1/*
2*******************************************************************************
3* Copyright (C) 2012-2015, International Business Machines
4* Corporation and others.  All Rights Reserved.
5*******************************************************************************
6* collationkeys.cpp
7*
8* created on: 2012sep02
9* created by: Markus W. Scherer
10*/
11
12#include "unicode/utypes.h"
13
14#if !UCONFIG_NO_COLLATION
15
16#include "unicode/bytestream.h"
17#include "collation.h"
18#include "collationiterator.h"
19#include "collationkeys.h"
20#include "collationsettings.h"
21#include "uassert.h"
22
23U_NAMESPACE_BEGIN
24
25SortKeyByteSink::~SortKeyByteSink() {}
26
27void
28SortKeyByteSink::Append(const char *bytes, int32_t n) {
29    if (n <= 0 || bytes == NULL) {
30        return;
31    }
32    if (ignore_ > 0) {
33        int32_t ignoreRest = ignore_ - n;
34        if (ignoreRest >= 0) {
35            ignore_ = ignoreRest;
36            return;
37        } else {
38            bytes += ignore_;
39            n = -ignoreRest;
40            ignore_ = 0;
41        }
42    }
43    int32_t length = appended_;
44    appended_ += n;
45    if ((buffer_ + length) == bytes) {
46        return;  // the caller used GetAppendBuffer() and wrote the bytes already
47    }
48    int32_t available = capacity_ - length;
49    if (n <= available) {
50        uprv_memcpy(buffer_ + length, bytes, n);
51    } else {
52        AppendBeyondCapacity(bytes, n, length);
53    }
54}
55
56char *
57SortKeyByteSink::GetAppendBuffer(int32_t min_capacity,
58                                 int32_t desired_capacity_hint,
59                                 char *scratch,
60                                 int32_t scratch_capacity,
61                                 int32_t *result_capacity) {
62    if (min_capacity < 1 || scratch_capacity < min_capacity) {
63        *result_capacity = 0;
64        return NULL;
65    }
66    if (ignore_ > 0) {
67        // Do not write ignored bytes right at the end of the buffer.
68        *result_capacity = scratch_capacity;
69        return scratch;
70    }
71    int32_t available = capacity_ - appended_;
72    if (available >= min_capacity) {
73        *result_capacity = available;
74        return buffer_ + appended_;
75    } else if (Resize(desired_capacity_hint, appended_)) {
76        *result_capacity = capacity_ - appended_;
77        return buffer_ + appended_;
78    } else {
79        *result_capacity = scratch_capacity;
80        return scratch;
81    }
82}
83
84namespace {
85
86/**
87 * uint8_t byte buffer, similar to CharString but simpler.
88 */
89class SortKeyLevel : public UMemory {
90public:
91    SortKeyLevel() : len(0), ok(TRUE) {}
92    ~SortKeyLevel() {}
93
94    /** @return FALSE if memory allocation failed */
95    UBool isOk() const { return ok; }
96    UBool isEmpty() const { return len == 0; }
97    int32_t length() const { return len; }
98    const uint8_t *data() const { return buffer.getAlias(); }
99    uint8_t operator[](int32_t index) const { return buffer[index]; }
100
101    uint8_t *data() { return buffer.getAlias(); }
102
103    void appendByte(uint32_t b);
104    void appendWeight16(uint32_t w);
105    void appendWeight32(uint32_t w);
106    void appendReverseWeight16(uint32_t w);
107
108    /** Appends all but the last byte to the sink. The last byte should be the 01 terminator. */
109    void appendTo(ByteSink &sink) const {
110        U_ASSERT(len > 0 && buffer[len - 1] == 1);
111        sink.Append(reinterpret_cast<const char *>(buffer.getAlias()), len - 1);
112    }
113
114private:
115    MaybeStackArray<uint8_t, 40> buffer;
116    int32_t len;
117    UBool ok;
118
119    UBool ensureCapacity(int32_t appendCapacity);
120
121    SortKeyLevel(const SortKeyLevel &other); // forbid copying of this class
