1//===-- CodeGen/AsmPrinter/WinException.cpp - Dwarf Exception Impl ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for writing Win64 exception info into asm files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "WinException.h"
15#include "llvm/ADT/SmallString.h"
16#include "llvm/ADT/StringExtras.h"
17#include "llvm/ADT/Twine.h"
18#include "llvm/CodeGen/AsmPrinter.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineModuleInfo.h"
22#include "llvm/CodeGen/WinEHFuncInfo.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/Mangler.h"
25#include "llvm/IR/Module.h"
26#include "llvm/MC/MCAsmInfo.h"
27#include "llvm/MC/MCContext.h"
28#include "llvm/MC/MCExpr.h"
29#include "llvm/MC/MCSection.h"
30#include "llvm/MC/MCStreamer.h"
31#include "llvm/MC/MCSymbol.h"
32#include "llvm/MC/MCWin64EH.h"
33#include "llvm/Support/COFF.h"
34#include "llvm/Support/Dwarf.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/FormattedStream.h"
37#include "llvm/Target/TargetFrameLowering.h"
38#include "llvm/Target/TargetLoweringObjectFile.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42using namespace llvm;
43
44WinException::WinException(AsmPrinter *A) : EHStreamer(A) {
45  // MSVC's EH tables are always composed of 32-bit words.  All known 64-bit
46  // platforms use an imagerel32 relocation to refer to symbols.
47  useImageRel32 = (A->getDataLayout().getPointerSizeInBits() == 64);
48}
49
50WinException::~WinException() {}
51
52/// endModule - Emit all exception information that should come after the
53/// content.
54void WinException::endModule() {
55  auto &OS = *Asm->OutStreamer;
56  const Module *M = MMI->getModule();
57  for (const Function &F : *M)
58    if (F.hasFnAttribute("safeseh"))
59      OS.EmitCOFFSafeSEH(Asm->getSymbol(&F));
60}
61
62void WinException::beginFunction(const MachineFunction *MF) {
63  shouldEmitMoves = shouldEmitPersonality = shouldEmitLSDA = false;
64
65  // If any landing pads survive, we need an EH table.
66  bool hasLandingPads = !MMI->getLandingPads().empty();
67  bool hasEHFunclets = MMI->hasEHFunclets();
68
69  const Function *F = MF->getFunction();
70
71  shouldEmitMoves = Asm->needsSEHMoves();
72
73  const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
74  unsigned PerEncoding = TLOF.getPersonalityEncoding();
75  const Function *Per = nullptr;
76  if (F->hasPersonalityFn())
77    Per = dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts());
78
79  bool forceEmitPersonality =
80    F->hasPersonalityFn() && !isNoOpWithoutInvoke(classifyEHPersonality(Per)) &&
81    F->needsUnwindTableEntry();
82
83  shouldEmitPersonality =
84      forceEmitPersonality || ((hasLandingPads || hasEHFunclets) &&
85                               PerEncoding != dwarf::DW_EH_PE_omit && Per);
86
87  unsigned LSDAEncoding = TLOF.getLSDAEncoding();
88  shouldEmitLSDA = shouldEmitPersonality &&
89    LSDAEncoding != dwarf::DW_EH_PE_omit;
90
91  // If we're not using CFI, we don't want the CFI or the personality, but we
92  // might want EH tables if we had EH pads.
93  if (!Asm->MAI->usesWindowsCFI()) {
94    shouldEmitLSDA = hasEHFunclets;
95    shouldEmitPersonality = false;
96    return;
97  }
98
99  beginFunclet(MF->front(), Asm->CurrentFnSym);
100}
101
102/// endFunction - Gather and emit post-function exception information.
103///
104void WinException::endFunction(const MachineFunction *MF) {
105  if (!shouldEmitPersonality && !shouldEmitMoves && !shouldEmitLSDA)
106    return;
107
108  const Function *F = MF->getFunction();
109  EHPersonality Per = EHPersonality::Unknown;
110  if (F->hasPersonalityFn())
111    Per = classifyEHPersonality(F->getPersonalityFn());
112
113  // Get rid of any dead landing pads if we're not using funclets. In funclet
114  // schemes, the landing pad is not actually reachable. It only exists so
115  // that we can emit the right table data.
116  if (!isFuncletEHPersonality(Per))
117    MMI->TidyLandingPads();
118
119  endFunclet();
120
121  // endFunclet will emit the necessary .xdata tables for x64 SEH.
122  if (Per == EHPersonality::MSVC_Win64SEH && MMI->hasEHFunclets())
123    return;
124
125  if (shouldEmitPersonality || shouldEmitLSDA) {
126    Asm->OutStreamer->PushSection();
127
128    // Just switch sections to the right xdata section. This use of CurrentFnSym
129    // assumes that we only emit the LSDA when ending the parent function.
130    MCSection *XData = WinEH::UnwindEmitter::getXDataSection(Asm->CurrentFnSym,
131                                                             Asm->OutContext);
132    Asm->OutStreamer->SwitchSection(XData);
133
134    // Emit the tables appropriate to the personality function in use. If we
135    // don't recognize the personality, assume it uses an Itanium-style LSDA.
136    if (Per == EHPersonality::MSVC_Win64SEH)
137      emitCSpecificHandlerTable(MF);
138    else if (Per == EHPersonality::MSVC_X86SEH)
139      emitExceptHandlerTable(MF);
140    else if (Per == EHPersonality::MSVC_CXX)
141      emitCXXFrameHandler3Table(MF);
142    else if (Per == EHPersonality::CoreCLR)
143      emitCLRExceptionTable(MF);
144    else
145      emitExceptionTable();
146
147    Asm->OutStreamer->PopSection();
148  }
149}
150
151/// Retreive the MCSymbol for a GlobalValue or MachineBasicBlock.
152static MCSymbol *getMCSymbolForMBB(AsmPrinter *Asm,
153                                   const MachineBasicBlock *MBB) {
154  if (!MBB)
155    return nullptr;
156
157  assert(MBB->isEHFuncletEntry());
158
159  // Give catches and cleanups a name based off of their parent function and
160  // their funclet entry block's number.
161  const MachineFunction *MF = MBB->getParent();
162  const Function *F = MF->getFunction();
163  StringRef FuncLinkageName = GlobalValue::getRealLinkageName(F->getName());
164  MCContext &Ctx = MF->getContext();
165  StringRef HandlerPrefix = MBB->isCleanupFuncletEntry() ? "dtor" : "catch";
166  return Ctx.getOrCreateSymbol("?" + HandlerPrefix + "$" +
167                               Twine(MBB->getNumber()) + "@?0?" +
168                               FuncLinkageName + "@4HA");
169}
170
171void WinException::beginFunclet(const MachineBasicBlock &MBB,
172                                MCSymbol *Sym) {
173  CurrentFuncletEntry = &MBB;
174
175  const Function *F = Asm->MF->getFunction();
176  // If a symbol was not provided for the funclet, invent one.
