1//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Shared implementation of BlockFrequency for IR and Machine Instructions.
11// See the documentation below for BlockFrequencyInfoImpl for details.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16#define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
17
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/PostOrderIterator.h"
20#include "llvm/ADT/iterator_range.h"
21#include "llvm/IR/BasicBlock.h"
22#include "llvm/Support/BlockFrequency.h"
23#include "llvm/Support/BranchProbability.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ScaledNumber.h"
26#include "llvm/Support/raw_ostream.h"
27#include <deque>
28#include <list>
29#include <string>
30#include <vector>
31
32#define DEBUG_TYPE "block-freq"
33
34namespace llvm {
35
36class BasicBlock;
37class BranchProbabilityInfo;
38class Function;
39class Loop;
40class LoopInfo;
41class MachineBasicBlock;
42class MachineBranchProbabilityInfo;
43class MachineFunction;
44class MachineLoop;
45class MachineLoopInfo;
46
47namespace bfi_detail {
48
49struct IrreducibleGraph;
50
51// This is part of a workaround for a GCC 4.7 crash on lambdas.
52template <class BT> struct BlockEdgesAdder;
53
54/// \brief Mass of a block.
55///
56/// This class implements a sort of fixed-point fraction always between 0.0 and
57/// 1.0.  getMass() == UINT64_MAX indicates a value of 1.0.
58///
59/// Masses can be added and subtracted.  Simple saturation arithmetic is used,
60/// so arithmetic operations never overflow or underflow.
61///
62/// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
63/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
64/// quite, maximum precision).
65///
66/// Masses can be scaled by \a BranchProbability at maximum precision.
67class BlockMass {
68  uint64_t Mass;
69
70public:
71  BlockMass() : Mass(0) {}
72  explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
73
74  static BlockMass getEmpty() { return BlockMass(); }
75  static BlockMass getFull() { return BlockMass(UINT64_MAX); }
76
77  uint64_t getMass() const { return Mass; }
78
79  bool isFull() const { return Mass == UINT64_MAX; }
80  bool isEmpty() const { return !Mass; }
81
82  bool operator!() const { return isEmpty(); }
83
84  /// \brief Add another mass.
85  ///
86  /// Adds another mass, saturating at \a isFull() rather than overflowing.
87  BlockMass &operator+=(BlockMass X) {
88    uint64_t Sum = Mass + X.Mass;
89    Mass = Sum < Mass ? UINT64_MAX : Sum;
90    return *this;
91  }
92
93  /// \brief Subtract another mass.
94  ///
95  /// Subtracts another mass, saturating at \a isEmpty() rather than
96  /// undeflowing.
97  BlockMass &operator-=(BlockMass X) {
98    uint64_t Diff = Mass - X.Mass;
99    Mass = Diff > Mass ? 0 : Diff;
100    return *this;
101  }
102
103  BlockMass &operator*=(BranchProbability P) {
104    Mass = P.scale(Mass);
105    return *this;
106  }
107
108  bool operator==(BlockMass X) const { return Mass == X.Mass; }
109  bool operator!=(BlockMass X) const { return Mass != X.Mass; }
110  bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
111  bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
112  bool operator<(BlockMass X) const { return Mass < X.Mass; }
113  bool operator>(BlockMass X) const { return Mass > X.Mass; }
114
115  /// \brief Convert to scaled number.
116  ///
117  /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
118  /// gives slightly above 0.0.
119  ScaledNumber<uint64_t> toScaled() const;
120
121  void dump() const;
122  raw_ostream &print(raw_ostream &OS) const;
123};
124
125inline BlockMass operator+(BlockMass L, BlockMass R) {
126  return BlockMass(L) += R;
127}
128inline BlockMass operator-(BlockMass L, BlockMass R) {
129  return BlockMass(L) -= R;
130}
131inline BlockMass operator*(BlockMass L, BranchProbability R) {
132  return BlockMass(L) *= R;
133}
134inline BlockMass operator*(BranchProbability L, BlockMass R) {
135  return BlockMass(R) *= L;
136}
137
138inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
139  return X.print(OS);
140}
141
142} // end namespace bfi_detail
143
144template <> struct isPodLike<bfi_detail::BlockMass> {
145  static const bool value = true;
146};
147
148/// \brief Base class for BlockFrequencyInfoImpl
149///
150/// BlockFrequencyInfoImplBase has supporting data structures and some
151/// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
152/// the block type (or that call such algorithms) are skipped here.
153///
154/// Nevertheless, the majority of the overall algorithm documention lives with
155/// BlockFrequencyInfoImpl.  See there for details.
156class BlockFrequencyInfoImplBase {
157public:
158  typedef ScaledNumber<uint64_t> Scaled64;
159  typedef bfi_detail::BlockMass BlockMass;
160
161  /// \brief Representative of a block.
162  ///
163  /// This is a simple wrapper around an index into the reverse-post-order
164  /// traversal of the blocks.
165  ///
166  /// Unlike a block pointer, its order has meaning (location in the
167  /// topological sort) and it's class is the same regardless of block type.
