1/*
2 * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 *
21 *  Optimization module for tcpdump intermediate representation.
22 */
23
24#ifdef HAVE_CONFIG_H
25#include "config.h"
26#endif
27
28#ifdef WIN32
29#include <pcap-stdinc.h>
30#else /* WIN32 */
31#if HAVE_INTTYPES_H
32#include <inttypes.h>
33#elif HAVE_STDINT_H
34#include <stdint.h>
35#endif
36#ifdef HAVE_SYS_BITYPES_H
37#include <sys/bitypes.h>
38#endif
39#include <sys/types.h>
40#endif /* WIN32 */
41
42#include <stdio.h>
43#include <stdlib.h>
44#include <memory.h>
45#include <string.h>
46
47#include <errno.h>
48
49#include "pcap-int.h"
50
51#include "gencode.h"
52
53#ifdef HAVE_OS_PROTO_H
54#include "os-proto.h"
55#endif
56
57#ifdef BDEBUG
58extern int dflag;
59#endif
60
61#if defined(MSDOS) && !defined(__DJGPP__)
62extern int _w32_ffs (int mask);
63#define ffs _w32_ffs
64#endif
65
66#if defined(WIN32) && defined (_MSC_VER)
67int ffs(int mask);
68#endif
69
70/*
71 * Represents a deleted instruction.
72 */
73#define NOP -1
74
75/*
76 * Register numbers for use-def values.
77 * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
78 * location.  A_ATOM is the accumulator and X_ATOM is the index
79 * register.
80 */
81#define A_ATOM BPF_MEMWORDS
82#define X_ATOM (BPF_MEMWORDS+1)
83
84/*
85 * This define is used to represent *both* the accumulator and
86 * x register in use-def computations.
87 * Currently, the use-def code assumes only one definition per instruction.
88 */
89#define AX_ATOM N_ATOMS
90
91/*
92 * A flag to indicate that further optimization is needed.
93 * Iterative passes are continued until a given pass yields no
94 * branch movement.
95 */
96static int done;
97
98/*
99 * A block is marked if only if its mark equals the current mark.
100 * Rather than traverse the code array, marking each item, 'cur_mark' is
101 * incremented.  This automatically makes each element unmarked.
102 */
103static int cur_mark;
104#define isMarked(p) ((p)->mark == cur_mark)
105#define unMarkAll() cur_mark += 1
106#define Mark(p) ((p)->mark = cur_mark)
107
108static void opt_init(struct block *);
109static void opt_cleanup(void);
110
111static void intern_blocks(struct block *);
112
113static void find_inedges(struct block *);
114#ifdef BDEBUG
115static void opt_dump(struct block *);
116#endif
117
118static int n_blocks;
119struct block **blocks;
120static int n_edges;
121struct edge **edges;
122
123/*
124 * A bit vector set representation of the dominators.
125 * We round up the set size to the next power of two.
126 */
127static int nodewords;
128static int edgewords;
129struct block **levels;
130bpf_u_int32 *space;
131#define BITS_PER_WORD (8*sizeof(bpf_u_int32))
132/*
133 * True if a is in uset {p}
134 */
135#define SET_MEMBER(p, a) \
136((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
137
138/*
139 * Add 'a' to uset p.
140 */
141#define SET_INSERT(p, a) \
142(p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
143
144/*
145 * Delete 'a' from uset p.
146 */
147#define SET_DELETE(p, a) \
148(p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
149
150/*
151 * a := a intersect b
152 */
153#define SET_INTERSECT(a, b, n)\
154{\
155	register bpf_u_int32 *_x = a, *_y = b;\
156	register int _n = n;\
157	while (--_n >= 0) *_x++ &= *_y++;\
158}
159
160/*
161 * a := a - b
162 */
163#define SET_SUBTRACT(a, b, n)\
164{\
165	register bpf_u_int32 *_x = a, *_y = b;\
166	register int _n = n;\
167	while (--_n >= 0) *_x++ &=~ *_y++;\
168}
169
170/*
171 * a := a union b
172 */
173#define SET_UNION(a, b, n)\
174{\
175	register bpf_u_int32 *_x = a, *_y = b;\
176	register int _n = n;\
177	while (--_n >= 0) *_x++ |= *_y++;\
178}
179
180static uset all_dom_sets;
181static uset all_closure_sets;
182static uset all_edge_sets;
183
184#ifndef MAX
185#define MAX(a,b) ((a)>(b)?(a):(b))
186#endif
187
188static void
189find_levels_r(struct block *b)
190{
191	int level;
192
193	if (isMarked(b))
194		return;
195
196	Mark(b);
197	b->link = 0;
198
199	if (JT(b)) {
200		find_levels_r(JT(b));
201		find_levels_r(JF(b));
202		level = MAX(JT(b)->level, JF(b)->level) + 1;
203	} else
204		level = 0;
205	b->level = level;
206	b->link = levels[level];
207	levels[level] = b;
208}
209
210/*
211 * Level graph.  The levels go from 0 at the leaves to
212 * N_LEVELS at the root.  The levels[] array points to the
213 * first node of the level list, whose elements are linked
214 * with the 'link' field of the struct block.
215 */
216static void
217find_levels(struct block *root)
218{
219	memset((char *)levels, 0, n_blocks * sizeof(*levels));
220	unMarkAll();
221	find_levels_r(root);
222}
223
224/*
225 * Find dominator relationships.
226 * Assumes graph has been leveled.
227 */
228static void
229find_dom(struct block *root)
230{
231	int i;
232	struct block *b;
233	bpf_u_int32 *x;
234
235	/*
236	 * Initialize sets to contain all nodes.
237	 */
238	x = all_dom_sets;
239	i = n_blocks * nodewords;
240	while (--i >= 0)
241		*x++ = ~0;
242	/* Root starts off empty. */
243	for (i = nodewords; --i >= 0;)
244		root->dom[i] = 0;
245
246	/* root->level is the highest level no found. */
247	for (i = root->level; i >= 0; --i) {
248		for (b = levels[i]; b; b = b->link) {
249			SET_INSERT(b->dom, b->id);
250			if (JT(b) == 0)
251				continue;
252			SET_INTERSECT(JT(b)->dom, b->dom, nodewords);
253			SET_INTERSECT(JF(b)->dom, b->dom, nodewords);
254		}
255	}
256}
257
258static void
259propedom(struct edge *ep)
260{
261	SET_INSERT(ep->edom, ep->id);
262	if (ep->succ) {
263		SET_INTERSECT(ep->succ->et.edom, ep->edom, edgewords);
264		SET_INTERSECT(ep->succ->ef.edom, ep->edom, edgewords);
265	}
266}
267
268/*
269 * Compute edge dominators.
270 * Assumes graph has been leveled and predecessors established.
271 */
272static void
273find_edom(struct block *root)
274{
275	int i;
276	uset x;
277	struct block *b;
278
279	x = all_edge_sets;
280	for (i = n_edges * edgewords; --i >= 0; )
281		x[i] = ~0;
282
283	/* root->level is the highest level no found. */
284	memset(root->et.edom, 0, edgewords * sizeof(*(uset)0));
285	memset(root->ef.edom, 0, edgewords * sizeof(*(uset)0));
286	for (i = root->level; i >= 0; --i) {
287		for (b = levels[i]; b != 0; b = b->link) {
288			propedom(&b->et);
289			propedom(&b->ef);
290		}
291	}
292}
293
294/*
295 * Find the backwards transitive closure of the flow graph.  These sets
296 * are backwards in the sense that we find the set of nodes that reach
297 * a given node, not the set of nodes that can be reached by a node.
298 *
299 * Assumes graph has been leveled.
300 */
301static void
302find_closure(struct block *root)
303{
304	int i;
305	struct block *b;
306
307	/*
308	 * Initialize sets to contain no nodes.
309	 */
310	memset((char *)all_closure_sets, 0,
311	      n_blocks * nodewords * sizeof(*all_closure_sets));
312
313	/* root->level is the highest level no found. */
314	for (i = root->level; i >= 0; --i) {
315		for (b = levels[i]; b; b = b->link) {
316			SET_INSERT(b->closure, b->id);
317			if (JT(b) == 0)
318				continue;
319			SET_UNION(JT(b)->closure, b->closure, nodewords);
320			SET_UNION(JF(b)->closure, b->closure, nodewords);
321		}
322	}
323}
324
325/*
326 * Return the register number that is used by s.  If A and X are both
327 * used, return AX_ATOM.  If no register is used, return -1.
328 *
329 * The implementation should probably change to an array access.
