1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
6// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
7// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
8//
9// This Source Code Form is subject to the terms of the Mozilla
10// Public License v. 2.0. If a copy of the MPL was not distributed
11// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
12
13#ifndef EIGEN_LDLT_H
14#define EIGEN_LDLT_H
15
16namespace Eigen {
17
18namespace internal {
19  template<typename MatrixType, int UpLo> struct LDLT_Traits;
20
21  // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
22  enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
23}
24
25/** \ingroup Cholesky_Module
26  *
27  * \class LDLT
28  *
29  * \brief Robust Cholesky decomposition of a matrix with pivoting
30  *
31  * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
32  * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
33  *             The other triangular part won't be read.
34  *
35  * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
36  * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L
37  * is lower triangular with a unit diagonal and D is a diagonal matrix.
38  *
39  * The decomposition uses pivoting to ensure stability, so that L will have
40  * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
41  * on D also stabilizes the computation.
42  *
43  * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
44  * decomposition to determine whether a system of equations has a solution.
45  *
46  * \sa MatrixBase::ldlt(), class LLT
47  */
48template<typename _MatrixType, int _UpLo> class LDLT
49{
50  public:
51    typedef _MatrixType MatrixType;
52    enum {
53      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
54      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
55      Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
56      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
57      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
58      UpLo = _UpLo
59    };
60    typedef typename MatrixType::Scalar Scalar;
61    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
62    typedef typename MatrixType::Index Index;
63    typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
64
65    typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
66    typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
67
68    typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
69
70    /** \brief Default Constructor.
71      *
72      * The default constructor is useful in cases in which the user intends to
73      * perform decompositions via LDLT::compute(const MatrixType&).
74      */
75    LDLT()
76      : m_matrix(),
77        m_transpositions(),
78        m_sign(internal::ZeroSign),
79        m_isInitialized(false)
80    {}
81
82    /** \brief Default Constructor with memory preallocation
83      *
84      * Like the default constructor but with preallocation of the internal data
85      * according to the specified problem \a size.
86      * \sa LDLT()
87      */
88    LDLT(Index size)
89      : m_matrix(size, size),
90        m_transpositions(size),
91        m_temporary(size),
92        m_sign(internal::ZeroSign),
93        m_isInitialized(false)
94    {}
95
96    /** \brief Constructor with decomposition
97      *
98      * This calculates the decomposition for the input \a matrix.
99      * \sa LDLT(Index size)
100      */
101    LDLT(const MatrixType& matrix)
102      : m_matrix(matrix.rows(), matrix.cols()),
103        m_transpositions(matrix.rows()),
104        m_temporary(matrix.rows()),
105        m_sign(internal::ZeroSign),
106        m_isInitialized(false)
107    {
108      compute(matrix);
109    }
110
111    /** Clear any existing decomposition
112     * \sa rankUpdate(w,sigma)
113     */
114    void setZero()
115    {
116      m_isInitialized = false;
117    }
118
119    /** \returns a view of the upper triangular matrix U */
120    inline typename Traits::MatrixU matrixU() const
121    {
122      eigen_assert(m_isInitialized && "LDLT is not initialized.");
123      return Traits::getU(m_matrix);
124    }
125
126    /** \returns a view of the lower triangular matrix L */
127    inline typename Traits::MatrixL matrixL() const
128    {
129      eigen_assert(m_isInitialized && "LDLT is not initialized.");
130      return Traits::getL(m_matrix);
131    }
132
133    /** \returns the permutation matrix P as a transposition sequence.