168  struct BlockNode {
169    typedef uint32_t IndexType;
170    IndexType Index;
171
172    bool operator==(const BlockNode &X) const { return Index == X.Index; }
173    bool operator!=(const BlockNode &X) const { return Index != X.Index; }
174    bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
175    bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
176    bool operator<(const BlockNode &X) const { return Index < X.Index; }
177    bool operator>(const BlockNode &X) const { return Index > X.Index; }
178
179    BlockNode() : Index(UINT32_MAX) {}
180    BlockNode(IndexType Index) : Index(Index) {}
181
182    bool isValid() const { return Index <= getMaxIndex(); }
183    static size_t getMaxIndex() { return UINT32_MAX - 1; }
184  };
185
186  /// \brief Stats about a block itself.
187  struct FrequencyData {
188    Scaled64 Scaled;
189    uint64_t Integer;
190  };
191
192  /// \brief Data about a loop.
193  ///
194  /// Contains the data necessary to represent a loop as a pseudo-node once it's
195  /// packaged.
196  struct LoopData {
197    typedef SmallVector<std::pair<BlockNode, BlockMass>, 4> ExitMap;
198    typedef SmallVector<BlockNode, 4> NodeList;
199    typedef SmallVector<BlockMass, 1> HeaderMassList;
200    LoopData *Parent;            ///< The parent loop.
201    bool IsPackaged;             ///< Whether this has been packaged.
202    uint32_t NumHeaders;         ///< Number of headers.
203    ExitMap Exits;               ///< Successor edges (and weights).
204    NodeList Nodes;              ///< Header and the members of the loop.
205    HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
206    BlockMass Mass;
207    Scaled64 Scale;
208
209    LoopData(LoopData *Parent, const BlockNode &Header)
210        : Parent(Parent), IsPackaged(false), NumHeaders(1), Nodes(1, Header),
211          BackedgeMass(1) {}
212    template <class It1, class It2>
213    LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
214             It2 LastOther)
215        : Parent(Parent), IsPackaged(false), Nodes(FirstHeader, LastHeader) {
216      NumHeaders = Nodes.size();
217      Nodes.insert(Nodes.end(), FirstOther, LastOther);
218      BackedgeMass.resize(NumHeaders);
219    }
220    bool isHeader(const BlockNode &Node) const {
221      if (isIrreducible())
222        return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
223                                  Node);
224      return Node == Nodes[0];
225    }
226    BlockNode getHeader() const { return Nodes[0]; }
227    bool isIrreducible() const { return NumHeaders > 1; }
228
229    HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
230      assert(isHeader(B) && "this is only valid on loop header blocks");
231      if (isIrreducible())
232        return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
233               Nodes.begin();
234      return 0;
235    }
236
237    NodeList::const_iterator members_begin() const {
238      return Nodes.begin() + NumHeaders;
239    }
240    NodeList::const_iterator members_end() const { return Nodes.end(); }
241    iterator_range<NodeList::const_iterator> members() const {
242      return make_range(members_begin(), members_end());
243    }
244  };
245
246  /// \brief Index of loop information.
247  struct WorkingData {
248    BlockNode Node; ///< This node.
249    LoopData *Loop; ///< The loop this block is inside.
250    BlockMass Mass; ///< Mass distribution from the entry block.
251
252    WorkingData(const BlockNode &Node) : Node(Node), Loop(nullptr) {}
253
254    bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
255    bool isDoubleLoopHeader() const {
256      return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
257             Loop->Parent->isHeader(Node);
258    }
259
260    LoopData *getContainingLoop() const {
261      if (!isLoopHeader())
262        return Loop;
263      if (!isDoubleLoopHeader())
264        return Loop->Parent;
265      return Loop->Parent->Parent;
266    }
267
268    /// \brief Resolve a node to its representative.
269    ///
270    /// Get the node currently representing Node, which could be a containing
271    /// loop.
272    ///
273    /// This function should only be called when distributing mass.  As long as
274    /// there are no irreducible edges to Node, then it will have complexity
275    /// O(1) in this context.
276    ///
277    /// In general, the complexity is O(L), where L is the number of loop
278    /// headers Node has been packaged into.  Since this method is called in
279    /// the context of distributing mass, L will be the number of loop headers
280    /// an early exit edge jumps out of.
281    BlockNode getResolvedNode() const {
282      auto L = getPackagedLoop();
283      return L ? L->getHeader() : Node;
284    }
285    LoopData *getPackagedLoop() const {
286      if (!Loop || !Loop->IsPackaged)
287        return nullptr;
288      auto L = Loop;
289      while (L->Parent && L->Parent->IsPackaged)
290        L = L->Parent;
291      return L;
292    }
293
294    /// \brief Get the appropriate mass for a node.
295    ///
296    /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
297    /// has been packaged), returns the mass of its pseudo-node.  If it's a
298    /// node inside a packaged loop, it returns the loop's mass.
299    BlockMass &getMass() {
300      if (!isAPackage())
301        return Mass;
302      if (!isADoublePackage())
303        return Loop->Mass;
304      return Loop->Parent->Mass;
305    }
306
307    /// \brief Has ContainingLoop been packaged up?
308    bool isPackaged() const { return getResolvedNode() != Node; }
309    /// \brief Has Loop been packaged up?
310    bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
311    /// \brief Has Loop been packaged up twice?
312    bool isADoublePackage() const {
313      return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
314    }
315  };
316
317  /// \brief Unscaled probability weight.
318  ///
319  /// Probability weight for an edge in the graph (including the
320  /// successor/target node).
321  ///
322  /// All edges in the original function are 32-bit.  However, exit edges from
323  /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
324  /// space in general.
325  ///
326  /// In addition to the raw weight amount, Weight stores the type of the edge
327  /// in the current context (i.e., the context of the loop being processed).
