1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// Weak pointers are pointers to an object that do not affect its lifetime,
6// and which may be invalidated (i.e. reset to NULL) by the object, or its
7// owner, at any time, most commonly when the object is about to be deleted.
8
9// Weak pointers are useful when an object needs to be accessed safely by one
10// or more objects other than its owner, and those callers can cope with the
11// object vanishing and e.g. tasks posted to it being silently dropped.
12// Reference-counting such an object would complicate the ownership graph and
13// make it harder to reason about the object's lifetime.
14
15// EXAMPLE:
16//
17//  class Controller {
18//   public:
19//    Controller() : weak_factory_(this) {}
20//    void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
21//    void WorkComplete(const Result& result) { ... }
22//   private:
23//    // Member variables should appear before the WeakPtrFactory, to ensure
24//    // that any WeakPtrs to Controller are invalidated before its members
25//    // variable's destructors are executed, rendering them invalid.
26//    WeakPtrFactory<Controller> weak_factory_;
27//  };
28//
29//  class Worker {
30//   public:
31//    static void StartNew(const WeakPtr<Controller>& controller) {
32//      Worker* worker = new Worker(controller);
33//      // Kick off asynchronous processing...
34//    }
35//   private:
36//    Worker(const WeakPtr<Controller>& controller)
37//        : controller_(controller) {}
38//    void DidCompleteAsynchronousProcessing(const Result& result) {
39//      if (controller_)
40//        controller_->WorkComplete(result);
41//    }
42//    WeakPtr<Controller> controller_;
43//  };
44//
45// With this implementation a caller may use SpawnWorker() to dispatch multiple
46// Workers and subsequently delete the Controller, without waiting for all
47// Workers to have completed.
48
49// ------------------------- IMPORTANT: Thread-safety -------------------------
50
51// Weak pointers may be passed safely between threads, but must always be
52// dereferenced and invalidated on the same SequencedTaskRunner otherwise
53// checking the pointer would be racey.
54//
55// To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
56// is dereferenced, the factory and its WeakPtrs become bound to the calling
57// thread or current SequencedWorkerPool token, and cannot be dereferenced or
58// invalidated on any other task runner. Bound WeakPtrs can still be handed
59// off to other task runners, e.g. to use to post tasks back to object on the
60// bound sequence.
61//
62// If all WeakPtr objects are destroyed or invalidated then the factory is
63// unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
64// destroyed, or new WeakPtr objects may be used, from a different sequence.
65//
66// Thus, at least one WeakPtr object must exist and have been dereferenced on
67// the correct thread to enforce that other WeakPtr objects will enforce they
68// are used on the desired thread.
69
70#ifndef BASE_MEMORY_WEAK_PTR_H_
71#define BASE_MEMORY_WEAK_PTR_H_
72
73#include "base/base_export.h"
74#include "base/logging.h"
75#include "base/macros.h"
76#include "base/memory/ref_counted.h"
77#include "base/sequence_checker.h"
78#include "base/template_util.h"
79
80namespace base {
81
82template <typename T> class SupportsWeakPtr;
83template <typename T> class WeakPtr;
84
85namespace internal {
86// These classes are part of the WeakPtr implementation.
87// DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
88
89class BASE_EXPORT WeakReference {
90 public:
91  // Although Flag is bound to a specific SequencedTaskRunner, it may be
92  // deleted from another via base::WeakPtr::~WeakPtr().
93  class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
94   public:
95    Flag();
96
97    void Invalidate();
98    bool IsValid() const;
99
100   private:
101    friend class base::RefCountedThreadSafe<Flag>;
102
103    ~Flag();
104
105    SequenceChecker sequence_checker_;
106    bool is_valid_;
107  };
108
109  WeakReference();
110  explicit WeakReference(const Flag* flag);
111  ~WeakReference();
112
113  bool is_valid() const;
114
115 private:
116  scoped_refptr<const Flag> flag_;
117};
118
119class BASE_EXPORT WeakReferenceOwner {
120 public:
121  WeakReferenceOwner();
122  ~WeakReferenceOwner();
123
124  WeakReference GetRef() const;
125
126  bool HasRefs() const {
127    return flag_.get() && !flag_->HasOneRef();
128  }
129
130  void Invalidate();
131
132 private:
133  mutable scoped_refptr<WeakReference::Flag> flag_;
134};
135
136// This class simplifies the implementation of WeakPtr's type conversion
137// constructor by avoiding the need for a public accessor for ref_.  A
138// WeakPtr<T> cannot access the private members of WeakPtr<U>, so this
139// base class gives us a way to access ref_ in a protected fashion.
