1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This pass eliminates machine instruction PHI nodes by inserting copy 11// instructions. This destroys SSA information, but is the desired input for 12// some register allocators. 13// 14//===----------------------------------------------------------------------===// 15 16#include "llvm/CodeGen/Passes.h" 17#include "PHIEliminationUtils.h" 18#include "llvm/ADT/STLExtras.h" 19#include "llvm/ADT/SmallPtrSet.h" 20#include "llvm/ADT/Statistic.h" 21#include "llvm/CodeGen/LiveIntervalAnalysis.h" 22#include "llvm/CodeGen/LiveVariables.h" 23#include "llvm/CodeGen/MachineDominators.h" 24#include "llvm/CodeGen/MachineInstr.h" 25#include "llvm/CodeGen/MachineInstrBuilder.h" 26#include "llvm/CodeGen/MachineLoopInfo.h" 27#include "llvm/CodeGen/MachineRegisterInfo.h" 28#include "llvm/IR/Function.h" 29#include "llvm/Support/CommandLine.h" 30#include "llvm/Support/Compiler.h" 31#include "llvm/Support/Debug.h" 32#include "llvm/Support/raw_ostream.h" 33#include "llvm/Target/TargetInstrInfo.h" 34#include "llvm/Target/TargetSubtargetInfo.h" 35#include <algorithm> 36using namespace llvm; 37 38#define DEBUG_TYPE "phielim" 39 40static cl::opt<bool> 41DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 42 cl::Hidden, cl::desc("Disable critical edge splitting " 43 "during PHI elimination")); 44 45static cl::opt<bool> 46SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 47 cl::Hidden, cl::desc("Split all critical edges during " 48 "PHI elimination")); 49 50static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 51 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 52 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 53 54namespace { 55 class PHIElimination : public MachineFunctionPass { 56 MachineRegisterInfo *MRI; // Machine register information 57 LiveVariables *LV; 58 LiveIntervals *LIS; 59 60 public: 61 static char ID; // Pass identification, replacement for typeid 62 PHIElimination() : MachineFunctionPass(ID) { 63 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 64 } 65 66 bool runOnMachineFunction(MachineFunction &Fn) override; 67 void getAnalysisUsage(AnalysisUsage &AU) const override; 68 69 private: 70 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 71 /// in predecessor basic blocks. 72 /// 73 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 74 void LowerPHINode(MachineBasicBlock &MBB, 75 MachineBasicBlock::iterator LastPHIIt); 76 77 /// analyzePHINodes - Gather information about the PHI nodes in 78 /// here. In particular, we want to map the number of uses of a virtual 79 /// register which is used in a PHI node. We map that to the BB the 80 /// vreg is coming from. This is used later to determine when the vreg 81 /// is killed in the BB. 82 /// 83 void analyzePHINodes(const MachineFunction& Fn); 84 85 /// Split critical edges where necessary for good coalescer performance. 86 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 87 MachineLoopInfo *MLI); 88 89 // These functions are temporary abstractions around LiveVariables and 90 // LiveIntervals, so they can go away when LiveVariables does. 91 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB); 92 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB); 93 94 typedef std::pair<unsigned, unsigned> BBVRegPair; 95 typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse; 96 97 VRegPHIUse VRegPHIUseCount; 98 99 // Defs of PHI sources which are implicit_def. 100 SmallPtrSet<MachineInstr*, 4> ImpDefs; 101 102 // Map reusable lowered PHI node -> incoming join register. 103 typedef DenseMap<MachineInstr*, unsigned, 104 MachineInstrExpressionTrait> LoweredPHIMap; 105 LoweredPHIMap LoweredPHIs; 106 }; 107} 108 109STATISTIC(NumLowered, "Number of phis lowered"); 110STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 111STATISTIC(NumReused, "Number of reused lowered phis"); 112 113char PHIElimination::ID = 0; 114char& llvm::PHIEliminationID = PHIElimination::ID; 115 116INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination", 117 "Eliminate PHI nodes for register allocation", 118 false, false) 119INITIALIZE_PASS_DEPENDENCY(LiveVariables) 120INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination", 121 "Eliminate PHI nodes for register allocation", false, false) 122 123void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 124 AU.addPreserved<LiveVariables>(); 125 AU.addPreserved<SlotIndexes>(); 126 AU.addPreserved<LiveIntervals>(); 127 AU.addPreserved<MachineDominatorTree>(); 128 AU.addPreserved<MachineLoopInfo>(); 129 MachineFunctionPass::getAnalysisUsage(AU); 130} 131 132bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 133 MRI = &MF.getRegInfo(); 134 LV = getAnalysisIfAvailable<LiveVariables>(); 135 LIS = getAnalysisIfAvailable<LiveIntervals>(); 136 137 bool Changed = false; 138 139 // This pass takes the function out of SSA form. 140 MRI->leaveSSA(); 141 142 // Split critical edges to help the coalescer. This does not yet support 143 // updating LiveIntervals, so we disable it. 144 if (!DisableEdgeSplitting && (LV || LIS)) { 145 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 146 for (auto &MBB : MF) 147 Changed |= SplitPHIEdges(MF, MBB, MLI); 148 } 149 150 // Populate VRegPHIUseCount 151 analyzePHINodes(MF); 152 153 // Eliminate PHI instructions by inserting copies into predecessor blocks. 