1//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some functions that are useful for math stuff.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_MATHEXTRAS_H
15#define LLVM_SUPPORT_MATHEXTRAS_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/SwapByteOrder.h"
19#include <cassert>
20#include <cstring>
21#include <type_traits>
22
23#ifdef _MSC_VER
24#include <intrin.h>
25#endif
26
27#ifdef __ANDROID_NDK__
28#include <android/api-level.h>
29#endif
30
31namespace llvm {
32/// \brief The behavior an operation has on an input of 0.
33enum ZeroBehavior {
34  /// \brief The returned value is undefined.
35  ZB_Undefined,
36  /// \brief The returned value is numeric_limits<T>::max()
37  ZB_Max,
38  /// \brief The returned value is numeric_limits<T>::digits
39  ZB_Width
40};
41
42namespace detail {
43template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
44  static std::size_t count(T Val, ZeroBehavior) {
45    if (!Val)
46      return std::numeric_limits<T>::digits;
47    if (Val & 0x1)
48      return 0;
49
50    // Bisection method.
51    std::size_t ZeroBits = 0;
52    T Shift = std::numeric_limits<T>::digits >> 1;
53    T Mask = std::numeric_limits<T>::max() >> Shift;
54    while (Shift) {
55      if ((Val & Mask) == 0) {
56        Val >>= Shift;
57        ZeroBits |= Shift;
58      }
59      Shift >>= 1;
60      Mask >>= Shift;
61    }
62    return ZeroBits;
63  }
64};
65
66#if __GNUC__ >= 4 || defined(_MSC_VER)
67template <typename T> struct TrailingZerosCounter<T, 4> {
68  static std::size_t count(T Val, ZeroBehavior ZB) {
69    if (ZB != ZB_Undefined && Val == 0)
70      return 32;
71
72#if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
73    return __builtin_ctz(Val);
74#elif defined(_MSC_VER)
75    unsigned long Index;
76    _BitScanForward(&Index, Val);
77    return Index;
78#endif
79  }
80};
81
82#if !defined(_MSC_VER) || defined(_M_X64)
83template <typename T> struct TrailingZerosCounter<T, 8> {
84  static std::size_t count(T Val, ZeroBehavior ZB) {
85    if (ZB != ZB_Undefined && Val == 0)
86      return 64;
87
88#if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
89    return __builtin_ctzll(Val);
90#elif defined(_MSC_VER)
91    unsigned long Index;
92    _BitScanForward64(&Index, Val);
93    return Index;
94#endif
95  }
96};
97#endif
98#endif
99} // namespace detail
100
101/// \brief Count number of 0's from the least significant bit to the most
102///   stopping at the first 1.
103///
104/// Only unsigned integral types are allowed.
105///
106/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
107///   valid arguments.
108template <typename T>
109std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
110  static_assert(std::numeric_limits<T>::is_integer &&
111                    !std::numeric_limits<T>::is_signed,
112                "Only unsigned integral types are allowed.");
113  return detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
114}
115
116namespace detail {
117template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
118  static std::size_t count(T Val, ZeroBehavior) {
119    if (!Val)
120      return std::numeric_limits<T>::digits;
121
122    // Bisection method.
123    std::size_t ZeroBits = 0;
124    for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
125      T Tmp = Val >> Shift;
126      if (Tmp)
127        Val = Tmp;
128      else
129        ZeroBits |= Shift;
130    }
131    return ZeroBits;
132  }
133};
134
135#if __GNUC__ >= 4 || defined(_MSC_VER)
136template <typename T> struct LeadingZerosCounter<T, 4> {
137  static std::size_t count(T Val, ZeroBehavior ZB) {
138    if (ZB != ZB_Undefined && Val == 0)
139      return 32;
140
141#if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
142    return __builtin_clz(Val);
143#elif defined(_MSC_VER)
144    unsigned long Index;
145    _BitScanReverse(&Index, Val);
146    return Index ^ 31;
147#endif
148  }
149};
150
151#if !defined(_MSC_VER) || defined(_M_X64)
152template <typename T> struct LeadingZerosCounter<T, 8> {
153  static std::size_t count(T Val, ZeroBehavior ZB) {
154    if (ZB != ZB_Undefined && Val == 0)
155      return 64;
156
157#if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
158    return __builtin_clzll(Val);
159#elif defined(_MSC_VER)
160    unsigned long Index;
161    _BitScanReverse64(&Index, Val);
162    return Index ^ 63;
163#endif
164  }
165};
166#endif
167#endif
168} // namespace detail
169
170/// \brief Count number of 0's from the most significant bit to the least
171///   stopping at the first 1.