330 */
331static int
332atomuse(struct stmt *s)
333{
334	register int c = s->code;
335
336	if (c == NOP)
337		return -1;
338
339	switch (BPF_CLASS(c)) {
340
341	case BPF_RET:
342		return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
343			(BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
344
345	case BPF_LD:
346	case BPF_LDX:
347		return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
348			(BPF_MODE(c) == BPF_MEM) ? s->k : -1;
349
350	case BPF_ST:
351		return A_ATOM;
352
353	case BPF_STX:
354		return X_ATOM;
355
356	case BPF_JMP:
357	case BPF_ALU:
358		if (BPF_SRC(c) == BPF_X)
359			return AX_ATOM;
360		return A_ATOM;
361
362	case BPF_MISC:
363		return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
364	}
365	abort();
366	/* NOTREACHED */
367}
368
369/*
370 * Return the register number that is defined by 's'.  We assume that
371 * a single stmt cannot define more than one register.  If no register
372 * is defined, return -1.
373 *
374 * The implementation should probably change to an array access.
375 */
376static int
377atomdef(struct stmt *s)
378{
379	if (s->code == NOP)
380		return -1;
381
382	switch (BPF_CLASS(s->code)) {
383
384	case BPF_LD:
385	case BPF_ALU:
386		return A_ATOM;
387
388	case BPF_LDX:
389		return X_ATOM;
390
391	case BPF_ST:
392	case BPF_STX:
393		return s->k;
394
395	case BPF_MISC:
396		return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
397	}
398	return -1;
399}
400
401/*
402 * Compute the sets of registers used, defined, and killed by 'b'.
403 *
404 * "Used" means that a statement in 'b' uses the register before any
405 * statement in 'b' defines it, i.e. it uses the value left in
406 * that register by a predecessor block of this block.
407 * "Defined" means that a statement in 'b' defines it.
408 * "Killed" means that a statement in 'b' defines it before any
409 * statement in 'b' uses it, i.e. it kills the value left in that
410 * register by a predecessor block of this block.
411 */
412static void
413compute_local_ud(struct block *b)
414{
415	struct slist *s;
416	atomset def = 0, use = 0, kill = 0;
417	int atom;
418
419	for (s = b->stmts; s; s = s->next) {
420		if (s->s.code == NOP)
421			continue;
422		atom = atomuse(&s->s);
423		if (atom >= 0) {
424			if (atom == AX_ATOM) {
425				if (!ATOMELEM(def, X_ATOM))
426					use |= ATOMMASK(X_ATOM);
427				if (!ATOMELEM(def, A_ATOM))
428					use |= ATOMMASK(A_ATOM);
429			}
430			else if (atom < N_ATOMS) {
431				if (!ATOMELEM(def, atom))
432					use |= ATOMMASK(atom);
433			}
434			else
435				abort();
436		}
437		atom = atomdef(&s->s);
438		if (atom >= 0) {
439			if (!ATOMELEM(use, atom))
440				kill |= ATOMMASK(atom);
441			def |= ATOMMASK(atom);
442		}
443	}
444	if (BPF_CLASS(b->s.code) == BPF_JMP) {
445		/*
446		 * XXX - what about RET?
447		 */
448		atom = atomuse(&b->s);
449		if (atom >= 0) {
450			if (atom == AX_ATOM) {
451				if (!ATOMELEM(def, X_ATOM))
452					use |= ATOMMASK(X_ATOM);
453				if (!ATOMELEM(def, A_ATOM))
454					use |= ATOMMASK(A_ATOM);
455			}
456			else if (atom < N_ATOMS) {
457				if (!ATOMELEM(def, atom))
458					use |= ATOMMASK(atom);
459			}
460			else
461				abort();
462		}
463	}
464
465	b->def = def;
466	b->kill = kill;
467	b->in_use = use;
468}
469
470/*
471 * Assume graph is already leveled.
472 */
473static void
474find_ud(struct block *root)
475{
476	int i, maxlevel;
477	struct block *p;
478
479	/*
480	 * root->level is the highest level no found;
481	 * count down from there.
482	 */
483	maxlevel = root->level;
484	for (i = maxlevel; i >= 0; --i)
485		for (p = levels[i]; p; p = p->link) {
486			compute_local_ud(p);
487			p->out_use = 0;
488		}
489
490	for (i = 1; i <= maxlevel; ++i) {
491		for (p = levels[i]; p; p = p->link) {
492			p->out_use |= JT(p)->in_use | JF(p)->in_use;
493			p->in_use |= p->out_use &~ p->kill;
494		}
495	}
496}
497
498/*
499 * These data structures are used in a Cocke and Shwarz style
500 * value numbering scheme.  Since the flowgraph is acyclic,
501 * exit values can be propagated from a node's predecessors
502 * provided it is uniquely defined.
503 */
504struct valnode {
505	int code;
506	int v0, v1;
507	int val;
508	struct valnode *next;
509};
510
511#define MODULUS 213
512static struct valnode *hashtbl[MODULUS];
513static int curval;
514static int maxval;
515
516/* Integer constants mapped with the load immediate opcode. */
517#define K(i) F(BPF_LD|BPF_IMM|BPF_W, i, 0L)
518
519struct vmapinfo {
520	int is_const;
521	bpf_int32 const_val;
522};
523
524struct vmapinfo *vmap;
525struct valnode *vnode_base;
526struct valnode *next_vnode;
527
528static void
529init_val(void)
530{
531	curval = 0;
532	next_vnode = vnode_base;
533	memset((char *)vmap, 0, maxval * sizeof(*vmap));
534	memset((char *)hashtbl, 0, sizeof hashtbl);
535}
536
537/* Because we really don't have an IR, this stuff is a little messy. */
538static int
539F(int code, int v0, int v1)
540{
541	u_int hash;
542	int val;
543	struct valnode *p;
544
545	hash = (u_int)code ^ (v0 << 4) ^ (v1 << 8);
546	hash %= MODULUS;
547
548	for (p = hashtbl[hash]; p; p = p->next)
549		if (p->code == code && p->v0 == v0 && p->v1 == v1)
550			return p->val;
551
552	val = ++curval;
553	if (BPF_MODE(code) == BPF_IMM &&
554	    (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
555		vmap[val].const_val = v0;
556		vmap[val].is_const = 1;
557	}
558	p = next_vnode++;
559	p->val = val;
560	p->code = code;
561	p->v0 = v0;
562	p->v1 = v1;
563	p->next = hashtbl[hash];
564	hashtbl[hash] = p;
565
566	return val;
567}
568
569static inline void
570vstore(struct stmt *s, int *valp, int newval, int alter)
571{
572	if (alter && *valp == newval)
573		s->code = NOP;
574	else
575		*valp = newval;
576}
577
578/*
579 * Do constant-folding on binary operators.
580 * (Unary operators are handled elsewhere.)
581 */
582static void
583fold_op(struct stmt *s, int v0, int v1)
584{
585	bpf_u_int32 a, b;
586
587	a = vmap[v0].const_val;
588	b = vmap[v1].const_val;
589
590	switch (BPF_OP(s->code)) {
591	case BPF_ADD:
592		a += b;
593		break;
594
595	case BPF_SUB:
596		a -= b;
597		break;
598
599	case BPF_MUL:
600		a *= b;
601		break;
602
603	case BPF_DIV:
604		if (b == 0)
605			bpf_error("division by zero");
606		a /= b;
607		break;
608
609	case BPF_MOD:
610		if (b == 0)
611			bpf_error("modulus by zero");
612		a %= b;
613		break;
614
615	case BPF_AND:
616		a &= b;
617		break;
618
619	case BPF_OR:
620		a |= b;
621		break;
622
623	case BPF_XOR:
624		a ^= b;
625		break;
626
627	case BPF_LSH:
628		a <<= b;
629		break;
630
631	case BPF_RSH:
632		a >>= b;
633		break;
634
635	default:
636		abort();
637	}
638	s->k = a;
639	s->code = BPF_LD|BPF_IMM;
640	done = 0;
641}
642
643static inline struct slist *
644this_op(struct slist *s)
645{
646	while (s != 0 && s->s.code == NOP)
647		s = s->next;
648	return s;
649}
650
651static void
652opt_not(struct block *b)
653{
654	struct block *tmp = JT(b);
655
656	JT(b) = JF(b);
657	JF(b) = tmp;
658}
659
660static void
661opt_peep(struct block *b)
662{
663	struct slist *s;
664	struct slist *next, *last;
665	int val;
666
667	s = b->stmts;
668	if (s == 0)
669		return;
670
671	last = s;
672	for (/*empty*/; /*empty*/; s = next) {
673		/*
674		 * Skip over nops.
675		 */
676		s = this_op(s);
677		if (s == 0)
678			break;	/* nothing left in the block */
679
680		/*
681		 * Find the next real instruction after that one
682		 * (skipping nops).