122    SortKeyLevel &operator=(const SortKeyLevel &other); // forbid copying of this class
123};
124
125void SortKeyLevel::appendByte(uint32_t b) {
126    if(len < buffer.getCapacity() || ensureCapacity(1)) {
127        buffer[len++] = (uint8_t)b;
128    }
129}
130
131void
132SortKeyLevel::appendWeight16(uint32_t w) {
133    U_ASSERT((w & 0xffff) != 0);
134    uint8_t b0 = (uint8_t)(w >> 8);
135    uint8_t b1 = (uint8_t)w;
136    int32_t appendLength = (b1 == 0) ? 1 : 2;
137    if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
138        buffer[len++] = b0;
139        if(b1 != 0) {
140            buffer[len++] = b1;
141        }
142    }
143}
144
145void
146SortKeyLevel::appendWeight32(uint32_t w) {
147    U_ASSERT(w != 0);
148    uint8_t bytes[4] = { (uint8_t)(w >> 24), (uint8_t)(w >> 16), (uint8_t)(w >> 8), (uint8_t)w };
149    int32_t appendLength = (bytes[1] == 0) ? 1 : (bytes[2] == 0) ? 2 : (bytes[3] == 0) ? 3 : 4;
150    if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
151        buffer[len++] = bytes[0];
152        if(bytes[1] != 0) {
153            buffer[len++] = bytes[1];
154            if(bytes[2] != 0) {
155                buffer[len++] = bytes[2];
156                if(bytes[3] != 0) {
157                    buffer[len++] = bytes[3];
158                }
159            }
160        }
161    }
162}
163
164void
165SortKeyLevel::appendReverseWeight16(uint32_t w) {
166    U_ASSERT((w & 0xffff) != 0);
167    uint8_t b0 = (uint8_t)(w >> 8);
168    uint8_t b1 = (uint8_t)w;
169    int32_t appendLength = (b1 == 0) ? 1 : 2;
170    if((len + appendLength) <= buffer.getCapacity() || ensureCapacity(appendLength)) {
171        if(b1 == 0) {
172            buffer[len++] = b0;
173        } else {
174            buffer[len] = b1;
175            buffer[len + 1] = b0;
176            len += 2;
177        }
178    }
179}
180
181UBool SortKeyLevel::ensureCapacity(int32_t appendCapacity) {
182    if(!ok) {
183        return FALSE;
184    }
185    int32_t newCapacity = 2 * buffer.getCapacity();
186    int32_t altCapacity = len + 2 * appendCapacity;
187    if (newCapacity < altCapacity) {
188        newCapacity = altCapacity;
189    }
190    if (newCapacity < 200) {
191        newCapacity = 200;
192    }
193    if(buffer.resize(newCapacity, len)==NULL) {
194        return ok = FALSE;
195    }
196    return TRUE;
197}
198
199}  // namespace
200
201CollationKeys::LevelCallback::~LevelCallback() {}
202
203UBool
204CollationKeys::LevelCallback::needToWrite(Collation::Level /*level*/) { return TRUE; }
205
206/**
207 * Map from collation strength (UColAttributeValue)
208 * to a mask of Collation::Level bits up to that strength,
209 * excluding the CASE_LEVEL which is independent of the strength,
210 * and excluding IDENTICAL_LEVEL which this function does not write.
211 */
212static const uint32_t levelMasks[UCOL_STRENGTH_LIMIT] = {
213    2,          // UCOL_PRIMARY -> PRIMARY_LEVEL
214    6,          // UCOL_SECONDARY -> up to SECONDARY_LEVEL
215    0x16,       // UCOL_TERTIARY -> up to TERTIARY_LEVEL
216    0x36,       // UCOL_QUATERNARY -> up to QUATERNARY_LEVEL
217    0, 0, 0, 0,
218    0, 0, 0, 0,
219    0, 0, 0,
220    0x36        // UCOL_IDENTICAL -> up to QUATERNARY_LEVEL
221};
222
223void
224CollationKeys::writeSortKeyUpToQuaternary(CollationIterator &iter,
225                                          const UBool *compressibleBytes,
226                                          const CollationSettings &settings,
227                                          SortKeyByteSink &sink,
228                                          Collation::Level minLevel, LevelCallback &callback,
229                                          UBool preflight, UErrorCode &errorCode) {
230    if(U_FAILURE(errorCode)) { return; }
231
232    int32_t options = settings.options;
233    // Set of levels to process and write.