134      */
135    inline const TranspositionType& transpositionsP() const
136    {
137      eigen_assert(m_isInitialized && "LDLT is not initialized.");
138      return m_transpositions;
139    }
140
141    /** \returns the coefficients of the diagonal matrix D */
142    inline Diagonal<const MatrixType> vectorD() const
143    {
144      eigen_assert(m_isInitialized && "LDLT is not initialized.");
145      return m_matrix.diagonal();
146    }
147
148    /** \returns true if the matrix is positive (semidefinite) */
149    inline bool isPositive() const
150    {
151      eigen_assert(m_isInitialized && "LDLT is not initialized.");
152      return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
153    }
154
155    #ifdef EIGEN2_SUPPORT
156    inline bool isPositiveDefinite() const
157    {
158      return isPositive();
159    }
160    #endif
161
162    /** \returns true if the matrix is negative (semidefinite) */
163    inline bool isNegative(void) const
164    {
165      eigen_assert(m_isInitialized && "LDLT is not initialized.");
166      return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
167    }
168
169    /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
170      *
171      * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
172      *
173      * \note_about_checking_solutions
174      *
175      * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
176      * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
177      * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
178      * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
179      * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
180      * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
181      *
182      * \sa MatrixBase::ldlt()
183      */
184    template<typename Rhs>
185    inline const internal::solve_retval<LDLT, Rhs>
186    solve(const MatrixBase<Rhs>& b) const
187    {
188      eigen_assert(m_isInitialized && "LDLT is not initialized.");
189      eigen_assert(m_matrix.rows()==b.rows()
190                && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
191      return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
192    }
193
194    #ifdef EIGEN2_SUPPORT
195    template<typename OtherDerived, typename ResultType>
196    bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
197    {
198      *result = this->solve(b);
199      return true;
200    }
201    #endif
202
203    template<typename Derived>
204    bool solveInPlace(MatrixBase<Derived> &bAndX) const;
205
206    LDLT& compute(const MatrixType& matrix);
207
208    template <typename Derived>
209    LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
210
211    /** \returns the internal LDLT decomposition matrix
212      *
213      * TODO: document the storage layout
214      */
215    inline const MatrixType& matrixLDLT() const
216    {
217      eigen_assert(m_isInitialized && "LDLT is not initialized.");
218      return m_matrix;
219    }
220
221    MatrixType reconstructedMatrix() const;
222
223    inline Index rows() const { return m_matrix.rows(); }
224    inline Index cols() const { return m_matrix.cols(); }
225
226    /** \brief Reports whether previous computation was successful.
227      *
228      * \returns \c Success if computation was succesful,
229      *          \c NumericalIssue if the matrix.appears to be negative.
230      */
231    ComputationInfo info() const
232    {
233      eigen_assert(m_isInitialized && "LDLT is not initialized.");
234      return Success;
235    }
236
237  protected:
238
239    static void check_template_parameters()
240    {
241      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
242    }
243
244    /** \internal
245      * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
246      * The strict upper part is used during the decomposition, the strict lower
247      * part correspond to the coefficients of L (its diagonal is equal to 1 and
248      * is not stored), and the diagonal entries correspond to D.
249      */
250    MatrixType m_matrix;
251    TranspositionType m_transpositions;
252    TmpMatrixType m_temporary;
253    internal::SignMatrix m_sign;
254    bool m_isInitialized;
255};
256
257namespace internal {
258
259template<int UpLo> struct ldlt_inplace;
260
261template<> struct ldlt_inplace<Lower>
262{
263  template<typename MatrixType, typename TranspositionType, typename Workspace>
264  static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
265  {
266    using std::abs;
267    typedef typename MatrixType::Scalar Scalar;
268    typedef typename MatrixType::RealScalar RealScalar;
269    typedef typename MatrixType::Index Index;
270    eigen_assert(mat.rows()==mat.cols());
271    const Index size = mat.rows();
272
273    if (size <= 1)
274    {
275      transpositions.setIdentity();
276      if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
277      else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
278      else sign = ZeroSign;
279      return true;
280    }
281
282    for (Index k = 0; k < size; ++k)
283    {
284      // Find largest diagonal element
285      Index index_of_biggest_in_corner;
286      mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
287      index_of_biggest_in_corner += k;
288
289      transpositions.coeffRef(k) = index_of_biggest_in_corner;
290      if(k != index_of_biggest_in_corner)
291      {
292        // apply the transposition while taking care to consider only
293        // the lower triangular part
294        Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
295        mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
296        mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
297        std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
298        for(int i=k+1;i<index_of_biggest_in_corner;++i)
299        {
300          Scalar tmp = mat.coeffRef(i,k);
301          mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
302          mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
303        }
304        if(NumTraits<Scalar>::IsComplex)
305          mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
306      }
307
308      // partition the matrix:
309      //       A00 |  -  |  -
310      // lu  = A10 | A11 |  -
311      //       A20 | A21 | A22
312      Index rs = size - k - 1;
313      Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
314      Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
315      Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
316
317      if(k>0)
318      {
319        temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
320        mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
321        if(rs>0)
322          A21.noalias() -= A20 * temp.head(k);
323      }
324
325      // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
326      // was smaller than the cutoff value. However, soince LDLT is not rank-revealing
327      // we should only make sure we do not introduce INF or NaN values.
