1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass moves instructions into successor blocks when possible, so that
11// they aren't executed on paths where their results aren't needed.
12//
13// This pass is not intended to be a replacement or a complete alternative
14// for an LLVM-IR-level sinking pass. It is only designed to sink simple
15// constructs that are not exposed before lowering and instruction selection.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/CodeGen/Passes.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallSet.h"
22#include "llvm/ADT/SparseBitVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachinePostDominators.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetRegisterInfo.h"
35#include "llvm/Target/TargetSubtargetInfo.h"
36using namespace llvm;
37
38#define DEBUG_TYPE "machine-sink"
39
40static cl::opt<bool>
41SplitEdges("machine-sink-split",
42           cl::desc("Split critical edges during machine sinking"),
43           cl::init(true), cl::Hidden);
44
45static cl::opt<bool>
46UseBlockFreqInfo("machine-sink-bfi",
47           cl::desc("Use block frequency info to find successors to sink"),
48           cl::init(true), cl::Hidden);
49
50
51STATISTIC(NumSunk,      "Number of machine instructions sunk");
52STATISTIC(NumSplit,     "Number of critical edges split");
53STATISTIC(NumCoalesces, "Number of copies coalesced");
54
55namespace {
56  class MachineSinking : public MachineFunctionPass {
57    const TargetInstrInfo *TII;
58    const TargetRegisterInfo *TRI;
59    MachineRegisterInfo  *MRI;     // Machine register information
60    MachineDominatorTree *DT;      // Machine dominator tree
61    MachinePostDominatorTree *PDT; // Machine post dominator tree
62    MachineLoopInfo *LI;
63    const MachineBlockFrequencyInfo *MBFI;
64    AliasAnalysis *AA;
65
66    // Remember which edges have been considered for breaking.
67    SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
68    CEBCandidates;
69    // Remember which edges we are about to split.
70    // This is different from CEBCandidates since those edges
71    // will be split.
72    SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
73
74    SparseBitVector<> RegsToClearKillFlags;
75
76    typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>
77        AllSuccsCache;
78
79  public:
80    static char ID; // Pass identification
81    MachineSinking() : MachineFunctionPass(ID) {
82      initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
83    }
84
85    bool runOnMachineFunction(MachineFunction &MF) override;
86
87    void getAnalysisUsage(AnalysisUsage &AU) const override {
88      AU.setPreservesCFG();
89      MachineFunctionPass::getAnalysisUsage(AU);
90      AU.addRequired<AAResultsWrapperPass>();
91      AU.addRequired<MachineDominatorTree>();
92      AU.addRequired<MachinePostDominatorTree>();
93      AU.addRequired<MachineLoopInfo>();
94      AU.addPreserved<MachineDominatorTree>();
95      AU.addPreserved<MachinePostDominatorTree>();
96      AU.addPreserved<MachineLoopInfo>();
97      if (UseBlockFreqInfo)
98        AU.addRequired<MachineBlockFrequencyInfo>();
99    }
100
101    void releaseMemory() override {
102      CEBCandidates.clear();
103    }
104
105  private:
106    bool ProcessBlock(MachineBasicBlock &MBB);
107    bool isWorthBreakingCriticalEdge(MachineInstr *MI,
108                                     MachineBasicBlock *From,
109                                     MachineBasicBlock *To);
110    /// \brief Postpone the splitting of the given critical
111    /// edge (\p From, \p To).
112    ///
113    /// We do not split the edges on the fly. Indeed, this invalidates
114    /// the dominance information and thus triggers a lot of updates
115    /// of that information underneath.
116    /// Instead, we postpone all the splits after each iteration of
117    /// the main loop. That way, the information is at least valid
118    /// for the lifetime of an iteration.
119    ///
120    /// \return True if the edge is marked as toSplit, false otherwise.
121    /// False can be returned if, for instance, this is not profitable.