234    uint32_t levels = levelMasks[CollationSettings::getStrength(options)];
235    if((options & CollationSettings::CASE_LEVEL) != 0) {
236        levels |= Collation::CASE_LEVEL_FLAG;
237    }
238    // Minus the levels below minLevel.
239    levels &= ~(((uint32_t)1 << minLevel) - 1);
240    if(levels == 0) { return; }
241
242    uint32_t variableTop;
243    if((options & CollationSettings::ALTERNATE_MASK) == 0) {
244        variableTop = 0;
245    } else {
246        // +1 so that we can use "<" and primary ignorables test out early.
247        variableTop = settings.variableTop + 1;
248    }
249
250    uint32_t tertiaryMask = CollationSettings::getTertiaryMask(options);
251
252    SortKeyLevel cases;
253    SortKeyLevel secondaries;
254    SortKeyLevel tertiaries;
255    SortKeyLevel quaternaries;
256
257    uint32_t prevReorderedPrimary = 0;  // 0==no compression
258    int32_t commonCases = 0;
259    int32_t commonSecondaries = 0;
260    int32_t commonTertiaries = 0;
261    int32_t commonQuaternaries = 0;
262
263    uint32_t prevSecondary = 0;
264    int32_t secSegmentStart = 0;
265
266    for(;;) {
267        // No need to keep all CEs in the buffer when we write a sort key.
268        iter.clearCEsIfNoneRemaining();
269        int64_t ce = iter.nextCE(errorCode);
270        uint32_t p = (uint32_t)(ce >> 32);
271        if(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY) {
272            // Variable CE, shift it to quaternary level.
273            // Ignore all following primary ignorables, and shift further variable CEs.
274            if(commonQuaternaries != 0) {
275                --commonQuaternaries;
276                while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) {
277                    quaternaries.appendByte(QUAT_COMMON_MIDDLE);
278                    commonQuaternaries -= QUAT_COMMON_MAX_COUNT;
279                }
280                // Shifted primary weights are lower than the common weight.
281                quaternaries.appendByte(QUAT_COMMON_LOW + commonQuaternaries);
282                commonQuaternaries = 0;
283            }
284            do {
285                if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
286                    if(settings.hasReordering()) {
287                        p = settings.reorder(p);
288                    }
289                    if((p >> 24) >= QUAT_SHIFTED_LIMIT_BYTE) {
290                        // Prevent shifted primary lead bytes from
291                        // overlapping with the common compression range.
292                        quaternaries.appendByte(QUAT_SHIFTED_LIMIT_BYTE);
293                    }
294                    quaternaries.appendWeight32(p);
295                }
296                do {
297                    ce = iter.nextCE(errorCode);
298                    p = (uint32_t)(ce >> 32);
299                } while(p == 0);
300            } while(p < variableTop && p > Collation::MERGE_SEPARATOR_PRIMARY);
301        }
302        // ce could be primary ignorable, or NO_CE, or the merge separator,
303        // or a regular primary CE, but it is not variable.
304        // If ce==NO_CE, then write nothing for the primary level but
305        // terminate compression on all levels and then exit the loop.
306        if(p > Collation::NO_CE_PRIMARY && (levels & Collation::PRIMARY_LEVEL_FLAG) != 0) {
307            // Test the un-reordered primary for compressibility.
308            UBool isCompressible = compressibleBytes[p >> 24];
309            if(settings.hasReordering()) {
310                p = settings.reorder(p);
311            }
312            uint32_t p1 = p >> 24;
313            if(!isCompressible || p1 != (prevReorderedPrimary >> 24)) {
314                if(prevReorderedPrimary != 0) {
315                    if(p < prevReorderedPrimary) {
316                        // No primary compression terminator
317                        // at the end of the level or merged segment.
