1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/Passes.h"
17#include "PHIEliminationUtils.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineLoopInfo.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/IR/Function.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetSubtargetInfo.h"
35#include <algorithm>
36using namespace llvm;
37
38#define DEBUG_TYPE "phielim"
39
40static cl::opt<bool>
41DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
42                     cl::Hidden, cl::desc("Disable critical edge splitting "
43                                          "during PHI elimination"));
44
45static cl::opt<bool>
46SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
47                      cl::Hidden, cl::desc("Split all critical edges during "
48                                           "PHI elimination"));
49
50static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
51    "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
52    cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
53
54namespace {
55  class PHIElimination : public MachineFunctionPass {
56    MachineRegisterInfo *MRI; // Machine register information
57    LiveVariables *LV;
58    LiveIntervals *LIS;
59
60  public:
61    static char ID; // Pass identification, replacement for typeid
62    PHIElimination() : MachineFunctionPass(ID) {
63      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
64    }
65
66    bool runOnMachineFunction(MachineFunction &Fn) override;
67    void getAnalysisUsage(AnalysisUsage &AU) const override;
68
69  private:
70    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
71    /// in predecessor basic blocks.
72    ///
73    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
74    void LowerPHINode(MachineBasicBlock &MBB,
75                      MachineBasicBlock::iterator LastPHIIt);
76
77    /// analyzePHINodes - Gather information about the PHI nodes in
78    /// here. In particular, we want to map the number of uses of a virtual
79    /// register which is used in a PHI node. We map that to the BB the
80    /// vreg is coming from. This is used later to determine when the vreg
81    /// is killed in the BB.
82    ///
83    void analyzePHINodes(const MachineFunction& Fn);
84
85    /// Split critical edges where necessary for good coalescer performance.
86    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
87                       MachineLoopInfo *MLI);
88
89    // These functions are temporary abstractions around LiveVariables and
90    // LiveIntervals, so they can go away when LiveVariables does.
91    bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
92    bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
93
94    typedef std::pair<unsigned, unsigned> BBVRegPair;
95    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
96
97    VRegPHIUse VRegPHIUseCount;
98
99    // Defs of PHI sources which are implicit_def.
100    SmallPtrSet<MachineInstr*, 4> ImpDefs;
101
102    // Map reusable lowered PHI node -> incoming join register.
103    typedef DenseMap<MachineInstr*, unsigned,
104                     MachineInstrExpressionTrait> LoweredPHIMap;
105    LoweredPHIMap LoweredPHIs;
106  };
107}
108
109STATISTIC(NumLowered, "Number of phis lowered");
110STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
111STATISTIC(NumReused, "Number of reused lowered phis");
112
113char PHIElimination::ID = 0;
114char& llvm::PHIEliminationID = PHIElimination::ID;
115
116INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
117                      "Eliminate PHI nodes for register allocation",
118                      false, false)
119INITIALIZE_PASS_DEPENDENCY(LiveVariables)
120INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
121                    "Eliminate PHI nodes for register allocation", false, false)
122
123void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
124  AU.addPreserved<LiveVariables>();
125  AU.addPreserved<SlotIndexes>();
126  AU.addPreserved<LiveIntervals>();
127  AU.addPreserved<MachineDominatorTree>();
128  AU.addPreserved<MachineLoopInfo>();
129  MachineFunctionPass::getAnalysisUsage(AU);
130}
131
132bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
133  MRI = &MF.getRegInfo();
134  LV = getAnalysisIfAvailable<LiveVariables>();
135  LIS = getAnalysisIfAvailable<LiveIntervals>();
136
137  bool Changed = false;
138
139  // This pass takes the function out of SSA form.
140  MRI->leaveSSA();
141
142  // Split critical edges to help the coalescer. This does not yet support
143  // updating LiveIntervals, so we disable it.
144  if (!DisableEdgeSplitting && (LV || LIS)) {
145    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
146    for (auto &MBB : MF)
147      Changed |= SplitPHIEdges(MF, MBB, MLI);
148  }
149
150  // Populate VRegPHIUseCount
151  analyzePHINodes(MF);
152
153  // Eliminate PHI instructions by inserting copies into predecessor blocks.