683		 */
684		next = this_op(s->next);
685		if (next == 0)
686			break;	/* no next instruction */
687		last = next;
688
689		/*
690		 * st  M[k]	-->	st  M[k]
691		 * ldx M[k]		tax
692		 */
693		if (s->s.code == BPF_ST &&
694		    next->s.code == (BPF_LDX|BPF_MEM) &&
695		    s->s.k == next->s.k) {
696			done = 0;
697			next->s.code = BPF_MISC|BPF_TAX;
698		}
699		/*
700		 * ld  #k	-->	ldx  #k
701		 * tax			txa
702		 */
703		if (s->s.code == (BPF_LD|BPF_IMM) &&
704		    next->s.code == (BPF_MISC|BPF_TAX)) {
705			s->s.code = BPF_LDX|BPF_IMM;
706			next->s.code = BPF_MISC|BPF_TXA;
707			done = 0;
708		}
709		/*
710		 * This is an ugly special case, but it happens
711		 * when you say tcp[k] or udp[k] where k is a constant.
712		 */
713		if (s->s.code == (BPF_LD|BPF_IMM)) {
714			struct slist *add, *tax, *ild;
715
716			/*
717			 * Check that X isn't used on exit from this
718			 * block (which the optimizer might cause).
719			 * We know the code generator won't generate
720			 * any local dependencies.
721			 */
722			if (ATOMELEM(b->out_use, X_ATOM))
723				continue;
724
725			/*
726			 * Check that the instruction following the ldi
727			 * is an addx, or it's an ldxms with an addx
728			 * following it (with 0 or more nops between the
729			 * ldxms and addx).
730			 */
731			if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
732				add = next;
733			else
734				add = this_op(next->next);
735			if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
736				continue;
737
738			/*
739			 * Check that a tax follows that (with 0 or more
740			 * nops between them).
741			 */
742			tax = this_op(add->next);
743			if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
744				continue;
745
746			/*
747			 * Check that an ild follows that (with 0 or more
748			 * nops between them).
749			 */
750			ild = this_op(tax->next);
751			if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
752			    BPF_MODE(ild->s.code) != BPF_IND)
753				continue;
754			/*
755			 * We want to turn this sequence:
756			 *
757			 * (004) ldi     #0x2		{s}
758			 * (005) ldxms   [14]		{next}  -- optional
759			 * (006) addx			{add}
760			 * (007) tax			{tax}
761			 * (008) ild     [x+0]		{ild}
762			 *
763			 * into this sequence:
764			 *
765			 * (004) nop
766			 * (005) ldxms   [14]
767			 * (006) nop
768			 * (007) nop
769			 * (008) ild     [x+2]
770			 *
771			 * XXX We need to check that X is not
772			 * subsequently used, because we want to change
773			 * what'll be in it after this sequence.
774			 *
775			 * We know we can eliminate the accumulator
776			 * modifications earlier in the sequence since
777			 * it is defined by the last stmt of this sequence
778			 * (i.e., the last statement of the sequence loads
779			 * a value into the accumulator, so we can eliminate
780			 * earlier operations on the accumulator).
781			 */
782			ild->s.k += s->s.k;
783			s->s.code = NOP;
784			add->s.code = NOP;
785			tax->s.code = NOP;
786			done = 0;
787		}
788	}
789	/*
790	 * If the comparison at the end of a block is an equality
791	 * comparison against a constant, and nobody uses the value
792	 * we leave in the A register at the end of a block, and
793	 * the operation preceding the comparison is an arithmetic
794	 * operation, we can sometime optimize it away.
795	 */
796	if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
797	    !ATOMELEM(b->out_use, A_ATOM)) {
798	    	/*
799	    	 * We can optimize away certain subtractions of the
800	    	 * X register.
801	    	 */
802		if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
803			val = b->val[X_ATOM];
804			if (vmap[val].is_const) {
805				/*
806				 * If we have a subtract to do a comparison,
807				 * and the X register is a known constant,
808				 * we can merge this value into the
809				 * comparison:
810				 *
811				 * sub x  ->	nop
812				 * jeq #y	jeq #(x+y)
813				 */
814				b->s.k += vmap[val].const_val;
815				last->s.code = NOP;
816				done = 0;
817			} else if (b->s.k == 0) {
818				/*
819				 * If the X register isn't a constant,
820				 * and the comparison in the test is
821				 * against 0, we can compare with the
822				 * X register, instead:
823				 *
824				 * sub x  ->	nop
825				 * jeq #0	jeq x
826				 */
827				last->s.code = NOP;
828				b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
829				done = 0;
830			}
831		}
832		/*
833		 * Likewise, a constant subtract can be simplified:
834		 *
835		 * sub #x ->	nop
836		 * jeq #y ->	jeq #(x+y)
837		 */
838		else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
839			last->s.code = NOP;
840			b->s.k += last->s.k;
841			done = 0;
842		}
843		/*
844		 * And, similarly, a constant AND can be simplified
845		 * if we're testing against 0, i.e.:
846		 *
847		 * and #k	nop
848		 * jeq #0  ->	jset #k
849		 */
850		else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
851		    b->s.k == 0) {
852			b->s.k = last->s.k;
853			b->s.code = BPF_JMP|BPF_K|BPF_JSET;
854			last->s.code = NOP;
855			done = 0;
856			opt_not(b);
857		}
858	}
859	/*
860	 * jset #0        ->   never
861	 * jset #ffffffff ->   always
862	 */
863	if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
864		if (b->s.k == 0)
865			JT(b) = JF(b);
866		if (b->s.k == 0xffffffff)
867			JF(b) = JT(b);
868	}
869	/*
870	 * If we're comparing against the index register, and the index
871	 * register is a known constant, we can just compare against that
872	 * constant.
873	 */
874	val = b->val[X_ATOM];
875	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
876		bpf_int32 v = vmap[val].const_val;
877		b->s.code &= ~BPF_X;
878		b->s.k = v;
879	}
880	/*
881	 * If the accumulator is a known constant, we can compute the
882	 * comparison result.
883	 */
884	val = b->val[A_ATOM];
885	if (vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
886		bpf_int32 v = vmap[val].const_val;
887		switch (BPF_OP(b->s.code)) {
888
889		case BPF_JEQ:
890			v = v == b->s.k;
891			break;
892
893		case BPF_JGT:
894			v = (unsigned)v > b->s.k;
895			break;
896
897		case BPF_JGE:
898			v = (unsigned)v >= b->s.k;
899			break;
900
901		case BPF_JSET:
902			v &= b->s.k;
903			break;
904
905		default:
906			abort();
907		}
908		if (JF(b) != JT(b))
909			done = 0;
910		if (v)
911			JF(b) = JT(b);
912		else
913			JT(b) = JF(b);
914	}
915}
916
917/*
918 * Compute the symbolic value of expression of 's', and update
919 * anything it defines in the value table 'val'.  If 'alter' is true,
920 * do various optimizations.  This code would be cleaner if symbolic
921 * evaluation and code transformations weren't folded together.