318                        if(p1 > Collation::MERGE_SEPARATOR_BYTE) {
319                            sink.Append(Collation::PRIMARY_COMPRESSION_LOW_BYTE);
320                        }
321                    } else {
322                        sink.Append(Collation::PRIMARY_COMPRESSION_HIGH_BYTE);
323                    }
324                }
325                sink.Append(p1);
326                if(isCompressible) {
327                    prevReorderedPrimary = p;
328                } else {
329                    prevReorderedPrimary = 0;
330                }
331            }
332            char p2 = (char)(p >> 16);
333            if(p2 != 0) {
334                char buffer[3] = { p2, (char)(p >> 8), (char)p };
335                sink.Append(buffer, (buffer[1] == 0) ? 1 : (buffer[2] == 0) ? 2 : 3);
336            }
337            // Optimization for internalNextSortKeyPart():
338            // When the primary level overflows we can stop because we need not
339            // calculate (preflight) the whole sort key length.
340            if(!preflight && sink.Overflowed()) {
341                if(U_SUCCESS(errorCode) && !sink.IsOk()) {
342                    errorCode = U_MEMORY_ALLOCATION_ERROR;
343                }
344                return;
345            }
346        }
347
348        uint32_t lower32 = (uint32_t)ce;
349        if(lower32 == 0) { continue; }  // completely ignorable, no secondary/case/tertiary/quaternary
350
351        if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) {
352            uint32_t s = lower32 >> 16;
353            if(s == 0) {
354                // secondary ignorable
355            } else if(s == Collation::COMMON_WEIGHT16 &&
356                    ((options & CollationSettings::BACKWARD_SECONDARY) == 0 ||
357                        p != Collation::MERGE_SEPARATOR_PRIMARY)) {
358                // s is a common secondary weight, and
359                // backwards-secondary is off or the ce is not the merge separator.
360                ++commonSecondaries;
361            } else if((options & CollationSettings::BACKWARD_SECONDARY) == 0) {
362                if(commonSecondaries != 0) {
363                    --commonSecondaries;
364                    while(commonSecondaries >= SEC_COMMON_MAX_COUNT) {
365                        secondaries.appendByte(SEC_COMMON_MIDDLE);
366                        commonSecondaries -= SEC_COMMON_MAX_COUNT;
367                    }
368                    uint32_t b;
369                    if(s < Collation::COMMON_WEIGHT16) {
370                        b = SEC_COMMON_LOW + commonSecondaries;
371                    } else {
372                        b = SEC_COMMON_HIGH - commonSecondaries;
373                    }
374                    secondaries.appendByte(b);
375                    commonSecondaries = 0;
376                }
377                secondaries.appendWeight16(s);
378            } else {
379                if(commonSecondaries != 0) {
380                    --commonSecondaries;
381                    // Append reverse weights. The level will be re-reversed later.
382                    int32_t remainder = commonSecondaries % SEC_COMMON_MAX_COUNT;
383                    uint32_t b;
384                    if(prevSecondary < Collation::COMMON_WEIGHT16) {
385                        b = SEC_COMMON_LOW + remainder;
386                    } else {
387                        b = SEC_COMMON_HIGH - remainder;
388                    }
389                    secondaries.appendByte(b);
390                    commonSecondaries -= remainder;
391                    // commonSecondaries is now a multiple of SEC_COMMON_MAX_COUNT.
392                    while(commonSecondaries > 0) {  // same as >= SEC_COMMON_MAX_COUNT
393                        secondaries.appendByte(SEC_COMMON_MIDDLE);
394                        commonSecondaries -= SEC_COMMON_MAX_COUNT;
395                    }
396                    // commonSecondaries == 0
397                }
398                if(0 < p && p <= Collation::MERGE_SEPARATOR_PRIMARY) {
399                    // The backwards secondary level compares secondary weights backwards
400                    // within segments separated by the merge separator (U+FFFE).
401                    uint8_t *secs = secondaries.data();
402                    int32_t last = secondaries.length() - 1;
403                    if(secSegmentStart < last) {
404                        uint8_t *p = secs + secSegmentStart;
405                        uint8_t *q = secs + last;
406                        do {
407                            uint8_t b = *p;
408                            *p++ = *q;
409                            *q-- = b;
410                        } while(p < q);
411                    }
412                    secondaries.appendByte(p == Collation::NO_CE_PRIMARY ?