328      // LAPACK also uses 0 as the cutoff value.
329      RealScalar realAkk = numext::real(mat.coeffRef(k,k));
330      if((rs>0) && (abs(realAkk) > RealScalar(0)))
331        A21 /= realAkk;
332
333      if (sign == PositiveSemiDef) {
334        if (realAkk < 0) sign = Indefinite;
335      } else if (sign == NegativeSemiDef) {
336        if (realAkk > 0) sign = Indefinite;
337      } else if (sign == ZeroSign) {
338        if (realAkk > 0) sign = PositiveSemiDef;
339        else if (realAkk < 0) sign = NegativeSemiDef;
340      }
341    }
342
343    return true;
344  }
345
346  // Reference for the algorithm: Davis and Hager, "Multiple Rank
347  // Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
348  // Trivial rearrangements of their computations (Timothy E. Holy)
349  // allow their algorithm to work for rank-1 updates even if the
350  // original matrix is not of full rank.
351  // Here only rank-1 updates are implemented, to reduce the
352  // requirement for intermediate storage and improve accuracy
353  template<typename MatrixType, typename WDerived>
354  static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
355  {
356    using numext::isfinite;
357    typedef typename MatrixType::Scalar Scalar;
358    typedef typename MatrixType::RealScalar RealScalar;
359    typedef typename MatrixType::Index Index;
360
361    const Index size = mat.rows();
362    eigen_assert(mat.cols() == size && w.size()==size);
363
364    RealScalar alpha = 1;
365
366    // Apply the update
367    for (Index j = 0; j < size; j++)
368    {
369      // Check for termination due to an original decomposition of low-rank
370      if (!(isfinite)(alpha))
371        break;
372
373      // Update the diagonal terms
374      RealScalar dj = numext::real(mat.coeff(j,j));
375      Scalar wj = w.coeff(j);
376      RealScalar swj2 = sigma*numext::abs2(wj);
377      RealScalar gamma = dj*alpha + swj2;
378
379      mat.coeffRef(j,j) += swj2/alpha;
380      alpha += swj2/dj;
381
382
383      // Update the terms of L
384      Index rs = size-j-1;
385      w.tail(rs) -= wj * mat.col(j).tail(rs);
386      if(gamma != 0)
387        mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
388    }
389    return true;
390  }
391
392  template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
393  static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
394  {
395    // Apply the permutation to the input w
396    tmp = transpositions * w;
397
398    return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
399  }
400};
401
402template<> struct ldlt_inplace<Upper>
403{
404  template<typename MatrixType, typename TranspositionType, typename Workspace>
405  static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
406  {
407    Transpose<MatrixType> matt(mat);
408    return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
409  }
410
411  template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
412  static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
413  {
414    Transpose<MatrixType> matt(mat);
415    return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
416  }
417};
418
419template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
420{
421  typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
422  typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
423  static inline MatrixL getL(const MatrixType& m) { return m; }
424  static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
425};
426
427template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
428{
429  typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
430  typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
431  static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
432  static inline MatrixU getU(const MatrixType& m) { return m; }
433};
434
435} // end namespace internal
436
437/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
438  */
439template<typename MatrixType, int _UpLo>
440LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
441{
442  check_template_parameters();
443
444  eigen_assert(a.rows()==a.cols());
445  const Index size = a.rows();
446
447  m_matrix = a;
448
449  m_transpositions.resize(size);
450  m_isInitialized = false;
451  m_temporary.resize(size);
452  m_sign = internal::ZeroSign;
453
454  internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);
455
456  m_isInitialized = true;
457  return *this;
458}
459
460/** Update the LDLT decomposition:  given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
461 * \param w a vector to be incorporated into the decomposition.