922 */
923static void
924opt_stmt(struct stmt *s, int val[], int alter)
925{
926	int op;
927	int v;
928
929	switch (s->code) {
930
931	case BPF_LD|BPF_ABS|BPF_W:
932	case BPF_LD|BPF_ABS|BPF_H:
933	case BPF_LD|BPF_ABS|BPF_B:
934		v = F(s->code, s->k, 0L);
935		vstore(s, &val[A_ATOM], v, alter);
936		break;
937
938	case BPF_LD|BPF_IND|BPF_W:
939	case BPF_LD|BPF_IND|BPF_H:
940	case BPF_LD|BPF_IND|BPF_B:
941		v = val[X_ATOM];
942		if (alter && vmap[v].is_const) {
943			s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
944			s->k += vmap[v].const_val;
945			v = F(s->code, s->k, 0L);
946			done = 0;
947		}
948		else
949			v = F(s->code, s->k, v);
950		vstore(s, &val[A_ATOM], v, alter);
951		break;
952
953	case BPF_LD|BPF_LEN:
954		v = F(s->code, 0L, 0L);
955		vstore(s, &val[A_ATOM], v, alter);
956		break;
957
958	case BPF_LD|BPF_IMM:
959		v = K(s->k);
960		vstore(s, &val[A_ATOM], v, alter);
961		break;
962
963	case BPF_LDX|BPF_IMM:
964		v = K(s->k);
965		vstore(s, &val[X_ATOM], v, alter);
966		break;
967
968	case BPF_LDX|BPF_MSH|BPF_B:
969		v = F(s->code, s->k, 0L);
970		vstore(s, &val[X_ATOM], v, alter);
971		break;
972
973	case BPF_ALU|BPF_NEG:
974		if (alter && vmap[val[A_ATOM]].is_const) {
975			s->code = BPF_LD|BPF_IMM;
976			s->k = -vmap[val[A_ATOM]].const_val;
977			val[A_ATOM] = K(s->k);
978		}
979		else
980			val[A_ATOM] = F(s->code, val[A_ATOM], 0L);
981		break;
982
983	case BPF_ALU|BPF_ADD|BPF_K:
984	case BPF_ALU|BPF_SUB|BPF_K:
985	case BPF_ALU|BPF_MUL|BPF_K:
986	case BPF_ALU|BPF_DIV|BPF_K:
987	case BPF_ALU|BPF_MOD|BPF_K:
988	case BPF_ALU|BPF_AND|BPF_K:
989	case BPF_ALU|BPF_OR|BPF_K:
990	case BPF_ALU|BPF_XOR|BPF_K:
991	case BPF_ALU|BPF_LSH|BPF_K:
992	case BPF_ALU|BPF_RSH|BPF_K:
993		op = BPF_OP(s->code);
994		if (alter) {
995			if (s->k == 0) {
996				/* don't optimize away "sub #0"
997				 * as it may be needed later to
998				 * fixup the generated math code */
999				if (op == BPF_ADD ||
1000				    op == BPF_LSH || op == BPF_RSH ||
1001				    op == BPF_OR || op == BPF_XOR) {
1002					s->code = NOP;
1003					break;
1004				}
1005				if (op == BPF_MUL || op == BPF_AND) {
1006					s->code = BPF_LD|BPF_IMM;
1007					val[A_ATOM] = K(s->k);
1008					break;
1009				}
1010			}
1011			if (vmap[val[A_ATOM]].is_const) {
1012				fold_op(s, val[A_ATOM], K(s->k));
1013				val[A_ATOM] = K(s->k);
1014				break;
1015			}
1016		}
1017		val[A_ATOM] = F(s->code, val[A_ATOM], K(s->k));
1018		break;
1019
1020	case BPF_ALU|BPF_ADD|BPF_X:
1021	case BPF_ALU|BPF_SUB|BPF_X:
1022	case BPF_ALU|BPF_MUL|BPF_X:
1023	case BPF_ALU|BPF_DIV|BPF_X:
1024	case BPF_ALU|BPF_MOD|BPF_X:
1025	case BPF_ALU|BPF_AND|BPF_X:
1026	case BPF_ALU|BPF_OR|BPF_X:
1027	case BPF_ALU|BPF_XOR|BPF_X:
1028	case BPF_ALU|BPF_LSH|BPF_X:
1029	case BPF_ALU|BPF_RSH|BPF_X:
1030		op = BPF_OP(s->code);
1031		if (alter && vmap[val[X_ATOM]].is_const) {
1032			if (vmap[val[A_ATOM]].is_const) {
1033				fold_op(s, val[A_ATOM], val[X_ATOM]);
1034				val[A_ATOM] = K(s->k);
1035			}
1036			else {
1037				s->code = BPF_ALU|BPF_K|op;
1038				s->k = vmap[val[X_ATOM]].const_val;
1039				done = 0;
1040				val[A_ATOM] =
1041					F(s->code, val[A_ATOM], K(s->k));
1042			}
1043			break;
1044		}
1045		/*
1046		 * Check if we're doing something to an accumulator
1047		 * that is 0, and simplify.  This may not seem like
1048		 * much of a simplification but it could open up further
1049		 * optimizations.
1050		 * XXX We could also check for mul by 1, etc.
1051		 */
1052		if (alter && vmap[val[A_ATOM]].is_const
1053		    && vmap[val[A_ATOM]].const_val == 0) {
1054			if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
1055				s->code = BPF_MISC|BPF_TXA;
1056				vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1057				break;
1058			}
1059			else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
1060				 op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
1061				s->code = BPF_LD|BPF_IMM;
1062				s->k = 0;
1063				vstore(s, &val[A_ATOM], K(s->k), alter);
1064				break;
1065			}
1066			else if (op == BPF_NEG) {
1067				s->code = NOP;
1068				break;
1069			}
1070		}
1071		val[A_ATOM] = F(s->code, val[A_ATOM], val[X_ATOM]);
1072		break;
1073
1074	case BPF_MISC|BPF_TXA:
1075		vstore(s, &val[A_ATOM], val[X_ATOM], alter);
1076		break;
1077
1078	case BPF_LD|BPF_MEM:
1079		v = val[s->k];
1080		if (alter && vmap[v].is_const) {
1081			s->code = BPF_LD|BPF_IMM;
1082			s->k = vmap[v].const_val;
1083			done = 0;
1084		}
1085		vstore(s, &val[A_ATOM], v, alter);
1086		break;
1087
1088	case BPF_MISC|BPF_TAX:
1089		vstore(s, &val[X_ATOM], val[A_ATOM], alter);
1090		break;
1091
1092	case BPF_LDX|BPF_MEM:
1093		v = val[s->k];
1094		if (alter && vmap[v].is_const) {
1095			s->code = BPF_LDX|BPF_IMM;
1096			s->k = vmap[v].const_val;
1097			done = 0;
1098		}
1099		vstore(s, &val[X_ATOM], v, alter);
1100		break;
1101
1102	case BPF_ST:
1103		vstore(s, &val[s->k], val[A_ATOM], alter);
1104		break;
1105
1106	case BPF_STX:
1107		vstore(s, &val[s->k], val[X_ATOM], alter);
1108		break;
1109	}
1110}
1111
1112static void
1113deadstmt(register struct stmt *s, register struct stmt *last[])
1114{
1115	register int atom;
1116
1117	atom = atomuse(s);
1118	if (atom >= 0) {
1119		if (atom == AX_ATOM) {
1120			last[X_ATOM] = 0;
1121			last[A_ATOM] = 0;
1122		}
1123		else
1124			last[atom] = 0;
1125	}
1126	atom = atomdef(s);
1127	if (atom >= 0) {
1128		if (last[atom]) {
1129			done = 0;
1130			last[atom]->code = NOP;
1131		}
1132		last[atom] = s;
1133	}
1134}
1135
1136static void
1137opt_deadstores(register struct block *b)
1138{
1139	register struct slist *s;
1140	register int atom;
1141	struct stmt *last[N_ATOMS];
1142
1143	memset((char *)last, 0, sizeof last);
1144
1145	for (s = b->stmts; s != 0; s = s->next)
1146		deadstmt(&s->s, last);
1147	deadstmt(&b->s, last);
1148
1149	for (atom = 0; atom < N_ATOMS; ++atom)
1150		if (last[atom] && !ATOMELEM(b->out_use, atom)) {
1151			last[atom]->code = NOP;
1152			done = 0;
1153		}
1154}
1155
1156static void
1157opt_blk(struct block *b, int do_stmts)
1158{
1159	struct slist *s;
1160	struct edge *p;
1161	int i;
1162	bpf_int32 aval, xval;
1163
1164#if 0
1165	for (s = b->stmts; s && s->next; s = s->next)
1166		if (BPF_CLASS(s->s.code) == BPF_JMP) {
1167			do_stmts = 0;
1168			break;
1169		}
1170#endif
1171
1172	/*
1173	 * Initialize the atom values.
1174	 */
1175	p = b->in_edges;
1176	if (p == 0) {
1177		/*
1178		 * We have no predecessors, so everything is undefined
1179		 * upon entry to this block.
1180		 */
1181		memset((char *)b->val, 0, sizeof(b->val));
1182	} else {
1183		/*
1184		 * Inherit values from our predecessors.
1185		 *
1186		 * First, get the values from the predecessor along the
1187		 * first edge leading to this node.
1188		 */
1189		memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
1190		/*
1191		 * Now look at all the other nodes leading to this node.
1192		 * If, for the predecessor along that edge, a register
1193		 * has a different value from the one we have (i.e.,
1194		 * control paths are merging, and the merging paths
1195		 * assign different values to that register), give the
1196		 * register the undefined value of 0.
1197		 */
1198		while ((p = p->next) != NULL) {
1199			for (i = 0; i < N_ATOMS; ++i)
1200				if (b->val[i] != p->pred->val[i])
1201					b->val[i] = 0;
1202		}
1203	}
1204	aval = b->val[A_ATOM];
1205	xval = b->val[X_ATOM];
1206	for (s = b->stmts; s; s = s->next)
1207		opt_stmt(&s->s, b->val, do_stmts);
1208
1209	/*
1210	 * This is a special case: if we don't use anything from this
1211	 * block, and we load the accumulator or index register with a
1212	 * value that is already there, or if this block is a return,
1213	 * eliminate all the statements.
1214	 *
1215	 * XXX - what if it does a store?
1216	 *
1217	 * XXX - why does it matter whether we use anything from this
1218	 * block?  If the accumulator or index register doesn't change
1219	 * its value, isn't that OK even if we use that value?
