1//===-- MachineSink.cpp - Sinking for machine instructions ----------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass moves instructions into successor blocks when possible, so that 11// they aren't executed on paths where their results aren't needed. 12// 13// This pass is not intended to be a replacement or a complete alternative 14// for an LLVM-IR-level sinking pass. It is only designed to sink simple 15// constructs that are not exposed before lowering and instruction selection. 16// 17//===----------------------------------------------------------------------===// 18 19#include "llvm/CodeGen/Passes.h" 20#include "llvm/ADT/SetVector.h" 21#include "llvm/ADT/SmallSet.h" 22#include "llvm/ADT/SparseBitVector.h" 23#include "llvm/ADT/Statistic.h" 24#include "llvm/Analysis/AliasAnalysis.h" 25#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26#include "llvm/CodeGen/MachineDominators.h" 27#include "llvm/CodeGen/MachineLoopInfo.h" 28#include "llvm/CodeGen/MachinePostDominators.h" 29#include "llvm/CodeGen/MachineRegisterInfo.h" 30#include "llvm/Support/CommandLine.h" 31#include "llvm/Support/Debug.h" 32#include "llvm/Support/raw_ostream.h" 33#include "llvm/Target/TargetInstrInfo.h" 34#include "llvm/Target/TargetRegisterInfo.h" 35#include "llvm/Target/TargetSubtargetInfo.h" 36using namespace llvm; 37 38#define DEBUG_TYPE "machine-sink" 39 40static cl::opt<bool> 41SplitEdges("machine-sink-split", 42 cl::desc("Split critical edges during machine sinking"), 43 cl::init(true), cl::Hidden); 44 45static cl::opt<bool> 46UseBlockFreqInfo("machine-sink-bfi", 47 cl::desc("Use block frequency info to find successors to sink"), 48 cl::init(true), cl::Hidden); 49 50 51STATISTIC(NumSunk, "Number of machine instructions sunk"); 52STATISTIC(NumSplit, "Number of critical edges split"); 53STATISTIC(NumCoalesces, "Number of copies coalesced"); 54 55namespace { 56 class MachineSinking : public MachineFunctionPass { 57 const TargetInstrInfo *TII; 58 const TargetRegisterInfo *TRI; 59 MachineRegisterInfo *MRI; // Machine register information 60 MachineDominatorTree *DT; // Machine dominator tree 61 MachinePostDominatorTree *PDT; // Machine post dominator tree 62 MachineLoopInfo *LI; 63 const MachineBlockFrequencyInfo *MBFI; 64 AliasAnalysis *AA; 65 66 // Remember which edges have been considered for breaking. 67 SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8> 68 CEBCandidates; 69 // Remember which edges we are about to split. 70 // This is different from CEBCandidates since those edges 71 // will be split. 72 SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit; 73 74 SparseBitVector<> RegsToClearKillFlags; 75 76 typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>> 77 AllSuccsCache; 78 79 public: 80 static char ID; // Pass identification 81 MachineSinking() : MachineFunctionPass(ID) { 82 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 83 } 84 85 bool runOnMachineFunction(MachineFunction &MF) override; 86 87 void getAnalysisUsage(AnalysisUsage &AU) const override { 88 AU.setPreservesCFG(); 89 MachineFunctionPass::getAnalysisUsage(AU); 90 AU.addRequired<AAResultsWrapperPass>(); 91 AU.addRequired<MachineDominatorTree>(); 92 AU.addRequired<MachinePostDominatorTree>(); 93 AU.addRequired<MachineLoopInfo>(); 94 AU.addPreserved<MachineDominatorTree>(); 95 AU.addPreserved<MachinePostDominatorTree>(); 96 AU.addPreserved<MachineLoopInfo>(); 97 if (UseBlockFreqInfo) 98 AU.addRequired<MachineBlockFrequencyInfo>(); 99 } 100 101 void releaseMemory() override { 102 CEBCandidates.clear(); 103 } 104 105 private: 106 bool ProcessBlock(MachineBasicBlock &MBB); 107 bool isWorthBreakingCriticalEdge(MachineInstr *MI, 108 MachineBasicBlock *From, 109 MachineBasicBlock *To); 110 /// \brief Postpone the splitting of the given critical 111 /// edge (\p From, \p To). 112 /// 113 /// We do not split the edges on the fly. Indeed, this invalidates 114 /// the dominance information and thus triggers a lot of updates 115 /// of that information underneath. 116 /// Instead, we postpone all the splits after each iteration of 117 /// the main loop. That way, the information is at least valid 118 /// for the lifetime of an iteration. 119 /// 120 /// \return True if the edge is marked as toSplit, false otherwise. 121 /// False can be returned if, for instance, this is not profitable. 