154 for (auto &MBB : MF) 155 Changed |= EliminatePHINodes(MF, MBB); 156 157 // Remove dead IMPLICIT_DEF instructions. 158 for (MachineInstr *DefMI : ImpDefs) { 159 unsigned DefReg = DefMI->getOperand(0).getReg(); 160 if (MRI->use_nodbg_empty(DefReg)) { 161 if (LIS) 162 LIS->RemoveMachineInstrFromMaps(DefMI); 163 DefMI->eraseFromParent(); 164 } 165 } 166 167 // Clean up the lowered PHI instructions. 168 for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end(); 169 I != E; ++I) { 170 if (LIS) 171 LIS->RemoveMachineInstrFromMaps(I->first); 172 MF.DeleteMachineInstr(I->first); 173 } 174 175 LoweredPHIs.clear(); 176 ImpDefs.clear(); 177 VRegPHIUseCount.clear(); 178 179 return Changed; 180} 181 182/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 183/// predecessor basic blocks. 184/// 185bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 186 MachineBasicBlock &MBB) { 187 if (MBB.empty() || !MBB.front().isPHI()) 188 return false; // Quick exit for basic blocks without PHIs. 189 190 // Get an iterator to the first instruction after the last PHI node (this may 191 // also be the end of the basic block). 192 MachineBasicBlock::iterator LastPHIIt = 193 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 194 195 while (MBB.front().isPHI()) 196 LowerPHINode(MBB, LastPHIIt); 197 198 return true; 199} 200 201/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs. 202/// This includes registers with no defs. 203static bool isImplicitlyDefined(unsigned VirtReg, 204 const MachineRegisterInfo *MRI) { 205 for (MachineInstr &DI : MRI->def_instructions(VirtReg)) 206 if (!DI.isImplicitDef()) 207 return false; 208 return true; 209} 210 211/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node 212/// are implicit_def's. 213static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, 214 const MachineRegisterInfo *MRI) { 215 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 216 if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI)) 217 return false; 218 return true; 219} 220 221 222/// LowerPHINode - Lower the PHI node at the top of the specified block, 223/// 224void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 225 MachineBasicBlock::iterator LastPHIIt) { 226 ++NumLowered; 227 228 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 229 230 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 231 MachineInstr *MPhi = MBB.remove(MBB.begin()); 232 233 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 234 unsigned DestReg = MPhi->getOperand(0).getReg(); 235 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 236 bool isDead = MPhi->getOperand(0).isDead(); 237 238 // Create a new register for the incoming PHI arguments. 239 MachineFunction &MF = *MBB.getParent(); 240 unsigned IncomingReg = 0; 241 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 242 243 // Insert a register to register copy at the top of the current block (but 244 // after any remaining phi nodes) which copies the new incoming register 245 // into the phi node destination. 246 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 247 if (isSourceDefinedByImplicitDef(MPhi, MRI)) 248 // If all sources of a PHI node are implicit_def, just emit an 249 // implicit_def instead of a copy. 250 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 251 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 252 else { 253 // Can we reuse an earlier PHI node? This only happens for critical edges, 254 // typically those created by tail duplication. 255 unsigned &entry = LoweredPHIs[MPhi]; 256 if (entry) { 257 // An identical PHI node was already lowered. Reuse the incoming register. 258 IncomingReg = entry; 259 reusedIncoming = true; 260 ++NumReused; 261 DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); 262 } else { 263 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 264 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 265 } 266 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 267 TII->get(TargetOpcode::COPY), DestReg) 268 .addReg(IncomingReg); 269 } 270 271 // Update live variable information if there is any. 272 if (LV) { 273 MachineInstr *PHICopy = std::prev(AfterPHIsIt); 274 275 if (IncomingReg) { 276 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 277 278 // Increment use count of the newly created virtual register. 