154  for (auto &MBB : MF)
155    Changed |= EliminatePHINodes(MF, MBB);
156
157  // Remove dead IMPLICIT_DEF instructions.
158  for (MachineInstr *DefMI : ImpDefs) {
159    unsigned DefReg = DefMI->getOperand(0).getReg();
160    if (MRI->use_nodbg_empty(DefReg)) {
161      if (LIS)
162        LIS->RemoveMachineInstrFromMaps(DefMI);
163      DefMI->eraseFromParent();
164    }
165  }
166
167  // Clean up the lowered PHI instructions.
168  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
169       I != E; ++I) {
170    if (LIS)
171      LIS->RemoveMachineInstrFromMaps(I->first);
172    MF.DeleteMachineInstr(I->first);
173  }
174
175  LoweredPHIs.clear();
176  ImpDefs.clear();
177  VRegPHIUseCount.clear();
178
179  return Changed;
180}
181
182/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
183/// predecessor basic blocks.
184///
185bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
186                                             MachineBasicBlock &MBB) {
187  if (MBB.empty() || !MBB.front().isPHI())
188    return false;   // Quick exit for basic blocks without PHIs.
189
190  // Get an iterator to the first instruction after the last PHI node (this may
191  // also be the end of the basic block).
192  MachineBasicBlock::iterator LastPHIIt =
193    std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
194
195  while (MBB.front().isPHI())
196    LowerPHINode(MBB, LastPHIIt);
197
198  return true;
199}
200
201/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
202/// This includes registers with no defs.
203static bool isImplicitlyDefined(unsigned VirtReg,
204                                const MachineRegisterInfo *MRI) {
205  for (MachineInstr &DI : MRI->def_instructions(VirtReg))
206    if (!DI.isImplicitDef())
207      return false;
208  return true;
209}
210
211/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
212/// are implicit_def's.
213static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
214                                         const MachineRegisterInfo *MRI) {
215  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
216    if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
217      return false;
218  return true;
219}
220
221
222/// LowerPHINode - Lower the PHI node at the top of the specified block,
223///
224void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
225                                  MachineBasicBlock::iterator LastPHIIt) {
226  ++NumLowered;
227
228  MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
229
230  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
231  MachineInstr *MPhi = MBB.remove(MBB.begin());
232
233  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
234  unsigned DestReg = MPhi->getOperand(0).getReg();
235  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
236  bool isDead = MPhi->getOperand(0).isDead();
237
238  // Create a new register for the incoming PHI arguments.
239  MachineFunction &MF = *MBB.getParent();
240  unsigned IncomingReg = 0;
241  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
242
243  // Insert a register to register copy at the top of the current block (but
244  // after any remaining phi nodes) which copies the new incoming register
245  // into the phi node destination.
246  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
247  if (isSourceDefinedByImplicitDef(MPhi, MRI))
248    // If all sources of a PHI node are implicit_def, just emit an
249    // implicit_def instead of a copy.
250    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
251            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
252  else {
253    // Can we reuse an earlier PHI node? This only happens for critical edges,
254    // typically those created by tail duplication.
255    unsigned &entry = LoweredPHIs[MPhi];
256    if (entry) {
257      // An identical PHI node was already lowered. Reuse the incoming register.
258      IncomingReg = entry;
259      reusedIncoming = true;
260      ++NumReused;
261      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
262    } else {
263      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
264      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
265    }
266    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
267            TII->get(TargetOpcode::COPY), DestReg)
268      .addReg(IncomingReg);
269  }
270
271  // Update live variable information if there is any.
272  if (LV) {
273    MachineInstr *PHICopy = std::prev(AfterPHIsIt);
274
275    if (IncomingReg) {
276      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
277
278      // Increment use count of the newly created virtual register.
279      LV->setPHIJoin(IncomingReg);
280
281      // When we are reusing the incoming register, it may already have been
282      // killed in this block. The old kill will also have been inserted at
283      // AfterPHIsIt, so it appears before the current PHICopy.