122    bool PostponeSplitCriticalEdge(MachineInstr *MI,
123                                   MachineBasicBlock *From,
124                                   MachineBasicBlock *To,
125                                   bool BreakPHIEdge);
126    bool SinkInstruction(MachineInstr *MI, bool &SawStore,
127                         AllSuccsCache &AllSuccessors);
128    bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
129                                 MachineBasicBlock *DefMBB,
130                                 bool &BreakPHIEdge, bool &LocalUse) const;
131    MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
132               bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
133    bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
134                              MachineBasicBlock *MBB,
135                              MachineBasicBlock *SuccToSinkTo,
136                              AllSuccsCache &AllSuccessors);
137
138    bool PerformTrivialForwardCoalescing(MachineInstr *MI,
139                                         MachineBasicBlock *MBB);
140
141    SmallVector<MachineBasicBlock *, 4> &
142    GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
143                           AllSuccsCache &AllSuccessors) const;
144  };
145} // end anonymous namespace
146
147char MachineSinking::ID = 0;
148char &llvm::MachineSinkingID = MachineSinking::ID;
149INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
150                "Machine code sinking", false, false)
151INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
152INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
153INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
154INITIALIZE_PASS_END(MachineSinking, "machine-sink",
155                "Machine code sinking", false, false)
156
157bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
158                                                     MachineBasicBlock *MBB) {
159  if (!MI->isCopy())
160    return false;
161
162  unsigned SrcReg = MI->getOperand(1).getReg();
163  unsigned DstReg = MI->getOperand(0).getReg();
164  if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
165      !TargetRegisterInfo::isVirtualRegister(DstReg) ||
166      !MRI->hasOneNonDBGUse(SrcReg))
167    return false;
168
169  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
170  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
171  if (SRC != DRC)
172    return false;
173
174  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
175  if (DefMI->isCopyLike())
176    return false;
177  DEBUG(dbgs() << "Coalescing: " << *DefMI);
178  DEBUG(dbgs() << "*** to: " << *MI);
179  MRI->replaceRegWith(DstReg, SrcReg);
180  MI->eraseFromParent();
181
182  // Conservatively, clear any kill flags, since it's possible that they are no
183  // longer correct.
184  MRI->clearKillFlags(SrcReg);
185
186  ++NumCoalesces;
187  return true;
188}
189
190/// AllUsesDominatedByBlock - Return true if all uses of the specified register
191/// occur in blocks dominated by the specified block. If any use is in the
192/// definition block, then return false since it is never legal to move def
193/// after uses.
194bool
195MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
196                                        MachineBasicBlock *MBB,
197                                        MachineBasicBlock *DefMBB,
198                                        bool &BreakPHIEdge,
199                                        bool &LocalUse) const {
200  assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
201         "Only makes sense for vregs");
202
203  // Ignore debug uses because debug info doesn't affect the code.
204  if (MRI->use_nodbg_empty(Reg))
205    return true;
206
207  // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
208  // into and they are all PHI nodes. In this case, machine-sink must break
209  // the critical edge first. e.g.
210  //
211  // BB#1: derived from LLVM BB %bb4.preheader
212  //   Predecessors according to CFG: BB#0
213  //     ...
214  //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
215  //     ...
216  //     JE_4 <BB#37>, %EFLAGS<imp-use>
217  //   Successors according to CFG: BB#37 BB#2
218  //
219  // BB#2: derived from LLVM BB %bb.nph
220  //   Predecessors according to CFG: BB#0 BB#1
221  //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
222  BreakPHIEdge = true;
223  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
224    MachineInstr *UseInst = MO.getParent();
225    unsigned OpNo = &MO - &UseInst->getOperand(0);
226    MachineBasicBlock *UseBlock = UseInst->getParent();
227    if (!(UseBlock == MBB && UseInst->isPHI() &&
228          UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
229      BreakPHIEdge = false;
230      break;
231    }
232  }
233  if (BreakPHIEdge)
234    return true;
235
236  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
237    // Determine the block of the use.
238    MachineInstr *UseInst = MO.getParent();
239    unsigned OpNo = &MO - &UseInst->getOperand(0);
240    MachineBasicBlock *UseBlock = UseInst->getParent();
241    if (UseInst->isPHI()) {
242      // PHI nodes use the operand in the predecessor block, not the block with
243      // the PHI.
244      UseBlock = UseInst->getOperand(OpNo+1).getMBB();
245    } else if (UseBlock == DefMBB) {
246      LocalUse = true;
247      return false;
248    }
249
250    // Check that it dominates.
251    if (!DT->dominates(MBB, UseBlock))
252      return false;
253  }
254
255  return true;
256}
257
258bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
259  if (skipOptnoneFunction(*MF.getFunction()))
260    return false;
261
262  DEBUG(dbgs() << "******** Machine Sinking ********\n");
263
264  TII = MF.getSubtarget().getInstrInfo();
265  TRI = MF.getSubtarget().getRegisterInfo();
266  MRI = &MF.getRegInfo();
267  DT = &getAnalysis<MachineDominatorTree>();
268  PDT = &getAnalysis<MachinePostDominatorTree>();
269  LI = &getAnalysis<MachineLoopInfo>();
270  MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
271  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
272
273  bool EverMadeChange = false;
274
275  while (1) {
276    bool MadeChange = false;
277
278    // Process all basic blocks.