177  if (!Sym) {
178    Sym = getMCSymbolForMBB(Asm, &MBB);
179
180    // Describe our funclet symbol as a function with internal linkage.
181    Asm->OutStreamer->BeginCOFFSymbolDef(Sym);
182    Asm->OutStreamer->EmitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC);
183    Asm->OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION
184                                         << COFF::SCT_COMPLEX_TYPE_SHIFT);
185    Asm->OutStreamer->EndCOFFSymbolDef();
186
187    // We want our funclet's entry point to be aligned such that no nops will be
188    // present after the label.
189    Asm->EmitAlignment(std::max(Asm->MF->getAlignment(), MBB.getAlignment()),
190                       F);
191
192    // Now that we've emitted the alignment directive, point at our funclet.
193    Asm->OutStreamer->EmitLabel(Sym);
194  }
195
196  // Mark 'Sym' as starting our funclet.
197  if (shouldEmitMoves || shouldEmitPersonality)
198    Asm->OutStreamer->EmitWinCFIStartProc(Sym);
199
200  if (shouldEmitPersonality) {
201    const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
202    const Function *PerFn = nullptr;
203
204    // Determine which personality routine we are using for this funclet.
205    if (F->hasPersonalityFn())
206      PerFn = dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts());
207    const MCSymbol *PersHandlerSym =
208        TLOF.getCFIPersonalitySymbol(PerFn, *Asm->Mang, Asm->TM, MMI);
209
210    // Classify the personality routine so that we may reason about it.
211    EHPersonality Per = EHPersonality::Unknown;
212    if (F->hasPersonalityFn())
213      Per = classifyEHPersonality(F->getPersonalityFn());
214
215    // Do not emit a .seh_handler directive if it is a C++ cleanup funclet.
216    if (Per != EHPersonality::MSVC_CXX ||
217        !CurrentFuncletEntry->isCleanupFuncletEntry())
218      Asm->OutStreamer->EmitWinEHHandler(PersHandlerSym, true, true);
219  }
220}
221
222void WinException::endFunclet() {
223  // No funclet to process?  Great, we have nothing to do.
224  if (!CurrentFuncletEntry)
225    return;
226
227  if (shouldEmitMoves || shouldEmitPersonality) {
228    const Function *F = Asm->MF->getFunction();
229    EHPersonality Per = EHPersonality::Unknown;
230    if (F->hasPersonalityFn())
231      Per = classifyEHPersonality(F->getPersonalityFn());
232
233    // The .seh_handlerdata directive implicitly switches section, push the
234    // current section so that we may return to it.
235    Asm->OutStreamer->PushSection();
236
237    // Emit an UNWIND_INFO struct describing the prologue.
238    Asm->OutStreamer->EmitWinEHHandlerData();
239
240    if (Per == EHPersonality::MSVC_CXX && shouldEmitPersonality &&
241        !CurrentFuncletEntry->isCleanupFuncletEntry()) {
242      // If this is a C++ catch funclet (or the parent function),
243      // emit a reference to the LSDA for the parent function.
244      StringRef FuncLinkageName = GlobalValue::getRealLinkageName(F->getName());
245      MCSymbol *FuncInfoXData = Asm->OutContext.getOrCreateSymbol(
246          Twine("$cppxdata$", FuncLinkageName));
247      Asm->OutStreamer->EmitValue(create32bitRef(FuncInfoXData), 4);
248    } else if (Per == EHPersonality::MSVC_Win64SEH && MMI->hasEHFunclets() &&
249               !CurrentFuncletEntry->isEHFuncletEntry()) {
250      // If this is the parent function in Win64 SEH, emit the LSDA immediately
251      // following .seh_handlerdata.
252      emitCSpecificHandlerTable(Asm->MF);
253    }
254
255    // Switch back to the previous section now that we are done writing to
256    // .xdata.
257    Asm->OutStreamer->PopSection();
258
259    // Emit a .seh_endproc directive to mark the end of the function.
260    Asm->OutStreamer->EmitWinCFIEndProc();
261  }
262
263  // Let's make sure we don't try to end the same funclet twice.
264  CurrentFuncletEntry = nullptr;
265}
266
267const MCExpr *WinException::create32bitRef(const MCSymbol *Value) {
268  if (!Value)
269    return MCConstantExpr::create(0, Asm->OutContext);
270  return MCSymbolRefExpr::create(Value, useImageRel32
271                                            ? MCSymbolRefExpr::VK_COFF_IMGREL32
272                                            : MCSymbolRefExpr::VK_None,
273                                 Asm->OutContext);
274}
275
276const MCExpr *WinException::create32bitRef(const GlobalValue *GV) {
277  if (!GV)
278    return MCConstantExpr::create(0, Asm->OutContext);
279  return create32bitRef(Asm->getSymbol(GV));
280}
281
282const MCExpr *WinException::getLabelPlusOne(const MCSymbol *Label) {
283  return MCBinaryExpr::createAdd(create32bitRef(Label),
284                                 MCConstantExpr::create(1, Asm->OutContext),
285                                 Asm->OutContext);
286}
287
288const MCExpr *WinException::getOffset(const MCSymbol *OffsetOf,
289                                      const MCSymbol *OffsetFrom) {
290  return MCBinaryExpr::createSub(
291      MCSymbolRefExpr::create(OffsetOf, Asm->OutContext),
292      MCSymbolRefExpr::create(OffsetFrom, Asm->OutContext), Asm->OutContext);
293}
294
295const MCExpr *WinException::getOffsetPlusOne(const MCSymbol *OffsetOf,
296                                             const MCSymbol *OffsetFrom) {
297  return MCBinaryExpr::createAdd(getOffset(OffsetOf, OffsetFrom),
298                                 MCConstantExpr::create(1, Asm->OutContext),
299                                 Asm->OutContext);
300}
301
302int WinException::getFrameIndexOffset(int FrameIndex,
303                                      const WinEHFuncInfo &FuncInfo) {
304  const TargetFrameLowering &TFI = *Asm->MF->getSubtarget().getFrameLowering();
305  unsigned UnusedReg;
306  if (Asm->MAI->usesWindowsCFI())
307    return TFI.getFrameIndexReferenceFromSP(*Asm->MF, FrameIndex, UnusedReg);
308  // For 32-bit, offsets should be relative to the end of the EH registration
309  // node. For 64-bit, it's relative to SP at the end of the prologue.
310  assert(FuncInfo.EHRegNodeEndOffset != INT_MAX);
311  int Offset = TFI.getFrameIndexReference(*Asm->MF, FrameIndex, UnusedReg);
312  Offset += FuncInfo.EHRegNodeEndOffset;
313  return Offset;
314}
315
316namespace {
317
318/// Top-level state used to represent unwind to caller
319const int NullState = -1;
320
321struct InvokeStateChange {
322  /// EH Label immediately after the last invoke in the previous state, or
323  /// nullptr if the previous state was the null state.