172///
173/// Only unsigned integral types are allowed.
174///
175/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
176///   valid arguments.
177template <typename T>
178std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
179  static_assert(std::numeric_limits<T>::is_integer &&
180                    !std::numeric_limits<T>::is_signed,
181                "Only unsigned integral types are allowed.");
182  return detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
183}
184
185/// \brief Get the index of the first set bit starting from the least
186///   significant bit.
187///
188/// Only unsigned integral types are allowed.
189///
190/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
191///   valid arguments.
192template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
193  if (ZB == ZB_Max && Val == 0)
194    return std::numeric_limits<T>::max();
195
196  return countTrailingZeros(Val, ZB_Undefined);
197}
198
199/// \brief Get the index of the last set bit starting from the least
200///   significant bit.
201///
202/// Only unsigned integral types are allowed.
203///
204/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
205///   valid arguments.
206template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
207  if (ZB == ZB_Max && Val == 0)
208    return std::numeric_limits<T>::max();
209
210  // Use ^ instead of - because both gcc and llvm can remove the associated ^
211  // in the __builtin_clz intrinsic on x86.
212  return countLeadingZeros(Val, ZB_Undefined) ^
213         (std::numeric_limits<T>::digits - 1);
214}
215
216/// \brief Macro compressed bit reversal table for 256 bits.
217///
218/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
219static const unsigned char BitReverseTable256[256] = {
220#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
221#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
222#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
223  R6(0), R6(2), R6(1), R6(3)
224#undef R2
225#undef R4
226#undef R6
227};
228
229/// \brief Reverse the bits in \p Val.
230template <typename T>
231T reverseBits(T Val) {
232  unsigned char in[sizeof(Val)];
233  unsigned char out[sizeof(Val)];
234  std::memcpy(in, &Val, sizeof(Val));
235  for (unsigned i = 0; i < sizeof(Val); ++i)
236    out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
237  std::memcpy(&Val, out, sizeof(Val));
238  return Val;
239}
240
241// NOTE: The following support functions use the _32/_64 extensions instead of
242// type overloading so that signed and unsigned integers can be used without
243// ambiguity.
244
245/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
246inline uint32_t Hi_32(uint64_t Value) {
247  return static_cast<uint32_t>(Value >> 32);
248}
249
250/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
251inline uint32_t Lo_32(uint64_t Value) {
252  return static_cast<uint32_t>(Value);
253}
254
255/// Make_64 - This functions makes a 64-bit integer from a high / low pair of
256///           32-bit integers.
257inline uint64_t Make_64(uint32_t High, uint32_t Low) {
258  return ((uint64_t)High << 32) | (uint64_t)Low;
259}
260
261/// isInt - Checks if an integer fits into the given bit width.
262template<unsigned N>
263inline bool isInt(int64_t x) {
264  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
265}
266// Template specializations to get better code for common cases.
267template<>
268inline bool isInt<8>(int64_t x) {
269  return static_cast<int8_t>(x) == x;
270}
271template<>
272inline bool isInt<16>(int64_t x) {
273  return static_cast<int16_t>(x) == x;
274}
275template<>
276inline bool isInt<32>(int64_t x) {
277  return static_cast<int32_t>(x) == x;
278}
279
280/// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
281///                     left by S.
282template<unsigned N, unsigned S>
283inline bool isShiftedInt(int64_t x) {
284  return isInt<N+S>(x) && (x % (1<<S) == 0);
285}
286
287/// isUInt - Checks if an unsigned integer fits into the given bit width.
288template<unsigned N>
289inline bool isUInt(uint64_t x) {
290  return N >= 64 || x < (UINT64_C(1)<<(N));
291}
292// Template specializations to get better code for common cases.
293template<>
294inline bool isUInt<8>(uint64_t x) {
295  return static_cast<uint8_t>(x) == x;
296}
297template<>
298inline bool isUInt<16>(uint64_t x) {
299  return static_cast<uint16_t>(x) == x;
300}
301template<>
302inline bool isUInt<32>(uint64_t x) {
303  return static_cast<uint32_t>(x) == x;
304}
305
306/// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
307///                     left by S.
308template<unsigned N, unsigned S>
309inline bool isShiftedUInt(uint64_t x) {
310  return isUInt<N+S>(x) && (x % (1<<S) == 0);
311}
312
313/// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
314/// bit width.
315inline bool isUIntN(unsigned N, uint64_t x) {
316  return N >= 64 || x < (UINT64_C(1)<<(N));
317}
318
319/// isIntN - Checks if an signed integer fits into the given (dynamic)
320/// bit width.
