1
2/* @(#)s_erf.c 1.3 95/01/18 */
3/*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14/* double ieee_erf(double x)
15 * double ieee_erfc(double x)
16 *			     x
17 *		      2      |\
18 *     ieee_erf(x)  =  ---------  | ieee_exp(-t*t)dt
19 *	 	   ieee_sqrt(pi) \|
20 *			     0
21 *
22 *     ieee_erfc(x) =  1-ieee_erf(x)
23 *  Note that
24 *		erf(-x) = -ieee_erf(x)
25 *		erfc(-x) = 2 - ieee_erfc(x)
26 *
27 * Method:
28 *	1. For |x| in [0, 0.84375]
29 *	    ieee_erf(x)  = x + x*R(x^2)
30 *          ieee_erfc(x) = 1 - ieee_erf(x)           if x in [-.84375,0.25]
31 *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
32 *	   where R = P/Q where P is an odd poly of degree 8 and
33 *	   Q is an odd poly of degree 10.
34 *						 -57.90
35 *			| R - (ieee_erf(x)-x)/x | <= 2
36 *
37 *
38 *	   Remark. The formula is derived by noting
39 *          ieee_erf(x) = (2/ieee_sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
40 *	   and that
41 *          2/ieee_sqrt(pi) = 1.128379167095512573896158903121545171688
42 *	   is close to one. The interval is chosen because the fix
43 *	   point of ieee_erf(x) is near 0.6174 (i.e., ieee_erf(x)=x when x is
44 *	   near 0.6174), and by some experiment, 0.84375 is chosen to
45 * 	   guarantee the error is less than one ulp for erf.
46 *
47 *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
48 *         c = 0.84506291151 rounded to single (24 bits)
49 *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
50 *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
51 *			  1+(c+P1(s)/Q1(s))    if x < 0
52 *         	|P1/Q1 - (ieee_erf(|x|)-c)| <= 2**-59.06
53 *	   Remark: here we use the taylor series expansion at x=1.
54 *		erf(1+s) = ieee_erf(1) + s*Poly(s)
55 *			 = 0.845.. + P1(s)/Q1(s)
56 *	   That is, we use rational approximation to approximate
57 *			erf(1+s) - (c = (single)0.84506291151)
58 *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
59 *	   where
60 *		P1(s) = degree 6 poly in s
61 *		Q1(s) = degree 6 poly in s
62 *
63 *      3. For x in [1.25,1/0.35(~2.857143)],
64 *         	erfc(x) = (1/x)*ieee_exp(-x*x-0.5625+R1/S1)
65 *         	erf(x)  = 1 - ieee_erfc(x)
66 *	   where
67 *		R1(z) = degree 7 poly in z, (z=1/x^2)
68 *		S1(z) = degree 8 poly in z
69 *
70 *      4. For x in [1/0.35,28]
71 *         	erfc(x) = (1/x)*ieee_exp(-x*x-0.5625+R2/S2) if x > 0
72 *			= 2.0 - (1/x)*ieee_exp(-x*x-0.5625+R2/S2) if -6<x<0
73 *			= 2.0 - tiny		(if x <= -6)
74 *         	erf(x)  = sign(x)*(1.0 - ieee_erfc(x)) if x < 6, else
75 *         	erf(x)  = sign(x)*(1.0 - tiny)
76 *	   where
77 *		R2(z) = degree 6 poly in z, (z=1/x^2)
78 *		S2(z) = degree 7 poly in z
79 *
80 *      Note1:
81 *	   To compute ieee_exp(-x*x-0.5625+R/S), let s be a single
82 *	   precision number and s := x; then
83 *		-x*x = -s*s + (s-x)*(s+x)
84 *	        ieee_exp(-x*x-0.5626+R/S) =
85 *			exp(-s*s-0.5625)*ieee_exp((s-x)*(s+x)+R/S);
86 *      Note2:
87 *	   Here 4 and 5 make use of the asymptotic series
88 *			  ieee_exp(-x*x)
89 *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
90 *			  x*ieee_sqrt(pi)
91 *	   We use rational approximation to approximate
92 *      	g(s)=f(1/x^2) = ieee_log(ieee_erfc(x)*x) - x*x + 0.5625
93 *	   Here is the error bound for R1/S1 and R2/S2
94 *      	|R1/S1 - f(x)|  < 2**(-62.57)
95 *      	|R2/S2 - f(x)|  < 2**(-61.52)
96 *
97 *      5. For inf > x >= 28
98 *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
99 *         	erfc(x) = tiny*tiny (raise underflow) if x > 0
100 *			= 2 - tiny if x<0
101 *
102 *      7. Special case:
103 *         	erf(0)  = 0, ieee_erf(inf)  = 1, ieee_erf(-inf) = -1,
104 *         	erfc(0) = 1, ieee_erfc(inf) = 0, ieee_erfc(-inf) = 2,
105 *	   	erfc/ieee_erf(NaN) is NaN
106 */
107
108
109#include "fdlibm.h"
110
111#ifdef __STDC__
112static const double
113#else
114static double
115#endif
116tiny	    = 1e-300,
117half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
118one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
119two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
120	/* c = (float)0.84506291151 */
121erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
122/*
123 * Coefficients for approximation to  erf on [0,0.84375]
124 */
125efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
126efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
127pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
128pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
129pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
130pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
131pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
132qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
133qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
134qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
135qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
136qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
137/*
138 * Coefficients for approximation to  erf  in [0.84375,1.25]
139 */
140pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
141pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
142pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
143pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
144pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
145pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
146pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
147qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
148qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
149qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
150qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
151qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
152qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