122 bool PostponeSplitCriticalEdge(MachineInstr *MI, 123 MachineBasicBlock *From, 124 MachineBasicBlock *To, 125 bool BreakPHIEdge); 126 bool SinkInstruction(MachineInstr *MI, bool &SawStore, 127 AllSuccsCache &AllSuccessors); 128 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 129 MachineBasicBlock *DefMBB, 130 bool &BreakPHIEdge, bool &LocalUse) const; 131 MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB, 132 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 133 bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 134 MachineBasicBlock *MBB, 135 MachineBasicBlock *SuccToSinkTo, 136 AllSuccsCache &AllSuccessors); 137 138 bool PerformTrivialForwardCoalescing(MachineInstr *MI, 139 MachineBasicBlock *MBB); 140 141 SmallVector<MachineBasicBlock *, 4> & 142 GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB, 143 AllSuccsCache &AllSuccessors) const; 144 }; 145} // end anonymous namespace 146 147char MachineSinking::ID = 0; 148char &llvm::MachineSinkingID = MachineSinking::ID; 149INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", 150 "Machine code sinking", false, false) 151INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 152INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 153INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 154INITIALIZE_PASS_END(MachineSinking, "machine-sink", 155 "Machine code sinking", false, false) 156 157bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI, 158 MachineBasicBlock *MBB) { 159 if (!MI->isCopy()) 160 return false; 161 162 unsigned SrcReg = MI->getOperand(1).getReg(); 163 unsigned DstReg = MI->getOperand(0).getReg(); 164 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 165 !TargetRegisterInfo::isVirtualRegister(DstReg) || 166 !MRI->hasOneNonDBGUse(SrcReg)) 167 return false; 168 169 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 170 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 171 if (SRC != DRC) 172 return false; 173 174 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 175 if (DefMI->isCopyLike()) 176 return false; 177 DEBUG(dbgs() << "Coalescing: " << *DefMI); 178 DEBUG(dbgs() << "*** to: " << *MI); 179 MRI->replaceRegWith(DstReg, SrcReg); 180 MI->eraseFromParent(); 181 182 // Conservatively, clear any kill flags, since it's possible that they are no 183 // longer correct. 184 MRI->clearKillFlags(SrcReg); 185 186 ++NumCoalesces; 187 return true; 188} 189 190/// AllUsesDominatedByBlock - Return true if all uses of the specified register 191/// occur in blocks dominated by the specified block. If any use is in the 192/// definition block, then return false since it is never legal to move def 193/// after uses. 194bool 195MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 196 MachineBasicBlock *MBB, 197 MachineBasicBlock *DefMBB, 198 bool &BreakPHIEdge, 199 bool &LocalUse) const { 200 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 201 "Only makes sense for vregs"); 202 203 // Ignore debug uses because debug info doesn't affect the code. 204 if (MRI->use_nodbg_empty(Reg)) 205 return true; 206 207 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 208 // into and they are all PHI nodes. In this case, machine-sink must break 209 // the critical edge first. e.g. 210 // 211 // BB#1: derived from LLVM BB %bb4.preheader 212 // Predecessors according to CFG: BB#0 213 // ... 214 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> 215 // ... 216 // JE_4 <BB#37>, %EFLAGS<imp-use> 217 // Successors according to CFG: BB#37 BB#2 218 // 219 // BB#2: derived from LLVM BB %bb.nph 220 // Predecessors according to CFG: BB#0 BB#1 221 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> 222 BreakPHIEdge = true; 223 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 224 MachineInstr *UseInst = MO.getParent(); 225 unsigned OpNo = &MO - &UseInst->getOperand(0); 226 MachineBasicBlock *UseBlock = UseInst->getParent(); 227 if (!(UseBlock == MBB && UseInst->isPHI() && 228 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 229 BreakPHIEdge = false; 230 break; 231 } 232 } 233 if (BreakPHIEdge) 234 return true; 235 236 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 237 // Determine the block of the use. 238 MachineInstr *UseInst = MO.getParent(); 239 unsigned OpNo = &MO - &UseInst->getOperand(0); 240 MachineBasicBlock *UseBlock = UseInst->getParent(); 241 if (UseInst->isPHI()) { 242 // PHI nodes use the operand in the predecessor block, not the block with 243 // the PHI. 244 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 245 } else if (UseBlock == DefMBB) { 246 LocalUse = true; 247 return false; 248 } 249 250 // Check that it dominates. 251 if (!DT->dominates(MBB, UseBlock)) 252 return false; 253 } 254 255 return true; 256} 257 258bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 259 if (skipOptnoneFunction(*MF.getFunction())) 260 return false; 261 262 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 263 264 TII = MF.getSubtarget().getInstrInfo(); 265 TRI = MF.getSubtarget().getRegisterInfo(); 266 MRI = &MF.getRegInfo(); 267 DT = &getAnalysis<MachineDominatorTree>(); 268 PDT = &getAnalysis<MachinePostDominatorTree>(); 269 LI = &getAnalysis<MachineLoopInfo>(); 270 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 271 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 272 273 bool EverMadeChange = false; 274 275 while (1) { 276 bool MadeChange = false; 277 278 // Process all basic blocks. 