1/* 2 * Copyright (c) 2015 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11#include "vpx_dsp/fwd_txfm.h" 12 13void vpx_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) { 14 // The 2D transform is done with two passes which are actually pretty 15 // similar. In the first one, we transform the columns and transpose 16 // the results. In the second one, we transform the rows. To achieve that, 17 // as the first pass results are transposed, we transpose the columns (that 18 // is the transposed rows) and transpose the results (so that it goes back 19 // in normal/row positions). 20 int pass; 21 // We need an intermediate buffer between passes. 22 tran_low_t intermediate[4 * 4]; 23 const int16_t *in_pass0 = input; 24 const tran_low_t *in = NULL; 25 tran_low_t *out = intermediate; 26 // Do the two transform/transpose passes 27 for (pass = 0; pass < 2; ++pass) { 28 tran_high_t input[4]; // canbe16 29 tran_high_t step[4]; // canbe16 30 tran_high_t temp1, temp2; // needs32 31 int i; 32 for (i = 0; i < 4; ++i) { 33 // Load inputs. 34 if (0 == pass) { 35 input[0] = in_pass0[0 * stride] * 16; 36 input[1] = in_pass0[1 * stride] * 16; 37 input[2] = in_pass0[2 * stride] * 16; 38 input[3] = in_pass0[3 * stride] * 16; 39 if (i == 0 && input[0]) { 40 input[0] += 1; 41 } 42 } else { 43 input[0] = in[0 * 4]; 44 input[1] = in[1 * 4]; 45 input[2] = in[2 * 4]; 46 input[3] = in[3 * 4]; 47 } 48 // Transform. 49 step[0] = input[0] + input[3]; 50 step[1] = input[1] + input[2]; 51 step[2] = input[1] - input[2]; 52 step[3] = input[0] - input[3]; 53 temp1 = (step[0] + step[1]) * cospi_16_64; 54 temp2 = (step[0] - step[1]) * cospi_16_64; 55 out[0] = (tran_low_t)fdct_round_shift(temp1); 56 out[2] = (tran_low_t)fdct_round_shift(temp2); 57 temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64; 58 temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64; 59 out[1] = (tran_low_t)fdct_round_shift(temp1); 60 out[3] = (tran_low_t)fdct_round_shift(temp2); 61 // Do next column (which is a transposed row in second/horizontal pass) 62 in_pass0++; 63 in++; 64 out += 4; 65 } 66 // Setup in/out for next pass. 67 in = intermediate; 68 out = output; 69 } 70 71 { 72 int i, j; 73 for (i = 0; i < 4; ++i) { 74 for (j = 0; j < 4; ++j) 75 output[j + i * 4] = (output[j + i * 4] + 1) >> 2; 76 } 77 } 78} 79 80void vpx_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) { 81 int r, c; 82 tran_low_t sum = 0; 83 for (r = 0; r < 4; ++r) 84 for (c = 0; c < 4; ++c) 85 sum += input[r * stride + c]; 86 87 output[0] = sum << 1; 88 output[1] = 0; 89} 90 91void vpx_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) { 92 int i, j; 93 tran_low_t intermediate[64]; 94 int pass; 95 tran_low_t *output = intermediate; 96 const tran_low_t *in = NULL; 97 98 // Transform columns 99 for (pass = 0; pass < 2; ++pass) { 100 tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 101 tran_high_t t0, t1, t2, t3; // needs32 102 tran_high_t x0, x1, x2, x3; // canbe16 103 104 int i; 105 for (i = 0; i < 8; i++) { 106 // stage 1 107 if (pass == 0) { 108 s0 = (input[0 * stride] + input[7 * stride]) * 4; 109 s1 = (input[1 * stride] + input[6 * stride]) * 4; 110 s2 = (input[2 * stride] + input[5 * stride]) * 4; 111 s3 = (input[3 * stride] + input[4 * stride]) * 4; 112 s4 = (input[3 * stride] - input[4 * stride]) * 4; 113 s5 = (input[2 * stride] - input[5 * stride]) * 4; 114 s6 = (input[1 * stride] - input[6 * stride]) * 4; 115 s7 = (input[0 * stride] - input[7 * stride]) * 4; 116 ++input; 117 } else { 118 s0 = in[0 * 8] + in[7 * 8]; 119 s1 = in[1 * 8] + in[6 * 8]; 120 s2 = in[2 * 8] + in[5 * 8]; 121 s3 = in[3 * 8] + in[4 * 8]; 122 s4 = in[3 * 8] - in[4 * 8]; 123 s5 = in[2 * 8] - in[5 * 8]; 124 s6 = in[1 * 8] - in[6 * 8]; 125 s7 = in[0 * 8] - in[7 * 8]; 126 ++in; 127 } 128 129 // fdct4(step, step); 130 x0 = s0 + s3; 131 x1 = s1 + s2; 132 x2 = s1 - s2; 133 x3 = s0 - s3; 134 t0 = (x0 + x1) * cospi_16_64; 135 t1 = (x0 - x1) * cospi_16_64; 136 t2 = x2 * cospi_24_64 + x3 * cospi_8_64; 137 t3 = -x2 * cospi_8_64 + x3 * cospi_24_64; 138 output[0] = (tran_low_t)fdct_round_shift(t0); 139 output[2] = (tran_low_t)fdct_round_shift(t2); 140 output[4] = (tran_low_t)fdct_round_shift(t1); 141 output[6] = (tran_low_t)fdct_round_shift(t3); 142 143 // Stage 2 144 t0 = (s6 - s5) * cospi_16_64; 145 t1 = (s6 + s5) * cospi_16_64; 146 t2 = fdct_round_shift(t0); 147 t3 = fdct_round_shift(t1); 148 149 // Stage 3 150 x0 = s4 + t2; 151 x1 = s4 - t2; 152 x2 = s7 - t3; 153 x3 = s7 + t3; 154 155 // Stage 4 156 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; 157 t1 = x1 * cospi_12_64 + x2 * cospi_20_64; 158 t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; 159 t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; 160 output[1] = (tran_low_t)fdct_round_shift(t0); 161 output[3] = (tran_low_t)fdct_round_shift(t2); 162 output[5] = (tran_low_t)fdct_round_shift(t1); 163 output[7] = (tran_low_t)fdct_round_shift(t3); 164 output += 8; 165 } 166 in = intermediate; 167 output = final_output; 168 } 169 170 // Rows 171 for (i = 0; i < 8; ++i) { 172 for (j = 0; j < 8; ++j) 173 final_output[j + i * 8] /= 2; 174 } 175} 176 177void vpx_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) { 178 int r, c; 179 tran_low_t sum = 0; 180 for (r = 0; r < 8; ++r) 181 for (c = 0; c < 8; ++c) 182 sum += input[r * stride + c]; 183 184 output[0] = sum; 185 output[1] = 0; 186} 187 188void vpx_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) { 189 // The 2D transform is done with two passes which are actually pretty 190 // similar. In the first one, we transform the columns and transpose 191 // the results. In the second one, we transform the rows. To achieve that, 192 // as the first pass results are transposed, we transpose the columns (that 193 // is the transposed rows) and transpose the results (so that it goes back 194 // in normal/row positions). 195 int pass; 196 // We need an intermediate buffer between passes. 197 tran_low_t intermediate[256]; 198 const int16_t *in_pass0 = input; 199 const tran_low_t *in = NULL; 200 tran_low_t *out = intermediate; 201 // Do the two transform/transpose passes 202 for (pass = 0; pass < 2; ++pass) { 203 tran_high_t step1[8]; // canbe16 204 tran_high_t step2[8]; // canbe16 205 tran_high_t step3[8]; // canbe16 206 tran_high_t input[8]; // canbe16 207 tran_high_t temp1, temp2; // needs32 208 int i; 209 for (i = 0; i < 16; i++) { 210 if (0 == pass) { 211 // Calculate input for the first 8 results. 212 input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4; 213 input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4; 214 input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4; 215 input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4; 216 input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4; 217 input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4; 218 input[6] = (in_pass0[6 * stride] + in_pass0[ 9 * stride]) * 4; 219 input[7] = (in_pass0[7 * stride] + in_pass0[ 8 * stride]) * 4; 220 // Calculate input for the next 8 results. 221 step1[0] = (in_pass0[7 * stride] - in_pass0[ 8 * stride]) * 4; 222 step1[1] = (in_pass0[6 * stride] - in_pass0[ 9 * stride]) * 4; 223 step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4; 224 step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4; 225 step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4; 226 step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4; 227 step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4; 228 step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4; 229 } else { 230 // Calculate input for the first 8 results. 231 input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2); 232 input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2); 233 input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2); 234 input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2); 235 input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2); 236 input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2); 237 input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2); 238 input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2); 239 // Calculate input for the next 8 results. 