153/*
154 * Coefficients for approximation to  erfc in [1.25,1/0.35]
155 */
156ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
157ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
158ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
159ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
160ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
161ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
162ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
163ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
164sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
165sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
166sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
167sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
168sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
169sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
170sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
171sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
172/*
173 * Coefficients for approximation to  erfc in [1/.35,28]
174 */
175rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
176rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
177rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
178rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
179rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
180rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
181rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
182sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
183sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
184sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
185sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
186sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
187sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
188sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
189
190#ifdef __STDC__
191	double ieee_erf(double x)
192#else
193	double ieee_erf(x)
194	double x;
195#endif
196{
197	int hx,ix,i;
198	double R,S,P,Q,s,y,z,r;
199	hx = __HI(x);
200	ix = hx&0x7fffffff;
201	if(ix>=0x7ff00000) {		/* ieee_erf(nan)=nan */
202	    i = ((unsigned)hx>>31)<<1;
203	    return (double)(1-i)+one/x;	/* ieee_erf(+-inf)=+-1 */
204	}
205
206	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
207	    if(ix < 0x3e300000) { 	/* |x|<2**-28 */
208	        if (ix < 0x00800000)
209		    return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
210		return x + efx*x;
211	    }
212	    z = x*x;
213	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
214	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
215	    y = r/s;
216	    return x + x*y;
217	}
218	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
219	    s = ieee_fabs(x)-one;
220	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
221	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
222	    if(hx>=0) return erx + P/Q; else return -erx - P/Q;
223	}
224	if (ix >= 0x40180000) {		/* inf>|x|>=6 */
225	    if(hx>=0) return one-tiny; else return tiny-one;
226	}
227	x = ieee_fabs(x);
228 	s = one/(x*x);
229	if(ix< 0x4006DB6E) {	/* |x| < 1/0.35 */
230	    R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
231				ra5+s*(ra6+s*ra7))))));
232	    S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
233				sa5+s*(sa6+s*(sa7+s*sa8)))))));
234	} else {	/* |x| >= 1/0.35 */
235	    R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
236				rb5+s*rb6)))));
237	    S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
238				sb5+s*(sb6+s*sb7))))));
239	}
240	z  = x;
241	__LO(z) = 0;
242	r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
243	if(hx>=0) return one-r/x; else return  r/x-one;
244}
245
246#ifdef __STDC__
247	double ieee_erfc(double x)
248#else
249	double ieee_erfc(x)
250	double x;
251#endif
252{
253	int hx,ix;
254	double R,S,P,Q,s,y,z,r;
255	hx = __HI(x);
256	ix = hx&0x7fffffff;
257	if(ix>=0x7ff00000) {			/* ieee_erfc(nan)=nan */
258						/* ieee_erfc(+-inf)=0,2 */
259	    return (double)(((unsigned)hx>>31)<<1)+one/x;
260	}
261
262	if(ix < 0x3feb0000) {		/* |x|<0.84375 */
263	    if(ix < 0x3c700000)  	/* |x|<2**-56 */
264		return one-x;
265	    z = x*x;
266	    r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
267	    s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
268	    y = r/s;
269	    if(hx < 0x3fd00000) {  	/* x<1/4 */
270		return one-(x+x*y);
271	    } else {
272		r = x*y;
273		r += (x-half);
274	        return half - r ;
275	    }
276	}
277	if(ix < 0x3ff40000) {		/* 0.84375 <= |x| < 1.25 */
278	    s = ieee_fabs(x)-one;
279	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
280	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
281	    if(hx>=0) {
282	        z  = one-erx; return z - P/Q;
283	    } else {
284		z = erx+P/Q; return one+z;
285	    }
286	}
287	if (ix < 0x403c0000) {		/* |x|<28 */
288	    x = ieee_fabs(x);
289 	    s = one/(x*x);
290	    if(ix< 0x4006DB6D) {	/* |x| < 1/.35 ~ 2.857143*/
291	        R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
292				ra5+s*(ra6+s*ra7))))));
293	        S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
294				sa5+s*(sa6+s*(sa7+s*sa8)))))));
295	    } else {			/* |x| >= 1/.35 ~ 2.857143 */
296		if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
297	        R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
298				rb5+s*rb6)))));
299	        S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
300				sb5+s*(sb6+s*sb7))))));
301	    }
302	    z  = x;
303	    __LO(z)  = 0;
304	    r  =  __ieee754_exp(-z*z-0.5625)*
305			__ieee754_exp((z-x)*(z+x)+R/S);
306	    if(hx>0) return r/x; else return two-r/x;
307	} else {
308	    if(hx>0) return tiny*tiny; else return two-tiny;
309	}
310}
311