284      if (reusedIncoming)
285        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
286          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
287          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
288          DEBUG(MBB.dump());
289        }
290
291      // Add information to LiveVariables to know that the incoming value is
292      // killed.  Note that because the value is defined in several places (once
293      // each for each incoming block), the "def" block and instruction fields
294      // for the VarInfo is not filled in.
295      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
296    }
297
298    // Since we are going to be deleting the PHI node, if it is the last use of
299    // any registers, or if the value itself is dead, we need to move this
300    // information over to the new copy we just inserted.
301    LV->removeVirtualRegistersKilled(MPhi);
302
303    // If the result is dead, update LV.
304    if (isDead) {
305      LV->addVirtualRegisterDead(DestReg, PHICopy);
306      LV->removeVirtualRegisterDead(DestReg, MPhi);
307    }
308  }
309
310  // Update LiveIntervals for the new copy or implicit def.
311  if (LIS) {
312    MachineInstr *NewInstr = std::prev(AfterPHIsIt);
313    SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
314
315    SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
316    if (IncomingReg) {
317      // Add the region from the beginning of MBB to the copy instruction to
318      // IncomingReg's live interval.
319      LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
320      VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
321      if (!IncomingVNI)
322        IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
323                                              LIS->getVNInfoAllocator());
324      IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
325                                                  DestCopyIndex.getRegSlot(),
326                                                  IncomingVNI));
327    }
328
329    LiveInterval &DestLI = LIS->getInterval(DestReg);
330    assert(DestLI.begin() != DestLI.end() &&
331           "PHIs should have nonempty LiveIntervals.");
332    if (DestLI.endIndex().isDead()) {
333      // A dead PHI's live range begins and ends at the start of the MBB, but
334      // the lowered copy, which will still be dead, needs to begin and end at
335      // the copy instruction.
336      VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
337      assert(OrigDestVNI && "PHI destination should be live at block entry.");
338      DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
339      DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
340                           LIS->getVNInfoAllocator());
341      DestLI.removeValNo(OrigDestVNI);
342    } else {
343      // Otherwise, remove the region from the beginning of MBB to the copy
344      // instruction from DestReg's live interval.
345      DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
346      VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
347      assert(DestVNI && "PHI destination should be live at its definition.");
348      DestVNI->def = DestCopyIndex.getRegSlot();
349    }
350  }
351
352  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
353  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
354    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
355                                 MPhi->getOperand(i).getReg())];
356
357  // Now loop over all of the incoming arguments, changing them to copy into the
358  // IncomingReg register in the corresponding predecessor basic block.
359  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
360  for (int i = NumSrcs - 1; i >= 0; --i) {
361    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
362    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
363    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
364      isImplicitlyDefined(SrcReg, MRI);
365    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
366           "Machine PHI Operands must all be virtual registers!");
367
368    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
369    // path the PHI.
370    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
371
372    // Check to make sure we haven't already emitted the copy for this block.
373    // This can happen because PHI nodes may have multiple entries for the same
374    // basic block.
375    if (!MBBsInsertedInto.insert(&opBlock).second)
376      continue;  // If the copy has already been emitted, we're done.
377
378    // Find a safe location to insert the copy, this may be the first terminator
379    // in the block (or end()).
380    MachineBasicBlock::iterator InsertPos =
381      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
382
383    // Insert the copy.
384    MachineInstr *NewSrcInstr = nullptr;
385    if (!reusedIncoming && IncomingReg) {
386      if (SrcUndef) {
387        // The source register is undefined, so there is no need for a real
388        // COPY, but we still need to ensure joint dominance by defs.
389        // Insert an IMPLICIT_DEF instruction.
390        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
391                              TII->get(TargetOpcode::IMPLICIT_DEF),
392                              IncomingReg);
393
394        // Clean up the old implicit-def, if there even was one.