240 step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2); 241 step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2); 242 step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2); 243 step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2); 244 step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2); 245 step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2); 246 step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2); 247 step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2); 248 } 249 // Work on the first eight values; fdct8(input, even_results); 250 { 251 tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; // canbe16 252 tran_high_t t0, t1, t2, t3; // needs32 253 tran_high_t x0, x1, x2, x3; // canbe16 254 255 // stage 1 256 s0 = input[0] + input[7]; 257 s1 = input[1] + input[6]; 258 s2 = input[2] + input[5]; 259 s3 = input[3] + input[4]; 260 s4 = input[3] - input[4]; 261 s5 = input[2] - input[5]; 262 s6 = input[1] - input[6]; 263 s7 = input[0] - input[7]; 264 265 // fdct4(step, step); 266 x0 = s0 + s3; 267 x1 = s1 + s2; 268 x2 = s1 - s2; 269 x3 = s0 - s3; 270 t0 = (x0 + x1) * cospi_16_64; 271 t1 = (x0 - x1) * cospi_16_64; 272 t2 = x3 * cospi_8_64 + x2 * cospi_24_64; 273 t3 = x3 * cospi_24_64 - x2 * cospi_8_64; 274 out[0] = (tran_low_t)fdct_round_shift(t0); 275 out[4] = (tran_low_t)fdct_round_shift(t2); 276 out[8] = (tran_low_t)fdct_round_shift(t1); 277 out[12] = (tran_low_t)fdct_round_shift(t3); 278 279 // Stage 2 280 t0 = (s6 - s5) * cospi_16_64; 281 t1 = (s6 + s5) * cospi_16_64; 282 t2 = fdct_round_shift(t0); 283 t3 = fdct_round_shift(t1); 284 285 // Stage 3 286 x0 = s4 + t2; 287 x1 = s4 - t2; 288 x2 = s7 - t3; 289 x3 = s7 + t3; 290 291 // Stage 4 292 t0 = x0 * cospi_28_64 + x3 * cospi_4_64; 293 t1 = x1 * cospi_12_64 + x2 * cospi_20_64; 294 t2 = x2 * cospi_12_64 + x1 * -cospi_20_64; 295 t3 = x3 * cospi_28_64 + x0 * -cospi_4_64; 296 out[2] = (tran_low_t)fdct_round_shift(t0); 297 out[6] = (tran_low_t)fdct_round_shift(t2); 298 out[10] = (tran_low_t)fdct_round_shift(t1); 299 out[14] = (tran_low_t)fdct_round_shift(t3); 300 } 301 // Work on the next eight values; step1 -> odd_results 302 { 303 // step 2 304 temp1 = (step1[5] - step1[2]) * cospi_16_64; 305 temp2 = (step1[4] - step1[3]) * cospi_16_64; 306 step2[2] = fdct_round_shift(temp1); 307 step2[3] = fdct_round_shift(temp2); 308 temp1 = (step1[4] + step1[3]) * cospi_16_64; 309 temp2 = (step1[5] + step1[2]) * cospi_16_64; 310 step2[4] = fdct_round_shift(temp1); 311 step2[5] = fdct_round_shift(temp2); 312 // step 3 313 step3[0] = step1[0] + step2[3]; 314 step3[1] = step1[1] + step2[2]; 315 step3[2] = step1[1] - step2[2]; 316 step3[3] = step1[0] - step2[3]; 317 step3[4] = step1[7] - step2[4]; 318 step3[5] = step1[6] - step2[5]; 319 step3[6] = step1[6] + step2[5]; 320 step3[7] = step1[7] + step2[4]; 321 // step 4 322 temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64; 323 temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64; 324 step2[1] = fdct_round_shift(temp1); 325 step2[2] = fdct_round_shift(temp2); 326 temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64; 327 temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64; 328 step2[5] = fdct_round_shift(temp1); 329 step2[6] = fdct_round_shift(temp2); 330 // step 5 331 step1[0] = step3[0] + step2[1]; 332 step1[1] = step3[0] - step2[1]; 333 step1[2] = step3[3] + step2[2]; 334 step1[3] = step3[3] - step2[2]; 335 step1[4] = step3[4] - step2[5]; 336 step1[5] = step3[4] + step2[5]; 337 step1[6] = step3[7] - step2[6]; 338 step1[7] = step3[7] + step2[6]; 339 // step 6 340 temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64; 341 temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64; 342 out[1] = (tran_low_t)fdct_round_shift(temp1); 343 out[9] = (tran_low_t)fdct_round_shift(temp2); 344 temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64; 345 temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64; 346 out[5] = (tran_low_t)fdct_round_shift(temp1); 347 out[13] = (tran_low_t)fdct_round_shift(temp2); 348 temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64; 349 temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64; 350 out[3] = (tran_low_t)fdct_round_shift(temp1); 351 out[11] = (tran_low_t)fdct_round_shift(temp2); 352 temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64; 353 temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64; 354 out[7] = (tran_low_t)fdct_round_shift(temp1); 355 out[15] = (tran_low_t)fdct_round_shift(temp2); 356 } 357 // Do next column (which is a transposed row in second/horizontal pass) 358 in++; 359 in_pass0++; 360 out += 16; 361 } 362 // Setup in/out for next pass. 363 in = intermediate; 364 out = output; 365 } 366} 367 368void vpx_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) { 369 int r, c; 370 tran_low_t sum = 0; 371 for (r = 0; r < 16; ++r) 372 for (c = 0; c < 16; ++c) 373 sum += input[r * stride + c]; 374 375 output[0] = sum >> 1; 376 output[1] = 0; 377} 378 379static INLINE tran_high_t dct_32_round(tran_high_t input) { 380 tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS); 381 // TODO(debargha, peter.derivaz): Find new bounds for this assert, 382 // and make the bounds consts. 