328  /// Is this a local edge within the loop, an exit from the loop, or a
329  /// backedge to the loop header?
330  struct Weight {
331    enum DistType { Local, Exit, Backedge };
332    DistType Type;
333    BlockNode TargetNode;
334    uint64_t Amount;
335    Weight() : Type(Local), Amount(0) {}
336    Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
337        : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
338  };
339
340  /// \brief Distribution of unscaled probability weight.
341  ///
342  /// Distribution of unscaled probability weight to a set of successors.
343  ///
344  /// This class collates the successor edge weights for later processing.
345  ///
346  /// \a DidOverflow indicates whether \a Total did overflow while adding to
347  /// the distribution.  It should never overflow twice.
348  struct Distribution {
349    typedef SmallVector<Weight, 4> WeightList;
350    WeightList Weights;    ///< Individual successor weights.
351    uint64_t Total;        ///< Sum of all weights.
352    bool DidOverflow;      ///< Whether \a Total did overflow.
353
354    Distribution() : Total(0), DidOverflow(false) {}
355    void addLocal(const BlockNode &Node, uint64_t Amount) {
356      add(Node, Amount, Weight::Local);
357    }
358    void addExit(const BlockNode &Node, uint64_t Amount) {
359      add(Node, Amount, Weight::Exit);
360    }
361    void addBackedge(const BlockNode &Node, uint64_t Amount) {
362      add(Node, Amount, Weight::Backedge);
363    }
364
365    /// \brief Normalize the distribution.
366    ///
367    /// Combines multiple edges to the same \a Weight::TargetNode and scales
368    /// down so that \a Total fits into 32-bits.
369    ///
370    /// This is linear in the size of \a Weights.  For the vast majority of
371    /// cases, adjacent edge weights are combined by sorting WeightList and
372    /// combining adjacent weights.  However, for very large edge lists an
373    /// auxiliary hash table is used.
374    void normalize();
375
376  private:
377    void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
378  };
379
380  /// \brief Data about each block.  This is used downstream.
381  std::vector<FrequencyData> Freqs;
382
383  /// \brief Loop data: see initializeLoops().
384  std::vector<WorkingData> Working;
385
386  /// \brief Indexed information about loops.
387  std::list<LoopData> Loops;
388
389  /// \brief Add all edges out of a packaged loop to the distribution.
390  ///
391  /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
392  /// successor edge.
393  ///
394  /// \return \c true unless there's an irreducible backedge.
395  bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
396                               Distribution &Dist);
397
398  /// \brief Add an edge to the distribution.
399  ///
400  /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
401  /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
402  /// every edge should be a local edge (since all the loops are packaged up).
403  ///
404  /// \return \c true unless aborted due to an irreducible backedge.
405  bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
406                 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
407
408  LoopData &getLoopPackage(const BlockNode &Head) {
409    assert(Head.Index < Working.size());
410    assert(Working[Head.Index].isLoopHeader());
411    return *Working[Head.Index].Loop;
412  }
413
414  /// \brief Analyze irreducible SCCs.
415  ///
416  /// Separate irreducible SCCs from \c G, which is an explict graph of \c
417  /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
418  /// Insert them into \a Loops before \c Insert.
419  ///
420  /// \return the \c LoopData nodes representing the irreducible SCCs.
421  iterator_range<std::list<LoopData>::iterator>
422  analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
423                     std::list<LoopData>::iterator Insert);
424
425  /// \brief Update a loop after packaging irreducible SCCs inside of it.
426  ///
427  /// Update \c OuterLoop.  Before finding irreducible control flow, it was
428  /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
429  /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
430  /// up need to be removed from \a OuterLoop::Nodes.
431  void updateLoopWithIrreducible(LoopData &OuterLoop);
432
433  /// \brief Distribute mass according to a distribution.
434  ///
435  /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
436  /// backedges and exits are stored in its entry in Loops.
437  ///
438  /// Mass is distributed in parallel from two copies of the source mass.
439  void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
440                      Distribution &Dist);
441
442  /// \brief Compute the loop scale for a loop.
443  void computeLoopScale(LoopData &Loop);
444
445  /// Adjust the mass of all headers in an irreducible loop.
446  ///
447  /// Initially, irreducible loops are assumed to distribute their mass
448  /// equally among its headers. This can lead to wrong frequency estimates
449  /// since some headers may be executed more frequently than others.
450  ///
451  /// This adjusts header mass distribution so it matches the weights of
452  /// the backedges going into each of the loop headers.
453  void adjustLoopHeaderMass(LoopData &Loop);
454
455  /// \brief Package up a loop.
456  void packageLoop(LoopData &Loop);
457
458  /// \brief Unwrap loops.
459  void unwrapLoops();
460
461  /// \brief Finalize frequency metrics.
462  ///
463  /// Calculates final frequencies and cleans up no-longer-needed data
464  /// structures.
465  void finalizeMetrics();
466
467  /// \brief Clear all memory.
468  void clear();
469
470  virtual std::string getBlockName(const BlockNode &Node) const;
471  std::string getLoopName(const LoopData &Loop) const;
472
473  virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
474  void dump() const { print(dbgs()); }
475
476  Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
477
478  BlockFrequency getBlockFreq(const BlockNode &Node) const;
479
480  void setBlockFreq(const BlockNode &Node, uint64_t Freq);
481
482  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
483  raw_ostream &printBlockFreq(raw_ostream &OS,
484                              const BlockFrequency &Freq) const;
485
486  uint64_t getEntryFreq() const {
487    assert(!Freqs.empty());
488    return Freqs[0].Integer;
489  }
490  /// \brief Virtual destructor.