395        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
396          if (DefMI->isImplicitDef())
397            ImpDefs.insert(DefMI);
398      } else {
399        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
400                            TII->get(TargetOpcode::COPY), IncomingReg)
401                        .addReg(SrcReg, 0, SrcSubReg);
402      }
403    }
404
405    // We only need to update the LiveVariables kill of SrcReg if this was the
406    // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
407    // out of the predecessor. We can also ignore undef sources.
408    if (LV && !SrcUndef &&
409        !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
410        !LV->isLiveOut(SrcReg, opBlock)) {
411      // We want to be able to insert a kill of the register if this PHI (aka,
412      // the copy we just inserted) is the last use of the source value. Live
413      // variable analysis conservatively handles this by saying that the value
414      // is live until the end of the block the PHI entry lives in. If the value
415      // really is dead at the PHI copy, there will be no successor blocks which
416      // have the value live-in.
417
418      // Okay, if we now know that the value is not live out of the block, we
419      // can add a kill marker in this block saying that it kills the incoming
420      // value!
421
422      // In our final twist, we have to decide which instruction kills the
423      // register.  In most cases this is the copy, however, terminator
424      // instructions at the end of the block may also use the value. In this
425      // case, we should mark the last such terminator as being the killing
426      // block, not the copy.
427      MachineBasicBlock::iterator KillInst = opBlock.end();
428      MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
429      for (MachineBasicBlock::iterator Term = FirstTerm;
430          Term != opBlock.end(); ++Term) {
431        if (Term->readsRegister(SrcReg))
432          KillInst = Term;
433      }
434
435      if (KillInst == opBlock.end()) {
436        // No terminator uses the register.
437
438        if (reusedIncoming || !IncomingReg) {
439          // We may have to rewind a bit if we didn't insert a copy this time.
440          KillInst = FirstTerm;
441          while (KillInst != opBlock.begin()) {
442            --KillInst;
443            if (KillInst->isDebugValue())
444              continue;
445            if (KillInst->readsRegister(SrcReg))
446              break;
447          }
448        } else {
449          // We just inserted this copy.
450          KillInst = std::prev(InsertPos);
451        }
452      }
453      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
454
455      // Finally, mark it killed.
456      LV->addVirtualRegisterKilled(SrcReg, KillInst);
457
458      // This vreg no longer lives all of the way through opBlock.
459      unsigned opBlockNum = opBlock.getNumber();
460      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
461    }
462
463    if (LIS) {
464      if (NewSrcInstr) {
465        LIS->InsertMachineInstrInMaps(NewSrcInstr);
466        LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr);
467      }
468
469      if (!SrcUndef &&
470          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
471        LiveInterval &SrcLI = LIS->getInterval(SrcReg);
472
473        bool isLiveOut = false;
474        for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
475             SE = opBlock.succ_end(); SI != SE; ++SI) {
476          SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
477          VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
478
479          // Definitions by other PHIs are not truly live-in for our purposes.
480          if (VNI && VNI->def != startIdx) {
481            isLiveOut = true;
482            break;
483          }
484        }
485
486        if (!isLiveOut) {
487          MachineBasicBlock::iterator KillInst = opBlock.end();
488          MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
489          for (MachineBasicBlock::iterator Term = FirstTerm;
490              Term != opBlock.end(); ++Term) {
491            if (Term->readsRegister(SrcReg))
492              KillInst = Term;
493          }
494
495          if (KillInst == opBlock.end()) {
496            // No terminator uses the register.
497
498            if (reusedIncoming || !IncomingReg) {
499              // We may have to rewind a bit if we didn't just insert a copy.
500              KillInst = FirstTerm;
501              while (KillInst != opBlock.begin()) {
502                --KillInst;
503                if (KillInst->isDebugValue())
504                  continue;
505                if (KillInst->readsRegister(SrcReg))
506                  break;
507              }
508            } else {
509              // We just inserted this copy.
