1//===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass combines dag nodes to form fewer, simpler DAG nodes.  It can be run
11// both before and after the DAG is legalized.
12//
13// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
14// primarily intended to handle simplification opportunities that are implicit
15// in the LLVM IR and exposed by the various codegen lowering phases.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallBitVector.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetLowering.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetSubtargetInfo.h"
40#include <algorithm>
41using namespace llvm;
42
43#define DEBUG_TYPE "dagcombine"
44
45STATISTIC(NodesCombined   , "Number of dag nodes combined");
46STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
47STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
48STATISTIC(OpsNarrowed     , "Number of load/op/store narrowed");
49STATISTIC(LdStFP2Int      , "Number of fp load/store pairs transformed to int");
50STATISTIC(SlicedLoads, "Number of load sliced");
51
52namespace {
53  static cl::opt<bool>
54    CombinerAA("combiner-alias-analysis", cl::Hidden,
55               cl::desc("Enable DAG combiner alias-analysis heuristics"));
56
57  static cl::opt<bool>
58    CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
59               cl::desc("Enable DAG combiner's use of IR alias analysis"));
60
61  static cl::opt<bool>
62    UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
63               cl::desc("Enable DAG combiner's use of TBAA"));
64
65#ifndef NDEBUG
66  static cl::opt<std::string>
67    CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
68               cl::desc("Only use DAG-combiner alias analysis in this"
69                        " function"));
70#endif
71
72  /// Hidden option to stress test load slicing, i.e., when this option
73  /// is enabled, load slicing bypasses most of its profitability guards.
74  static cl::opt<bool>
75  StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
76                    cl::desc("Bypass the profitability model of load "
77                             "slicing"),
78                    cl::init(false));
79
80  static cl::opt<bool>
81    MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
82                      cl::desc("DAG combiner may split indexing from loads"));
83
84//------------------------------ DAGCombiner ---------------------------------//
85
86  class DAGCombiner {
87    SelectionDAG &DAG;
88    const TargetLowering &TLI;
89    CombineLevel Level;
90    CodeGenOpt::Level OptLevel;
91    bool LegalOperations;
92    bool LegalTypes;
93    bool ForCodeSize;
94
95    /// \brief Worklist of all of the nodes that need to be simplified.
96    ///
97    /// This must behave as a stack -- new nodes to process are pushed onto the
98    /// back and when processing we pop off of the back.
99    ///
100    /// The worklist will not contain duplicates but may contain null entries
101    /// due to nodes being deleted from the underlying DAG.
102    SmallVector<SDNode *, 64> Worklist;
103
104    /// \brief Mapping from an SDNode to its position on the worklist.
105    ///
106    /// This is used to find and remove nodes from the worklist (by nulling
107    /// them) when they are deleted from the underlying DAG. It relies on
108    /// stable indices of nodes within the worklist.
109    DenseMap<SDNode *, unsigned> WorklistMap;
110
111    /// \brief Set of nodes which have been combined (at least once).
112    ///
113    /// This is used to allow us to reliably add any operands of a DAG node
114    /// which have not yet been combined to the worklist.
115    SmallPtrSet<SDNode *, 64> CombinedNodes;
116
117    // AA - Used for DAG load/store alias analysis.
118    AliasAnalysis &AA;
119
120    /// When an instruction is simplified, add all users of the instruction to
121    /// the work lists because they might get more simplified now.
122    void AddUsersToWorklist(SDNode *N) {
123      for (SDNode *Node : N->uses())
124        AddToWorklist(Node);
125    }
126
127    /// Call the node-specific routine that folds each particular type of node.
128    SDValue visit(SDNode *N);
129
130  public:
131    /// Add to the worklist making sure its instance is at the back (next to be
132    /// processed.)
133    void AddToWorklist(SDNode *N) {
134      // Skip handle nodes as they can't usefully be combined and confuse the
135      // zero-use deletion strategy.
136      if (N->getOpcode() == ISD::HANDLENODE)
137        return;
138
139      if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
140        Worklist.push_back(N);
141    }
142
143    /// Remove all instances of N from the worklist.
144    void removeFromWorklist(SDNode *N) {
145      CombinedNodes.erase(N);
146
147      auto It = WorklistMap.find(N);
148      if (It == WorklistMap.end())
149        return; // Not in the worklist.
150
151      // Null out the entry rather than erasing it to avoid a linear operation.
152      Worklist[It->second] = nullptr;
153      WorklistMap.erase(It);
154    }
155
156    void deleteAndRecombine(SDNode *N);
157    bool recursivelyDeleteUnusedNodes(SDNode *N);
158
159    /// Replaces all uses of the results of one DAG node with new values.
160    SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
161                      bool AddTo = true);
162
163    /// Replaces all uses of the results of one DAG node with new values.
164    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
165      return CombineTo(N, &Res, 1, AddTo);
166    }
167
168    /// Replaces all uses of the results of one DAG node with new values.
169    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
170                      bool AddTo = true) {
171      SDValue To[] = { Res0, Res1 };
172      return CombineTo(N, To, 2, AddTo);
173    }
174
175    void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
176
177  private:
178
179    /// Check the specified integer node value to see if it can be simplified or
180    /// if things it uses can be simplified by bit propagation.
181    /// If so, return true.
182    bool SimplifyDemandedBits(SDValue Op) {
183      unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
184      APInt Demanded = APInt::getAllOnesValue(BitWidth);
185      return SimplifyDemandedBits(Op, Demanded);
186    }
187
188    bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);
189
190    bool CombineToPreIndexedLoadStore(SDNode *N);
191    bool CombineToPostIndexedLoadStore(SDNode *N);
192    SDValue SplitIndexingFromLoad(LoadSDNode *LD);
193    bool SliceUpLoad(SDNode *N);
194
195    /// \brief Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
196    ///   load.
197    ///
198    /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
199    /// \param InVecVT type of the input vector to EVE with bitcasts resolved.
200    /// \param EltNo index of the vector element to load.
201    /// \param OriginalLoad load that EVE came from to be replaced.
202    /// \returns EVE on success SDValue() on failure.
203    SDValue ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
204        SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad);
205    void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
206    SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
207    SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
208    SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
209    SDValue PromoteIntBinOp(SDValue Op);
210    SDValue PromoteIntShiftOp(SDValue Op);
211    SDValue PromoteExtend(SDValue Op);
212    bool PromoteLoad(SDValue Op);
213
214    void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
215                         SDValue Trunc, SDValue ExtLoad, SDLoc DL,
216                         ISD::NodeType ExtType);
217
218    /// Call the node-specific routine that knows how to fold each
219    /// particular type of node. If that doesn't do anything, try the
220    /// target-specific DAG combines.
221    SDValue combine(SDNode *N);
222
223    // Visitation implementation - Implement dag node combining for different
224    // node types.  The semantics are as follows:
225    // Return Value:
226    //   SDValue.getNode() == 0 - No change was made
227    //   SDValue.getNode() == N - N was replaced, is dead and has been handled.
228    //   otherwise              - N should be replaced by the returned Operand.
229    //
230    SDValue visitTokenFactor(SDNode *N);
231    SDValue visitMERGE_VALUES(SDNode *N);
232    SDValue visitADD(SDNode *N);
233    SDValue visitSUB(SDNode *N);
234    SDValue visitADDC(SDNode *N);
235    SDValue visitSUBC(SDNode *N);
236    SDValue visitADDE(SDNode *N);
237    SDValue visitSUBE(SDNode *N);
238    SDValue visitMUL(SDNode *N);
239    SDValue useDivRem(SDNode *N);
240    SDValue visitSDIV(SDNode *N);
241    SDValue visitUDIV(SDNode *N);
242    SDValue visitREM(SDNode *N);
243    SDValue visitMULHU(SDNode *N);
244    SDValue visitMULHS(SDNode *N);
245    SDValue visitSMUL_LOHI(SDNode *N);
246    SDValue visitUMUL_LOHI(SDNode *N);
247    SDValue visitSMULO(SDNode *N);
248    SDValue visitUMULO(SDNode *N);
249    SDValue visitIMINMAX(SDNode *N);
250    SDValue visitAND(SDNode *N);
251    SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *LocReference);
252    SDValue visitOR(SDNode *N);
253    SDValue visitORLike(SDValue N0, SDValue N1, SDNode *LocReference);
254    SDValue visitXOR(SDNode *N);
255    SDValue SimplifyVBinOp(SDNode *N);
256    SDValue visitSHL(SDNode *N);
257    SDValue visitSRA(SDNode *N);
258    SDValue visitSRL(SDNode *N);
259    SDValue visitRotate(SDNode *N);
260    SDValue visitBSWAP(SDNode *N);
261    SDValue visitCTLZ(SDNode *N);
262    SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
263    SDValue visitCTTZ(SDNode *N);
264    SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
265    SDValue visitCTPOP(SDNode *N);
266    SDValue visitSELECT(SDNode *N);
267    SDValue visitVSELECT(SDNode *N);
268    SDValue visitSELECT_CC(SDNode *N);
269    SDValue visitSETCC(SDNode *N);
270    SDValue visitSETCCE(SDNode *N);
271    SDValue visitSIGN_EXTEND(SDNode *N);
272    SDValue visitZERO_EXTEND(SDNode *N);
273    SDValue visitANY_EXTEND(SDNode *N);
274    SDValue visitSIGN_EXTEND_INREG(SDNode *N);
275    SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N);
276    SDValue visitTRUNCATE(SDNode *N);
277    SDValue visitBITCAST(SDNode *N);
278    SDValue visitBUILD_PAIR(SDNode *N);
279    SDValue visitFADD(SDNode *N);
280    SDValue visitFSUB(SDNode *N);
281    SDValue visitFMUL(SDNode *N);
282    SDValue visitFMA(SDNode *N);
283    SDValue visitFDIV(SDNode *N);
284    SDValue visitFREM(SDNode *N);
285    SDValue visitFSQRT(SDNode *N);
286    SDValue visitFCOPYSIGN(SDNode *N);
287    SDValue visitSINT_TO_FP(SDNode *N);
288    SDValue visitUINT_TO_FP(SDNode *N);
289    SDValue visitFP_TO_SINT(SDNode *N);
290    SDValue visitFP_TO_UINT(SDNode *N);
291    SDValue visitFP_ROUND(SDNode *N);
292    SDValue visitFP_ROUND_INREG(SDNode *N);
293    SDValue visitFP_EXTEND(SDNode *N);
294    SDValue visitFNEG(SDNode *N);
295    SDValue visitFABS(SDNode *N);
296    SDValue visitFCEIL(SDNode *N);
297    SDValue visitFTRUNC(SDNode *N);
298    SDValue visitFFLOOR(SDNode *N);
299    SDValue visitFMINNUM(SDNode *N);
300    SDValue visitFMAXNUM(SDNode *N);
301    SDValue visitBRCOND(SDNode *N);
302    SDValue visitBR_CC(SDNode *N);
303    SDValue visitLOAD(SDNode *N);
304
305    SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
306    SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
307
308    SDValue visitSTORE(SDNode *N);
309    SDValue visitINSERT_VECTOR_ELT(SDNode *N);
310    SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
311    SDValue visitBUILD_VECTOR(SDNode *N);
312    SDValue visitCONCAT_VECTORS(SDNode *N);
313    SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
314    SDValue visitVECTOR_SHUFFLE(SDNode *N);
315    SDValue visitSCALAR_TO_VECTOR(SDNode *N);
316    SDValue visitINSERT_SUBVECTOR(SDNode *N);
317    SDValue visitMLOAD(SDNode *N);
318    SDValue visitMSTORE(SDNode *N);
319    SDValue visitMGATHER(SDNode *N);
320    SDValue visitMSCATTER(SDNode *N);
321    SDValue visitFP_TO_FP16(SDNode *N);
322    SDValue visitFP16_TO_FP(SDNode *N);
323
324    SDValue visitFADDForFMACombine(SDNode *N);
325    SDValue visitFSUBForFMACombine(SDNode *N);
326    SDValue visitFMULForFMACombine(SDNode *N);
327
328    SDValue XformToShuffleWithZero(SDNode *N);
329    SDValue ReassociateOps(unsigned Opc, SDLoc DL, SDValue LHS, SDValue RHS);
330
331    SDValue visitShiftByConstant(SDNode *N, ConstantSDNode *Amt);
332
333    bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
334    SDValue SimplifyBinOpWithSameOpcodeHands(SDNode *N);
335    SDValue SimplifySelect(SDLoc DL, SDValue N0, SDValue N1, SDValue N2);
336    SDValue SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1, SDValue N2,
337                             SDValue N3, ISD::CondCode CC,
338                             bool NotExtCompare = false);
339    SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
340                          SDLoc DL, bool foldBooleans = true);
341
342    bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
343                           SDValue &CC) const;
344    bool isOneUseSetCC(SDValue N) const;
345
346    SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
347                                         unsigned HiOp);
348    SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
349    SDValue CombineExtLoad(SDNode *N);
350    SDValue combineRepeatedFPDivisors(SDNode *N);
351    SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
352    SDValue BuildSDIV(SDNode *N);
353    SDValue BuildSDIVPow2(SDNode *N);
354    SDValue BuildUDIV(SDNode *N);
355    SDValue BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags);
356    SDValue BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags);
357    SDValue BuildRsqrtNROneConst(SDValue Op, SDValue Est, unsigned Iterations,
358                                 SDNodeFlags *Flags);
359    SDValue BuildRsqrtNRTwoConst(SDValue Op, SDValue Est, unsigned Iterations,
360                                 SDNodeFlags *Flags);
361    SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
362                               bool DemandHighBits = true);
363    SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
364    SDNode *MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
365                              SDValue InnerPos, SDValue InnerNeg,
366                              unsigned PosOpcode, unsigned NegOpcode,
367                              SDLoc DL);
368    SDNode *MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL);
369    SDValue ReduceLoadWidth(SDNode *N);
370    SDValue ReduceLoadOpStoreWidth(SDNode *N);
371    SDValue TransformFPLoadStorePair(SDNode *N);
372    SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
373    SDValue reduceBuildVecConvertToConvertBuildVec(SDNode *N);
374
375    SDValue GetDemandedBits(SDValue V, const APInt &Mask);
376
377    /// Walk up chain skipping non-aliasing memory nodes,
378    /// looking for aliasing nodes and adding them to the Aliases vector.
379    void GatherAllAliases(SDNode *N, SDValue OriginalChain,
380                          SmallVectorImpl<SDValue> &Aliases);
381
382    /// Return true if there is any possibility that the two addresses overlap.
383    bool isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const;
384
385    /// Walk up chain skipping non-aliasing memory nodes, looking for a better
386    /// chain (aliasing node.)
387    SDValue FindBetterChain(SDNode *N, SDValue Chain);
388
389    /// Do FindBetterChain for a store and any possibly adjacent stores on
390    /// consecutive chains.
391    bool findBetterNeighborChains(StoreSDNode *St);
392
393    /// Holds a pointer to an LSBaseSDNode as well as information on where it
394    /// is located in a sequence of memory operations connected by a chain.
395    struct MemOpLink {
396      MemOpLink (LSBaseSDNode *N, int64_t Offset, unsigned Seq):
397      MemNode(N), OffsetFromBase(Offset), SequenceNum(Seq) { }
398      // Ptr to the mem node.
399      LSBaseSDNode *MemNode;
400      // Offset from the base ptr.
401      int64_t OffsetFromBase;
402      // What is the sequence number of this mem node.
403      // Lowest mem operand in the DAG starts at zero.
404      unsigned SequenceNum;
405    };
406
407    /// This is a helper function for visitMUL to check the profitability
408    /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
409    /// MulNode is the original multiply, AddNode is (add x, c1),
410    /// and ConstNode is c2.
411    bool isMulAddWithConstProfitable(SDNode *MulNode,
412                                     SDValue &AddNode,
413                                     SDValue &ConstNode);
414
415    /// This is a helper function for MergeStoresOfConstantsOrVecElts. Returns a
416    /// constant build_vector of the stored constant values in Stores.
417    SDValue getMergedConstantVectorStore(SelectionDAG &DAG,
418                                         SDLoc SL,
419                                         ArrayRef<MemOpLink> Stores,
420                                         SmallVectorImpl<SDValue> &Chains,
421                                         EVT Ty) const;
422
423    /// This is a helper function for visitAND and visitZERO_EXTEND.  Returns
424    /// true if the (and (load x) c) pattern matches an extload.  ExtVT returns
425    /// the type of the loaded value to be extended.  LoadedVT returns the type
426    /// of the original loaded value.  NarrowLoad returns whether the load would
427    /// need to be narrowed in order to match.
428    bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
429                          EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT,
430                          bool &NarrowLoad);
431
432    /// This is a helper function for MergeConsecutiveStores. When the source
433    /// elements of the consecutive stores are all constants or all extracted
434    /// vector elements, try to merge them into one larger store.
435    /// \return True if a merged store was created.
436    bool MergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
437                                         EVT MemVT, unsigned NumStores,
438                                         bool IsConstantSrc, bool UseVector);
439
440    /// This is a helper function for MergeConsecutiveStores.
441    /// Stores that may be merged are placed in StoreNodes.
442    /// Loads that may alias with those stores are placed in AliasLoadNodes.
443    void getStoreMergeAndAliasCandidates(
444        StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes,
445        SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes);
446
447    /// Merge consecutive store operations into a wide store.
448    /// This optimization uses wide integers or vectors when possible.
449    /// \return True if some memory operations were changed.
450    bool MergeConsecutiveStores(StoreSDNode *N);
451
452    /// \brief Try to transform a truncation where C is a constant:
453    ///     (trunc (and X, C)) -> (and (trunc X), (trunc C))
454    ///
455    /// \p N needs to be a truncation and its first operand an AND. Other
456    /// requirements are checked by the function (e.g. that trunc is
457    /// single-use) and if missed an empty SDValue is returned.
458    SDValue distributeTruncateThroughAnd(SDNode *N);
459
460  public:
461    DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level OL)
462        : DAG(D), TLI(D.getTargetLoweringInfo()), Level(BeforeLegalizeTypes),
463          OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A) {
464      ForCodeSize = DAG.getMachineFunction().getFunction()->optForSize();
465    }
466
467    /// Runs the dag combiner on all nodes in the work list
468    void Run(CombineLevel AtLevel);
469
470    SelectionDAG &getDAG() const { return DAG; }
471
472    /// Returns a type large enough to hold any valid shift amount - before type
473    /// legalization these can be huge.
474    EVT getShiftAmountTy(EVT LHSTy) {
475      assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
476      if (LHSTy.isVector())
477        return LHSTy;
478      auto &DL = DAG.getDataLayout();
479      return LegalTypes ? TLI.getScalarShiftAmountTy(DL, LHSTy)
480                        : TLI.getPointerTy(DL);
481    }
482
483    /// This method returns true if we are running before type legalization or
484    /// if the specified VT is legal.
485    bool isTypeLegal(const EVT &VT) {
486      if (!LegalTypes) return true;
487      return TLI.isTypeLegal(VT);
488    }
489
490    /// Convenience wrapper around TargetLowering::getSetCCResultType
491    EVT getSetCCResultType(EVT VT) const {
492      return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
493    }
494  };
495}
496
497
498namespace {
499/// This class is a DAGUpdateListener that removes any deleted
500/// nodes from the worklist.
501class WorklistRemover : public SelectionDAG::DAGUpdateListener {
502  DAGCombiner &DC;
503public:
504  explicit WorklistRemover(DAGCombiner &dc)
505    : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
506
507  void NodeDeleted(SDNode *N, SDNode *E) override {
508    DC.removeFromWorklist(N);
509  }
510};
511}
512
513//===----------------------------------------------------------------------===//
514//  TargetLowering::DAGCombinerInfo implementation
515//===----------------------------------------------------------------------===//
516
517void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
518  ((DAGCombiner*)DC)->AddToWorklist(N);
519}
520
521void TargetLowering::DAGCombinerInfo::RemoveFromWorklist(SDNode *N) {
522  ((DAGCombiner*)DC)->removeFromWorklist(N);
523}
524
525SDValue TargetLowering::DAGCombinerInfo::
526CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
527  return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
528}
529
530SDValue TargetLowering::DAGCombinerInfo::
531CombineTo(SDNode *N, SDValue Res, bool AddTo) {
532  return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
533}
534
535
536SDValue TargetLowering::DAGCombinerInfo::
537CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
538  return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
539}
540
541void TargetLowering::DAGCombinerInfo::
542CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
543  return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
544}
545
546//===----------------------------------------------------------------------===//
547// Helper Functions
548//===----------------------------------------------------------------------===//
549
550void DAGCombiner::deleteAndRecombine(SDNode *N) {
551  removeFromWorklist(N);
552
553  // If the operands of this node are only used by the node, they will now be
554  // dead. Make sure to re-visit them and recursively delete dead nodes.
555  for (const SDValue &Op : N->ops())
556    // For an operand generating multiple values, one of the values may
557    // become dead allowing further simplification (e.g. split index
558    // arithmetic from an indexed load).
559    if (Op->hasOneUse() || Op->getNumValues() > 1)
560      AddToWorklist(Op.getNode());
561
562  DAG.DeleteNode(N);
563}
564
565/// Return 1 if we can compute the negated form of the specified expression for
566/// the same cost as the expression itself, or 2 if we can compute the negated
567/// form more cheaply than the expression itself.
568static char isNegatibleForFree(SDValue Op, bool LegalOperations,
569                               const TargetLowering &TLI,
570                               const TargetOptions *Options,
571                               unsigned Depth = 0) {
572  // fneg is removable even if it has multiple uses.
573  if (Op.getOpcode() == ISD::FNEG) return 2;
574
575  // Don't allow anything with multiple uses.
576  if (!Op.hasOneUse()) return 0;
577
578  // Don't recurse exponentially.
579  if (Depth > 6) return 0;
580
581  switch (Op.getOpcode()) {
582  default: return false;
583  case ISD::ConstantFP:
584    // Don't invert constant FP values after legalize.  The negated constant
585    // isn't necessarily legal.
586    return LegalOperations ? 0 : 1;
587  case ISD::FADD:
588    // FIXME: determine better conditions for this xform.
589    if (!Options->UnsafeFPMath) return 0;
590
591    // After operation legalization, it might not be legal to create new FSUBs.
592    if (LegalOperations &&
593        !TLI.isOperationLegalOrCustom(ISD::FSUB,  Op.getValueType()))
594      return 0;
595
596    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
597    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
598                                    Options, Depth + 1))
599      return V;
600    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
601    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
602                              Depth + 1);
603  case ISD::FSUB:
604    // We can't turn -(A-B) into B-A when we honor signed zeros.
605    if (!Options->UnsafeFPMath) return 0;
606
607    // fold (fneg (fsub A, B)) -> (fsub B, A)
608    return 1;
609
610  case ISD::FMUL:
611  case ISD::FDIV:
612    if (Options->HonorSignDependentRoundingFPMath()) return 0;
613
614    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) or (fmul X, (fneg Y))
615    if (char V = isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI,
616                                    Options, Depth + 1))
617      return V;
618
619    return isNegatibleForFree(Op.getOperand(1), LegalOperations, TLI, Options,
620                              Depth + 1);
621
622  case ISD::FP_EXTEND:
623  case ISD::FP_ROUND:
624  case ISD::FSIN:
625    return isNegatibleForFree(Op.getOperand(0), LegalOperations, TLI, Options,
626                              Depth + 1);
627  }
628}
629
630/// If isNegatibleForFree returns true, return the newly negated expression.
631static SDValue GetNegatedExpression(SDValue Op, SelectionDAG &DAG,
632                                    bool LegalOperations, unsigned Depth = 0) {
633  const TargetOptions &Options = DAG.getTarget().Options;
634  // fneg is removable even if it has multiple uses.
635  if (Op.getOpcode() == ISD::FNEG) return Op.getOperand(0);
636
637  // Don't allow anything with multiple uses.
638  assert(Op.hasOneUse() && "Unknown reuse!");
639
640  assert(Depth <= 6 && "GetNegatedExpression doesn't match isNegatibleForFree");
641
642  const SDNodeFlags *Flags = Op.getNode()->getFlags();
643
644  switch (Op.getOpcode()) {
645  default: llvm_unreachable("Unknown code");
646  case ISD::ConstantFP: {
647    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
648    V.changeSign();
649    return DAG.getConstantFP(V, SDLoc(Op), Op.getValueType());
650  }
651  case ISD::FADD:
652    // FIXME: determine better conditions for this xform.
653    assert(Options.UnsafeFPMath);
654
655    // fold (fneg (fadd A, B)) -> (fsub (fneg A), B)
656    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
657                           DAG.getTargetLoweringInfo(), &Options, Depth+1))
658      return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
659                         GetNegatedExpression(Op.getOperand(0), DAG,
660                                              LegalOperations, Depth+1),
661                         Op.getOperand(1), Flags);
662    // fold (fneg (fadd A, B)) -> (fsub (fneg B), A)
663    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
664                       GetNegatedExpression(Op.getOperand(1), DAG,
665                                            LegalOperations, Depth+1),
666                       Op.getOperand(0), Flags);
667  case ISD::FSUB:
668    // We can't turn -(A-B) into B-A when we honor signed zeros.
