bool LookupBuiltin(Sema &S, LookupResult &R) {
656  Sema::LookupNameKind NameKind = R.getLookupKind();
657
658  // If we didn't find a use of this identifier, and if the identifier
659  // corresponds to a compiler builtin, create the decl object for the builtin
660  // now, injecting it into translation unit scope, and return it.
661  if (NameKind == Sema::LookupOrdinaryName ||
662      NameKind == Sema::LookupRedeclarationWithLinkage) {
663    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
664    if (II) {
665      if (S.getLangOpts().CPlusPlus11 && S.getLangOpts().GNUMode &&
666          II == S.getFloat128Identifier()) {
667        // libstdc++4.7's type_traits expects type __float128 to exist, so
668        // insert a dummy type to make that header build in gnu++11 mode.
669        R.addDecl(S.getASTContext().getFloat128StubType());
670        return true;
671      }
672      if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName &&
673          II == S.getASTContext().getMakeIntegerSeqName()) {
674        R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
675        return true;
676      }
677
678      // If this is a builtin on this (or all) targets, create the decl.
679      if (unsigned BuiltinID = II->getBuiltinID()) {
680        // In C++, we don't have any predefined library functions like
681        // 'malloc'. Instead, we'll just error.
682        if (S.getLangOpts().CPlusPlus &&
683            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
684          return false;
685
686        if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
687                                                 BuiltinID, S.TUScope,
688                                                 R.isForRedeclaration(),
689                                                 R.getNameLoc())) {
690          R.addDecl(D);
691          return true;
692        }
693      }
694    }
695  }
696
697  return false;
698}
699
700/// \brief Determine whether we can declare a special member function within
701/// the class at this point.
702static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
703  // We need to have a definition for the class.
704  if (!Class->getDefinition() || Class->isDependentContext())
705    return false;
706
707  // We can't be in the middle of defining the class.
708  return !Class->isBeingDefined();
709}
710
711void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
712  if (!CanDeclareSpecialMemberFunction(Class))
713    return;
714
715  // If the default constructor has not yet been declared, do so now.
716  if (Class->needsImplicitDefaultConstructor())
717    DeclareImplicitDefaultConstructor(Class);
718
719  // If the copy constructor has not yet been declared, do so now.
720  if (Class->needsImplicitCopyConstructor())
721    DeclareImplicitCopyConstructor(Class);
722
723  // If the copy assignment operator has not yet been declared, do so now.
724  if (Class->needsImplicitCopyAssignment())
725    DeclareImplicitCopyAssignment(Class);
726
727  if (getLangOpts().CPlusPlus11) {
728    // If the move constructor has not yet been declared, do so now.
729    if (Class->needsImplicitMoveConstructor())
730      DeclareImplicitMoveConstructor(Class); // might not actually do it
731
732    // If the move assignment operator has not yet been declared, do so now.
733    if (Class->needsImplicitMoveAssignment())
734      DeclareImplicitMoveAssignment(Class); // might not actually do it
735  }
736
737  // If the destructor has not yet been declared, do so now.
738  if (Class->needsImplicitDestructor())
739    DeclareImplicitDestructor(Class);
740}
741
742/// \brief Determine whether this is the name of an implicitly-declared
743/// special member function.
744static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
745  switch (Name.getNameKind()) {
746  case DeclarationName::CXXConstructorName:
747  case DeclarationName::CXXDestructorName:
748    return true;
749
750  case DeclarationName::CXXOperatorName:
751    return Name.getCXXOverloadedOperator() == OO_Equal;
752
753  default:
754    break;
755  }
756
757  return false;
758}
759
760/// \brief If there are any implicit member functions with the given name
761/// that need to be declared in the given declaration context, do so.
762static void DeclareImplicitMemberFunctionsWithName(Sema &S,
763                                                   DeclarationName Name,
764                                                   const DeclContext *DC) {
765  if (!DC)
766    return;
767
768  switch (Name.getNameKind()) {
769  case DeclarationName::CXXConstructorName:
770    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
771      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
772        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
773        if (Record->needsImplicitDefaultConstructor())
774          S.DeclareImplicitDefaultConstructor(Class);
775        if (Record->needsImplicitCopyConstructor())
776          S.DeclareImplicitCopyConstructor(Class);
777        if (S.getLangOpts().CPlusPlus11 &&
778            Record->needsImplicitMoveConstructor())
779          S.DeclareImplicitMoveConstructor(Class);
780      }
781    break;
782
783  case DeclarationName::CXXDestructorName:
784    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
785      if (Record->getDefinition() && Record->needsImplicitDestructor() &&
786          CanDeclareSpecialMemberFunction(Record))
787        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
788    break;
789
790  case DeclarationName::CXXOperatorName:
791    if (Name.getCXXOverloadedOperator() != OO_Equal)
792      break;
793
794    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
795      if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
796        CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
797        if (Record->needsImplicitCopyAssignment())
798          S.DeclareImplicitCopyAssignment(Class);
799        if (S.getLangOpts().CPlusPlus11 &&
800            Record->needsImplicitMoveAssignment())
801          S.DeclareImplicitMoveAssignment(Class);
802      }
803    }
804    break;
805
806  default:
807    break;
808  }
809}
810
811// Adds all qualifying matches for a name within a decl context to the
812// given lookup result.  Returns true if any matches were found.
813static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
814  bool Found = false;
815
816  // Lazily declare C++ special member functions.
817  if (S.getLangOpts().CPlusPlus)
818    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
819
820  // Perform lookup into this declaration context.
821  DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
822  for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E;
823       ++I) {
824    NamedDecl *D = *I;
825    if ((D = R.getAcceptableDecl(D))) {
826      R.addDecl(D);
827      Found = true;
828    }
829  }
830
831  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
832    return true;
833
834  if (R.getLookupName().getNameKind()
835        != DeclarationName::CXXConversionFunctionName ||
836      R.getLookupName().getCXXNameType()->isDependentType() ||
837      !isa<CXXRecordDecl>(DC))
838    return Found;
839
840  // C++ [temp.mem]p6:
841  //   A specialization of a conversion function template is not found by
842  //   name lookup. Instead, any conversion function templates visible in the
843  //   context of the use are considered. [...]
844  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
845  if (!Record->isCompleteDefinition())
846    return Found;
847
848  for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
849         UEnd = Record->conversion_end(); U != UEnd; ++U) {
850    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
851    if (!ConvTemplate)
852      continue;
853
854    // When we're performing lookup for the purposes of redeclaration, just
855    // add the conversion function template. When we deduce template
856    // arguments for specializations, we'll end up unifying the return
857    // type of the new declaration with the type of the function template.
858    if (R.isForRedeclaration()) {
859      R.addDecl(ConvTemplate);
860      Found = true;
861      continue;
862    }
863
864    // C++ [temp.mem]p6:
865    //   [...] For each such operator, if argument deduction succeeds
866    //   (14.9.2.3), the resulting specialization is used as if found by
867    //   name lookup.
868    //
869    // When referencing a conversion function for any purpose other than
870    // a redeclaration (such that we'll be building an expression with the
871    // result), perform template argument deduction and place the
872    // specialization into the result set. We do this to avoid forcing all
873    // callers to perform special deduction for conversion functions.
874    TemplateDeductionInfo Info(R.getNameLoc());
875    FunctionDecl *Specialization = nullptr;
876
877    const FunctionProtoType *ConvProto
878      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
879    assert(ConvProto && "Nonsensical conversion function template type");
880
881    // Compute the type of the function that we would expect the conversion
882    // function to have, if it were to match the name given.
883    // FIXME: Calling convention!
884    FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
885    EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
886    EPI.ExceptionSpec = EST_None;
887    QualType ExpectedType
888      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
889                                            None, EPI);
890
891    // Perform template argument deduction against the type that we would
892    // expect the function to have.
893    if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
894                                            Specialization, Info)
895          == Sema::TDK_Success) {
896      R.addDecl(Specialization);
897      Found = true;
898    }
899  }
900
901  return Found;
902}
903
904// Performs C++ unqualified lookup into the given file context.
905static bool
906CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
907                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
908
909  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
910
911  // Perform direct name lookup into the LookupCtx.
912  bool Found = LookupDirect(S, R, NS);
913
914  // Perform direct name lookup into the namespaces nominated by the
915  // using directives whose common ancestor is this namespace.
916  for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
917    if (LookupDirect(S, R, UUE.getNominatedNamespace()))
918      Found = true;
919
920  R.resolveKind();
921
922  return Found;
923}
924
925static bool isNamespaceOrTranslationUnitScope(Scope *S) {
926  if (DeclContext *Ctx = S->getEntity())
927    return Ctx->isFileContext();
928  return false;
929}
930
931// Find the next outer declaration context from this scope. This
932// routine actually returns the semantic outer context, which may
933// differ from the lexical context (encoded directly in the Scope
934// stack) when we are parsing a member of a class template. In this
935// case, the second element of the pair will be true, to indicate that
936// name lookup should continue searching in this semantic context when
937// it leaves the current template parameter scope.
938static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
939  DeclContext *DC = S->getEntity();
940  DeclContext *Lexical = nullptr;
941  for (Scope *OuterS = S->getParent(); OuterS;
942       OuterS = OuterS->getParent()) {
943    if (OuterS->getEntity()) {
944      Lexical = OuterS->getEntity();
945      break;
946    }
947  }
948
949  // C++ [temp.local]p8:
950  //   In the definition of a member of a class template that appears
951  //   outside of the namespace containing the class template
952  //   definition, the name of a template-parameter hides the name of
953  //   a member of this namespace.
954  //
955  // Example:
956  //
957  //   namespace N {
958  //     class C { };
959  //
960  //     template<class T> class B {
961  //       void f(T);
962  //     };
963  //   }
964  //
965  //   template<class C> void N::B<C>::f(C) {
966  //     C b;  // C is the template parameter, not N::C
967  //   }
968  //
969  // In this example, the lexical context we return is the
970  // TranslationUnit, while the semantic context is the namespace N.
971  if (!Lexical || !DC || !S->getParent() ||
972      !S->getParent()->isTemplateParamScope())
973    return std::make_pair(Lexical, false);
974
975  // Find the outermost template parameter scope.
976  // For the example, this is the scope for the template parameters of
977  // template<class C>.
978  Scope *OutermostTemplateScope = S->getParent();
979  while (OutermostTemplateScope->getParent() &&
980         OutermostTemplateScope->getParent()->isTemplateParamScope())
981    OutermostTemplateScope = OutermostTemplateScope->getParent();
982
983  // Find the namespace context in which the original scope occurs. In
984  // the example, this is namespace N.
985  DeclContext *Semantic = DC;
986  while (!Semantic->isFileContext())
987    Semantic = Semantic->getParent();
988
989  // Find the declaration context just outside of the template
990  // parameter scope. This is the context in which the template is
991  // being lexically declaration (a namespace context). In the
992  // example, this is the global scope.
993  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
994      Lexical->Encloses(Semantic))
995    return std::make_pair(Semantic, true);
996
997  return std::make_pair(Lexical, false);
998}
999
1000namespace {
1001/// An RAII object to specify that we want to find block scope extern
1002/// declarations.
1003struct FindLocalExternScope {
1004  FindLocalExternScope(LookupResult &R)
1005      : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1006                                 Decl::IDNS_LocalExtern) {
1007    R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
1008  }
1009  void restore() {
1010    R.setFindLocalExtern(OldFindLocalExtern);
1011  }
1012  ~FindLocalExternScope() {
1013    restore();
1014  }
1015  LookupResult &R;
1016  bool OldFindLocalExtern;
1017};
1018} // end anonymous namespace
1019
1020bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1021  assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1022
1023  DeclarationName Name = R.getLookupName();
1024  Sema::LookupNameKind NameKind = R.getLookupKind();
1025
1026  // If this is the name of an implicitly-declared special member function,
1027  // go through the scope stack to implicitly declare
1028  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1029    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1030      if (DeclContext *DC = PreS->getEntity())
1031        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
1032  }
1033
1034  // Implicitly declare member functions with the name we're looking for, if in
1035  // fact we are in a scope where it matters.
1036
1037  Scope *Initial = S;
1038  IdentifierResolver::iterator
1039    I = IdResolver.begin(Name),
1040    IEnd = IdResolver.end();
1041
1042  // First we lookup local scope.
1043  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1044  // ...During unqualified name lookup (3.4.1), the names appear as if
1045  // they were declared in the nearest enclosing namespace which contains
1046  // both the using-directive and the nominated namespace.
1047  // [Note: in this context, "contains" means "contains directly or
1048  // indirectly".
1049  //
1050  // For example:
1051  // namespace A { int i; }
1052  // void foo() {
1053  //   int i;
1054  //   {
1055  //     using namespace A;
1056  //     ++i; // finds local 'i', A::i appears at global scope
1057  //   }
1058  // }
1059  //
1060  UnqualUsingDirectiveSet UDirs;
1061  bool VisitedUsingDirectives = false;
1062  bool LeftStartingScope = false;
1063  DeclContext *OutsideOfTemplateParamDC = nullptr;
1064
1065  // When performing a scope lookup, we want to find local extern decls.
1066  FindLocalExternScope FindLocals(R);
1067
1068  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1069    DeclContext *Ctx = S->getEntity();
1070
1071    // Check whether the IdResolver has anything in this scope.
1072    bool Found = false;
1073    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1074      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1075        if (NameKind == LookupRedeclarationWithLinkage) {
1076          // Determine whether this (or a previous) declaration is
1077          // out-of-scope.
1078          if (!LeftStartingScope && !Initial->isDeclScope(*I))
1079            LeftStartingScope = true;
1080
1081          // If we found something outside of our starting scope that
1082          // does not have linkage, skip it. If it's a template parameter,
1083          // we still find it, so we can diagnose the invalid redeclaration.
1084          if (LeftStartingScope && !((*I)->hasLinkage()) &&
1085              !(*I)->isTemplateParameter()) {
1086            R.setShadowed();
1087            continue;
1088          }
1089        }
1090
1091        Found = true;
1092        R.addDecl(ND);
1093      }
1094    }
1095    if (Found) {
1096      R.resolveKind();
1097      if (S->isClassScope())
1098        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1099          R.setNamingClass(Record);
1100      return true;
1101    }
1102
1103    if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1104      // C++11 [class.friend]p11:
1105      //   If a friend declaration appears in a local class and the name
1106      //   specified is an unqualified name, a prior declaration is
1107      //   looked up without considering scopes that are outside the
1108      //   innermost enclosing non-class scope.
1109      return false;
1110    }
1111
1112    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1113        S->getParent() && !S->getParent()->isTemplateParamScope()) {
1114      // We've just searched the last template parameter scope and
1115      // found nothing, so look into the contexts between the
1116      // lexical and semantic declaration contexts returned by
1117      // findOuterContext(). This implements the name lookup behavior
1118      // of C++ [temp.local]p8.
1119      Ctx = OutsideOfTemplateParamDC;
1120      OutsideOfTemplateParamDC = nullptr;
1121    }
1122
1123    if (Ctx) {
1124      DeclContext *OuterCtx;
1125      bool SearchAfterTemplateScope;
1126      std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1127      if (SearchAfterTemplateScope)
1128        OutsideOfTemplateParamDC = OuterCtx;
1129
1130      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1131        // We do not directly look into transparent contexts, since
1132        // those entities will be found in the nearest enclosing
1133        // non-transparent context.
1134        if (Ctx->isTransparentContext())
1135          continue;
1136
1137        // We do not look directly into function or method contexts,
1138        // since all of the local variables and parameters of the
1139        // function/method are present within the Scope.
1140        if (Ctx->isFunctionOrMethod()) {
1141          // If we have an Objective-C instance method, look for ivars
1142          // in the corresponding interface.
1143          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1144            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1145              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1146                ObjCInterfaceDecl *ClassDeclared;
1147                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1148                                                 Name.getAsIdentifierInfo(),
1149                                                             ClassDeclared)) {
1150                  if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1151                    R.addDecl(ND);
1152                    R.resolveKind();
1153                    return true;
1154                  }
1155                }
1156              }
1157          }
1158
1159          continue;
1160        }
1161
1162        // If this is a file context, we need to perform unqualified name
1163        // lookup considering using directives.
1164        if (Ctx->isFileContext()) {
1165          // If we haven't handled using directives yet, do so now.
1166          if (!VisitedUsingDirectives) {
1167            // Add using directives from this context up to the top level.
1168            for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1169              if (UCtx->isTransparentContext())
1170                continue;
1171
1172              UDirs.visit(UCtx, UCtx);
1173            }
1174
1175            // Find the innermost file scope, so we can add using directives
1176            // from local scopes.
1177            Scope *InnermostFileScope = S;
1178            while (InnermostFileScope &&
1179                   !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1180              InnermostFileScope = InnermostFileScope->getParent();
1181            UDirs.visitScopeChain(Initial, InnermostFileScope);
1182
1183            UDirs.done();
1184
1185            VisitedUsingDirectives = true;
1186          }
1187
1188          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1189            R.resolveKind();
1190            return true;
1191          }
1192
1193          continue;
1194        }
1195
1196        // Perform qualified name lookup into this context.
1197        // FIXME: In some cases, we know that every name that could be found by
1198        // this qualified name lookup will also be on the identifier chain. For
1199        // example, inside a class without any base classes, we never need to
1200        // perform qualified lookup because all of the members are on top of the
1201        // identifier chain.
1202        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1203          return true;
1204      }
1205    }
1206  }
1207
1208  // Stop if we ran out of scopes.
1209  // FIXME:  This really, really shouldn't be happening.
1210  if (!S) return false;
1211
1212  // If we are looking for members, no need to look into global/namespace scope.
1213  if (NameKind == LookupMemberName)
1214    return false;
1215
1216  // Collect UsingDirectiveDecls in all scopes, and recursively all
1217  // nominated namespaces by those using-directives.
1218  //
1219  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1220  // don't build it for each lookup!
1221  if (!VisitedUsingDirectives) {
1222    UDirs.visitScopeChain(Initial, S);
1223    UDirs.done();
1224  }
1225
1226  // If we're not performing redeclaration lookup, do not look for local
1227  // extern declarations outside of a function scope.
1228  if (!R.isForRedeclaration())
1229    FindLocals.restore();
1230
1231  // Lookup namespace scope, and global scope.