383 // assert(-131072 <= rv && rv <= 131071); 384 return rv; 385} 386 387static INLINE tran_high_t half_round_shift(tran_high_t input) { 388 tran_high_t rv = (input + 1 + (input < 0)) >> 2; 389 return rv; 390} 391 392void vpx_fdct32(const tran_high_t *input, tran_high_t *output, int round) { 393 tran_high_t step[32]; 394 // Stage 1 395 step[0] = input[0] + input[(32 - 1)]; 396 step[1] = input[1] + input[(32 - 2)]; 397 step[2] = input[2] + input[(32 - 3)]; 398 step[3] = input[3] + input[(32 - 4)]; 399 step[4] = input[4] + input[(32 - 5)]; 400 step[5] = input[5] + input[(32 - 6)]; 401 step[6] = input[6] + input[(32 - 7)]; 402 step[7] = input[7] + input[(32 - 8)]; 403 step[8] = input[8] + input[(32 - 9)]; 404 step[9] = input[9] + input[(32 - 10)]; 405 step[10] = input[10] + input[(32 - 11)]; 406 step[11] = input[11] + input[(32 - 12)]; 407 step[12] = input[12] + input[(32 - 13)]; 408 step[13] = input[13] + input[(32 - 14)]; 409 step[14] = input[14] + input[(32 - 15)]; 410 step[15] = input[15] + input[(32 - 16)]; 411 step[16] = -input[16] + input[(32 - 17)]; 412 step[17] = -input[17] + input[(32 - 18)]; 413 step[18] = -input[18] + input[(32 - 19)]; 414 step[19] = -input[19] + input[(32 - 20)]; 415 step[20] = -input[20] + input[(32 - 21)]; 416 step[21] = -input[21] + input[(32 - 22)]; 417 step[22] = -input[22] + input[(32 - 23)]; 418 step[23] = -input[23] + input[(32 - 24)]; 419 step[24] = -input[24] + input[(32 - 25)]; 420 step[25] = -input[25] + input[(32 - 26)]; 421 step[26] = -input[26] + input[(32 - 27)]; 422 step[27] = -input[27] + input[(32 - 28)]; 423 step[28] = -input[28] + input[(32 - 29)]; 424 step[29] = -input[29] + input[(32 - 30)]; 425 step[30] = -input[30] + input[(32 - 31)]; 426 step[31] = -input[31] + input[(32 - 32)]; 427 428 // Stage 2 429 output[0] = step[0] + step[16 - 1]; 430 output[1] = step[1] + step[16 - 2]; 431 output[2] = step[2] + step[16 - 3]; 432 output[3] = step[3] + step[16 - 4]; 433 output[4] = step[4] + step[16 - 5]; 434 output[5] = step[5] + step[16 - 6]; 435 output[6] = step[6] + step[16 - 7]; 436 output[7] = step[7] + step[16 - 8]; 437 output[8] = -step[8] + step[16 - 9]; 438 output[9] = -step[9] + step[16 - 10]; 439 output[10] = -step[10] + step[16 - 11]; 440 output[11] = -step[11] + step[16 - 12]; 441 output[12] = -step[12] + step[16 - 13]; 442 output[13] = -step[13] + step[16 - 14]; 443 output[14] = -step[14] + step[16 - 15]; 444 output[15] = -step[15] + step[16 - 16]; 445 446 output[16] = step[16]; 447 output[17] = step[17]; 448 output[18] = step[18]; 449 output[19] = step[19]; 450 451 output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64); 452 output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64); 453 output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64); 454 output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64); 455 456 output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64); 457 output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64); 458 output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64); 459 output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64); 460 461 output[28] = step[28]; 462 output[29] = step[29]; 463 output[30] = step[30]; 464 output[31] = step[31]; 465 466 // dump the magnitude by 4, hence the intermediate values are within 467 // the range of 16 bits. 468 if (round) { 469 output[0] = half_round_shift(output[0]); 470 output[1] = half_round_shift(output[1]); 471 output[2] = half_round_shift(output[2]); 472 output[3] = half_round_shift(output[3]); 473 output[4] = half_round_shift(output[4]); 474 output[5] = half_round_shift(output[5]); 475 output[6] = half_round_shift(output[6]); 476 output[7] = half_round_shift(output[7]); 477 output[8] = half_round_shift(output[8]); 478 output[9] = half_round_shift(output[9]); 479 output[10] = half_round_shift(output[10]); 480 