324  const MCSymbol *PreviousEndLabel;
325
326  /// EH label immediately before the first invoke in the new state, or nullptr
327  /// if the new state is the null state.
328  const MCSymbol *NewStartLabel;
329
330  /// State of the invoke following NewStartLabel, or NullState to indicate
331  /// the presence of calls which may unwind to caller.
332  int NewState;
333};
334
335/// Iterator that reports all the invoke state changes in a range of machine
336/// basic blocks.  Changes to the null state are reported whenever a call that
337/// may unwind to caller is encountered.  The MBB range is expected to be an
338/// entire function or funclet, and the start and end of the range are treated
339/// as being in the NullState even if there's not an unwind-to-caller call
340/// before the first invoke or after the last one (i.e., the first state change
341/// reported is the first change to something other than NullState, and a
342/// change back to NullState is always reported at the end of iteration).
343class InvokeStateChangeIterator {
344  InvokeStateChangeIterator(const WinEHFuncInfo &EHInfo,
345                            MachineFunction::const_iterator MFI,
346                            MachineFunction::const_iterator MFE,
347                            MachineBasicBlock::const_iterator MBBI,
348                            int BaseState)
349      : EHInfo(EHInfo), MFI(MFI), MFE(MFE), MBBI(MBBI), BaseState(BaseState) {
350    LastStateChange.PreviousEndLabel = nullptr;
351    LastStateChange.NewStartLabel = nullptr;
352    LastStateChange.NewState = BaseState;
353    scan();
354  }
355
356public:
357  static iterator_range<InvokeStateChangeIterator>
358  range(const WinEHFuncInfo &EHInfo, MachineFunction::const_iterator Begin,
359        MachineFunction::const_iterator End, int BaseState = NullState) {
360    // Reject empty ranges to simplify bookkeeping by ensuring that we can get
361    // the end of the last block.
362    assert(Begin != End);
363    auto BlockBegin = Begin->begin();
364    auto BlockEnd = std::prev(End)->end();
365    return make_range(
366        InvokeStateChangeIterator(EHInfo, Begin, End, BlockBegin, BaseState),
367        InvokeStateChangeIterator(EHInfo, End, End, BlockEnd, BaseState));
368  }
369
370  // Iterator methods.
371  bool operator==(const InvokeStateChangeIterator &O) const {
372    assert(BaseState == O.BaseState);
373    // Must be visiting same block.
374    if (MFI != O.MFI)
375      return false;
376    // Must be visiting same isntr.
377    if (MBBI != O.MBBI)
378      return false;
379    // At end of block/instr iteration, we can still have two distinct states:
380    // one to report the final EndLabel, and another indicating the end of the
381    // state change iteration.  Check for CurrentEndLabel equality to
382    // distinguish these.
383    return CurrentEndLabel == O.CurrentEndLabel;
384  }
385
386  bool operator!=(const InvokeStateChangeIterator &O) const {
387    return !operator==(O);
388  }
389  InvokeStateChange &operator*() { return LastStateChange; }
390  InvokeStateChange *operator->() { return &LastStateChange; }
391  InvokeStateChangeIterator &operator++() { return scan(); }
392
393private:
394  InvokeStateChangeIterator &scan();
395
396  const WinEHFuncInfo &EHInfo;
397  const MCSymbol *CurrentEndLabel = nullptr;
398  MachineFunction::const_iterator MFI;
399  MachineFunction::const_iterator MFE;
400  MachineBasicBlock::const_iterator MBBI;
401  InvokeStateChange LastStateChange;
402  bool VisitingInvoke = false;
403  int BaseState;
404};
405
406} // end anonymous namespace
407
408InvokeStateChangeIterator &InvokeStateChangeIterator::scan() {
409  bool IsNewBlock = false;
410  for (; MFI != MFE; ++MFI, IsNewBlock = true) {
411    if (IsNewBlock)
412      MBBI = MFI->begin();
413    for (auto MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
414      const MachineInstr &MI = *MBBI;
415      if (!VisitingInvoke && LastStateChange.NewState != BaseState &&
416          MI.isCall() && !EHStreamer::callToNoUnwindFunction(&MI)) {
417        // Indicate a change of state to the null state.  We don't have
418        // start/end EH labels handy but the caller won't expect them for
419        // null state regions.
420        LastStateChange.PreviousEndLabel = CurrentEndLabel;
421        LastStateChange.NewStartLabel = nullptr;
422        LastStateChange.NewState = BaseState;
423        CurrentEndLabel = nullptr;
424        // Don't re-visit this instr on the next scan
425        ++MBBI;
426        return *this;
427      }
428
429      // All other state changes are at EH labels before/after invokes.
430      if (!MI.isEHLabel())
431        continue;
432      MCSymbol *Label = MI.getOperand(0).getMCSymbol();
433      if (Label == CurrentEndLabel) {
434        VisitingInvoke = false;
435        continue;
436      }
437      auto InvokeMapIter = EHInfo.LabelToStateMap.find(Label);
438      // Ignore EH labels that aren't the ones inserted before an invoke
439      if (InvokeMapIter == EHInfo.LabelToStateMap.end())
440        continue;
441      auto &StateAndEnd = InvokeMapIter->second;
442      int NewState = StateAndEnd.first;
443      // Keep track of the fact that we're between EH start/end labels so
444      // we know not to treat the inoke we'll see as unwinding to caller.
445      VisitingInvoke = true;
446      if (NewState == LastStateChange.NewState) {
447        // The state isn't actually changing here.  Record the new end and
448        // keep going.
449        CurrentEndLabel = StateAndEnd.second;
450        continue;
451      }
452      // Found a state change to report
453      LastStateChange.PreviousEndLabel = CurrentEndLabel;
454      LastStateChange.NewStartLabel = Label;
455      LastStateChange.NewState = NewState;
456      // Start keeping track of the new current end
457      CurrentEndLabel = StateAndEnd.second;
458      // Don't re-visit this instr on the next scan
459      ++MBBI;
460      return *this;
461    }
462  }
463  // Iteration hit the end of the block range.
464  if (LastStateChange.NewState != BaseState) {
465    // Report the end of the last new state
466    LastStateChange.PreviousEndLabel = CurrentEndLabel;
467    LastStateChange.NewStartLabel = nullptr;
468    LastStateChange.NewState = BaseState;
469    // Leave CurrentEndLabel non-null to distinguish this state from end.
470    assert(CurrentEndLabel != nullptr);
471    return *this;
472  }
473  // We've reported all state changes and hit the end state.