669    assert(Options.UnsafeFPMath);
670
671    // fold (fneg (fsub 0, B)) -> B
672    if (ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(Op.getOperand(0)))
673      if (N0CFP->isZero())
674        return Op.getOperand(1);
675
676    // fold (fneg (fsub A, B)) -> (fsub B, A)
677    return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
678                       Op.getOperand(1), Op.getOperand(0), Flags);
679
680  case ISD::FMUL:
681  case ISD::FDIV:
682    assert(!Options.HonorSignDependentRoundingFPMath());
683
684    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
685    if (isNegatibleForFree(Op.getOperand(0), LegalOperations,
686                           DAG.getTargetLoweringInfo(), &Options, Depth+1))
687      return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
688                         GetNegatedExpression(Op.getOperand(0), DAG,
689                                              LegalOperations, Depth+1),
690                         Op.getOperand(1), Flags);
691
692    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
693    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
694                       Op.getOperand(0),
695                       GetNegatedExpression(Op.getOperand(1), DAG,
696                                            LegalOperations, Depth+1), Flags);
697
698  case ISD::FP_EXTEND:
699  case ISD::FSIN:
700    return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
701                       GetNegatedExpression(Op.getOperand(0), DAG,
702                                            LegalOperations, Depth+1));
703  case ISD::FP_ROUND:
704      return DAG.getNode(ISD::FP_ROUND, SDLoc(Op), Op.getValueType(),
705                         GetNegatedExpression(Op.getOperand(0), DAG,
706                                              LegalOperations, Depth+1),
707                         Op.getOperand(1));
708  }
709}
710
711// Return true if this node is a setcc, or is a select_cc
712// that selects between the target values used for true and false, making it
713// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
714// the appropriate nodes based on the type of node we are checking. This
715// simplifies life a bit for the callers.
716bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
717                                    SDValue &CC) const {
718  if (N.getOpcode() == ISD::SETCC) {
719    LHS = N.getOperand(0);
720    RHS = N.getOperand(1);
721    CC  = N.getOperand(2);
722    return true;
723  }
724
725  if (N.getOpcode() != ISD::SELECT_CC ||
726      !TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
727      !TLI.isConstFalseVal(N.getOperand(3).getNode()))
728    return false;
729
730  if (TLI.getBooleanContents(N.getValueType()) ==
731      TargetLowering::UndefinedBooleanContent)
732    return false;
733
734  LHS = N.getOperand(0);
735  RHS = N.getOperand(1);
736  CC  = N.getOperand(4);
737  return true;
738}
739
740/// Return true if this is a SetCC-equivalent operation with only one use.
741/// If this is true, it allows the users to invert the operation for free when
742/// it is profitable to do so.
743bool DAGCombiner::isOneUseSetCC(SDValue N) const {
744  SDValue N0, N1, N2;
745  if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
746    return true;
747  return false;
748}
749
750/// Returns true if N is a BUILD_VECTOR node whose
751/// elements are all the same constant or undefined.
752static bool isConstantSplatVector(SDNode *N, APInt& SplatValue) {
753  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(N);
754  if (!C)
755    return false;
756
757  APInt SplatUndef;
758  unsigned SplatBitSize;
759  bool HasAnyUndefs;
760  EVT EltVT = N->getValueType(0).getVectorElementType();
761  return (C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
762                             HasAnyUndefs) &&
763          EltVT.getSizeInBits() >= SplatBitSize);
764}
765
766// \brief Returns the SDNode if it is a constant integer BuildVector
767// or constant integer.
768static SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N) {
769  if (isa<ConstantSDNode>(N))
770    return N.getNode();
771  if (ISD::isBuildVectorOfConstantSDNodes(N.getNode()))
772    return N.getNode();
773  return nullptr;
774}
775
776// \brief Returns the SDNode if it is a constant float BuildVector
777// or constant float.
778static SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) {
779  if (isa<ConstantFPSDNode>(N))
780    return N.getNode();
781  if (ISD::isBuildVectorOfConstantFPSDNodes(N.getNode()))
782    return N.getNode();
783  return nullptr;
784}
785
786// \brief Returns the SDNode if it is a constant splat BuildVector or constant
787// int.
788static ConstantSDNode *isConstOrConstSplat(SDValue N) {
789  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N))
790    return CN;
791
792  if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
793    BitVector UndefElements;
794    ConstantSDNode *CN = BV->getConstantSplatNode(&UndefElements);
795
796    // BuildVectors can truncate their operands. Ignore that case here.
797    // FIXME: We blindly ignore splats which include undef which is overly
798    // pessimistic.
799    if (CN && UndefElements.none() &&
800        CN->getValueType(0) == N.getValueType().getScalarType())
801      return CN;
802  }
803
804  return nullptr;
805}
806
807// \brief Returns the SDNode if it is a constant splat BuildVector or constant
808// float.
809static ConstantFPSDNode *isConstOrConstSplatFP(SDValue N) {
810  if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
811    return CN;
812
813  if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N)) {
814    BitVector UndefElements;
815    ConstantFPSDNode *CN = BV->getConstantFPSplatNode(&UndefElements);
816
817    if (CN && UndefElements.none())
818      return CN;
819  }
820
821  return nullptr;
822}
823
824SDValue DAGCombiner::ReassociateOps(unsigned Opc, SDLoc DL,
825                                    SDValue N0, SDValue N1) {
826  EVT VT = N0.getValueType();
827  if (N0.getOpcode() == Opc) {
828    if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
829      if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1)) {
830        // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2))
831        if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, L, R))
832          return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
833        return SDValue();
834      }
835      if (N0.hasOneUse()) {
836        // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one
837        // use
838        SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
839        if (!OpNode.getNode())
840          return SDValue();
841        AddToWorklist(OpNode.getNode());
842        return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
843      }
844    }
845  }
846
847  if (N1.getOpcode() == Opc) {
848    if (SDNode *R = isConstantIntBuildVectorOrConstantInt(N1.getOperand(1))) {
849      if (SDNode *L = isConstantIntBuildVectorOrConstantInt(N0)) {
850        // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2))
851        if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, R, L))
852          return DAG.getNode(Opc, DL, VT, N1.getOperand(0), OpNode);
853        return SDValue();
854      }
855      if (N1.hasOneUse()) {
856        // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one
857        // use
858        SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N1.getOperand(0), N0);
859        if (!OpNode.getNode())
860          return SDValue();
861        AddToWorklist(OpNode.getNode());
862        return DAG.getNode(Opc, DL, VT, OpNode, N1.getOperand(1));
863      }
864    }
865  }
866
867  return SDValue();
868}
869
870SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
871                               bool AddTo) {
872  assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
873  ++NodesCombined;
874  DEBUG(dbgs() << "\nReplacing.1 ";
875        N->dump(&DAG);
876        dbgs() << "\nWith: ";
877        To[0].getNode()->dump(&DAG);
878        dbgs() << " and " << NumTo-1 << " other values\n");
879  for (unsigned i = 0, e = NumTo; i != e; ++i)
880    assert((!To[i].getNode() ||
881            N->getValueType(i) == To[i].getValueType()) &&
882           "Cannot combine value to value of different type!");
883
884  WorklistRemover DeadNodes(*this);
885  DAG.ReplaceAllUsesWith(N, To);
886  if (AddTo) {
887    // Push the new nodes and any users onto the worklist
888    for (unsigned i = 0, e = NumTo; i != e; ++i) {
889      if (To[i].getNode()) {
890        AddToWorklist(To[i].getNode());
891        AddUsersToWorklist(To[i].getNode());
892      }
893    }
894  }
895
896  // Finally, if the node is now dead, remove it from the graph.  The node
897  // may not be dead if the replacement process recursively simplified to
898  // something else needing this node.
899  if (N->use_empty())
900    deleteAndRecombine(N);
901  return SDValue(N, 0);
902}
903
904void DAGCombiner::
905CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
906  // Replace all uses.  If any nodes become isomorphic to other nodes and
907  // are deleted, make sure to remove them from our worklist.
908  WorklistRemover DeadNodes(*this);
909  DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
910
911  // Push the new node and any (possibly new) users onto the worklist.
912  AddToWorklist(TLO.New.getNode());
913  AddUsersToWorklist(TLO.New.getNode());
914
915  // Finally, if the node is now dead, remove it from the graph.  The node
916  // may not be dead if the replacement process recursively simplified to
917  // something else needing this node.
918  if (TLO.Old.getNode()->use_empty())
919    deleteAndRecombine(TLO.Old.getNode());
920}
921
922/// Check the specified integer node value to see if it can be simplified or if
923/// things it uses can be simplified by bit propagation. If so, return true.
924bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &Demanded) {
925  TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
926  APInt KnownZero, KnownOne;
927  if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
928    return false;
929
930  // Revisit the node.
931  AddToWorklist(Op.getNode());
932
933  // Replace the old value with the new one.
934  ++NodesCombined;
935  DEBUG(dbgs() << "\nReplacing.2 ";
936        TLO.Old.getNode()->dump(&DAG);
937        dbgs() << "\nWith: ";
938        TLO.New.getNode()->dump(&DAG);
939        dbgs() << '\n');
940
941  CommitTargetLoweringOpt(TLO);
942  return true;
943}
944
945void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
946  SDLoc dl(Load);
947  EVT VT = Load->getValueType(0);
948  SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, SDValue(ExtLoad, 0));
949
950  DEBUG(dbgs() << "\nReplacing.9 ";
951        Load->dump(&DAG);
952        dbgs() << "\nWith: ";
953        Trunc.getNode()->dump(&DAG);
954        dbgs() << '\n');
955  WorklistRemover DeadNodes(*this);
956  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
957  DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
958  deleteAndRecombine(Load);
959  AddToWorklist(Trunc.getNode());
960}
961
962SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
963  Replace = false;
964  SDLoc dl(Op);
965  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
966    EVT MemVT = LD->getMemoryVT();
967    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
968      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
969                                                       : ISD::EXTLOAD)
970      : LD->getExtensionType();
971    Replace = true;
972    return DAG.getExtLoad(ExtType, dl, PVT,
973                          LD->getChain(), LD->getBasePtr(),
974                          MemVT, LD->getMemOperand());
975  }
976
977  unsigned Opc = Op.getOpcode();
978  switch (Opc) {
979  default: break;
980  case ISD::AssertSext:
981    return DAG.getNode(ISD::AssertSext, dl, PVT,
982                       SExtPromoteOperand(Op.getOperand(0), PVT),
983                       Op.getOperand(1));
984  case ISD::AssertZext:
985    return DAG.getNode(ISD::AssertZext, dl, PVT,
986                       ZExtPromoteOperand(Op.getOperand(0), PVT),
987                       Op.getOperand(1));
988  case ISD::Constant: {
989    unsigned ExtOpc =
990      Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
991    return DAG.getNode(ExtOpc, dl, PVT, Op);
992  }
993  }
994
995  if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
996    return SDValue();
997  return DAG.getNode(ISD::ANY_EXTEND, dl, PVT, Op);
998}
999
1000SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
1001  if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
1002    return SDValue();
1003  EVT OldVT = Op.getValueType();
1004  SDLoc dl(Op);
1005  bool Replace = false;
1006  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1007  if (!NewOp.getNode())
1008    return SDValue();
1009  AddToWorklist(NewOp.getNode());
1010
1011  if (Replace)
1012    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1013  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NewOp.getValueType(), NewOp,
1014                     DAG.getValueType(OldVT));
1015}
1016
1017SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
1018  EVT OldVT = Op.getValueType();
1019  SDLoc dl(Op);
1020  bool Replace = false;
1021  SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1022  if (!NewOp.getNode())
1023    return SDValue();
1024  AddToWorklist(NewOp.getNode());
1025
1026  if (Replace)
1027    ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1028  return DAG.getZeroExtendInReg(NewOp, dl, OldVT);
1029}
1030
1031/// Promote the specified integer binary operation if the target indicates it is
1032/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1033/// i32 since i16 instructions are longer.
1034SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
1035  if (!LegalOperations)
1036    return SDValue();
1037
1038  EVT VT = Op.getValueType();
1039  if (VT.isVector() || !VT.isInteger())
1040    return SDValue();
1041
1042  // If operation type is 'undesirable', e.g. i16 on x86, consider
1043  // promoting it.
1044  unsigned Opc = Op.getOpcode();
1045  if (TLI.isTypeDesirableForOp(Opc, VT))
1046    return SDValue();
1047
1048  EVT PVT = VT;
1049  // Consult target whether it is a good idea to promote this operation and
1050  // what's the right type to promote it to.
1051  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1052    assert(PVT != VT && "Don't know what type to promote to!");
1053
1054    bool Replace0 = false;
1055    SDValue N0 = Op.getOperand(0);
1056    SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
1057    if (!NN0.getNode())
1058      return SDValue();
1059
1060    bool Replace1 = false;
1061    SDValue N1 = Op.getOperand(1);
1062    SDValue NN1;
1063    if (N0 == N1)
1064      NN1 = NN0;
1065    else {
1066      NN1 = PromoteOperand(N1, PVT, Replace1);
1067      if (!NN1.getNode())
1068        return SDValue();
1069    }
1070
1071    AddToWorklist(NN0.getNode());
1072    if (NN1.getNode())
1073      AddToWorklist(NN1.getNode());
1074
1075    if (Replace0)
1076      ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
1077    if (Replace1)
1078      ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
1079
1080    DEBUG(dbgs() << "\nPromoting ";
1081          Op.getNode()->dump(&DAG));
1082    SDLoc dl(Op);
1083    return DAG.getNode(ISD::TRUNCATE, dl, VT,
1084                       DAG.getNode(Opc, dl, PVT, NN0, NN1));
1085  }
1086  return SDValue();
1087}
1088
1089/// Promote the specified integer shift operation if the target indicates it is
1090/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1091/// i32 since i16 instructions are longer.
1092SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
1093  if (!LegalOperations)
1094    return SDValue();
1095
1096  EVT VT = Op.getValueType();
1097  if (VT.isVector() || !VT.isInteger())
1098    return SDValue();
1099
1100  // If operation type is 'undesirable', e.g. i16 on x86, consider
1101  // promoting it.
1102  unsigned Opc = Op.getOpcode();
1103  if (TLI.isTypeDesirableForOp(Opc, VT))
1104    return SDValue();
1105
1106  EVT PVT = VT;
1107  // Consult target whether it is a good idea to promote this operation and
1108  // what's the right type to promote it to.
1109  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1110    assert(PVT != VT && "Don't know what type to promote to!");
1111
1112    bool Replace = false;
1113    SDValue N0 = Op.getOperand(0);
1114    if (Opc == ISD::SRA)
1115      N0 = SExtPromoteOperand(Op.getOperand(0), PVT);
1116    else if (Opc == ISD::SRL)
1117      N0 = ZExtPromoteOperand(Op.getOperand(0), PVT);
1118    else
1119      N0 = PromoteOperand(N0, PVT, Replace);
1120    if (!N0.getNode())
1121      return SDValue();
1122
1123    AddToWorklist(N0.getNode());
1124    if (Replace)
1125      ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
1126
1127    DEBUG(dbgs() << "\nPromoting ";
1128          Op.getNode()->dump(&DAG));
1129    SDLoc dl(Op);
1130    return DAG.getNode(ISD::TRUNCATE, dl, VT,
1131                       DAG.getNode(Opc, dl, PVT, N0, Op.getOperand(1)));
1132  }
1133  return SDValue();
1134}
1135
1136SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1137  if (!LegalOperations)
1138    return SDValue();
1139
1140  EVT VT = Op.getValueType();
1141  if (VT.isVector() || !VT.isInteger())
1142    return SDValue();
1143
1144  // If operation type is 'undesirable', e.g. i16 on x86, consider
1145  // promoting it.
1146  unsigned Opc = Op.getOpcode();
1147  if (TLI.isTypeDesirableForOp(Opc, VT))
1148    return SDValue();
1149
1150  EVT PVT = VT;
1151  // Consult target whether it is a good idea to promote this operation and
1152  // what's the right type to promote it to.
1153  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1154    assert(PVT != VT && "Don't know what type to promote to!");
1155    // fold (aext (aext x)) -> (aext x)
1156    // fold (aext (zext x)) -> (zext x)
1157    // fold (aext (sext x)) -> (sext x)
1158    DEBUG(dbgs() << "\nPromoting ";
1159          Op.getNode()->dump(&DAG));
1160    return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1161  }
1162  return SDValue();
1163}
1164
1165bool DAGCombiner::PromoteLoad(SDValue Op) {
1166  if (!LegalOperations)
1167    return false;
1168
1169  EVT VT = Op.getValueType();
1170  if (VT.isVector() || !VT.isInteger())
1171    return false;
1172
1173  // If operation type is 'undesirable', e.g. i16 on x86, consider
1174  // promoting it.
1175  unsigned Opc = Op.getOpcode();
1176  if (TLI.isTypeDesirableForOp(Opc, VT))
1177    return false;
1178
1179  EVT PVT = VT;
1180  // Consult target whether it is a good idea to promote this operation and
1181  // what's the right type to promote it to.
1182  if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1183    assert(PVT != VT && "Don't know what type to promote to!");
1184
1185    SDLoc dl(Op);
1186    SDNode *N = Op.getNode();
1187    LoadSDNode *LD = cast<LoadSDNode>(N);
1188    EVT MemVT = LD->getMemoryVT();
1189    ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD)
1190      ? (TLI.isLoadExtLegal(ISD::ZEXTLOAD, PVT, MemVT) ? ISD::ZEXTLOAD
1191                                                       : ISD::EXTLOAD)
1192      : LD->getExtensionType();
1193    SDValue NewLD = DAG.getExtLoad(ExtType, dl, PVT,
1194                                   LD->getChain(), LD->getBasePtr(),
1195                                   MemVT, LD->getMemOperand());
1196    SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, VT, NewLD);
1197
1198    DEBUG(dbgs() << "\nPromoting ";
1199          N->dump(&DAG);
1200          dbgs() << "\nTo: ";
1201          Result.getNode()->dump(&DAG);
1202          dbgs() << '\n');
1203    WorklistRemover DeadNodes(*this);
1204    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1205    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1206    deleteAndRecombine(N);
1207    AddToWorklist(Result.getNode());
1208    return true;
1209  }
1210  return false;
1211}
1212
1213/// \brief Recursively delete a node which has no uses and any operands for
1214/// which it is the only use.
1215///
1216/// Note that this both deletes the nodes and removes them from the worklist.
1217/// It also adds any nodes who have had a user deleted to the worklist as they
1218/// may now have only one use and subject to other combines.
1219bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
1220  if (!N->use_empty())
1221    return false;
1222
1223  SmallSetVector<SDNode *, 16> Nodes;
1224  Nodes.insert(N);
1225  do {
1226    N = Nodes.pop_back_val();
1227    if (!N)
1228      continue;
1229
1230    if (N->use_empty()) {
1231      for (const SDValue &ChildN : N->op_values())
1232        Nodes.insert(ChildN.getNode());
1233
1234      removeFromWorklist(N);
1235      DAG.DeleteNode(N);
1236    } else {
1237      AddToWorklist(N);
1238    }
1239  } while (!Nodes.empty());
1240  return true;
1241}
1242
1243//===----------------------------------------------------------------------===//
1244//  Main DAG Combiner implementation
1245//===----------------------------------------------------------------------===//
1246
1247void DAGCombiner::Run(CombineLevel AtLevel) {
1248  // set the instance variables, so that the various visit routines may use it.
1249  Level = AtLevel;
1250  LegalOperations = Level >= AfterLegalizeVectorOps;
1251  LegalTypes = Level >= AfterLegalizeTypes;
1252
1253  // Add all the dag nodes to the worklist.
1254  for (SDNode &Node : DAG.allnodes())
1255    AddToWorklist(&Node);
1256
1257  // Create a dummy node (which is not added to allnodes), that adds a reference
1258  // to the root node, preventing it from being deleted, and tracking any
1259  // changes of the root.
1260  HandleSDNode Dummy(DAG.getRoot());
1261
1262  // while the worklist isn't empty, find a node and
1263  // try and combine it.
1264  while (!WorklistMap.empty()) {
1265    SDNode *N;
1266    // The Worklist holds the SDNodes in order, but it may contain null entries.
1267    do {
1268      N = Worklist.pop_back_val();
1269    } while (!N);
1270
1271    bool GoodWorklistEntry = WorklistMap.erase(N);
1272    (void)GoodWorklistEntry;
1273    assert(GoodWorklistEntry &&
1274           "Found a worklist entry without a corresponding map entry!");
1275
1276    // If N has no uses, it is dead.  Make sure to revisit all N's operands once
1277    // N is deleted from the DAG, since they too may now be dead or may have a
1278    // reduced number of uses, allowing other xforms.
1279    if (recursivelyDeleteUnusedNodes(N))
1280      continue;
1281
1282    WorklistRemover DeadNodes(*this);
1283
1284    // If this combine is running after legalizing the DAG, re-legalize any
1285    // nodes pulled off the worklist.
1286    if (Level == AfterLegalizeDAG) {
1287      SmallSetVector<SDNode *, 16> UpdatedNodes;
1288      bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
1289
1290      for (SDNode *LN : UpdatedNodes) {
1291        AddToWorklist(LN);
1292        AddUsersToWorklist(LN);
1293      }
1294      if (!NIsValid)
1295        continue;
1296    }
1297
1298    DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
1299
1300    // Add any operands of the new node which have not yet been combined to the
1301    // worklist as well. Because the worklist uniques things already, this
1302    // won't repeatedly process the same operand.
1303    CombinedNodes.insert(N);
1304    for (const SDValue &ChildN : N->op_values())
1305      if (!CombinedNodes.count(ChildN.getNode()))
1306        AddToWorklist(ChildN.getNode());
1307
1308    SDValue RV = combine(N);
1309
1310    if (!RV.getNode())
1311      continue;
1312
1313    ++NodesCombined;
1314
1315    // If we get back the same node we passed in, rather than a new node or
1316    // zero, we know that the node must have defined multiple values and
1317    // CombineTo was used.  Since CombineTo takes care of the worklist
1318    // mechanics for us, we have no work to do in this case.
1319    if (RV.getNode() == N)
1320      continue;
1321
1322    assert(N->getOpcode() != ISD::DELETED_NODE &&
1323           RV.getNode()->getOpcode() != ISD::DELETED_NODE &&
1324           "Node was deleted but visit returned new node!");
1325
1326    DEBUG(dbgs() << " ... into: ";
1327          RV.getNode()->dump(&DAG));
1328
1329    // Transfer debug value.
1330    DAG.TransferDbgValues(SDValue(N, 0), RV);
1331    if (N->getNumValues() == RV.getNode()->getNumValues())
1332      DAG.ReplaceAllUsesWith(N, RV.getNode());
1333    else {
1334      assert(N->getValueType(0) == RV.getValueType() &&
1335             N->getNumValues() == 1 && "Type mismatch");
1336      SDValue OpV = RV;
1337      DAG.ReplaceAllUsesWith(N, &OpV);
1338    }
1339
1340    // Push the new node and any users onto the worklist
1341    AddToWorklist(RV.getNode());
1342    AddUsersToWorklist(RV.getNode());
1343
1344    // Finally, if the node is now dead, remove it from the graph.  The node
1345    // may not be dead if the replacement process recursively simplified to
1346    // something else needing this node. This will also take care of adding any
1347    // operands which have lost a user to the worklist.
1348    recursivelyDeleteUnusedNodes(N);
1349  }
1350
1351  // If the root changed (e.g. it was a dead load, update the root).