1220	 *
1221	 * XXX - if we load the accumulator with a different value,
1222	 * and the block ends with a conditional branch, we obviously
1223	 * can't eliminate it, as the branch depends on that value.
1224	 * For the index register, the conditional branch only depends
1225	 * on the index register value if the test is against the index
1226	 * register value rather than a constant; if nothing uses the
1227	 * value we put into the index register, and we're not testing
1228	 * against the index register's value, and there aren't any
1229	 * other problems that would keep us from eliminating this
1230	 * block, can we eliminate it?
1231	 */
1232	if (do_stmts &&
1233	    ((b->out_use == 0 && aval != 0 && b->val[A_ATOM] == aval &&
1234	      xval != 0 && b->val[X_ATOM] == xval) ||
1235	     BPF_CLASS(b->s.code) == BPF_RET)) {
1236		if (b->stmts != 0) {
1237			b->stmts = 0;
1238			done = 0;
1239		}
1240	} else {
1241		opt_peep(b);
1242		opt_deadstores(b);
1243	}
1244	/*
1245	 * Set up values for branch optimizer.
1246	 */
1247	if (BPF_SRC(b->s.code) == BPF_K)
1248		b->oval = K(b->s.k);
1249	else
1250		b->oval = b->val[X_ATOM];
1251	b->et.code = b->s.code;
1252	b->ef.code = -b->s.code;
1253}
1254
1255/*
1256 * Return true if any register that is used on exit from 'succ', has
1257 * an exit value that is different from the corresponding exit value
1258 * from 'b'.
1259 */
1260static int
1261use_conflict(struct block *b, struct block *succ)
1262{
1263	int atom;
1264	atomset use = succ->out_use;
1265
1266	if (use == 0)
1267		return 0;
1268
1269	for (atom = 0; atom < N_ATOMS; ++atom)
1270		if (ATOMELEM(use, atom))
1271			if (b->val[atom] != succ->val[atom])
1272				return 1;
1273	return 0;
1274}
1275
1276static struct block *
1277fold_edge(struct block *child, struct edge *ep)
1278{
1279	int sense;
1280	int aval0, aval1, oval0, oval1;
1281	int code = ep->code;
1282
1283	if (code < 0) {
1284		code = -code;
1285		sense = 0;
1286	} else
1287		sense = 1;
1288
1289	if (child->s.code != code)
1290		return 0;
1291
1292	aval0 = child->val[A_ATOM];
1293	oval0 = child->oval;
1294	aval1 = ep->pred->val[A_ATOM];
1295	oval1 = ep->pred->oval;
1296
1297	if (aval0 != aval1)
1298		return 0;
1299
1300	if (oval0 == oval1)
1301		/*
1302		 * The operands of the branch instructions are
1303		 * identical, so the result is true if a true
1304		 * branch was taken to get here, otherwise false.
1305		 */
1306		return sense ? JT(child) : JF(child);
1307
1308	if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
1309		/*
1310		 * At this point, we only know the comparison if we
1311		 * came down the true branch, and it was an equality
1312		 * comparison with a constant.
1313		 *
1314		 * I.e., if we came down the true branch, and the branch
1315		 * was an equality comparison with a constant, we know the
1316		 * accumulator contains that constant.  If we came down
1317		 * the false branch, or the comparison wasn't with a
1318		 * constant, we don't know what was in the accumulator.
1319		 *
1320		 * We rely on the fact that distinct constants have distinct
1321		 * value numbers.
1322		 */
1323		return JF(child);
1324
1325	return 0;
1326}
1327
1328static void
1329opt_j(struct edge *ep)
1330{
1331	register int i, k;
1332	register struct block *target;
1333
1334	if (JT(ep->succ) == 0)
1335		return;
1336
1337	if (JT(ep->succ) == JF(ep->succ)) {
1338		/*
1339		 * Common branch targets can be eliminated, provided
1340		 * there is no data dependency.
1341		 */
1342		if (!use_conflict(ep->pred, ep->succ->et.succ)) {
1343			done = 0;
1344			ep->succ = JT(ep->succ);
1345		}
1346	}
1347	/*
1348	 * For each edge dominator that matches the successor of this
1349	 * edge, promote the edge successor to the its grandchild.
1350	 *
1351	 * XXX We violate the set abstraction here in favor a reasonably
1352	 * efficient loop.
1353	 */
1354 top:
1355	for (i = 0; i < edgewords; ++i) {
1356		register bpf_u_int32 x = ep->edom[i];
1357
1358		while (x != 0) {
1359			k = ffs(x) - 1;
1360			x &=~ (1 << k);
1361			k += i * BITS_PER_WORD;
1362
1363			target = fold_edge(ep->succ, edges[k]);
1364			/*
1365			 * Check that there is no data dependency between
1366			 * nodes that will be violated if we move the edge.
1367			 */
1368			if (target != 0 && !use_conflict(ep->pred, target)) {
1369				done = 0;
1370				ep->succ = target;
1371				if (JT(target) != 0)
1372					/*
1373					 * Start over unless we hit a leaf.
1374					 */
1375					goto top;
1376				return;
1377			}
1378		}
1379	}
1380}
1381
1382
1383static void
1384or_pullup(struct block *b)
1385{
1386	int val, at_top;
1387	struct block *pull;
1388	struct block **diffp, **samep;
1389	struct edge *ep;
1390
1391	ep = b->in_edges;
1392	if (ep == 0)
1393		return;
1394
1395	/*
1396	 * Make sure each predecessor loads the same value.
1397	 * XXX why?
1398	 */
1399	val = ep->pred->val[A_ATOM];
1400	for (ep = ep->next; ep != 0; ep = ep->next)
1401		if (val != ep->pred->val[A_ATOM])
1402			return;
1403
1404	if (JT(b->in_edges->pred) == b)
1405		diffp = &JT(b->in_edges->pred);
1406	else
1407		diffp = &JF(b->in_edges->pred);
1408
1409	at_top = 1;
1410	while (1) {
1411		if (*diffp == 0)
1412			return;
1413
1414		if (JT(*diffp) != JT(b))
1415			return;
1416
1417		if (!SET_MEMBER((*diffp)->dom, b->id))
1418			return;
1419
1420		if ((*diffp)->val[A_ATOM] != val)
1421			break;
1422
1423		diffp = &JF(*diffp);
1424		at_top = 0;
1425	}
1426	samep = &JF(*diffp);
1427	while (1) {
1428		if (*samep == 0)
1429			return;
1430
1431		if (JT(*samep) != JT(b))
1432			return;
1433
1434		if (!SET_MEMBER((*samep)->dom, b->id))
1435			return;
1436
1437		if ((*samep)->val[A_ATOM] == val)
1438			break;
1439
1440		/* XXX Need to check that there are no data dependencies
1441		   between dp0 and dp1.  Currently, the code generator
1442		   will not produce such dependencies. */
1443		samep = &JF(*samep);
1444	}
1445#ifdef notdef
1446	/* XXX This doesn't cover everything. */
1447	for (i = 0; i < N_ATOMS; ++i)
1448		if ((*samep)->val[i] != pred->val[i])
1449			return;
1450#endif
1451	/* Pull up the node. */
1452	pull = *samep;
1453	*samep = JF(pull);
1454	JF(pull) = *diffp;
1455
1456	/*
1457	 * At the top of the chain, each predecessor needs to point at the
1458	 * pulled up node.  Inside the chain, there is only one predecessor
1459	 * to worry about.
1460	 */
1461	if (at_top) {
1462		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1463			if (JT(ep->pred) == b)
1464				JT(ep->pred) = pull;
1465			else
1466				JF(ep->pred) = pull;
1467		}
1468	}
1469	else
1470		*diffp = pull;
1471
1472	done = 0;
1473}
1474
1475static void
1476and_pullup(struct block *b)
1477{
1478	int val, at_top;
1479	struct block *pull;
1480	struct block **diffp, **samep;
1481	struct edge *ep;
1482
1483	ep = b->in_edges;
1484	if (ep == 0)
1485		return;
1486
1487	/*
1488	 * Make sure each predecessor loads the same value.