474  CurrentEndLabel = nullptr;
475  return *this;
476}
477
478/// Emit the language-specific data that __C_specific_handler expects.  This
479/// handler lives in the x64 Microsoft C runtime and allows catching or cleaning
480/// up after faults with __try, __except, and __finally.  The typeinfo values
481/// are not really RTTI data, but pointers to filter functions that return an
482/// integer (1, 0, or -1) indicating how to handle the exception. For __finally
483/// blocks and other cleanups, the landing pad label is zero, and the filter
484/// function is actually a cleanup handler with the same prototype.  A catch-all
485/// entry is modeled with a null filter function field and a non-zero landing
486/// pad label.
487///
488/// Possible filter function return values:
489///   EXCEPTION_EXECUTE_HANDLER (1):
490///     Jump to the landing pad label after cleanups.
491///   EXCEPTION_CONTINUE_SEARCH (0):
492///     Continue searching this table or continue unwinding.
493///   EXCEPTION_CONTINUE_EXECUTION (-1):
494///     Resume execution at the trapping PC.
495///
496/// Inferred table structure:
497///   struct Table {
498///     int NumEntries;
499///     struct Entry {
500///       imagerel32 LabelStart;
501///       imagerel32 LabelEnd;
502///       imagerel32 FilterOrFinally;  // One means catch-all.
503///       imagerel32 LabelLPad;        // Zero means __finally.
504///     } Entries[NumEntries];
505///   };
506void WinException::emitCSpecificHandlerTable(const MachineFunction *MF) {
507  auto &OS = *Asm->OutStreamer;
508  MCContext &Ctx = Asm->OutContext;
509  const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo();
510
511  // Emit a label assignment with the SEH frame offset so we can use it for
512  // llvm.x86.seh.recoverfp.
513  StringRef FLinkageName =
514      GlobalValue::getRealLinkageName(MF->getFunction()->getName());
515  MCSymbol *ParentFrameOffset =
516      Ctx.getOrCreateParentFrameOffsetSymbol(FLinkageName);
517  const MCExpr *MCOffset =
518      MCConstantExpr::create(FuncInfo.SEHSetFrameOffset, Ctx);
519  Asm->OutStreamer->EmitAssignment(ParentFrameOffset, MCOffset);
520
521  // Use the assembler to compute the number of table entries through label
522  // difference and division.
523  MCSymbol *TableBegin =
524      Ctx.createTempSymbol("lsda_begin", /*AlwaysAddSuffix=*/true);
525  MCSymbol *TableEnd =
526      Ctx.createTempSymbol("lsda_end", /*AlwaysAddSuffix=*/true);
527  const MCExpr *LabelDiff = getOffset(TableEnd, TableBegin);
528  const MCExpr *EntrySize = MCConstantExpr::create(16, Ctx);
529  const MCExpr *EntryCount = MCBinaryExpr::createDiv(LabelDiff, EntrySize, Ctx);
530  OS.EmitValue(EntryCount, 4);
531
532  OS.EmitLabel(TableBegin);
533
534  // Iterate over all the invoke try ranges. Unlike MSVC, LLVM currently only
535  // models exceptions from invokes. LLVM also allows arbitrary reordering of
536  // the code, so our tables end up looking a bit different. Rather than
537  // trying to match MSVC's tables exactly, we emit a denormalized table.  For
538  // each range of invokes in the same state, we emit table entries for all
539  // the actions that would be taken in that state. This means our tables are
540  // slightly bigger, which is OK.
541  const MCSymbol *LastStartLabel = nullptr;
542  int LastEHState = -1;
543  // Break out before we enter into a finally funclet.
544  // FIXME: We need to emit separate EH tables for cleanups.
545  MachineFunction::const_iterator End = MF->end();
546  MachineFunction::const_iterator Stop = std::next(MF->begin());
547  while (Stop != End && !Stop->isEHFuncletEntry())
548    ++Stop;
549  for (const auto &StateChange :
550       InvokeStateChangeIterator::range(FuncInfo, MF->begin(), Stop)) {
551    // Emit all the actions for the state we just transitioned out of
552    // if it was not the null state
553    if (LastEHState != -1)
554      emitSEHActionsForRange(FuncInfo, LastStartLabel,
555                             StateChange.PreviousEndLabel, LastEHState);
556    LastStartLabel = StateChange.NewStartLabel;
557    LastEHState = StateChange.NewState;
558  }
559
560  OS.EmitLabel(TableEnd);
561}
562
563void WinException::emitSEHActionsForRange(const WinEHFuncInfo &FuncInfo,
564                                          const MCSymbol *BeginLabel,
565                                          const MCSymbol *EndLabel, int State) {
566  auto &OS = *Asm->OutStreamer;
567  MCContext &Ctx = Asm->OutContext;
568
569  assert(BeginLabel && EndLabel);
570  while (State != -1) {
571    const SEHUnwindMapEntry &UME = FuncInfo.SEHUnwindMap[State];
572    const MCExpr *FilterOrFinally;
573    const MCExpr *ExceptOrNull;
574    auto *Handler = UME.Handler.get<MachineBasicBlock *>();
575    if (UME.IsFinally) {
576      FilterOrFinally = create32bitRef(getMCSymbolForMBB(Asm, Handler));
577      ExceptOrNull = MCConstantExpr::create(0, Ctx);
578    } else {
579      // For an except, the filter can be 1 (catch-all) or a function
580      // label.
581      FilterOrFinally = UME.Filter ? create32bitRef(UME.Filter)
582                                   : MCConstantExpr::create(1, Ctx);
583      ExceptOrNull = create32bitRef(Handler->getSymbol());
584    }
585
586    OS.EmitValue(getLabelPlusOne(BeginLabel), 4);
587    OS.EmitValue(getLabelPlusOne(EndLabel), 4);
588    OS.EmitValue(FilterOrFinally, 4);
589    OS.EmitValue(ExceptOrNull, 4);
590
591    assert(UME.ToState < State && "states should decrease");
592    State = UME.ToState;
593  }
594}
595
596void WinException::emitCXXFrameHandler3Table(const MachineFunction *MF) {
597  const Function *F = MF->getFunction();
598  auto &OS = *Asm->OutStreamer;
599  const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo();
600
601  StringRef FuncLinkageName = GlobalValue::getRealLinkageName(F->getName());
602
603  SmallVector<std::pair<const MCExpr *, int>, 4> IPToStateTable;
604  MCSymbol *FuncInfoXData = nullptr;
605  if (shouldEmitPersonality) {
606    // If we're 64-bit, emit a pointer to the C++ EH data, and build a map from
607    // IPs to state numbers.