462 * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
463 * \sa setZero()
464  */
465template<typename MatrixType, int _UpLo>
466template<typename Derived>
467LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename NumTraits<typename MatrixType::Scalar>::Real& sigma)
468{
469  const Index size = w.rows();
470  if (m_isInitialized)
471  {
472    eigen_assert(m_matrix.rows()==size);
473  }
474  else
475  {
476    m_matrix.resize(size,size);
477    m_matrix.setZero();
478    m_transpositions.resize(size);
479    for (Index i = 0; i < size; i++)
480      m_transpositions.coeffRef(i) = i;
481    m_temporary.resize(size);
482    m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
483    m_isInitialized = true;
484  }
485
486  internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
487
488  return *this;
489}
490
491namespace internal {
492template<typename _MatrixType, int _UpLo, typename Rhs>
493struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
494  : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
495{
496  typedef LDLT<_MatrixType,_UpLo> LDLTType;
497  EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)
498
499  template<typename Dest> void evalTo(Dest& dst) const
500  {
501    eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
502    // dst = P b
503    dst = dec().transpositionsP() * rhs();
504
505    // dst = L^-1 (P b)
506    dec().matrixL().solveInPlace(dst);
507
508    // dst = D^-1 (L^-1 P b)
509    // more precisely, use pseudo-inverse of D (see bug 241)
510    using std::abs;
511    using std::max;
512    typedef typename LDLTType::MatrixType MatrixType;
513    typedef typename LDLTType::RealScalar RealScalar;
514    const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
515    // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
516    // as motivated by LAPACK's xGELSS:
517    // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
518    // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
519    // diagonal element is not well justified and to numerical issues in some cases.
520    // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
521    RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
522
523    for (Index i = 0; i < vectorD.size(); ++i) {
524      if(abs(vectorD(i)) > tolerance)
525        dst.row(i) /= vectorD(i);
526      else
527        dst.row(i).setZero();
528    }
529
530    // dst = L^-T (D^-1 L^-1 P b)
531    dec().matrixU().solveInPlace(dst);
532
533    // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
534    dst = dec().transpositionsP().transpose() * dst;
535  }
536};
537}
538
539/** \internal use x = ldlt_object.solve(x);
540  *
541  * This is the \em in-place version of solve().
542  *
543  * \param bAndX represents both the right-hand side matrix b and result x.
544  *
545  * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
546  *
547  * This version avoids a copy when the right hand side matrix b is not
548  * needed anymore.
549  *
550  * \sa LDLT::solve(), MatrixBase::ldlt()
551  */
552template<typename MatrixType,int _UpLo>
553template<typename Derived>
554bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
555{
556  eigen_assert(m_isInitialized && "LDLT is not initialized.");
557  eigen_assert(m_matrix.rows() == bAndX.rows());
558
559  bAndX = this->solve(bAndX);
560
561  return true;
562}
563
564/** \returns the matrix represented by the decomposition,
565 * i.e., it returns the product: P^T L D L^* P.
566 * This function is provided for debug purpose. */
567template<typename MatrixType, int _UpLo>
568MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
569{
570  eigen_assert(m_isInitialized && "LDLT is not initialized.");
571  const Index size = m_matrix.rows();
572  MatrixType res(size,size);
573
574  // P
575  res.setIdentity();
576  res = transpositionsP() * res;
577  // L^* P
578  res = matrixU() * res;
579  // D(L^*P)
580  res = vectorD().real().asDiagonal() * res;
581  // L(DL^*P)
582  res = matrixL() * res;
583  // P^T (LDL^*P)
584  res = transpositionsP().transpose() * res;
585
586  return res;
587}
588
589/** \cholesky_module
590  * \returns the Cholesky decomposition with full pivoting without square root of \c *this
591  */
592template<typename MatrixType, unsigned int UpLo>
593inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
594SelfAdjointView<MatrixType, UpLo>::ldlt() const
595{
596  return LDLT<PlainObject,UpLo>(m_matrix);
597}
598
599/** \cholesky_module
600  * \returns the Cholesky decomposition with full pivoting without square root of \c *this
601  */
602template<typename Derived>
603inline const LDLT<typename MatrixBase<Derived>::PlainObject>
604MatrixBase<Derived>::ldlt() const
605{
606  return LDLT<PlainObject>(derived());
607}
608
609} // end namespace Eigen
610
611#endif // EIGEN_LDLT_H
612