1489	 */
1490	val = ep->pred->val[A_ATOM];
1491	for (ep = ep->next; ep != 0; ep = ep->next)
1492		if (val != ep->pred->val[A_ATOM])
1493			return;
1494
1495	if (JT(b->in_edges->pred) == b)
1496		diffp = &JT(b->in_edges->pred);
1497	else
1498		diffp = &JF(b->in_edges->pred);
1499
1500	at_top = 1;
1501	while (1) {
1502		if (*diffp == 0)
1503			return;
1504
1505		if (JF(*diffp) != JF(b))
1506			return;
1507
1508		if (!SET_MEMBER((*diffp)->dom, b->id))
1509			return;
1510
1511		if ((*diffp)->val[A_ATOM] != val)
1512			break;
1513
1514		diffp = &JT(*diffp);
1515		at_top = 0;
1516	}
1517	samep = &JT(*diffp);
1518	while (1) {
1519		if (*samep == 0)
1520			return;
1521
1522		if (JF(*samep) != JF(b))
1523			return;
1524
1525		if (!SET_MEMBER((*samep)->dom, b->id))
1526			return;
1527
1528		if ((*samep)->val[A_ATOM] == val)
1529			break;
1530
1531		/* XXX Need to check that there are no data dependencies
1532		   between diffp and samep.  Currently, the code generator
1533		   will not produce such dependencies. */
1534		samep = &JT(*samep);
1535	}
1536#ifdef notdef
1537	/* XXX This doesn't cover everything. */
1538	for (i = 0; i < N_ATOMS; ++i)
1539		if ((*samep)->val[i] != pred->val[i])
1540			return;
1541#endif
1542	/* Pull up the node. */
1543	pull = *samep;
1544	*samep = JT(pull);
1545	JT(pull) = *diffp;
1546
1547	/*
1548	 * At the top of the chain, each predecessor needs to point at the
1549	 * pulled up node.  Inside the chain, there is only one predecessor
1550	 * to worry about.
1551	 */
1552	if (at_top) {
1553		for (ep = b->in_edges; ep != 0; ep = ep->next) {
1554			if (JT(ep->pred) == b)
1555				JT(ep->pred) = pull;
1556			else
1557				JF(ep->pred) = pull;
1558		}
1559	}
1560	else
1561		*diffp = pull;
1562
1563	done = 0;
1564}
1565
1566static void
1567opt_blks(struct block *root, int do_stmts)
1568{
1569	int i, maxlevel;
1570	struct block *p;
1571
1572	init_val();
1573	maxlevel = root->level;
1574
1575	find_inedges(root);
1576	for (i = maxlevel; i >= 0; --i)
1577		for (p = levels[i]; p; p = p->link)
1578			opt_blk(p, do_stmts);
1579
1580	if (do_stmts)
1581		/*
1582		 * No point trying to move branches; it can't possibly
1583		 * make a difference at this point.
1584		 */
1585		return;
1586
1587	for (i = 1; i <= maxlevel; ++i) {
1588		for (p = levels[i]; p; p = p->link) {
1589			opt_j(&p->et);
1590			opt_j(&p->ef);
1591		}
1592	}
1593
1594	find_inedges(root);
1595	for (i = 1; i <= maxlevel; ++i) {
1596		for (p = levels[i]; p; p = p->link) {
1597			or_pullup(p);
1598			and_pullup(p);
1599		}
1600	}
1601}
1602
1603static inline void
1604link_inedge(struct edge *parent, struct block *child)
1605{
1606	parent->next = child->in_edges;
1607	child->in_edges = parent;
1608}
1609
1610static void
1611find_inedges(struct block *root)
1612{
1613	int i;
1614	struct block *b;
1615
1616	for (i = 0; i < n_blocks; ++i)
1617		blocks[i]->in_edges = 0;
1618
1619	/*
1620	 * Traverse the graph, adding each edge to the predecessor
1621	 * list of its successors.  Skip the leaves (i.e. level 0).
1622	 */
1623	for (i = root->level; i > 0; --i) {
1624		for (b = levels[i]; b != 0; b = b->link) {
1625			link_inedge(&b->et, JT(b));
1626			link_inedge(&b->ef, JF(b));
1627		}
1628	}
1629}
1630
1631static void
1632opt_root(struct block **b)
1633{
1634	struct slist *tmp, *s;
1635
1636	s = (*b)->stmts;
1637	(*b)->stmts = 0;
1638	while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
1639		*b = JT(*b);
1640
1641	tmp = (*b)->stmts;
1642	if (tmp != 0)
1643		sappend(s, tmp);
1644	(*b)->stmts = s;
1645
1646	/*
1647	 * If the root node is a return, then there is no
1648	 * point executing any statements (since the bpf machine
1649	 * has no side effects).
1650	 */
1651	if (BPF_CLASS((*b)->s.code) == BPF_RET)
1652		(*b)->stmts = 0;
1653}
1654
1655static void
1656opt_loop(struct block *root, int do_stmts)
1657{
1658
1659#ifdef BDEBUG
1660	if (dflag > 1) {
1661		printf("opt_loop(root, %d) begin\n", do_stmts);
1662		opt_dump(root);
1663	}
1664#endif
1665	do {
1666		done = 1;
1667		find_levels(root);
1668		find_dom(root);
1669		find_closure(root);
1670		find_ud(root);
1671		find_edom(root);
1672		opt_blks(root, do_stmts);
1673#ifdef BDEBUG
1674		if (dflag > 1) {
1675			printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, done);
1676			opt_dump(root);
1677		}
1678#endif
1679	} while (!done);
1680}
1681
1682/*
1683 * Optimize the filter code in its dag representation.
1684 */
1685void
1686bpf_optimize(struct block **rootp)
1687{
1688	struct block *root;
1689
1690	root = *rootp;
1691
1692	opt_init(root);
1693	opt_loop(root, 0);
1694	opt_loop(root, 1);
1695	intern_blocks(root);
1696#ifdef BDEBUG
1697	if (dflag > 1) {
1698		printf("after intern_blocks()\n");
1699		opt_dump(root);
1700	}
1701#endif
1702	opt_root(rootp);
1703#ifdef BDEBUG
1704	if (dflag > 1) {
1705		printf("after opt_root()\n");
1706		opt_dump(root);
1707	}
1708#endif
1709	opt_cleanup();
1710}
1711
1712static void
1713make_marks(struct block *p)
1714{
1715	if (!isMarked(p)) {
1716		Mark(p);
1717		if (BPF_CLASS(p->s.code) != BPF_RET) {
1718			make_marks(JT(p));
1719			make_marks(JF(p));
1720		}
1721	}
1722}
1723
1724/*
1725 * Mark code array such that isMarked(i) is true
1726 * only for nodes that are alive.
1727 */
1728static void
1729mark_code(struct block *p)
1730{
1731	cur_mark += 1;
1732	make_marks(p);
1733}
1734
1735/*
1736 * True iff the two stmt lists load the same value from the packet into
1737 * the accumulator.
1738 */
1739static int
1740eq_slist(struct slist *x, struct slist *y)
1741{
1742	while (1) {
1743		while (x && x->s.code == NOP)
1744			x = x->next;
1745		while (y && y->s.code == NOP)
1746			y = y->next;
1747		if (x == 0)
1748			return y == 0;
1749		if (y == 0)
1750			return x == 0;
1751		if (x->s.code != y->s.code || x->s.k != y->s.k)
1752			return 0;
1753		x = x->next;
1754		y = y->next;
1755	}
1756}
1757
1758static inline int
1759eq_blk(struct block *b0, struct block *b1)
1760{
1761	if (b0->s.code == b1->s.code &&
1762	    b0->s.k == b1->s.k &&
1763	    b0->et.succ == b1->et.succ &&
1764	    b0->ef.succ == b1->ef.succ)
1765		return eq_slist(b0->stmts, b1->stmts);
1766	return 0;
1767}
1768
1769static void
1770intern_blocks(struct block *root)
1771{
1772	struct block *p;
1773	int i, j;
1774	int done1; /* don't shadow global */
1775 top:
1776	done1 = 1;
1777	for (i = 0; i < n_blocks; ++i)
1778		blocks[i]->link = 0;
1779
1780	mark_code(root);
1781
1782	for (i = n_blocks - 1; --i >= 0; ) {
1783		if (!isMarked(blocks[i]))
1784			continue;
1785		for (j = i + 1; j < n_blocks; ++j) {
1786			if (!isMarked(blocks[j]))
1787				continue;
1788			if (eq_blk(blocks[i], blocks[j])) {
1789				blocks[i]->link = blocks[j]->link ?
1790					blocks[j]->link : blocks[j];
1791				break;
1792			}
1793		}
1794	}
1795	for (i = 0; i < n_blocks; ++i) {
1796		p = blocks[i];
1797		if (JT(p) == 0)
1798			continue;
1799		if (JT(p)->link) {
1800			done1 = 0;
1801			JT(p) = JT(p)->link;
1802		}
1803		if (JF(p)->link) {
1804			done1 = 0;
1805			JF(p) = JF(p)->link;
1806		}
1807	}
1808	if (!done1)
1809		goto top;
1810}
1811
1812static void
1813opt_cleanup(void)
1814{
1815	free((void *)vnode_base);
1816	free((void *)vmap);
1817	free((void *)edges);
1818	free((void *)space);
1819	free((void *)levels);
1820	free((void *)blocks);
1821}
1822
1823/*
1824 * Return the number of stmts in 's'.