321inline bool isIntN(unsigned N, int64_t x) {
322  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
323}
324
325/// isMask_32 - This function returns true if the argument is a non-empty
326/// sequence of ones starting at the least significant bit with the remainder
327/// zero (32 bit version).  Ex. isMask_32(0x0000FFFFU) == true.
328inline bool isMask_32(uint32_t Value) {
329  return Value && ((Value + 1) & Value) == 0;
330}
331
332/// isMask_64 - This function returns true if the argument is a non-empty
333/// sequence of ones starting at the least significant bit with the remainder
334/// zero (64 bit version).
335inline bool isMask_64(uint64_t Value) {
336  return Value && ((Value + 1) & Value) == 0;
337}
338
339/// isShiftedMask_32 - This function returns true if the argument contains a
340/// non-empty sequence of ones with the remainder zero (32 bit version.)
341/// Ex. isShiftedMask_32(0x0000FF00U) == true.
342inline bool isShiftedMask_32(uint32_t Value) {
343  return Value && isMask_32((Value - 1) | Value);
344}
345
346/// isShiftedMask_64 - This function returns true if the argument contains a
347/// non-empty sequence of ones with the remainder zero (64 bit version.)
348inline bool isShiftedMask_64(uint64_t Value) {
349  return Value && isMask_64((Value - 1) | Value);
350}
351
352/// isPowerOf2_32 - This function returns true if the argument is a power of
353/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
354inline bool isPowerOf2_32(uint32_t Value) {
355  return Value && !(Value & (Value - 1));
356}
357
358/// isPowerOf2_64 - This function returns true if the argument is a power of two
359/// > 0 (64 bit edition.)
360inline bool isPowerOf2_64(uint64_t Value) {
361  return Value && !(Value & (Value - int64_t(1L)));
362}
363
364/// ByteSwap_16 - This function returns a byte-swapped representation of the
365/// 16-bit argument, Value.
366inline uint16_t ByteSwap_16(uint16_t Value) {
367  return sys::SwapByteOrder_16(Value);
368}
369
370/// ByteSwap_32 - This function returns a byte-swapped representation of the
371/// 32-bit argument, Value.
372inline uint32_t ByteSwap_32(uint32_t Value) {
373  return sys::SwapByteOrder_32(Value);
374}
375
376/// ByteSwap_64 - This function returns a byte-swapped representation of the
377/// 64-bit argument, Value.
378inline uint64_t ByteSwap_64(uint64_t Value) {
379  return sys::SwapByteOrder_64(Value);
380}
381
382/// \brief Count the number of ones from the most significant bit to the first
383/// zero bit.
384///
385/// Ex. CountLeadingOnes(0xFF0FFF00) == 8.
386/// Only unsigned integral types are allowed.
387///
388/// \param ZB the behavior on an input of all ones. Only ZB_Width and
389/// ZB_Undefined are valid arguments.
390template <typename T>
391std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
392  static_assert(std::numeric_limits<T>::is_integer &&
393                    !std::numeric_limits<T>::is_signed,
394                "Only unsigned integral types are allowed.");
395  return countLeadingZeros(~Value, ZB);
396}
397
398/// \brief Count the number of ones from the least significant bit to the first
399/// zero bit.
400///
401/// Ex. countTrailingOnes(0x00FF00FF) == 8.
402/// Only unsigned integral types are allowed.
403///
404/// \param ZB the behavior on an input of all ones. Only ZB_Width and
405/// ZB_Undefined are valid arguments.
406template <typename T>
407std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
408  static_assert(std::numeric_limits<T>::is_integer &&
409                    !std::numeric_limits<T>::is_signed,
410                "Only unsigned integral types are allowed.");
411  return countTrailingZeros(~Value, ZB);
412}
413
414namespace detail {
415template <typename T, std::size_t SizeOfT> struct PopulationCounter {
416  static unsigned count(T Value) {
417    // Generic version, forward to 32 bits.
418    static_assert(SizeOfT <= 4, "Not implemented!");
419#if __GNUC__ >= 4
420    return __builtin_popcount(Value);
421#else
422    uint32_t v = Value;
423    v = v - ((v >> 1) & 0x55555555);
424    v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
425    return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
426#endif
427  }
428};
429
430template <typename T> struct PopulationCounter<T, 8> {
431  static unsigned count(T Value) {
432#if __GNUC__ >= 4
433    return __builtin_popcountll(Value);
434#else
435    uint64_t v = Value;
436    v = v - ((v >> 1) & 0x5555555555555555ULL);
437    v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
438    v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
439    return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
440#endif
441  }
442};
443} // namespace detail
444
445/// \brief Count the number of set bits in a value.