1352  DAG.setRoot(Dummy.getValue());
1353  DAG.RemoveDeadNodes();
1354}
1355
1356SDValue DAGCombiner::visit(SDNode *N) {
1357  switch (N->getOpcode()) {
1358  default: break;
1359  case ISD::TokenFactor:        return visitTokenFactor(N);
1360  case ISD::MERGE_VALUES:       return visitMERGE_VALUES(N);
1361  case ISD::ADD:                return visitADD(N);
1362  case ISD::SUB:                return visitSUB(N);
1363  case ISD::ADDC:               return visitADDC(N);
1364  case ISD::SUBC:               return visitSUBC(N);
1365  case ISD::ADDE:               return visitADDE(N);
1366  case ISD::SUBE:               return visitSUBE(N);
1367  case ISD::MUL:                return visitMUL(N);
1368  case ISD::SDIV:               return visitSDIV(N);
1369  case ISD::UDIV:               return visitUDIV(N);
1370  case ISD::SREM:
1371  case ISD::UREM:               return visitREM(N);
1372  case ISD::MULHU:              return visitMULHU(N);
1373  case ISD::MULHS:              return visitMULHS(N);
1374  case ISD::SMUL_LOHI:          return visitSMUL_LOHI(N);
1375  case ISD::UMUL_LOHI:          return visitUMUL_LOHI(N);
1376  case ISD::SMULO:              return visitSMULO(N);
1377  case ISD::UMULO:              return visitUMULO(N);
1378  case ISD::SMIN:
1379  case ISD::SMAX:
1380  case ISD::UMIN:
1381  case ISD::UMAX:               return visitIMINMAX(N);
1382  case ISD::AND:                return visitAND(N);
1383  case ISD::OR:                 return visitOR(N);
1384  case ISD::XOR:                return visitXOR(N);
1385  case ISD::SHL:                return visitSHL(N);
1386  case ISD::SRA:                return visitSRA(N);
1387  case ISD::SRL:                return visitSRL(N);
1388  case ISD::ROTR:
1389  case ISD::ROTL:               return visitRotate(N);
1390  case ISD::BSWAP:              return visitBSWAP(N);
1391  case ISD::CTLZ:               return visitCTLZ(N);
1392  case ISD::CTLZ_ZERO_UNDEF:    return visitCTLZ_ZERO_UNDEF(N);
1393  case ISD::CTTZ:               return visitCTTZ(N);
1394  case ISD::CTTZ_ZERO_UNDEF:    return visitCTTZ_ZERO_UNDEF(N);
1395  case ISD::CTPOP:              return visitCTPOP(N);
1396  case ISD::SELECT:             return visitSELECT(N);
1397  case ISD::VSELECT:            return visitVSELECT(N);
1398  case ISD::SELECT_CC:          return visitSELECT_CC(N);
1399  case ISD::SETCC:              return visitSETCC(N);
1400  case ISD::SETCCE:             return visitSETCCE(N);
1401  case ISD::SIGN_EXTEND:        return visitSIGN_EXTEND(N);
1402  case ISD::ZERO_EXTEND:        return visitZERO_EXTEND(N);
1403  case ISD::ANY_EXTEND:         return visitANY_EXTEND(N);
1404  case ISD::SIGN_EXTEND_INREG:  return visitSIGN_EXTEND_INREG(N);
1405  case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N);
1406  case ISD::TRUNCATE:           return visitTRUNCATE(N);
1407  case ISD::BITCAST:            return visitBITCAST(N);
1408  case ISD::BUILD_PAIR:         return visitBUILD_PAIR(N);
1409  case ISD::FADD:               return visitFADD(N);
1410  case ISD::FSUB:               return visitFSUB(N);
1411  case ISD::FMUL:               return visitFMUL(N);
1412  case ISD::FMA:                return visitFMA(N);
1413  case ISD::FDIV:               return visitFDIV(N);
1414  case ISD::FREM:               return visitFREM(N);
1415  case ISD::FSQRT:              return visitFSQRT(N);
1416  case ISD::FCOPYSIGN:          return visitFCOPYSIGN(N);
1417  case ISD::SINT_TO_FP:         return visitSINT_TO_FP(N);
1418  case ISD::UINT_TO_FP:         return visitUINT_TO_FP(N);
1419  case ISD::FP_TO_SINT:         return visitFP_TO_SINT(N);
1420  case ISD::FP_TO_UINT:         return visitFP_TO_UINT(N);
1421  case ISD::FP_ROUND:           return visitFP_ROUND(N);
1422  case ISD::FP_ROUND_INREG:     return visitFP_ROUND_INREG(N);
1423  case ISD::FP_EXTEND:          return visitFP_EXTEND(N);
1424  case ISD::FNEG:               return visitFNEG(N);
1425  case ISD::FABS:               return visitFABS(N);
1426  case ISD::FFLOOR:             return visitFFLOOR(N);
1427  case ISD::FMINNUM:            return visitFMINNUM(N);
1428  case ISD::FMAXNUM:            return visitFMAXNUM(N);
1429  case ISD::FCEIL:              return visitFCEIL(N);
1430  case ISD::FTRUNC:             return visitFTRUNC(N);
1431  case ISD::BRCOND:             return visitBRCOND(N);
1432  case ISD::BR_CC:              return visitBR_CC(N);
1433  case ISD::LOAD:               return visitLOAD(N);
1434  case ISD::STORE:              return visitSTORE(N);
1435  case ISD::INSERT_VECTOR_ELT:  return visitINSERT_VECTOR_ELT(N);
1436  case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
1437  case ISD::BUILD_VECTOR:       return visitBUILD_VECTOR(N);
1438  case ISD::CONCAT_VECTORS:     return visitCONCAT_VECTORS(N);
1439  case ISD::EXTRACT_SUBVECTOR:  return visitEXTRACT_SUBVECTOR(N);
1440  case ISD::VECTOR_SHUFFLE:     return visitVECTOR_SHUFFLE(N);
1441  case ISD::SCALAR_TO_VECTOR:   return visitSCALAR_TO_VECTOR(N);
1442  case ISD::INSERT_SUBVECTOR:   return visitINSERT_SUBVECTOR(N);
1443  case ISD::MGATHER:            return visitMGATHER(N);
1444  case ISD::MLOAD:              return visitMLOAD(N);
1445  case ISD::MSCATTER:           return visitMSCATTER(N);
1446  case ISD::MSTORE:             return visitMSTORE(N);
1447  case ISD::FP_TO_FP16:         return visitFP_TO_FP16(N);
1448  case ISD::FP16_TO_FP:         return visitFP16_TO_FP(N);
1449  }
1450  return SDValue();
1451}
1452
1453SDValue DAGCombiner::combine(SDNode *N) {
1454  SDValue RV = visit(N);
1455
1456  // If nothing happened, try a target-specific DAG combine.
1457  if (!RV.getNode()) {
1458    assert(N->getOpcode() != ISD::DELETED_NODE &&
1459           "Node was deleted but visit returned NULL!");
1460
1461    if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
1462        TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
1463
1464      // Expose the DAG combiner to the target combiner impls.
1465      TargetLowering::DAGCombinerInfo
1466        DagCombineInfo(DAG, Level, false, this);
1467
1468      RV = TLI.PerformDAGCombine(N, DagCombineInfo);
1469    }
1470  }
1471
1472  // If nothing happened still, try promoting the operation.
1473  if (!RV.getNode()) {
1474    switch (N->getOpcode()) {
1475    default: break;
1476    case ISD::ADD:
1477    case ISD::SUB:
1478    case ISD::MUL:
1479    case ISD::AND:
1480    case ISD::OR:
1481    case ISD::XOR:
1482      RV = PromoteIntBinOp(SDValue(N, 0));
1483      break;
1484    case ISD::SHL:
1485    case ISD::SRA:
1486    case ISD::SRL:
1487      RV = PromoteIntShiftOp(SDValue(N, 0));
1488      break;
1489    case ISD::SIGN_EXTEND:
1490    case ISD::ZERO_EXTEND:
1491    case ISD::ANY_EXTEND:
1492      RV = PromoteExtend(SDValue(N, 0));
1493      break;
1494    case ISD::LOAD:
1495      if (PromoteLoad(SDValue(N, 0)))
1496        RV = SDValue(N, 0);
1497      break;
1498    }
1499  }
1500
1501  // If N is a commutative binary node, try commuting it to enable more
1502  // sdisel CSE.
1503  if (!RV.getNode() && SelectionDAG::isCommutativeBinOp(N->getOpcode()) &&
1504      N->getNumValues() == 1) {
1505    SDValue N0 = N->getOperand(0);
1506    SDValue N1 = N->getOperand(1);
1507
1508    // Constant operands are canonicalized to RHS.
1509    if (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1)) {
1510      SDValue Ops[] = {N1, N0};
1511      SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
1512                                            N->getFlags());
1513      if (CSENode)
1514        return SDValue(CSENode, 0);
1515    }
1516  }
1517
1518  return RV;
1519}
1520
1521/// Given a node, return its input chain if it has one, otherwise return a null
1522/// sd operand.
1523static SDValue getInputChainForNode(SDNode *N) {
1524  if (unsigned NumOps = N->getNumOperands()) {
1525    if (N->getOperand(0).getValueType() == MVT::Other)
1526      return N->getOperand(0);
1527    if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
1528      return N->getOperand(NumOps-1);
1529    for (unsigned i = 1; i < NumOps-1; ++i)
1530      if (N->getOperand(i).getValueType() == MVT::Other)
1531        return N->getOperand(i);
1532  }
1533  return SDValue();
1534}
1535
1536SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
1537  // If N has two operands, where one has an input chain equal to the other,
1538  // the 'other' chain is redundant.
1539  if (N->getNumOperands() == 2) {
1540    if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
1541      return N->getOperand(0);
1542    if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
1543      return N->getOperand(1);
1544  }
1545
1546  SmallVector<SDNode *, 8> TFs;     // List of token factors to visit.
1547  SmallVector<SDValue, 8> Ops;    // Ops for replacing token factor.
1548  SmallPtrSet<SDNode*, 16> SeenOps;
1549  bool Changed = false;             // If we should replace this token factor.
1550
1551  // Start out with this token factor.
1552  TFs.push_back(N);
1553
1554  // Iterate through token factors.  The TFs grows when new token factors are
1555  // encountered.
1556  for (unsigned i = 0; i < TFs.size(); ++i) {
1557    SDNode *TF = TFs[i];
1558
1559    // Check each of the operands.
1560    for (const SDValue &Op : TF->op_values()) {
1561
1562      switch (Op.getOpcode()) {
1563      case ISD::EntryToken:
1564        // Entry tokens don't need to be added to the list. They are
1565        // redundant.
1566        Changed = true;
1567        break;
1568
1569      case ISD::TokenFactor:
1570        if (Op.hasOneUse() &&
1571            std::find(TFs.begin(), TFs.end(), Op.getNode()) == TFs.end()) {
1572          // Queue up for processing.
1573          TFs.push_back(Op.getNode());
1574          // Clean up in case the token factor is removed.
1575          AddToWorklist(Op.getNode());
1576          Changed = true;
1577          break;
1578        }
1579        // Fall thru
1580
1581      default:
1582        // Only add if it isn't already in the list.
1583        if (SeenOps.insert(Op.getNode()).second)
1584          Ops.push_back(Op);
1585        else
1586          Changed = true;
1587        break;
1588      }
1589    }
1590  }
1591
1592  SDValue Result;
1593
1594  // If we've changed things around then replace token factor.
1595  if (Changed) {
1596    if (Ops.empty()) {
1597      // The entry token is the only possible outcome.
1598      Result = DAG.getEntryNode();
1599    } else {
1600      // New and improved token factor.
1601      Result = DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Ops);
1602    }
1603
1604    // Add users to worklist if AA is enabled, since it may introduce
1605    // a lot of new chained token factors while removing memory deps.
1606    bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
1607      : DAG.getSubtarget().useAA();
1608    return CombineTo(N, Result, UseAA /*add to worklist*/);
1609  }
1610
1611  return Result;
1612}
1613
1614/// MERGE_VALUES can always be eliminated.
1615SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
1616  WorklistRemover DeadNodes(*this);
1617  // Replacing results may cause a different MERGE_VALUES to suddenly
1618  // be CSE'd with N, and carry its uses with it. Iterate until no
1619  // uses remain, to ensure that the node can be safely deleted.
1620  // First add the users of this node to the work list so that they
1621  // can be tried again once they have new operands.
1622  AddUsersToWorklist(N);
1623  do {
1624    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1625      DAG.ReplaceAllUsesOfValueWith(SDValue(N, i), N->getOperand(i));
1626  } while (!N->use_empty());
1627  deleteAndRecombine(N);
1628  return SDValue(N, 0);   // Return N so it doesn't get rechecked!
1629}
1630
1631/// If \p N is a ContantSDNode with isOpaque() == false return it casted to a
1632/// ContantSDNode pointer else nullptr.
1633static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
1634  ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
1635  return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
1636}
1637
1638SDValue DAGCombiner::visitADD(SDNode *N) {
1639  SDValue N0 = N->getOperand(0);
1640  SDValue N1 = N->getOperand(1);
1641  EVT VT = N0.getValueType();
1642
1643  // fold vector ops
1644  if (VT.isVector()) {
1645    if (SDValue FoldedVOp = SimplifyVBinOp(N))
1646      return FoldedVOp;
1647
1648    // fold (add x, 0) -> x, vector edition
1649    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1650      return N0;
1651    if (ISD::isBuildVectorAllZeros(N0.getNode()))
1652      return N1;
1653  }
1654
1655  // fold (add x, undef) -> undef
1656  if (N0.getOpcode() == ISD::UNDEF)
1657    return N0;
1658  if (N1.getOpcode() == ISD::UNDEF)
1659    return N1;
1660  // fold (add c1, c2) -> c1+c2
1661  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
1662  ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
1663  if (N0C && N1C)
1664    return DAG.FoldConstantArithmetic(ISD::ADD, SDLoc(N), VT, N0C, N1C);
1665  // canonicalize constant to RHS
1666  if (isConstantIntBuildVectorOrConstantInt(N0) &&
1667     !isConstantIntBuildVectorOrConstantInt(N1))
1668    return DAG.getNode(ISD::ADD, SDLoc(N), VT, N1, N0);
1669  // fold (add x, 0) -> x
1670  if (isNullConstant(N1))
1671    return N0;
1672  // fold (add Sym, c) -> Sym+c
1673  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1674    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA) && N1C &&
1675        GA->getOpcode() == ISD::GlobalAddress)
1676      return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1677                                  GA->getOffset() +
1678                                    (uint64_t)N1C->getSExtValue());
1679  // fold ((c1-A)+c2) -> (c1+c2)-A
1680  if (N1C && N0.getOpcode() == ISD::SUB)
1681    if (ConstantSDNode *N0C = getAsNonOpaqueConstant(N0.getOperand(0))) {
1682      SDLoc DL(N);
1683      return DAG.getNode(ISD::SUB, DL, VT,
1684                         DAG.getConstant(N1C->getAPIntValue()+
1685                                         N0C->getAPIntValue(), DL, VT),
1686                         N0.getOperand(1));
1687    }
1688  // reassociate add
1689  if (SDValue RADD = ReassociateOps(ISD::ADD, SDLoc(N), N0, N1))
1690    return RADD;
1691  // fold ((0-A) + B) -> B-A
1692  if (N0.getOpcode() == ISD::SUB && isNullConstant(N0.getOperand(0)))
1693    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1, N0.getOperand(1));
1694  // fold (A + (0-B)) -> A-B
1695  if (N1.getOpcode() == ISD::SUB && isNullConstant(N1.getOperand(0)))
1696    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0, N1.getOperand(1));
1697  // fold (A+(B-A)) -> B
1698  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
1699    return N1.getOperand(0);
1700  // fold ((B-A)+A) -> B
1701  if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
1702    return N0.getOperand(0);
1703  // fold (A+(B-(A+C))) to (B-C)
1704  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1705      N0 == N1.getOperand(1).getOperand(0))
1706    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1707                       N1.getOperand(1).getOperand(1));
1708  // fold (A+(B-(C+A))) to (B-C)
1709  if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
1710      N0 == N1.getOperand(1).getOperand(1))
1711    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1.getOperand(0),
1712                       N1.getOperand(1).getOperand(0));
1713  // fold (A+((B-A)+or-C)) to (B+or-C)
1714  if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
1715      N1.getOperand(0).getOpcode() == ISD::SUB &&
1716      N0 == N1.getOperand(0).getOperand(1))
1717    return DAG.getNode(N1.getOpcode(), SDLoc(N), VT,
1718                       N1.getOperand(0).getOperand(0), N1.getOperand(1));
1719
1720  // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
1721  if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
1722    SDValue N00 = N0.getOperand(0);
1723    SDValue N01 = N0.getOperand(1);
1724    SDValue N10 = N1.getOperand(0);
1725    SDValue N11 = N1.getOperand(1);
1726
1727    if (isa<ConstantSDNode>(N00) || isa<ConstantSDNode>(N10))
1728      return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1729                         DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
1730                         DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
1731  }
1732
1733  if (!VT.isVector() && SimplifyDemandedBits(SDValue(N, 0)))
1734    return SDValue(N, 0);
1735
1736  // fold (a+b) -> (a|b) iff a and b share no bits.
1737  if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
1738      VT.isInteger() && !VT.isVector() && DAG.haveNoCommonBitsSet(N0, N1))
1739    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1);
1740
1741  // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
1742  if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
1743      isNullConstant(N1.getOperand(0).getOperand(0)))
1744    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N0,
1745                       DAG.getNode(ISD::SHL, SDLoc(N), VT,
1746                                   N1.getOperand(0).getOperand(1),
1747                                   N1.getOperand(1)));
1748  if (N0.getOpcode() == ISD::SHL && N0.getOperand(0).getOpcode() == ISD::SUB &&
1749      isNullConstant(N0.getOperand(0).getOperand(0)))
1750    return DAG.getNode(ISD::SUB, SDLoc(N), VT, N1,
1751                       DAG.getNode(ISD::SHL, SDLoc(N), VT,
1752                                   N0.getOperand(0).getOperand(1),
1753                                   N0.getOperand(1)));
1754
1755  if (N1.getOpcode() == ISD::AND) {
1756    SDValue AndOp0 = N1.getOperand(0);
1757    unsigned NumSignBits = DAG.ComputeNumSignBits(AndOp0);
1758    unsigned DestBits = VT.getScalarType().getSizeInBits();
1759
1760    // (add z, (and (sbbl x, x), 1)) -> (sub z, (sbbl x, x))
1761    // and similar xforms where the inner op is either ~0 or 0.
1762    if (NumSignBits == DestBits && isOneConstant(N1->getOperand(1))) {
1763      SDLoc DL(N);
1764      return DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), AndOp0);
1765    }
1766  }
1767
1768  // add (sext i1), X -> sub X, (zext i1)
1769  if (N0.getOpcode() == ISD::SIGN_EXTEND &&
1770      N0.getOperand(0).getValueType() == MVT::i1 &&
1771      !TLI.isOperationLegal(ISD::SIGN_EXTEND, MVT::i1)) {
1772    SDLoc DL(N);
1773    SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
1774    return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
1775  }
1776
1777  // add X, (sextinreg Y i1) -> sub X, (and Y 1)
1778  if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1779    VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
1780    if (TN->getVT() == MVT::i1) {
1781      SDLoc DL(N);
1782      SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
1783                                 DAG.getConstant(1, DL, VT));
1784      return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
1785    }
1786  }
1787
1788  return SDValue();
1789}
1790
1791SDValue DAGCombiner::visitADDC(SDNode *N) {
1792  SDValue N0 = N->getOperand(0);
1793  SDValue N1 = N->getOperand(1);
1794  EVT VT = N0.getValueType();
1795
1796  // If the flag result is dead, turn this into an ADD.
1797  if (!N->hasAnyUseOfValue(1))
1798    return CombineTo(N, DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N1),
1799                     DAG.getNode(ISD::CARRY_FALSE,
1800                                 SDLoc(N), MVT::Glue));
1801
1802  // canonicalize constant to RHS.
1803  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1804  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1805  if (N0C && !N1C)
1806    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N1, N0);
1807
1808  // fold (addc x, 0) -> x + no carry out
1809  if (isNullConstant(N1))
1810    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
1811                                        SDLoc(N), MVT::Glue));
1812
1813  // fold (addc a, b) -> (or a, b), CARRY_FALSE iff a and b share no bits.
1814  APInt LHSZero, LHSOne;
1815  APInt RHSZero, RHSOne;
1816  DAG.computeKnownBits(N0, LHSZero, LHSOne);
1817
1818  if (LHSZero.getBoolValue()) {
1819    DAG.computeKnownBits(N1, RHSZero, RHSOne);
1820
1821    // If all possibly-set bits on the LHS are clear on the RHS, return an OR.
1822    // If all possibly-set bits on the RHS are clear on the LHS, return an OR.
1823    if ((RHSZero & ~LHSZero) == ~LHSZero || (LHSZero & ~RHSZero) == ~RHSZero)
1824      return CombineTo(N, DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N1),
1825                       DAG.getNode(ISD::CARRY_FALSE,
1826                                   SDLoc(N), MVT::Glue));
1827  }
1828
1829  return SDValue();
1830}
1831
1832SDValue DAGCombiner::visitADDE(SDNode *N) {
1833  SDValue N0 = N->getOperand(0);
1834  SDValue N1 = N->getOperand(1);
1835  SDValue CarryIn = N->getOperand(2);
1836
1837  // canonicalize constant to RHS
1838  ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1839  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1840  if (N0C && !N1C)
1841    return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
1842                       N1, N0, CarryIn);
1843
1844  // fold (adde x, y, false) -> (addc x, y)
1845  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
1846    return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
1847
1848  return SDValue();
1849}
1850
1851// Since it may not be valid to emit a fold to zero for vector initializers
1852// check if we can before folding.
1853static SDValue tryFoldToZero(SDLoc DL, const TargetLowering &TLI, EVT VT,
1854                             SelectionDAG &DAG,
1855                             bool LegalOperations, bool LegalTypes) {
1856  if (!VT.isVector())
1857    return DAG.getConstant(0, DL, VT);
1858  if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
1859    return DAG.getConstant(0, DL, VT);
1860  return SDValue();
1861}
1862
1863SDValue DAGCombiner::visitSUB(SDNode *N) {
1864  SDValue N0 = N->getOperand(0);
1865  SDValue N1 = N->getOperand(1);
1866  EVT VT = N0.getValueType();
1867
1868  // fold vector ops
1869  if (VT.isVector()) {
1870    if (SDValue FoldedVOp = SimplifyVBinOp(N))
1871      return FoldedVOp;
1872
1873    // fold (sub x, 0) -> x, vector edition
1874    if (ISD::isBuildVectorAllZeros(N1.getNode()))
1875      return N0;
1876  }
1877
1878  // fold (sub x, x) -> 0
1879  // FIXME: Refactor this and xor and other similar operations together.
1880  if (N0 == N1)
1881    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
1882  // fold (sub c1, c2) -> c1-c2
1883  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
1884  ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
1885  if (N0C && N1C)
1886    return DAG.FoldConstantArithmetic(ISD::SUB, SDLoc(N), VT, N0C, N1C);
1887  // fold (sub x, c) -> (add x, -c)
1888  if (N1C) {
1889    SDLoc DL(N);
1890    return DAG.getNode(ISD::ADD, DL, VT, N0,
1891                       DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
1892  }
1893  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
1894  if (isAllOnesConstant(N0))
1895    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
1896  // fold A-(A-B) -> B
1897  if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
1898    return N1.getOperand(1);
1899  // fold (A+B)-A -> B
1900  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
1901    return N0.getOperand(1);
1902  // fold (A+B)-B -> A
1903  if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
1904    return N0.getOperand(0);
1905  // fold C2-(A+C1) -> (C2-C1)-A
1906  ConstantSDNode *N1C1 = N1.getOpcode() != ISD::ADD ? nullptr :
1907    dyn_cast<ConstantSDNode>(N1.getOperand(1).getNode());
1908  if (N1.getOpcode() == ISD::ADD && N0C && N1C1) {
1909    SDLoc DL(N);
1910    SDValue NewC = DAG.getConstant(N0C->getAPIntValue() - N1C1->getAPIntValue(),
1911                                   DL, VT);
1912    return DAG.getNode(ISD::SUB, DL, VT, NewC,
1913                       N1.getOperand(0));
1914  }
1915  // fold ((A+(B+or-C))-B) -> A+or-C
1916  if (N0.getOpcode() == ISD::ADD &&
1917      (N0.getOperand(1).getOpcode() == ISD::SUB ||
1918       N0.getOperand(1).getOpcode() == ISD::ADD) &&
1919      N0.getOperand(1).getOperand(0) == N1)
1920    return DAG.getNode(N0.getOperand(1).getOpcode(), SDLoc(N), VT,
1921                       N0.getOperand(0), N0.getOperand(1).getOperand(1));
1922  // fold ((A+(C+B))-B) -> A+C
1923  if (N0.getOpcode() == ISD::ADD &&
1924      N0.getOperand(1).getOpcode() == ISD::ADD &&
1925      N0.getOperand(1).getOperand(1) == N1)
1926    return DAG.getNode(ISD::ADD, SDLoc(N), VT,
1927                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1928  // fold ((A-(B-C))-C) -> A-B
1929  if (N0.getOpcode() == ISD::SUB &&
1930      N0.getOperand(1).getOpcode() == ISD::SUB &&
1931      N0.getOperand(1).getOperand(1) == N1)
1932    return DAG.getNode(ISD::SUB, SDLoc(N), VT,
1933                       N0.getOperand(0), N0.getOperand(1).getOperand(0));
1934
1935  // If either operand of a sub is undef, the result is undef
1936  if (N0.getOpcode() == ISD::UNDEF)
1937    return N0;
1938  if (N1.getOpcode() == ISD::UNDEF)
1939    return N1;
1940
1941  // If the relocation model supports it, consider symbol offsets.
1942  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
1943    if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
1944      // fold (sub Sym, c) -> Sym-c
1945      if (N1C && GA->getOpcode() == ISD::GlobalAddress)
1946        return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
1947                                    GA->getOffset() -
1948                                      (uint64_t)N1C->getSExtValue());
1949      // fold (sub Sym+c1, Sym+c2) -> c1-c2
1950      if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
1951        if (GA->getGlobal() == GB->getGlobal())
1952          return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
1953                                 SDLoc(N), VT);
1954    }
1955
1956  // sub X, (sextinreg Y i1) -> add X, (and Y 1)
1957  if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
1958    VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
1959    if (TN->getVT() == MVT::i1) {
1960      SDLoc DL(N);
1961      SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
1962                                 DAG.getConstant(1, DL, VT));
1963      return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
1964    }
1965  }
1966
1967  return SDValue();
1968}
1969
1970SDValue DAGCombiner::visitSUBC(SDNode *N) {
1971  SDValue N0 = N->getOperand(0);
1972  SDValue N1 = N->getOperand(1);
1973  EVT VT = N0.getValueType();
1974  SDLoc DL(N);
1975
1976  // If the flag result is dead, turn this into an SUB.