1825 */
1826static u_int
1827slength(struct slist *s)
1828{
1829	u_int n = 0;
1830
1831	for (; s; s = s->next)
1832		if (s->s.code != NOP)
1833			++n;
1834	return n;
1835}
1836
1837/*
1838 * Return the number of nodes reachable by 'p'.
1839 * All nodes should be initially unmarked.
1840 */
1841static int
1842count_blocks(struct block *p)
1843{
1844	if (p == 0 || isMarked(p))
1845		return 0;
1846	Mark(p);
1847	return count_blocks(JT(p)) + count_blocks(JF(p)) + 1;
1848}
1849
1850/*
1851 * Do a depth first search on the flow graph, numbering the
1852 * the basic blocks, and entering them into the 'blocks' array.`
1853 */
1854static void
1855number_blks_r(struct block *p)
1856{
1857	int n;
1858
1859	if (p == 0 || isMarked(p))
1860		return;
1861
1862	Mark(p);
1863	n = n_blocks++;
1864	p->id = n;
1865	blocks[n] = p;
1866
1867	number_blks_r(JT(p));
1868	number_blks_r(JF(p));
1869}
1870
1871/*
1872 * Return the number of stmts in the flowgraph reachable by 'p'.
1873 * The nodes should be unmarked before calling.
1874 *
1875 * Note that "stmts" means "instructions", and that this includes
1876 *
1877 *	side-effect statements in 'p' (slength(p->stmts));
1878 *
1879 *	statements in the true branch from 'p' (count_stmts(JT(p)));
1880 *
1881 *	statements in the false branch from 'p' (count_stmts(JF(p)));
1882 *
1883 *	the conditional jump itself (1);
1884 *
1885 *	an extra long jump if the true branch requires it (p->longjt);
1886 *
1887 *	an extra long jump if the false branch requires it (p->longjf).
1888 */
1889static u_int
1890count_stmts(struct block *p)
1891{
1892	u_int n;
1893
1894	if (p == 0 || isMarked(p))
1895		return 0;
1896	Mark(p);
1897	n = count_stmts(JT(p)) + count_stmts(JF(p));
1898	return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
1899}
1900
1901/*
1902 * Allocate memory.  All allocation is done before optimization
1903 * is begun.  A linear bound on the size of all data structures is computed
1904 * from the total number of blocks and/or statements.
1905 */
1906static void
1907opt_init(struct block *root)
1908{
1909	bpf_u_int32 *p;
1910	int i, n, max_stmts;
1911
1912	/*
1913	 * First, count the blocks, so we can malloc an array to map
1914	 * block number to block.  Then, put the blocks into the array.
1915	 */
1916	unMarkAll();
1917	n = count_blocks(root);
1918	blocks = (struct block **)calloc(n, sizeof(*blocks));
1919	if (blocks == NULL)
1920		bpf_error("malloc");
1921	unMarkAll();
1922	n_blocks = 0;
1923	number_blks_r(root);
1924
1925	n_edges = 2 * n_blocks;
1926	edges = (struct edge **)calloc(n_edges, sizeof(*edges));
1927	if (edges == NULL)
1928		bpf_error("malloc");
1929
1930	/*
1931	 * The number of levels is bounded by the number of nodes.
1932	 */
1933	levels = (struct block **)calloc(n_blocks, sizeof(*levels));
1934	if (levels == NULL)
1935		bpf_error("malloc");
1936
1937	edgewords = n_edges / (8 * sizeof(bpf_u_int32)) + 1;
1938	nodewords = n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
1939
1940	/* XXX */
1941	space = (bpf_u_int32 *)malloc(2 * n_blocks * nodewords * sizeof(*space)
1942				 + n_edges * edgewords * sizeof(*space));
1943	if (space == NULL)
1944		bpf_error("malloc");
1945	p = space;
1946	all_dom_sets = p;
1947	for (i = 0; i < n; ++i) {
1948		blocks[i]->dom = p;
1949		p += nodewords;
1950	}
1951	all_closure_sets = p;
1952	for (i = 0; i < n; ++i) {
1953		blocks[i]->closure = p;
1954		p += nodewords;
1955	}
1956	all_edge_sets = p;
1957	for (i = 0; i < n; ++i) {
1958		register struct block *b = blocks[i];
1959
1960		b->et.edom = p;
1961		p += edgewords;
1962		b->ef.edom = p;
1963		p += edgewords;
1964		b->et.id = i;
1965		edges[i] = &b->et;
1966		b->ef.id = n_blocks + i;
1967		edges[n_blocks + i] = &b->ef;
1968		b->et.pred = b;
1969		b->ef.pred = b;
1970	}
1971	max_stmts = 0;
1972	for (i = 0; i < n; ++i)
1973		max_stmts += slength(blocks[i]->stmts) + 1;
1974	/*
1975	 * We allocate at most 3 value numbers per statement,
1976	 * so this is an upper bound on the number of valnodes
1977	 * we'll need.
1978	 */
1979	maxval = 3 * max_stmts;
1980	vmap = (struct vmapinfo *)calloc(maxval, sizeof(*vmap));
1981	vnode_base = (struct valnode *)calloc(maxval, sizeof(*vnode_base));
1982	if (vmap == NULL || vnode_base == NULL)
1983		bpf_error("malloc");
1984}
1985
1986/*
1987 * Some pointers used to convert the basic block form of the code,
1988 * into the array form that BPF requires.  'fstart' will point to
1989 * the malloc'd array while 'ftail' is used during the recursive traversal.
1990 */
1991static struct bpf_insn *fstart;
1992static struct bpf_insn *ftail;
1993
1994#ifdef BDEBUG
1995int bids[1000];
1996#endif
1997
1998/*
1999 * Returns true if successful.  Returns false if a branch has
2000 * an offset that is too large.  If so, we have marked that
2001 * branch so that on a subsequent iteration, it will be treated
2002 * properly.
2003 */
2004static int
2005convert_code_r(struct block *p)
2006{
2007	struct bpf_insn *dst;
2008	struct slist *src;
2009	int slen;
2010	u_int off;
2011	int extrajmps;		/* number of extra jumps inserted */
2012	struct slist **offset = NULL;
2013
2014	if (p == 0 || isMarked(p))
2015		return (1);
2016	Mark(p);
2017
2018	if (convert_code_r(JF(p)) == 0)
2019		return (0);
2020	if (convert_code_r(JT(p)) == 0)
2021		return (0);
2022
2023	slen = slength(p->stmts);
2024	dst = ftail -= (slen + 1 + p->longjt + p->longjf);
2025		/* inflate length by any extra jumps */
2026
2027	p->offset = dst - fstart;
2028
2029	/* generate offset[] for convenience  */
2030	if (slen) {
2031		offset = (struct slist **)calloc(slen, sizeof(struct slist *));
2032		if (!offset) {
2033			bpf_error("not enough core");
2034			/*NOTREACHED*/
2035		}
2036	}
2037	src = p->stmts;
2038	for (off = 0; off < slen && src; off++) {
2039#if 0
2040		printf("off=%d src=%x\n", off, src);
2041#endif
2042		offset[off] = src;
2043		src = src->next;
2044	}
2045
2046	off = 0;
2047	for (src = p->stmts; src; src = src->next) {
2048		if (src->s.code == NOP)
2049			continue;
2050		dst->code = (u_short)src->s.code;
2051		dst->k = src->s.k;
2052
2053		/* fill block-local relative jump */
2054		if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
2055#if 0
2056			if (src->s.jt || src->s.jf) {
2057				bpf_error("illegal jmp destination");
2058				/*NOTREACHED*/
2059			}
2060#endif
2061			goto filled;
2062		}
2063		if (off == slen - 2)	/*???*/
2064			goto filled;
2065
2066	    {
2067		int i;
2068		int jt, jf;
2069		const char *ljerr = "%s for block-local relative jump: off=%d";
2070
2071#if 0
2072		printf("code=%x off=%d %x %x\n", src->s.code,
2073			off, src->s.jt, src->s.jf);
2074#endif
2075
2076		if (!src->s.jt || !src->s.jf) {
2077			bpf_error(ljerr, "no jmp destination", off);
2078			/*NOTREACHED*/
2079		}
2080
2081		jt = jf = 0;
2082		for (i = 0; i < slen; i++) {
2083			if (offset[i] == src->s.jt) {
2084				if (jt) {
2085					bpf_error(ljerr, "multiple matches", off);
2086					/*NOTREACHED*/
2087				}
2088
2089				dst->jt = i - off - 1;
2090				jt++;
2091			}
2092			if (offset[i] == src->s.jf) {
2093				if (jf) {
2094					bpf_error(ljerr, "multiple matches", off);
2095					/*NOTREACHED*/
2096				}
2097				dst->jf = i - off - 1;
2098				jf++;
2099			}
2100		}
2101		if (!jt || !jf) {
2102			bpf_error(ljerr, "no destination found", off);
2103			/*NOTREACHED*/
2104		}
2105	    }
2106filled:
2107		++dst;
2108		++off;
2109	}
2110	if (offset)
2111		free(offset);
2112
2113#ifdef BDEBUG
2114	bids[dst - fstart] = p->id + 1;
2115#endif
2116	dst->code = (u_short)p->s.code;
2117	dst->k = p->s.k;
2118	if (JT(p)) {
2119		extrajmps = 0;
2120		off = JT(p)->offset - (p->offset + slen) - 1;
2121		if (off >= 256) {
2122		    /* offset too large for branch, must add a jump */
2123		    if (p->longjt == 0) {
2124		    	/* mark this instruction and retry */
2125			p->longjt++;
2126			return(0);
2127		    }
2128		    /* branch if T to following jump */
2129		    dst->jt = extrajmps;
2130		    extrajmps++;
2131		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2132		    dst[extrajmps].k = off - extrajmps;
2133		}
2134		else
2135		    dst->jt = off;
2136		off = JF(p)->offset - (p->offset + slen) - 1;
2137		if (off >= 256) {
2138		    /* offset too large for branch, must add a jump */
2139		    if (p->longjf == 0) {
2140		    	/* mark this instruction and retry */
2141			p->longjf++;
2142			return(0);
2143		    }
2144		    /* branch if F to following jump */
2145		    /* if two jumps are inserted, F goes to second one */
2146		    dst->jf = extrajmps;
2147		    extrajmps++;
2148		    dst[extrajmps].code = BPF_JMP|BPF_JA;
2149		    dst[extrajmps].k = off - extrajmps;
2150		}
2151		else
2152		    dst->jf = off;
2153	}
2154	return (1);
2155}
2156
2157
2158/*
2159 * Convert flowgraph intermediate representation to the
2160 * BPF array representation.  Set *lenp to the number of instructions.