413                        Collation::LEVEL_SEPARATOR_BYTE : Collation::MERGE_SEPARATOR_BYTE);
414                    prevSecondary = 0;
415                    secSegmentStart = secondaries.length();
416                } else {
417                    secondaries.appendReverseWeight16(s);
418                    prevSecondary = s;
419                }
420            }
421        }
422
423        if((levels & Collation::CASE_LEVEL_FLAG) != 0) {
424            if((CollationSettings::getStrength(options) == UCOL_PRIMARY) ?
425                    p == 0 : lower32 <= 0xffff) {
426                // Primary+caseLevel: Ignore case level weights of primary ignorables.
427                // Otherwise: Ignore case level weights of secondary ignorables.
428                // For details see the comments in the CollationCompare class.
429            } else {
430                uint32_t c = (lower32 >> 8) & 0xff;  // case bits & tertiary lead byte
431                U_ASSERT((c & 0xc0) != 0xc0);
432                if((c & 0xc0) == 0 && c > Collation::LEVEL_SEPARATOR_BYTE) {
433                    ++commonCases;
434                } else {
435                    if((options & CollationSettings::UPPER_FIRST) == 0) {
436                        // lowerFirst: Compress common weights to nibbles 1..7..13, mixed=14, upper=15.
437                        // If there are only common (=lowest) weights in the whole level,
438                        // then we need not write anything.
439                        // Level length differences are handled already on the next-higher level.
440                        if(commonCases != 0 &&
441                                (c > Collation::LEVEL_SEPARATOR_BYTE || !cases.isEmpty())) {
442                            --commonCases;
443                            while(commonCases >= CASE_LOWER_FIRST_COMMON_MAX_COUNT) {
444                                cases.appendByte(CASE_LOWER_FIRST_COMMON_MIDDLE << 4);
445                                commonCases -= CASE_LOWER_FIRST_COMMON_MAX_COUNT;
446                            }
447                            uint32_t b;
448                            if(c <= Collation::LEVEL_SEPARATOR_BYTE) {
449                                b = CASE_LOWER_FIRST_COMMON_LOW + commonCases;
450                            } else {
451                                b = CASE_LOWER_FIRST_COMMON_HIGH - commonCases;
452                            }
453                            cases.appendByte(b << 4);
454                            commonCases = 0;
455                        }
456                        if(c > Collation::LEVEL_SEPARATOR_BYTE) {
457                            c = (CASE_LOWER_FIRST_COMMON_HIGH + (c >> 6)) << 4;  // 14 or 15
458                        }
459                    } else {
460                        // upperFirst: Compress common weights to nibbles 3..15, mixed=2, upper=1.
461                        // The compressed common case weights only go up from the "low" value
462                        // because with upperFirst the common weight is the highest one.
463                        if(commonCases != 0) {
464                            --commonCases;
465                            while(commonCases >= CASE_UPPER_FIRST_COMMON_MAX_COUNT) {
466                                cases.appendByte(CASE_UPPER_FIRST_COMMON_LOW << 4);
467                                commonCases -= CASE_UPPER_FIRST_COMMON_MAX_COUNT;
468                            }
469                            cases.appendByte((CASE_UPPER_FIRST_COMMON_LOW + commonCases) << 4);
470                            commonCases = 0;
471                        }
472                        if(c > Collation::LEVEL_SEPARATOR_BYTE) {
473                            c = (CASE_UPPER_FIRST_COMMON_LOW - (c >> 6)) << 4;  // 2 or 1
474                        }
475                    }
476                    // c is a separator byte 01,
477                    // or a left-shifted nibble 0x10, 0x20, ... 0xf0.
478                    cases.appendByte(c);
479                }
480            }
481        }
482
483        if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) {
484            uint32_t t = lower32 & tertiaryMask;
485            U_ASSERT((lower32 & 0xc000) != 0xc000);
486            if(t == Collation::COMMON_WEIGHT16) {
487                ++commonTertiaries;
488            } else if((tertiaryMask & 0x8000) == 0) {
489                // Tertiary weights without case bits.
490                // Move lead bytes 06..3F to C6..FF for a large common-weight range.