140class BASE_EXPORT WeakPtrBase {
141 public:
142  WeakPtrBase();
143  ~WeakPtrBase();
144
145 protected:
146  explicit WeakPtrBase(const WeakReference& ref);
147
148  WeakReference ref_;
149};
150
151// This class provides a common implementation of common functions that would
152// otherwise get instantiated separately for each distinct instantiation of
153// SupportsWeakPtr<>.
154class SupportsWeakPtrBase {
155 public:
156  // A safe static downcast of a WeakPtr<Base> to WeakPtr<Derived>. This
157  // conversion will only compile if there is exists a Base which inherits
158  // from SupportsWeakPtr<Base>. See base::AsWeakPtr() below for a helper
159  // function that makes calling this easier.
160  template<typename Derived>
161  static WeakPtr<Derived> StaticAsWeakPtr(Derived* t) {
162    typedef
163        is_convertible<Derived, internal::SupportsWeakPtrBase&> convertible;
164    static_assert(convertible::value,
165                  "AsWeakPtr argument must inherit from SupportsWeakPtr");
166    return AsWeakPtrImpl<Derived>(t, *t);
167  }
168
169 private:
170  // This template function uses type inference to find a Base of Derived
171  // which is an instance of SupportsWeakPtr<Base>. We can then safely
172  // static_cast the Base* to a Derived*.
173  template <typename Derived, typename Base>
174  static WeakPtr<Derived> AsWeakPtrImpl(
175      Derived* t, const SupportsWeakPtr<Base>&) {
176    WeakPtr<Base> ptr = t->Base::AsWeakPtr();
177    return WeakPtr<Derived>(ptr.ref_, static_cast<Derived*>(ptr.ptr_));
178  }
179};
180
181}  // namespace internal
182
183template <typename T> class WeakPtrFactory;
184
185// The WeakPtr class holds a weak reference to |T*|.
186//
187// This class is designed to be used like a normal pointer.  You should always
188// null-test an object of this class before using it or invoking a method that
189// may result in the underlying object being destroyed.
190//
191// EXAMPLE:
192//
193//   class Foo { ... };
194//   WeakPtr<Foo> foo;
195//   if (foo)
196//     foo->method();
197//
198template <typename T>
199class WeakPtr : public internal::WeakPtrBase {
200 public:
201  WeakPtr() : ptr_(NULL) {
202  }
203
204  // Allow conversion from U to T provided U "is a" T. Note that this
205  // is separate from the (implicit) copy constructor.
206  template <typename U>
207  WeakPtr(const WeakPtr<U>& other) : WeakPtrBase(other), ptr_(other.ptr_) {
208  }
209
210  T* get() const { return ref_.is_valid() ? ptr_ : NULL; }
211
212  T& operator*() const {
213    DCHECK(get() != NULL);
214    return *get();
215  }
216  T* operator->() const {
217    DCHECK(get() != NULL);
218    return get();
219  }
220
221  // Allow WeakPtr<element_type> to be used in boolean expressions, but not
222  // implicitly convertible to a real bool (which is dangerous).
223  //
224  // Note that this trick is only safe when the == and != operators
225  // are declared explicitly, as otherwise "weak_ptr1 == weak_ptr2"
226  // will compile but do the wrong thing (i.e., convert to Testable
227  // and then do the comparison).
228 private:
229  typedef T* WeakPtr::*Testable;
230
231 public:
232  operator Testable() const { return get() ? &WeakPtr::ptr_ : NULL; }
233
234  void reset() {
235    ref_ = internal::WeakReference();
236    ptr_ = NULL;
237  }
238
239 private:
240  // Explicitly declare comparison operators as required by the bool
241  // trick, but keep them private.