491  ///
492  /// Need a virtual destructor to mask the compiler warning about
493  /// getBlockName().
494  virtual ~BlockFrequencyInfoImplBase() {}
495};
496
497namespace bfi_detail {
498template <class BlockT> struct TypeMap {};
499template <> struct TypeMap<BasicBlock> {
500  typedef BasicBlock BlockT;
501  typedef Function FunctionT;
502  typedef BranchProbabilityInfo BranchProbabilityInfoT;
503  typedef Loop LoopT;
504  typedef LoopInfo LoopInfoT;
505};
506template <> struct TypeMap<MachineBasicBlock> {
507  typedef MachineBasicBlock BlockT;
508  typedef MachineFunction FunctionT;
509  typedef MachineBranchProbabilityInfo BranchProbabilityInfoT;
510  typedef MachineLoop LoopT;
511  typedef MachineLoopInfo LoopInfoT;
512};
513
514/// \brief Get the name of a MachineBasicBlock.
515///
516/// Get the name of a MachineBasicBlock.  It's templated so that including from
517/// CodeGen is unnecessary (that would be a layering issue).
518///
519/// This is used mainly for debug output.  The name is similar to
520/// MachineBasicBlock::getFullName(), but skips the name of the function.
521template <class BlockT> std::string getBlockName(const BlockT *BB) {
522  assert(BB && "Unexpected nullptr");
523  auto MachineName = "BB" + Twine(BB->getNumber());
524  if (BB->getBasicBlock())
525    return (MachineName + "[" + BB->getName() + "]").str();
526  return MachineName.str();
527}
528/// \brief Get the name of a BasicBlock.
529template <> inline std::string getBlockName(const BasicBlock *BB) {
530  assert(BB && "Unexpected nullptr");
531  return BB->getName().str();
532}
533
534/// \brief Graph of irreducible control flow.
535///
536/// This graph is used for determining the SCCs in a loop (or top-level
537/// function) that has irreducible control flow.
538///
539/// During the block frequency algorithm, the local graphs are defined in a
540/// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
541/// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
542/// latter only has successor information.
543///
544/// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
545/// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
546/// and it explicitly lists predecessors and successors.  The initialization
547/// that relies on \c MachineBasicBlock is defined in the header.
548struct IrreducibleGraph {
549  typedef BlockFrequencyInfoImplBase BFIBase;
550
551  BFIBase &BFI;
552
553  typedef BFIBase::BlockNode BlockNode;
554  struct IrrNode {
555    BlockNode Node;
556    unsigned NumIn;
557    std::deque<const IrrNode *> Edges;
558    IrrNode(const BlockNode &Node) : Node(Node), NumIn(0) {}
559
560    typedef std::deque<const IrrNode *>::const_iterator iterator;
561    iterator pred_begin() const { return Edges.begin(); }
562    iterator succ_begin() const { return Edges.begin() + NumIn; }
563    iterator pred_end() const { return succ_begin(); }
564    iterator succ_end() const { return Edges.end(); }
565  };
566  BlockNode Start;
567  const IrrNode *StartIrr;
568  std::vector<IrrNode> Nodes;
569  SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
570
571  /// \brief Construct an explicit graph containing irreducible control flow.
572  ///
573  /// Construct an explicit graph of the control flow in \c OuterLoop (or the
574  /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
575  /// addBlockEdges to add block successors that have not been packaged into
576  /// loops.
577  ///
578  /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
579  /// user of this.
580  template <class BlockEdgesAdder>
581  IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
582                   BlockEdgesAdder addBlockEdges)
583      : BFI(BFI), StartIrr(nullptr) {
584    initialize(OuterLoop, addBlockEdges);
585  }
586
587  template <class BlockEdgesAdder>
588  void initialize(const BFIBase::LoopData *OuterLoop,
589                  BlockEdgesAdder addBlockEdges);
590  void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
591  void addNodesInFunction();
592  void addNode(const BlockNode &Node) {
593    Nodes.emplace_back(Node);
594    BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
595  }
596  void indexNodes();
597  template <class BlockEdgesAdder>
598  void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
599                BlockEdgesAdder addBlockEdges);
600  void addEdge(IrrNode &Irr, const BlockNode &Succ,
601               const BFIBase::LoopData *OuterLoop);
602};
603template <class BlockEdgesAdder>
604void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
605                                  BlockEdgesAdder addBlockEdges) {
606  if (OuterLoop) {
607    addNodesInLoop(*OuterLoop);
608    for (auto N : OuterLoop->Nodes)
609      addEdges(N, OuterLoop, addBlockEdges);
610  } else {
611    addNodesInFunction();
612    for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
613      addEdges(Index, OuterLoop, addBlockEdges);
614  }
615  StartIrr = Lookup[Start.Index];
616}
617template <class BlockEdgesAdder>
618void IrreducibleGraph::addEdges(const BlockNode &Node,
619                                const BFIBase::LoopData *OuterLoop,
620                                BlockEdgesAdder addBlockEdges) {
621  auto L = Lookup.find(Node.Index);
622  if (L == Lookup.end())
623    return;
624  IrrNode &Irr = *L->second;
625  const auto &Working = BFI.Working[Node.Index];
626
627  if (Working.isAPackage())
628    for (const auto &I : Working.Loop->Exits)
629      addEdge(Irr, I.first, OuterLoop);
630  else
631    addBlockEdges(*this, Irr, OuterLoop);
632}
633}
634
635/// \brief Shared implementation for block frequency analysis.