1977  if (!N->hasAnyUseOfValue(1))
1978    return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
1979                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
1980
1981  // fold (subc x, x) -> 0 + no borrow
1982  if (N0 == N1)
1983    return CombineTo(N, DAG.getConstant(0, DL, VT),
1984                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
1985
1986  // fold (subc x, 0) -> x + no borrow
1987  if (isNullConstant(N1))
1988    return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
1989
1990  // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
1991  if (isAllOnesConstant(N0))
1992    return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
1993                     DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
1994
1995  return SDValue();
1996}
1997
1998SDValue DAGCombiner::visitSUBE(SDNode *N) {
1999  SDValue N0 = N->getOperand(0);
2000  SDValue N1 = N->getOperand(1);
2001  SDValue CarryIn = N->getOperand(2);
2002
2003  // fold (sube x, y, false) -> (subc x, y)
2004  if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
2005    return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
2006
2007  return SDValue();
2008}
2009
2010SDValue DAGCombiner::visitMUL(SDNode *N) {
2011  SDValue N0 = N->getOperand(0);
2012  SDValue N1 = N->getOperand(1);
2013  EVT VT = N0.getValueType();
2014
2015  // fold (mul x, undef) -> 0
2016  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2017    return DAG.getConstant(0, SDLoc(N), VT);
2018
2019  bool N0IsConst = false;
2020  bool N1IsConst = false;
2021  bool N1IsOpaqueConst = false;
2022  bool N0IsOpaqueConst = false;
2023  APInt ConstValue0, ConstValue1;
2024  // fold vector ops
2025  if (VT.isVector()) {
2026    if (SDValue FoldedVOp = SimplifyVBinOp(N))
2027      return FoldedVOp;
2028
2029    N0IsConst = isConstantSplatVector(N0.getNode(), ConstValue0);
2030    N1IsConst = isConstantSplatVector(N1.getNode(), ConstValue1);
2031  } else {
2032    N0IsConst = isa<ConstantSDNode>(N0);
2033    if (N0IsConst) {
2034      ConstValue0 = cast<ConstantSDNode>(N0)->getAPIntValue();
2035      N0IsOpaqueConst = cast<ConstantSDNode>(N0)->isOpaque();
2036    }
2037    N1IsConst = isa<ConstantSDNode>(N1);
2038    if (N1IsConst) {
2039      ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
2040      N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
2041    }
2042  }
2043
2044  // fold (mul c1, c2) -> c1*c2
2045  if (N0IsConst && N1IsConst && !N0IsOpaqueConst && !N1IsOpaqueConst)
2046    return DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT,
2047                                      N0.getNode(), N1.getNode());
2048
2049  // canonicalize constant to RHS (vector doesn't have to splat)
2050  if (isConstantIntBuildVectorOrConstantInt(N0) &&
2051     !isConstantIntBuildVectorOrConstantInt(N1))
2052    return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
2053  // fold (mul x, 0) -> 0
2054  if (N1IsConst && ConstValue1 == 0)
2055    return N1;
2056  // We require a splat of the entire scalar bit width for non-contiguous
2057  // bit patterns.
2058  bool IsFullSplat =
2059    ConstValue1.getBitWidth() == VT.getScalarType().getSizeInBits();
2060  // fold (mul x, 1) -> x
2061  if (N1IsConst && ConstValue1 == 1 && IsFullSplat)
2062    return N0;
2063  // fold (mul x, -1) -> 0-x
2064  if (N1IsConst && ConstValue1.isAllOnesValue()) {
2065    SDLoc DL(N);
2066    return DAG.getNode(ISD::SUB, DL, VT,
2067                       DAG.getConstant(0, DL, VT), N0);
2068  }
2069  // fold (mul x, (1 << c)) -> x << c
2070  if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isPowerOf2() &&
2071      IsFullSplat) {
2072    SDLoc DL(N);
2073    return DAG.getNode(ISD::SHL, DL, VT, N0,
2074                       DAG.getConstant(ConstValue1.logBase2(), DL,
2075                                       getShiftAmountTy(N0.getValueType())));
2076  }
2077  // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
2078  if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2() &&
2079      IsFullSplat) {
2080    unsigned Log2Val = (-ConstValue1).logBase2();
2081    SDLoc DL(N);
2082    // FIXME: If the input is something that is easily negated (e.g. a
2083    // single-use add), we should put the negate there.
2084    return DAG.getNode(ISD::SUB, DL, VT,
2085                       DAG.getConstant(0, DL, VT),
2086                       DAG.getNode(ISD::SHL, DL, VT, N0,
2087                            DAG.getConstant(Log2Val, DL,
2088                                      getShiftAmountTy(N0.getValueType()))));
2089  }
2090
2091  APInt Val;
2092  // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
2093  if (N1IsConst && N0.getOpcode() == ISD::SHL &&
2094      (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
2095                     isa<ConstantSDNode>(N0.getOperand(1)))) {
2096    SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT,
2097                             N1, N0.getOperand(1));
2098    AddToWorklist(C3.getNode());
2099    return DAG.getNode(ISD::MUL, SDLoc(N), VT,
2100                       N0.getOperand(0), C3);
2101  }
2102
2103  // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
2104  // use.
2105  {
2106    SDValue Sh(nullptr,0), Y(nullptr,0);
2107    // Check for both (mul (shl X, C), Y)  and  (mul Y, (shl X, C)).
2108    if (N0.getOpcode() == ISD::SHL &&
2109        (isConstantSplatVector(N0.getOperand(1).getNode(), Val) ||
2110                       isa<ConstantSDNode>(N0.getOperand(1))) &&
2111        N0.getNode()->hasOneUse()) {
2112      Sh = N0; Y = N1;
2113    } else if (N1.getOpcode() == ISD::SHL &&
2114               isa<ConstantSDNode>(N1.getOperand(1)) &&
2115               N1.getNode()->hasOneUse()) {
2116      Sh = N1; Y = N0;
2117    }
2118
2119    if (Sh.getNode()) {
2120      SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT,
2121                                Sh.getOperand(0), Y);
2122      return DAG.getNode(ISD::SHL, SDLoc(N), VT,
2123                         Mul, Sh.getOperand(1));
2124    }
2125  }
2126
2127  // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
2128  if (isConstantIntBuildVectorOrConstantInt(N1) &&
2129      N0.getOpcode() == ISD::ADD &&
2130      isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
2131      isMulAddWithConstProfitable(N, N0, N1))
2132      return DAG.getNode(ISD::ADD, SDLoc(N), VT,
2133                         DAG.getNode(ISD::MUL, SDLoc(N0), VT,
2134                                     N0.getOperand(0), N1),
2135                         DAG.getNode(ISD::MUL, SDLoc(N1), VT,
2136                                     N0.getOperand(1), N1));
2137
2138  // reassociate mul
2139  if (SDValue RMUL = ReassociateOps(ISD::MUL, SDLoc(N), N0, N1))
2140    return RMUL;
2141
2142  return SDValue();
2143}
2144
2145/// Return true if divmod libcall is available.
2146static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
2147                                     const TargetLowering &TLI) {
2148  RTLIB::Libcall LC;
2149  switch (Node->getSimpleValueType(0).SimpleTy) {
2150  default: return false; // No libcall for vector types.
2151  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
2152  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2153  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2154  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2155  case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2156  }
2157
2158  return TLI.getLibcallName(LC) != nullptr;
2159}
2160
2161/// Issue divrem if both quotient and remainder are needed.
2162SDValue DAGCombiner::useDivRem(SDNode *Node) {
2163  if (Node->use_empty())
2164    return SDValue(); // This is a dead node, leave it alone.
2165
2166  EVT VT = Node->getValueType(0);
2167  if (!TLI.isTypeLegal(VT))
2168    return SDValue();
2169
2170  unsigned Opcode = Node->getOpcode();
2171  bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
2172
2173  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2174  // If DIVREM is going to get expanded into a libcall,
2175  // but there is no libcall available, then don't combine.
2176  if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
2177      !isDivRemLibcallAvailable(Node, isSigned, TLI))
2178    return SDValue();
2179
2180  // If div is legal, it's better to do the normal expansion
2181  unsigned OtherOpcode = 0;
2182  if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
2183    OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
2184    if (TLI.isOperationLegalOrCustom(Opcode, VT))
2185      return SDValue();
2186  } else {
2187    OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
2188    if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
2189      return SDValue();
2190  }
2191
2192  SDValue Op0 = Node->getOperand(0);
2193  SDValue Op1 = Node->getOperand(1);
2194  SDValue combined;
2195  for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2196         UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2197    SDNode *User = *UI;
2198    if (User == Node || User->use_empty())
2199      continue;
2200    // Convert the other matching node(s), too;
2201    // otherwise, the DIVREM may get target-legalized into something
2202    // target-specific that we won't be able to recognize.
2203    unsigned UserOpc = User->getOpcode();
2204    if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
2205        User->getOperand(0) == Op0 &&
2206        User->getOperand(1) == Op1) {
2207      if (!combined) {
2208        if (UserOpc == OtherOpcode) {
2209          SDVTList VTs = DAG.getVTList(VT, VT);
2210          combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
2211        } else if (UserOpc == DivRemOpc) {
2212          combined = SDValue(User, 0);
2213        } else {
2214          assert(UserOpc == Opcode);
2215          continue;
2216        }
2217      }
2218      if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
2219        CombineTo(User, combined);
2220      else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
2221        CombineTo(User, combined.getValue(1));
2222    }
2223  }
2224  return combined;
2225}
2226
2227SDValue DAGCombiner::visitSDIV(SDNode *N) {
2228  SDValue N0 = N->getOperand(0);
2229  SDValue N1 = N->getOperand(1);
2230  EVT VT = N->getValueType(0);
2231
2232  // fold vector ops
2233  if (VT.isVector())
2234    if (SDValue FoldedVOp = SimplifyVBinOp(N))
2235      return FoldedVOp;
2236
2237  SDLoc DL(N);
2238
2239  // fold (sdiv c1, c2) -> c1/c2
2240  ConstantSDNode *N0C = isConstOrConstSplat(N0);
2241  ConstantSDNode *N1C = isConstOrConstSplat(N1);
2242  if (N0C && N1C && !N0C->isOpaque() && !N1C->isOpaque())
2243    return DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, N0C, N1C);
2244  // fold (sdiv X, 1) -> X
2245  if (N1C && N1C->isOne())
2246    return N0;
2247  // fold (sdiv X, -1) -> 0-X
2248  if (N1C && N1C->isAllOnesValue())
2249    return DAG.getNode(ISD::SUB, DL, VT,
2250                       DAG.getConstant(0, DL, VT), N0);
2251
2252  // If we know the sign bits of both operands are zero, strength reduce to a
2253  // udiv instead.  Handles (X&15) /s 4 -> X&15 >> 2
2254  if (!VT.isVector()) {
2255    if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2256      return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
2257  }
2258
2259  // fold (sdiv X, pow2) -> simple ops after legalize
2260  // FIXME: We check for the exact bit here because the generic lowering gives
2261  // better results in that case. The target-specific lowering should learn how
2262  // to handle exact sdivs efficiently.
2263  if (N1C && !N1C->isNullValue() && !N1C->isOpaque() &&
2264      !cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact() &&
2265      (N1C->getAPIntValue().isPowerOf2() ||
2266       (-N1C->getAPIntValue()).isPowerOf2())) {
2267    // Target-specific implementation of sdiv x, pow2.
2268    if (SDValue Res = BuildSDIVPow2(N))
2269      return Res;
2270
2271    unsigned lg2 = N1C->getAPIntValue().countTrailingZeros();
2272
2273    // Splat the sign bit into the register
2274    SDValue SGN =
2275        DAG.getNode(ISD::SRA, DL, VT, N0,
2276                    DAG.getConstant(VT.getScalarSizeInBits() - 1, DL,
2277                                    getShiftAmountTy(N0.getValueType())));
2278    AddToWorklist(SGN.getNode());
2279
2280    // Add (N0 < 0) ? abs2 - 1 : 0;
2281    SDValue SRL =
2282        DAG.getNode(ISD::SRL, DL, VT, SGN,
2283                    DAG.getConstant(VT.getScalarSizeInBits() - lg2, DL,
2284                                    getShiftAmountTy(SGN.getValueType())));
2285    SDValue ADD = DAG.getNode(ISD::ADD, DL, VT, N0, SRL);
2286    AddToWorklist(SRL.getNode());
2287    AddToWorklist(ADD.getNode());    // Divide by pow2
2288    SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, ADD,
2289                  DAG.getConstant(lg2, DL,
2290                                  getShiftAmountTy(ADD.getValueType())));
2291
2292    // If we're dividing by a positive value, we're done.  Otherwise, we must
2293    // negate the result.
2294    if (N1C->getAPIntValue().isNonNegative())
2295      return SRA;
2296
2297    AddToWorklist(SRA.getNode());
2298    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
2299  }
2300
2301  // If integer divide is expensive and we satisfy the requirements, emit an
2302  // alternate sequence.  Targets may check function attributes for size/speed
2303  // trade-offs.
2304  AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2305  if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr))
2306    if (SDValue Op = BuildSDIV(N))
2307      return Op;
2308
2309  // sdiv, srem -> sdivrem
2310  // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true.
2311  // Otherwise, we break the simplification logic in visitREM().
2312  if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
2313    if (SDValue DivRem = useDivRem(N))
2314        return DivRem;
2315
2316  // undef / X -> 0
2317  if (N0.getOpcode() == ISD::UNDEF)
2318    return DAG.getConstant(0, DL, VT);
2319  // X / undef -> undef
2320  if (N1.getOpcode() == ISD::UNDEF)
2321    return N1;
2322
2323  return SDValue();
2324}
2325
2326SDValue DAGCombiner::visitUDIV(SDNode *N) {
2327  SDValue N0 = N->getOperand(0);
2328  SDValue N1 = N->getOperand(1);
2329  EVT VT = N->getValueType(0);
2330
2331  // fold vector ops
2332  if (VT.isVector())
2333    if (SDValue FoldedVOp = SimplifyVBinOp(N))
2334      return FoldedVOp;
2335
2336  SDLoc DL(N);
2337
2338  // fold (udiv c1, c2) -> c1/c2
2339  ConstantSDNode *N0C = isConstOrConstSplat(N0);
2340  ConstantSDNode *N1C = isConstOrConstSplat(N1);
2341  if (N0C && N1C)
2342    if (SDValue Folded = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT,
2343                                                    N0C, N1C))
2344      return Folded;
2345  // fold (udiv x, (1 << c)) -> x >>u c
2346  if (N1C && !N1C->isOpaque() && N1C->getAPIntValue().isPowerOf2())
2347    return DAG.getNode(ISD::SRL, DL, VT, N0,
2348                       DAG.getConstant(N1C->getAPIntValue().logBase2(), DL,
2349                                       getShiftAmountTy(N0.getValueType())));
2350
2351  // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
2352  if (N1.getOpcode() == ISD::SHL) {
2353    if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) {
2354      if (SHC->getAPIntValue().isPowerOf2()) {
2355        EVT ADDVT = N1.getOperand(1).getValueType();
2356        SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT,
2357                                  N1.getOperand(1),
2358                                  DAG.getConstant(SHC->getAPIntValue()
2359                                                                  .logBase2(),
2360                                                  DL, ADDVT));
2361        AddToWorklist(Add.getNode());
2362        return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
2363      }
2364    }
2365  }
2366
2367  // fold (udiv x, c) -> alternate
2368  AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2369  if (N1C && !TLI.isIntDivCheap(N->getValueType(0), Attr))
2370    if (SDValue Op = BuildUDIV(N))
2371      return Op;
2372
2373  // sdiv, srem -> sdivrem
2374  // If the divisor is constant, then return DIVREM only if isIntDivCheap() is true.
2375  // Otherwise, we break the simplification logic in visitREM().
2376  if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
2377    if (SDValue DivRem = useDivRem(N))
2378        return DivRem;
2379
2380  // undef / X -> 0
2381  if (N0.getOpcode() == ISD::UNDEF)
2382    return DAG.getConstant(0, DL, VT);
2383  // X / undef -> undef
2384  if (N1.getOpcode() == ISD::UNDEF)
2385    return N1;
2386
2387  return SDValue();
2388}
2389
2390// handles ISD::SREM and ISD::UREM
2391SDValue DAGCombiner::visitREM(SDNode *N) {
2392  unsigned Opcode = N->getOpcode();
2393  SDValue N0 = N->getOperand(0);
2394  SDValue N1 = N->getOperand(1);
2395  EVT VT = N->getValueType(0);
2396  bool isSigned = (Opcode == ISD::SREM);
2397  SDLoc DL(N);
2398
2399  // fold (rem c1, c2) -> c1%c2
2400  ConstantSDNode *N0C = isConstOrConstSplat(N0);
2401  ConstantSDNode *N1C = isConstOrConstSplat(N1);
2402  if (N0C && N1C)
2403    if (SDValue Folded = DAG.FoldConstantArithmetic(Opcode, DL, VT, N0C, N1C))
2404      return Folded;
2405
2406  if (isSigned) {
2407    // If we know the sign bits of both operands are zero, strength reduce to a
2408    // urem instead.  Handles (X & 0x0FFFFFFF) %s 16 -> X&15
2409    if (!VT.isVector()) {
2410      if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
2411        return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
2412    }
2413  } else {
2414    // fold (urem x, pow2) -> (and x, pow2-1)
2415    if (N1C && !N1C->isNullValue() && !N1C->isOpaque() &&
2416        N1C->getAPIntValue().isPowerOf2()) {
2417      return DAG.getNode(ISD::AND, DL, VT, N0,
2418                         DAG.getConstant(N1C->getAPIntValue() - 1, DL, VT));
2419    }
2420    // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
2421    if (N1.getOpcode() == ISD::SHL) {
2422      if (ConstantSDNode *SHC = getAsNonOpaqueConstant(N1.getOperand(0))) {
2423        if (SHC->getAPIntValue().isPowerOf2()) {
2424          SDValue Add =
2425            DAG.getNode(ISD::ADD, DL, VT, N1,
2426                 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL,
2427                                 VT));
2428          AddToWorklist(Add.getNode());
2429          return DAG.getNode(ISD::AND, DL, VT, N0, Add);
2430        }
2431      }
2432    }
2433  }
2434
2435  AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2436
2437  // If X/C can be simplified by the division-by-constant logic, lower
2438  // X%C to the equivalent of X-X/C*C.
2439  // To avoid mangling nodes, this simplification requires that the combine()
2440  // call for the speculative DIV must not cause a DIVREM conversion.  We guard
2441  // against this by skipping the simplification if isIntDivCheap().  When
2442  // div is not cheap, combine will not return a DIVREM.  Regardless,
2443  // checking cheapness here makes sense since the simplification results in
2444  // fatter code.
2445  if (N1C && !N1C->isNullValue() && !TLI.isIntDivCheap(VT, Attr)) {
2446    unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
2447    SDValue Div = DAG.getNode(DivOpcode, DL, VT, N0, N1);
2448    AddToWorklist(Div.getNode());
2449    SDValue OptimizedDiv = combine(Div.getNode());
2450    if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != Div.getNode()) {
2451      assert((OptimizedDiv.getOpcode() != ISD::UDIVREM) &&
2452             (OptimizedDiv.getOpcode() != ISD::SDIVREM));
2453      SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
2454      SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
2455      AddToWorklist(Mul.getNode());
2456      return Sub;
2457    }
2458  }
2459
2460  // sdiv, srem -> sdivrem
2461  if (SDValue DivRem = useDivRem(N))
2462    return DivRem.getValue(1);
2463
2464  // undef % X -> 0
2465  if (N0.getOpcode() == ISD::UNDEF)
2466    return DAG.getConstant(0, DL, VT);
2467  // X % undef -> undef
2468  if (N1.getOpcode() == ISD::UNDEF)
2469    return N1;
2470
2471  return SDValue();
2472}
2473
2474SDValue DAGCombiner::visitMULHS(SDNode *N) {
2475  SDValue N0 = N->getOperand(0);
2476  SDValue N1 = N->getOperand(1);
2477  EVT VT = N->getValueType(0);
2478  SDLoc DL(N);
2479
2480  // fold (mulhs x, 0) -> 0
2481  if (isNullConstant(N1))
2482    return N1;
2483  // fold (mulhs x, 1) -> (sra x, size(x)-1)
2484  if (isOneConstant(N1)) {
2485    SDLoc DL(N);
2486    return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
2487                       DAG.getConstant(N0.getValueType().getSizeInBits() - 1,
2488                                       DL,
2489                                       getShiftAmountTy(N0.getValueType())));
2490  }
2491  // fold (mulhs x, undef) -> 0
2492  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2493    return DAG.getConstant(0, SDLoc(N), VT);
2494
2495  // If the type twice as wide is legal, transform the mulhs to a wider multiply
2496  // plus a shift.
2497  if (VT.isSimple() && !VT.isVector()) {
2498    MVT Simple = VT.getSimpleVT();
2499    unsigned SimpleSize = Simple.getSizeInBits();
2500    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2501    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2502      N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
2503      N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
2504      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2505      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2506            DAG.getConstant(SimpleSize, DL,
2507                            getShiftAmountTy(N1.getValueType())));
2508      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2509    }
2510  }
2511
2512  return SDValue();
2513}
2514
2515SDValue DAGCombiner::visitMULHU(SDNode *N) {
2516  SDValue N0 = N->getOperand(0);
2517  SDValue N1 = N->getOperand(1);
2518  EVT VT = N->getValueType(0);
2519  SDLoc DL(N);
2520
2521  // fold (mulhu x, 0) -> 0
2522  if (isNullConstant(N1))
2523    return N1;
2524  // fold (mulhu x, 1) -> 0
2525  if (isOneConstant(N1))
2526    return DAG.getConstant(0, DL, N0.getValueType());
2527  // fold (mulhu x, undef) -> 0
2528  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2529    return DAG.getConstant(0, DL, VT);
2530
2531  // If the type twice as wide is legal, transform the mulhu to a wider multiply
2532  // plus a shift.
2533  if (VT.isSimple() && !VT.isVector()) {
2534    MVT Simple = VT.getSimpleVT();
2535    unsigned SimpleSize = Simple.getSizeInBits();
2536    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2537    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2538      N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
2539      N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
2540      N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
2541      N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
2542            DAG.getConstant(SimpleSize, DL,
2543                            getShiftAmountTy(N1.getValueType())));
2544      return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
2545    }
2546  }
2547
2548  return SDValue();
2549}
2550
2551/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
2552/// give the opcodes for the two computations that are being performed. Return
2553/// true if a simplification was made.
2554SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
2555                                                unsigned HiOp) {
2556  // If the high half is not needed, just compute the low half.
2557  bool HiExists = N->hasAnyUseOfValue(1);
2558  if (!HiExists &&
2559      (!LegalOperations ||
2560       TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
2561    SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
2562    return CombineTo(N, Res, Res);
2563  }
2564
2565  // If the low half is not needed, just compute the high half.
2566  bool LoExists = N->hasAnyUseOfValue(0);
2567  if (!LoExists &&
2568      (!LegalOperations ||
2569       TLI.isOperationLegal(HiOp, N->getValueType(1)))) {
2570    SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
2571    return CombineTo(N, Res, Res);
2572  }
2573
2574  // If both halves are used, return as it is.
2575  if (LoExists && HiExists)
2576    return SDValue();
2577
2578  // If the two computed results can be simplified separately, separate them.
2579  if (LoExists) {
2580    SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
2581    AddToWorklist(Lo.getNode());
2582    SDValue LoOpt = combine(Lo.getNode());
2583    if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
2584        (!LegalOperations ||
2585         TLI.isOperationLegal(LoOpt.getOpcode(), LoOpt.getValueType())))
2586      return CombineTo(N, LoOpt, LoOpt);
2587  }
2588
2589  if (HiExists) {
2590    SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
2591    AddToWorklist(Hi.getNode());
2592    SDValue HiOpt = combine(Hi.getNode());
2593    if (HiOpt.getNode() && HiOpt != Hi &&
2594        (!LegalOperations ||
2595         TLI.isOperationLegal(HiOpt.getOpcode(), HiOpt.getValueType())))
2596      return CombineTo(N, HiOpt, HiOpt);
2597  }
2598
2599  return SDValue();
2600}
2601
2602SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
2603  if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
2604    return Res;
2605
2606  EVT VT = N->getValueType(0);
2607  SDLoc DL(N);
2608
2609  // If the type is twice as wide is legal, transform the mulhu to a wider
2610  // multiply plus a shift.
2611  if (VT.isSimple() && !VT.isVector()) {
2612    MVT Simple = VT.getSimpleVT();
2613    unsigned SimpleSize = Simple.getSizeInBits();
2614    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2615    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2616      SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
2617      SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
2618      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2619      // Compute the high part as N1.