1232  // Unqualified name lookup in C++ requires looking into scopes
1233  // that aren't strictly lexical, and therefore we walk through the
1234  // context as well as walking through the scopes.
1235  for (; S; S = S->getParent()) {
1236    // Check whether the IdResolver has anything in this scope.
1237    bool Found = false;
1238    for (; I != IEnd && S->isDeclScope(*I); ++I) {
1239      if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1240        // We found something.  Look for anything else in our scope
1241        // with this same name and in an acceptable identifier
1242        // namespace, so that we can construct an overload set if we
1243        // need to.
1244        Found = true;
1245        R.addDecl(ND);
1246      }
1247    }
1248
1249    if (Found && S->isTemplateParamScope()) {
1250      R.resolveKind();
1251      return true;
1252    }
1253
1254    DeclContext *Ctx = S->getEntity();
1255    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1256        S->getParent() && !S->getParent()->isTemplateParamScope()) {
1257      // We've just searched the last template parameter scope and
1258      // found nothing, so look into the contexts between the
1259      // lexical and semantic declaration contexts returned by
1260      // findOuterContext(). This implements the name lookup behavior
1261      // of C++ [temp.local]p8.
1262      Ctx = OutsideOfTemplateParamDC;
1263      OutsideOfTemplateParamDC = nullptr;
1264    }
1265
1266    if (Ctx) {
1267      DeclContext *OuterCtx;
1268      bool SearchAfterTemplateScope;
1269      std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1270      if (SearchAfterTemplateScope)
1271        OutsideOfTemplateParamDC = OuterCtx;
1272
1273      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1274        // We do not directly look into transparent contexts, since
1275        // those entities will be found in the nearest enclosing
1276        // non-transparent context.
1277        if (Ctx->isTransparentContext())
1278          continue;
1279
1280        // If we have a context, and it's not a context stashed in the
1281        // template parameter scope for an out-of-line definition, also
1282        // look into that context.
1283        if (!(Found && S && S->isTemplateParamScope())) {
1284          assert(Ctx->isFileContext() &&
1285              "We should have been looking only at file context here already.");
1286
1287          // Look into context considering using-directives.
1288          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1289            Found = true;
1290        }
1291
1292        if (Found) {
1293          R.resolveKind();
1294          return true;
1295        }
1296
1297        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1298          return false;
1299      }
1300    }
1301
1302    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1303      return false;
1304  }
1305
1306  return !R.empty();
1307}
1308
1309/// \brief Find the declaration that a class temploid member specialization was
1310/// instantiated from, or the member itself if it is an explicit specialization.
1311static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
1312  return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
1313}
1314
1315Module *Sema::getOwningModule(Decl *Entity) {
1316  // If it's imported, grab its owning module.
1317  Module *M = Entity->getImportedOwningModule();
1318  if (M || !isa<NamedDecl>(Entity) || !cast<NamedDecl>(Entity)->isHidden())
1319    return M;
1320  assert(!Entity->isFromASTFile() &&
1321         "hidden entity from AST file has no owning module");
1322
1323  if (!getLangOpts().ModulesLocalVisibility) {
1324    // If we're not tracking visibility locally, the only way a declaration
1325    // can be hidden and local is if it's hidden because it's parent is (for
1326    // instance, maybe this is a lazily-declared special member of an imported
1327    // class).
1328    auto *Parent = cast<NamedDecl>(Entity->getDeclContext());
1329    assert(Parent->isHidden() && "unexpectedly hidden decl");
1330    return getOwningModule(Parent);
1331  }
1332
1333  // It's local and hidden; grab or compute its owning module.
1334  M = Entity->getLocalOwningModule();
1335  if (M)
1336    return M;
1337
1338  if (auto *Containing =
1339          PP.getModuleContainingLocation(Entity->getLocation())) {
1340    M = Containing;
1341  } else if (Entity->isInvalidDecl() || Entity->getLocation().isInvalid()) {
1342    // Don't bother tracking visibility for invalid declarations with broken
1343    // locations.
1344    cast<NamedDecl>(Entity)->setHidden(false);
1345  } else {
1346    // We need to assign a module to an entity that exists outside of any
1347    // module, so that we can hide it from modules that we textually enter.
1348    // Invent a fake module for all such entities.
1349    if (!CachedFakeTopLevelModule) {
1350      CachedFakeTopLevelModule =
1351          PP.getHeaderSearchInfo().getModuleMap().findOrCreateModule(
1352              "<top-level>", nullptr, false, false).first;
1353
1354      auto &SrcMgr = PP.getSourceManager();
1355      SourceLocation StartLoc =
1356          SrcMgr.getLocForStartOfFile(SrcMgr.getMainFileID());
1357      auto &TopLevel =
1358          VisibleModulesStack.empty() ? VisibleModules : VisibleModulesStack[0];
1359      TopLevel.setVisible(CachedFakeTopLevelModule, StartLoc);
1360    }
1361
1362    M = CachedFakeTopLevelModule;
1363  }
1364
1365  if (M)
1366    Entity->setLocalOwningModule(M);
1367  return M;
1368}
1369
1370void Sema::makeMergedDefinitionVisible(NamedDecl *ND, SourceLocation Loc) {
1371  if (auto *M = PP.getModuleContainingLocation(Loc))
1372    Context.mergeDefinitionIntoModule(ND, M);
1373  else
1374    // We're not building a module; just make the definition visible.
1375    ND->setHidden(false);
1376
1377  // If ND is a template declaration, make the template parameters
1378  // visible too. They're not (necessarily) within a mergeable DeclContext.
1379  if (auto *TD = dyn_cast<TemplateDecl>(ND))
1380    for (auto *Param : *TD->getTemplateParameters())
1381      makeMergedDefinitionVisible(Param, Loc);
1382}
1383
1384/// \brief Find the module in which the given declaration was defined.
1385static Module *getDefiningModule(Sema &S, Decl *Entity) {
1386  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1387    // If this function was instantiated from a template, the defining module is
1388    // the module containing the pattern.
1389    if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1390      Entity = Pattern;
1391  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1392    if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1393      Entity = Pattern;
1394  } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1395    if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
1396      Entity = getInstantiatedFrom(ED, MSInfo);
1397  } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1398    // FIXME: Map from variable template specializations back to the template.
1399    if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
1400      Entity = getInstantiatedFrom(VD, MSInfo);
1401  }
1402
1403  // Walk up to the containing context. That might also have been instantiated
1404  // from a template.
1405  DeclContext *Context = Entity->getDeclContext();
1406  if (Context->isFileContext())
1407    return S.getOwningModule(Entity);
1408  return getDefiningModule(S, cast<Decl>(Context));
1409}
1410
1411llvm::DenseSet<Module*> &Sema::getLookupModules() {
1412  unsigned N = ActiveTemplateInstantiations.size();
1413  for (unsigned I = ActiveTemplateInstantiationLookupModules.size();
1414       I != N; ++I) {
1415    Module *M =
1416        getDefiningModule(*this, ActiveTemplateInstantiations[I].Entity);
1417    if (M && !LookupModulesCache.insert(M).second)
1418      M = nullptr;
1419    ActiveTemplateInstantiationLookupModules.push_back(M);
1420  }
1421  return LookupModulesCache;
1422}
1423
1424bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1425  for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1426    if (isModuleVisible(Merged))
1427      return true;
1428  return false;
1429}
1430
1431template<typename ParmDecl>
1432static bool
1433hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1434                          llvm::SmallVectorImpl<Module *> *Modules) {
1435  if (!D->hasDefaultArgument())
1436    return false;
1437
1438  while (D) {
1439    auto &DefaultArg = D->getDefaultArgStorage();
1440    if (!DefaultArg.isInherited() && S.isVisible(D))
1441      return true;
1442
1443    if (!DefaultArg.isInherited() && Modules) {
1444      auto *NonConstD = const_cast<ParmDecl*>(D);
1445      Modules->push_back(S.getOwningModule(NonConstD));
1446      const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
1447      Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1448    }
1449
1450    // If there was a previous default argument, maybe its parameter is visible.
1451    D = DefaultArg.getInheritedFrom();
1452  }
1453  return false;
1454}
1455
1456bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1457                                     llvm::SmallVectorImpl<Module *> *Modules) {
1458  if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1459    return ::hasVisibleDefaultArgument(*this, P, Modules);
1460  if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1461    return ::hasVisibleDefaultArgument(*this, P, Modules);
1462  return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1463                                     Modules);
1464}
1465
1466/// \brief Determine whether a declaration is visible to name lookup.
1467///
1468/// This routine determines whether the declaration D is visible in the current
1469/// lookup context, taking into account the current template instantiation
1470/// stack. During template instantiation, a declaration is visible if it is
1471/// visible from a module containing any entity on the template instantiation
1472/// path (by instantiating a template, you allow it to see the declarations that
1473/// your module can see, including those later on in your module).
1474bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1475  assert(D->isHidden() && "should not call this: not in slow case");
1476  Module *DeclModule = nullptr;
1477
1478  if (SemaRef.getLangOpts().ModulesLocalVisibility) {
1479    DeclModule = SemaRef.getOwningModule(D);
1480    if (!DeclModule) {
1481      // getOwningModule() may have decided the declaration should not be hidden.
1482      assert(!D->isHidden() && "hidden decl not from a module");
1483      return true;
1484    }
1485
1486    // If the owning module is visible, and the decl is not module private,
1487    // then the decl is visible too. (Module private is ignored within the same
1488    // top-level module.)
1489    if ((!D->isFromASTFile() || !D->isModulePrivate()) &&
1490        (SemaRef.isModuleVisible(DeclModule) ||
1491         SemaRef.hasVisibleMergedDefinition(D)))
1492      return true;
1493  }
1494
1495  // If this declaration is not at namespace scope nor module-private,
1496  // then it is visible if its lexical parent has a visible definition.
1497  DeclContext *DC = D->getLexicalDeclContext();
1498  if (!D->isModulePrivate() &&
1499      DC && !DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) {
1500    // For a parameter, check whether our current template declaration's
1501    // lexical context is visible, not whether there's some other visible
1502    // definition of it, because parameters aren't "within" the definition.
1503    if ((D->isTemplateParameter() || isa<ParmVarDecl>(D))
1504            ? isVisible(SemaRef, cast<NamedDecl>(DC))
1505            : SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC))) {
1506      if (SemaRef.ActiveTemplateInstantiations.empty() &&
1507          // FIXME: Do something better in this case.
1508          !SemaRef.getLangOpts().ModulesLocalVisibility) {
1509        // Cache the fact that this declaration is implicitly visible because
1510        // its parent has a visible definition.
1511        D->setHidden(false);
1512      }
1513      return true;
1514    }
1515    return false;
1516  }
1517
1518  // Find the extra places where we need to look.
1519  llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1520  if (LookupModules.empty())
1521    return false;
1522
1523  if (!DeclModule) {
1524    DeclModule = SemaRef.getOwningModule(D);
1525    assert(DeclModule && "hidden decl not from a module");
1526  }
1527
1528  // If our lookup set contains the decl's module, it's visible.
1529  if (LookupModules.count(DeclModule))
1530    return true;
1531
1532  // If the declaration isn't exported, it's not visible in any other module.
1533  if (D->isModulePrivate())
1534    return false;
1535
1536  // Check whether DeclModule is transitively exported to an import of
1537  // the lookup set.
1538  return std::any_of(LookupModules.begin(), LookupModules.end(),
1539                     [&](Module *M) { return M->isModuleVisible(DeclModule); });
1540}
1541
1542bool Sema::isVisibleSlow(const NamedDecl *D) {
1543  return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1544}
1545
1546bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1547  for (auto *D : R) {
1548    if (isVisible(D))
1549      return true;
1550  }
1551  return New->isExternallyVisible();
1552}
1553
1554/// \brief Retrieve the visible declaration corresponding to D, if any.
1555///
1556/// This routine determines whether the declaration D is visible in the current
1557/// module, with the current imports. If not, it checks whether any
1558/// redeclaration of D is visible, and if so, returns that declaration.
1559///
1560/// \returns D, or a visible previous declaration of D, whichever is more recent
1561/// and visible. If no declaration of D is visible, returns null.
1562static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
1563  assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
1564
1565  for (auto RD : D->redecls()) {
1566    if (auto ND = dyn_cast<NamedDecl>(RD)) {
1567      // FIXME: This is wrong in the case where the previous declaration is not
1568      // visible in the same scope as D. This needs to be done much more
1569      // carefully.
1570      if (LookupResult::isVisible(SemaRef, ND))
1571        return ND;
1572    }
1573  }
1574
1575  return nullptr;
1576}
1577
1578NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1579  return findAcceptableDecl(getSema(), D);
1580}
1581
1582/// @brief Perform unqualified name lookup starting from a given
1583/// scope.
1584///
1585/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1586/// used to find names within the current scope. For example, 'x' in
1587/// @code
1588/// int x;
1589/// int f() {
1590///   return x; // unqualified name look finds 'x' in the global scope
1591/// }
1592/// @endcode
1593///
1594/// Different lookup criteria can find different names. For example, a
1595/// particular scope can have both a struct and a function of the same
1596/// name, and each can be found by certain lookup criteria. For more
1597/// information about lookup criteria, see the documentation for the
1598/// class LookupCriteria.
1599///
1600/// @param S        The scope from which unqualified name lookup will
1601/// begin. If the lookup criteria permits, name lookup may also search
1602/// in the parent scopes.
1603///
1604/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1605/// look up and the lookup kind), and is updated with the results of lookup
1606/// including zero or more declarations and possibly additional information
1607/// used to diagnose ambiguities.
1608///
1609/// @returns \c true if lookup succeeded and false otherwise.
1610bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1611  DeclarationName Name = R.getLookupName();
1612  if (!Name) return false;
1613
1614  LookupNameKind NameKind = R.getLookupKind();
1615
1616  if (!getLangOpts().CPlusPlus) {
1617    // Unqualified name lookup in C/Objective-C is purely lexical, so
1618    // search in the declarations attached to the name.
1619    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1620      // Find the nearest non-transparent declaration scope.
1621      while (!(S->getFlags() & Scope::DeclScope) ||
1622             (S->getEntity() && S->getEntity()->isTransparentContext()))
1623        S = S->getParent();
1624    }
1625
1626    // When performing a scope lookup, we want to find local extern decls.
1627    FindLocalExternScope FindLocals(R);
1628
1629    // Scan up the scope chain looking for a decl that matches this
1630    // identifier that is in the appropriate namespace.  This search
1631    // should not take long, as shadowing of names is uncommon, and
1632    // deep shadowing is extremely uncommon.
1633    bool LeftStartingScope = false;
1634
1635    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1636                                   IEnd = IdResolver.end();
1637         I != IEnd; ++I)
1638      if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1639        if (NameKind == LookupRedeclarationWithLinkage) {
1640          // Determine whether this (or a previous) declaration is
1641          // out-of-scope.
1642          if (!LeftStartingScope && !S->isDeclScope(*I))
1643            LeftStartingScope = true;
1644
1645          // If we found something outside of our starting scope that
1646          // does not have linkage, skip it.
1647          if (LeftStartingScope && !((*I)->hasLinkage())) {
1648            R.setShadowed();
1649            continue;
1650          }
1651        }
1652        else if (NameKind == LookupObjCImplicitSelfParam &&
1653                 !isa<ImplicitParamDecl>(*I))
1654          continue;
1655
1656        R.addDecl(D);
1657
1658        // Check whether there are any other declarations with the same name
1659        // and in the same scope.
1660        if (I != IEnd) {
1661          // Find the scope in which this declaration was declared (if it
1662          // actually exists in a Scope).
1663          while (S && !S->isDeclScope(D))
1664            S = S->getParent();
1665
1666          // If the scope containing the declaration is the translation unit,
1667          // then we'll need to perform our checks based on the matching
1668          // DeclContexts rather than matching scopes.
1669          if (S && isNamespaceOrTranslationUnitScope(S))
1670            S = nullptr;
1671
1672          // Compute the DeclContext, if we need it.
1673          DeclContext *DC = nullptr;
1674          if (!S)
1675            DC = (*I)->getDeclContext()->getRedeclContext();
1676
1677          IdentifierResolver::iterator LastI = I;
1678          for (++LastI; LastI != IEnd; ++LastI) {
1679            if (S) {
1680              // Match based on scope.
1681              if (!S->isDeclScope(*LastI))
1682                break;
1683            } else {
1684              // Match based on DeclContext.
1685              DeclContext *LastDC
1686                = (*LastI)->getDeclContext()->getRedeclContext();
1687              if (!LastDC->Equals(DC))
1688                break;
1689            }
1690
1691            // If the declaration is in the right namespace and visible, add it.
1692            if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1693              R.addDecl(LastD);
1694          }
1695
1696          R.resolveKind();
1697        }
1698
1699        return true;
1700      }
1701  } else {
1702    // Perform C++ unqualified name lookup.
1703    if (CppLookupName(R, S))
1704      return true;
1705  }
1706
1707  // If we didn't find a use of this identifier, and if the identifier
1708  // corresponds to a compiler builtin, create the decl object for the builtin
1709  // now, injecting it into translation unit scope, and return it.
1710  if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1711    return true;
1712
1713  // If we didn't find a use of this identifier, the ExternalSource
1714  // may be able to handle the situation.
1715  // Note: some lookup failures are expected!
1716  // See e.g. R.isForRedeclaration().
1717  return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1718}
1719
1720/// @brief Perform qualified name lookup in the namespaces nominated by
1721/// using directives by the given context.
1722///
1723/// C++98 [namespace.qual]p2:
1724///   Given X::m (where X is a user-declared namespace), or given \::m
1725///   (where X is the global namespace), let S be the set of all
1726///   declarations of m in X and in the transitive closure of all
1727///   namespaces nominated by using-directives in X and its used
1728///   namespaces, except that using-directives are ignored in any
1729///   namespace, including X, directly containing one or more
1730///   declarations of m. No namespace is searched more than once in
1731///   the lookup of a name. If S is the empty set, the program is
1732///   ill-formed. Otherwise, if S has exactly one member, or if the
1733///   context of the reference is a using-declaration
1734///   (namespace.udecl), S is the required set of declarations of
1735///   m. Otherwise if the use of m is not one that allows a unique
1736///   declaration to be chosen from S, the program is ill-formed.