636///
637/// This is a shared implementation of BlockFrequencyInfo and
638/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
639/// blocks.
640///
641/// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
642/// which is called the header.  A given loop, L, can have sub-loops, which are
643/// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
644/// consists of a single block that does not have a self-edge.)
645///
646/// In addition to loops, this algorithm has limited support for irreducible
647/// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
648/// discovered on they fly, and modelled as loops with multiple headers.
649///
650/// The headers of irreducible sub-SCCs consist of its entry blocks and all
651/// nodes that are targets of a backedge within it (excluding backedges within
652/// true sub-loops).  Block frequency calculations act as if a block is
653/// inserted that intercepts all the edges to the headers.  All backedges and
654/// entries point to this block.  Its successors are the headers, which split
655/// the frequency evenly.
656///
657/// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
658/// separates mass distribution from loop scaling, and dithers to eliminate
659/// probability mass loss.
660///
661/// The implementation is split between BlockFrequencyInfoImpl, which knows the
662/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
663/// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
664/// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
665/// reverse-post order.  This gives two advantages:  it's easy to compare the
666/// relative ordering of two nodes, and maps keyed on BlockT can be represented
667/// by vectors.
668///
669/// This algorithm is O(V+E), unless there is irreducible control flow, in
670/// which case it's O(V*E) in the worst case.
671///
672/// These are the main stages:
673///
674///  0. Reverse post-order traversal (\a initializeRPOT()).
675///
676///     Run a single post-order traversal and save it (in reverse) in RPOT.
677///     All other stages make use of this ordering.  Save a lookup from BlockT
678///     to BlockNode (the index into RPOT) in Nodes.
679///
680///  1. Loop initialization (\a initializeLoops()).
681///
682///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
683///     the algorithm.  In particular, store the immediate members of each loop
684///     in reverse post-order.
685///
686///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
687///
688///     For each loop (bottom-up), distribute mass through the DAG resulting
689///     from ignoring backedges and treating sub-loops as a single pseudo-node.
690///     Track the backedge mass distributed to the loop header, and use it to
691///     calculate the loop scale (number of loop iterations).  Immediate
692///     members that represent sub-loops will already have been visited and
693///     packaged into a pseudo-node.
694///
695///     Distributing mass in a loop is a reverse-post-order traversal through
696///     the loop.  Start by assigning full mass to the Loop header.  For each
697///     node in the loop:
698///
699///         - Fetch and categorize the weight distribution for its successors.
700///           If this is a packaged-subloop, the weight distribution is stored
701///           in \a LoopData::Exits.  Otherwise, fetch it from
702///           BranchProbabilityInfo.
703///
704///         - Each successor is categorized as \a Weight::Local, a local edge
705///           within the current loop, \a Weight::Backedge, a backedge to the
706///           loop header, or \a Weight::Exit, any successor outside the loop.
707///           The weight, the successor, and its category are stored in \a
708///           Distribution.  There can be multiple edges to each successor.
709///
710///         - If there's a backedge to a non-header, there's an irreducible SCC.
711///           The usual flow is temporarily aborted.  \a
712///           computeIrreducibleMass() finds the irreducible SCCs within the
713///           loop, packages them up, and restarts the flow.
714///
715///         - Normalize the distribution:  scale weights down so that their sum
716///           is 32-bits, and coalesce multiple edges to the same node.
717///
718///         - Distribute the mass accordingly, dithering to minimize mass loss,
719///           as described in \a distributeMass().
720///
721///     In the case of irreducible loops, instead of a single loop header,
722///     there will be several. The computation of backedge masses is similar
723///     but instead of having a single backedge mass, there will be one
724///     backedge per loop header. In these cases, each backedge will carry
725///     a mass proportional to the edge weights along the corresponding
726///     path.
727///
728///     At the end of propagation, the full mass assigned to the loop will be
729///     distributed among the loop headers proportionally according to the
730///     mass flowing through their backedges.
731///
732///     Finally, calculate the loop scale from the accumulated backedge mass.
733///
734///  3. Distribute mass in the function (\a computeMassInFunction()).
735///
736///     Finally, distribute mass through the DAG resulting from packaging all
737///     loops in the function.  This uses the same algorithm as distributing
738///     mass in a loop, except that there are no exit or backedge edges.
739///
740///  4. Unpackage loops (\a unwrapLoops()).
741///
742///     Initialize each block's frequency to a floating point representation of
743///     its mass.
744///
745///     Visit loops top-down, scaling the frequencies of its immediate members
746///     by the loop's pseudo-node's frequency.
747///
748///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
749///
750///     Using the min and max frequencies as a guide, translate floating point
751///     frequencies to an appropriate range in uint64_t.
752///
753/// It has some known flaws.
754///
755///   - The model of irreducible control flow is a rough approximation.
756///
757///     Modelling irreducible control flow exactly involves setting up and
758///     solving a group of infinite geometric series.  Such precision is
759///     unlikely to be worthwhile, since most of our algorithms give up on
760///     irreducible control flow anyway.
761///
762///     Nevertheless, we might find that we need to get closer.  Here's a sort
763///     of TODO list for the model with diminishing returns, to be completed as
764///     necessary.