608    FuncInfoXData =
609        Asm->OutContext.getOrCreateSymbol(Twine("$cppxdata$", FuncLinkageName));
610    computeIP2StateTable(MF, FuncInfo, IPToStateTable);
611  } else {
612    FuncInfoXData = Asm->OutContext.getOrCreateLSDASymbol(FuncLinkageName);
613  }
614
615  int UnwindHelpOffset = 0;
616  if (Asm->MAI->usesWindowsCFI())
617    UnwindHelpOffset =
618        getFrameIndexOffset(FuncInfo.UnwindHelpFrameIdx, FuncInfo);
619
620  MCSymbol *UnwindMapXData = nullptr;
621  MCSymbol *TryBlockMapXData = nullptr;
622  MCSymbol *IPToStateXData = nullptr;
623  if (!FuncInfo.CxxUnwindMap.empty())
624    UnwindMapXData = Asm->OutContext.getOrCreateSymbol(
625        Twine("$stateUnwindMap$", FuncLinkageName));
626  if (!FuncInfo.TryBlockMap.empty())
627    TryBlockMapXData =
628        Asm->OutContext.getOrCreateSymbol(Twine("$tryMap$", FuncLinkageName));
629  if (!IPToStateTable.empty())
630    IPToStateXData =
631        Asm->OutContext.getOrCreateSymbol(Twine("$ip2state$", FuncLinkageName));
632
633  // FuncInfo {
634  //   uint32_t           MagicNumber
635  //   int32_t            MaxState;
636  //   UnwindMapEntry    *UnwindMap;
637  //   uint32_t           NumTryBlocks;
638  //   TryBlockMapEntry  *TryBlockMap;
639  //   uint32_t           IPMapEntries; // always 0 for x86
640  //   IPToStateMapEntry *IPToStateMap; // always 0 for x86
641  //   uint32_t           UnwindHelp;   // non-x86 only
642  //   ESTypeList        *ESTypeList;
643  //   int32_t            EHFlags;
644  // }
645  // EHFlags & 1 -> Synchronous exceptions only, no async exceptions.
646  // EHFlags & 2 -> ???
647  // EHFlags & 4 -> The function is noexcept(true), unwinding can't continue.
648  OS.EmitValueToAlignment(4);
649  OS.EmitLabel(FuncInfoXData);
650  OS.EmitIntValue(0x19930522, 4);                      // MagicNumber
651  OS.EmitIntValue(FuncInfo.CxxUnwindMap.size(), 4);       // MaxState
652  OS.EmitValue(create32bitRef(UnwindMapXData), 4);     // UnwindMap
653  OS.EmitIntValue(FuncInfo.TryBlockMap.size(), 4);     // NumTryBlocks
654  OS.EmitValue(create32bitRef(TryBlockMapXData), 4);   // TryBlockMap
655  OS.EmitIntValue(IPToStateTable.size(), 4);           // IPMapEntries
656  OS.EmitValue(create32bitRef(IPToStateXData), 4);     // IPToStateMap
657  if (Asm->MAI->usesWindowsCFI())
658    OS.EmitIntValue(UnwindHelpOffset, 4);              // UnwindHelp
659  OS.EmitIntValue(0, 4);                               // ESTypeList
660  OS.EmitIntValue(1, 4);                               // EHFlags
661
662  // UnwindMapEntry {
663  //   int32_t ToState;
664  //   void  (*Action)();
665  // };
666  if (UnwindMapXData) {
667    OS.EmitLabel(UnwindMapXData);
668    for (const CxxUnwindMapEntry &UME : FuncInfo.CxxUnwindMap) {
669      MCSymbol *CleanupSym =
670          getMCSymbolForMBB(Asm, UME.Cleanup.dyn_cast<MachineBasicBlock *>());
671      OS.EmitIntValue(UME.ToState, 4);             // ToState
672      OS.EmitValue(create32bitRef(CleanupSym), 4); // Action
673    }
674  }
675
676  // TryBlockMap {
677  //   int32_t      TryLow;
678  //   int32_t      TryHigh;
679  //   int32_t      CatchHigh;
680  //   int32_t      NumCatches;
681  //   HandlerType *HandlerArray;
682  // };
683  if (TryBlockMapXData) {
684    OS.EmitLabel(TryBlockMapXData);
685    SmallVector<MCSymbol *, 1> HandlerMaps;
686    for (size_t I = 0, E = FuncInfo.TryBlockMap.size(); I != E; ++I) {
687      const WinEHTryBlockMapEntry &TBME = FuncInfo.TryBlockMap[I];
688
689      MCSymbol *HandlerMapXData = nullptr;
690      if (!TBME.HandlerArray.empty())
691        HandlerMapXData =
692            Asm->OutContext.getOrCreateSymbol(Twine("$handlerMap$")
693                                                  .concat(Twine(I))
694                                                  .concat("$")
695                                                  .concat(FuncLinkageName));
696      HandlerMaps.push_back(HandlerMapXData);
697
698      // TBMEs should form intervals.
699      assert(0 <= TBME.TryLow && "bad trymap interval");
700      assert(TBME.TryLow <= TBME.TryHigh && "bad trymap interval");
701      assert(TBME.TryHigh < TBME.CatchHigh && "bad trymap interval");
702      assert(TBME.CatchHigh < int(FuncInfo.CxxUnwindMap.size()) &&
703             "bad trymap interval");
704
705      OS.EmitIntValue(TBME.TryLow, 4);                    // TryLow
706      OS.EmitIntValue(TBME.TryHigh, 4);                   // TryHigh
707      OS.EmitIntValue(TBME.CatchHigh, 4);                 // CatchHigh
708      OS.EmitIntValue(TBME.HandlerArray.size(), 4);       // NumCatches
709      OS.EmitValue(create32bitRef(HandlerMapXData), 4);   // HandlerArray
710    }
711
712    // All funclets use the same parent frame offset currently.
713    unsigned ParentFrameOffset = 0;
714    if (shouldEmitPersonality) {
715      const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
716      ParentFrameOffset = TFI->getWinEHParentFrameOffset(*MF);
717    }
718
719    for (size_t I = 0, E = FuncInfo.TryBlockMap.size(); I != E; ++I) {
720      const WinEHTryBlockMapEntry &TBME = FuncInfo.TryBlockMap[I];
721      MCSymbol *HandlerMapXData = HandlerMaps[I];
722      if (!HandlerMapXData)
723        continue;
724      // HandlerType {
725      //   int32_t         Adjectives;
726      //   TypeDescriptor *Type;
727      //   int32_t         CatchObjOffset;
728      //   void          (*Handler)();
729      //   int32_t         ParentFrameOffset; // x64 only
730      // };
731      OS.EmitLabel(HandlerMapXData);
732      for (const WinEHHandlerType &HT : TBME.HandlerArray) {
733        // Get the frame escape label with the offset of the catch object. If
734        // the index is INT_MAX, then there is no catch object, and we should
735        // emit an offset of zero, indicating that no copy will occur.