279 LV->setPHIJoin(IncomingReg); 280 281 // When we are reusing the incoming register, it may already have been 282 // killed in this block. The old kill will also have been inserted at 283 // AfterPHIsIt, so it appears before the current PHICopy. 284 if (reusedIncoming) 285 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 286 DEBUG(dbgs() << "Remove old kill from " << *OldKill); 287 LV->removeVirtualRegisterKilled(IncomingReg, OldKill); 288 DEBUG(MBB.dump()); 289 } 290 291 // Add information to LiveVariables to know that the incoming value is 292 // killed. Note that because the value is defined in several places (once 293 // each for each incoming block), the "def" block and instruction fields 294 // for the VarInfo is not filled in. 295 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 296 } 297 298 // Since we are going to be deleting the PHI node, if it is the last use of 299 // any registers, or if the value itself is dead, we need to move this 300 // information over to the new copy we just inserted. 301 LV->removeVirtualRegistersKilled(MPhi); 302 303 // If the result is dead, update LV. 304 if (isDead) { 305 LV->addVirtualRegisterDead(DestReg, PHICopy); 306 LV->removeVirtualRegisterDead(DestReg, MPhi); 307 } 308 } 309 310 // Update LiveIntervals for the new copy or implicit def. 311 if (LIS) { 312 MachineInstr *NewInstr = std::prev(AfterPHIsIt); 313 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr); 314 315 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 316 if (IncomingReg) { 317 // Add the region from the beginning of MBB to the copy instruction to 318 // IncomingReg's live interval. 319 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 320 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 321 if (!IncomingVNI) 322 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 323 LIS->getVNInfoAllocator()); 324 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 325 DestCopyIndex.getRegSlot(), 326 IncomingVNI)); 327 } 328 329 LiveInterval &DestLI = LIS->getInterval(DestReg); 330 assert(DestLI.begin() != DestLI.end() && 331 "PHIs should have nonempty LiveIntervals."); 332 if (DestLI.endIndex().isDead()) { 333 // A dead PHI's live range begins and ends at the start of the MBB, but 334 // the lowered copy, which will still be dead, needs to begin and end at 335 // the copy instruction. 336 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 337 assert(OrigDestVNI && "PHI destination should be live at block entry."); 338 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 339 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 340 LIS->getVNInfoAllocator()); 341 DestLI.removeValNo(OrigDestVNI); 342 } else { 343 // Otherwise, remove the region from the beginning of MBB to the copy 344 // instruction from DestReg's live interval. 345 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 346 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 347 assert(DestVNI && "PHI destination should be live at its definition."); 348 DestVNI->def = DestCopyIndex.getRegSlot(); 349 } 350 } 351 352 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 353 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 354 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 355 MPhi->getOperand(i).getReg())]; 356 357 // Now loop over all of the incoming arguments, changing them to copy into the 358 // IncomingReg register in the corresponding predecessor basic block. 359 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 360 for (int i = NumSrcs - 1; i >= 0; --i) { 361 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 362 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 363 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 364 isImplicitlyDefined(SrcReg, MRI); 365 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 366 "Machine PHI Operands must all be virtual registers!"); 367 368 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 369 // path the PHI. 370 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 371 372 // Check to make sure we haven't already emitted the copy for this block. 373 // This can happen because PHI nodes may have multiple entries for the same 374 // basic block. 375 if (!MBBsInsertedInto.insert(&opBlock).second) 376 continue; // If the copy has already been emitted, we're done. 377 378 // Find a safe location to insert the copy, this may be the first terminator 379 // in the block (or end()). 380 MachineBasicBlock::iterator InsertPos = 381 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 382 383 // Insert the copy. 384 MachineInstr *NewSrcInstr = nullptr; 385 if (!reusedIncoming && IncomingReg) { 386 if (SrcUndef) { 387 // The source register is undefined, so there is no need for a real 388 // COPY, but we still need to ensure joint dominance by defs. 389 // Insert an IMPLICIT_DEF instruction. 