446/// Ex. countPopulation(0xF000F000) = 8
447/// Returns 0 if the word is zero.
448template <typename T>
449inline unsigned countPopulation(T Value) {
450  static_assert(std::numeric_limits<T>::is_integer &&
451                    !std::numeric_limits<T>::is_signed,
452                "Only unsigned integral types are allowed.");
453  return detail::PopulationCounter<T, sizeof(T)>::count(Value);
454}
455
456/// Log2 - This function returns the log base 2 of the specified value
457inline double Log2(double Value) {
458#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
459  return __builtin_log(Value) / __builtin_log(2.0);
460#else
461  return log2(Value);
462#endif
463}
464
465/// Log2_32 - This function returns the floor log base 2 of the specified value,
466/// -1 if the value is zero. (32 bit edition.)
467/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
468inline unsigned Log2_32(uint32_t Value) {
469  return 31 - countLeadingZeros(Value);
470}
471
472/// Log2_64 - This function returns the floor log base 2 of the specified value,
473/// -1 if the value is zero. (64 bit edition.)
474inline unsigned Log2_64(uint64_t Value) {
475  return 63 - countLeadingZeros(Value);
476}
477
478/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
479/// value, 32 if the value is zero. (32 bit edition).
480/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
481inline unsigned Log2_32_Ceil(uint32_t Value) {
482  return 32 - countLeadingZeros(Value - 1);
483}
484
485/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
486/// value, 64 if the value is zero. (64 bit edition.)
487inline unsigned Log2_64_Ceil(uint64_t Value) {
488  return 64 - countLeadingZeros(Value - 1);
489}
490
491/// GreatestCommonDivisor64 - Return the greatest common divisor of the two
492/// values using Euclid's algorithm.
493inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
494  while (B) {
495    uint64_t T = B;
496    B = A % B;
497    A = T;
498  }
499  return A;
500}
501
502/// BitsToDouble - This function takes a 64-bit integer and returns the bit
503/// equivalent double.
504inline double BitsToDouble(uint64_t Bits) {
505  union {
506    uint64_t L;
507    double D;
508  } T;
509  T.L = Bits;
510  return T.D;
511}
512
513/// BitsToFloat - This function takes a 32-bit integer and returns the bit
514/// equivalent float.
515inline float BitsToFloat(uint32_t Bits) {
516  union {
517    uint32_t I;
518    float F;
519  } T;
520  T.I = Bits;
521  return T.F;
522}
523
524/// DoubleToBits - This function takes a double and returns the bit
525/// equivalent 64-bit integer.  Note that copying doubles around
526/// changes the bits of NaNs on some hosts, notably x86, so this
527/// routine cannot be used if these bits are needed.
528inline uint64_t DoubleToBits(double Double) {
529  union {
530    uint64_t L;
531    double D;
532  } T;
533  T.D = Double;
534  return T.L;
535}
536
537/// FloatToBits - This function takes a float and returns the bit
538/// equivalent 32-bit integer.  Note that copying floats around
539/// changes the bits of NaNs on some hosts, notably x86, so this
540/// routine cannot be used if these bits are needed.
541inline uint32_t FloatToBits(float Float) {
542  union {
543    uint32_t I;
544    float F;
545  } T;
546  T.F = Float;
547  return T.I;
548}
549
550/// MinAlign - A and B are either alignments or offsets.  Return the minimum
551/// alignment that may be assumed after adding the two together.
552inline uint64_t MinAlign(uint64_t A, uint64_t B) {
553  // The largest power of 2 that divides both A and B.
554  //
555  // Replace "-Value" by "1+~Value" in the following commented code to avoid
556  // MSVC warning C4146
557  //    return (A | B) & -(A | B);
558  return (A | B) & (1 + ~(A | B));
559}
560
561/// \brief Aligns \c Addr to \c Alignment bytes, rounding up.
562///
563/// Alignment should be a power of two.  This method rounds up, so
564/// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
565inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
566  assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
567         "Alignment is not a power of two!");
568
569  assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
570
571  return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
572}
573
574/// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment
575/// bytes, rounding up.
576inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
577  return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
578}
579
580/// NextPowerOf2 - Returns the next power of two (in 64-bits)
581/// that is strictly greater than A.  Returns zero on overflow.
582inline uint64_t NextPowerOf2(uint64_t A) {
583  A |= (A >> 1);
584  A |= (A >> 2);
585  A |= (A >> 4);
586  A |= (A >> 8);
587  A |= (A >> 16);
588  A |= (A >> 32);
589  return A + 1;
590}
591
592/// Returns the power of two which is less than or equal to the given value.