1737///
1738/// C++98 [namespace.qual]p5:
1739///   During the lookup of a qualified namespace member name, if the
1740///   lookup finds more than one declaration of the member, and if one
1741///   declaration introduces a class name or enumeration name and the
1742///   other declarations either introduce the same object, the same
1743///   enumerator or a set of functions, the non-type name hides the
1744///   class or enumeration name if and only if the declarations are
1745///   from the same namespace; otherwise (the declarations are from
1746///   different namespaces), the program is ill-formed.
1747static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1748                                                 DeclContext *StartDC) {
1749  assert(StartDC->isFileContext() && "start context is not a file context");
1750
1751  DeclContext::udir_range UsingDirectives = StartDC->using_directives();
1752  if (UsingDirectives.begin() == UsingDirectives.end()) return false;
1753
1754  // We have at least added all these contexts to the queue.
1755  llvm::SmallPtrSet<DeclContext*, 8> Visited;
1756  Visited.insert(StartDC);
1757
1758  // We have not yet looked into these namespaces, much less added
1759  // their "using-children" to the queue.
1760  SmallVector<NamespaceDecl*, 8> Queue;
1761
1762  // We have already looked into the initial namespace; seed the queue
1763  // with its using-children.
1764  for (auto *I : UsingDirectives) {
1765    NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1766    if (Visited.insert(ND).second)
1767      Queue.push_back(ND);
1768  }
1769
1770  // The easiest way to implement the restriction in [namespace.qual]p5
1771  // is to check whether any of the individual results found a tag
1772  // and, if so, to declare an ambiguity if the final result is not
1773  // a tag.
1774  bool FoundTag = false;
1775  bool FoundNonTag = false;
1776
1777  LookupResult LocalR(LookupResult::Temporary, R);
1778
1779  bool Found = false;
1780  while (!Queue.empty()) {
1781    NamespaceDecl *ND = Queue.pop_back_val();
1782
1783    // We go through some convolutions here to avoid copying results
1784    // between LookupResults.
1785    bool UseLocal = !R.empty();
1786    LookupResult &DirectR = UseLocal ? LocalR : R;
1787    bool FoundDirect = LookupDirect(S, DirectR, ND);
1788
1789    if (FoundDirect) {
1790      // First do any local hiding.
1791      DirectR.resolveKind();
1792
1793      // If the local result is a tag, remember that.
1794      if (DirectR.isSingleTagDecl())
1795        FoundTag = true;
1796      else
1797        FoundNonTag = true;
1798
1799      // Append the local results to the total results if necessary.
1800      if (UseLocal) {
1801        R.addAllDecls(LocalR);
1802        LocalR.clear();
1803      }
1804    }
1805
1806    // If we find names in this namespace, ignore its using directives.
1807    if (FoundDirect) {
1808      Found = true;
1809      continue;
1810    }
1811
1812    for (auto I : ND->using_directives()) {
1813      NamespaceDecl *Nom = I->getNominatedNamespace();
1814      if (Visited.insert(Nom).second)
1815        Queue.push_back(Nom);
1816    }
1817  }
1818
1819  if (Found) {
1820    if (FoundTag && FoundNonTag)
1821      R.setAmbiguousQualifiedTagHiding();
1822    else
1823      R.resolveKind();
1824  }
1825
1826  return Found;
1827}
1828
1829/// \brief Callback that looks for any member of a class with the given name.
1830static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1831                            CXXBasePath &Path, DeclarationName Name) {
1832  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1833
1834  Path.Decls = BaseRecord->lookup(Name);
1835  return !Path.Decls.empty();
1836}
1837
1838/// \brief Determine whether the given set of member declarations contains only
1839/// static members, nested types, and enumerators.
1840template<typename InputIterator>
1841static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1842  Decl *D = (*First)->getUnderlyingDecl();
1843  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1844    return true;
1845
1846  if (isa<CXXMethodDecl>(D)) {
1847    // Determine whether all of the methods are static.
1848    bool AllMethodsAreStatic = true;
1849    for(; First != Last; ++First) {
1850      D = (*First)->getUnderlyingDecl();
1851
1852      if (!isa<CXXMethodDecl>(D)) {
1853        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1854        break;
1855      }
1856
1857      if (!cast<CXXMethodDecl>(D)->isStatic()) {
1858        AllMethodsAreStatic = false;
1859        break;
1860      }
1861    }
1862
1863    if (AllMethodsAreStatic)
1864      return true;
1865  }
1866
1867  return false;
1868}
1869
1870/// \brief Perform qualified name lookup into a given context.
1871///
1872/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1873/// names when the context of those names is explicit specified, e.g.,
1874/// "std::vector" or "x->member", or as part of unqualified name lookup.
1875///
1876/// Different lookup criteria can find different names. For example, a
1877/// particular scope can have both a struct and a function of the same
1878/// name, and each can be found by certain lookup criteria. For more
1879/// information about lookup criteria, see the documentation for the
1880/// class LookupCriteria.
1881///
1882/// \param R captures both the lookup criteria and any lookup results found.
1883///
1884/// \param LookupCtx The context in which qualified name lookup will
1885/// search. If the lookup criteria permits, name lookup may also search
1886/// in the parent contexts or (for C++ classes) base classes.
1887///
1888/// \param InUnqualifiedLookup true if this is qualified name lookup that
1889/// occurs as part of unqualified name lookup.
1890///
1891/// \returns true if lookup succeeded, false if it failed.
1892bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1893                               bool InUnqualifiedLookup) {
1894  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1895
1896  if (!R.getLookupName())
1897    return false;
1898
1899  // Make sure that the declaration context is complete.
1900  assert((!isa<TagDecl>(LookupCtx) ||
1901          LookupCtx->isDependentContext() ||
1902          cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
1903          cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
1904         "Declaration context must already be complete!");
1905
1906  struct QualifiedLookupInScope {
1907    bool oldVal;
1908    DeclContext *Context;
1909    // Set flag in DeclContext informing debugger that we're looking for qualified name
1910    QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
1911      oldVal = ctx->setUseQualifiedLookup();
1912    }
1913    ~QualifiedLookupInScope() {
1914      Context->setUseQualifiedLookup(oldVal);
1915    }
1916  } QL(LookupCtx);
1917
1918  if (LookupDirect(*this, R, LookupCtx)) {
1919    R.resolveKind();
1920    if (isa<CXXRecordDecl>(LookupCtx))
1921      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1922    return true;
1923  }
1924
1925  // Don't descend into implied contexts for redeclarations.
1926  // C++98 [namespace.qual]p6:
1927  //   In a declaration for a namespace member in which the
1928  //   declarator-id is a qualified-id, given that the qualified-id
1929  //   for the namespace member has the form
1930  //     nested-name-specifier unqualified-id
1931  //   the unqualified-id shall name a member of the namespace
1932  //   designated by the nested-name-specifier.
1933  // See also [class.mfct]p5 and [class.static.data]p2.
1934  if (R.isForRedeclaration())
1935    return false;
1936
1937  // If this is a namespace, look it up in the implied namespaces.
1938  if (LookupCtx->isFileContext())
1939    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1940
1941  // If this isn't a C++ class, we aren't allowed to look into base
1942  // classes, we're done.
1943  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1944  if (!LookupRec || !LookupRec->getDefinition())
1945    return false;
1946
1947  // If we're performing qualified name lookup into a dependent class,
1948  // then we are actually looking into a current instantiation. If we have any
1949  // dependent base classes, then we either have to delay lookup until
1950  // template instantiation time (at which point all bases will be available)
1951  // or we have to fail.
1952  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1953      LookupRec->hasAnyDependentBases()) {
1954    R.setNotFoundInCurrentInstantiation();
1955    return false;
1956  }
1957
1958  // Perform lookup into our base classes.
1959  CXXBasePaths Paths;
1960  Paths.setOrigin(LookupRec);
1961
1962  // Look for this member in our base classes
1963  bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
1964                       DeclarationName Name) = nullptr;
1965  switch (R.getLookupKind()) {
1966    case LookupObjCImplicitSelfParam:
1967    case LookupOrdinaryName:
1968    case LookupMemberName:
1969    case LookupRedeclarationWithLinkage:
1970    case LookupLocalFriendName:
1971      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1972      break;
1973
1974    case LookupTagName:
1975      BaseCallback = &CXXRecordDecl::FindTagMember;
1976      break;
1977
1978    case LookupAnyName:
1979      BaseCallback = &LookupAnyMember;
1980      break;
1981
1982    case LookupUsingDeclName:
1983      // This lookup is for redeclarations only.
1984
1985    case LookupOperatorName:
1986    case LookupNamespaceName:
1987    case LookupObjCProtocolName:
1988    case LookupLabel:
1989      // These lookups will never find a member in a C++ class (or base class).
1990      return false;
1991
1992    case LookupNestedNameSpecifierName:
1993      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1994      break;
1995  }
1996
1997  DeclarationName Name = R.getLookupName();
1998  if (!LookupRec->lookupInBases(
1999          [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2000            return BaseCallback(Specifier, Path, Name);
2001          },
2002          Paths))
2003    return false;
2004
2005  R.setNamingClass(LookupRec);
2006
2007  // C++ [class.member.lookup]p2:
2008  //   [...] If the resulting set of declarations are not all from
2009  //   sub-objects of the same type, or the set has a nonstatic member
2010  //   and includes members from distinct sub-objects, there is an
2011  //   ambiguity and the program is ill-formed. Otherwise that set is
2012  //   the result of the lookup.
2013  QualType SubobjectType;
2014  int SubobjectNumber = 0;
2015  AccessSpecifier SubobjectAccess = AS_none;
2016
2017  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2018       Path != PathEnd; ++Path) {
2019    const CXXBasePathElement &PathElement = Path->back();
2020
2021    // Pick the best (i.e. most permissive i.e. numerically lowest) access
2022    // across all paths.
2023    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2024
2025    // Determine whether we're looking at a distinct sub-object or not.
2026    if (SubobjectType.isNull()) {
2027      // This is the first subobject we've looked at. Record its type.
2028      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2029      SubobjectNumber = PathElement.SubobjectNumber;
2030      continue;
2031    }
2032
2033    if (SubobjectType
2034                 != Context.getCanonicalType(PathElement.Base->getType())) {
2035      // We found members of the given name in two subobjects of
2036      // different types. If the declaration sets aren't the same, this
2037      // lookup is ambiguous.
2038      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2039        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2040        DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2041        DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2042
2043        while (FirstD != FirstPath->Decls.end() &&
2044               CurrentD != Path->Decls.end()) {
2045         if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
2046             (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
2047           break;
2048
2049          ++FirstD;
2050          ++CurrentD;
2051        }
2052
2053        if (FirstD == FirstPath->Decls.end() &&
2054            CurrentD == Path->Decls.end())
2055          continue;
2056      }
2057
2058      R.setAmbiguousBaseSubobjectTypes(Paths);
2059      return true;
2060    }
2061
2062    if (SubobjectNumber != PathElement.SubobjectNumber) {
2063      // We have a different subobject of the same type.
2064
2065      // C++ [class.member.lookup]p5:
2066      //   A static member, a nested type or an enumerator defined in
2067      //   a base class T can unambiguously be found even if an object
2068      //   has more than one base class subobject of type T.
2069      if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2070        continue;
2071
2072      // We have found a nonstatic member name in multiple, distinct
2073      // subobjects. Name lookup is ambiguous.
2074      R.setAmbiguousBaseSubobjects(Paths);
2075      return true;
2076    }
2077  }
2078
2079  // Lookup in a base class succeeded; return these results.
2080
2081  for (auto *D : Paths.front().Decls) {
2082    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2083                                                    D->getAccess());
2084    R.addDecl(D, AS);
2085  }
2086  R.resolveKind();
2087  return true;
2088}
2089
2090/// \brief Performs qualified name lookup or special type of lookup for
2091/// "__super::" scope specifier.
2092///
2093/// This routine is a convenience overload meant to be called from contexts
2094/// that need to perform a qualified name lookup with an optional C++ scope
2095/// specifier that might require special kind of lookup.
2096///
2097/// \param R captures both the lookup criteria and any lookup results found.
2098///
2099/// \param LookupCtx The context in which qualified name lookup will
2100/// search.
2101///
2102/// \param SS An optional C++ scope-specifier.
2103///
2104/// \returns true if lookup succeeded, false if it failed.
2105bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2106                               CXXScopeSpec &SS) {
2107  auto *NNS = SS.getScopeRep();
2108  if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2109    return LookupInSuper(R, NNS->getAsRecordDecl());
2110  else
2111
2112    return LookupQualifiedName(R, LookupCtx);
2113}
2114
2115/// @brief Performs name lookup for a name that was parsed in the
2116/// source code, and may contain a C++ scope specifier.
2117///
2118/// This routine is a convenience routine meant to be called from
2119/// contexts that receive a name and an optional C++ scope specifier
2120/// (e.g., "N::M::x"). It will then perform either qualified or
2121/// unqualified name lookup (with LookupQualifiedName or LookupName,
2122/// respectively) on the given name and return those results. It will
2123/// perform a special type of lookup for "__super::" scope specifier.
2124///
2125/// @param S        The scope from which unqualified name lookup will
2126/// begin.
2127///
2128/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
2129///
2130/// @param EnteringContext Indicates whether we are going to enter the
2131/// context of the scope-specifier SS (if present).
2132///
2133/// @returns True if any decls were found (but possibly ambiguous)
2134bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2135                            bool AllowBuiltinCreation, bool EnteringContext) {
2136  if (SS && SS->isInvalid()) {
2137    // When the scope specifier is invalid, don't even look for
2138    // anything.
2139    return false;
2140  }
2141
2142  if (SS && SS->isSet()) {
2143    NestedNameSpecifier *NNS = SS->getScopeRep();
2144    if (NNS->getKind() == NestedNameSpecifier::Super)
2145      return LookupInSuper(R, NNS->getAsRecordDecl());
2146
2147    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2148      // We have resolved the scope specifier to a particular declaration
2149      // contex, and will perform name lookup in that context.
2150      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2151        return false;
2152
2153      R.setContextRange(SS->getRange());
2154      return LookupQualifiedName(R, DC);
2155    }
2156
2157    // We could not resolve the scope specified to a specific declaration
2158    // context, which means that SS refers to an unknown specialization.
2159    // Name lookup can't find anything in this case.
2160    R.setNotFoundInCurrentInstantiation();
2161    R.setContextRange(SS->getRange());
2162    return false;
2163  }
2164
2165  // Perform unqualified name lookup starting in the given scope.
2166  return LookupName(R, S, AllowBuiltinCreation);
2167}
2168
2169/// \brief Perform qualified name lookup into all base classes of the given
2170/// class.
2171///
2172/// \param R captures both the lookup criteria and any lookup results found.
2173///
2174/// \param Class The context in which qualified name lookup will
2175/// search. Name lookup will search in all base classes merging the results.
2176///
2177/// @returns True if any decls were found (but possibly ambiguous)
2178bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2179  // The access-control rules we use here are essentially the rules for
2180  // doing a lookup in Class that just magically skipped the direct
2181  // members of Class itself.  That is, the naming class is Class, and the
2182  // access includes the access of the base.
2183  for (const auto &BaseSpec : Class->bases()) {
2184    CXXRecordDecl *RD = cast<CXXRecordDecl>(
2185        BaseSpec.getType()->castAs<RecordType>()->getDecl());
2186    LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2187	Result.setBaseObjectType(Context.getRecordType(Class));
2188    LookupQualifiedName(Result, RD);
2189
2190    // Copy the lookup results into the target, merging the base's access into
2191    // the path access.
2192    for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2193      R.addDecl(I.getDecl(),
2194                CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2195                                           I.getAccess()));
2196    }
2197
2198    Result.suppressDiagnostics();
2199  }
2200
2201  R.resolveKind();
2202  R.setNamingClass(Class);
2203
2204  return !R.empty();
2205}
2206
2207/// \brief Produce a diagnostic describing the ambiguity that resulted
2208/// from name lookup.
2209///
2210/// \param Result The result of the ambiguous lookup to be diagnosed.
2211void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2212  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2213
2214  DeclarationName Name = Result.getLookupName();
2215  SourceLocation NameLoc = Result.getNameLoc();
2216  SourceRange LookupRange = Result.getContextRange();
2217
2218  switch (Result.getAmbiguityKind()) {
2219  case LookupResult::AmbiguousBaseSubobjects: {
2220    CXXBasePaths *Paths = Result.getBasePaths();
2221    QualType SubobjectType = Paths->front().back().Base->getType();
2222    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2223      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2224      << LookupRange;
2225
2226    DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2227    while (isa<CXXMethodDecl>(*Found) &&
2228           cast<CXXMethodDecl>(*Found)->isStatic())
2229      ++Found;
2230
2231    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2232    break;
2233  }
2234
2235  case LookupResult::AmbiguousBaseSubobjectTypes: {
2236    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2237      << Name << LookupRange;
2238
2239    CXXBasePaths *Paths = Result.getBasePaths();
2240    std::set<Decl *> DeclsPrinted;
2241    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2242                                      PathEnd = Paths->end();
2243         Path != PathEnd; ++Path) {
2244      Decl *D = Path->Decls.front();
2245      if (DeclsPrinted.insert(D).second)
2246        Diag(D->getLocation(), diag::note_ambiguous_member_found);
2247    }
2248    break;
2249  }
2250
2251  case LookupResult::AmbiguousTagHiding: {
2252    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2253
2254    llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2255
2256    for (auto *D : Result)
2257      if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2258        TagDecls.insert(TD);
2259        Diag(TD->getLocation(), diag::note_hidden_tag);
2260      }
2261
2262    for (auto *D : Result)
2263      if (!isa<TagDecl>(D))
2264        Diag(D->getLocation(), diag::note_hiding_object);
2265
2266    // For recovery purposes, go ahead and implement the hiding.