390 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 391 TII->get(TargetOpcode::IMPLICIT_DEF), 392 IncomingReg); 393 394 // Clean up the old implicit-def, if there even was one. 395 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 396 if (DefMI->isImplicitDef()) 397 ImpDefs.insert(DefMI); 398 } else { 399 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 400 TII->get(TargetOpcode::COPY), IncomingReg) 401 .addReg(SrcReg, 0, SrcSubReg); 402 } 403 } 404 405 // We only need to update the LiveVariables kill of SrcReg if this was the 406 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 407 // out of the predecessor. We can also ignore undef sources. 408 if (LV && !SrcUndef && 409 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 410 !LV->isLiveOut(SrcReg, opBlock)) { 411 // We want to be able to insert a kill of the register if this PHI (aka, 412 // the copy we just inserted) is the last use of the source value. Live 413 // variable analysis conservatively handles this by saying that the value 414 // is live until the end of the block the PHI entry lives in. If the value 415 // really is dead at the PHI copy, there will be no successor blocks which 416 // have the value live-in. 417 418 // Okay, if we now know that the value is not live out of the block, we 419 // can add a kill marker in this block saying that it kills the incoming 420 // value! 421 422 // In our final twist, we have to decide which instruction kills the 423 // register. In most cases this is the copy, however, terminator 424 // instructions at the end of the block may also use the value. In this 425 // case, we should mark the last such terminator as being the killing 426 // block, not the copy. 427 MachineBasicBlock::iterator KillInst = opBlock.end(); 428 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 429 for (MachineBasicBlock::iterator Term = FirstTerm; 430 Term != opBlock.end(); ++Term) { 431 if (Term->readsRegister(SrcReg)) 432 KillInst = Term; 433 } 434 435 if (KillInst == opBlock.end()) { 436 // No terminator uses the register. 437 438 if (reusedIncoming || !IncomingReg) { 439 // We may have to rewind a bit if we didn't insert a copy this time. 440 KillInst = FirstTerm; 441 while (KillInst != opBlock.begin()) { 442 --KillInst; 443 if (KillInst->isDebugValue()) 444 continue; 445 if (KillInst->readsRegister(SrcReg)) 446 break; 447 } 448 } else { 449 // We just inserted this copy. 450 KillInst = std::prev(InsertPos); 451 } 452 } 453 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 454 455 // Finally, mark it killed. 456 LV->addVirtualRegisterKilled(SrcReg, KillInst); 457 458 // This vreg no longer lives all of the way through opBlock. 459 unsigned opBlockNum = opBlock.getNumber(); 460 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 461 } 462 463 if (LIS) { 464 if (NewSrcInstr) { 465 LIS->InsertMachineInstrInMaps(NewSrcInstr); 466 LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr); 467 } 468 469 if (!SrcUndef && 470 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 471 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 472 473 bool isLiveOut = false; 474 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 475 SE = opBlock.succ_end(); SI != SE; ++SI) { 476 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 477 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 478 479 // Definitions by other PHIs are not truly live-in for our purposes. 480 if (VNI && VNI->def != startIdx) { 481 isLiveOut = true; 482 break; 483 } 484 } 485 486 if (!isLiveOut) { 487 MachineBasicBlock::iterator KillInst = opBlock.end(); 488 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 489 for (MachineBasicBlock::iterator Term = FirstTerm; 490 Term != opBlock.end(); ++Term) { 491 if (Term->readsRegister(SrcReg)) 492 KillInst = Term; 493 } 494 495 if (KillInst == opBlock.end()) { 496 // No terminator uses the register. 497 498 if (reusedIncoming || !IncomingReg) { 499 // We may have to rewind a bit if we didn't just insert a copy. 500 KillInst = FirstTerm; 501 while (KillInst != opBlock.begin()) { 502 --KillInst; 503 if (KillInst->isDebugValue()) 504 continue; 505 if (KillInst->readsRegister(SrcReg)) 506 break; 507 } 508 } else { 509 // We just inserted this copy. 510 KillInst = std::prev(InsertPos); 511 } 512 } 513 assert(KillInst->readsRegister(SrcReg) && 514 "Cannot find kill instruction"); 515 516 SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst); 517 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 518 LIS->getMBBEndIdx(&opBlock)); 519 } 520 } 521 } 522 } 523 524 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 525 if (reusedIncoming || !IncomingReg) { 526 if (LIS) 527 LIS->RemoveMachineInstrFromMaps(MPhi); 