2620      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2621            DAG.getConstant(SimpleSize, DL,
2622                            getShiftAmountTy(Lo.getValueType())));
2623      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2624      // Compute the low part as N0.
2625      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2626      return CombineTo(N, Lo, Hi);
2627    }
2628  }
2629
2630  return SDValue();
2631}
2632
2633SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
2634  if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
2635    return Res;
2636
2637  EVT VT = N->getValueType(0);
2638  SDLoc DL(N);
2639
2640  // If the type is twice as wide is legal, transform the mulhu to a wider
2641  // multiply plus a shift.
2642  if (VT.isSimple() && !VT.isVector()) {
2643    MVT Simple = VT.getSimpleVT();
2644    unsigned SimpleSize = Simple.getSizeInBits();
2645    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
2646    if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
2647      SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
2648      SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
2649      Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
2650      // Compute the high part as N1.
2651      Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
2652            DAG.getConstant(SimpleSize, DL,
2653                            getShiftAmountTy(Lo.getValueType())));
2654      Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
2655      // Compute the low part as N0.
2656      Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
2657      return CombineTo(N, Lo, Hi);
2658    }
2659  }
2660
2661  return SDValue();
2662}
2663
2664SDValue DAGCombiner::visitSMULO(SDNode *N) {
2665  // (smulo x, 2) -> (saddo x, x)
2666  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2667    if (C2->getAPIntValue() == 2)
2668      return DAG.getNode(ISD::SADDO, SDLoc(N), N->getVTList(),
2669                         N->getOperand(0), N->getOperand(0));
2670
2671  return SDValue();
2672}
2673
2674SDValue DAGCombiner::visitUMULO(SDNode *N) {
2675  // (umulo x, 2) -> (uaddo x, x)
2676  if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2677    if (C2->getAPIntValue() == 2)
2678      return DAG.getNode(ISD::UADDO, SDLoc(N), N->getVTList(),
2679                         N->getOperand(0), N->getOperand(0));
2680
2681  return SDValue();
2682}
2683
2684SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
2685  SDValue N0 = N->getOperand(0);
2686  SDValue N1 = N->getOperand(1);
2687  EVT VT = N0.getValueType();
2688
2689  // fold vector ops
2690  if (VT.isVector())
2691    if (SDValue FoldedVOp = SimplifyVBinOp(N))
2692      return FoldedVOp;
2693
2694  // fold (add c1, c2) -> c1+c2
2695  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
2696  ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
2697  if (N0C && N1C)
2698    return DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, N0C, N1C);
2699
2700  // canonicalize constant to RHS
2701  if (isConstantIntBuildVectorOrConstantInt(N0) &&
2702     !isConstantIntBuildVectorOrConstantInt(N1))
2703    return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
2704
2705  return SDValue();
2706}
2707
2708/// If this is a binary operator with two operands of the same opcode, try to
2709/// simplify it.
2710SDValue DAGCombiner::SimplifyBinOpWithSameOpcodeHands(SDNode *N) {
2711  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2712  EVT VT = N0.getValueType();
2713  assert(N0.getOpcode() == N1.getOpcode() && "Bad input!");
2714
2715  // Bail early if none of these transforms apply.
2716  if (N0.getNode()->getNumOperands() == 0) return SDValue();
2717
2718  // For each of OP in AND/OR/XOR:
2719  // fold (OP (zext x), (zext y)) -> (zext (OP x, y))
2720  // fold (OP (sext x), (sext y)) -> (sext (OP x, y))
2721  // fold (OP (aext x), (aext y)) -> (aext (OP x, y))
2722  // fold (OP (bswap x), (bswap y)) -> (bswap (OP x, y))
2723  // fold (OP (trunc x), (trunc y)) -> (trunc (OP x, y)) (if trunc isn't free)
2724  //
2725  // do not sink logical op inside of a vector extend, since it may combine
2726  // into a vsetcc.
2727  EVT Op0VT = N0.getOperand(0).getValueType();
2728  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
2729       N0.getOpcode() == ISD::SIGN_EXTEND ||
2730       N0.getOpcode() == ISD::BSWAP ||
2731       // Avoid infinite looping with PromoteIntBinOp.
2732       (N0.getOpcode() == ISD::ANY_EXTEND &&
2733        (!LegalTypes || TLI.isTypeDesirableForOp(N->getOpcode(), Op0VT))) ||
2734       (N0.getOpcode() == ISD::TRUNCATE &&
2735        (!TLI.isZExtFree(VT, Op0VT) ||
2736         !TLI.isTruncateFree(Op0VT, VT)) &&
2737        TLI.isTypeLegal(Op0VT))) &&
2738      !VT.isVector() &&
2739      Op0VT == N1.getOperand(0).getValueType() &&
2740      (!LegalOperations || TLI.isOperationLegal(N->getOpcode(), Op0VT))) {
2741    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2742                                 N0.getOperand(0).getValueType(),
2743                                 N0.getOperand(0), N1.getOperand(0));
2744    AddToWorklist(ORNode.getNode());
2745    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, ORNode);
2746  }
2747
2748  // For each of OP in SHL/SRL/SRA/AND...
2749  //   fold (and (OP x, z), (OP y, z)) -> (OP (and x, y), z)
2750  //   fold (or  (OP x, z), (OP y, z)) -> (OP (or  x, y), z)
2751  //   fold (xor (OP x, z), (OP y, z)) -> (OP (xor x, y), z)
2752  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL ||
2753       N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::AND) &&
2754      N0.getOperand(1) == N1.getOperand(1)) {
2755    SDValue ORNode = DAG.getNode(N->getOpcode(), SDLoc(N0),
2756                                 N0.getOperand(0).getValueType(),
2757                                 N0.getOperand(0), N1.getOperand(0));
2758    AddToWorklist(ORNode.getNode());
2759    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
2760                       ORNode, N0.getOperand(1));
2761  }
2762
2763  // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
2764  // Only perform this optimization after type legalization and before
2765  // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
2766  // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
2767  // we don't want to undo this promotion.
2768  // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
2769  // on scalars.
2770  if ((N0.getOpcode() == ISD::BITCAST ||
2771       N0.getOpcode() == ISD::SCALAR_TO_VECTOR) &&
2772      Level == AfterLegalizeTypes) {
2773    SDValue In0 = N0.getOperand(0);
2774    SDValue In1 = N1.getOperand(0);
2775    EVT In0Ty = In0.getValueType();
2776    EVT In1Ty = In1.getValueType();
2777    SDLoc DL(N);
2778    // If both incoming values are integers, and the original types are the
2779    // same.
2780    if (In0Ty.isInteger() && In1Ty.isInteger() && In0Ty == In1Ty) {
2781      SDValue Op = DAG.getNode(N->getOpcode(), DL, In0Ty, In0, In1);
2782      SDValue BC = DAG.getNode(N0.getOpcode(), DL, VT, Op);
2783      AddToWorklist(Op.getNode());
2784      return BC;
2785    }
2786  }
2787
2788  // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
2789  // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
2790  // If both shuffles use the same mask, and both shuffle within a single
2791  // vector, then it is worthwhile to move the swizzle after the operation.
2792  // The type-legalizer generates this pattern when loading illegal
2793  // vector types from memory. In many cases this allows additional shuffle
2794  // optimizations.
2795  // There are other cases where moving the shuffle after the xor/and/or
2796  // is profitable even if shuffles don't perform a swizzle.
2797  // If both shuffles use the same mask, and both shuffles have the same first
2798  // or second operand, then it might still be profitable to move the shuffle
2799  // after the xor/and/or operation.
2800  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
2801    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(N0);
2802    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(N1);
2803
2804    assert(N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
2805           "Inputs to shuffles are not the same type");
2806
2807    // Check that both shuffles use the same mask. The masks are known to be of
2808    // the same length because the result vector type is the same.
2809    // Check also that shuffles have only one use to avoid introducing extra
2810    // instructions.
2811    if (SVN0->hasOneUse() && SVN1->hasOneUse() &&
2812        SVN0->getMask().equals(SVN1->getMask())) {
2813      SDValue ShOp = N0->getOperand(1);
2814
2815      // Don't try to fold this node if it requires introducing a
2816      // build vector of all zeros that might be illegal at this stage.
2817      if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) {
2818        if (!LegalTypes)
2819          ShOp = DAG.getConstant(0, SDLoc(N), VT);
2820        else
2821          ShOp = SDValue();
2822      }
2823
2824      // (AND (shuf (A, C), shuf (B, C)) -> shuf (AND (A, B), C)
2825      // (OR  (shuf (A, C), shuf (B, C)) -> shuf (OR  (A, B), C)
2826      // (XOR (shuf (A, C), shuf (B, C)) -> shuf (XOR (A, B), V_0)
2827      if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
2828        SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2829                                      N0->getOperand(0), N1->getOperand(0));
2830        AddToWorklist(NewNode.getNode());
2831        return DAG.getVectorShuffle(VT, SDLoc(N), NewNode, ShOp,
2832                                    &SVN0->getMask()[0]);
2833      }
2834
2835      // Don't try to fold this node if it requires introducing a
2836      // build vector of all zeros that might be illegal at this stage.
2837      ShOp = N0->getOperand(0);
2838      if (N->getOpcode() == ISD::XOR && ShOp.getOpcode() != ISD::UNDEF) {
2839        if (!LegalTypes)
2840          ShOp = DAG.getConstant(0, SDLoc(N), VT);
2841        else
2842          ShOp = SDValue();
2843      }
2844
2845      // (AND (shuf (C, A), shuf (C, B)) -> shuf (C, AND (A, B))
2846      // (OR  (shuf (C, A), shuf (C, B)) -> shuf (C, OR  (A, B))
2847      // (XOR (shuf (C, A), shuf (C, B)) -> shuf (V_0, XOR (A, B))
2848      if (N0->getOperand(0) == N1->getOperand(0) && ShOp.getNode()) {
2849        SDValue NewNode = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
2850                                      N0->getOperand(1), N1->getOperand(1));
2851        AddToWorklist(NewNode.getNode());
2852        return DAG.getVectorShuffle(VT, SDLoc(N), ShOp, NewNode,
2853                                    &SVN0->getMask()[0]);
2854      }
2855    }
2856  }
2857
2858  return SDValue();
2859}
2860
2861/// This contains all DAGCombine rules which reduce two values combined by
2862/// an And operation to a single value. This makes them reusable in the context
2863/// of visitSELECT(). Rules involving constants are not included as
2864/// visitSELECT() already handles those cases.
2865SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1,
2866                                  SDNode *LocReference) {
2867  EVT VT = N1.getValueType();
2868
2869  // fold (and x, undef) -> 0
2870  if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)
2871    return DAG.getConstant(0, SDLoc(LocReference), VT);
2872  // fold (and (setcc x), (setcc y)) -> (setcc (and x, y))
2873  SDValue LL, LR, RL, RR, CC0, CC1;
2874  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
2875    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
2876    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
2877
2878    if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 &&
2879        LL.getValueType().isInteger()) {
2880      // fold (and (seteq X, 0), (seteq Y, 0)) -> (seteq (or X, Y), 0)
2881      if (isNullConstant(LR) && Op1 == ISD::SETEQ) {
2882        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2883                                     LR.getValueType(), LL, RL);
2884        AddToWorklist(ORNode.getNode());
2885        return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
2886      }
2887      if (isAllOnesConstant(LR)) {
2888        // fold (and (seteq X, -1), (seteq Y, -1)) -> (seteq (and X, Y), -1)
2889        if (Op1 == ISD::SETEQ) {
2890          SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(N0),
2891                                        LR.getValueType(), LL, RL);
2892          AddToWorklist(ANDNode.getNode());
2893          return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
2894        }
2895        // fold (and (setgt X, -1), (setgt Y, -1)) -> (setgt (or X, Y), -1)
2896        if (Op1 == ISD::SETGT) {
2897          SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(N0),
2898                                       LR.getValueType(), LL, RL);
2899          AddToWorklist(ORNode.getNode());
2900          return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
2901        }
2902      }
2903    }
2904    // Simplify (and (setne X, 0), (setne X, -1)) -> (setuge (add X, 1), 2)
2905    if (LL == RL && isa<ConstantSDNode>(LR) && isa<ConstantSDNode>(RR) &&
2906        Op0 == Op1 && LL.getValueType().isInteger() &&
2907      Op0 == ISD::SETNE && ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
2908                            (isAllOnesConstant(LR) && isNullConstant(RR)))) {
2909      SDLoc DL(N0);
2910      SDValue ADDNode = DAG.getNode(ISD::ADD, DL, LL.getValueType(),
2911                                    LL, DAG.getConstant(1, DL,
2912                                                        LL.getValueType()));
2913      AddToWorklist(ADDNode.getNode());
2914      return DAG.getSetCC(SDLoc(LocReference), VT, ADDNode,
2915                          DAG.getConstant(2, DL, LL.getValueType()),
2916                          ISD::SETUGE);
2917    }
2918    // canonicalize equivalent to ll == rl
2919    if (LL == RR && LR == RL) {
2920      Op1 = ISD::getSetCCSwappedOperands(Op1);
2921      std::swap(RL, RR);
2922    }
2923    if (LL == RL && LR == RR) {
2924      bool isInteger = LL.getValueType().isInteger();
2925      ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger);
2926      if (Result != ISD::SETCC_INVALID &&
2927          (!LegalOperations ||
2928           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
2929            TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) {
2930        EVT CCVT = getSetCCResultType(LL.getValueType());
2931        if (N0.getValueType() == CCVT ||
2932            (!LegalOperations && N0.getValueType() == MVT::i1))
2933          return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(),
2934                              LL, LR, Result);
2935      }
2936    }
2937  }
2938
2939  if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
2940      VT.getSizeInBits() <= 64) {
2941    if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2942      APInt ADDC = ADDI->getAPIntValue();
2943      if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2944        // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
2945        // immediate for an add, but it is legal if its top c2 bits are set,
2946        // transform the ADD so the immediate doesn't need to be materialized
2947        // in a register.
2948        if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
2949          APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
2950                                             SRLI->getZExtValue());
2951          if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
2952            ADDC |= Mask;
2953            if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
2954              SDLoc DL(N0);
2955              SDValue NewAdd =
2956                DAG.getNode(ISD::ADD, DL, VT,
2957                            N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
2958              CombineTo(N0.getNode(), NewAdd);
2959              // Return N so it doesn't get rechecked!
2960              return SDValue(LocReference, 0);
2961            }
2962          }
2963        }
2964      }
2965    }
2966  }
2967
2968  return SDValue();
2969}
2970
2971bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
2972                                   EVT LoadResultTy, EVT &ExtVT, EVT &LoadedVT,
2973                                   bool &NarrowLoad) {
2974  uint32_t ActiveBits = AndC->getAPIntValue().getActiveBits();
2975
2976  if (ActiveBits == 0 || !APIntOps::isMask(ActiveBits, AndC->getAPIntValue()))
2977    return false;
2978
2979  ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
2980  LoadedVT = LoadN->getMemoryVT();
2981
2982  if (ExtVT == LoadedVT &&
2983      (!LegalOperations ||
2984       TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
2985    // ZEXTLOAD will match without needing to change the size of the value being
2986    // loaded.
2987    NarrowLoad = false;
2988    return true;
2989  }
2990
2991  // Do not change the width of a volatile load.
2992  if (LoadN->isVolatile())
2993    return false;
2994
2995  // Do not generate loads of non-round integer types since these can
2996  // be expensive (and would be wrong if the type is not byte sized).
2997  if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
2998    return false;
2999
3000  if (LegalOperations &&
3001      !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
3002    return false;
3003
3004  if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
3005    return false;
3006
3007  NarrowLoad = true;
3008  return true;
3009}
3010
3011SDValue DAGCombiner::visitAND(SDNode *N) {
3012  SDValue N0 = N->getOperand(0);
3013  SDValue N1 = N->getOperand(1);
3014  EVT VT = N1.getValueType();
3015
3016  // fold vector ops
3017  if (VT.isVector()) {
3018    if (SDValue FoldedVOp = SimplifyVBinOp(N))
3019      return FoldedVOp;
3020
3021    // fold (and x, 0) -> 0, vector edition
3022    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3023      // do not return N0, because undef node may exist in N0
3024      return DAG.getConstant(
3025          APInt::getNullValue(
3026              N0.getValueType().getScalarType().getSizeInBits()),
3027          SDLoc(N), N0.getValueType());
3028    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3029      // do not return N1, because undef node may exist in N1
3030      return DAG.getConstant(
3031          APInt::getNullValue(
3032              N1.getValueType().getScalarType().getSizeInBits()),
3033          SDLoc(N), N1.getValueType());
3034
3035    // fold (and x, -1) -> x, vector edition
3036    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3037      return N1;
3038    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3039      return N0;
3040  }
3041
3042  // fold (and c1, c2) -> c1&c2
3043  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
3044  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3045  if (N0C && N1C && !N1C->isOpaque())
3046    return DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, N0C, N1C);
3047  // canonicalize constant to RHS
3048  if (isConstantIntBuildVectorOrConstantInt(N0) &&
3049     !isConstantIntBuildVectorOrConstantInt(N1))
3050    return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
3051  // fold (and x, -1) -> x
3052  if (isAllOnesConstant(N1))
3053    return N0;
3054  // if (and x, c) is known to be zero, return 0
3055  unsigned BitWidth = VT.getScalarType().getSizeInBits();
3056  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
3057                                   APInt::getAllOnesValue(BitWidth)))
3058    return DAG.getConstant(0, SDLoc(N), VT);
3059  // reassociate and
3060  if (SDValue RAND = ReassociateOps(ISD::AND, SDLoc(N), N0, N1))
3061    return RAND;
3062  // fold (and (or x, C), D) -> D if (C & D) == D
3063  if (N1C && N0.getOpcode() == ISD::OR)
3064    if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
3065      if ((ORI->getAPIntValue() & N1C->getAPIntValue()) == N1C->getAPIntValue())
3066        return N1;
3067  // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
3068  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
3069    SDValue N0Op0 = N0.getOperand(0);
3070    APInt Mask = ~N1C->getAPIntValue();
3071    Mask = Mask.trunc(N0Op0.getValueSizeInBits());
3072    if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
3073      SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
3074                                 N0.getValueType(), N0Op0);
3075
3076      // Replace uses of the AND with uses of the Zero extend node.
3077      CombineTo(N, Zext);
3078
3079      // We actually want to replace all uses of the any_extend with the
3080      // zero_extend, to avoid duplicating things.  This will later cause this
3081      // AND to be folded.
3082      CombineTo(N0.getNode(), Zext);
3083      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3084    }
3085  }
3086  // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
3087  // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
3088  // already be zero by virtue of the width of the base type of the load.
3089  //
3090  // the 'X' node here can either be nothing or an extract_vector_elt to catch
3091  // more cases.
3092  if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
3093       N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
3094       N0.getOperand(0).getOpcode() == ISD::LOAD) ||
3095      N0.getOpcode() == ISD::LOAD) {
3096    LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
3097                                         N0 : N0.getOperand(0) );
3098
3099    // Get the constant (if applicable) the zero'th operand is being ANDed with.
3100    // This can be a pure constant or a vector splat, in which case we treat the
3101    // vector as a scalar and use the splat value.
3102    APInt Constant = APInt::getNullValue(1);
3103    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
3104      Constant = C->getAPIntValue();
3105    } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
3106      APInt SplatValue, SplatUndef;
3107      unsigned SplatBitSize;
3108      bool HasAnyUndefs;
3109      bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
3110                                             SplatBitSize, HasAnyUndefs);
3111      if (IsSplat) {
3112        // Undef bits can contribute to a possible optimisation if set, so
3113        // set them.
3114        SplatValue |= SplatUndef;
3115
3116        // The splat value may be something like "0x00FFFFFF", which means 0 for
3117        // the first vector value and FF for the rest, repeating. We need a mask
3118        // that will apply equally to all members of the vector, so AND all the
3119        // lanes of the constant together.
3120        EVT VT = Vector->getValueType(0);
3121        unsigned BitWidth = VT.getVectorElementType().getSizeInBits();
3122
3123        // If the splat value has been compressed to a bitlength lower
3124        // than the size of the vector lane, we need to re-expand it to
3125        // the lane size.
3126        if (BitWidth > SplatBitSize)
3127          for (SplatValue = SplatValue.zextOrTrunc(BitWidth);
3128               SplatBitSize < BitWidth;
3129               SplatBitSize = SplatBitSize * 2)
3130            SplatValue |= SplatValue.shl(SplatBitSize);
3131
3132        // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
3133        // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
3134        if (SplatBitSize % BitWidth == 0) {
3135          Constant = APInt::getAllOnesValue(BitWidth);
3136          for (unsigned i = 0, n = SplatBitSize/BitWidth; i < n; ++i)
3137            Constant &= SplatValue.lshr(i*BitWidth).zextOrTrunc(BitWidth);
3138        }
3139      }
3140    }
3141
3142    // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
3143    // actually legal and isn't going to get expanded, else this is a false
3144    // optimisation.
3145    bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
3146                                                    Load->getValueType(0),
3147                                                    Load->getMemoryVT());
3148
3149    // Resize the constant to the same size as the original memory access before
3150    // extension. If it is still the AllOnesValue then this AND is completely
3151    // unneeded.
3152    Constant =
3153      Constant.zextOrTrunc(Load->getMemoryVT().getScalarType().getSizeInBits());
3154
3155    bool B;
3156    switch (Load->getExtensionType()) {
3157    default: B = false; break;
3158    case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
3159    case ISD::ZEXTLOAD:
3160    case ISD::NON_EXTLOAD: B = true; break;
3161    }
3162
3163    if (B && Constant.isAllOnesValue()) {
3164      // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
3165      // preserve semantics once we get rid of the AND.
3166      SDValue NewLoad(Load, 0);
3167      if (Load->getExtensionType() == ISD::EXTLOAD) {
3168        NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
3169                              Load->getValueType(0), SDLoc(Load),
3170                              Load->getChain(), Load->getBasePtr(),
3171                              Load->getOffset(), Load->getMemoryVT(),
3172                              Load->getMemOperand());
3173        // Replace uses of the EXTLOAD with the new ZEXTLOAD.
3174        if (Load->getNumValues() == 3) {
3175          // PRE/POST_INC loads have 3 values.
3176          SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
3177                           NewLoad.getValue(2) };
3178          CombineTo(Load, To, 3, true);
3179        } else {
3180          CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
3181        }
3182      }
3183
3184      // Fold the AND away, taking care not to fold to the old load node if we
3185      // replaced it.
3186      CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
3187
3188      return SDValue(N, 0); // Return N so it doesn't get rechecked!
3189    }
3190  }
3191
3192  // fold (and (load x), 255) -> (zextload x, i8)
3193  // fold (and (extload x, i16), 255) -> (zextload x, i8)
3194  // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
3195  if (N1C && (N0.getOpcode() == ISD::LOAD ||
3196              (N0.getOpcode() == ISD::ANY_EXTEND &&
3197               N0.getOperand(0).getOpcode() == ISD::LOAD))) {
3198    bool HasAnyExt = N0.getOpcode() == ISD::ANY_EXTEND;
3199    LoadSDNode *LN0 = HasAnyExt
3200      ? cast<LoadSDNode>(N0.getOperand(0))
3201      : cast<LoadSDNode>(N0);
3202    if (LN0->getExtensionType() != ISD::SEXTLOAD &&
3203        LN0->isUnindexed() && N0.hasOneUse() && SDValue(LN0, 0).hasOneUse()) {
3204      auto NarrowLoad = false;
3205      EVT LoadResultTy = HasAnyExt ? LN0->getValueType(0) : VT;
3206      EVT ExtVT, LoadedVT;
3207      if (isAndLoadExtLoad(N1C, LN0, LoadResultTy, ExtVT, LoadedVT,
3208                           NarrowLoad)) {
3209        if (!NarrowLoad) {
3210          SDValue NewLoad =
3211            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
3212                           LN0->getChain(), LN0->getBasePtr(), ExtVT,
3213                           LN0->getMemOperand());
3214          AddToWorklist(N);
3215          CombineTo(LN0, NewLoad, NewLoad.getValue(1));
3216          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3217        } else {
3218          EVT PtrType = LN0->getOperand(1).getValueType();
3219
3220          unsigned Alignment = LN0->getAlignment();
3221          SDValue NewPtr = LN0->getBasePtr();
3222
3223          // For big endian targets, we need to add an offset to the pointer
3224          // to load the correct bytes.  For little endian systems, we merely
3225          // need to read fewer bytes from the same pointer.