279 CEBCandidates.clear(); 280 ToSplit.clear(); 281 for (auto &MBB: MF) 282 MadeChange |= ProcessBlock(MBB); 283 284 // If we have anything we marked as toSplit, split it now. 285 for (auto &Pair : ToSplit) { 286 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this); 287 if (NewSucc != nullptr) { 288 DEBUG(dbgs() << " *** Splitting critical edge:" 289 " BB#" << Pair.first->getNumber() 290 << " -- BB#" << NewSucc->getNumber() 291 << " -- BB#" << Pair.second->getNumber() << '\n'); 292 MadeChange = true; 293 ++NumSplit; 294 } else 295 DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 296 } 297 // If this iteration over the code changed anything, keep iterating. 298 if (!MadeChange) break; 299 EverMadeChange = true; 300 } 301 302 // Now clear any kill flags for recorded registers. 303 for (auto I : RegsToClearKillFlags) 304 MRI->clearKillFlags(I); 305 RegsToClearKillFlags.clear(); 306 307 return EverMadeChange; 308} 309 310bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 311 // Can't sink anything out of a block that has less than two successors. 312 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 313 314 // Don't bother sinking code out of unreachable blocks. In addition to being 315 // unprofitable, it can also lead to infinite looping, because in an 316 // unreachable loop there may be nowhere to stop. 317 if (!DT->isReachableFromEntry(&MBB)) return false; 318 319 bool MadeChange = false; 320 321 // Cache all successors, sorted by frequency info and loop depth. 322 AllSuccsCache AllSuccessors; 323 324 // Walk the basic block bottom-up. Remember if we saw a store. 325 MachineBasicBlock::iterator I = MBB.end(); 326 --I; 327 bool ProcessedBegin, SawStore = false; 328 do { 329 MachineInstr *MI = I; // The instruction to sink. 330 331 // Predecrement I (if it's not begin) so that it isn't invalidated by 332 // sinking. 333 ProcessedBegin = I == MBB.begin(); 334 if (!ProcessedBegin) 335 --I; 336 337 if (MI->isDebugValue()) 338 continue; 339 340 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 341 if (Joined) { 342 MadeChange = true; 343 continue; 344 } 345 346 if (SinkInstruction(MI, SawStore, AllSuccessors)) 347 ++NumSunk, MadeChange = true; 348 349 // If we just processed the first instruction in the block, we're done. 350 } while (!ProcessedBegin); 351 352 return MadeChange; 353} 354 355bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI, 356 MachineBasicBlock *From, 357 MachineBasicBlock *To) { 358 // FIXME: Need much better heuristics. 359 360 // If the pass has already considered breaking this edge (during this pass 361 // through the function), then let's go ahead and break it. This means 362 // sinking multiple "cheap" instructions into the same block. 363 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 364 return true; 365 366 if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI)) 367 return true; 368 369 // MI is cheap, we probably don't want to break the critical edge for it. 370 // However, if this would allow some definitions of its source operands 371 // to be sunk then it's probably worth it. 372 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 373 const MachineOperand &MO = MI->getOperand(i); 374 if (!MO.isReg() || !MO.isUse()) 375 continue; 376 unsigned Reg = MO.getReg(); 377 if (Reg == 0) 378 continue; 379 380 // We don't move live definitions of physical registers, 381 // so sinking their uses won't enable any opportunities. 382 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 383 continue; 384 385 // If this instruction is the only user of a virtual register, 386 // check if breaking the edge will enable sinking 387 // both this instruction and the defining instruction. 388 if (MRI->hasOneNonDBGUse(Reg)) { 389 // If the definition resides in same MBB, 390 // claim it's likely we can sink these together. 391 // If definition resides elsewhere, we aren't 392 // blocking it from being sunk so don't break the edge. 393 MachineInstr *DefMI = MRI->getVRegDef(Reg); 394 if (DefMI->getParent() == MI->getParent()) 395 return true; 396 } 397 } 398 399 return false; 400} 401 402bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI, 403 MachineBasicBlock *FromBB, 404 MachineBasicBlock *ToBB, 405 bool BreakPHIEdge) { 406 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 407 return false; 408 409 // Avoid breaking back edge. From == To means backedge for single BB loop. 410 if (!SplitEdges || FromBB == ToBB) 411 return false; 412 413 // Check for backedges of more "complex" loops. 