output[11] = half_round_shift(output[11]); 481 output[12] = half_round_shift(output[12]); 482 output[13] = half_round_shift(output[13]); 483 output[14] = half_round_shift(output[14]); 484 output[15] = half_round_shift(output[15]); 485 486 output[16] = half_round_shift(output[16]); 487 output[17] = half_round_shift(output[17]); 488 output[18] = half_round_shift(output[18]); 489 output[19] = half_round_shift(output[19]); 490 output[20] = half_round_shift(output[20]); 491 output[21] = half_round_shift(output[21]); 492 output[22] = half_round_shift(output[22]); 493 output[23] = half_round_shift(output[23]); 494 output[24] = half_round_shift(output[24]); 495 output[25] = half_round_shift(output[25]); 496 output[26] = half_round_shift(output[26]); 497 output[27] = half_round_shift(output[27]); 498 output[28] = half_round_shift(output[28]); 499 output[29] = half_round_shift(output[29]); 500 output[30] = half_round_shift(output[30]); 501 output[31] = half_round_shift(output[31]); 502 } 503 504 // Stage 3 505 step[0] = output[0] + output[(8 - 1)]; 506 step[1] = output[1] + output[(8 - 2)]; 507 step[2] = output[2] + output[(8 - 3)]; 508 step[3] = output[3] + output[(8 - 4)]; 509 step[4] = -output[4] + output[(8 - 5)]; 510 step[5] = -output[5] + output[(8 - 6)]; 511 step[6] = -output[6] + output[(8 - 7)]; 512 step[7] = -output[7] + output[(8 - 8)]; 513 step[8] = output[8]; 514 step[9] = output[9]; 515 step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64); 516 step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64); 517 step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64); 518 step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64); 519 step[14] = output[14]; 520 step[15] = output[15]; 521 522 step[16] = output[16] + output[23]; 523 step[17] = output[17] + output[22]; 524 step[18] = output[18] + output[21]; 525 step[19] = output[19] + output[20]; 526 step[20] = -output[20] + output[19]; 527 step[21] = -output[21] + output[18]; 528 step[22] = -output[22] + output[17]; 529 step[23] = -output[23] + output[16]; 530 step[24] = -output[24] + output[31]; 531 step[25] = -output[25] + output[30]; 532 step[26] = -output[26] + output[29]; 533 step[27] = -output[27] + output[28]; 534 step[28] = output[28] + output[27]; 535 step[29] = output[29] + output[26]; 536 step[30] = output[30] + output[25]; 537 step[31] = output[31] + output[24]; 538 539 // Stage 4 540 output[0] = step[0] + step[3]; 541 output[1] = step[1] + step[2]; 542 output[2] = -step[2] + step[1]; 543 output[3] = -step[3] + step[0]; 544 output[4] = step[4]; 545 output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64); 546 output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64); 547 output[7] = step[7]; 548 output[8] = step[8] + step[11]; 549 output[9] = step[9] + step[10]; 550 output[10] = -step[10] + step[9]; 551 output[11] = -step[11] + step[8]; 552 output[12] = -step[12] + step[15]; 553 output[13] = -step[13] + step[14]; 554 output[14] = step[14] + step[13]; 555 output[15] = step[15] + step[12]; 556 557 output[16] = step[16]; 558 output[17] = step[17]; 559 output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64); 560 output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64); 561 output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64); 562 output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64); 563 output[22] = step[22]; 564 output[23] = step[23]; 565 output[24] = step[24]; 566 output[25] = step[25]; 567 output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64); 568 output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64); 569 output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64); 570 output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64); 571 output[30] = step[30]; 572 output[31] = step[31]; 573 574 // Stage 5 575 step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64); 576 step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64); 577 step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64); 578 step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64); 579 step[4] = output[4] + output[5]; 580 step[5] = -output[5] + output[4]; 581 step[6] = -output[6] + output[7]; 582 step[7] = output[7] + output[6]; 583 step[8] = output[8]; 584 step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64); 