3226          if (DAG.getDataLayout().isBigEndian()) {
3227            unsigned LVTStoreBytes = LoadedVT.getStoreSize();
3228            unsigned EVTStoreBytes = ExtVT.getStoreSize();
3229            unsigned PtrOff = LVTStoreBytes - EVTStoreBytes;
3230            SDLoc DL(LN0);
3231            NewPtr = DAG.getNode(ISD::ADD, DL, PtrType,
3232                                 NewPtr, DAG.getConstant(PtrOff, DL, PtrType));
3233            Alignment = MinAlign(Alignment, PtrOff);
3234          }
3235
3236          AddToWorklist(NewPtr.getNode());
3237
3238          SDValue Load =
3239            DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), LoadResultTy,
3240                           LN0->getChain(), NewPtr,
3241                           LN0->getPointerInfo(),
3242                           ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
3243                           LN0->isInvariant(), Alignment, LN0->getAAInfo());
3244          AddToWorklist(N);
3245          CombineTo(LN0, Load, Load.getValue(1));
3246          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3247        }
3248      }
3249    }
3250  }
3251
3252  if (SDValue Combined = visitANDLike(N0, N1, N))
3253    return Combined;
3254
3255  // Simplify: (and (op x...), (op y...))  -> (op (and x, y))
3256  if (N0.getOpcode() == N1.getOpcode())
3257    if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
3258      return Tmp;
3259
3260  // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
3261  // fold (and (sra)) -> (and (srl)) when possible.
3262  if (!VT.isVector() &&
3263      SimplifyDemandedBits(SDValue(N, 0)))
3264    return SDValue(N, 0);
3265
3266  // fold (zext_inreg (extload x)) -> (zextload x)
3267  if (ISD::isEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode())) {
3268    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3269    EVT MemVT = LN0->getMemoryVT();
3270    // If we zero all the possible extended bits, then we can turn this into
3271    // a zextload if we are running before legalize or the operation is legal.
3272    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
3273    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
3274                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
3275        ((!LegalOperations && !LN0->isVolatile()) ||
3276         TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
3277      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
3278                                       LN0->getChain(), LN0->getBasePtr(),
3279                                       MemVT, LN0->getMemOperand());
3280      AddToWorklist(N);
3281      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3282      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3283    }
3284  }
3285  // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
3286  if (ISD::isSEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
3287      N0.hasOneUse()) {
3288    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
3289    EVT MemVT = LN0->getMemoryVT();
3290    // If we zero all the possible extended bits, then we can turn this into
3291    // a zextload if we are running before legalize or the operation is legal.
3292    unsigned BitWidth = N1.getValueType().getScalarType().getSizeInBits();
3293    if (DAG.MaskedValueIsZero(N1, APInt::getHighBitsSet(BitWidth,
3294                           BitWidth - MemVT.getScalarType().getSizeInBits())) &&
3295        ((!LegalOperations && !LN0->isVolatile()) ||
3296         TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
3297      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT,
3298                                       LN0->getChain(), LN0->getBasePtr(),
3299                                       MemVT, LN0->getMemOperand());
3300      AddToWorklist(N);
3301      CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
3302      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
3303    }
3304  }
3305  // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
3306  if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
3307    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
3308                                       N0.getOperand(1), false);
3309    if (BSwap.getNode())
3310      return BSwap;
3311  }
3312
3313  return SDValue();
3314}
3315
3316/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
3317SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
3318                                        bool DemandHighBits) {
3319  if (!LegalOperations)
3320    return SDValue();
3321
3322  EVT VT = N->getValueType(0);
3323  if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
3324    return SDValue();
3325  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3326    return SDValue();
3327
3328  // Recognize (and (shl a, 8), 0xff), (and (srl a, 8), 0xff00)
3329  bool LookPassAnd0 = false;
3330  bool LookPassAnd1 = false;
3331  if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
3332      std::swap(N0, N1);
3333  if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
3334      std::swap(N0, N1);
3335  if (N0.getOpcode() == ISD::AND) {
3336    if (!N0.getNode()->hasOneUse())
3337      return SDValue();
3338    ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3339    if (!N01C || N01C->getZExtValue() != 0xFF00)
3340      return SDValue();
3341    N0 = N0.getOperand(0);
3342    LookPassAnd0 = true;
3343  }
3344
3345  if (N1.getOpcode() == ISD::AND) {
3346    if (!N1.getNode()->hasOneUse())
3347      return SDValue();
3348    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
3349    if (!N11C || N11C->getZExtValue() != 0xFF)
3350      return SDValue();
3351    N1 = N1.getOperand(0);
3352    LookPassAnd1 = true;
3353  }
3354
3355  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
3356    std::swap(N0, N1);
3357  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
3358    return SDValue();
3359  if (!N0.getNode()->hasOneUse() ||
3360      !N1.getNode()->hasOneUse())
3361    return SDValue();
3362
3363  ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3364  ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
3365  if (!N01C || !N11C)
3366    return SDValue();
3367  if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
3368    return SDValue();
3369
3370  // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
3371  SDValue N00 = N0->getOperand(0);
3372  if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
3373    if (!N00.getNode()->hasOneUse())
3374      return SDValue();
3375    ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
3376    if (!N001C || N001C->getZExtValue() != 0xFF)
3377      return SDValue();
3378    N00 = N00.getOperand(0);
3379    LookPassAnd0 = true;
3380  }
3381
3382  SDValue N10 = N1->getOperand(0);
3383  if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
3384    if (!N10.getNode()->hasOneUse())
3385      return SDValue();
3386    ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
3387    if (!N101C || N101C->getZExtValue() != 0xFF00)
3388      return SDValue();
3389    N10 = N10.getOperand(0);
3390    LookPassAnd1 = true;
3391  }
3392
3393  if (N00 != N10)
3394    return SDValue();
3395
3396  // Make sure everything beyond the low halfword gets set to zero since the SRL
3397  // 16 will clear the top bits.
3398  unsigned OpSizeInBits = VT.getSizeInBits();
3399  if (DemandHighBits && OpSizeInBits > 16) {
3400    // If the left-shift isn't masked out then the only way this is a bswap is
3401    // if all bits beyond the low 8 are 0. In that case the entire pattern
3402    // reduces to a left shift anyway: leave it for other parts of the combiner.
3403    if (!LookPassAnd0)
3404      return SDValue();
3405
3406    // However, if the right shift isn't masked out then it might be because
3407    // it's not needed. See if we can spot that too.
3408    if (!LookPassAnd1 &&
3409        !DAG.MaskedValueIsZero(
3410            N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
3411      return SDValue();
3412  }
3413
3414  SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
3415  if (OpSizeInBits > 16) {
3416    SDLoc DL(N);
3417    Res = DAG.getNode(ISD::SRL, DL, VT, Res,
3418                      DAG.getConstant(OpSizeInBits - 16, DL,
3419                                      getShiftAmountTy(VT)));
3420  }
3421  return Res;
3422}
3423
3424/// Return true if the specified node is an element that makes up a 32-bit
3425/// packed halfword byteswap.
3426/// ((x & 0x000000ff) << 8) |
3427/// ((x & 0x0000ff00) >> 8) |
3428/// ((x & 0x00ff0000) << 8) |
3429/// ((x & 0xff000000) >> 8)
3430static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
3431  if (!N.getNode()->hasOneUse())
3432    return false;
3433
3434  unsigned Opc = N.getOpcode();
3435  if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
3436    return false;
3437
3438  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3439  if (!N1C)
3440    return false;
3441
3442  unsigned Num;
3443  switch (N1C->getZExtValue()) {
3444  default:
3445    return false;
3446  case 0xFF:       Num = 0; break;
3447  case 0xFF00:     Num = 1; break;
3448  case 0xFF0000:   Num = 2; break;
3449  case 0xFF000000: Num = 3; break;
3450  }
3451
3452  // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
3453  SDValue N0 = N.getOperand(0);
3454  if (Opc == ISD::AND) {
3455    if (Num == 0 || Num == 2) {
3456      // (x >> 8) & 0xff
3457      // (x >> 8) & 0xff0000
3458      if (N0.getOpcode() != ISD::SRL)
3459        return false;
3460      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3461      if (!C || C->getZExtValue() != 8)
3462        return false;
3463    } else {
3464      // (x << 8) & 0xff00
3465      // (x << 8) & 0xff000000
3466      if (N0.getOpcode() != ISD::SHL)
3467        return false;
3468      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3469      if (!C || C->getZExtValue() != 8)
3470        return false;
3471    }
3472  } else if (Opc == ISD::SHL) {
3473    // (x & 0xff) << 8
3474    // (x & 0xff0000) << 8
3475    if (Num != 0 && Num != 2)
3476      return false;
3477    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3478    if (!C || C->getZExtValue() != 8)
3479      return false;
3480  } else { // Opc == ISD::SRL
3481    // (x & 0xff00) >> 8
3482    // (x & 0xff000000) >> 8
3483    if (Num != 1 && Num != 3)
3484      return false;
3485    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
3486    if (!C || C->getZExtValue() != 8)
3487      return false;
3488  }
3489
3490  if (Parts[Num])
3491    return false;
3492
3493  Parts[Num] = N0.getOperand(0).getNode();
3494  return true;
3495}
3496
3497/// Match a 32-bit packed halfword bswap. That is
3498/// ((x & 0x000000ff) << 8) |
3499/// ((x & 0x0000ff00) >> 8) |
3500/// ((x & 0x00ff0000) << 8) |
3501/// ((x & 0xff000000) >> 8)
3502/// => (rotl (bswap x), 16)
3503SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
3504  if (!LegalOperations)
3505    return SDValue();
3506
3507  EVT VT = N->getValueType(0);
3508  if (VT != MVT::i32)
3509    return SDValue();
3510  if (!TLI.isOperationLegal(ISD::BSWAP, VT))
3511    return SDValue();
3512
3513  // Look for either
3514  // (or (or (and), (and)), (or (and), (and)))
3515  // (or (or (or (and), (and)), (and)), (and))
3516  if (N0.getOpcode() != ISD::OR)
3517    return SDValue();
3518  SDValue N00 = N0.getOperand(0);
3519  SDValue N01 = N0.getOperand(1);
3520  SDNode *Parts[4] = {};
3521
3522  if (N1.getOpcode() == ISD::OR &&
3523      N00.getNumOperands() == 2 && N01.getNumOperands() == 2) {
3524    // (or (or (and), (and)), (or (and), (and)))
3525    SDValue N000 = N00.getOperand(0);
3526    if (!isBSwapHWordElement(N000, Parts))
3527      return SDValue();
3528
3529    SDValue N001 = N00.getOperand(1);
3530    if (!isBSwapHWordElement(N001, Parts))
3531      return SDValue();
3532    SDValue N010 = N01.getOperand(0);
3533    if (!isBSwapHWordElement(N010, Parts))
3534      return SDValue();
3535    SDValue N011 = N01.getOperand(1);
3536    if (!isBSwapHWordElement(N011, Parts))
3537      return SDValue();
3538  } else {
3539    // (or (or (or (and), (and)), (and)), (and))
3540    if (!isBSwapHWordElement(N1, Parts))
3541      return SDValue();
3542    if (!isBSwapHWordElement(N01, Parts))
3543      return SDValue();
3544    if (N00.getOpcode() != ISD::OR)
3545      return SDValue();
3546    SDValue N000 = N00.getOperand(0);
3547    if (!isBSwapHWordElement(N000, Parts))
3548      return SDValue();
3549    SDValue N001 = N00.getOperand(1);
3550    if (!isBSwapHWordElement(N001, Parts))
3551      return SDValue();
3552  }
3553
3554  // Make sure the parts are all coming from the same node.
3555  if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
3556    return SDValue();
3557
3558  SDLoc DL(N);
3559  SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
3560                              SDValue(Parts[0], 0));
3561
3562  // Result of the bswap should be rotated by 16. If it's not legal, then
3563  // do  (x << 16) | (x >> 16).
3564  SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
3565  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
3566    return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
3567  if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
3568    return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
3569  return DAG.getNode(ISD::OR, DL, VT,
3570                     DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
3571                     DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
3572}
3573
3574/// This contains all DAGCombine rules which reduce two values combined by
3575/// an Or operation to a single value \see visitANDLike().
3576SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *LocReference) {
3577  EVT VT = N1.getValueType();
3578  // fold (or x, undef) -> -1
3579  if (!LegalOperations &&
3580      (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() == ISD::UNDEF)) {
3581    EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
3582    return DAG.getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()),
3583                           SDLoc(LocReference), VT);
3584  }
3585  // fold (or (setcc x), (setcc y)) -> (setcc (or x, y))
3586  SDValue LL, LR, RL, RR, CC0, CC1;
3587  if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){
3588    ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get();
3589    ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get();
3590
3591    if (LR == RR && Op0 == Op1 && LL.getValueType().isInteger()) {
3592      // fold (or (setne X, 0), (setne Y, 0)) -> (setne (or X, Y), 0)
3593      // fold (or (setlt X, 0), (setlt Y, 0)) -> (setne (or X, Y), 0)
3594      if (isNullConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) {
3595        SDValue ORNode = DAG.getNode(ISD::OR, SDLoc(LR),
3596                                     LR.getValueType(), LL, RL);
3597        AddToWorklist(ORNode.getNode());
3598        return DAG.getSetCC(SDLoc(LocReference), VT, ORNode, LR, Op1);
3599      }
3600      // fold (or (setne X, -1), (setne Y, -1)) -> (setne (and X, Y), -1)
3601      // fold (or (setgt X, -1), (setgt Y  -1)) -> (setgt (and X, Y), -1)
3602      if (isAllOnesConstant(LR) && (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) {
3603        SDValue ANDNode = DAG.getNode(ISD::AND, SDLoc(LR),
3604                                      LR.getValueType(), LL, RL);
3605        AddToWorklist(ANDNode.getNode());
3606        return DAG.getSetCC(SDLoc(LocReference), VT, ANDNode, LR, Op1);
3607      }
3608    }
3609    // canonicalize equivalent to ll == rl
3610    if (LL == RR && LR == RL) {
3611      Op1 = ISD::getSetCCSwappedOperands(Op1);
3612      std::swap(RL, RR);
3613    }
3614    if (LL == RL && LR == RR) {
3615      bool isInteger = LL.getValueType().isInteger();
3616      ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger);
3617      if (Result != ISD::SETCC_INVALID &&
3618          (!LegalOperations ||
3619           (TLI.isCondCodeLegal(Result, LL.getSimpleValueType()) &&
3620            TLI.isOperationLegal(ISD::SETCC, LL.getValueType())))) {
3621        EVT CCVT = getSetCCResultType(LL.getValueType());
3622        if (N0.getValueType() == CCVT ||
3623            (!LegalOperations && N0.getValueType() == MVT::i1))
3624          return DAG.getSetCC(SDLoc(LocReference), N0.getValueType(),
3625                              LL, LR, Result);
3626      }
3627    }
3628  }
3629
3630  // (or (and X, C1), (and Y, C2))  -> (and (or X, Y), C3) if possible.
3631  if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
3632      // Don't increase # computations.
3633      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3634    // We can only do this xform if we know that bits from X that are set in C2
3635    // but not in C1 are already zero.  Likewise for Y.
3636    if (const ConstantSDNode *N0O1C =
3637        getAsNonOpaqueConstant(N0.getOperand(1))) {
3638      if (const ConstantSDNode *N1O1C =
3639          getAsNonOpaqueConstant(N1.getOperand(1))) {
3640        // We can only do this xform if we know that bits from X that are set in
3641        // C2 but not in C1 are already zero.  Likewise for Y.
3642        const APInt &LHSMask = N0O1C->getAPIntValue();
3643        const APInt &RHSMask = N1O1C->getAPIntValue();
3644
3645        if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
3646            DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
3647          SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3648                                  N0.getOperand(0), N1.getOperand(0));
3649          SDLoc DL(LocReference);
3650          return DAG.getNode(ISD::AND, DL, VT, X,
3651                             DAG.getConstant(LHSMask | RHSMask, DL, VT));
3652        }
3653      }
3654    }
3655  }
3656
3657  // (or (and X, M), (and X, N)) -> (and X, (or M, N))
3658  if (N0.getOpcode() == ISD::AND &&
3659      N1.getOpcode() == ISD::AND &&
3660      N0.getOperand(0) == N1.getOperand(0) &&
3661      // Don't increase # computations.
3662      (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
3663    SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
3664                            N0.getOperand(1), N1.getOperand(1));
3665    return DAG.getNode(ISD::AND, SDLoc(LocReference), VT, N0.getOperand(0), X);
3666  }
3667
3668  return SDValue();
3669}
3670
3671SDValue DAGCombiner::visitOR(SDNode *N) {
3672  SDValue N0 = N->getOperand(0);
3673  SDValue N1 = N->getOperand(1);
3674  EVT VT = N1.getValueType();
3675
3676  // fold vector ops
3677  if (VT.isVector()) {
3678    if (SDValue FoldedVOp = SimplifyVBinOp(N))
3679      return FoldedVOp;
3680
3681    // fold (or x, 0) -> x, vector edition
3682    if (ISD::isBuildVectorAllZeros(N0.getNode()))
3683      return N1;
3684    if (ISD::isBuildVectorAllZeros(N1.getNode()))
3685      return N0;
3686
3687    // fold (or x, -1) -> -1, vector edition
3688    if (ISD::isBuildVectorAllOnes(N0.getNode()))
3689      // do not return N0, because undef node may exist in N0
3690      return DAG.getConstant(
3691          APInt::getAllOnesValue(
3692              N0.getValueType().getScalarType().getSizeInBits()),
3693          SDLoc(N), N0.getValueType());
3694    if (ISD::isBuildVectorAllOnes(N1.getNode()))
3695      // do not return N1, because undef node may exist in N1
3696      return DAG.getConstant(
3697          APInt::getAllOnesValue(
3698              N1.getValueType().getScalarType().getSizeInBits()),
3699          SDLoc(N), N1.getValueType());
3700
3701    // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask1)
3702    // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf B, A, Mask2)
3703    // Do this only if the resulting shuffle is legal.
3704    if (isa<ShuffleVectorSDNode>(N0) &&
3705        isa<ShuffleVectorSDNode>(N1) &&
3706        // Avoid folding a node with illegal type.
3707        TLI.isTypeLegal(VT) &&
3708        N0->getOperand(1) == N1->getOperand(1) &&
3709        ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode())) {
3710      bool CanFold = true;
3711      unsigned NumElts = VT.getVectorNumElements();
3712      const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
3713      const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
3714      // We construct two shuffle masks:
3715      // - Mask1 is a shuffle mask for a shuffle with N0 as the first operand
3716      // and N1 as the second operand.
3717      // - Mask2 is a shuffle mask for a shuffle with N1 as the first operand
3718      // and N0 as the second operand.
3719      // We do this because OR is commutable and therefore there might be
3720      // two ways to fold this node into a shuffle.
3721      SmallVector<int,4> Mask1;
3722      SmallVector<int,4> Mask2;
3723
3724      for (unsigned i = 0; i != NumElts && CanFold; ++i) {
3725        int M0 = SV0->getMaskElt(i);
3726        int M1 = SV1->getMaskElt(i);
3727
3728        // Both shuffle indexes are undef. Propagate Undef.
3729        if (M0 < 0 && M1 < 0) {
3730          Mask1.push_back(M0);
3731          Mask2.push_back(M0);
3732          continue;
3733        }
3734
3735        if (M0 < 0 || M1 < 0 ||
3736            (M0 < (int)NumElts && M1 < (int)NumElts) ||
3737            (M0 >= (int)NumElts && M1 >= (int)NumElts)) {
3738          CanFold = false;
3739          break;
3740        }
3741
3742        Mask1.push_back(M0 < (int)NumElts ? M0 : M1 + NumElts);
3743        Mask2.push_back(M1 < (int)NumElts ? M1 : M0 + NumElts);
3744      }
3745
3746      if (CanFold) {
3747        // Fold this sequence only if the resulting shuffle is 'legal'.
3748        if (TLI.isShuffleMaskLegal(Mask1, VT))
3749          return DAG.getVectorShuffle(VT, SDLoc(N), N0->getOperand(0),
3750                                      N1->getOperand(0), &Mask1[0]);
3751        if (TLI.isShuffleMaskLegal(Mask2, VT))
3752          return DAG.getVectorShuffle(VT, SDLoc(N), N1->getOperand(0),
3753                                      N0->getOperand(0), &Mask2[0]);
3754      }
3755    }
3756  }
3757
3758  // fold (or c1, c2) -> c1|c2
3759  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
3760  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3761  if (N0C && N1C && !N1C->isOpaque())
3762    return DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, N0C, N1C);
3763  // canonicalize constant to RHS
3764  if (isConstantIntBuildVectorOrConstantInt(N0) &&
3765     !isConstantIntBuildVectorOrConstantInt(N1))
3766    return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
3767  // fold (or x, 0) -> x
3768  if (isNullConstant(N1))
3769    return N0;
3770  // fold (or x, -1) -> -1
3771  if (isAllOnesConstant(N1))
3772    return N1;
3773  // fold (or x, c) -> c iff (x & ~c) == 0
3774  if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
3775    return N1;
3776
3777  if (SDValue Combined = visitORLike(N0, N1, N))
3778    return Combined;
3779
3780  // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
3781  if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
3782    return BSwap;
3783  if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
3784    return BSwap;
3785
3786  // reassociate or
3787  if (SDValue ROR = ReassociateOps(ISD::OR, SDLoc(N), N0, N1))
3788    return ROR;
3789  // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
3790  // iff (c1 & c2) == 0.
3791  if (N1C && N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
3792             isa<ConstantSDNode>(N0.getOperand(1))) {
3793    ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1));
3794    if ((C1->getAPIntValue() & N1C->getAPIntValue()) != 0) {
3795      if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
3796                                                   N1C, C1))
3797        return DAG.getNode(
3798            ISD::AND, SDLoc(N), VT,
3799            DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1), COR);
3800      return SDValue();
3801    }
3802  }
3803  // Simplify: (or (op x...), (op y...))  -> (op (or x, y))
3804  if (N0.getOpcode() == N1.getOpcode())
3805    if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
3806      return Tmp;
3807
3808  // See if this is some rotate idiom.
3809  if (SDNode *Rot = MatchRotate(N0, N1, SDLoc(N)))
3810    return SDValue(Rot, 0);
3811
3812  // Simplify the operands using demanded-bits information.
3813  if (!VT.isVector() &&
3814      SimplifyDemandedBits(SDValue(N, 0)))
3815    return SDValue(N, 0);
3816
3817  return SDValue();
3818}
3819
3820/// Match "(X shl/srl V1) & V2" where V2 may not be present.
3821static bool MatchRotateHalf(SDValue Op, SDValue &Shift, SDValue &Mask) {
3822  if (Op.getOpcode() == ISD::AND) {
3823    if (isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
3824      Mask = Op.getOperand(1);
3825      Op = Op.getOperand(0);
3826    } else {
3827      return false;
3828    }
3829  }
3830
3831  if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
3832    Shift = Op;
3833    return true;
3834  }
3835
3836  return false;
3837}
3838
3839// Return true if we can prove that, whenever Neg and Pos are both in the
3840// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos).  This means that
3841// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
3842//
3843//     (or (shift1 X, Neg), (shift2 X, Pos))
3844//
3845// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
3846// in direction shift1 by Neg.  The range [0, EltSize) means that we only need
3847// to consider shift amounts with defined behavior.
3848static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize) {
3849  // If EltSize is a power of 2 then:
3850  //
3851  //  (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
3852  //  (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
3853  //
3854  // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
3855  // for the stronger condition:
3856  //
3857  //     Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1)    [A]
3858  //
3859  // for all Neg and Pos.  Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
3860  // we can just replace Neg with Neg' for the rest of the function.
3861  //
3862  // In other cases we check for the even stronger condition:
3863  //
3864  //     Neg == EltSize - Pos                                    [B]
3865  //
3866  // for all Neg and Pos.  Note that the (or ...) then invokes undefined
3867  // behavior if Pos == 0 (and consequently Neg == EltSize).
3868  //
3869  // We could actually use [A] whenever EltSize is a power of 2, but the
3870  // only extra cases that it would match are those uninteresting ones
3871  // where Neg and Pos are never in range at the same time.  E.g. for
3872  // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
3873  // as well as (sub 32, Pos), but:
3874  //
3875  //     (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
3876  //
3877  // always invokes undefined behavior for 32-bit X.
3878  //
3879  // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
3880  unsigned MaskLoBits = 0;
3881  if (Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
3882    if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
3883      if (NegC->getAPIntValue() == EltSize - 1) {
3884        Neg = Neg.getOperand(0);
3885        MaskLoBits = Log2_64(EltSize);
3886      }
3887    }
3888  }
3889
3890  // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
3891  if (Neg.getOpcode() != ISD::SUB)
3892    return false;
3893  ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
3894  if (!NegC)
3895    return false;
3896  SDValue NegOp1 = Neg.getOperand(1);
3897
3898  // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
3899  // Pos'.  The truncation is redundant for the purpose of the equality.
3900  if (MaskLoBits && Pos.getOpcode() == ISD::AND)
3901    if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
3902      if (PosC->getAPIntValue() == EltSize - 1)
3903        Pos = Pos.getOperand(0);
3904
3905  // The condition we need is now:
3906  //
3907  //     (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
3908  //
3909  // If NegOp1 == Pos then we need:
3910  //
3911  //              EltSize & Mask == NegC & Mask
3912  //
3913  // (because "x & Mask" is a truncation and distributes through subtraction).