414 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 415 LI->isLoopHeader(ToBB)) 416 return false; 417 418 // It's not always legal to break critical edges and sink the computation 419 // to the edge. 420 // 421 // BB#1: 422 // v1024 423 // Beq BB#3 424 // <fallthrough> 425 // BB#2: 426 // ... no uses of v1024 427 // <fallthrough> 428 // BB#3: 429 // ... 430 // = v1024 431 // 432 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: 433 // 434 // BB#1: 435 // ... 436 // Bne BB#2 437 // BB#4: 438 // v1024 = 439 // B BB#3 440 // BB#2: 441 // ... no uses of v1024 442 // <fallthrough> 443 // BB#3: 444 // ... 445 // = v1024 446 // 447 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 448 // flow. We need to ensure the new basic block where the computation is 449 // sunk to dominates all the uses. 450 // It's only legal to break critical edge and sink the computation to the 451 // new block if all the predecessors of "To", except for "From", are 452 // not dominated by "From". Given SSA property, this means these 453 // predecessors are dominated by "To". 454 // 455 // There is no need to do this check if all the uses are PHI nodes. PHI 456 // sources are only defined on the specific predecessor edges. 457 if (!BreakPHIEdge) { 458 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 459 E = ToBB->pred_end(); PI != E; ++PI) { 460 if (*PI == FromBB) 461 continue; 462 if (!DT->dominates(ToBB, *PI)) 463 return false; 464 } 465 } 466 467 ToSplit.insert(std::make_pair(FromBB, ToBB)); 468 469 return true; 470} 471 472static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) { 473 return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence(); 474} 475 476/// collectDebgValues - Scan instructions following MI and collect any 477/// matching DBG_VALUEs. 478static void collectDebugValues(MachineInstr *MI, 479 SmallVectorImpl<MachineInstr *> &DbgValues) { 480 DbgValues.clear(); 481 if (!MI->getOperand(0).isReg()) 482 return; 483 484 MachineBasicBlock::iterator DI = MI; ++DI; 485 for (MachineBasicBlock::iterator DE = MI->getParent()->end(); 486 DI != DE; ++DI) { 487 if (!DI->isDebugValue()) 488 return; 489 if (DI->getOperand(0).isReg() && 490 DI->getOperand(0).getReg() == MI->getOperand(0).getReg()) 491 DbgValues.push_back(DI); 492 } 493} 494 495/// isProfitableToSinkTo - Return true if it is profitable to sink MI. 496bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, 497 MachineBasicBlock *MBB, 498 MachineBasicBlock *SuccToSinkTo, 499 AllSuccsCache &AllSuccessors) { 500 assert (MI && "Invalid MachineInstr!"); 501 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 502 503 if (MBB == SuccToSinkTo) 504 return false; 505 506 // It is profitable if SuccToSinkTo does not post dominate current block. 507 if (!PDT->dominates(SuccToSinkTo, MBB)) 508 return true; 509 510 // It is profitable to sink an instruction from a deeper loop to a shallower 511 // loop, even if the latter post-dominates the former (PR21115). 512 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 513 return true; 514 515 // Check if only use in post dominated block is PHI instruction. 516 bool NonPHIUse = false; 517 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 518 MachineBasicBlock *UseBlock = UseInst.getParent(); 519 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 520 NonPHIUse = true; 521 } 522 if (!NonPHIUse) 523 return true; 524 525 // If SuccToSinkTo post dominates then also it may be profitable if MI 526 // can further profitably sinked into another block in next round. 527 bool BreakPHIEdge = false; 528 // FIXME - If finding successor is compile time expensive then cache results. 529 if (MachineBasicBlock *MBB2 = 530 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 531 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 532 533 // If SuccToSinkTo is final destination and it is a post dominator of current 534 // block then it is not profitable to sink MI into SuccToSinkTo block. 535 return false; 536} 537 538/// Get the sorted sequence of successors for this MachineBasicBlock, possibly 539/// computing it if it was not already cached. 540SmallVector<MachineBasicBlock *, 4> & 541MachineSinking::GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB, 542 AllSuccsCache &AllSuccessors) const { 543 544 // Do we have the sorted successors in cache ? 545 auto Succs = AllSuccessors.find(MBB); 546 if (Succs != AllSuccessors.end()) 547 return Succs->second; 548 549 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 550 MBB->succ_end()); 551 552 // Handle cases where sinking can happen but where the sink point isn't a 553 // successor. For example: 554 // 555 // x = computation 556 // if () {} else {} 557 // use x 558 // 559 const std::vector<MachineDomTreeNode *> &Children = 560 DT->getNode(MBB)->getChildren(); 561 for (const auto &DTChild : Children) 562 // DomTree children of MBB that have MBB as immediate dominator are added. 