279    CEBCandidates.clear();
280    ToSplit.clear();
281    for (auto &MBB: MF)
282      MadeChange |= ProcessBlock(MBB);
283
284    // If we have anything we marked as toSplit, split it now.
285    for (auto &Pair : ToSplit) {
286      auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
287      if (NewSucc != nullptr) {
288        DEBUG(dbgs() << " *** Splitting critical edge:"
289              " BB#" << Pair.first->getNumber()
290              << " -- BB#" << NewSucc->getNumber()
291              << " -- BB#" << Pair.second->getNumber() << '\n');
292        MadeChange = true;
293        ++NumSplit;
294      } else
295        DEBUG(dbgs() << " *** Not legal to break critical edge\n");
296    }
297    // If this iteration over the code changed anything, keep iterating.
298    if (!MadeChange) break;
299    EverMadeChange = true;
300  }
301
302  // Now clear any kill flags for recorded registers.
303  for (auto I : RegsToClearKillFlags)
304    MRI->clearKillFlags(I);
305  RegsToClearKillFlags.clear();
306
307  return EverMadeChange;
308}
309
310bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
311  // Can't sink anything out of a block that has less than two successors.
312  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
313
314  // Don't bother sinking code out of unreachable blocks. In addition to being
315  // unprofitable, it can also lead to infinite looping, because in an
316  // unreachable loop there may be nowhere to stop.
317  if (!DT->isReachableFromEntry(&MBB)) return false;
318
319  bool MadeChange = false;
320
321  // Cache all successors, sorted by frequency info and loop depth.
322  AllSuccsCache AllSuccessors;
323
324  // Walk the basic block bottom-up.  Remember if we saw a store.
325  MachineBasicBlock::iterator I = MBB.end();
326  --I;
327  bool ProcessedBegin, SawStore = false;
328  do {
329    MachineInstr *MI = I;  // The instruction to sink.
330
331    // Predecrement I (if it's not begin) so that it isn't invalidated by
332    // sinking.
333    ProcessedBegin = I == MBB.begin();
334    if (!ProcessedBegin)
335      --I;
336
337    if (MI->isDebugValue())
338      continue;
339
340    bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
341    if (Joined) {
342      MadeChange = true;
343      continue;
344    }
345
346    if (SinkInstruction(MI, SawStore, AllSuccessors))
347      ++NumSunk, MadeChange = true;
348
349    // If we just processed the first instruction in the block, we're done.
350  } while (!ProcessedBegin);
351
352  return MadeChange;
353}
354
355bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
356                                                 MachineBasicBlock *From,
357                                                 MachineBasicBlock *To) {
358  // FIXME: Need much better heuristics.
359
360  // If the pass has already considered breaking this edge (during this pass
361  // through the function), then let's go ahead and break it. This means
362  // sinking multiple "cheap" instructions into the same block.
363  if (!CEBCandidates.insert(std::make_pair(From, To)).second)
364    return true;
365
366  if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
367    return true;
368
369  // MI is cheap, we probably don't want to break the critical edge for it.
370  // However, if this would allow some definitions of its source operands
371  // to be sunk then it's probably worth it.
372  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
373    const MachineOperand &MO = MI->getOperand(i);
374    if (!MO.isReg() || !MO.isUse())
375      continue;
376    unsigned Reg = MO.getReg();
377    if (Reg == 0)
378      continue;
379
380    // We don't move live definitions of physical registers,
381    // so sinking their uses won't enable any opportunities.
382    if (TargetRegisterInfo::isPhysicalRegister(Reg))
383      continue;
384
385    // If this instruction is the only user of a virtual register,
386    // check if breaking the edge will enable sinking
387    // both this instruction and the defining instruction.
388    if (MRI->hasOneNonDBGUse(Reg)) {
389      // If the definition resides in same MBB,
390      // claim it's likely we can sink these together.
391      // If definition resides elsewhere, we aren't
392      // blocking it from being sunk so don't break the edge.