736        const MCExpr *FrameAllocOffsetRef = nullptr;
737        if (HT.CatchObj.FrameIndex != INT_MAX) {
738          int Offset = getFrameIndexOffset(HT.CatchObj.FrameIndex, FuncInfo);
739          FrameAllocOffsetRef = MCConstantExpr::create(Offset, Asm->OutContext);
740        } else {
741          FrameAllocOffsetRef = MCConstantExpr::create(0, Asm->OutContext);
742        }
743
744        MCSymbol *HandlerSym =
745            getMCSymbolForMBB(Asm, HT.Handler.dyn_cast<MachineBasicBlock *>());
746
747        OS.EmitIntValue(HT.Adjectives, 4);                  // Adjectives
748        OS.EmitValue(create32bitRef(HT.TypeDescriptor), 4); // Type
749        OS.EmitValue(FrameAllocOffsetRef, 4);               // CatchObjOffset
750        OS.EmitValue(create32bitRef(HandlerSym), 4);        // Handler
751        if (shouldEmitPersonality)
752          OS.EmitIntValue(ParentFrameOffset, 4); // ParentFrameOffset
753      }
754    }
755  }
756
757  // IPToStateMapEntry {
758  //   void   *IP;
759  //   int32_t State;
760  // };
761  if (IPToStateXData) {
762    OS.EmitLabel(IPToStateXData);
763    for (auto &IPStatePair : IPToStateTable) {
764      OS.EmitValue(IPStatePair.first, 4);     // IP
765      OS.EmitIntValue(IPStatePair.second, 4); // State
766    }
767  }
768}
769
770void WinException::computeIP2StateTable(
771    const MachineFunction *MF, const WinEHFuncInfo &FuncInfo,
772    SmallVectorImpl<std::pair<const MCExpr *, int>> &IPToStateTable) {
773
774  for (MachineFunction::const_iterator FuncletStart = MF->begin(),
775                                       FuncletEnd = MF->begin(),
776                                       End = MF->end();
777       FuncletStart != End; FuncletStart = FuncletEnd) {
778    // Find the end of the funclet
779    while (++FuncletEnd != End) {
780      if (FuncletEnd->isEHFuncletEntry()) {
781        break;
782      }
783    }
784
785    // Don't emit ip2state entries for cleanup funclets. Any interesting
786    // exceptional actions in cleanups must be handled in a separate IR
787    // function.
788    if (FuncletStart->isCleanupFuncletEntry())
789      continue;
790
791    MCSymbol *StartLabel;
792    int BaseState;
793    if (FuncletStart == MF->begin()) {
794      BaseState = NullState;
795      StartLabel = Asm->getFunctionBegin();
796    } else {
797      auto *FuncletPad =
798          cast<FuncletPadInst>(FuncletStart->getBasicBlock()->getFirstNonPHI());
799      assert(FuncInfo.FuncletBaseStateMap.count(FuncletPad) != 0);
800      BaseState = FuncInfo.FuncletBaseStateMap.find(FuncletPad)->second;
801      StartLabel = getMCSymbolForMBB(Asm, &*FuncletStart);
802    }
803    assert(StartLabel && "need local function start label");
804    IPToStateTable.push_back(
805        std::make_pair(create32bitRef(StartLabel), BaseState));
806
807    for (const auto &StateChange : InvokeStateChangeIterator::range(
808             FuncInfo, FuncletStart, FuncletEnd, BaseState)) {
809      // Compute the label to report as the start of this entry; use the EH
810      // start label for the invoke if we have one, otherwise (this is a call
811      // which may unwind to our caller and does not have an EH start label, so)
812      // use the previous end label.
813      const MCSymbol *ChangeLabel = StateChange.NewStartLabel;
814      if (!ChangeLabel)
815        ChangeLabel = StateChange.PreviousEndLabel;
816      // Emit an entry indicating that PCs after 'Label' have this EH state.
817      IPToStateTable.push_back(
818          std::make_pair(getLabelPlusOne(ChangeLabel), StateChange.NewState));
819      // FIXME: assert that NewState is between CatchLow and CatchHigh.
820    }
821  }
822}
823
824void WinException::emitEHRegistrationOffsetLabel(const WinEHFuncInfo &FuncInfo,
825                                                 StringRef FLinkageName) {
826  // Outlined helpers called by the EH runtime need to know the offset of the EH
827  // registration in order to recover the parent frame pointer. Now that we know
828  // we've code generated the parent, we can emit the label assignment that
829  // those helpers use to get the offset of the registration node.
830  MCContext &Ctx = Asm->OutContext;
831  MCSymbol *ParentFrameOffset =
832      Ctx.getOrCreateParentFrameOffsetSymbol(FLinkageName);
833  unsigned UnusedReg;
834  const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering();
835  int64_t Offset = TFI->getFrameIndexReference(
836      *Asm->MF, FuncInfo.EHRegNodeFrameIndex, UnusedReg);
837  const MCExpr *MCOffset = MCConstantExpr::create(Offset, Ctx);
838  Asm->OutStreamer->EmitAssignment(ParentFrameOffset, MCOffset);
839}
840
841/// Emit the language-specific data that _except_handler3 and 4 expect. This is
842/// functionally equivalent to the __C_specific_handler table, except it is
843/// indexed by state number instead of IP.
844void WinException::emitExceptHandlerTable(const MachineFunction *MF) {
845  MCStreamer &OS = *Asm->OutStreamer;
846  const Function *F = MF->getFunction();
847  StringRef FLinkageName = GlobalValue::getRealLinkageName(F->getName());
848
849  const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo();
850  emitEHRegistrationOffsetLabel(FuncInfo, FLinkageName);
851
852  // Emit the __ehtable label that we use for llvm.x86.seh.lsda.
853  MCSymbol *LSDALabel = Asm->OutContext.getOrCreateLSDASymbol(FLinkageName);
854  OS.EmitValueToAlignment(4);
855  OS.EmitLabel(LSDALabel);
856
857  const Function *Per =
858      dyn_cast<Function>(F->getPersonalityFn()->stripPointerCasts());
859  StringRef PerName = Per->getName();
860  int BaseState = -1;
861  if (PerName == "_except_handler4") {
862    // The LSDA for _except_handler4 starts with this struct, followed by the
863    // scope table:
864    //
865    // struct EH4ScopeTable {
866    //   int32_t GSCookieOffset;
867    //   int32_t GSCookieXOROffset;
868    //   int32_t EHCookieOffset;
869    //   int32_t EHCookieXOROffset;
870    //   ScopeTableEntry ScopeRecord[];
871    // };
872    //
873    // Only the EHCookieOffset field appears to vary, and it appears to be the
874    // offset from the final saved SP value to the retaddr.
875    OS.EmitIntValue(-2, 4);
876    OS.EmitIntValue(0, 4);
877    // FIXME: Calculate.