563 if (DTChild->getIDom()->getBlock() == MI->getParent() && 564 // Skip MBBs already added to the AllSuccs vector above. 565 !MBB->isSuccessor(DTChild->getBlock())) 566 AllSuccs.push_back(DTChild->getBlock()); 567 568 // Sort Successors according to their loop depth or block frequency info. 569 std::stable_sort( 570 AllSuccs.begin(), AllSuccs.end(), 571 [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 572 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 573 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 574 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 575 return HasBlockFreq ? LHSFreq < RHSFreq 576 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 577 }); 578 579 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 580 581 return it.first->second; 582} 583 584/// FindSuccToSinkTo - Find a successor to sink this instruction to. 585MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI, 586 MachineBasicBlock *MBB, 587 bool &BreakPHIEdge, 588 AllSuccsCache &AllSuccessors) { 589 590 assert (MI && "Invalid MachineInstr!"); 591 assert (MBB && "Invalid MachineBasicBlock!"); 592 593 // Loop over all the operands of the specified instruction. If there is 594 // anything we can't handle, bail out. 595 596 // SuccToSinkTo - This is the successor to sink this instruction to, once we 597 // decide. 598 MachineBasicBlock *SuccToSinkTo = nullptr; 599 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 600 const MachineOperand &MO = MI->getOperand(i); 601 if (!MO.isReg()) continue; // Ignore non-register operands. 602 603 unsigned Reg = MO.getReg(); 604 if (Reg == 0) continue; 605 606 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 607 if (MO.isUse()) { 608 // If the physreg has no defs anywhere, it's just an ambient register 609 // and we can freely move its uses. Alternatively, if it's allocatable, 610 // it could get allocated to something with a def during allocation. 611 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) 612 return nullptr; 613 } else if (!MO.isDead()) { 614 // A def that isn't dead. We can't move it. 615 return nullptr; 616 } 617 } else { 618 // Virtual register uses are always safe to sink. 619 if (MO.isUse()) continue; 620 621 // If it's not safe to move defs of the register class, then abort. 622 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 623 return nullptr; 624 625 // Virtual register defs can only be sunk if all their uses are in blocks 626 // dominated by one of the successors. 627 if (SuccToSinkTo) { 628 // If a previous operand picked a block to sink to, then this operand 629 // must be sinkable to the same block. 630 bool LocalUse = false; 631 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 632 BreakPHIEdge, LocalUse)) 633 return nullptr; 634 635 continue; 636 } 637 638 // Otherwise, we should look at all the successors and decide which one 639 // we should sink to. If we have reliable block frequency information 640 // (frequency != 0) available, give successors with smaller frequencies 641 // higher priority, otherwise prioritize smaller loop depths. 642 for (MachineBasicBlock *SuccBlock : 643 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 644 bool LocalUse = false; 645 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 646 BreakPHIEdge, LocalUse)) { 647 SuccToSinkTo = SuccBlock; 648 break; 649 } 650 if (LocalUse) 651 // Def is used locally, it's never safe to move this def. 652 return nullptr; 653 } 654 655 // If we couldn't find a block to sink to, ignore this instruction. 656 if (!SuccToSinkTo) 657 return nullptr; 658 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 659 return nullptr; 660 } 661 } 662 663 // It is not possible to sink an instruction into its own block. This can 664 // happen with loops. 665 if (MBB == SuccToSinkTo) 666 return nullptr; 667 668 // It's not safe to sink instructions to EH landing pad. Control flow into 669 // landing pad is implicitly defined. 670 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 671 return nullptr; 672 673 return SuccToSinkTo; 674} 675 676/// SinkInstruction - Determine whether it is safe to sink the specified machine 677/// instruction out of its current block into a successor. 678bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore, 679 AllSuccsCache &AllSuccessors) { 680 // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to 681 // be close to the source to make it easier to coalesce. 682 if (AvoidsSinking(MI, MRI)) 683 return false; 684 685 // Check if it's safe to move the instruction. 