3914  APInt Width;
3915  if (Pos == NegOp1)
3916    Width = NegC->getAPIntValue();
3917
3918  // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
3919  // Then the condition we want to prove becomes:
3920  //
3921  //     (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
3922  //
3923  // which, again because "x & Mask" is a truncation, becomes:
3924  //
3925  //                NegC & Mask == (EltSize - PosC) & Mask
3926  //             EltSize & Mask == (NegC + PosC) & Mask
3927  else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
3928    if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
3929      Width = PosC->getAPIntValue() + NegC->getAPIntValue();
3930    else
3931      return false;
3932  } else
3933    return false;
3934
3935  // Now we just need to check that EltSize & Mask == Width & Mask.
3936  if (MaskLoBits)
3937    // EltSize & Mask is 0 since Mask is EltSize - 1.
3938    return Width.getLoBits(MaskLoBits) == 0;
3939  return Width == EltSize;
3940}
3941
3942// A subroutine of MatchRotate used once we have found an OR of two opposite
3943// shifts of Shifted.  If Neg == <operand size> - Pos then the OR reduces
3944// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
3945// former being preferred if supported.  InnerPos and InnerNeg are Pos and
3946// Neg with outer conversions stripped away.
3947SDNode *DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
3948                                       SDValue Neg, SDValue InnerPos,
3949                                       SDValue InnerNeg, unsigned PosOpcode,
3950                                       unsigned NegOpcode, SDLoc DL) {
3951  // fold (or (shl x, (*ext y)),
3952  //          (srl x, (*ext (sub 32, y)))) ->
3953  //   (rotl x, y) or (rotr x, (sub 32, y))
3954  //
3955  // fold (or (shl x, (*ext (sub 32, y))),
3956  //          (srl x, (*ext y))) ->
3957  //   (rotr x, y) or (rotl x, (sub 32, y))
3958  EVT VT = Shifted.getValueType();
3959  if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits())) {
3960    bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
3961    return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
3962                       HasPos ? Pos : Neg).getNode();
3963  }
3964
3965  return nullptr;
3966}
3967
3968// MatchRotate - Handle an 'or' of two operands.  If this is one of the many
3969// idioms for rotate, and if the target supports rotation instructions, generate
3970// a rot[lr].
3971SDNode *DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, SDLoc DL) {
3972  // Must be a legal type.  Expanded 'n promoted things won't work with rotates.
3973  EVT VT = LHS.getValueType();
3974  if (!TLI.isTypeLegal(VT)) return nullptr;
3975
3976  // The target must have at least one rotate flavor.
3977  bool HasROTL = TLI.isOperationLegalOrCustom(ISD::ROTL, VT);
3978  bool HasROTR = TLI.isOperationLegalOrCustom(ISD::ROTR, VT);
3979  if (!HasROTL && !HasROTR) return nullptr;
3980
3981  // Match "(X shl/srl V1) & V2" where V2 may not be present.
3982  SDValue LHSShift;   // The shift.
3983  SDValue LHSMask;    // AND value if any.
3984  if (!MatchRotateHalf(LHS, LHSShift, LHSMask))
3985    return nullptr; // Not part of a rotate.
3986
3987  SDValue RHSShift;   // The shift.
3988  SDValue RHSMask;    // AND value if any.
3989  if (!MatchRotateHalf(RHS, RHSShift, RHSMask))
3990    return nullptr; // Not part of a rotate.
3991
3992  if (LHSShift.getOperand(0) != RHSShift.getOperand(0))
3993    return nullptr;   // Not shifting the same value.
3994
3995  if (LHSShift.getOpcode() == RHSShift.getOpcode())
3996    return nullptr;   // Shifts must disagree.
3997
3998  // Canonicalize shl to left side in a shl/srl pair.
3999  if (RHSShift.getOpcode() == ISD::SHL) {
4000    std::swap(LHS, RHS);
4001    std::swap(LHSShift, RHSShift);
4002    std::swap(LHSMask, RHSMask);
4003  }
4004
4005  unsigned EltSizeInBits = VT.getScalarSizeInBits();
4006  SDValue LHSShiftArg = LHSShift.getOperand(0);
4007  SDValue LHSShiftAmt = LHSShift.getOperand(1);
4008  SDValue RHSShiftArg = RHSShift.getOperand(0);
4009  SDValue RHSShiftAmt = RHSShift.getOperand(1);
4010
4011  // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
4012  // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
4013  if (isConstOrConstSplat(LHSShiftAmt) && isConstOrConstSplat(RHSShiftAmt)) {
4014    uint64_t LShVal = isConstOrConstSplat(LHSShiftAmt)->getZExtValue();
4015    uint64_t RShVal = isConstOrConstSplat(RHSShiftAmt)->getZExtValue();
4016    if ((LShVal + RShVal) != EltSizeInBits)
4017      return nullptr;
4018
4019    SDValue Rot = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT,
4020                              LHSShiftArg, HasROTL ? LHSShiftAmt : RHSShiftAmt);
4021
4022    // If there is an AND of either shifted operand, apply it to the result.
4023    if (LHSMask.getNode() || RHSMask.getNode()) {
4024      APInt AllBits = APInt::getAllOnesValue(EltSizeInBits);
4025      SDValue Mask = DAG.getConstant(AllBits, DL, VT);
4026
4027      if (LHSMask.getNode()) {
4028        APInt RHSBits = APInt::getLowBitsSet(EltSizeInBits, LShVal);
4029        Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
4030                           DAG.getNode(ISD::OR, DL, VT, LHSMask,
4031                                       DAG.getConstant(RHSBits, DL, VT)));
4032      }
4033      if (RHSMask.getNode()) {
4034        APInt LHSBits = APInt::getHighBitsSet(EltSizeInBits, RShVal);
4035        Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
4036                           DAG.getNode(ISD::OR, DL, VT, RHSMask,
4037                                       DAG.getConstant(LHSBits, DL, VT)));
4038      }
4039
4040      Rot = DAG.getNode(ISD::AND, DL, VT, Rot, Mask);
4041    }
4042
4043    return Rot.getNode();
4044  }
4045
4046  // If there is a mask here, and we have a variable shift, we can't be sure
4047  // that we're masking out the right stuff.
4048  if (LHSMask.getNode() || RHSMask.getNode())
4049    return nullptr;
4050
4051  // If the shift amount is sign/zext/any-extended just peel it off.
4052  SDValue LExtOp0 = LHSShiftAmt;
4053  SDValue RExtOp0 = RHSShiftAmt;
4054  if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
4055       LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
4056       LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
4057       LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
4058      (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
4059       RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
4060       RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
4061       RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
4062    LExtOp0 = LHSShiftAmt.getOperand(0);
4063    RExtOp0 = RHSShiftAmt.getOperand(0);
4064  }
4065
4066  SDNode *TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
4067                                   LExtOp0, RExtOp0, ISD::ROTL, ISD::ROTR, DL);
4068  if (TryL)
4069    return TryL;
4070
4071  SDNode *TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
4072                                   RExtOp0, LExtOp0, ISD::ROTR, ISD::ROTL, DL);
4073  if (TryR)
4074    return TryR;
4075
4076  return nullptr;
4077}
4078
4079SDValue DAGCombiner::visitXOR(SDNode *N) {
4080  SDValue N0 = N->getOperand(0);
4081  SDValue N1 = N->getOperand(1);
4082  EVT VT = N0.getValueType();
4083
4084  // fold vector ops
4085  if (VT.isVector()) {
4086    if (SDValue FoldedVOp = SimplifyVBinOp(N))
4087      return FoldedVOp;
4088
4089    // fold (xor x, 0) -> x, vector edition
4090    if (ISD::isBuildVectorAllZeros(N0.getNode()))
4091      return N1;
4092    if (ISD::isBuildVectorAllZeros(N1.getNode()))
4093      return N0;
4094  }
4095
4096  // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
4097  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
4098    return DAG.getConstant(0, SDLoc(N), VT);
4099  // fold (xor x, undef) -> undef
4100  if (N0.getOpcode() == ISD::UNDEF)
4101    return N0;
4102  if (N1.getOpcode() == ISD::UNDEF)
4103    return N1;
4104  // fold (xor c1, c2) -> c1^c2
4105  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4106  ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
4107  if (N0C && N1C)
4108    return DAG.FoldConstantArithmetic(ISD::XOR, SDLoc(N), VT, N0C, N1C);
4109  // canonicalize constant to RHS
4110  if (isConstantIntBuildVectorOrConstantInt(N0) &&
4111     !isConstantIntBuildVectorOrConstantInt(N1))
4112    return DAG.getNode(ISD::XOR, SDLoc(N), VT, N1, N0);
4113  // fold (xor x, 0) -> x
4114  if (isNullConstant(N1))
4115    return N0;
4116  // reassociate xor
4117  if (SDValue RXOR = ReassociateOps(ISD::XOR, SDLoc(N), N0, N1))
4118    return RXOR;
4119
4120  // fold !(x cc y) -> (x !cc y)
4121  SDValue LHS, RHS, CC;
4122  if (TLI.isConstTrueVal(N1.getNode()) && isSetCCEquivalent(N0, LHS, RHS, CC)) {
4123    bool isInt = LHS.getValueType().isInteger();
4124    ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
4125                                               isInt);
4126
4127    if (!LegalOperations ||
4128        TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
4129      switch (N0.getOpcode()) {
4130      default:
4131        llvm_unreachable("Unhandled SetCC Equivalent!");
4132      case ISD::SETCC:
4133        return DAG.getSetCC(SDLoc(N), VT, LHS, RHS, NotCC);
4134      case ISD::SELECT_CC:
4135        return DAG.getSelectCC(SDLoc(N), LHS, RHS, N0.getOperand(2),
4136                               N0.getOperand(3), NotCC);
4137      }
4138    }
4139  }
4140
4141  // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
4142  if (isOneConstant(N1) && N0.getOpcode() == ISD::ZERO_EXTEND &&
4143      N0.getNode()->hasOneUse() &&
4144      isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
4145    SDValue V = N0.getOperand(0);
4146    SDLoc DL(N0);
4147    V = DAG.getNode(ISD::XOR, DL, V.getValueType(), V,
4148                    DAG.getConstant(1, DL, V.getValueType()));
4149    AddToWorklist(V.getNode());
4150    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, V);
4151  }
4152
4153  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
4154  if (isOneConstant(N1) && VT == MVT::i1 &&
4155      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
4156    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4157    if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) {
4158      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
4159      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
4160      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
4161      AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
4162      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
4163    }
4164  }
4165  // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
4166  if (isAllOnesConstant(N1) &&
4167      (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) {
4168    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
4169    if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) {
4170      unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND;
4171      LHS = DAG.getNode(ISD::XOR, SDLoc(LHS), VT, LHS, N1); // LHS = ~LHS
4172      RHS = DAG.getNode(ISD::XOR, SDLoc(RHS), VT, RHS, N1); // RHS = ~RHS
4173      AddToWorklist(LHS.getNode()); AddToWorklist(RHS.getNode());
4174      return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
4175    }
4176  }
4177  // fold (xor (and x, y), y) -> (and (not x), y)
4178  if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
4179      N0->getOperand(1) == N1) {
4180    SDValue X = N0->getOperand(0);
4181    SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
4182    AddToWorklist(NotX.getNode());
4183    return DAG.getNode(ISD::AND, SDLoc(N), VT, NotX, N1);
4184  }
4185  // fold (xor (xor x, c1), c2) -> (xor x, (xor c1, c2))
4186  if (N1C && N0.getOpcode() == ISD::XOR) {
4187    if (const ConstantSDNode *N00C = getAsNonOpaqueConstant(N0.getOperand(0))) {
4188      SDLoc DL(N);
4189      return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
4190                         DAG.getConstant(N1C->getAPIntValue() ^
4191                                         N00C->getAPIntValue(), DL, VT));
4192    }
4193    if (const ConstantSDNode *N01C = getAsNonOpaqueConstant(N0.getOperand(1))) {
4194      SDLoc DL(N);
4195      return DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
4196                         DAG.getConstant(N1C->getAPIntValue() ^
4197                                         N01C->getAPIntValue(), DL, VT));
4198    }
4199  }
4200  // fold (xor x, x) -> 0
4201  if (N0 == N1)
4202    return tryFoldToZero(SDLoc(N), TLI, VT, DAG, LegalOperations, LegalTypes);
4203
4204  // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
4205  // Here is a concrete example of this equivalence:
4206  // i16   x ==  14
4207  // i16 shl ==   1 << 14  == 16384 == 0b0100000000000000
4208  // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
4209  //
4210  // =>
4211  //
4212  // i16     ~1      == 0b1111111111111110
4213  // i16 rol(~1, 14) == 0b1011111111111111
4214  //
4215  // Some additional tips to help conceptualize this transform:
4216  // - Try to see the operation as placing a single zero in a value of all ones.
4217  // - There exists no value for x which would allow the result to contain zero.
4218  // - Values of x larger than the bitwidth are undefined and do not require a
4219  //   consistent result.
4220  // - Pushing the zero left requires shifting one bits in from the right.
4221  // A rotate left of ~1 is a nice way of achieving the desired result.
4222  if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0.getOpcode() == ISD::SHL
4223      && isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
4224    SDLoc DL(N);
4225    return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
4226                       N0.getOperand(1));
4227  }
4228
4229  // Simplify: xor (op x...), (op y...)  -> (op (xor x, y))
4230  if (N0.getOpcode() == N1.getOpcode())
4231    if (SDValue Tmp = SimplifyBinOpWithSameOpcodeHands(N))
4232      return Tmp;
4233
4234  // Simplify the expression using non-local knowledge.
4235  if (!VT.isVector() &&
4236      SimplifyDemandedBits(SDValue(N, 0)))
4237    return SDValue(N, 0);
4238
4239  return SDValue();
4240}
4241
4242/// Handle transforms common to the three shifts, when the shift amount is a
4243/// constant.
4244SDValue DAGCombiner::visitShiftByConstant(SDNode *N, ConstantSDNode *Amt) {
4245  SDNode *LHS = N->getOperand(0).getNode();
4246  if (!LHS->hasOneUse()) return SDValue();
4247
4248  // We want to pull some binops through shifts, so that we have (and (shift))
4249  // instead of (shift (and)), likewise for add, or, xor, etc.  This sort of
4250  // thing happens with address calculations, so it's important to canonicalize
4251  // it.
4252  bool HighBitSet = false;  // Can we transform this if the high bit is set?
4253
4254  switch (LHS->getOpcode()) {
4255  default: return SDValue();
4256  case ISD::OR:
4257  case ISD::XOR:
4258    HighBitSet = false; // We can only transform sra if the high bit is clear.
4259    break;
4260  case ISD::AND:
4261    HighBitSet = true;  // We can only transform sra if the high bit is set.
4262    break;
4263  case ISD::ADD:
4264    if (N->getOpcode() != ISD::SHL)
4265      return SDValue(); // only shl(add) not sr[al](add).
4266    HighBitSet = false; // We can only transform sra if the high bit is clear.
4267    break;
4268  }
4269
4270  // We require the RHS of the binop to be a constant and not opaque as well.
4271  ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS->getOperand(1));
4272  if (!BinOpCst) return SDValue();
4273
4274  // FIXME: disable this unless the input to the binop is a shift by a constant.
4275  // If it is not a shift, it pessimizes some common cases like:
4276  //
4277  //    void foo(int *X, int i) { X[i & 1235] = 1; }
4278  //    int bar(int *X, int i) { return X[i & 255]; }
4279  SDNode *BinOpLHSVal = LHS->getOperand(0).getNode();
4280  if ((BinOpLHSVal->getOpcode() != ISD::SHL &&
4281       BinOpLHSVal->getOpcode() != ISD::SRA &&
4282       BinOpLHSVal->getOpcode() != ISD::SRL) ||
4283      !isa<ConstantSDNode>(BinOpLHSVal->getOperand(1)))
4284    return SDValue();
4285
4286  EVT VT = N->getValueType(0);
4287
4288  // If this is a signed shift right, and the high bit is modified by the
4289  // logical operation, do not perform the transformation. The highBitSet
4290  // boolean indicates the value of the high bit of the constant which would
4291  // cause it to be modified for this operation.
4292  if (N->getOpcode() == ISD::SRA) {
4293    bool BinOpRHSSignSet = BinOpCst->getAPIntValue().isNegative();
4294    if (BinOpRHSSignSet != HighBitSet)
4295      return SDValue();
4296  }
4297
4298  if (!TLI.isDesirableToCommuteWithShift(LHS))
4299    return SDValue();
4300
4301  // Fold the constants, shifting the binop RHS by the shift amount.
4302  SDValue NewRHS = DAG.getNode(N->getOpcode(), SDLoc(LHS->getOperand(1)),
4303                               N->getValueType(0),
4304                               LHS->getOperand(1), N->getOperand(1));
4305  assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
4306
4307  // Create the new shift.
4308  SDValue NewShift = DAG.getNode(N->getOpcode(),
4309                                 SDLoc(LHS->getOperand(0)),
4310                                 VT, LHS->getOperand(0), N->getOperand(1));
4311
4312  // Create the new binop.
4313  return DAG.getNode(LHS->getOpcode(), SDLoc(N), VT, NewShift, NewRHS);
4314}
4315
4316SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
4317  assert(N->getOpcode() == ISD::TRUNCATE);
4318  assert(N->getOperand(0).getOpcode() == ISD::AND);
4319
4320  // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
4321  if (N->hasOneUse() && N->getOperand(0).hasOneUse()) {
4322    SDValue N01 = N->getOperand(0).getOperand(1);
4323
4324    if (ConstantSDNode *N01C = isConstOrConstSplat(N01)) {
4325      if (!N01C->isOpaque()) {
4326        EVT TruncVT = N->getValueType(0);
4327        SDValue N00 = N->getOperand(0).getOperand(0);
4328        APInt TruncC = N01C->getAPIntValue();
4329        TruncC = TruncC.trunc(TruncVT.getScalarSizeInBits());
4330        SDLoc DL(N);
4331
4332        return DAG.getNode(ISD::AND, DL, TruncVT,
4333                           DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00),
4334                           DAG.getConstant(TruncC, DL, TruncVT));
4335      }
4336    }
4337  }
4338
4339  return SDValue();
4340}
4341
4342SDValue DAGCombiner::visitRotate(SDNode *N) {
4343  // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
4344  if (N->getOperand(1).getOpcode() == ISD::TRUNCATE &&
4345      N->getOperand(1).getOperand(0).getOpcode() == ISD::AND) {
4346    SDValue NewOp1 = distributeTruncateThroughAnd(N->getOperand(1).getNode());
4347    if (NewOp1.getNode())
4348      return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
4349                         N->getOperand(0), NewOp1);
4350  }
4351  return SDValue();
4352}
4353
4354SDValue DAGCombiner::visitSHL(SDNode *N) {
4355  SDValue N0 = N->getOperand(0);
4356  SDValue N1 = N->getOperand(1);
4357  EVT VT = N0.getValueType();
4358  unsigned OpSizeInBits = VT.getScalarSizeInBits();
4359
4360  // fold vector ops
4361  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4362  if (VT.isVector()) {
4363    if (SDValue FoldedVOp = SimplifyVBinOp(N))
4364      return FoldedVOp;
4365
4366    BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
4367    // If setcc produces all-one true value then:
4368    // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
4369    if (N1CV && N1CV->isConstant()) {
4370      if (N0.getOpcode() == ISD::AND) {
4371        SDValue N00 = N0->getOperand(0);
4372        SDValue N01 = N0->getOperand(1);
4373        BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
4374
4375        if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
4376            TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
4377                TargetLowering::ZeroOrNegativeOneBooleanContent) {
4378          if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT,
4379                                                     N01CV, N1CV))
4380            return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
4381        }
4382      } else {
4383        N1C = isConstOrConstSplat(N1);
4384      }
4385    }
4386  }
4387
4388  // fold (shl c1, c2) -> c1<<c2
4389  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4390  if (N0C && N1C && !N1C->isOpaque())
4391    return DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, N0C, N1C);
4392  // fold (shl 0, x) -> 0
4393  if (isNullConstant(N0))
4394    return N0;
4395  // fold (shl x, c >= size(x)) -> undef
4396  if (N1C && N1C->getAPIntValue().uge(OpSizeInBits))
4397    return DAG.getUNDEF(VT);
4398  // fold (shl x, 0) -> x
4399  if (N1C && N1C->isNullValue())
4400    return N0;
4401  // fold (shl undef, x) -> 0
4402  if (N0.getOpcode() == ISD::UNDEF)
4403    return DAG.getConstant(0, SDLoc(N), VT);
4404  // if (shl x, c) is known to be zero, return 0
4405  if (DAG.MaskedValueIsZero(SDValue(N, 0),
4406                            APInt::getAllOnesValue(OpSizeInBits)))
4407    return DAG.getConstant(0, SDLoc(N), VT);
4408  // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
4409  if (N1.getOpcode() == ISD::TRUNCATE &&
4410      N1.getOperand(0).getOpcode() == ISD::AND) {
4411    SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode());
4412    if (NewOp1.getNode())
4413      return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
4414  }
4415
4416  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4417    return SDValue(N, 0);
4418
4419  // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
4420  if (N1C && N0.getOpcode() == ISD::SHL) {
4421    if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4422      uint64_t c1 = N0C1->getZExtValue();
4423      uint64_t c2 = N1C->getZExtValue();
4424      SDLoc DL(N);
4425      if (c1 + c2 >= OpSizeInBits)
4426        return DAG.getConstant(0, DL, VT);
4427      return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
4428                         DAG.getConstant(c1 + c2, DL, N1.getValueType()));
4429    }
4430  }
4431
4432  // fold (shl (ext (shl x, c1)), c2) -> (ext (shl x, (add c1, c2)))
4433  // For this to be valid, the second form must not preserve any of the bits
4434  // that are shifted out by the inner shift in the first form.  This means
4435  // the outer shift size must be >= the number of bits added by the ext.
4436  // As a corollary, we don't care what kind of ext it is.
4437  if (N1C && (N0.getOpcode() == ISD::ZERO_EXTEND ||
4438              N0.getOpcode() == ISD::ANY_EXTEND ||
4439              N0.getOpcode() == ISD::SIGN_EXTEND) &&
4440      N0.getOperand(0).getOpcode() == ISD::SHL) {
4441    SDValue N0Op0 = N0.getOperand(0);
4442    if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
4443      uint64_t c1 = N0Op0C1->getZExtValue();
4444      uint64_t c2 = N1C->getZExtValue();
4445      EVT InnerShiftVT = N0Op0.getValueType();
4446      uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
4447      if (c2 >= OpSizeInBits - InnerShiftSize) {
4448        SDLoc DL(N0);
4449        if (c1 + c2 >= OpSizeInBits)
4450          return DAG.getConstant(0, DL, VT);
4451        return DAG.getNode(ISD::SHL, DL, VT,
4452                           DAG.getNode(N0.getOpcode(), DL, VT,
4453                                       N0Op0->getOperand(0)),
4454                           DAG.getConstant(c1 + c2, DL, N1.getValueType()));
4455      }
4456    }
4457  }
4458
4459  // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
4460  // Only fold this if the inner zext has no other uses to avoid increasing
4461  // the total number of instructions.
4462  if (N1C && N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
4463      N0.getOperand(0).getOpcode() == ISD::SRL) {
4464    SDValue N0Op0 = N0.getOperand(0);
4465    if (ConstantSDNode *N0Op0C1 = isConstOrConstSplat(N0Op0.getOperand(1))) {
4466      uint64_t c1 = N0Op0C1->getZExtValue();
4467      if (c1 < VT.getScalarSizeInBits()) {
4468        uint64_t c2 = N1C->getZExtValue();
4469        if (c1 == c2) {
4470          SDValue NewOp0 = N0.getOperand(0);
4471          EVT CountVT = NewOp0.getOperand(1).getValueType();
4472          SDLoc DL(N);
4473          SDValue NewSHL = DAG.getNode(ISD::SHL, DL, NewOp0.getValueType(),
4474                                       NewOp0,
4475                                       DAG.getConstant(c2, DL, CountVT));
4476          AddToWorklist(NewSHL.getNode());
4477          return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
4478        }
4479      }
4480    }
4481  }
4482
4483  // fold (shl (sr[la] exact X,  C1), C2) -> (shl    X, (C2-C1)) if C1 <= C2
4484  // fold (shl (sr[la] exact X,  C1), C2) -> (sr[la] X, (C2-C1)) if C1  > C2
4485  if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
4486      cast<BinaryWithFlagsSDNode>(N0)->Flags.hasExact()) {
4487    if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4488      uint64_t C1 = N0C1->getZExtValue();
4489      uint64_t C2 = N1C->getZExtValue();
4490      SDLoc DL(N);
4491      if (C1 <= C2)
4492        return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
4493                           DAG.getConstant(C2 - C1, DL, N1.getValueType()));
4494      return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
4495                         DAG.getConstant(C1 - C2, DL, N1.getValueType()));
4496    }
4497  }
4498
4499  // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
4500  //                               (and (srl x, (sub c1, c2), MASK)
4501  // Only fold this if the inner shift has no other uses -- if it does, folding
4502  // this will increase the total number of instructions.