2161 *
2162 * This routine does *NOT* leak the memory pointed to by fp.  It *must
2163 * not* do free(fp) before returning fp; doing so would make no sense,
2164 * as the BPF array pointed to by the return value of icode_to_fcode()
2165 * must be valid - it's being returned for use in a bpf_program structure.
2166 *
2167 * If it appears that icode_to_fcode() is leaking, the problem is that
2168 * the program using pcap_compile() is failing to free the memory in
2169 * the BPF program when it's done - the leak is in the program, not in
2170 * the routine that happens to be allocating the memory.  (By analogy, if
2171 * a program calls fopen() without ever calling fclose() on the FILE *,
2172 * it will leak the FILE structure; the leak is not in fopen(), it's in
2173 * the program.)  Change the program to use pcap_freecode() when it's
2174 * done with the filter program.  See the pcap man page.
2175 */
2176struct bpf_insn *
2177icode_to_fcode(struct block *root, u_int *lenp)
2178{
2179	u_int n;
2180	struct bpf_insn *fp;
2181
2182	/*
2183	 * Loop doing convert_code_r() until no branches remain
2184	 * with too-large offsets.
2185	 */
2186	while (1) {
2187	    unMarkAll();
2188	    n = *lenp = count_stmts(root);
2189
2190	    fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
2191	    if (fp == NULL)
2192		    bpf_error("malloc");
2193	    memset((char *)fp, 0, sizeof(*fp) * n);
2194	    fstart = fp;
2195	    ftail = fp + n;
2196
2197	    unMarkAll();
2198	    if (convert_code_r(root))
2199		break;
2200	    free(fp);
2201	}
2202
2203	return fp;
2204}
2205
2206/*
2207 * Make a copy of a BPF program and put it in the "fcode" member of
2208 * a "pcap_t".
2209 *
2210 * If we fail to allocate memory for the copy, fill in the "errbuf"
2211 * member of the "pcap_t" with an error message, and return -1;
2212 * otherwise, return 0.
2213 */
2214int
2215install_bpf_program(pcap_t *p, struct bpf_program *fp)
2216{
2217	size_t prog_size;
2218
2219	/*
2220	 * Validate the program.
2221	 */
2222	if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
2223		snprintf(p->errbuf, sizeof(p->errbuf),
2224			"BPF program is not valid");
2225		return (-1);
2226	}
2227
2228	/*
2229	 * Free up any already installed program.
2230	 */
2231	pcap_freecode(&p->fcode);
2232
2233	prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
2234	p->fcode.bf_len = fp->bf_len;
2235	p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
2236	if (p->fcode.bf_insns == NULL) {
2237		snprintf(p->errbuf, sizeof(p->errbuf),
2238			 "malloc: %s", pcap_strerror(errno));
2239		return (-1);
2240	}
2241	memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
2242	return (0);
2243}
2244
2245#ifdef BDEBUG
2246static void
2247dot_dump_node(struct block *block, struct bpf_program *prog, FILE *out)
2248{
2249	int icount, noffset;
2250	int i;
2251
2252	if (block == NULL || isMarked(block))
2253		return;
2254	Mark(block);
2255
2256	icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
2257	noffset = min(block->offset + icount, (int)prog->bf_len);
2258
2259	fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id);
2260	for (i = block->offset; i < noffset; i++) {
2261		fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
2262	}
2263	fprintf(out, "\" tooltip=\"");
2264	for (i = 0; i < BPF_MEMWORDS; i++)
2265		if (block->val[i] != 0)
2266			fprintf(out, "val[%d]=%d ", i, block->val[i]);
2267	fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
2268	fprintf(out, "val[X]=%d", block->val[X_ATOM]);
2269	fprintf(out, "\"");
2270	if (JT(block) == NULL)
2271		fprintf(out, ", peripheries=2");
2272	fprintf(out, "];\n");
2273
2274	dot_dump_node(JT(block), prog, out);
2275	dot_dump_node(JF(block), prog, out);
2276}
2277static void
2278dot_dump_edge(struct block *block, FILE *out)
2279{
2280	if (block == NULL || isMarked(block))
2281		return;
2282	Mark(block);
2283
2284	if (JT(block)) {
2285		fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
2286				block->id, JT(block)->id);
2287		fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
2288			   block->id, JF(block)->id);
2289	}
2290	dot_dump_edge(JT(block), out);
2291	dot_dump_edge(JF(block), out);
2292}
2293/* Output the block CFG using graphviz/DOT language
2294 * In the CFG, block's code, value index for each registers at EXIT,
2295 * and the jump relationship is show.
2296 *
2297 * example DOT for BPF `ip src host 1.1.1.1' is:
2298    digraph BPF {
2299    	block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh      [12]\n(001) jeq      #0x800           jt 2	jf 5" tooltip="val[A]=0 val[X]=0"];
2300    	block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld       [26]\n(003) jeq      #0x1010101       jt 4	jf 5" tooltip="val[A]=0 val[X]=0"];
2301    	block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret      #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
2302    	block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret      #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
2303    	"block0":se -> "block1":n [label="T"];
2304    	"block0":sw -> "block3":n [label="F"];
2305    	"block1":se -> "block2":n [label="T"];
2306    	"block1":sw -> "block3":n [label="F"];
2307    }
2308 *
2309 *  After install graphviz on http://www.graphviz.org/, save it as bpf.dot
2310 *  and run `dot -Tpng -O bpf.dot' to draw the graph.
2311 */
2312static void
2313dot_dump(struct block *root)
2314{
2315	struct bpf_program f;
2316	FILE *out = stdout;
2317
2318	memset(bids, 0, sizeof bids);
2319	f.bf_insns = icode_to_fcode(root, &f.bf_len);
2320
2321	fprintf(out, "digraph BPF {\n");
2322	unMarkAll();
2323	dot_dump_node(root, &f, out);
2324	unMarkAll();
2325	dot_dump_edge(root, out);
2326	fprintf(out, "}\n");
2327
2328	free((char *)f.bf_insns);
2329}
2330
2331static void
2332plain_dump(struct block *root)
2333{
2334	struct bpf_program f;
2335
2336	memset(bids, 0, sizeof bids);
2337	f.bf_insns = icode_to_fcode(root, &f.bf_len);
2338	bpf_dump(&f, 1);
2339	putchar('\n');
2340	free((char *)f.bf_insns);
2341}
2342static void
2343opt_dump(struct block *root)
2344{
2345	/* if optimizer debugging is enabled, output DOT graph
2346	 * `dflag=4' is equivalent to -dddd to follow -d/-dd/-ddd
2347     * convention in tcpdump command line
2348	 */
2349	if (dflag > 3)
2350		dot_dump(root);
2351	else
2352		plain_dump(root);
2353}
2354
2355#endif
2356