878    OS.EmitIntValue(9999, 4);
879    OS.EmitIntValue(0, 4);
880    BaseState = -2;
881  }
882
883  assert(!FuncInfo.SEHUnwindMap.empty());
884  for (const SEHUnwindMapEntry &UME : FuncInfo.SEHUnwindMap) {
885    MCSymbol *ExceptOrFinally =
886        UME.Handler.get<MachineBasicBlock *>()->getSymbol();
887    // -1 is usually the base state for "unwind to caller", but for
888    // _except_handler4 it's -2. Do that replacement here if necessary.
889    int ToState = UME.ToState == -1 ? BaseState : UME.ToState;
890    OS.EmitIntValue(ToState, 4);                      // ToState
891    OS.EmitValue(create32bitRef(UME.Filter), 4);      // Filter
892    OS.EmitValue(create32bitRef(ExceptOrFinally), 4); // Except/Finally
893  }
894}
895
896static int getRank(const WinEHFuncInfo &FuncInfo, int State) {
897  int Rank = 0;
898  while (State != -1) {
899    ++Rank;
900    State = FuncInfo.ClrEHUnwindMap[State].Parent;
901  }
902  return Rank;
903}
904
905static int getAncestor(const WinEHFuncInfo &FuncInfo, int Left, int Right) {
906  int LeftRank = getRank(FuncInfo, Left);
907  int RightRank = getRank(FuncInfo, Right);
908
909  while (LeftRank < RightRank) {
910    Right = FuncInfo.ClrEHUnwindMap[Right].Parent;
911    --RightRank;
912  }
913
914  while (RightRank < LeftRank) {
915    Left = FuncInfo.ClrEHUnwindMap[Left].Parent;
916    --LeftRank;
917  }
918
919  while (Left != Right) {
920    Left = FuncInfo.ClrEHUnwindMap[Left].Parent;
921    Right = FuncInfo.ClrEHUnwindMap[Right].Parent;
922  }
923
924  return Left;
925}
926
927void WinException::emitCLRExceptionTable(const MachineFunction *MF) {
928  // CLR EH "states" are really just IDs that identify handlers/funclets;
929  // states, handlers, and funclets all have 1:1 mappings between them, and a
930  // handler/funclet's "state" is its index in the ClrEHUnwindMap.
931  MCStreamer &OS = *Asm->OutStreamer;
932  const WinEHFuncInfo &FuncInfo = *MF->getWinEHFuncInfo();
933  MCSymbol *FuncBeginSym = Asm->getFunctionBegin();
934  MCSymbol *FuncEndSym = Asm->getFunctionEnd();
935
936  // A ClrClause describes a protected region.
937  struct ClrClause {
938    const MCSymbol *StartLabel; // Start of protected region
939    const MCSymbol *EndLabel;   // End of protected region
940    int State;          // Index of handler protecting the protected region
941    int EnclosingState; // Index of funclet enclosing the protected region
942  };
943  SmallVector<ClrClause, 8> Clauses;
944
945  // Build a map from handler MBBs to their corresponding states (i.e. their
946  // indices in the ClrEHUnwindMap).
947  int NumStates = FuncInfo.ClrEHUnwindMap.size();
948  assert(NumStates > 0 && "Don't need exception table!");
949  DenseMap<const MachineBasicBlock *, int> HandlerStates;
950  for (int State = 0; State < NumStates; ++State) {
951    MachineBasicBlock *HandlerBlock =
952        FuncInfo.ClrEHUnwindMap[State].Handler.get<MachineBasicBlock *>();
953    HandlerStates[HandlerBlock] = State;
954    // Use this loop through all handlers to verify our assumption (used in
955    // the MinEnclosingState computation) that ancestors have lower state
956    // numbers than their descendants.
957    assert(FuncInfo.ClrEHUnwindMap[State].Parent < State &&
958           "ill-formed state numbering");
959  }
960  // Map the main function to the NullState.
961  HandlerStates[&MF->front()] = NullState;
962
963  // Write out a sentinel indicating the end of the standard (Windows) xdata
964  // and the start of the additional (CLR) info.
965  OS.EmitIntValue(0xffffffff, 4);
966  // Write out the number of funclets
967  OS.EmitIntValue(NumStates, 4);
968
969  // Walk the machine blocks/instrs, computing and emitting a few things:
970  // 1. Emit a list of the offsets to each handler entry, in lexical order.
971  // 2. Compute a map (EndSymbolMap) from each funclet to the symbol at its end.
972  // 3. Compute the list of ClrClauses, in the required order (inner before
973  //    outer, earlier before later; the order by which a forward scan with
974  //    early termination will find the innermost enclosing clause covering
975  //    a given address).
976  // 4. A map (MinClauseMap) from each handler index to the index of the
977  //    outermost funclet/function which contains a try clause targeting the
978  //    key handler.  This will be used to determine IsDuplicate-ness when
979  //    emitting ClrClauses.  The NullState value is used to indicate that the
980  //    top-level function contains a try clause targeting the key handler.
981  // HandlerStack is a stack of (PendingStartLabel, PendingState) pairs for
982  // try regions we entered before entering the PendingState try but which
983  // we haven't yet exited.
984  SmallVector<std::pair<const MCSymbol *, int>, 4> HandlerStack;
985  // EndSymbolMap and MinClauseMap are maps described above.
986  std::unique_ptr<MCSymbol *[]> EndSymbolMap(new MCSymbol *[NumStates]);
987  SmallVector<int, 4> MinClauseMap((size_t)NumStates, NumStates);
988
989  // Visit the root function and each funclet.
990
991  for (MachineFunction::const_iterator FuncletStart = MF->begin(),
992                                       FuncletEnd = MF->begin(),
993                                       End = MF->end();
994       FuncletStart != End; FuncletStart = FuncletEnd) {
995    int FuncletState = HandlerStates[&*FuncletStart];
996    // Find the end of the funclet
997    MCSymbol *EndSymbol = FuncEndSym;
998    while (++FuncletEnd != End) {
999      if (FuncletEnd->isEHFuncletEntry()) {
1000        EndSymbol = getMCSymbolForMBB(Asm, &*FuncletEnd);
1001        break;
1002      }
1003    }
1004    // Emit the function/funclet end and, if this is a funclet (and not the
1005    // root function), record it in the EndSymbolMap.
1006    OS.EmitValue(getOffset(EndSymbol, FuncBeginSym), 4);
1007    if (FuncletState != NullState) {
1008      // Record the end of the handler.
1009      EndSymbolMap[FuncletState] = EndSymbol;
1010    }
1011
1012    // Walk the state changes in this function/funclet and compute its clauses.
1013    // Funclets always start in the null state.