510              KillInst = std::prev(InsertPos);
511            }
512          }
513          assert(KillInst->readsRegister(SrcReg) &&
514                 "Cannot find kill instruction");
515
516          SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
517          SrcLI.removeSegment(LastUseIndex.getRegSlot(),
518                              LIS->getMBBEndIdx(&opBlock));
519        }
520      }
521    }
522  }
523
524  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
525  if (reusedIncoming || !IncomingReg) {
526    if (LIS)
527      LIS->RemoveMachineInstrFromMaps(MPhi);
528    MF.DeleteMachineInstr(MPhi);
529  }
530}
531
532/// analyzePHINodes - Gather information about the PHI nodes in here. In
533/// particular, we want to map the number of uses of a virtual register which is
534/// used in a PHI node. We map that to the BB the vreg is coming from. This is
535/// used later to determine when the vreg is killed in the BB.
536///
537void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
538  for (const auto &MBB : MF)
539    for (const auto &BBI : MBB) {
540      if (!BBI.isPHI())
541        break;
542      for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
543        ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
544                                     BBI.getOperand(i).getReg())];
545    }
546}
547
548bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
549                                   MachineBasicBlock &MBB,
550                                   MachineLoopInfo *MLI) {
551  if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
552    return false;   // Quick exit for basic blocks without PHIs.
553
554  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
555  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
556
557  bool Changed = false;
558  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
559       BBI != BBE && BBI->isPHI(); ++BBI) {
560    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
561      unsigned Reg = BBI->getOperand(i).getReg();
562      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
563      // Is there a critical edge from PreMBB to MBB?
564      if (PreMBB->succ_size() == 1)
565        continue;
566
567      // Avoid splitting backedges of loops. It would introduce small
568      // out-of-line blocks into the loop which is very bad for code placement.
569      if (PreMBB == &MBB && !SplitAllCriticalEdges)
570        continue;
571      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
572      if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
573        continue;
574
575      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
576      // when the source register is live-out for some other reason than a phi
577      // use. That means the copy we will insert in PreMBB won't be a kill, and
578      // there is a risk it may not be coalesced away.
579      //
580      // If the copy would be a kill, there is no need to split the edge.
581      bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
582      if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
583        continue;
584      if (ShouldSplit) {
585        DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
586                     << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
587                     << ": " << *BBI);
588      }
589
590      // If Reg is not live-in to MBB, it means it must be live-in to some
591      // other PreMBB successor, and we can avoid the interference by splitting
592      // the edge.
593      //
594      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
595      // is likely to be left after coalescing. If we are looking at a loop
596      // exiting edge, split it so we won't insert code in the loop, otherwise
597      // don't bother.
598      ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
599
600      // Check for a loop exiting edge.
601      if (!ShouldSplit && CurLoop != PreLoop) {
602        DEBUG({
603          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
604          if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
605          if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
606        });
607        // This edge could be entering a loop, exiting a loop, or it could be
608        // both: Jumping directly form one loop to the header of a sibling
609        // loop.
610        // Split unless this edge is entering CurLoop from an outer loop.
611        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
612      }
613      if (!ShouldSplit && !SplitAllCriticalEdges)
614        continue;
615      if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
616        DEBUG(dbgs() << "Failed to split critical edge.\n");
617        continue;
618      }
619      Changed = true;
620      ++NumCriticalEdgesSplit;
621    }
622  }
623  return Changed;
624}
625
626bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
627  assert((LV || LIS) &&
628         "isLiveIn() requires either LiveVariables or LiveIntervals");
629  if (LIS)
630    return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
631  else
632    return LV->isLiveIn(Reg, *MBB);
633}
634
635bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
636                                       const MachineBasicBlock *MBB) {
637  assert((LV || LIS) &&
638         "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
639  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
640  // so that a register used only in a PHI is not live out of the block. In
641  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
642  // in the predecessor basic block, so that a register used only in a PHI is live
643  // out of the block.
644  if (LIS) {
645    const LiveInterval &LI = LIS->getInterval(Reg);
646    for (const MachineBasicBlock *SI : MBB->successors())
647      if (LI.liveAt(LIS->getMBBStartIdx(SI)))
648        return true;
649    return false;
650  } else {
651    return LV->isLiveOut(Reg, *MBB);
652  }
653}
654