393      MachineInstr *DefMI = MRI->getVRegDef(Reg);
394      if (DefMI->getParent() == MI->getParent())
395        return true;
396    }
397  }
398
399  return false;
400}
401
402bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
403                                               MachineBasicBlock *FromBB,
404                                               MachineBasicBlock *ToBB,
405                                               bool BreakPHIEdge) {
406  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
407    return false;
408
409  // Avoid breaking back edge. From == To means backedge for single BB loop.
410  if (!SplitEdges || FromBB == ToBB)
411    return false;
412
413  // Check for backedges of more "complex" loops.
414  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
415      LI->isLoopHeader(ToBB))
416    return false;
417
418  // It's not always legal to break critical edges and sink the computation
419  // to the edge.
420  //
421  // BB#1:
422  // v1024
423  // Beq BB#3
424  // <fallthrough>
425  // BB#2:
426  // ... no uses of v1024
427  // <fallthrough>
428  // BB#3:
429  // ...
430  //       = v1024
431  //
432  // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
433  //
434  // BB#1:
435  // ...
436  // Bne BB#2
437  // BB#4:
438  // v1024 =
439  // B BB#3
440  // BB#2:
441  // ... no uses of v1024
442  // <fallthrough>
443  // BB#3:
444  // ...
445  //       = v1024
446  //
447  // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
448  // flow. We need to ensure the new basic block where the computation is
449  // sunk to dominates all the uses.
450  // It's only legal to break critical edge and sink the computation to the
451  // new block if all the predecessors of "To", except for "From", are
452  // not dominated by "From". Given SSA property, this means these
453  // predecessors are dominated by "To".
454  //
455  // There is no need to do this check if all the uses are PHI nodes. PHI
456  // sources are only defined on the specific predecessor edges.
457  if (!BreakPHIEdge) {
458    for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
459           E = ToBB->pred_end(); PI != E; ++PI) {
460      if (*PI == FromBB)
461        continue;
462      if (!DT->dominates(ToBB, *PI))
463        return false;
464    }
465  }
466
467  ToSplit.insert(std::make_pair(FromBB, ToBB));
468
469  return true;
470}
471
472static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
473  return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
474}
475
476/// collectDebgValues - Scan instructions following MI and collect any
477/// matching DBG_VALUEs.
478static void collectDebugValues(MachineInstr *MI,
479                               SmallVectorImpl<MachineInstr *> &DbgValues) {
480  DbgValues.clear();
481  if (!MI->getOperand(0).isReg())
482    return;
483
484  MachineBasicBlock::iterator DI = MI; ++DI;
485  for (MachineBasicBlock::iterator DE = MI->getParent()->end();
486       DI != DE; ++DI) {
487    if (!DI->isDebugValue())
488      return;
489    if (DI->getOperand(0).isReg() &&
490        DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
491      DbgValues.push_back(DI);
492  }
493}
494
495/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
496bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
497                                          MachineBasicBlock *MBB,
498                                          MachineBasicBlock *SuccToSinkTo,
499                                          AllSuccsCache &AllSuccessors) {
500  assert (MI && "Invalid MachineInstr!");
501  assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
502
503  if (MBB == SuccToSinkTo)
504    return false;
505
506  // It is profitable if SuccToSinkTo does not post dominate current block.
507  if (!PDT->dominates(SuccToSinkTo, MBB))
508    return true;
509
510  // It is profitable to sink an instruction from a deeper loop to a shallower
511  // loop, even if the latter post-dominates the former (PR21115).
512  if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
513    return true;
514
515  // Check if only use in post dominated block is PHI instruction.
516  bool NonPHIUse = false;
517  for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
518    MachineBasicBlock *UseBlock = UseInst.getParent();
519    if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
520      NonPHIUse = true;
521  }
522  if (!NonPHIUse)
523    return true;
524
525  // If SuccToSinkTo post dominates then also it may be profitable if MI
526  // can further profitably sinked into another block in next round.
527  bool BreakPHIEdge = false;
528  // FIXME - If finding successor is compile time expensive then cache results.
529  if (MachineBasicBlock *MBB2 =
530          FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
531    return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
532
533  // If SuccToSinkTo is final destination and it is a post dominator of current
534  // block then it is not profitable to sink MI into SuccToSinkTo block.
535  return false;
536}
537
538/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
539/// computing it if it was not already cached.
540SmallVector<MachineBasicBlock *, 4> &
541MachineSinking::GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB,
542                                       AllSuccsCache &AllSuccessors) const {
543
544  // Do we have the sorted successors in cache ?