585 step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64); 586 step[11] = output[11]; 587 step[12] = output[12]; 588 step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64); 589 step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64); 590 step[15] = output[15]; 591 592 step[16] = output[16] + output[19]; 593 step[17] = output[17] + output[18]; 594 step[18] = -output[18] + output[17]; 595 step[19] = -output[19] + output[16]; 596 step[20] = -output[20] + output[23]; 597 step[21] = -output[21] + output[22]; 598 step[22] = output[22] + output[21]; 599 step[23] = output[23] + output[20]; 600 step[24] = output[24] + output[27]; 601 step[25] = output[25] + output[26]; 602 step[26] = -output[26] + output[25]; 603 step[27] = -output[27] + output[24]; 604 step[28] = -output[28] + output[31]; 605 step[29] = -output[29] + output[30]; 606 step[30] = output[30] + output[29]; 607 step[31] = output[31] + output[28]; 608 609 // Stage 6 610 output[0] = step[0]; 611 output[1] = step[1]; 612 output[2] = step[2]; 613 output[3] = step[3]; 614 output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64); 615 output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64); 616 output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64); 617 output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64); 618 output[8] = step[8] + step[9]; 619 output[9] = -step[9] + step[8]; 620 output[10] = -step[10] + step[11]; 621 output[11] = step[11] + step[10]; 622 output[12] = step[12] + step[13]; 623 output[13] = -step[13] + step[12]; 624 output[14] = -step[14] + step[15]; 625 output[15] = step[15] + step[14]; 626 627 output[16] = step[16]; 628 output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64); 629 output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64); 630 output[19] = step[19]; 631 output[20] = step[20]; 632 output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64); 633 output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64); 634 output[23] = step[23]; 635 output[24] = step[24]; 636 output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64); 637 output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64); 638 output[27] = step[27]; 639 output[28] = step[28]; 640 output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64); 641 output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64); 642 output[31] = step[31]; 643 644 // Stage 7 645 step[0] = output[0]; 646 step[1] = output[1]; 647 step[2] = output[2]; 648 step[3] = output[3]; 649 step[4] = output[4]; 650 step[5] = output[5]; 651 step[6] = output[6]; 652 step[7] = output[7]; 653 step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64); 654 step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64); 655 step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64); 656 step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64); 657 step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64); 658 step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64); 659 step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64); 660 step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64); 661 662 step[16] = output[16] + output[17]; 663 step[17] = -output[17] + output[16]; 664 step[18] = -output[18] + output[19]; 665 step[19] = output[19] + output[18]; 666 step[20] = output[20] + output[21]; 667 step[21] = -output[21] + output[20]; 668 step[22] = -output[22] + output[23]; 669 step[23] = output[23] + output[22]; 670 step[24] = output[24] + output[25]; 671 step[25] = -output[25] + output[24]; 672 step[26] = -output[26] + output[27]; 673 step[27] = output[27] + output[26]; 674 step[28] = output[28] + output[29]; 675 step[29] = -output[29] + output[28]; 676 step[30] = -output[30] + output[31]; 677 step[31] = output[31] + output[30]; 678 679 // Final stage --- outputs indices are bit-reversed. 