686 if (!MI->isSafeToMove(AA, SawStore)) 687 return false; 688 689 // Convergent operations may not be made control-dependent on additional 690 // values. 691 if (MI->isConvergent()) 692 return false; 693 694 // FIXME: This should include support for sinking instructions within the 695 // block they are currently in to shorten the live ranges. We often get 696 // instructions sunk into the top of a large block, but it would be better to 697 // also sink them down before their first use in the block. This xform has to 698 // be careful not to *increase* register pressure though, e.g. sinking 699 // "x = y + z" down if it kills y and z would increase the live ranges of y 700 // and z and only shrink the live range of x. 701 702 bool BreakPHIEdge = false; 703 MachineBasicBlock *ParentBlock = MI->getParent(); 704 MachineBasicBlock *SuccToSinkTo = 705 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 706 707 // If there are no outputs, it must have side-effects. 708 if (!SuccToSinkTo) 709 return false; 710 711 712 // If the instruction to move defines a dead physical register which is live 713 // when leaving the basic block, don't move it because it could turn into a 714 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 715 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 716 const MachineOperand &MO = MI->getOperand(I); 717 if (!MO.isReg()) continue; 718 unsigned Reg = MO.getReg(); 719 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 720 if (SuccToSinkTo->isLiveIn(Reg)) 721 return false; 722 } 723 724 DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo); 725 726 // If the block has multiple predecessors, this is a critical edge. 727 // Decide if we can sink along it or need to break the edge. 728 if (SuccToSinkTo->pred_size() > 1) { 729 // We cannot sink a load across a critical edge - there may be stores in 730 // other code paths. 731 bool TryBreak = false; 732 bool store = true; 733 if (!MI->isSafeToMove(AA, store)) { 734 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 735 TryBreak = true; 736 } 737 738 // We don't want to sink across a critical edge if we don't dominate the 739 // successor. We could be introducing calculations to new code paths. 740 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 741 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 742 TryBreak = true; 743 } 744 745 // Don't sink instructions into a loop. 746 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 747 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 748 TryBreak = true; 749 } 750 751 // Otherwise we are OK with sinking along a critical edge. 752 if (!TryBreak) 753 DEBUG(dbgs() << "Sinking along critical edge.\n"); 754 else { 755 // Mark this edge as to be split. 756 // If the edge can actually be split, the next iteration of the main loop 757 // will sink MI in the newly created block. 758 bool Status = 759 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 760 if (!Status) 761 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 762 "break critical edge\n"); 763 // The instruction will not be sunk this time. 764 return false; 765 } 766 } 767 768 if (BreakPHIEdge) { 769 // BreakPHIEdge is true if all the uses are in the successor MBB being 770 // sunken into and they are all PHI nodes. In this case, machine-sink must 771 // break the critical edge first. 772 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 773 SuccToSinkTo, BreakPHIEdge); 774 if (!Status) 775 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 776 "break critical edge\n"); 777 // The instruction will not be sunk this time. 778 return false; 779 } 780 781 // Determine where to insert into. Skip phi nodes. 782 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 783 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 784 ++InsertPos; 785 786 // collect matching debug values. 787 SmallVector<MachineInstr *, 2> DbgValuesToSink; 788 collectDebugValues(MI, DbgValuesToSink); 789 790 // Move the instruction. 791 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 792 ++MachineBasicBlock::iterator(MI)); 793 794 // Move debug values. 795 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 796 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 797 MachineInstr *DbgMI = *DBI; 798 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 799 ++MachineBasicBlock::iterator(DbgMI)); 800 } 801 802 // Conservatively, clear any kill flags, since it's possible that they are no 803 // longer correct. 804 // Note that we have to clear the kill flags for any register this instruction 805 // uses as we may sink over another instruction which currently kills the 806 // used registers. 807 for (MachineOperand &MO : MI->operands()) { 808 if (MO.isReg() && MO.isUse()) 809 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 810 } 811 812 return true; 813} 814