528 MF.DeleteMachineInstr(MPhi); 529 } 530} 531 532/// analyzePHINodes - Gather information about the PHI nodes in here. In 533/// particular, we want to map the number of uses of a virtual register which is 534/// used in a PHI node. We map that to the BB the vreg is coming from. This is 535/// used later to determine when the vreg is killed in the BB. 536/// 537void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 538 for (const auto &MBB : MF) 539 for (const auto &BBI : MBB) { 540 if (!BBI.isPHI()) 541 break; 542 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) 543 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), 544 BBI.getOperand(i).getReg())]; 545 } 546} 547 548bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 549 MachineBasicBlock &MBB, 550 MachineLoopInfo *MLI) { 551 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 552 return false; // Quick exit for basic blocks without PHIs. 553 554 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 555 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 556 557 bool Changed = false; 558 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 559 BBI != BBE && BBI->isPHI(); ++BBI) { 560 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 561 unsigned Reg = BBI->getOperand(i).getReg(); 562 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 563 // Is there a critical edge from PreMBB to MBB? 564 if (PreMBB->succ_size() == 1) 565 continue; 566 567 // Avoid splitting backedges of loops. It would introduce small 568 // out-of-line blocks into the loop which is very bad for code placement. 569 if (PreMBB == &MBB && !SplitAllCriticalEdges) 570 continue; 571 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 572 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 573 continue; 574 575 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 576 // when the source register is live-out for some other reason than a phi 577 // use. That means the copy we will insert in PreMBB won't be a kill, and 578 // there is a risk it may not be coalesced away. 579 // 580 // If the copy would be a kill, there is no need to split the edge. 581 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 582 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 583 continue; 584 if (ShouldSplit) { 585 DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#" 586 << PreMBB->getNumber() << " -> BB#" << MBB.getNumber() 587 << ": " << *BBI); 588 } 589 590 // If Reg is not live-in to MBB, it means it must be live-in to some 591 // other PreMBB successor, and we can avoid the interference by splitting 592 // the edge. 593 // 594 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 595 // is likely to be left after coalescing. If we are looking at a loop 596 // exiting edge, split it so we won't insert code in the loop, otherwise 597 // don't bother. 598 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 599 600 // Check for a loop exiting edge. 601 if (!ShouldSplit && CurLoop != PreLoop) { 602 DEBUG({ 603 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 604 if (PreLoop) dbgs() << "PreLoop: " << *PreLoop; 605 if (CurLoop) dbgs() << "CurLoop: " << *CurLoop; 606 }); 607 // This edge could be entering a loop, exiting a loop, or it could be 608 // both: Jumping directly form one loop to the header of a sibling 609 // loop. 610 // Split unless this edge is entering CurLoop from an outer loop. 611 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 612 } 613 if (!ShouldSplit && !SplitAllCriticalEdges) 614 continue; 615 if (!PreMBB->SplitCriticalEdge(&MBB, this)) { 616 DEBUG(dbgs() << "Failed to split critical edge.\n"); 617 continue; 618 } 619 Changed = true; 620 ++NumCriticalEdgesSplit; 621 } 622 } 623 return Changed; 624} 625 626bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) { 627 assert((LV || LIS) && 628 "isLiveIn() requires either LiveVariables or LiveIntervals"); 629 if (LIS) 630 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 631 else 632 return LV->isLiveIn(Reg, *MBB); 633} 634 635bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, 636 const MachineBasicBlock *MBB) { 637 assert((LV || LIS) && 638 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 639 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 640 // so that a register used only in a PHI is not live out of the block. In 641 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 642 // in the predecessor basic block, so that a register used only in a PHI is live 643 // out of the block. 644 if (LIS) { 645 const LiveInterval &LI = LIS->getInterval(Reg); 646 for (const MachineBasicBlock *SI : MBB->successors()) 647 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 648 return true; 649 return false; 650 } else { 651 return LV->isLiveOut(Reg, *MBB); 652 } 653} 654