242  template <class U> bool operator==(WeakPtr<U> const&) const;
243  template <class U> bool operator!=(WeakPtr<U> const&) const;
244
245  friend class internal::SupportsWeakPtrBase;
246  template <typename U> friend class WeakPtr;
247  friend class SupportsWeakPtr<T>;
248  friend class WeakPtrFactory<T>;
249
250  WeakPtr(const internal::WeakReference& ref, T* ptr)
251      : WeakPtrBase(ref),
252        ptr_(ptr) {
253  }
254
255  // This pointer is only valid when ref_.is_valid() is true.  Otherwise, its
256  // value is undefined (as opposed to NULL).
257  T* ptr_;
258};
259
260// A class may be composed of a WeakPtrFactory and thereby
261// control how it exposes weak pointers to itself.  This is helpful if you only
262// need weak pointers within the implementation of a class.  This class is also
263// useful when working with primitive types.  For example, you could have a
264// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
265template <class T>
266class WeakPtrFactory {
267 public:
268  explicit WeakPtrFactory(T* ptr) : ptr_(ptr) {
269  }
270
271  ~WeakPtrFactory() {
272    ptr_ = NULL;
273  }
274
275  WeakPtr<T> GetWeakPtr() {
276    DCHECK(ptr_);
277    return WeakPtr<T>(weak_reference_owner_.GetRef(), ptr_);
278  }
279
280  // Call this method to invalidate all existing weak pointers.
281  void InvalidateWeakPtrs() {
282    DCHECK(ptr_);
283    weak_reference_owner_.Invalidate();
284  }
285
286  // Call this method to determine if any weak pointers exist.
287  bool HasWeakPtrs() const {
288    DCHECK(ptr_);
289    return weak_reference_owner_.HasRefs();
290  }
291
292 private:
293  internal::WeakReferenceOwner weak_reference_owner_;
294  T* ptr_;
295  DISALLOW_IMPLICIT_CONSTRUCTORS(WeakPtrFactory);
296};
297
298// A class may extend from SupportsWeakPtr to let others take weak pointers to
299// it. This avoids the class itself implementing boilerplate to dispense weak
300// pointers.  However, since SupportsWeakPtr's destructor won't invalidate
301// weak pointers to the class until after the derived class' members have been
302// destroyed, its use can lead to subtle use-after-destroy issues.
303template <class T>
304class SupportsWeakPtr : public internal::SupportsWeakPtrBase {
305 public:
306  SupportsWeakPtr() {}
307
308  WeakPtr<T> AsWeakPtr() {
309    return WeakPtr<T>(weak_reference_owner_.GetRef(), static_cast<T*>(this));
310  }
311
312 protected:
313  ~SupportsWeakPtr() {}
314
315 private:
316  internal::WeakReferenceOwner weak_reference_owner_;
317  DISALLOW_COPY_AND_ASSIGN(SupportsWeakPtr);
318};
319
320// Helper function that uses type deduction to safely return a WeakPtr<Derived>
321// when Derived doesn't directly extend SupportsWeakPtr<Derived>, instead it
322// extends a Base that extends SupportsWeakPtr<Base>.
323//
324// EXAMPLE:
325//   class Base : public base::SupportsWeakPtr<Producer> {};
326//   class Derived : public Base {};
327//
328//   Derived derived;
329//   base::WeakPtr<Derived> ptr = base::AsWeakPtr(&derived);
330//
331// Note that the following doesn't work (invalid type conversion) since
332// Derived::AsWeakPtr() is WeakPtr<Base> SupportsWeakPtr<Base>::AsWeakPtr(),
333// and there's no way to safely cast WeakPtr<Base> to WeakPtr<Derived> at
334// the caller.
335//
336//   base::WeakPtr<Derived> ptr = derived.AsWeakPtr();  // Fails.
337
338template <typename Derived>
339WeakPtr<Derived> AsWeakPtr(Derived* t) {
340  return internal::SupportsWeakPtrBase::StaticAsWeakPtr<Derived>(t);
341}
342
343}  // namespace base
344
345#endif  // BASE_MEMORY_WEAK_PTR_H_
346