593/// Essentially, it is a floor operation across the domain of powers of two.
594inline uint64_t PowerOf2Floor(uint64_t A) {
595  if (!A) return 0;
596  return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
597}
598
599/// Returns the next integer (mod 2**64) that is greater than or equal to
600/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
601///
602/// If non-zero \p Skew is specified, the return value will be a minimal
603/// integer that is greater than or equal to \p Value and equal to
604/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
605/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
606///
607/// Examples:
608/// \code
609///   RoundUpToAlignment(5, 8) = 8
610///   RoundUpToAlignment(17, 8) = 24
611///   RoundUpToAlignment(~0LL, 8) = 0
612///   RoundUpToAlignment(321, 255) = 510
613///
614///   RoundUpToAlignment(5, 8, 7) = 7
615///   RoundUpToAlignment(17, 8, 1) = 17
616///   RoundUpToAlignment(~0LL, 8, 3) = 3
617///   RoundUpToAlignment(321, 255, 42) = 552
618/// \endcode
619inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align,
620                                   uint64_t Skew = 0) {
621  Skew %= Align;
622  return (Value + Align - 1 - Skew) / Align * Align + Skew;
623}
624
625/// Returns the offset to the next integer (mod 2**64) that is greater than
626/// or equal to \p Value and is a multiple of \p Align. \p Align must be
627/// non-zero.
628inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
629  return RoundUpToAlignment(Value, Align) - Value;
630}
631
632/// SignExtend32 - Sign extend B-bit number x to 32-bit int.
633/// Usage int32_t r = SignExtend32<5>(x);
634template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
635  return int32_t(x << (32 - B)) >> (32 - B);
636}
637
638/// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
639/// Requires 0 < B <= 32.
640inline int32_t SignExtend32(uint32_t X, unsigned B) {
641  return int32_t(X << (32 - B)) >> (32 - B);
642}
643
644/// SignExtend64 - Sign extend B-bit number x to 64-bit int.
645/// Usage int64_t r = SignExtend64<5>(x);
646template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
647  return int64_t(x << (64 - B)) >> (64 - B);
648}
649
650/// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
651/// Requires 0 < B <= 64.
652inline int64_t SignExtend64(uint64_t X, unsigned B) {
653  return int64_t(X << (64 - B)) >> (64 - B);
654}
655
656/// \brief Add two unsigned integers, X and Y, of type T.
657/// Clamp the result to the maximum representable value of T on overflow.
658/// ResultOverflowed indicates if the result is larger than the maximum
659/// representable value of type T.
660template <typename T>
661typename std::enable_if<std::is_unsigned<T>::value, T>::type
662SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
663  bool Dummy;
664  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
665  // Hacker's Delight, p. 29
666  T Z = X + Y;
667  Overflowed = (Z < X || Z < Y);
668  if (Overflowed)
669    return std::numeric_limits<T>::max();
670  else
671    return Z;
672}
673
674/// \brief Multiply two unsigned integers, X and Y, of type T.
675/// Clamp the result to the maximum representable value of T on overflow.
676/// ResultOverflowed indicates if the result is larger than the maximum
677/// representable value of type T.
678template <typename T>
679typename std::enable_if<std::is_unsigned<T>::value, T>::type
680SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
681  bool Dummy;
682  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
683
684  // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
685  // because it fails for uint16_t (where multiplication can have undefined
686  // behavior due to promotion to int), and requires a division in addition
687  // to the multiplication.
688
689  Overflowed = false;
690
691  // Log2(Z) would be either Log2Z or Log2Z + 1.
692  // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
693  // will necessarily be less than Log2Max as desired.
694  int Log2Z = Log2_64(X) + Log2_64(Y);
695  const T Max = std::numeric_limits<T>::max();
696  int Log2Max = Log2_64(Max);
697  if (Log2Z < Log2Max) {
698    return X * Y;
699  }
700  if (Log2Z > Log2Max) {
701    Overflowed = true;
702    return Max;
703  }
704
705  // We're going to use the top bit, and maybe overflow one
706  // bit past it. Multiply all but the bottom bit then add
707  // that on at the end.
708  T Z = (X >> 1) * Y;
709  if (Z & ~(Max >> 1)) {
710    Overflowed = true;
711    return Max;
712  }
713  Z <<= 1;
714  if (X & 1)
715    return SaturatingAdd(Z, Y, ResultOverflowed);
716
717  return Z;
718}
719
720extern const float huge_valf;
721} // End llvm namespace
722
723#endif
724