545  auto Succs = AllSuccessors.find(MBB);
546  if (Succs != AllSuccessors.end())
547    return Succs->second;
548
549  SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
550                                               MBB->succ_end());
551
552  // Handle cases where sinking can happen but where the sink point isn't a
553  // successor. For example:
554  //
555  //   x = computation
556  //   if () {} else {}
557  //   use x
558  //
559  const std::vector<MachineDomTreeNode *> &Children =
560    DT->getNode(MBB)->getChildren();
561  for (const auto &DTChild : Children)
562    // DomTree children of MBB that have MBB as immediate dominator are added.
563    if (DTChild->getIDom()->getBlock() == MI->getParent() &&
564        // Skip MBBs already added to the AllSuccs vector above.
565        !MBB->isSuccessor(DTChild->getBlock()))
566      AllSuccs.push_back(DTChild->getBlock());
567
568  // Sort Successors according to their loop depth or block frequency info.
569  std::stable_sort(
570      AllSuccs.begin(), AllSuccs.end(),
571      [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
572        uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
573        uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
574        bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
575        return HasBlockFreq ? LHSFreq < RHSFreq
576                            : LI->getLoopDepth(L) < LI->getLoopDepth(R);
577      });
578
579  auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
580
581  return it.first->second;
582}
583
584/// FindSuccToSinkTo - Find a successor to sink this instruction to.
585MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
586                                   MachineBasicBlock *MBB,
587                                   bool &BreakPHIEdge,
588                                   AllSuccsCache &AllSuccessors) {
589
590  assert (MI && "Invalid MachineInstr!");
591  assert (MBB && "Invalid MachineBasicBlock!");
592
593  // Loop over all the operands of the specified instruction.  If there is
594  // anything we can't handle, bail out.
595
596  // SuccToSinkTo - This is the successor to sink this instruction to, once we
597  // decide.
598  MachineBasicBlock *SuccToSinkTo = nullptr;
599  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
600    const MachineOperand &MO = MI->getOperand(i);
601    if (!MO.isReg()) continue;  // Ignore non-register operands.
602
603    unsigned Reg = MO.getReg();
604    if (Reg == 0) continue;
605
606    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
607      if (MO.isUse()) {
608        // If the physreg has no defs anywhere, it's just an ambient register
609        // and we can freely move its uses. Alternatively, if it's allocatable,
610        // it could get allocated to something with a def during allocation.
611        if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
612          return nullptr;
613      } else if (!MO.isDead()) {
614        // A def that isn't dead. We can't move it.
615        return nullptr;
616      }
617    } else {
618      // Virtual register uses are always safe to sink.
619      if (MO.isUse()) continue;
620
621      // If it's not safe to move defs of the register class, then abort.
622      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
623        return nullptr;
624
625      // Virtual register defs can only be sunk if all their uses are in blocks
626      // dominated by one of the successors.
627      if (SuccToSinkTo) {
628        // If a previous operand picked a block to sink to, then this operand
629        // must be sinkable to the same block.
630        bool LocalUse = false;
631        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
632                                     BreakPHIEdge, LocalUse))
633          return nullptr;
634
635        continue;
636      }
637
638      // Otherwise, we should look at all the successors and decide which one
639      // we should sink to. If we have reliable block frequency information
640      // (frequency != 0) available, give successors with smaller frequencies
641      // higher priority, otherwise prioritize smaller loop depths.
642      for (MachineBasicBlock *SuccBlock :
643           GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
644        bool LocalUse = false;
645        if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
646                                    BreakPHIEdge, LocalUse)) {
647          SuccToSinkTo = SuccBlock;
648          break;
649        }
650        if (LocalUse)
651          // Def is used locally, it's never safe to move this def.
652          return nullptr;
653      }
654
655      // If we couldn't find a block to sink to, ignore this instruction.
656      if (!SuccToSinkTo)
657        return nullptr;
658      if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
659        return nullptr;
660    }
661  }
662
663  // It is not possible to sink an instruction into its own block.  This can
664  // happen with loops.
665  if (MBB == SuccToSinkTo)
666    return nullptr;
667
668  // It's not safe to sink instructions to EH landing pad. Control flow into
669  // landing pad is implicitly defined.
670  if (SuccToSinkTo && SuccToSinkTo->isEHPad())
671    return nullptr;
672
673  return SuccToSinkTo;
674}
675
676/// SinkInstruction - Determine whether it is safe to sink the specified machine
677/// instruction out of its current block into a successor.
678bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore,
679                                     AllSuccsCache &AllSuccessors) {
680  // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
681  // be close to the source to make it easier to coalesce.
682  if (AvoidsSinking(MI, MRI))
683    return false;
684
685  // Check if it's safe to move the instruction.
686  if (!MI->isSafeToMove(AA, SawStore))
687    return false;
688
689  // Convergent operations may not be made control-dependent on additional
690  // values.
691  if (MI->isConvergent())
692    return false;
693
694  // FIXME: This should include support for sinking instructions within the
695  // block they are currently in to shorten the live ranges.  We often get
696  // instructions sunk into the top of a large block, but it would be better to
697  // also sink them down before their first use in the block.  This xform has to
698  // be careful not to *increase* register pressure though, e.g. sinking
699  // "x = y + z" down if it kills y and z would increase the live ranges of y
700  // and z and only shrink the live range of x.
701
702  bool BreakPHIEdge = false;
703  MachineBasicBlock *ParentBlock = MI->getParent();
704  MachineBasicBlock *SuccToSinkTo =
705      FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
706
707  // If there are no outputs, it must have side-effects.
708  if (!SuccToSinkTo)
709    return false;
710
711
712  // If the instruction to move defines a dead physical register which is live
713  // when leaving the basic block, don't move it because it could turn into a
714  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
715  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
716    const MachineOperand &MO = MI->getOperand(I);
717    if (!MO.isReg()) continue;
718    unsigned Reg = MO.getReg();
719    if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
720    if (SuccToSinkTo->isLiveIn(Reg))
721      return false;
722  }
723
724  DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
725
726  // If the block has multiple predecessors, this is a critical edge.
727  // Decide if we can sink along it or need to break the edge.
728  if (SuccToSinkTo->pred_size() > 1) {
729    // We cannot sink a load across a critical edge - there may be stores in
730    // other code paths.
731    bool TryBreak = false;
732    bool store = true;
733    if (!MI->isSafeToMove(AA, store)) {
734      DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
735      TryBreak = true;
736    }
737
738    // We don't want to sink across a critical edge if we don't dominate the
739    // successor. We could be introducing calculations to new code paths.
740    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
741      DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
742      TryBreak = true;
743    }
744
745    // Don't sink instructions into a loop.
746    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
747      DEBUG(dbgs() << " *** NOTE: Loop header found\n");
748      TryBreak = true;
749    }
750
751    // Otherwise we are OK with sinking along a critical edge.
752    if (!TryBreak)
753      DEBUG(dbgs() << "Sinking along critical edge.\n");
754    else {
755      // Mark this edge as to be split.
756      // If the edge can actually be split, the next iteration of the main loop
757      // will sink MI in the newly created block.
758      bool Status =
759        PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
760      if (!Status)
761        DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
762              "break critical edge\n");
763      // The instruction will not be sunk this time.
764      return false;
765    }
766  }
767
768  if (BreakPHIEdge) {
769    // BreakPHIEdge is true if all the uses are in the successor MBB being
770    // sunken into and they are all PHI nodes. In this case, machine-sink must
771    // break the critical edge first.
772    bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
773                                            SuccToSinkTo, BreakPHIEdge);
774    if (!Status)
775      DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
776            "break critical edge\n");
777    // The instruction will not be sunk this time.
778    return false;
779  }
780
781  // Determine where to insert into. Skip phi nodes.
782  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
783  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
784    ++InsertPos;
785
786  // collect matching debug values.
787  SmallVector<MachineInstr *, 2> DbgValuesToSink;
788  collectDebugValues(MI, DbgValuesToSink);
789
790  // Move the instruction.
791  SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
792                       ++MachineBasicBlock::iterator(MI));
793
794  // Move debug values.
795  for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
796         DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
797    MachineInstr *DbgMI = *DBI;
798    SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
799                         ++MachineBasicBlock::iterator(DbgMI));
800  }
801
802  // Conservatively, clear any kill flags, since it's possible that they are no
803  // longer correct.
804  // Note that we have to clear the kill flags for any register this instruction
805  // uses as we may sink over another instruction which currently kills the
806  // used registers.
807  for (MachineOperand &MO : MI->operands()) {
808    if (MO.isReg() && MO.isUse())
809      RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
810  }
811
812  return true;
813}
814