2267    LookupResult::Filter F = Result.makeFilter();
2268    while (F.hasNext()) {
2269      if (TagDecls.count(F.next()))
2270        F.erase();
2271    }
2272    F.done();
2273    break;
2274  }
2275
2276  case LookupResult::AmbiguousReference: {
2277    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2278
2279    for (auto *D : Result)
2280      Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2281    break;
2282  }
2283  }
2284}
2285
2286namespace {
2287  struct AssociatedLookup {
2288    AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2289                     Sema::AssociatedNamespaceSet &Namespaces,
2290                     Sema::AssociatedClassSet &Classes)
2291      : S(S), Namespaces(Namespaces), Classes(Classes),
2292        InstantiationLoc(InstantiationLoc) {
2293    }
2294
2295    Sema &S;
2296    Sema::AssociatedNamespaceSet &Namespaces;
2297    Sema::AssociatedClassSet &Classes;
2298    SourceLocation InstantiationLoc;
2299  };
2300} // end anonymous namespace
2301
2302static void
2303addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2304
2305static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2306                                      DeclContext *Ctx) {
2307  // Add the associated namespace for this class.
2308
2309  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
2310  // be a locally scoped record.
2311
2312  // We skip out of inline namespaces. The innermost non-inline namespace
2313  // contains all names of all its nested inline namespaces anyway, so we can
2314  // replace the entire inline namespace tree with its root.
2315  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
2316         Ctx->isInlineNamespace())
2317    Ctx = Ctx->getParent();
2318
2319  if (Ctx->isFileContext())
2320    Namespaces.insert(Ctx->getPrimaryContext());
2321}
2322
2323// \brief Add the associated classes and namespaces for argument-dependent
2324// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2325static void
2326addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2327                                  const TemplateArgument &Arg) {
2328  // C++ [basic.lookup.koenig]p2, last bullet:
2329  //   -- [...] ;
2330  switch (Arg.getKind()) {
2331    case TemplateArgument::Null:
2332      break;
2333
2334    case TemplateArgument::Type:
2335      // [...] the namespaces and classes associated with the types of the
2336      // template arguments provided for template type parameters (excluding
2337      // template template parameters)
2338      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2339      break;
2340
2341    case TemplateArgument::Template:
2342    case TemplateArgument::TemplateExpansion: {
2343      // [...] the namespaces in which any template template arguments are
2344      // defined; and the classes in which any member templates used as
2345      // template template arguments are defined.
2346      TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2347      if (ClassTemplateDecl *ClassTemplate
2348                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2349        DeclContext *Ctx = ClassTemplate->getDeclContext();
2350        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2351          Result.Classes.insert(EnclosingClass);
2352        // Add the associated namespace for this class.
2353        CollectEnclosingNamespace(Result.Namespaces, Ctx);
2354      }
2355      break;
2356    }
2357
2358    case TemplateArgument::Declaration:
2359    case TemplateArgument::Integral:
2360    case TemplateArgument::Expression:
2361    case TemplateArgument::NullPtr:
2362      // [Note: non-type template arguments do not contribute to the set of
2363      //  associated namespaces. ]
2364      break;
2365
2366    case TemplateArgument::Pack:
2367      for (const auto &P : Arg.pack_elements())
2368        addAssociatedClassesAndNamespaces(Result, P);
2369      break;
2370  }
2371}
2372
2373// \brief Add the associated classes and namespaces for
2374// argument-dependent lookup with an argument of class type
2375// (C++ [basic.lookup.koenig]p2).
2376static void
2377addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2378                                  CXXRecordDecl *Class) {
2379
2380  // Just silently ignore anything whose name is __va_list_tag.
2381  if (Class->getDeclName() == Result.S.VAListTagName)
2382    return;
2383
2384  // C++ [basic.lookup.koenig]p2:
2385  //   [...]
2386  //     -- If T is a class type (including unions), its associated
2387  //        classes are: the class itself; the class of which it is a
2388  //        member, if any; and its direct and indirect base
2389  //        classes. Its associated namespaces are the namespaces in
2390  //        which its associated classes are defined.
2391
2392  // Add the class of which it is a member, if any.
2393  DeclContext *Ctx = Class->getDeclContext();
2394  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2395    Result.Classes.insert(EnclosingClass);
2396  // Add the associated namespace for this class.
2397  CollectEnclosingNamespace(Result.Namespaces, Ctx);
2398
2399  // Add the class itself. If we've already seen this class, we don't
2400  // need to visit base classes.
2401  //
2402  // FIXME: That's not correct, we may have added this class only because it
2403  // was the enclosing class of another class, and in that case we won't have
2404  // added its base classes yet.
2405  if (!Result.Classes.insert(Class).second)
2406    return;
2407
2408  // -- If T is a template-id, its associated namespaces and classes are
2409  //    the namespace in which the template is defined; for member
2410  //    templates, the member template's class; the namespaces and classes
2411  //    associated with the types of the template arguments provided for
2412  //    template type parameters (excluding template template parameters); the
2413  //    namespaces in which any template template arguments are defined; and
2414  //    the classes in which any member templates used as template template
2415  //    arguments are defined. [Note: non-type template arguments do not
2416  //    contribute to the set of associated namespaces. ]
2417  if (ClassTemplateSpecializationDecl *Spec
2418        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2419    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2420    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2421      Result.Classes.insert(EnclosingClass);
2422    // Add the associated namespace for this class.
2423    CollectEnclosingNamespace(Result.Namespaces, Ctx);
2424
2425    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2426    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2427      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2428  }
2429
2430  // Only recurse into base classes for complete types.
2431  if (!Result.S.isCompleteType(Result.InstantiationLoc,
2432                               Result.S.Context.getRecordType(Class)))
2433    return;
2434
2435  // Add direct and indirect base classes along with their associated
2436  // namespaces.
2437  SmallVector<CXXRecordDecl *, 32> Bases;
2438  Bases.push_back(Class);
2439  while (!Bases.empty()) {
2440    // Pop this class off the stack.
2441    Class = Bases.pop_back_val();
2442
2443    // Visit the base classes.
2444    for (const auto &Base : Class->bases()) {
2445      const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2446      // In dependent contexts, we do ADL twice, and the first time around,
2447      // the base type might be a dependent TemplateSpecializationType, or a
2448      // TemplateTypeParmType. If that happens, simply ignore it.
2449      // FIXME: If we want to support export, we probably need to add the
2450      // namespace of the template in a TemplateSpecializationType, or even
2451      // the classes and namespaces of known non-dependent arguments.
2452      if (!BaseType)
2453        continue;
2454      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2455      if (Result.Classes.insert(BaseDecl).second) {
2456        // Find the associated namespace for this base class.
2457        DeclContext *BaseCtx = BaseDecl->getDeclContext();
2458        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2459
2460        // Make sure we visit the bases of this base class.
2461        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2462          Bases.push_back(BaseDecl);
2463      }
2464    }
2465  }
2466}
2467
2468// \brief Add the associated classes and namespaces for
2469// argument-dependent lookup with an argument of type T
2470// (C++ [basic.lookup.koenig]p2).
2471static void
2472addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2473  // C++ [basic.lookup.koenig]p2:
2474  //
2475  //   For each argument type T in the function call, there is a set
2476  //   of zero or more associated namespaces and a set of zero or more
2477  //   associated classes to be considered. The sets of namespaces and
2478  //   classes is determined entirely by the types of the function
2479  //   arguments (and the namespace of any template template
2480  //   argument). Typedef names and using-declarations used to specify
2481  //   the types do not contribute to this set. The sets of namespaces
2482  //   and classes are determined in the following way:
2483
2484  SmallVector<const Type *, 16> Queue;
2485  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2486
2487  while (true) {
2488    switch (T->getTypeClass()) {
2489
2490#define TYPE(Class, Base)
2491#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2492#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2493#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2494#define ABSTRACT_TYPE(Class, Base)
2495#include "clang/AST/TypeNodes.def"
2496      // T is canonical.  We can also ignore dependent types because
2497      // we don't need to do ADL at the definition point, but if we
2498      // wanted to implement template export (or if we find some other
2499      // use for associated classes and namespaces...) this would be
2500      // wrong.
2501      break;
2502
2503    //    -- If T is a pointer to U or an array of U, its associated
2504    //       namespaces and classes are those associated with U.
2505    case Type::Pointer:
2506      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2507      continue;
2508    case Type::ConstantArray:
2509    case Type::IncompleteArray:
2510    case Type::VariableArray:
2511      T = cast<ArrayType>(T)->getElementType().getTypePtr();
2512      continue;
2513
2514    //     -- If T is a fundamental type, its associated sets of
2515    //        namespaces and classes are both empty.
2516    case Type::Builtin:
2517      break;
2518
2519    //     -- If T is a class type (including unions), its associated
2520    //        classes are: the class itself; the class of which it is a
2521    //        member, if any; and its direct and indirect base
2522    //        classes. Its associated namespaces are the namespaces in
2523    //        which its associated classes are defined.
2524    case Type::Record: {
2525      CXXRecordDecl *Class =
2526          cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2527      addAssociatedClassesAndNamespaces(Result, Class);
2528      break;
2529    }
2530
2531    //     -- If T is an enumeration type, its associated namespace is
2532    //        the namespace in which it is defined. If it is class
2533    //        member, its associated class is the member's class; else
2534    //        it has no associated class.
2535    case Type::Enum: {
2536      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2537
2538      DeclContext *Ctx = Enum->getDeclContext();
2539      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2540        Result.Classes.insert(EnclosingClass);
2541
2542      // Add the associated namespace for this class.
2543      CollectEnclosingNamespace(Result.Namespaces, Ctx);
2544
2545      break;
2546    }
2547
2548    //     -- If T is a function type, its associated namespaces and
2549    //        classes are those associated with the function parameter
2550    //        types and those associated with the return type.
2551    case Type::FunctionProto: {
2552      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2553      for (const auto &Arg : Proto->param_types())
2554        Queue.push_back(Arg.getTypePtr());
2555      // fallthrough
2556    }
2557    case Type::FunctionNoProto: {
2558      const FunctionType *FnType = cast<FunctionType>(T);
2559      T = FnType->getReturnType().getTypePtr();
2560      continue;
2561    }
2562
2563    //     -- If T is a pointer to a member function of a class X, its
2564    //        associated namespaces and classes are those associated
2565    //        with the function parameter types and return type,
2566    //        together with those associated with X.
2567    //
2568    //     -- If T is a pointer to a data member of class X, its
2569    //        associated namespaces and classes are those associated
2570    //        with the member type together with those associated with
2571    //        X.
2572    case Type::MemberPointer: {
2573      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2574
2575      // Queue up the class type into which this points.
2576      Queue.push_back(MemberPtr->getClass());
2577
2578      // And directly continue with the pointee type.
2579      T = MemberPtr->getPointeeType().getTypePtr();
2580      continue;
2581    }
2582
2583    // As an extension, treat this like a normal pointer.
2584    case Type::BlockPointer:
2585      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2586      continue;
2587
2588    // References aren't covered by the standard, but that's such an
2589    // obvious defect that we cover them anyway.
2590    case Type::LValueReference:
2591    case Type::RValueReference:
2592      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2593      continue;
2594
2595    // These are fundamental types.
2596    case Type::Vector:
2597    case Type::ExtVector:
2598    case Type::Complex:
2599      break;
2600
2601    // Non-deduced auto types only get here for error cases.
2602    case Type::Auto:
2603      break;
2604
2605    // If T is an Objective-C object or interface type, or a pointer to an
2606    // object or interface type, the associated namespace is the global
2607    // namespace.
2608    case Type::ObjCObject:
2609    case Type::ObjCInterface:
2610    case Type::ObjCObjectPointer:
2611      Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2612      break;
2613
2614    // Atomic types are just wrappers; use the associations of the
2615    // contained type.
2616    case Type::Atomic:
2617      T = cast<AtomicType>(T)->getValueType().getTypePtr();
2618      continue;
2619    }
2620
2621    if (Queue.empty())
2622      break;
2623    T = Queue.pop_back_val();
2624  }
2625}
2626
2627/// \brief Find the associated classes and namespaces for
2628/// argument-dependent lookup for a call with the given set of
2629/// arguments.
2630///
2631/// This routine computes the sets of associated classes and associated
2632/// namespaces searched by argument-dependent lookup
2633/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2634void Sema::FindAssociatedClassesAndNamespaces(
2635    SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2636    AssociatedNamespaceSet &AssociatedNamespaces,
2637    AssociatedClassSet &AssociatedClasses) {
2638  AssociatedNamespaces.clear();
2639  AssociatedClasses.clear();
2640
2641  AssociatedLookup Result(*this, InstantiationLoc,
2642                          AssociatedNamespaces, AssociatedClasses);
2643
2644  // C++ [basic.lookup.koenig]p2:
2645  //   For each argument type T in the function call, there is a set
2646  //   of zero or more associated namespaces and a set of zero or more
2647  //   associated classes to be considered. The sets of namespaces and
2648  //   classes is determined entirely by the types of the function
2649  //   arguments (and the namespace of any template template
2650  //   argument).
2651  for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2652    Expr *Arg = Args[ArgIdx];
2653
2654    if (Arg->getType() != Context.OverloadTy) {
2655      addAssociatedClassesAndNamespaces(Result, Arg->getType());
2656      continue;
2657    }
2658
2659    // [...] In addition, if the argument is the name or address of a
2660    // set of overloaded functions and/or function templates, its
2661    // associated classes and namespaces are the union of those
2662    // associated with each of the members of the set: the namespace
2663    // in which the function or function template is defined and the
2664    // classes and namespaces associated with its (non-dependent)
2665    // parameter types and return type.
2666    Arg = Arg->IgnoreParens();
2667    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2668      if (unaryOp->getOpcode() == UO_AddrOf)
2669        Arg = unaryOp->getSubExpr();
2670
2671    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2672    if (!ULE) continue;
2673
2674    for (const auto *D : ULE->decls()) {
2675      // Look through any using declarations to find the underlying function.
2676      const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2677
2678      // Add the classes and namespaces associated with the parameter
2679      // types and return type of this function.
2680      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2681    }
2682  }
2683}
2684
2685NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2686                                  SourceLocation Loc,
2687                                  LookupNameKind NameKind,
2688                                  RedeclarationKind Redecl) {
2689  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2690  LookupName(R, S);
2691  return R.getAsSingle<NamedDecl>();
2692}
2693
2694/// \brief Find the protocol with the given name, if any.
2695ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2696                                       SourceLocation IdLoc,
2697                                       RedeclarationKind Redecl) {
2698  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2699                             LookupObjCProtocolName, Redecl);
2700  return cast_or_null<ObjCProtocolDecl>(D);
2701}
2702
2703void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2704                                        QualType T1, QualType T2,
2705                                        UnresolvedSetImpl &Functions) {
2706  // C++ [over.match.oper]p3:
2707  //     -- The set of non-member candidates is the result of the
2708  //        unqualified lookup of operator@ in the context of the
2709  //        expression according to the usual rules for name lookup in
2710  //        unqualified function calls (3.4.2) except that all member
2711  //        functions are ignored.
2712  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2713  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2714  LookupName(Operators, S);
2715
2716  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2717  Functions.append(Operators.begin(), Operators.end());
2718}
2719
2720Sema::SpecialMemberOverloadResult *Sema::LookupSpecialMember(CXXRecordDecl *RD,
2721                                                            CXXSpecialMember SM,
2722                                                            bool ConstArg,
2723                                                            bool VolatileArg,
2724                                                            bool RValueThis,
2725                                                            bool ConstThis,
2726                                                            bool VolatileThis) {
2727  assert(CanDeclareSpecialMemberFunction(RD) &&
2728         "doing special member lookup into record that isn't fully complete");
2729  RD = RD->getDefinition();
2730  if (RValueThis || ConstThis || VolatileThis)
2731    assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
2732           "constructors and destructors always have unqualified lvalue this");
2733  if (ConstArg || VolatileArg)
2734    assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
2735           "parameter-less special members can't have qualified arguments");
2736
2737  llvm::FoldingSetNodeID ID;
2738  ID.AddPointer(RD);
2739  ID.AddInteger(SM);
2740  ID.AddInteger(ConstArg);
2741  ID.AddInteger(VolatileArg);
2742  ID.AddInteger(RValueThis);
2743  ID.AddInteger(ConstThis);
2744  ID.AddInteger(VolatileThis);
2745
2746  void *InsertPoint;
2747  SpecialMemberOverloadResult *Result =
2748    SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2749
2750  // This was already cached
2751  if (Result)
2752    return Result;
2753
2754  Result = BumpAlloc.Allocate<SpecialMemberOverloadResult>();
2755  Result = new (Result) SpecialMemberOverloadResult(ID);
2756  SpecialMemberCache.InsertNode(Result, InsertPoint);
2757
2758  if (SM == CXXDestructor) {
2759    if (RD->needsImplicitDestructor())
2760      DeclareImplicitDestructor(RD);
2761    CXXDestructorDecl *DD = RD->getDestructor();
2762    assert(DD && "record without a destructor");
2763    Result->setMethod(DD);
2764    Result->setKind(DD->isDeleted() ?
2765                    SpecialMemberOverloadResult::NoMemberOrDeleted :
2766                    SpecialMemberOverloadResult::Success);
2767    return Result;
2768  }
2769
2770  // Prepare for overload resolution. Here we construct a synthetic argument
2771  // if necessary and make sure that implicit functions are declared.
2772  CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2773  DeclarationName Name;
2774  Expr *Arg = nullptr;
2775  unsigned NumArgs;
2776
2777  QualType ArgType = CanTy;
2778  ExprValueKind VK = VK_LValue;
2779
2780  if (SM == CXXDefaultConstructor) {
2781    Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2782    NumArgs = 0;
2783    if (RD->needsImplicitDefaultConstructor())
2784      DeclareImplicitDefaultConstructor(RD);
2785  } else {
2786    if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2787      Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2788      if (RD->needsImplicitCopyConstructor())
2789        DeclareImplicitCopyConstructor(RD);
2790      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2791        DeclareImplicitMoveConstructor(RD);
2792    } else {
2793      Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2794      if (RD->needsImplicitCopyAssignment())
2795        DeclareImplicitCopyAssignment(RD);
2796      if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2797        DeclareImplicitMoveAssignment(RD);
2798    }
2799
2800    if (ConstArg)
2801      ArgType.addConst();
2802    if (VolatileArg)
2803      ArgType.addVolatile();
2804
2805    // This isn't /really/ specified by the standard, but it's implied
2806    // we should be working from an RValue in the case of move to ensure
2807    // that we prefer to bind to rvalue references, and an LValue in the
2808    // case of copy to ensure we don't bind to rvalue references.