765///
766///       - The headers for the \a LoopData representing an irreducible SCC
767///         include non-entry blocks.  When these extra blocks exist, they
768///         indicate a self-contained irreducible sub-SCC.  We could treat them
769///         as sub-loops, rather than arbitrarily shoving the problematic
770///         blocks into the headers of the main irreducible SCC.
771///
772///       - Entry frequencies are assumed to be evenly split between the
773///         headers of a given irreducible SCC, which is the only option if we
774///         need to compute mass in the SCC before its parent loop.  Instead,
775///         we could partially compute mass in the parent loop, and stop when
776///         we get to the SCC.  Here, we have the correct ratio of entry
777///         masses, which we can use to adjust their relative frequencies.
778///         Compute mass in the SCC, and then continue propagation in the
779///         parent.
780///
781///       - We can propagate mass iteratively through the SCC, for some fixed
782///         number of iterations.  Each iteration starts by assigning the entry
783///         blocks their backedge mass from the prior iteration.  The final
784///         mass for each block (and each exit, and the total backedge mass
785///         used for computing loop scale) is the sum of all iterations.
786///         (Running this until fixed point would "solve" the geometric
787///         series by simulation.)
788template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
789  typedef typename bfi_detail::TypeMap<BT>::BlockT BlockT;
790  typedef typename bfi_detail::TypeMap<BT>::FunctionT FunctionT;
791  typedef typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT
792  BranchProbabilityInfoT;
793  typedef typename bfi_detail::TypeMap<BT>::LoopT LoopT;
794  typedef typename bfi_detail::TypeMap<BT>::LoopInfoT LoopInfoT;
795
796  // This is part of a workaround for a GCC 4.7 crash on lambdas.
797  friend struct bfi_detail::BlockEdgesAdder<BT>;
798
799  typedef GraphTraits<const BlockT *> Successor;
800  typedef GraphTraits<Inverse<const BlockT *>> Predecessor;
801
802  const BranchProbabilityInfoT *BPI;
803  const LoopInfoT *LI;
804  const FunctionT *F;
805
806  // All blocks in reverse postorder.
807  std::vector<const BlockT *> RPOT;
808  DenseMap<const BlockT *, BlockNode> Nodes;
809
810  typedef typename std::vector<const BlockT *>::const_iterator rpot_iterator;
811
812  rpot_iterator rpot_begin() const { return RPOT.begin(); }
813  rpot_iterator rpot_end() const { return RPOT.end(); }
814
815  size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
816
817  BlockNode getNode(const rpot_iterator &I) const {
818    return BlockNode(getIndex(I));
819  }
820  BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB); }
821
822  const BlockT *getBlock(const BlockNode &Node) const {
823    assert(Node.Index < RPOT.size());
824    return RPOT[Node.Index];
825  }
826
827  /// \brief Run (and save) a post-order traversal.
828  ///
829  /// Saves a reverse post-order traversal of all the nodes in \a F.
830  void initializeRPOT();
831
832  /// \brief Initialize loop data.
833  ///
834  /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
835  /// each block to the deepest loop it's in, but we need the inverse.  For each
836  /// loop, we store in reverse post-order its "immediate" members, defined as
837  /// the header, the headers of immediate sub-loops, and all other blocks in
838  /// the loop that are not in sub-loops.
839  void initializeLoops();
840
841  /// \brief Propagate to a block's successors.
842  ///
843  /// In the context of distributing mass through \c OuterLoop, divide the mass
844  /// currently assigned to \c Node between its successors.
845  ///
846  /// \return \c true unless there's an irreducible backedge.
847  bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
848
849  /// \brief Compute mass in a particular loop.
850  ///
851  /// Assign mass to \c Loop's header, and then for each block in \c Loop in
852  /// reverse post-order, distribute mass to its successors.  Only visits nodes
853  /// that have not been packaged into sub-loops.
854  ///
855  /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
856  /// \return \c true unless there's an irreducible backedge.
857  bool computeMassInLoop(LoopData &Loop);
858
859  /// \brief Try to compute mass in the top-level function.
860  ///
861  /// Assign mass to the entry block, and then for each block in reverse
862  /// post-order, distribute mass to its successors.  Skips nodes that have
863  /// been packaged into loops.
864  ///
865  /// \pre \a computeMassInLoops() has been called.
866  /// \return \c true unless there's an irreducible backedge.
867  bool tryToComputeMassInFunction();
868
869  /// \brief Compute mass in (and package up) irreducible SCCs.
870  ///
871  /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
872  /// of \c Insert), and call \a computeMassInLoop() on each of them.
873  ///
874  /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
875  ///
876  /// \pre \a computeMassInLoop() has been called for each subloop of \c
877  /// OuterLoop.
878  /// \pre \c Insert points at the last loop successfully processed by \a
879  /// computeMassInLoop().
880  /// \pre \c OuterLoop has irreducible SCCs.
881  void computeIrreducibleMass(LoopData *OuterLoop,
882                              std::list<LoopData>::iterator Insert);
883
884  /// \brief Compute mass in all loops.
885  ///
886  /// For each loop bottom-up, call \a computeMassInLoop().
887  ///
888  /// \a computeMassInLoop() aborts (and returns \c false) on loops that
889  /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
890  /// re-enter \a computeMassInLoop().
891  ///
892  /// \post \a computeMassInLoop() has returned \c true for every loop.
893  void computeMassInLoops();
894
895  /// \brief Compute mass in the top-level function.