491                if(commonTertiaries != 0) {
492                    --commonTertiaries;
493                    while(commonTertiaries >= TER_ONLY_COMMON_MAX_COUNT) {
494                        tertiaries.appendByte(TER_ONLY_COMMON_MIDDLE);
495                        commonTertiaries -= TER_ONLY_COMMON_MAX_COUNT;
496                    }
497                    uint32_t b;
498                    if(t < Collation::COMMON_WEIGHT16) {
499                        b = TER_ONLY_COMMON_LOW + commonTertiaries;
500                    } else {
501                        b = TER_ONLY_COMMON_HIGH - commonTertiaries;
502                    }
503                    tertiaries.appendByte(b);
504                    commonTertiaries = 0;
505                }
506                if(t > Collation::COMMON_WEIGHT16) { t += 0xc000; }
507                tertiaries.appendWeight16(t);
508            } else if((options & CollationSettings::UPPER_FIRST) == 0) {
509                // Tertiary weights with caseFirst=lowerFirst.
510                // Move lead bytes 06..BF to 46..FF for the common-weight range.
511                if(commonTertiaries != 0) {
512                    --commonTertiaries;
513                    while(commonTertiaries >= TER_LOWER_FIRST_COMMON_MAX_COUNT) {
514                        tertiaries.appendByte(TER_LOWER_FIRST_COMMON_MIDDLE);
515                        commonTertiaries -= TER_LOWER_FIRST_COMMON_MAX_COUNT;
516                    }
517                    uint32_t b;
518                    if(t < Collation::COMMON_WEIGHT16) {
519                        b = TER_LOWER_FIRST_COMMON_LOW + commonTertiaries;
520                    } else {
521                        b = TER_LOWER_FIRST_COMMON_HIGH - commonTertiaries;
522                    }
523                    tertiaries.appendByte(b);
524                    commonTertiaries = 0;
525                }
526                if(t > Collation::COMMON_WEIGHT16) { t += 0x4000; }
527                tertiaries.appendWeight16(t);
528            } else {
529                // Tertiary weights with caseFirst=upperFirst.
530                // Do not change the artificial uppercase weight of a tertiary CE (0.0.ut),
531                // to keep tertiary CEs well-formed.
532                // Their case+tertiary weights must be greater than those of
533                // primary and secondary CEs.
534                //
535                // Separator         01 -> 01      (unchanged)
536                // Lowercase     02..04 -> 82..84  (includes uncased)
537                // Common weight     05 -> 85..C5  (common-weight compression range)
538                // Lowercase     06..3F -> C6..FF
539                // Mixed case    42..7F -> 42..7F
540                // Uppercase     82..BF -> 02..3F
541                // Tertiary CE   86..BF -> C6..FF
542                if(t <= Collation::NO_CE_WEIGHT16) {
543                    // Keep separators unchanged.
544                } else if(lower32 > 0xffff) {
545                    // Invert case bits of primary & secondary CEs.
546                    t ^= 0xc000;
547                    if(t < (TER_UPPER_FIRST_COMMON_HIGH << 8)) {
548                        t -= 0x4000;
549                    }
550                } else {
551                    // Keep uppercase bits of tertiary CEs.
552                    U_ASSERT(0x8600 <= t && t <= 0xbfff);
553                    t += 0x4000;
554                }
555                if(commonTertiaries != 0) {
556                    --commonTertiaries;
557                    while(commonTertiaries >= TER_UPPER_FIRST_COMMON_MAX_COUNT) {
558                        tertiaries.appendByte(TER_UPPER_FIRST_COMMON_MIDDLE);
559                        commonTertiaries -= TER_UPPER_FIRST_COMMON_MAX_COUNT;
560                    }
561                    uint32_t b;
562                    if(t < (TER_UPPER_FIRST_COMMON_LOW << 8)) {
563                        b = TER_UPPER_FIRST_COMMON_LOW + commonTertiaries;
564                    } else {
565                        b = TER_UPPER_FIRST_COMMON_HIGH - commonTertiaries;
566                    }
567                    tertiaries.appendByte(b);
568                    commonTertiaries = 0;
569                }
570                tertiaries.appendWeight16(t);
571            }
572        }
573
574        if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
575            uint32_t q = lower32 & 0xffff;
576            if((q & 0xc0) == 0 && q > Collation::NO_CE_WEIGHT16) {
577                ++commonQuaternaries;
578            } else if(q == Collation::NO_CE_WEIGHT16 &&
579                    (options & CollationSettings::ALTERNATE_MASK) == 0 &&
580                    quaternaries.isEmpty()) {
581                // If alternate=non-ignorable and there are only common quaternary weights,
582                // then we need not write anything.