2809    // Possibly an XValue is actually correct in the case of move, but
2810    // there is no semantic difference for class types in this restricted
2811    // case.
2812    if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2813      VK = VK_LValue;
2814    else
2815      VK = VK_RValue;
2816  }
2817
2818  OpaqueValueExpr FakeArg(SourceLocation(), ArgType, VK);
2819
2820  if (SM != CXXDefaultConstructor) {
2821    NumArgs = 1;
2822    Arg = &FakeArg;
2823  }
2824
2825  // Create the object argument
2826  QualType ThisTy = CanTy;
2827  if (ConstThis)
2828    ThisTy.addConst();
2829  if (VolatileThis)
2830    ThisTy.addVolatile();
2831  Expr::Classification Classification =
2832    OpaqueValueExpr(SourceLocation(), ThisTy,
2833                    RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2834
2835  // Now we perform lookup on the name we computed earlier and do overload
2836  // resolution. Lookup is only performed directly into the class since there
2837  // will always be a (possibly implicit) declaration to shadow any others.
2838  OverloadCandidateSet OCS(RD->getLocation(), OverloadCandidateSet::CSK_Normal);
2839  DeclContext::lookup_result R = RD->lookup(Name);
2840
2841  if (R.empty()) {
2842    // We might have no default constructor because we have a lambda's closure
2843    // type, rather than because there's some other declared constructor.
2844    // Every class has a copy/move constructor, copy/move assignment, and
2845    // destructor.
2846    assert(SM == CXXDefaultConstructor &&
2847           "lookup for a constructor or assignment operator was empty");
2848    Result->setMethod(nullptr);
2849    Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2850    return Result;
2851  }
2852
2853  // Copy the candidates as our processing of them may load new declarations
2854  // from an external source and invalidate lookup_result.
2855  SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2856
2857  for (auto *Cand : Candidates) {
2858    if (Cand->isInvalidDecl())
2859      continue;
2860
2861    if (UsingShadowDecl *U = dyn_cast<UsingShadowDecl>(Cand)) {
2862      // FIXME: [namespace.udecl]p15 says that we should only consider a
2863      // using declaration here if it does not match a declaration in the
2864      // derived class. We do not implement this correctly in other cases
2865      // either.
2866      Cand = U->getTargetDecl();
2867
2868      if (Cand->isInvalidDecl())
2869        continue;
2870    }
2871
2872    if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand)) {
2873      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2874        AddMethodCandidate(M, DeclAccessPair::make(M, AS_public), RD, ThisTy,
2875                           Classification, llvm::makeArrayRef(&Arg, NumArgs),
2876                           OCS, true);
2877      else
2878        AddOverloadCandidate(M, DeclAccessPair::make(M, AS_public),
2879                             llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2880    } else if (FunctionTemplateDecl *Tmpl =
2881                 dyn_cast<FunctionTemplateDecl>(Cand)) {
2882      if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2883        AddMethodTemplateCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2884                                   RD, nullptr, ThisTy, Classification,
2885                                   llvm::makeArrayRef(&Arg, NumArgs),
2886                                   OCS, true);
2887      else
2888        AddTemplateOverloadCandidate(Tmpl, DeclAccessPair::make(Tmpl, AS_public),
2889                                     nullptr, llvm::makeArrayRef(&Arg, NumArgs),
2890                                     OCS, true);
2891    } else {
2892      assert(isa<UsingDecl>(Cand) && "illegal Kind of operator = Decl");
2893    }
2894  }
2895
2896  OverloadCandidateSet::iterator Best;
2897  switch (OCS.BestViableFunction(*this, SourceLocation(), Best)) {
2898    case OR_Success:
2899      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2900      Result->setKind(SpecialMemberOverloadResult::Success);
2901      break;
2902
2903    case OR_Deleted:
2904      Result->setMethod(cast<CXXMethodDecl>(Best->Function));
2905      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2906      break;
2907
2908    case OR_Ambiguous:
2909      Result->setMethod(nullptr);
2910      Result->setKind(SpecialMemberOverloadResult::Ambiguous);
2911      break;
2912
2913    case OR_No_Viable_Function:
2914      Result->setMethod(nullptr);
2915      Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2916      break;
2917  }
2918
2919  return Result;
2920}
2921
2922/// \brief Look up the default constructor for the given class.
2923CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
2924  SpecialMemberOverloadResult *Result =
2925    LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
2926                        false, false);
2927
2928  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2929}
2930
2931/// \brief Look up the copying constructor for the given class.
2932CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
2933                                                   unsigned Quals) {
2934  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2935         "non-const, non-volatile qualifiers for copy ctor arg");
2936  SpecialMemberOverloadResult *Result =
2937    LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
2938                        Quals & Qualifiers::Volatile, false, false, false);
2939
2940  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2941}
2942
2943/// \brief Look up the moving constructor for the given class.
2944CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
2945                                                  unsigned Quals) {
2946  SpecialMemberOverloadResult *Result =
2947    LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
2948                        Quals & Qualifiers::Volatile, false, false, false);
2949
2950  return cast_or_null<CXXConstructorDecl>(Result->getMethod());
2951}
2952
2953/// \brief Look up the constructors for the given class.
2954DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2955  // If the implicit constructors have not yet been declared, do so now.
2956  if (CanDeclareSpecialMemberFunction(Class)) {
2957    if (Class->needsImplicitDefaultConstructor())
2958      DeclareImplicitDefaultConstructor(Class);
2959    if (Class->needsImplicitCopyConstructor())
2960      DeclareImplicitCopyConstructor(Class);
2961    if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
2962      DeclareImplicitMoveConstructor(Class);
2963  }
2964
2965  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2966  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2967  return Class->lookup(Name);
2968}
2969
2970/// \brief Look up the copying assignment operator for the given class.
2971CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
2972                                             unsigned Quals, bool RValueThis,
2973                                             unsigned ThisQuals) {
2974  assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2975         "non-const, non-volatile qualifiers for copy assignment arg");
2976  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2977         "non-const, non-volatile qualifiers for copy assignment this");
2978  SpecialMemberOverloadResult *Result =
2979    LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
2980                        Quals & Qualifiers::Volatile, RValueThis,
2981                        ThisQuals & Qualifiers::Const,
2982                        ThisQuals & Qualifiers::Volatile);
2983
2984  return Result->getMethod();
2985}
2986
2987/// \brief Look up the moving assignment operator for the given class.
2988CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
2989                                            unsigned Quals,
2990                                            bool RValueThis,
2991                                            unsigned ThisQuals) {
2992  assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
2993         "non-const, non-volatile qualifiers for copy assignment this");
2994  SpecialMemberOverloadResult *Result =
2995    LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
2996                        Quals & Qualifiers::Volatile, RValueThis,
2997                        ThisQuals & Qualifiers::Const,
2998                        ThisQuals & Qualifiers::Volatile);
2999
3000  return Result->getMethod();
3001}
3002
3003/// \brief Look for the destructor of the given class.
3004///
3005/// During semantic analysis, this routine should be used in lieu of
3006/// CXXRecordDecl::getDestructor().
3007///
3008/// \returns The destructor for this class.
3009CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3010  return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3011                                                     false, false, false,
3012                                                     false, false)->getMethod());
3013}
3014
3015/// LookupLiteralOperator - Determine which literal operator should be used for
3016/// a user-defined literal, per C++11 [lex.ext].
3017///
3018/// Normal overload resolution is not used to select which literal operator to
3019/// call for a user-defined literal. Look up the provided literal operator name,
3020/// and filter the results to the appropriate set for the given argument types.
3021Sema::LiteralOperatorLookupResult
3022Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3023                            ArrayRef<QualType> ArgTys,
3024                            bool AllowRaw, bool AllowTemplate,
3025                            bool AllowStringTemplate) {
3026  LookupName(R, S);
3027  assert(R.getResultKind() != LookupResult::Ambiguous &&
3028         "literal operator lookup can't be ambiguous");
3029
3030  // Filter the lookup results appropriately.
3031  LookupResult::Filter F = R.makeFilter();
3032
3033  bool FoundRaw = false;
3034  bool FoundTemplate = false;
3035  bool FoundStringTemplate = false;
3036  bool FoundExactMatch = false;
3037
3038  while (F.hasNext()) {
3039    Decl *D = F.next();
3040    if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3041      D = USD->getTargetDecl();
3042
3043    // If the declaration we found is invalid, skip it.
3044    if (D->isInvalidDecl()) {
3045      F.erase();
3046      continue;
3047    }
3048
3049    bool IsRaw = false;
3050    bool IsTemplate = false;
3051    bool IsStringTemplate = false;
3052    bool IsExactMatch = false;
3053
3054    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3055      if (FD->getNumParams() == 1 &&
3056          FD->getParamDecl(0)->getType()->getAs<PointerType>())
3057        IsRaw = true;
3058      else if (FD->getNumParams() == ArgTys.size()) {
3059        IsExactMatch = true;
3060        for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3061          QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3062          if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3063            IsExactMatch = false;
3064            break;
3065          }
3066        }
3067      }
3068    }
3069    if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3070      TemplateParameterList *Params = FD->getTemplateParameters();
3071      if (Params->size() == 1)
3072        IsTemplate = true;
3073      else
3074        IsStringTemplate = true;
3075    }
3076
3077    if (IsExactMatch) {
3078      FoundExactMatch = true;
3079      AllowRaw = false;
3080      AllowTemplate = false;
3081      AllowStringTemplate = false;
3082      if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3083        // Go through again and remove the raw and template decls we've
3084        // already found.
3085        F.restart();
3086        FoundRaw = FoundTemplate = FoundStringTemplate = false;
3087      }
3088    } else if (AllowRaw && IsRaw) {
3089      FoundRaw = true;
3090    } else if (AllowTemplate && IsTemplate) {
3091      FoundTemplate = true;
3092    } else if (AllowStringTemplate && IsStringTemplate) {
3093      FoundStringTemplate = true;
3094    } else {
3095      F.erase();
3096    }
3097  }
3098
3099  F.done();
3100
3101  // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3102  // parameter type, that is used in preference to a raw literal operator
3103  // or literal operator template.
3104  if (FoundExactMatch)
3105    return LOLR_Cooked;
3106
3107  // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3108  // operator template, but not both.
3109  if (FoundRaw && FoundTemplate) {
3110    Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3111    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3112      NoteOverloadCandidate((*I)->getUnderlyingDecl()->getAsFunction());
3113    return LOLR_Error;
3114  }
3115
3116  if (FoundRaw)
3117    return LOLR_Raw;
3118
3119  if (FoundTemplate)
3120    return LOLR_Template;
3121
3122  if (FoundStringTemplate)
3123    return LOLR_StringTemplate;
3124
3125  // Didn't find anything we could use.
3126  Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3127    << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3128    << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3129    << (AllowTemplate || AllowStringTemplate);
3130  return LOLR_Error;
3131}
3132
3133void ADLResult::insert(NamedDecl *New) {
3134  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3135
3136  // If we haven't yet seen a decl for this key, or the last decl
3137  // was exactly this one, we're done.
3138  if (Old == nullptr || Old == New) {
3139    Old = New;
3140    return;
3141  }
3142
3143  // Otherwise, decide which is a more recent redeclaration.
3144  FunctionDecl *OldFD = Old->getAsFunction();
3145  FunctionDecl *NewFD = New->getAsFunction();
3146
3147  FunctionDecl *Cursor = NewFD;
3148  while (true) {
3149    Cursor = Cursor->getPreviousDecl();
3150
3151    // If we got to the end without finding OldFD, OldFD is the newer
3152    // declaration;  leave things as they are.
3153    if (!Cursor) return;
3154
3155    // If we do find OldFD, then NewFD is newer.
3156    if (Cursor == OldFD) break;
3157
3158    // Otherwise, keep looking.
3159  }
3160
3161  Old = New;
3162}
3163
3164void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3165                                   ArrayRef<Expr *> Args, ADLResult &Result) {
3166  // Find all of the associated namespaces and classes based on the
3167  // arguments we have.
3168  AssociatedNamespaceSet AssociatedNamespaces;
3169  AssociatedClassSet AssociatedClasses;
3170  FindAssociatedClassesAndNamespaces(Loc, Args,
3171                                     AssociatedNamespaces,
3172                                     AssociatedClasses);
3173
3174  // C++ [basic.lookup.argdep]p3:
3175  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
3176  //   and let Y be the lookup set produced by argument dependent
3177  //   lookup (defined as follows). If X contains [...] then Y is
3178  //   empty. Otherwise Y is the set of declarations found in the
3179  //   namespaces associated with the argument types as described
3180  //   below. The set of declarations found by the lookup of the name
3181  //   is the union of X and Y.
3182  //
3183  // Here, we compute Y and add its members to the overloaded
3184  // candidate set.
3185  for (auto *NS : AssociatedNamespaces) {
3186    //   When considering an associated namespace, the lookup is the
3187    //   same as the lookup performed when the associated namespace is
3188    //   used as a qualifier (3.4.3.2) except that:
3189    //
3190    //     -- Any using-directives in the associated namespace are
3191    //        ignored.
3192    //
3193    //     -- Any namespace-scope friend functions declared in
3194    //        associated classes are visible within their respective
3195    //        namespaces even if they are not visible during an ordinary
3196    //        lookup (11.4).
3197    DeclContext::lookup_result R = NS->lookup(Name);
3198    for (auto *D : R) {
3199      // If the only declaration here is an ordinary friend, consider
3200      // it only if it was declared in an associated classes.
3201      if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
3202        // If it's neither ordinarily visible nor a friend, we can't find it.
3203        if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
3204          continue;
3205
3206        bool DeclaredInAssociatedClass = false;
3207        for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
3208          DeclContext *LexDC = DI->getLexicalDeclContext();
3209          if (isa<CXXRecordDecl>(LexDC) &&
3210              AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
3211              isVisible(cast<NamedDecl>(DI))) {
3212            DeclaredInAssociatedClass = true;
3213            break;
3214          }
3215        }
3216        if (!DeclaredInAssociatedClass)
3217          continue;
3218      }
3219
3220      if (isa<UsingShadowDecl>(D))
3221        D = cast<UsingShadowDecl>(D)->getTargetDecl();
3222
3223      if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
3224        continue;
3225
3226      if (!isVisible(D) && !(D = findAcceptableDecl(*this, D)))
3227        continue;
3228
3229      Result.insert(D);
3230    }
3231  }
3232}
3233
3234//----------------------------------------------------------------------------
3235// Search for all visible declarations.
3236//----------------------------------------------------------------------------
3237VisibleDeclConsumer::~VisibleDeclConsumer() { }
3238
3239bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3240
3241namespace {
3242
3243class ShadowContextRAII;
3244
3245class VisibleDeclsRecord {
3246public:
3247  /// \brief An entry in the shadow map, which is optimized to store a
3248  /// single declaration (the common case) but can also store a list
3249  /// of declarations.
3250  typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3251
3252private:
3253  /// \brief A mapping from declaration names to the declarations that have
3254  /// this name within a particular scope.
3255  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3256
3257  /// \brief A list of shadow maps, which is used to model name hiding.
3258  std::list<ShadowMap> ShadowMaps;
3259
3260  /// \brief The declaration contexts we have already visited.
3261  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3262
3263  friend class ShadowContextRAII;
3264
3265public:
3266  /// \brief Determine whether we have already visited this context
3267  /// (and, if not, note that we are going to visit that context now).
3268  bool visitedContext(DeclContext *Ctx) {
3269    return !VisitedContexts.insert(Ctx).second;
3270  }
3271
3272  bool alreadyVisitedContext(DeclContext *Ctx) {
3273    return VisitedContexts.count(Ctx);
3274  }
3275
3276  /// \brief Determine whether the given declaration is hidden in the
3277  /// current scope.
3278  ///
3279  /// \returns the declaration that hides the given declaration, or
3280  /// NULL if no such declaration exists.
3281  NamedDecl *checkHidden(NamedDecl *ND);
3282
3283  /// \brief Add a declaration to the current shadow map.
3284  void add(NamedDecl *ND) {
3285    ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3286  }
3287};
3288
3289/// \brief RAII object that records when we've entered a shadow context.
3290class ShadowContextRAII {
3291  VisibleDeclsRecord &Visible;
3292
3293  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3294
3295public:
3296  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3297    Visible.ShadowMaps.emplace_back();
3298  }
3299
3300  ~ShadowContextRAII() {
3301    Visible.ShadowMaps.pop_back();
3302  }
3303};
3304
3305} // end anonymous namespace
3306
3307NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3308  // Look through using declarations.
3309  ND = ND->getUnderlyingDecl();
3310
3311  unsigned IDNS = ND->getIdentifierNamespace();
3312  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3313  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3314       SM != SMEnd; ++SM) {
3315    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3316    if (Pos == SM->end())
3317      continue;
3318
3319    for (auto *D : Pos->second) {
3320      // A tag declaration does not hide a non-tag declaration.
3321      if (D->hasTagIdentifierNamespace() &&
3322          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3323                   Decl::IDNS_ObjCProtocol)))
3324        continue;
3325
3326      // Protocols are in distinct namespaces from everything else.
3327      if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3328           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3329          D->getIdentifierNamespace() != IDNS)
3330        continue;
3331
3332      // Functions and function templates in the same scope overload
3333      // rather than hide.  FIXME: Look for hiding based on function
3334      // signatures!
3335      if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3336          ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3337          SM == ShadowMaps.rbegin())
3338        continue;
3339
3340      // We've found a declaration that hides this one.
3341      return D;
3342    }
3343  }
3344
3345  return nullptr;
3346}
3347
3348static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3349                               bool QualifiedNameLookup,
3350                               bool InBaseClass,
3351                               VisibleDeclConsumer &Consumer,
3352                               VisibleDeclsRecord &Visited) {
3353  if (!Ctx)
3354    return;
3355
3356  // Make sure we don't visit the same context twice.
3357  if (Visited.visitedContext(Ctx->getPrimaryContext()))
3358    return;
3359
3360  // Outside C++, lookup results for the TU live on identifiers.
3361  if (isa<TranslationUnitDecl>(Ctx) &&
3362      !Result.getSema().getLangOpts().CPlusPlus) {
3363    auto &S = Result.getSema();
3364    auto &Idents = S.Context.Idents;
3365
3366    // Ensure all external identifiers are in the identifier table.