896  ///
897  /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
898  /// compute mass in the top-level function.
899  ///
900  /// \post \a tryToComputeMassInFunction() has returned \c true.
901  void computeMassInFunction();
902
903  std::string getBlockName(const BlockNode &Node) const override {
904    return bfi_detail::getBlockName(getBlock(Node));
905  }
906
907public:
908  const FunctionT *getFunction() const { return F; }
909
910  void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
911                 const LoopInfoT &LI);
912  BlockFrequencyInfoImpl() : BPI(nullptr), LI(nullptr), F(nullptr) {}
913
914  using BlockFrequencyInfoImplBase::getEntryFreq;
915  BlockFrequency getBlockFreq(const BlockT *BB) const {
916    return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
917  }
918  void setBlockFreq(const BlockT *BB, uint64_t Freq);
919  Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
920    return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
921  }
922
923  /// \brief Print the frequencies for the current function.
924  ///
925  /// Prints the frequencies for the blocks in the current function.
926  ///
927  /// Blocks are printed in the natural iteration order of the function, rather
928  /// than reverse post-order.  This provides two advantages:  writing -analyze
929  /// tests is easier (since blocks come out in source order), and even
930  /// unreachable blocks are printed.
931  ///
932  /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
933  /// we need to override it here.
934  raw_ostream &print(raw_ostream &OS) const override;
935  using BlockFrequencyInfoImplBase::dump;
936
937  using BlockFrequencyInfoImplBase::printBlockFreq;
938  raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
939    return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
940  }
941};
942
943template <class BT>
944void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
945                                           const BranchProbabilityInfoT &BPI,
946                                           const LoopInfoT &LI) {
947  // Save the parameters.
948  this->BPI = &BPI;
949  this->LI = &LI;
950  this->F = &F;
951
952  // Clean up left-over data structures.
953  BlockFrequencyInfoImplBase::clear();
954  RPOT.clear();
955  Nodes.clear();
956
957  // Initialize.
958  DEBUG(dbgs() << "\nblock-frequency: " << F.getName() << "\n================="
959               << std::string(F.getName().size(), '=') << "\n");
960  initializeRPOT();
961  initializeLoops();
962
963  // Visit loops in post-order to find the local mass distribution, and then do
964  // the full function.
965  computeMassInLoops();
966  computeMassInFunction();
967  unwrapLoops();
968  finalizeMetrics();
969}
970
971template <class BT>
972void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
973  if (Nodes.count(BB))
974    BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
975  else {
976    // If BB is a newly added block after BFI is done, we need to create a new
977    // BlockNode for it assigned with a new index. The index can be determined
978    // by the size of Freqs.
979    BlockNode NewNode(Freqs.size());
980    Nodes[BB] = NewNode;
981    Freqs.emplace_back();
982    BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
983  }
984}
985
986template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
987  const BlockT *Entry = &F->front();
988  RPOT.reserve(F->size());
989  std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
990  std::reverse(RPOT.begin(), RPOT.end());
991
992  assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
993         "More nodes in function than Block Frequency Info supports");
994
995  DEBUG(dbgs() << "reverse-post-order-traversal\n");
996  for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
997    BlockNode Node = getNode(I);
998    DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) << "\n");
999    Nodes[*I] = Node;
1000  }
1001
1002  Working.reserve(RPOT.size());
1003  for (size_t Index = 0; Index < RPOT.size(); ++Index)
1004    Working.emplace_back(Index);
1005  Freqs.resize(RPOT.size());
1006}
1007
1008template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1009  DEBUG(dbgs() << "loop-detection\n");
1010  if (LI->empty())
1011    return;
1012
1013  // Visit loops top down and assign them an index.
1014  std::deque<std::pair<const LoopT *, LoopData *>> Q;
1015  for (const LoopT *L : *LI)
1016    Q.emplace_back(L, nullptr);
1017  while (!Q.empty()) {
1018    const LoopT *Loop = Q.front().first;
1019    LoopData *Parent = Q.front().second;
1020    Q.pop_front();
1021
1022    BlockNode Header = getNode(Loop->getHeader());
1023    assert(Header.isValid());
1024
1025    Loops.emplace_back(Parent, Header);
1026    Working[Header.Index].Loop = &Loops.back();
1027    DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1028
1029    for (const LoopT *L : *Loop)
1030      Q.emplace_back(L, &Loops.back());
1031  }
1032
1033  // Visit nodes in reverse post-order and add them to their deepest containing
1034  // loop.
1035  for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1036    // Loop headers have already been mostly mapped.
1037    if (Working[Index].isLoopHeader()) {
1038      LoopData *ContainingLoop = Working[Index].getContainingLoop();
1039      if (ContainingLoop)
1040        ContainingLoop->Nodes.push_back(Index);
1041      continue;
1042    }
1043
1044    const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1045    if (!Loop)
1046      continue;
1047
1048    // Add this node to its containing loop's member list.
1049    BlockNode Header = getNode(Loop->getHeader());
1050    assert(Header.isValid());
1051    const auto &HeaderData = Working[Header.Index];
1052    assert(HeaderData.isLoopHeader());
1053
1054    Working[Index].Loop = HeaderData.Loop;
1055    HeaderData.Loop->Nodes.push_back(Index);
1056    DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1057                 << ": member = " << getBlockName(Index) << "\n");
1058  }
1059}
1060
1061template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1062  // Visit loops with the deepest first, and the top-level loops last.