1014    const MCSymbol *CurrentStartLabel = nullptr;
1015    int CurrentState = NullState;
1016    assert(HandlerStack.empty());
1017    for (const auto &StateChange :
1018         InvokeStateChangeIterator::range(FuncInfo, FuncletStart, FuncletEnd)) {
1019      // Close any try regions we're not still under
1020      int AncestorState =
1021          getAncestor(FuncInfo, CurrentState, StateChange.NewState);
1022      while (CurrentState != AncestorState) {
1023        assert(CurrentState != NullState && "Failed to find ancestor!");
1024        // Close the pending clause
1025        Clauses.push_back({CurrentStartLabel, StateChange.PreviousEndLabel,
1026                           CurrentState, FuncletState});
1027        // Now the parent handler is current
1028        CurrentState = FuncInfo.ClrEHUnwindMap[CurrentState].Parent;
1029        // Pop the new start label from the handler stack if we've exited all
1030        // descendants of the corresponding handler.
1031        if (HandlerStack.back().second == CurrentState)
1032          CurrentStartLabel = HandlerStack.pop_back_val().first;
1033      }
1034
1035      if (StateChange.NewState != CurrentState) {
1036        // For each clause we're starting, update the MinClauseMap so we can
1037        // know which is the topmost funclet containing a clause targeting
1038        // it.
1039        for (int EnteredState = StateChange.NewState;
1040             EnteredState != CurrentState;
1041             EnteredState = FuncInfo.ClrEHUnwindMap[EnteredState].Parent) {
1042          int &MinEnclosingState = MinClauseMap[EnteredState];
1043          if (FuncletState < MinEnclosingState)
1044            MinEnclosingState = FuncletState;
1045        }
1046        // Save the previous current start/label on the stack and update to
1047        // the newly-current start/state.
1048        HandlerStack.emplace_back(CurrentStartLabel, CurrentState);
1049        CurrentStartLabel = StateChange.NewStartLabel;
1050        CurrentState = StateChange.NewState;
1051      }
1052    }
1053    assert(HandlerStack.empty());
1054  }
1055
1056  // Now emit the clause info, starting with the number of clauses.
1057  OS.EmitIntValue(Clauses.size(), 4);
1058  for (ClrClause &Clause : Clauses) {
1059    // Emit a CORINFO_EH_CLAUSE :
1060    /*
1061      struct CORINFO_EH_CLAUSE
1062      {
1063          CORINFO_EH_CLAUSE_FLAGS Flags;         // actually a CorExceptionFlag
1064          DWORD                   TryOffset;
1065          DWORD                   TryLength;     // actually TryEndOffset
1066          DWORD                   HandlerOffset;
1067          DWORD                   HandlerLength; // actually HandlerEndOffset
1068          union
1069          {
1070              DWORD               ClassToken;   // use for catch clauses
1071              DWORD               FilterOffset; // use for filter clauses
1072          };
1073      };
1074
1075      enum CORINFO_EH_CLAUSE_FLAGS
1076      {
1077          CORINFO_EH_CLAUSE_NONE    = 0,
1078          CORINFO_EH_CLAUSE_FILTER  = 0x0001, // This clause is for a filter
1079          CORINFO_EH_CLAUSE_FINALLY = 0x0002, // This clause is a finally clause
1080          CORINFO_EH_CLAUSE_FAULT   = 0x0004, // This clause is a fault clause
1081      };
1082      typedef enum CorExceptionFlag
1083      {
1084          COR_ILEXCEPTION_CLAUSE_NONE,
1085          COR_ILEXCEPTION_CLAUSE_FILTER  = 0x0001, // This is a filter clause
1086          COR_ILEXCEPTION_CLAUSE_FINALLY = 0x0002, // This is a finally clause
1087          COR_ILEXCEPTION_CLAUSE_FAULT = 0x0004,   // This is a fault clause
1088          COR_ILEXCEPTION_CLAUSE_DUPLICATED = 0x0008, // duplicated clause. This
1089                                                      // clause was duplicated
1090                                                      // to a funclet which was
1091                                                      // pulled out of line
1092      } CorExceptionFlag;
1093    */
1094    // Add 1 to the start/end of the EH clause; the IP associated with a
1095    // call when the runtime does its scan is the IP of the next instruction
1096    // (the one to which control will return after the call), so we need
1097    // to add 1 to the end of the clause to cover that offset.  We also add
1098    // 1 to the start of the clause to make sure that the ranges reported
1099    // for all clauses are disjoint.  Note that we'll need some additional
1100    // logic when machine traps are supported, since in that case the IP
1101    // that the runtime uses is the offset of the faulting instruction
1102    // itself; if such an instruction immediately follows a call but the
1103    // two belong to different clauses, we'll need to insert a nop between
1104    // them so the runtime can distinguish the point to which the call will
1105    // return from the point at which the fault occurs.
1106
1107    const MCExpr *ClauseBegin =
1108        getOffsetPlusOne(Clause.StartLabel, FuncBeginSym);
1109    const MCExpr *ClauseEnd = getOffsetPlusOne(Clause.EndLabel, FuncBeginSym);
1110
1111    const ClrEHUnwindMapEntry &Entry = FuncInfo.ClrEHUnwindMap[Clause.State];
1112    MachineBasicBlock *HandlerBlock = Entry.Handler.get<MachineBasicBlock *>();
1113    MCSymbol *BeginSym = getMCSymbolForMBB(Asm, HandlerBlock);
1114    const MCExpr *HandlerBegin = getOffset(BeginSym, FuncBeginSym);
1115    MCSymbol *EndSym = EndSymbolMap[Clause.State];
1116    const MCExpr *HandlerEnd = getOffset(EndSym, FuncBeginSym);
1117
1118    uint32_t Flags = 0;
1119    switch (Entry.HandlerType) {
1120    case ClrHandlerType::Catch:
1121      // Leaving bits 0-2 clear indicates catch.
1122      break;
1123    case ClrHandlerType::Filter:
1124      Flags |= 1;
1125      break;
1126    case ClrHandlerType::Finally:
1127      Flags |= 2;
1128      break;
1129    case ClrHandlerType::Fault:
1130      Flags |= 4;
1131      break;
1132    }
1133    if (Clause.EnclosingState != MinClauseMap[Clause.State]) {
1134      // This is a "duplicate" clause; the handler needs to be entered from a
1135      // frame above the one holding the invoke.
1136      assert(Clause.EnclosingState > MinClauseMap[Clause.State]);
1137      Flags |= 8;
1138    }
1139    OS.EmitIntValue(Flags, 4);
1140
1141    // Write the clause start/end
1142    OS.EmitValue(ClauseBegin, 4);
1143    OS.EmitValue(ClauseEnd, 4);
1144
1145    // Write out the handler start/end
1146    OS.EmitValue(HandlerBegin, 4);
1147    OS.EmitValue(HandlerEnd, 4);
1148
1149    // Write out the type token or filter offset
1150    assert(Entry.HandlerType != ClrHandlerType::Filter && "NYI: filters");
1151    OS.EmitIntValue(Entry.TypeToken, 4);
1152  }
1153}
1154