3367    if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3368      std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3369      for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3370        Idents.get(Name);
3371    }
3372
3373    // Walk all lookup results in the TU for each identifier.
3374    for (const auto &Ident : Idents) {
3375      for (auto I = S.IdResolver.begin(Ident.getValue()),
3376                E = S.IdResolver.end();
3377           I != E; ++I) {
3378        if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3379          if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3380            Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3381            Visited.add(ND);
3382          }
3383        }
3384      }
3385    }
3386
3387    return;
3388  }
3389
3390  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3391    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3392
3393  // Enumerate all of the results in this context.
3394  for (DeclContextLookupResult R : Ctx->lookups()) {
3395    for (auto *D : R) {
3396      if (auto *ND = Result.getAcceptableDecl(D)) {
3397        Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3398        Visited.add(ND);
3399      }
3400    }
3401  }
3402
3403  // Traverse using directives for qualified name lookup.
3404  if (QualifiedNameLookup) {
3405    ShadowContextRAII Shadow(Visited);
3406    for (auto I : Ctx->using_directives()) {
3407      LookupVisibleDecls(I->getNominatedNamespace(), Result,
3408                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
3409    }
3410  }
3411
3412  // Traverse the contexts of inherited C++ classes.
3413  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3414    if (!Record->hasDefinition())
3415      return;
3416
3417    for (const auto &B : Record->bases()) {
3418      QualType BaseType = B.getType();
3419
3420      // Don't look into dependent bases, because name lookup can't look
3421      // there anyway.
3422      if (BaseType->isDependentType())
3423        continue;
3424
3425      const RecordType *Record = BaseType->getAs<RecordType>();
3426      if (!Record)
3427        continue;
3428
3429      // FIXME: It would be nice to be able to determine whether referencing
3430      // a particular member would be ambiguous. For example, given
3431      //
3432      //   struct A { int member; };
3433      //   struct B { int member; };
3434      //   struct C : A, B { };
3435      //
3436      //   void f(C *c) { c->### }
3437      //
3438      // accessing 'member' would result in an ambiguity. However, we
3439      // could be smart enough to qualify the member with the base
3440      // class, e.g.,
3441      //
3442      //   c->B::member
3443      //
3444      // or
3445      //
3446      //   c->A::member
3447
3448      // Find results in this base class (and its bases).
3449      ShadowContextRAII Shadow(Visited);
3450      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
3451                         true, Consumer, Visited);
3452    }
3453  }
3454
3455  // Traverse the contexts of Objective-C classes.
3456  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3457    // Traverse categories.
3458    for (auto *Cat : IFace->visible_categories()) {
3459      ShadowContextRAII Shadow(Visited);
3460      LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
3461                         Consumer, Visited);
3462    }
3463
3464    // Traverse protocols.
3465    for (auto *I : IFace->all_referenced_protocols()) {
3466      ShadowContextRAII Shadow(Visited);
3467      LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3468                         Visited);
3469    }
3470
3471    // Traverse the superclass.
3472    if (IFace->getSuperClass()) {
3473      ShadowContextRAII Shadow(Visited);
3474      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3475                         true, Consumer, Visited);
3476    }
3477
3478    // If there is an implementation, traverse it. We do this to find
3479    // synthesized ivars.
3480    if (IFace->getImplementation()) {
3481      ShadowContextRAII Shadow(Visited);
3482      LookupVisibleDecls(IFace->getImplementation(), Result,
3483                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
3484    }
3485  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3486    for (auto *I : Protocol->protocols()) {
3487      ShadowContextRAII Shadow(Visited);
3488      LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3489                         Visited);
3490    }
3491  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3492    for (auto *I : Category->protocols()) {
3493      ShadowContextRAII Shadow(Visited);
3494      LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3495                         Visited);
3496    }
3497
3498    // If there is an implementation, traverse it.
3499    if (Category->getImplementation()) {
3500      ShadowContextRAII Shadow(Visited);
3501      LookupVisibleDecls(Category->getImplementation(), Result,
3502                         QualifiedNameLookup, true, Consumer, Visited);
3503    }
3504  }
3505}
3506
3507static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3508                               UnqualUsingDirectiveSet &UDirs,
3509                               VisibleDeclConsumer &Consumer,
3510                               VisibleDeclsRecord &Visited) {
3511  if (!S)
3512    return;
3513
3514  if (!S->getEntity() ||
3515      (!S->getParent() &&
3516       !Visited.alreadyVisitedContext(S->getEntity())) ||
3517      (S->getEntity())->isFunctionOrMethod()) {
3518    FindLocalExternScope FindLocals(Result);
3519    // Walk through the declarations in this Scope.
3520    for (auto *D : S->decls()) {
3521      if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3522        if ((ND = Result.getAcceptableDecl(ND))) {
3523          Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3524          Visited.add(ND);
3525        }
3526    }
3527  }
3528
3529  // FIXME: C++ [temp.local]p8
3530  DeclContext *Entity = nullptr;
3531  if (S->getEntity()) {
3532    // Look into this scope's declaration context, along with any of its
3533    // parent lookup contexts (e.g., enclosing classes), up to the point
3534    // where we hit the context stored in the next outer scope.
3535    Entity = S->getEntity();
3536    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3537
3538    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3539         Ctx = Ctx->getLookupParent()) {
3540      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3541        if (Method->isInstanceMethod()) {
3542          // For instance methods, look for ivars in the method's interface.
3543          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3544                                  Result.getNameLoc(), Sema::LookupMemberName);
3545          if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3546            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3547                               /*InBaseClass=*/false, Consumer, Visited);
3548          }
3549        }
3550
3551        // We've already performed all of the name lookup that we need
3552        // to for Objective-C methods; the next context will be the
3553        // outer scope.
3554        break;
3555      }
3556
3557      if (Ctx->isFunctionOrMethod())
3558        continue;
3559
3560      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3561                         /*InBaseClass=*/false, Consumer, Visited);
3562    }
3563  } else if (!S->getParent()) {
3564    // Look into the translation unit scope. We walk through the translation
3565    // unit's declaration context, because the Scope itself won't have all of
3566    // the declarations if we loaded a precompiled header.
3567    // FIXME: We would like the translation unit's Scope object to point to the
3568    // translation unit, so we don't need this special "if" branch. However,
3569    // doing so would force the normal C++ name-lookup code to look into the
3570    // translation unit decl when the IdentifierInfo chains would suffice.
3571    // Once we fix that problem (which is part of a more general "don't look
3572    // in DeclContexts unless we have to" optimization), we can eliminate this.
3573    Entity = Result.getSema().Context.getTranslationUnitDecl();
3574    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3575                       /*InBaseClass=*/false, Consumer, Visited);
3576  }
3577
3578  if (Entity) {
3579    // Lookup visible declarations in any namespaces found by using
3580    // directives.
3581    for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3582      LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3583                         Result, /*QualifiedNameLookup=*/false,
3584                         /*InBaseClass=*/false, Consumer, Visited);
3585  }
3586
3587  // Lookup names in the parent scope.
3588  ShadowContextRAII Shadow(Visited);
3589  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3590}
3591
3592void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3593                              VisibleDeclConsumer &Consumer,
3594                              bool IncludeGlobalScope) {
3595  // Determine the set of using directives available during
3596  // unqualified name lookup.
3597  Scope *Initial = S;
3598  UnqualUsingDirectiveSet UDirs;
3599  if (getLangOpts().CPlusPlus) {
3600    // Find the first namespace or translation-unit scope.
3601    while (S && !isNamespaceOrTranslationUnitScope(S))
3602      S = S->getParent();
3603
3604    UDirs.visitScopeChain(Initial, S);
3605  }
3606  UDirs.done();
3607
3608  // Look for visible declarations.
3609  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3610  Result.setAllowHidden(Consumer.includeHiddenDecls());
3611  VisibleDeclsRecord Visited;
3612  if (!IncludeGlobalScope)
3613    Visited.visitedContext(Context.getTranslationUnitDecl());
3614  ShadowContextRAII Shadow(Visited);
3615  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3616}
3617
3618void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3619                              VisibleDeclConsumer &Consumer,
3620                              bool IncludeGlobalScope) {
3621  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3622  Result.setAllowHidden(Consumer.includeHiddenDecls());
3623  VisibleDeclsRecord Visited;
3624  if (!IncludeGlobalScope)
3625    Visited.visitedContext(Context.getTranslationUnitDecl());
3626  ShadowContextRAII Shadow(Visited);
3627  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3628                       /*InBaseClass=*/false, Consumer, Visited);
3629}
3630
3631/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3632/// If GnuLabelLoc is a valid source location, then this is a definition
3633/// of an __label__ label name, otherwise it is a normal label definition
3634/// or use.
3635LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3636                                     SourceLocation GnuLabelLoc) {
3637  // Do a lookup to see if we have a label with this name already.
3638  NamedDecl *Res = nullptr;
3639
3640  if (GnuLabelLoc.isValid()) {
3641    // Local label definitions always shadow existing labels.
3642    Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3643    Scope *S = CurScope;
3644    PushOnScopeChains(Res, S, true);
3645    return cast<LabelDecl>(Res);
3646  }
3647
3648  // Not a GNU local label.
3649  Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3650  // If we found a label, check to see if it is in the same context as us.
3651  // When in a Block, we don't want to reuse a label in an enclosing function.
3652  if (Res && Res->getDeclContext() != CurContext)
3653    Res = nullptr;
3654  if (!Res) {
3655    // If not forward referenced or defined already, create the backing decl.
3656    Res = LabelDecl::Create(Context, CurContext, Loc, II);
3657    Scope *S = CurScope->getFnParent();
3658    assert(S && "Not in a function?");
3659    PushOnScopeChains(Res, S, true);
3660  }
3661  return cast<LabelDecl>(Res);
3662}
3663
3664//===----------------------------------------------------------------------===//
3665// Typo correction
3666//===----------------------------------------------------------------------===//
3667
3668static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3669                              TypoCorrection &Candidate) {
3670  Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3671  return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3672}
3673
3674static void LookupPotentialTypoResult(Sema &SemaRef,
3675                                      LookupResult &Res,
3676                                      IdentifierInfo *Name,
3677                                      Scope *S, CXXScopeSpec *SS,
3678                                      DeclContext *MemberContext,
3679                                      bool EnteringContext,
3680                                      bool isObjCIvarLookup,
3681                                      bool FindHidden);
3682
3683/// \brief Check whether the declarations found for a typo correction are
3684/// visible, and if none of them are, convert the correction to an 'import
3685/// a module' correction.
3686static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3687  if (TC.begin() == TC.end())
3688    return;
3689
3690  TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3691
3692  for (/**/; DI != DE; ++DI)
3693    if (!LookupResult::isVisible(SemaRef, *DI))
3694      break;
3695  // Nothing to do if all decls are visible.
3696  if (DI == DE)
3697    return;
3698
3699  llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3700  bool AnyVisibleDecls = !NewDecls.empty();
3701
3702  for (/**/; DI != DE; ++DI) {
3703    NamedDecl *VisibleDecl = *DI;
3704    if (!LookupResult::isVisible(SemaRef, *DI))
3705      VisibleDecl = findAcceptableDecl(SemaRef, *DI);
3706
3707    if (VisibleDecl) {
3708      if (!AnyVisibleDecls) {
3709        // Found a visible decl, discard all hidden ones.
3710        AnyVisibleDecls = true;
3711        NewDecls.clear();
3712      }
3713      NewDecls.push_back(VisibleDecl);
3714    } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
3715      NewDecls.push_back(*DI);
3716  }
3717
3718  if (NewDecls.empty())
3719    TC = TypoCorrection();
3720  else {
3721    TC.setCorrectionDecls(NewDecls);
3722    TC.setRequiresImport(!AnyVisibleDecls);
3723  }
3724}
3725
3726// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3727// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3728// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3729static void getNestedNameSpecifierIdentifiers(
3730    NestedNameSpecifier *NNS,
3731    SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3732  if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3733    getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3734  else
3735    Identifiers.clear();
3736
3737  const IdentifierInfo *II = nullptr;
3738
3739  switch (NNS->getKind()) {
3740  case NestedNameSpecifier::Identifier:
3741    II = NNS->getAsIdentifier();
3742    break;
3743
3744  case NestedNameSpecifier::Namespace:
3745    if (NNS->getAsNamespace()->isAnonymousNamespace())
3746      return;
3747    II = NNS->getAsNamespace()->getIdentifier();
3748    break;
3749
3750  case NestedNameSpecifier::NamespaceAlias:
3751    II = NNS->getAsNamespaceAlias()->getIdentifier();
3752    break;
3753
3754  case NestedNameSpecifier::TypeSpecWithTemplate:
3755  case NestedNameSpecifier::TypeSpec:
3756    II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3757    break;
3758
3759  case NestedNameSpecifier::Global:
3760  case NestedNameSpecifier::Super:
3761    return;
3762  }
3763
3764  if (II)
3765    Identifiers.push_back(II);
3766}
3767
3768void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3769                                       DeclContext *Ctx, bool InBaseClass) {
3770  // Don't consider hidden names for typo correction.
3771  if (Hiding)
3772    return;
3773
3774  // Only consider entities with identifiers for names, ignoring
3775  // special names (constructors, overloaded operators, selectors,
3776  // etc.).
3777  IdentifierInfo *Name = ND->getIdentifier();
3778  if (!Name)
3779    return;
3780
3781  // Only consider visible declarations and declarations from modules with
3782  // names that exactly match.
3783  if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
3784      !findAcceptableDecl(SemaRef, ND))
3785    return;
3786
3787  FoundName(Name->getName());
3788}
3789
3790void TypoCorrectionConsumer::FoundName(StringRef Name) {
3791  // Compute the edit distance between the typo and the name of this
3792  // entity, and add the identifier to the list of results.
3793  addName(Name, nullptr);
3794}
3795
3796void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3797  // Compute the edit distance between the typo and this keyword,
3798  // and add the keyword to the list of results.
3799  addName(Keyword, nullptr, nullptr, true);
3800}
3801
3802void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3803                                     NestedNameSpecifier *NNS, bool isKeyword) {
3804  // Use a simple length-based heuristic to determine the minimum possible
3805  // edit distance. If the minimum isn't good enough, bail out early.
3806  StringRef TypoStr = Typo->getName();
3807  unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3808  if (MinED && TypoStr.size() / MinED < 3)
3809    return;
3810
3811  // Compute an upper bound on the allowable edit distance, so that the
3812  // edit-distance algorithm can short-circuit.
3813  unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3814  unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3815  if (ED >= UpperBound) return;
3816
3817  TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3818  if (isKeyword) TC.makeKeyword();
3819  TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
3820  addCorrection(TC);
3821}
3822
3823static const unsigned MaxTypoDistanceResultSets = 5;
3824
3825void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3826  StringRef TypoStr = Typo->getName();
3827  StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3828
3829  // For very short typos, ignore potential corrections that have a different
3830  // base identifier from the typo or which have a normalized edit distance
3831  // longer than the typo itself.
3832  if (TypoStr.size() < 3 &&
3833      (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
3834    return;
3835
3836  // If the correction is resolved but is not viable, ignore it.
3837  if (Correction.isResolved()) {
3838    checkCorrectionVisibility(SemaRef, Correction);
3839    if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
3840      return;
3841  }
3842
3843  TypoResultList &CList =
3844      CorrectionResults[Correction.getEditDistance(false)][Name];
3845
3846  if (!CList.empty() && !CList.back().isResolved())
3847    CList.pop_back();
3848  if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3849    std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3850    for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3851         RI != RIEnd; ++RI) {
3852      // If the Correction refers to a decl already in the result list,
3853      // replace the existing result if the string representation of Correction
3854      // comes before the current result alphabetically, then stop as there is
3855      // nothing more to be done to add Correction to the candidate set.
3856      if (RI->getCorrectionDecl() == NewND) {
3857        if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3858          *RI = Correction;
3859        return;
3860      }
3861    }
3862  }
3863  if (CList.empty() || Correction.isResolved())
3864    CList.push_back(Correction);
3865
3866  while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3867    CorrectionResults.erase(std::prev(CorrectionResults.end()));
3868}
3869
3870void TypoCorrectionConsumer::addNamespaces(
3871    const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
3872  SearchNamespaces = true;
3873
3874  for (auto KNPair : KnownNamespaces)
3875    Namespaces.addNameSpecifier(KNPair.first);
3876
3877  bool SSIsTemplate = false;
3878  if (NestedNameSpecifier *NNS =
3879          (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
3880    if (const Type *T = NNS->getAsType())
3881      SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
3882  }
3883  // Do not transform this into an iterator-based loop. The loop body can
3884  // trigger the creation of further types (through lazy deserialization) and
3885  // invalide iterators into this list.
3886  auto &Types = SemaRef.getASTContext().getTypes();
3887  for (unsigned I = 0; I != Types.size(); ++I) {
3888    const auto *TI = Types[I];
3889    if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
3890      CD = CD->getCanonicalDecl();
3891      if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
3892          !CD->isUnion() && CD->getIdentifier() &&
3893          (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
3894          (CD->isBeingDefined() || CD->isCompleteDefinition()))
3895        Namespaces.addNameSpecifier(CD);
3896    }
3897  }
3898}
3899
3900const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
3901  if (++CurrentTCIndex < ValidatedCorrections.size())
3902    return ValidatedCorrections[CurrentTCIndex];
3903
3904  CurrentTCIndex = ValidatedCorrections.size();
3905  while (!CorrectionResults.empty()) {
3906    auto DI = CorrectionResults.begin();
3907    if (DI->second.empty()) {
3908      CorrectionResults.erase(DI);
3909      continue;
3910    }
3911
3912    auto RI = DI->second.begin();
3913    if (RI->second.empty()) {
3914      DI->second.erase(RI);
3915      performQualifiedLookups();
3916      continue;
3917    }
3918
3919    TypoCorrection TC = RI->second.pop_back_val();
3920    if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
3921      ValidatedCorrections.push_back(TC);
3922      return ValidatedCorrections[CurrentTCIndex];
3923    }
3924  }
3925  return ValidatedCorrections[0];  // The empty correction.