583                // The only weights greater than the merge separator and less than the common weight
584                // are shifted primary weights, which are not generated for alternate=non-ignorable.
585                // There are also exactly as many quaternary weights as tertiary weights,
586                // so level length differences are handled already on tertiary level.
587                // Any above-common quaternary weight will compare greater regardless.
588                quaternaries.appendByte(Collation::LEVEL_SEPARATOR_BYTE);
589            } else {
590                if(q == Collation::NO_CE_WEIGHT16) {
591                    q = Collation::LEVEL_SEPARATOR_BYTE;
592                } else {
593                    q = 0xfc + ((q >> 6) & 3);
594                }
595                if(commonQuaternaries != 0) {
596                    --commonQuaternaries;
597                    while(commonQuaternaries >= QUAT_COMMON_MAX_COUNT) {
598                        quaternaries.appendByte(QUAT_COMMON_MIDDLE);
599                        commonQuaternaries -= QUAT_COMMON_MAX_COUNT;
600                    }
601                    uint32_t b;
602                    if(q < QUAT_COMMON_LOW) {
603                        b = QUAT_COMMON_LOW + commonQuaternaries;
604                    } else {
605                        b = QUAT_COMMON_HIGH - commonQuaternaries;
606                    }
607                    quaternaries.appendByte(b);
608                    commonQuaternaries = 0;
609                }
610                quaternaries.appendByte(q);
611            }
612        }
613
614        if((lower32 >> 24) == Collation::LEVEL_SEPARATOR_BYTE) { break; }  // ce == NO_CE
615    }
616
617    if(U_FAILURE(errorCode)) { return; }
618
619    // Append the beyond-primary levels.
620    UBool ok = TRUE;
621    if((levels & Collation::SECONDARY_LEVEL_FLAG) != 0) {
622        if(!callback.needToWrite(Collation::SECONDARY_LEVEL)) { return; }
623        ok &= secondaries.isOk();
624        sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
625        secondaries.appendTo(sink);
626    }
627
628    if((levels & Collation::CASE_LEVEL_FLAG) != 0) {
629        if(!callback.needToWrite(Collation::CASE_LEVEL)) { return; }
630        ok &= cases.isOk();
631        sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
632        // Write pairs of nibbles as bytes, except separator bytes as themselves.
633        int32_t length = cases.length() - 1;  // Ignore the trailing NO_CE.
634        uint8_t b = 0;
635        for(int32_t i = 0; i < length; ++i) {
636            uint8_t c = (uint8_t)cases[i];
637            U_ASSERT((c & 0xf) == 0 && c != 0);
638            if(b == 0) {
639                b = c;
640            } else {
641                sink.Append(b | (c >> 4));
642                b = 0;
643            }
644        }
645        if(b != 0) {
646            sink.Append(b);
647        }
648    }
649
650    if((levels & Collation::TERTIARY_LEVEL_FLAG) != 0) {
651        if(!callback.needToWrite(Collation::TERTIARY_LEVEL)) { return; }
652        ok &= tertiaries.isOk();
653        sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
654        tertiaries.appendTo(sink);
655    }
656
657    if((levels & Collation::QUATERNARY_LEVEL_FLAG) != 0) {
658        if(!callback.needToWrite(Collation::QUATERNARY_LEVEL)) { return; }
659        ok &= quaternaries.isOk();
660        sink.Append(Collation::LEVEL_SEPARATOR_BYTE);
661        quaternaries.appendTo(sink);
662    }
663
664    if(!ok || !sink.IsOk()) {
665        errorCode = U_MEMORY_ALLOCATION_ERROR;
666    }
667}
668
669U_NAMESPACE_END
670
671#endif  // !UCONFIG_NO_COLLATION
672