680 output[0] = step[0]; 681 output[16] = step[1]; 682 output[8] = step[2]; 683 output[24] = step[3]; 684 output[4] = step[4]; 685 output[20] = step[5]; 686 output[12] = step[6]; 687 output[28] = step[7]; 688 output[2] = step[8]; 689 output[18] = step[9]; 690 output[10] = step[10]; 691 output[26] = step[11]; 692 output[6] = step[12]; 693 output[22] = step[13]; 694 output[14] = step[14]; 695 output[30] = step[15]; 696 697 output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64); 698 output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64); 699 output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64); 700 output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64); 701 output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64); 702 output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64); 703 output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64); 704 output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64); 705 output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64); 706 output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64); 707 output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64); 708 output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64); 709 output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64); 710 output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64); 711 output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64); 712 output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64); 713} 714 715void vpx_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { 716 int i, j; 717 tran_high_t output[32 * 32]; 718 719 // Columns 720 for (i = 0; i < 32; ++i) { 721 tran_high_t temp_in[32], temp_out[32]; 722 for (j = 0; j < 32; ++j) 723 temp_in[j] = input[j * stride + i] * 4; 724 vpx_fdct32(temp_in, temp_out, 0); 725 for (j = 0; j < 32; ++j) 726 output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; 727 } 728 729 // Rows 730 for (i = 0; i < 32; ++i) { 731 tran_high_t temp_in[32], temp_out[32]; 732 for (j = 0; j < 32; ++j) 733 temp_in[j] = output[j + i * 32]; 734 vpx_fdct32(temp_in, temp_out, 0); 735 for (j = 0; j < 32; ++j) 736 out[j + i * 32] = 737 (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2); 738 } 739} 740 741// Note that although we use dct_32_round in dct32 computation flow, 742// this 2d fdct32x32 for rate-distortion optimization loop is operating 743// within 16 bits precision. 744void vpx_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) { 745 int i, j; 746 tran_high_t output[32 * 32]; 747 748 // Columns 749 for (i = 0; i < 32; ++i) { 750 tran_high_t temp_in[32], temp_out[32]; 751 for (j = 0; j < 32; ++j) 752 temp_in[j] = input[j * stride + i] * 4; 753 vpx_fdct32(temp_in, temp_out, 0); 754 for (j = 0; j < 32; ++j) 755 // TODO(cd): see quality impact of only doing 756 // output[j * 32 + i] = (temp_out[j] + 1) >> 2; 757 // PS: also change code in vpx_dsp/x86/vpx_dct_sse2.c 758 output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2; 759 } 760 761 // Rows 762 for (i = 0; i < 32; ++i) { 763 tran_high_t temp_in[32], temp_out[32]; 764 for (j = 0; j < 32; ++j) 765 temp_in[j] = output[j + i * 32]; 766 vpx_fdct32(temp_in, temp_out, 1); 767 for (j = 0; j < 32; ++j) 768 out[j + i * 32] = (tran_low_t)temp_out[j]; 769 } 770} 771 772void vpx_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) { 773 int r, c; 774 tran_low_t sum = 0; 775 for (r = 0; r < 32; ++r) 776 for (c = 0; c < 32; ++c) 777 sum += input[r * stride + c]; 778 779 output[0] = sum >> 3; 780 output[1] = 0; 781} 782 783#if CONFIG_VP9_HIGHBITDEPTH 784void vpx_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output, 785 int stride) { 786 vpx_fdct4x4_c(input, output, stride); 787} 788 789void vpx_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output, 790 int stride) { 791 vpx_fdct8x8_c(input, final_output, stride); 792} 793 794void vpx_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output, 795 int stride) { 796 vpx_fdct8x8_1_c(input, final_output, stride); 797} 798 799void vpx_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output, 800 int stride) { 801 vpx_fdct16x16_c(input, output, stride); 802} 803 804void vpx_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output, 805 int stride) { 806 vpx_fdct16x16_1_c(input, output, stride); 807} 808 809void vpx_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) { 810 vpx_fdct32x32_c(input, out, stride); 811} 812 813void vpx_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, 814 int stride) { 815 vpx_fdct32x32_rd_c(input, out, stride); 816} 817 818void vpx_highbd_fdct32x32_1_c(const int16_t *input, tran_low_t *out, 819 int stride) { 820 vpx_fdct32x32_1_c(input, out, stride); 821} 822#endif // CONFIG_VP9_HIGHBITDEPTH 823