3926}
3927
3928bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
3929  IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
3930  DeclContext *TempMemberContext = MemberContext;
3931  CXXScopeSpec *TempSS = SS.get();
3932retry_lookup:
3933  LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
3934                            EnteringContext,
3935                            CorrectionValidator->IsObjCIvarLookup,
3936                            Name == Typo && !Candidate.WillReplaceSpecifier());
3937  switch (Result.getResultKind()) {
3938  case LookupResult::NotFound:
3939  case LookupResult::NotFoundInCurrentInstantiation:
3940  case LookupResult::FoundUnresolvedValue:
3941    if (TempSS) {
3942      // Immediately retry the lookup without the given CXXScopeSpec
3943      TempSS = nullptr;
3944      Candidate.WillReplaceSpecifier(true);
3945      goto retry_lookup;
3946    }
3947    if (TempMemberContext) {
3948      if (SS && !TempSS)
3949        TempSS = SS.get();
3950      TempMemberContext = nullptr;
3951      goto retry_lookup;
3952    }
3953    if (SearchNamespaces)
3954      QualifiedResults.push_back(Candidate);
3955    break;
3956
3957  case LookupResult::Ambiguous:
3958    // We don't deal with ambiguities.
3959    break;
3960
3961  case LookupResult::Found:
3962  case LookupResult::FoundOverloaded:
3963    // Store all of the Decls for overloaded symbols
3964    for (auto *TRD : Result)
3965      Candidate.addCorrectionDecl(TRD);
3966    checkCorrectionVisibility(SemaRef, Candidate);
3967    if (!isCandidateViable(*CorrectionValidator, Candidate)) {
3968      if (SearchNamespaces)
3969        QualifiedResults.push_back(Candidate);
3970      break;
3971    }
3972    Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
3973    return true;
3974  }
3975  return false;
3976}
3977
3978void TypoCorrectionConsumer::performQualifiedLookups() {
3979  unsigned TypoLen = Typo->getName().size();
3980  for (auto QR : QualifiedResults) {
3981    for (auto NSI : Namespaces) {
3982      DeclContext *Ctx = NSI.DeclCtx;
3983      const Type *NSType = NSI.NameSpecifier->getAsType();
3984
3985      // If the current NestedNameSpecifier refers to a class and the
3986      // current correction candidate is the name of that class, then skip
3987      // it as it is unlikely a qualified version of the class' constructor
3988      // is an appropriate correction.
3989      if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
3990                                           nullptr) {
3991        if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
3992          continue;
3993      }
3994
3995      TypoCorrection TC(QR);
3996      TC.ClearCorrectionDecls();
3997      TC.setCorrectionSpecifier(NSI.NameSpecifier);
3998      TC.setQualifierDistance(NSI.EditDistance);
3999      TC.setCallbackDistance(0); // Reset the callback distance
4000
4001      // If the current correction candidate and namespace combination are
4002      // too far away from the original typo based on the normalized edit
4003      // distance, then skip performing a qualified name lookup.
4004      unsigned TmpED = TC.getEditDistance(true);
4005      if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4006          TypoLen / TmpED < 3)
4007        continue;
4008
4009      Result.clear();
4010      Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4011      if (!SemaRef.LookupQualifiedName(Result, Ctx))
4012        continue;
4013
4014      // Any corrections added below will be validated in subsequent
4015      // iterations of the main while() loop over the Consumer's contents.
4016      switch (Result.getResultKind()) {
4017      case LookupResult::Found:
4018      case LookupResult::FoundOverloaded: {
4019        if (SS && SS->isValid()) {
4020          std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4021          std::string OldQualified;
4022          llvm::raw_string_ostream OldOStream(OldQualified);
4023          SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4024          OldOStream << Typo->getName();
4025          // If correction candidate would be an identical written qualified
4026          // identifer, then the existing CXXScopeSpec probably included a
4027          // typedef that didn't get accounted for properly.
4028          if (OldOStream.str() == NewQualified)
4029            break;
4030        }
4031        for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4032             TRD != TRDEnd; ++TRD) {
4033          if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4034                                        NSType ? NSType->getAsCXXRecordDecl()
4035                                               : nullptr,
4036                                        TRD.getPair()) == Sema::AR_accessible)
4037            TC.addCorrectionDecl(*TRD);
4038        }
4039        if (TC.isResolved()) {
4040          TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4041          addCorrection(TC);
4042        }
4043        break;
4044      }
4045      case LookupResult::NotFound:
4046      case LookupResult::NotFoundInCurrentInstantiation:
4047      case LookupResult::Ambiguous:
4048      case LookupResult::FoundUnresolvedValue:
4049        break;
4050      }
4051    }
4052  }
4053  QualifiedResults.clear();
4054}
4055
4056TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4057    ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4058    : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4059  if (NestedNameSpecifier *NNS =
4060          CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4061    llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4062    NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4063
4064    getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4065  }
4066  // Build the list of identifiers that would be used for an absolute
4067  // (from the global context) NestedNameSpecifier referring to the current
4068  // context.
4069  for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
4070                                         CEnd = CurContextChain.rend();
4071       C != CEnd; ++C) {
4072    if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C))
4073      CurContextIdentifiers.push_back(ND->getIdentifier());
4074  }
4075
4076  // Add the global context as a NestedNameSpecifier
4077  SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4078                      NestedNameSpecifier::GlobalSpecifier(Context), 1};
4079  DistanceMap[1].push_back(SI);
4080}
4081
4082auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4083    DeclContext *Start) -> DeclContextList {
4084  assert(Start && "Building a context chain from a null context");
4085  DeclContextList Chain;
4086  for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4087       DC = DC->getLookupParent()) {
4088    NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4089    if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4090        !(ND && ND->isAnonymousNamespace()))
4091      Chain.push_back(DC->getPrimaryContext());
4092  }
4093  return Chain;
4094}
4095
4096unsigned
4097TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4098    DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4099  unsigned NumSpecifiers = 0;
4100  for (DeclContextList::reverse_iterator C = DeclChain.rbegin(),
4101                                      CEnd = DeclChain.rend();
4102       C != CEnd; ++C) {
4103    if (NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(*C)) {
4104      NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4105      ++NumSpecifiers;
4106    } else if (RecordDecl *RD = dyn_cast_or_null<RecordDecl>(*C)) {
4107      NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4108                                        RD->getTypeForDecl());
4109      ++NumSpecifiers;
4110    }
4111  }
4112  return NumSpecifiers;
4113}
4114
4115void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4116    DeclContext *Ctx) {
4117  NestedNameSpecifier *NNS = nullptr;
4118  unsigned NumSpecifiers = 0;
4119  DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4120  DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4121
4122  // Eliminate common elements from the two DeclContext chains.
4123  for (DeclContextList::reverse_iterator C = CurContextChain.rbegin(),
4124                                      CEnd = CurContextChain.rend();
4125       C != CEnd && !NamespaceDeclChain.empty() &&
4126       NamespaceDeclChain.back() == *C; ++C) {
4127    NamespaceDeclChain.pop_back();
4128  }
4129
4130  // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4131  NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4132
4133  // Add an explicit leading '::' specifier if needed.
4134  if (NamespaceDeclChain.empty()) {
4135    // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4136    NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4137    NumSpecifiers =
4138        buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4139  } else if (NamedDecl *ND =
4140                 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4141    IdentifierInfo *Name = ND->getIdentifier();
4142    bool SameNameSpecifier = false;
4143    if (std::find(CurNameSpecifierIdentifiers.begin(),
4144                  CurNameSpecifierIdentifiers.end(),
4145                  Name) != CurNameSpecifierIdentifiers.end()) {
4146      std::string NewNameSpecifier;
4147      llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4148      SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4149      getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4150      NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4151      SpecifierOStream.flush();
4152      SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4153    }
4154    if (SameNameSpecifier ||
4155        std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
4156                  Name) != CurContextIdentifiers.end()) {
4157      // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4158      NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4159      NumSpecifiers =
4160          buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4161    }
4162  }
4163
4164  // If the built NestedNameSpecifier would be replacing an existing
4165  // NestedNameSpecifier, use the number of component identifiers that
4166  // would need to be changed as the edit distance instead of the number
4167  // of components in the built NestedNameSpecifier.
4168  if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4169    SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4170    getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4171    NumSpecifiers = llvm::ComputeEditDistance(
4172        llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4173        llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4174  }
4175
4176  SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4177  DistanceMap[NumSpecifiers].push_back(SI);
4178}
4179
4180/// \brief Perform name lookup for a possible result for typo correction.
4181static void LookupPotentialTypoResult(Sema &SemaRef,
4182                                      LookupResult &Res,
4183                                      IdentifierInfo *Name,
4184                                      Scope *S, CXXScopeSpec *SS,
4185                                      DeclContext *MemberContext,
4186                                      bool EnteringContext,
4187                                      bool isObjCIvarLookup,
4188                                      bool FindHidden) {
4189  Res.suppressDiagnostics();
4190  Res.clear();
4191  Res.setLookupName(Name);
4192  Res.setAllowHidden(FindHidden);
4193  if (MemberContext) {
4194    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4195      if (isObjCIvarLookup) {
4196        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4197          Res.addDecl(Ivar);
4198          Res.resolveKind();
4199          return;
4200        }
4201      }
4202
4203      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
4204        Res.addDecl(Prop);
4205        Res.resolveKind();
4206        return;
4207      }
4208    }
4209
4210    SemaRef.LookupQualifiedName(Res, MemberContext);
4211    return;
4212  }
4213
4214  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4215                           EnteringContext);
4216
4217  // Fake ivar lookup; this should really be part of
4218  // LookupParsedName.
4219  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4220    if (Method->isInstanceMethod() && Method->getClassInterface() &&
4221        (Res.empty() ||
4222         (Res.isSingleResult() &&
4223          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4224       if (ObjCIvarDecl *IV
4225             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4226         Res.addDecl(IV);
4227         Res.resolveKind();
4228       }
4229     }
4230  }
4231}
4232
4233/// \brief Add keywords to the consumer as possible typo corrections.
4234static void AddKeywordsToConsumer(Sema &SemaRef,
4235                                  TypoCorrectionConsumer &Consumer,
4236                                  Scope *S, CorrectionCandidateCallback &CCC,
4237                                  bool AfterNestedNameSpecifier) {
4238  if (AfterNestedNameSpecifier) {
4239    // For 'X::', we know exactly which keywords can appear next.
4240    Consumer.addKeywordResult("template");
4241    if (CCC.WantExpressionKeywords)
4242      Consumer.addKeywordResult("operator");
4243    return;
4244  }
4245
4246  if (CCC.WantObjCSuper)
4247    Consumer.addKeywordResult("super");
4248
4249  if (CCC.WantTypeSpecifiers) {
4250    // Add type-specifier keywords to the set of results.
4251    static const char *const CTypeSpecs[] = {
4252      "char", "const", "double", "enum", "float", "int", "long", "short",
4253      "signed", "struct", "union", "unsigned", "void", "volatile",
4254      "_Complex", "_Imaginary",
4255      // storage-specifiers as well
4256      "extern", "inline", "static", "typedef"
4257    };
4258
4259    const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4260    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4261      Consumer.addKeywordResult(CTypeSpecs[I]);
4262
4263    if (SemaRef.getLangOpts().C99)
4264      Consumer.addKeywordResult("restrict");
4265    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4266      Consumer.addKeywordResult("bool");
4267    else if (SemaRef.getLangOpts().C99)
4268      Consumer.addKeywordResult("_Bool");
4269
4270    if (SemaRef.getLangOpts().CPlusPlus) {
4271      Consumer.addKeywordResult("class");
4272      Consumer.addKeywordResult("typename");
4273      Consumer.addKeywordResult("wchar_t");
4274
4275      if (SemaRef.getLangOpts().CPlusPlus11) {
4276        Consumer.addKeywordResult("char16_t");
4277        Consumer.addKeywordResult("char32_t");
4278        Consumer.addKeywordResult("constexpr");
4279        Consumer.addKeywordResult("decltype");
4280        Consumer.addKeywordResult("thread_local");
4281      }
4282    }
4283
4284    if (SemaRef.getLangOpts().GNUMode)
4285      Consumer.addKeywordResult("typeof");
4286  } else if (CCC.WantFunctionLikeCasts) {
4287    static const char *const CastableTypeSpecs[] = {
4288      "char", "double", "float", "int", "long", "short",
4289      "signed", "unsigned", "void"
4290    };
4291    for (auto *kw : CastableTypeSpecs)
4292      Consumer.addKeywordResult(kw);
4293  }
4294
4295  if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4296    Consumer.addKeywordResult("const_cast");
4297    Consumer.addKeywordResult("dynamic_cast");
4298    Consumer.addKeywordResult("reinterpret_cast");
4299    Consumer.addKeywordResult("static_cast");
4300  }
4301
4302  if (CCC.WantExpressionKeywords) {
4303    Consumer.addKeywordResult("sizeof");
4304    if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4305      Consumer.addKeywordResult("false");
4306      Consumer.addKeywordResult("true");
4307    }
4308
4309    if (SemaRef.getLangOpts().CPlusPlus) {
4310      static const char *const CXXExprs[] = {
4311        "delete", "new", "operator", "throw", "typeid"
4312      };
4313      const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4314      for (unsigned I = 0; I != NumCXXExprs; ++I)
4315        Consumer.addKeywordResult(CXXExprs[I]);
4316
4317      if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4318          cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4319        Consumer.addKeywordResult("this");
4320
4321      if (SemaRef.getLangOpts().CPlusPlus11) {
4322        Consumer.addKeywordResult("alignof");
4323        Consumer.addKeywordResult("nullptr");
4324      }
4325    }
4326
4327    if (SemaRef.getLangOpts().C11) {
4328      // FIXME: We should not suggest _Alignof if the alignof macro
4329      // is present.
4330      Consumer.addKeywordResult("_Alignof");
4331    }
4332  }
4333
4334  if (CCC.WantRemainingKeywords) {
4335    if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4336      // Statements.
4337      static const char *const CStmts[] = {
4338        "do", "else", "for", "goto", "if", "return", "switch", "while" };
4339      const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4340      for (unsigned I = 0; I != NumCStmts; ++I)
4341        Consumer.addKeywordResult(CStmts[I]);
4342
4343      if (SemaRef.getLangOpts().CPlusPlus) {
4344        Consumer.addKeywordResult("catch");
4345        Consumer.addKeywordResult("try");
4346      }
4347
4348      if (S && S->getBreakParent())
4349        Consumer.addKeywordResult("break");
4350
4351      if (S && S->getContinueParent())
4352        Consumer.addKeywordResult("continue");
4353
4354      if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
4355        Consumer.addKeywordResult("case");
4356        Consumer.addKeywordResult("default");
4357      }
4358    } else {
4359      if (SemaRef.getLangOpts().CPlusPlus) {
4360        Consumer.addKeywordResult("namespace");
4361        Consumer.addKeywordResult("template");
4362      }
4363
4364      if (S && S->isClassScope()) {
4365        Consumer.addKeywordResult("explicit");
4366        Consumer.addKeywordResult("friend");
4367        Consumer.addKeywordResult("mutable");
4368        Consumer.addKeywordResult("private");
4369        Consumer.addKeywordResult("protected");
4370        Consumer.addKeywordResult("public");
4371        Consumer.addKeywordResult("virtual");
4372      }
4373    }
4374
4375    if (SemaRef.getLangOpts().CPlusPlus) {
4376      Consumer.addKeywordResult("using");
4377
4378      if (SemaRef.getLangOpts().CPlusPlus11)
4379        Consumer.addKeywordResult("static_assert");
4380    }
4381  }
4382}
4383
4384std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4385    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4386    Scope *S, CXXScopeSpec *SS,
4387    std::unique_ptr<CorrectionCandidateCallback> CCC,
4388    DeclContext *MemberContext, bool EnteringContext,
4389    const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4390
4391  if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4392      DisableTypoCorrection)
4393    return nullptr;
4394
4395  // In Microsoft mode, don't perform typo correction in a template member
4396  // function dependent context because it interferes with the "lookup into
4397  // dependent bases of class templates" feature.
4398  if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4399      isa<CXXMethodDecl>(CurContext))
4400    return nullptr;
4401
4402  // We only attempt to correct typos for identifiers.
4403  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4404  if (!Typo)
4405    return nullptr;
4406
4407  // If the scope specifier itself was invalid, don't try to correct
4408  // typos.
4409  if (SS && SS->isInvalid())
4410    return nullptr;
4411
4412  // Never try to correct typos during template deduction or
4413  // instantiation.
4414  if (!ActiveTemplateInstantiations.empty())
4415    return nullptr;
4416
4417  // Don't try to correct 'super'.
4418  if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4419    return nullptr;
4420
4421  // Abort if typo correction already failed for this specific typo.
4422  IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4423  if (locs != TypoCorrectionFailures.end() &&
4424      locs->second.count(TypoName.getLoc()))
4425    return nullptr;
4426
4427  // Don't try to correct the identifier "vector" when in AltiVec mode.
4428  // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4429  // remove this workaround.
4430  if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4431    return nullptr;
4432
4433  // Provide a stop gap for files that are just seriously broken.  Trying
4434  // to correct all typos can turn into a HUGE performance penalty, causing
4435  // some files to take minutes to get rejected by the parser.
4436  unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4437  if (Limit && TyposCorrected >= Limit)
4438    return nullptr;
4439  ++TyposCorrected;
4440
4441  // If we're handling a missing symbol error, using modules, and the
4442  // special search all modules option is used, look for a missing import.
4443  if (ErrorRecovery && getLangOpts().Modules &&
4444      getLangOpts().ModulesSearchAll) {
4445    // The following has the side effect of loading the missing module.
4446    getModuleLoader().lookupMissingImports(Typo->getName(),
4447                                           TypoName.getLocStart());
4448  }
4449
4450  CorrectionCandidateCallback &CCCRef = *CCC;
4451  auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4452      *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4453      EnteringContext);
4454
4455  // Perform name lookup to find visible, similarly-named entities.
4456  bool IsUnqualifiedLookup = false;
4457  DeclContext *QualifiedDC = MemberContext;
4458  if (MemberContext) {
4459    LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4460
4461    // Look in qualified interfaces.
