1// This file is part of Eigen, a lightweight C++ template library 2// for linear algebra. Eigen itself is part of the KDE project. 3// 4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> 5// 6// This Source Code Form is subject to the terms of the Mozilla 7// Public License v. 2.0. If a copy of the MPL was not distributed 8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10#include "main.h" 11 12template<typename MatrixType> void adjoint(const MatrixType& m) 13{ 14 /* this test covers the following files: 15 Transpose.h Conjugate.h Dot.h 16 */ 17 18 typedef typename MatrixType::Scalar Scalar; 19 typedef typename NumTraits<Scalar>::Real RealScalar; 20 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; 21 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; 22 int rows = m.rows(); 23 int cols = m.cols(); 24 25 RealScalar largerEps = test_precision<RealScalar>(); 26 if (ei_is_same_type<RealScalar,float>::ret) 27 largerEps = RealScalar(1e-3f); 28 29 MatrixType m1 = MatrixType::Random(rows, cols), 30 m2 = MatrixType::Random(rows, cols), 31 m3(rows, cols), 32 square = SquareMatrixType::Random(rows, rows); 33 VectorType v1 = VectorType::Random(rows), 34 v2 = VectorType::Random(rows), 35 v3 = VectorType::Random(rows), 36 vzero = VectorType::Zero(rows); 37 38 Scalar s1 = ei_random<Scalar>(), 39 s2 = ei_random<Scalar>(); 40 41 // check basic compatibility of adjoint, transpose, conjugate 42 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); 43 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); 44 45 // check multiplicative behavior 46 VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); 47 VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint()); 48 49 // check basic properties of dot, norm, norm2 50 typedef typename NumTraits<Scalar>::Real RealScalar; 51 VERIFY(ei_isApprox((s1 * v1 + s2 * v2).eigen2_dot(v3), s1 * v1.eigen2_dot(v3) + s2 * v2.eigen2_dot(v3), largerEps)); 52 VERIFY(ei_isApprox(v3.eigen2_dot(s1 * v1 + s2 * v2), ei_conj(s1)*v3.eigen2_dot(v1)+ei_conj(s2)*v3.eigen2_dot(v2), largerEps)); 53 VERIFY_IS_APPROX(ei_conj(v1.eigen2_dot(v2)), v2.eigen2_dot(v1)); 54 VERIFY_IS_APPROX(ei_real(v1.eigen2_dot(v1)), v1.squaredNorm()); 55 if(NumTraits<Scalar>::HasFloatingPoint) 56 VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); 57 VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.eigen2_dot(v1)), static_cast<RealScalar>(1)); 58 if(NumTraits<Scalar>::HasFloatingPoint) 59 VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); 60 61 // check compatibility of dot and adjoint 62 VERIFY(ei_isApprox(v1.eigen2_dot(square * v2), (square.adjoint() * v1).eigen2_dot(v2), largerEps)); 63 64 // like in testBasicStuff, test operator() to check const-qualification 65 int r = ei_random<int>(0, rows-1), 66 c = ei_random<int>(0, cols-1); 67 VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c))); 68 VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c))); 69 70 if(NumTraits<Scalar>::HasFloatingPoint) 71 { 72 // check that Random().normalized() works: tricky as the random xpr must be evaluated by 73 // normalized() in order to produce a consistent result. 74 VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1)); 75 } 76 77 // check inplace transpose 78 m3 = m1; 79 m3.transposeInPlace(); 80 VERIFY_IS_APPROX(m3,m1.transpose()); 81 m3.transposeInPlace(); 82 VERIFY_IS_APPROX(m3,m1); 83 84} 85 86void test_eigen2_adjoint() 87{ 88 for(int i = 0; i < g_repeat; i++) { 89 CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) ); 90 CALL_SUBTEST_2( adjoint(Matrix3d()) ); 91 CALL_SUBTEST_3( adjoint(Matrix4f()) ); 92 CALL_SUBTEST_4( adjoint(MatrixXcf(4, 4)) ); 93 CALL_SUBTEST_5( adjoint(MatrixXi(8, 12)) ); 94 CALL_SUBTEST_6( adjoint(MatrixXf(21, 21)) ); 95 } 96 // test a large matrix only once 97 CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) ); 98} 99 100