1063  for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1064    if (computeMassInLoop(*L))
1065      continue;
1066    auto Next = std::next(L);
1067    computeIrreducibleMass(&*L, L.base());
1068    L = std::prev(Next);
1069    if (computeMassInLoop(*L))
1070      continue;
1071    llvm_unreachable("unhandled irreducible control flow");
1072  }
1073}
1074
1075template <class BT>
1076bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1077  // Compute mass in loop.
1078  DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1079
1080  if (Loop.isIrreducible()) {
1081    BlockMass Remaining = BlockMass::getFull();
1082    for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1083      auto &Mass = Working[Loop.Nodes[H].Index].getMass();
1084      Mass = Remaining * BranchProbability(1, Loop.NumHeaders - H);
1085      Remaining -= Mass;
1086    }
1087    for (const BlockNode &M : Loop.Nodes)
1088      if (!propagateMassToSuccessors(&Loop, M))
1089        llvm_unreachable("unhandled irreducible control flow");
1090
1091    adjustLoopHeaderMass(Loop);
1092  } else {
1093    Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1094    if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1095      llvm_unreachable("irreducible control flow to loop header!?");
1096    for (const BlockNode &M : Loop.members())
1097      if (!propagateMassToSuccessors(&Loop, M))
1098        // Irreducible backedge.
1099        return false;
1100  }
1101
1102  computeLoopScale(Loop);
1103  packageLoop(Loop);
1104  return true;
1105}
1106
1107template <class BT>
1108bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1109  // Compute mass in function.
1110  DEBUG(dbgs() << "compute-mass-in-function\n");
1111  assert(!Working.empty() && "no blocks in function");
1112  assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1113
1114  Working[0].getMass() = BlockMass::getFull();
1115  for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1116    // Check for nodes that have been packaged.
1117    BlockNode Node = getNode(I);
1118    if (Working[Node.Index].isPackaged())
1119      continue;
1120
1121    if (!propagateMassToSuccessors(nullptr, Node))
1122      return false;
1123  }
1124  return true;
1125}
1126
1127template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1128  if (tryToComputeMassInFunction())
1129    return;
1130  computeIrreducibleMass(nullptr, Loops.begin());
1131  if (tryToComputeMassInFunction())
1132    return;
1133  llvm_unreachable("unhandled irreducible control flow");
1134}
1135
1136/// \note This should be a lambda, but that crashes GCC 4.7.
1137namespace bfi_detail {
1138template <class BT> struct BlockEdgesAdder {
1139  typedef BT BlockT;
1140  typedef BlockFrequencyInfoImplBase::LoopData LoopData;
1141  typedef GraphTraits<const BlockT *> Successor;
1142
1143  const BlockFrequencyInfoImpl<BT> &BFI;
1144  explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1145      : BFI(BFI) {}
1146  void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1147                  const LoopData *OuterLoop) {
1148    const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1149    for (auto I = Successor::child_begin(BB), E = Successor::child_end(BB);
1150         I != E; ++I)
1151      G.addEdge(Irr, BFI.getNode(*I), OuterLoop);
1152  }
1153};
1154}
1155template <class BT>
1156void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1157    LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1158  DEBUG(dbgs() << "analyze-irreducible-in-";
1159        if (OuterLoop) dbgs() << "loop: " << getLoopName(*OuterLoop) << "\n";
1160        else dbgs() << "function\n");
1161
1162  using namespace bfi_detail;
1163  // Ideally, addBlockEdges() would be declared here as a lambda, but that
1164  // crashes GCC 4.7.
1165  BlockEdgesAdder<BT> addBlockEdges(*this);
1166  IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1167
1168  for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1169    computeMassInLoop(L);
1170
1171  if (!OuterLoop)
1172    return;
1173  updateLoopWithIrreducible(*OuterLoop);
1174}
1175
1176namespace {
1177// A helper function that converts a branch probability into weight.
1178inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
1179  return Prob.getNumerator();
1180}
1181} // namespace
1182
1183template <class BT>
1184bool
1185BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1186                                                      const BlockNode &Node) {
1187  DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1188  // Calculate probability for successors.
1189  Distribution Dist;
1190  if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1191    assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1192    if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1193      // Irreducible backedge.
1194      return false;
1195  } else {
1196    const BlockT *BB = getBlock(Node);
1197    for (auto SI = Successor::child_begin(BB), SE = Successor::child_end(BB);
1198         SI != SE; ++SI)
1199      if (!addToDist(Dist, OuterLoop, Node, getNode(*SI),
1200                     getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1201        // Irreducible backedge.
1202        return false;
1203  }
1204
1205  // Distribute mass to successors, saving exit and backedge data in the
1206  // loop header.
1207  distributeMass(Node, OuterLoop, Dist);
1208  return true;
1209}
1210
1211template <class BT>
1212raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1213  if (!F)
1214    return OS;
1215  OS << "block-frequency-info: " << F->getName() << "\n";
1216  for (const BlockT &BB : *F) {
1217    OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1218    getFloatingBlockFreq(&BB).print(OS, 5)
1219        << ", int = " << getBlockFreq(&BB).getFrequency() << "\n";
1220  }
1221
1222  // Add an extra newline for readability.
1223  OS << "\n";
1224  return OS;
1225}
1226
1227} // end namespace llvm
1228
1229#undef DEBUG_TYPE
1230
1231#endif
1232