4462    if (OPT) {
4463      for (auto *I : OPT->quals())
4464        LookupVisibleDecls(I, LookupKind, *Consumer);
4465    }
4466  } else if (SS && SS->isSet()) {
4467    QualifiedDC = computeDeclContext(*SS, EnteringContext);
4468    if (!QualifiedDC)
4469      return nullptr;
4470
4471    LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4472  } else {
4473    IsUnqualifiedLookup = true;
4474  }
4475
4476  // Determine whether we are going to search in the various namespaces for
4477  // corrections.
4478  bool SearchNamespaces
4479    = getLangOpts().CPlusPlus &&
4480      (IsUnqualifiedLookup || (SS && SS->isSet()));
4481
4482  if (IsUnqualifiedLookup || SearchNamespaces) {
4483    // For unqualified lookup, look through all of the names that we have
4484    // seen in this translation unit.
4485    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4486    for (const auto &I : Context.Idents)
4487      Consumer->FoundName(I.getKey());
4488
4489    // Walk through identifiers in external identifier sources.
4490    // FIXME: Re-add the ability to skip very unlikely potential corrections.
4491    if (IdentifierInfoLookup *External
4492                            = Context.Idents.getExternalIdentifierLookup()) {
4493      std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4494      do {
4495        StringRef Name = Iter->Next();
4496        if (Name.empty())
4497          break;
4498
4499        Consumer->FoundName(Name);
4500      } while (true);
4501    }
4502  }
4503
4504  AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4505
4506  // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4507  // to search those namespaces.
4508  if (SearchNamespaces) {
4509    // Load any externally-known namespaces.
4510    if (ExternalSource && !LoadedExternalKnownNamespaces) {
4511      SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4512      LoadedExternalKnownNamespaces = true;
4513      ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4514      for (auto *N : ExternalKnownNamespaces)
4515        KnownNamespaces[N] = true;
4516    }
4517
4518    Consumer->addNamespaces(KnownNamespaces);
4519  }
4520
4521  return Consumer;
4522}
4523
4524/// \brief Try to "correct" a typo in the source code by finding
4525/// visible declarations whose names are similar to the name that was
4526/// present in the source code.
4527///
4528/// \param TypoName the \c DeclarationNameInfo structure that contains
4529/// the name that was present in the source code along with its location.
4530///
4531/// \param LookupKind the name-lookup criteria used to search for the name.
4532///
4533/// \param S the scope in which name lookup occurs.
4534///
4535/// \param SS the nested-name-specifier that precedes the name we're
4536/// looking for, if present.
4537///
4538/// \param CCC A CorrectionCandidateCallback object that provides further
4539/// validation of typo correction candidates. It also provides flags for
4540/// determining the set of keywords permitted.
4541///
4542/// \param MemberContext if non-NULL, the context in which to look for
4543/// a member access expression.
4544///
4545/// \param EnteringContext whether we're entering the context described by
4546/// the nested-name-specifier SS.
4547///
4548/// \param OPT when non-NULL, the search for visible declarations will
4549/// also walk the protocols in the qualified interfaces of \p OPT.
4550///
4551/// \returns a \c TypoCorrection containing the corrected name if the typo
4552/// along with information such as the \c NamedDecl where the corrected name
4553/// was declared, and any additional \c NestedNameSpecifier needed to access
4554/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4555TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4556                                 Sema::LookupNameKind LookupKind,
4557                                 Scope *S, CXXScopeSpec *SS,
4558                                 std::unique_ptr<CorrectionCandidateCallback> CCC,
4559                                 CorrectTypoKind Mode,
4560                                 DeclContext *MemberContext,
4561                                 bool EnteringContext,
4562                                 const ObjCObjectPointerType *OPT,
4563                                 bool RecordFailure) {
4564  assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback");
4565
4566  // Always let the ExternalSource have the first chance at correction, even
4567  // if we would otherwise have given up.
4568  if (ExternalSource) {
4569    if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4570        TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4571      return Correction;
4572  }
4573
4574  // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4575  // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4576  // some instances of CTC_Unknown, while WantRemainingKeywords is true
4577  // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4578  bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
4579
4580  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4581  auto Consumer = makeTypoCorrectionConsumer(
4582      TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4583      EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4584
4585  if (!Consumer)
4586    return TypoCorrection();
4587
4588  // If we haven't found anything, we're done.
4589  if (Consumer->empty())
4590    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4591
4592  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4593  // is not more that about a third of the length of the typo's identifier.
4594  unsigned ED = Consumer->getBestEditDistance(true);
4595  unsigned TypoLen = Typo->getName().size();
4596  if (ED > 0 && TypoLen / ED < 3)
4597    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4598
4599  TypoCorrection BestTC = Consumer->getNextCorrection();
4600  TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4601  if (!BestTC)
4602    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4603
4604  ED = BestTC.getEditDistance();
4605
4606  if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
4607    // If this was an unqualified lookup and we believe the callback
4608    // object wouldn't have filtered out possible corrections, note
4609    // that no correction was found.
4610    return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4611  }
4612
4613  // If only a single name remains, return that result.
4614  if (!SecondBestTC ||
4615      SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4616    const TypoCorrection &Result = BestTC;
4617
4618    // Don't correct to a keyword that's the same as the typo; the keyword
4619    // wasn't actually in scope.
4620    if (ED == 0 && Result.isKeyword())
4621      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4622
4623    TypoCorrection TC = Result;
4624    TC.setCorrectionRange(SS, TypoName);
4625    checkCorrectionVisibility(*this, TC);
4626    return TC;
4627  } else if (SecondBestTC && ObjCMessageReceiver) {
4628    // Prefer 'super' when we're completing in a message-receiver
4629    // context.
4630
4631    if (BestTC.getCorrection().getAsString() != "super") {
4632      if (SecondBestTC.getCorrection().getAsString() == "super")
4633        BestTC = SecondBestTC;
4634      else if ((*Consumer)["super"].front().isKeyword())
4635        BestTC = (*Consumer)["super"].front();
4636    }
4637    // Don't correct to a keyword that's the same as the typo; the keyword
4638    // wasn't actually in scope.
4639    if (BestTC.getEditDistance() == 0 ||
4640        BestTC.getCorrection().getAsString() != "super")
4641      return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4642
4643    BestTC.setCorrectionRange(SS, TypoName);
4644    return BestTC;
4645  }
4646
4647  // Record the failure's location if needed and return an empty correction. If
4648  // this was an unqualified lookup and we believe the callback object did not
4649  // filter out possible corrections, also cache the failure for the typo.
4650  return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4651}
4652
4653/// \brief Try to "correct" a typo in the source code by finding
4654/// visible declarations whose names are similar to the name that was
4655/// present in the source code.
4656///
4657/// \param TypoName the \c DeclarationNameInfo structure that contains
4658/// the name that was present in the source code along with its location.
4659///
4660/// \param LookupKind the name-lookup criteria used to search for the name.
4661///
4662/// \param S the scope in which name lookup occurs.
4663///
4664/// \param SS the nested-name-specifier that precedes the name we're
4665/// looking for, if present.
4666///
4667/// \param CCC A CorrectionCandidateCallback object that provides further
4668/// validation of typo correction candidates. It also provides flags for
4669/// determining the set of keywords permitted.
4670///
4671/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4672/// diagnostics when the actual typo correction is attempted.
4673///
4674/// \param TRC A TypoRecoveryCallback functor that will be used to build an
4675/// Expr from a typo correction candidate.
4676///
4677/// \param MemberContext if non-NULL, the context in which to look for
4678/// a member access expression.
4679///
4680/// \param EnteringContext whether we're entering the context described by
4681/// the nested-name-specifier SS.
4682///
4683/// \param OPT when non-NULL, the search for visible declarations will
4684/// also walk the protocols in the qualified interfaces of \p OPT.
4685///
4686/// \returns a new \c TypoExpr that will later be replaced in the AST with an
4687/// Expr representing the result of performing typo correction, or nullptr if
4688/// typo correction is not possible. If nullptr is returned, no diagnostics will
4689/// be emitted and it is the responsibility of the caller to emit any that are
4690/// needed.
4691TypoExpr *Sema::CorrectTypoDelayed(
4692    const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4693    Scope *S, CXXScopeSpec *SS,
4694    std::unique_ptr<CorrectionCandidateCallback> CCC,
4695    TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4696    DeclContext *MemberContext, bool EnteringContext,
4697    const ObjCObjectPointerType *OPT) {
4698  assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback");
4699
4700  TypoCorrection Empty;
4701  auto Consumer = makeTypoCorrectionConsumer(
4702      TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4703      EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4704
4705  if (!Consumer || Consumer->empty())
4706    return nullptr;
4707
4708  // Make sure the best edit distance (prior to adding any namespace qualifiers)
4709  // is not more that about a third of the length of the typo's identifier.
4710  unsigned ED = Consumer->getBestEditDistance(true);
4711  IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4712  if (ED > 0 && Typo->getName().size() / ED < 3)
4713    return nullptr;
4714
4715  ExprEvalContexts.back().NumTypos++;
4716  return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4717}
4718
4719void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4720  if (!CDecl) return;
4721
4722  if (isKeyword())
4723    CorrectionDecls.clear();
4724
4725  CorrectionDecls.push_back(CDecl->getUnderlyingDecl());
4726
4727  if (!CorrectionName)
4728    CorrectionName = CDecl->getDeclName();
4729}
4730
4731std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4732  if (CorrectionNameSpec) {
4733    std::string tmpBuffer;
4734    llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4735    CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4736    PrefixOStream << CorrectionName;
4737    return PrefixOStream.str();
4738  }
4739
4740  return CorrectionName.getAsString();
4741}
4742
4743bool CorrectionCandidateCallback::ValidateCandidate(
4744    const TypoCorrection &candidate) {
4745  if (!candidate.isResolved())
4746    return true;
4747
4748  if (candidate.isKeyword())
4749    return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4750           WantRemainingKeywords || WantObjCSuper;
4751
4752  bool HasNonType = false;
4753  bool HasStaticMethod = false;
4754  bool HasNonStaticMethod = false;
4755  for (Decl *D : candidate) {
4756    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4757      D = FTD->getTemplatedDecl();
4758    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4759      if (Method->isStatic())
4760        HasStaticMethod = true;
4761      else
4762        HasNonStaticMethod = true;
4763    }
4764    if (!isa<TypeDecl>(D))
4765      HasNonType = true;
4766  }
4767
4768  if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4769      !candidate.getCorrectionSpecifier())
4770    return false;
4771
4772  return WantTypeSpecifiers || HasNonType;
4773}
4774
4775FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4776                                             bool HasExplicitTemplateArgs,
4777                                             MemberExpr *ME)
4778    : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4779      CurContext(SemaRef.CurContext), MemberFn(ME) {
4780  WantTypeSpecifiers = false;
4781  WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4782  WantRemainingKeywords = false;
4783}
4784
4785bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4786  if (!candidate.getCorrectionDecl())
4787    return candidate.isKeyword();
4788
4789  for (auto *C : candidate) {
4790    FunctionDecl *FD = nullptr;
4791    NamedDecl *ND = C->getUnderlyingDecl();
4792    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4793      FD = FTD->getTemplatedDecl();
4794    if (!HasExplicitTemplateArgs && !FD) {
4795      if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4796        // If the Decl is neither a function nor a template function,
4797        // determine if it is a pointer or reference to a function. If so,
4798        // check against the number of arguments expected for the pointee.
4799        QualType ValType = cast<ValueDecl>(ND)->getType();
4800        if (ValType->isAnyPointerType() || ValType->isReferenceType())
4801          ValType = ValType->getPointeeType();
4802        if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4803          if (FPT->getNumParams() == NumArgs)
4804            return true;
4805      }
4806    }
4807
4808    // Skip the current candidate if it is not a FunctionDecl or does not accept
4809    // the current number of arguments.
4810    if (!FD || !(FD->getNumParams() >= NumArgs &&
4811                 FD->getMinRequiredArguments() <= NumArgs))
4812      continue;
4813
4814    // If the current candidate is a non-static C++ method, skip the candidate
4815    // unless the method being corrected--or the current DeclContext, if the
4816    // function being corrected is not a method--is a method in the same class
4817    // or a descendent class of the candidate's parent class.
4818    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4819      if (MemberFn || !MD->isStatic()) {
4820        CXXMethodDecl *CurMD =
4821            MemberFn
4822                ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
4823                : dyn_cast_or_null<CXXMethodDecl>(CurContext);
4824        CXXRecordDecl *CurRD =
4825            CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
4826        CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
4827        if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
4828          continue;
4829      }
4830    }
4831    return true;
4832  }
4833  return false;
4834}
4835
4836void Sema::diagnoseTypo(const TypoCorrection &Correction,
4837                        const PartialDiagnostic &TypoDiag,
4838                        bool ErrorRecovery) {
4839  diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
4840               ErrorRecovery);
4841}
4842
4843/// Find which declaration we should import to provide the definition of
4844/// the given declaration.
4845static NamedDecl *getDefinitionToImport(NamedDecl *D) {
4846  if (VarDecl *VD = dyn_cast<VarDecl>(D))
4847    return VD->getDefinition();
4848  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4849    return FD->isDefined(FD) ? const_cast<FunctionDecl*>(FD) : nullptr;
4850  if (TagDecl *TD = dyn_cast<TagDecl>(D))
4851    return TD->getDefinition();
4852  if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
4853    return ID->getDefinition();
4854  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
4855    return PD->getDefinition();
4856  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
4857    return getDefinitionToImport(TD->getTemplatedDecl());
4858  return nullptr;
4859}
4860
4861void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
4862                                 bool NeedDefinition, bool Recover) {
4863  assert(!isVisible(Decl) && "missing import for non-hidden decl?");
4864
4865  // Suggest importing a module providing the definition of this entity, if
4866  // possible.
4867  NamedDecl *Def = getDefinitionToImport(Decl);
4868  if (!Def)
4869    Def = Decl;
4870
4871  // FIXME: Add a Fix-It that imports the corresponding module or includes
4872  // the header.
4873  Module *Owner = getOwningModule(Decl);
4874  assert(Owner && "definition of hidden declaration is not in a module");
4875
4876  llvm::SmallVector<Module*, 8> OwningModules;
4877  OwningModules.push_back(Owner);
4878  auto Merged = Context.getModulesWithMergedDefinition(Decl);
4879  OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
4880
4881  diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules,
4882                        NeedDefinition ? MissingImportKind::Definition
4883                                       : MissingImportKind::Declaration,
4884                        Recover);
4885}
4886
4887void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
4888                                 SourceLocation DeclLoc,
4889                                 ArrayRef<Module *> Modules,
4890                                 MissingImportKind MIK, bool Recover) {
4891  assert(!Modules.empty());
4892
4893  if (Modules.size() > 1) {
4894    std::string ModuleList;
4895    unsigned N = 0;
4896    for (Module *M : Modules) {
4897      ModuleList += "\n        ";
4898      if (++N == 5 && N != Modules.size()) {
4899        ModuleList += "[...]";
4900        break;
4901      }
4902      ModuleList += M->getFullModuleName();
4903    }
4904
4905    Diag(UseLoc, diag::err_module_unimported_use_multiple)
4906      << (int)MIK << Decl << ModuleList;
4907  } else {
4908    Diag(UseLoc, diag::err_module_unimported_use)
4909      << (int)MIK << Decl << Modules[0]->getFullModuleName();
4910  }
4911
4912  unsigned DiagID;
4913  switch (MIK) {
4914  case MissingImportKind::Declaration:
4915    DiagID = diag::note_previous_declaration;
4916    break;
4917  case MissingImportKind::Definition:
4918    DiagID = diag::note_previous_definition;
4919    break;
4920  case MissingImportKind::DefaultArgument:
4921    DiagID = diag::note_default_argument_declared_here;
4922    break;
4923  }
4924  Diag(DeclLoc, DiagID);
4925
4926  // Try to recover by implicitly importing this module.
4927  if (Recover)
4928    createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
4929}
4930
4931/// \brief Diagnose a successfully-corrected typo. Separated from the correction
4932/// itself to allow external validation of the result, etc.
4933///
4934/// \param Correction The result of performing typo correction.
4935/// \param TypoDiag The diagnostic to produce. This will have the corrected
4936///        string added to it (and usually also a fixit).
4937/// \param PrevNote A note to use when indicating the location of the entity to
4938///        which we are correcting. Will have the correction string added to it.
4939/// \param ErrorRecovery If \c true (the default), the caller is going to
4940///        recover from the typo as if the corrected string had been typed.
4941///        In this case, \c PDiag must be an error, and we will attach a fixit
4942///        to it.
4943void Sema::diagnoseTypo(const TypoCorrection &Correction,
4944                        const PartialDiagnostic &TypoDiag,
4945                        const PartialDiagnostic &PrevNote,
4946                        bool ErrorRecovery) {
4947  std::string CorrectedStr = Correction.getAsString(getLangOpts());
4948  std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
4949  FixItHint FixTypo = FixItHint::CreateReplacement(
4950      Correction.getCorrectionRange(), CorrectedStr);
4951
4952  // Maybe we're just missing a module import.
4953  if (Correction.requiresImport()) {
4954    NamedDecl *Decl = Correction.getCorrectionDecl();
4955    assert(Decl && "import required but no declaration to import");
4956
4957    diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
4958                          /*NeedDefinition*/ false, ErrorRecovery);
4959    return;
4960  }
4961
4962  Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
4963    << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
4964
4965  NamedDecl *ChosenDecl =
4966      Correction.isKeyword() ? nullptr : Correction.getCorrectionDecl();
4967  if (PrevNote.getDiagID() && ChosenDecl)
4968    Diag(ChosenDecl->getLocation(), PrevNote)
4969      << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
4970}
4971
4972TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4973                                  TypoDiagnosticGenerator TDG,
4974                                  TypoRecoveryCallback TRC) {
4975  assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
4976  auto TE = new (Context) TypoExpr(Context.DependentTy);
4977  auto &State = DelayedTypos[TE];
4978  State.Consumer = std::move(TCC);
4979  State.DiagHandler = std::move(TDG);
4980  State.RecoveryHandler = std::move(TRC);
4981  return TE;
4982}
4983
4984const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
4985  auto Entry = DelayedTypos.find(TE);
4986  assert(Entry != DelayedTypos.end() &&
4987         "Failed to get the state for a TypoExpr!");
4988  return Entry->second;
4989}
4990
4991void Sema::clearDelayedTypo(TypoExpr *TE) {
4992  DelayedTypos.erase(TE);
4993}
4994