4503  if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
4504    if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4505      uint64_t c1 = N0C1->getZExtValue();
4506      if (c1 < OpSizeInBits) {
4507        uint64_t c2 = N1C->getZExtValue();
4508        APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
4509        SDValue Shift;
4510        if (c2 > c1) {
4511          Mask = Mask.shl(c2 - c1);
4512          SDLoc DL(N);
4513          Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
4514                              DAG.getConstant(c2 - c1, DL, N1.getValueType()));
4515        } else {
4516          Mask = Mask.lshr(c1 - c2);
4517          SDLoc DL(N);
4518          Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4519                              DAG.getConstant(c1 - c2, DL, N1.getValueType()));
4520        }
4521        SDLoc DL(N0);
4522        return DAG.getNode(ISD::AND, DL, VT, Shift,
4523                           DAG.getConstant(Mask, DL, VT));
4524      }
4525    }
4526  }
4527  // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
4528  if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) {
4529    unsigned BitSize = VT.getScalarSizeInBits();
4530    SDLoc DL(N);
4531    SDValue HiBitsMask =
4532      DAG.getConstant(APInt::getHighBitsSet(BitSize,
4533                                            BitSize - N1C->getZExtValue()),
4534                      DL, VT);
4535    return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0),
4536                       HiBitsMask);
4537  }
4538
4539  // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
4540  // Variant of version done on multiply, except mul by a power of 2 is turned
4541  // into a shift.
4542  APInt Val;
4543  if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse() &&
4544      (isa<ConstantSDNode>(N0.getOperand(1)) ||
4545       isConstantSplatVector(N0.getOperand(1).getNode(), Val))) {
4546    SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
4547    SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
4548    return DAG.getNode(ISD::ADD, SDLoc(N), VT, Shl0, Shl1);
4549  }
4550
4551  // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
4552  if (N1C && N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse()) {
4553    if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
4554      if (SDValue Folded =
4555              DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, N0C1, N1C))
4556        return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Folded);
4557    }
4558  }
4559
4560  if (N1C && !N1C->isOpaque())
4561    if (SDValue NewSHL = visitShiftByConstant(N, N1C))
4562      return NewSHL;
4563
4564  return SDValue();
4565}
4566
4567SDValue DAGCombiner::visitSRA(SDNode *N) {
4568  SDValue N0 = N->getOperand(0);
4569  SDValue N1 = N->getOperand(1);
4570  EVT VT = N0.getValueType();
4571  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
4572
4573  // fold vector ops
4574  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4575  if (VT.isVector()) {
4576    if (SDValue FoldedVOp = SimplifyVBinOp(N))
4577      return FoldedVOp;
4578
4579    N1C = isConstOrConstSplat(N1);
4580  }
4581
4582  // fold (sra c1, c2) -> (sra c1, c2)
4583  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4584  if (N0C && N1C && !N1C->isOpaque())
4585    return DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, N0C, N1C);
4586  // fold (sra 0, x) -> 0
4587  if (isNullConstant(N0))
4588    return N0;
4589  // fold (sra -1, x) -> -1
4590  if (isAllOnesConstant(N0))
4591    return N0;
4592  // fold (sra x, (setge c, size(x))) -> undef
4593  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
4594    return DAG.getUNDEF(VT);
4595  // fold (sra x, 0) -> x
4596  if (N1C && N1C->isNullValue())
4597    return N0;
4598  // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
4599  // sext_inreg.
4600  if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
4601    unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
4602    EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
4603    if (VT.isVector())
4604      ExtVT = EVT::getVectorVT(*DAG.getContext(),
4605                               ExtVT, VT.getVectorNumElements());
4606    if ((!LegalOperations ||
4607         TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, ExtVT)))
4608      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
4609                         N0.getOperand(0), DAG.getValueType(ExtVT));
4610  }
4611
4612  // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
4613  if (N1C && N0.getOpcode() == ISD::SRA) {
4614    if (ConstantSDNode *C1 = isConstOrConstSplat(N0.getOperand(1))) {
4615      unsigned Sum = N1C->getZExtValue() + C1->getZExtValue();
4616      if (Sum >= OpSizeInBits)
4617        Sum = OpSizeInBits - 1;
4618      SDLoc DL(N);
4619      return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0),
4620                         DAG.getConstant(Sum, DL, N1.getValueType()));
4621    }
4622  }
4623
4624  // fold (sra (shl X, m), (sub result_size, n))
4625  // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
4626  // result_size - n != m.
4627  // If truncate is free for the target sext(shl) is likely to result in better
4628  // code.
4629  if (N0.getOpcode() == ISD::SHL && N1C) {
4630    // Get the two constanst of the shifts, CN0 = m, CN = n.
4631    const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
4632    if (N01C) {
4633      LLVMContext &Ctx = *DAG.getContext();
4634      // Determine what the truncate's result bitsize and type would be.
4635      EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
4636
4637      if (VT.isVector())
4638        TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements());
4639
4640      // Determine the residual right-shift amount.
4641      signed ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
4642
4643      // If the shift is not a no-op (in which case this should be just a sign
4644      // extend already), the truncated to type is legal, sign_extend is legal
4645      // on that type, and the truncate to that type is both legal and free,
4646      // perform the transform.
4647      if ((ShiftAmt > 0) &&
4648          TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
4649          TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
4650          TLI.isTruncateFree(VT, TruncVT)) {
4651
4652        SDLoc DL(N);
4653        SDValue Amt = DAG.getConstant(ShiftAmt, DL,
4654            getShiftAmountTy(N0.getOperand(0).getValueType()));
4655        SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
4656                                    N0.getOperand(0), Amt);
4657        SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
4658                                    Shift);
4659        return DAG.getNode(ISD::SIGN_EXTEND, DL,
4660                           N->getValueType(0), Trunc);
4661      }
4662    }
4663  }
4664
4665  // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
4666  if (N1.getOpcode() == ISD::TRUNCATE &&
4667      N1.getOperand(0).getOpcode() == ISD::AND) {
4668    SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode());
4669    if (NewOp1.getNode())
4670      return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
4671  }
4672
4673  // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
4674  //      if c1 is equal to the number of bits the trunc removes
4675  if (N0.getOpcode() == ISD::TRUNCATE &&
4676      (N0.getOperand(0).getOpcode() == ISD::SRL ||
4677       N0.getOperand(0).getOpcode() == ISD::SRA) &&
4678      N0.getOperand(0).hasOneUse() &&
4679      N0.getOperand(0).getOperand(1).hasOneUse() &&
4680      N1C) {
4681    SDValue N0Op0 = N0.getOperand(0);
4682    if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
4683      unsigned LargeShiftVal = LargeShift->getZExtValue();
4684      EVT LargeVT = N0Op0.getValueType();
4685
4686      if (LargeVT.getScalarSizeInBits() - OpSizeInBits == LargeShiftVal) {
4687        SDLoc DL(N);
4688        SDValue Amt =
4689          DAG.getConstant(LargeShiftVal + N1C->getZExtValue(), DL,
4690                          getShiftAmountTy(N0Op0.getOperand(0).getValueType()));
4691        SDValue SRA = DAG.getNode(ISD::SRA, DL, LargeVT,
4692                                  N0Op0.getOperand(0), Amt);
4693        return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
4694      }
4695    }
4696  }
4697
4698  // Simplify, based on bits shifted out of the LHS.
4699  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4700    return SDValue(N, 0);
4701
4702
4703  // If the sign bit is known to be zero, switch this to a SRL.
4704  if (DAG.SignBitIsZero(N0))
4705    return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
4706
4707  if (N1C && !N1C->isOpaque())
4708    if (SDValue NewSRA = visitShiftByConstant(N, N1C))
4709      return NewSRA;
4710
4711  return SDValue();
4712}
4713
4714SDValue DAGCombiner::visitSRL(SDNode *N) {
4715  SDValue N0 = N->getOperand(0);
4716  SDValue N1 = N->getOperand(1);
4717  EVT VT = N0.getValueType();
4718  unsigned OpSizeInBits = VT.getScalarType().getSizeInBits();
4719
4720  // fold vector ops
4721  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4722  if (VT.isVector()) {
4723    if (SDValue FoldedVOp = SimplifyVBinOp(N))
4724      return FoldedVOp;
4725
4726    N1C = isConstOrConstSplat(N1);
4727  }
4728
4729  // fold (srl c1, c2) -> c1 >>u c2
4730  ConstantSDNode *N0C = getAsNonOpaqueConstant(N0);
4731  if (N0C && N1C && !N1C->isOpaque())
4732    return DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, N0C, N1C);
4733  // fold (srl 0, x) -> 0
4734  if (isNullConstant(N0))
4735    return N0;
4736  // fold (srl x, c >= size(x)) -> undef
4737  if (N1C && N1C->getZExtValue() >= OpSizeInBits)
4738    return DAG.getUNDEF(VT);
4739  // fold (srl x, 0) -> x
4740  if (N1C && N1C->isNullValue())
4741    return N0;
4742  // if (srl x, c) is known to be zero, return 0
4743  if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
4744                                   APInt::getAllOnesValue(OpSizeInBits)))
4745    return DAG.getConstant(0, SDLoc(N), VT);
4746
4747  // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
4748  if (N1C && N0.getOpcode() == ISD::SRL) {
4749    if (ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1))) {
4750      uint64_t c1 = N01C->getZExtValue();
4751      uint64_t c2 = N1C->getZExtValue();
4752      SDLoc DL(N);
4753      if (c1 + c2 >= OpSizeInBits)
4754        return DAG.getConstant(0, DL, VT);
4755      return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4756                         DAG.getConstant(c1 + c2, DL, N1.getValueType()));
4757    }
4758  }
4759
4760  // fold (srl (trunc (srl x, c1)), c2) -> 0 or (trunc (srl x, (add c1, c2)))
4761  if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
4762      N0.getOperand(0).getOpcode() == ISD::SRL &&
4763      isa<ConstantSDNode>(N0.getOperand(0)->getOperand(1))) {
4764    uint64_t c1 =
4765      cast<ConstantSDNode>(N0.getOperand(0)->getOperand(1))->getZExtValue();
4766    uint64_t c2 = N1C->getZExtValue();
4767    EVT InnerShiftVT = N0.getOperand(0).getValueType();
4768    EVT ShiftCountVT = N0.getOperand(0)->getOperand(1).getValueType();
4769    uint64_t InnerShiftSize = InnerShiftVT.getScalarType().getSizeInBits();
4770    // This is only valid if the OpSizeInBits + c1 = size of inner shift.
4771    if (c1 + OpSizeInBits == InnerShiftSize) {
4772      SDLoc DL(N0);
4773      if (c1 + c2 >= InnerShiftSize)
4774        return DAG.getConstant(0, DL, VT);
4775      return DAG.getNode(ISD::TRUNCATE, DL, VT,
4776                         DAG.getNode(ISD::SRL, DL, InnerShiftVT,
4777                                     N0.getOperand(0)->getOperand(0),
4778                                     DAG.getConstant(c1 + c2, DL,
4779                                                     ShiftCountVT)));
4780    }
4781  }
4782
4783  // fold (srl (shl x, c), c) -> (and x, cst2)
4784  if (N1C && N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1) {
4785    unsigned BitSize = N0.getScalarValueSizeInBits();
4786    if (BitSize <= 64) {
4787      uint64_t ShAmt = N1C->getZExtValue() + 64 - BitSize;
4788      SDLoc DL(N);
4789      return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0),
4790                         DAG.getConstant(~0ULL >> ShAmt, DL, VT));
4791    }
4792  }
4793
4794  // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
4795  if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
4796    // Shifting in all undef bits?
4797    EVT SmallVT = N0.getOperand(0).getValueType();
4798    unsigned BitSize = SmallVT.getScalarSizeInBits();
4799    if (N1C->getZExtValue() >= BitSize)
4800      return DAG.getUNDEF(VT);
4801
4802    if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
4803      uint64_t ShiftAmt = N1C->getZExtValue();
4804      SDLoc DL0(N0);
4805      SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
4806                                       N0.getOperand(0),
4807                          DAG.getConstant(ShiftAmt, DL0,
4808                                          getShiftAmountTy(SmallVT)));
4809      AddToWorklist(SmallShift.getNode());
4810      APInt Mask = APInt::getAllOnesValue(OpSizeInBits).lshr(ShiftAmt);
4811      SDLoc DL(N);
4812      return DAG.getNode(ISD::AND, DL, VT,
4813                         DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
4814                         DAG.getConstant(Mask, DL, VT));
4815    }
4816  }
4817
4818  // fold (srl (sra X, Y), 31) -> (srl X, 31).  This srl only looks at the sign
4819  // bit, which is unmodified by sra.
4820  if (N1C && N1C->getZExtValue() + 1 == OpSizeInBits) {
4821    if (N0.getOpcode() == ISD::SRA)
4822      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
4823  }
4824
4825  // fold (srl (ctlz x), "5") -> x  iff x has one bit set (the low bit).
4826  if (N1C && N0.getOpcode() == ISD::CTLZ &&
4827      N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
4828    APInt KnownZero, KnownOne;
4829    DAG.computeKnownBits(N0.getOperand(0), KnownZero, KnownOne);
4830
4831    // If any of the input bits are KnownOne, then the input couldn't be all
4832    // zeros, thus the result of the srl will always be zero.
4833    if (KnownOne.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
4834
4835    // If all of the bits input the to ctlz node are known to be zero, then
4836    // the result of the ctlz is "32" and the result of the shift is one.
4837    APInt UnknownBits = ~KnownZero;
4838    if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
4839
4840    // Otherwise, check to see if there is exactly one bit input to the ctlz.
4841    if ((UnknownBits & (UnknownBits - 1)) == 0) {
4842      // Okay, we know that only that the single bit specified by UnknownBits
4843      // could be set on input to the CTLZ node. If this bit is set, the SRL
4844      // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
4845      // to an SRL/XOR pair, which is likely to simplify more.
4846      unsigned ShAmt = UnknownBits.countTrailingZeros();
4847      SDValue Op = N0.getOperand(0);
4848
4849      if (ShAmt) {
4850        SDLoc DL(N0);
4851        Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4852                  DAG.getConstant(ShAmt, DL,
4853                                  getShiftAmountTy(Op.getValueType())));
4854        AddToWorklist(Op.getNode());
4855      }
4856
4857      SDLoc DL(N);
4858      return DAG.getNode(ISD::XOR, DL, VT,
4859                         Op, DAG.getConstant(1, DL, VT));
4860    }
4861  }
4862
4863  // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
4864  if (N1.getOpcode() == ISD::TRUNCATE &&
4865      N1.getOperand(0).getOpcode() == ISD::AND) {
4866    if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
4867      return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
4868  }
4869
4870  // fold operands of srl based on knowledge that the low bits are not
4871  // demanded.
4872  if (N1C && SimplifyDemandedBits(SDValue(N, 0)))
4873    return SDValue(N, 0);
4874
4875  if (N1C && !N1C->isOpaque())
4876    if (SDValue NewSRL = visitShiftByConstant(N, N1C))
4877      return NewSRL;
4878
4879  // Attempt to convert a srl of a load into a narrower zero-extending load.
4880  if (SDValue NarrowLoad = ReduceLoadWidth(N))
4881    return NarrowLoad;
4882
4883  // Here is a common situation. We want to optimize:
4884  //
4885  //   %a = ...
4886  //   %b = and i32 %a, 2
4887  //   %c = srl i32 %b, 1
4888  //   brcond i32 %c ...
4889  //
4890  // into
4891  //
4892  //   %a = ...
4893  //   %b = and %a, 2
4894  //   %c = setcc eq %b, 0
4895  //   brcond %c ...
4896  //
4897  // However when after the source operand of SRL is optimized into AND, the SRL
4898  // itself may not be optimized further. Look for it and add the BRCOND into
4899  // the worklist.
4900  if (N->hasOneUse()) {
4901    SDNode *Use = *N->use_begin();
4902    if (Use->getOpcode() == ISD::BRCOND)
4903      AddToWorklist(Use);
4904    else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
4905      // Also look pass the truncate.
4906      Use = *Use->use_begin();
4907      if (Use->getOpcode() == ISD::BRCOND)
4908        AddToWorklist(Use);
4909    }
4910  }
4911
4912  return SDValue();
4913}
4914
4915SDValue DAGCombiner::visitBSWAP(SDNode *N) {
4916  SDValue N0 = N->getOperand(0);
4917  EVT VT = N->getValueType(0);
4918
4919  // fold (bswap c1) -> c2
4920  if (isConstantIntBuildVectorOrConstantInt(N0))
4921    return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
4922  // fold (bswap (bswap x)) -> x
4923  if (N0.getOpcode() == ISD::BSWAP)
4924    return N0->getOperand(0);
4925  return SDValue();
4926}
4927
4928SDValue DAGCombiner::visitCTLZ(SDNode *N) {
4929  SDValue N0 = N->getOperand(0);
4930  EVT VT = N->getValueType(0);
4931
4932  // fold (ctlz c1) -> c2
4933  if (isConstantIntBuildVectorOrConstantInt(N0))
4934    return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
4935  return SDValue();
4936}
4937
4938SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
4939  SDValue N0 = N->getOperand(0);
4940  EVT VT = N->getValueType(0);
4941
4942  // fold (ctlz_zero_undef c1) -> c2
4943  if (isConstantIntBuildVectorOrConstantInt(N0))
4944    return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4945  return SDValue();
4946}
4947
4948SDValue DAGCombiner::visitCTTZ(SDNode *N) {
4949  SDValue N0 = N->getOperand(0);
4950  EVT VT = N->getValueType(0);
4951
4952  // fold (cttz c1) -> c2
4953  if (isConstantIntBuildVectorOrConstantInt(N0))
4954    return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
4955  return SDValue();
4956}
4957
4958SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
4959  SDValue N0 = N->getOperand(0);
4960  EVT VT = N->getValueType(0);
4961
4962  // fold (cttz_zero_undef c1) -> c2
4963  if (isConstantIntBuildVectorOrConstantInt(N0))
4964    return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
4965  return SDValue();
4966}
4967
4968SDValue DAGCombiner::visitCTPOP(SDNode *N) {
4969  SDValue N0 = N->getOperand(0);
4970  EVT VT = N->getValueType(0);
4971
4972  // fold (ctpop c1) -> c2
4973  if (isConstantIntBuildVectorOrConstantInt(N0))
4974    return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
4975  return SDValue();
4976}
4977
4978
4979/// \brief Generate Min/Max node
4980static SDValue combineMinNumMaxNum(SDLoc DL, EVT VT, SDValue LHS, SDValue RHS,
4981                                   SDValue True, SDValue False,
4982                                   ISD::CondCode CC, const TargetLowering &TLI,
4983                                   SelectionDAG &DAG) {
4984  if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
4985    return SDValue();
4986
4987  switch (CC) {
4988  case ISD::SETOLT:
4989  case ISD::SETOLE:
4990  case ISD::SETLT:
4991  case ISD::SETLE:
4992  case ISD::SETULT:
4993  case ISD::SETULE: {
4994    unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
4995    if (TLI.isOperationLegal(Opcode, VT))
4996      return DAG.getNode(Opcode, DL, VT, LHS, RHS);
4997    return SDValue();
4998  }
4999  case ISD::SETOGT:
5000  case ISD::SETOGE:
5001  case ISD::SETGT:
5002  case ISD::SETGE:
5003  case ISD::SETUGT:
5004  case ISD::SETUGE: {
5005    unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
5006    if (TLI.isOperationLegal(Opcode, VT))
5007      return DAG.getNode(Opcode, DL, VT, LHS, RHS);
5008    return SDValue();
5009  }
5010  default:
5011    return SDValue();
5012  }
5013}
5014
5015SDValue DAGCombiner::visitSELECT(SDNode *N) {
5016  SDValue N0 = N->getOperand(0);
5017  SDValue N1 = N->getOperand(1);
5018  SDValue N2 = N->getOperand(2);
5019  EVT VT = N->getValueType(0);
5020  EVT VT0 = N0.getValueType();
5021
5022  // fold (select C, X, X) -> X
5023  if (N1 == N2)
5024    return N1;
5025  if (const ConstantSDNode *N0C = dyn_cast<const ConstantSDNode>(N0)) {
5026    // fold (select true, X, Y) -> X
5027    // fold (select false, X, Y) -> Y
5028    return !N0C->isNullValue() ? N1 : N2;
5029  }
5030  // fold (select C, 1, X) -> (or C, X)
5031  if (VT == MVT::i1 && isOneConstant(N1))
5032    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
5033  // fold (select C, 0, 1) -> (xor C, 1)
5034  // We can't do this reliably if integer based booleans have different contents
5035  // to floating point based booleans. This is because we can't tell whether we
5036  // have an integer-based boolean or a floating-point-based boolean unless we
5037  // can find the SETCC that produced it and inspect its operands. This is
5038  // fairly easy if C is the SETCC node, but it can potentially be
5039  // undiscoverable (or not reasonably discoverable). For example, it could be
5040  // in another basic block or it could require searching a complicated
5041  // expression.
5042  if (VT.isInteger() &&
5043      (VT0 == MVT::i1 || (VT0.isInteger() &&
5044                          TLI.getBooleanContents(false, false) ==
5045                              TLI.getBooleanContents(false, true) &&
5046                          TLI.getBooleanContents(false, false) ==
5047                              TargetLowering::ZeroOrOneBooleanContent)) &&
5048      isNullConstant(N1) && isOneConstant(N2)) {
5049    SDValue XORNode;
5050    if (VT == VT0) {
5051      SDLoc DL(N);
5052      return DAG.getNode(ISD::XOR, DL, VT0,
5053                         N0, DAG.getConstant(1, DL, VT0));
5054    }
5055    SDLoc DL0(N0);
5056    XORNode = DAG.getNode(ISD::XOR, DL0, VT0,
5057                          N0, DAG.getConstant(1, DL0, VT0));
5058    AddToWorklist(XORNode.getNode());
5059    if (VT.bitsGT(VT0))
5060      return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, XORNode);
5061    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, XORNode);
5062  }
5063  // fold (select C, 0, X) -> (and (not C), X)
5064  if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) {
5065    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
5066    AddToWorklist(NOTNode.getNode());
5067    return DAG.getNode(ISD::AND, SDLoc(N), VT, NOTNode, N2);
5068  }
5069  // fold (select C, X, 1) -> (or (not C), X)
5070  if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) {
5071    SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT);
5072    AddToWorklist(NOTNode.getNode());
5073    return DAG.getNode(ISD::OR, SDLoc(N), VT, NOTNode, N1);
5074  }
5075  // fold (select C, X, 0) -> (and C, X)
5076  if (VT == MVT::i1 && isNullConstant(N2))
5077    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
5078  // fold (select X, X, Y) -> (or X, Y)
5079  // fold (select X, 1, Y) -> (or X, Y)
5080  if (VT == MVT::i1 && (N0 == N1 || isOneConstant(N1)))
5081    return DAG.getNode(ISD::OR, SDLoc(N), VT, N0, N2);
5082  // fold (select X, Y, X) -> (and X, Y)
5083  // fold (select X, Y, 0) -> (and X, Y)
5084  if (VT == MVT::i1 && (N0 == N2 || isNullConstant(N2)))
5085    return DAG.getNode(ISD::AND, SDLoc(N), VT, N0, N1);
5086
5087  // If we can fold this based on the true/false value, do so.
5088  if (SimplifySelectOps(N, N1, N2))
5089    return SDValue(N, 0);  // Don't revisit N.
5090
5091  if (VT0 == MVT::i1) {
5092    // The code in this block deals with the following 2 equivalences:
5093    //    select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
5094    //    select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
5095    // The target can specify its prefered form with the
5096    // shouldNormalizeToSelectSequence() callback. However we always transform
5097    // to the right anyway if we find the inner select exists in the DAG anyway
5098    // and we always transform to the left side if we know that we can further
5099    // optimize the combination of the conditions.
5100    bool normalizeToSequence
5101      = TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
5102    // select (and Cond0, Cond1), X, Y
5103    //   -> select Cond0, (select Cond1, X, Y), Y
5104    if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
5105      SDValue Cond0 = N0->getOperand(0);
5106      SDValue Cond1 = N0->getOperand(1);
5107      SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N),
5108                                        N1.getValueType(), Cond1, N1, N2);
5109      if (normalizeToSequence || !InnerSelect.use_empty())
5110        return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0,
5111                           InnerSelect, N2);
5112    }
5113    // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
5114    if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
5115      SDValue Cond0 = N0->getOperand(0);
5116      SDValue Cond1 = N0->getOperand(1);
5117      SDValue InnerSelect = DAG.getNode(ISD::SELECT, SDLoc(N),
5118                                        N1.getValueType(), Cond1, N1, N2);
5119      if (normalizeToSequence || !InnerSelect.use_empty())
5120        return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Cond0, N1,
5121                           InnerSelect);
5122    }
5123
5124    // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
5125    if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
5126      SDValue N1_0 = N1->getOperand(0);
5127      SDValue N1_1 = N1->getOperand(1);
5128      SDValue N1_2 = N1->getOperand(2);
5129      if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
5130        // Create the actual and node if we can generate good code for it.
5131        if (!normalizeToSequence) {
5132          SDValue And = DAG.getNode(ISD::AND, SDLoc(N), N0.getValueType(),
5133                                    N0, N1_0);
5134          return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), And,
5135                             N1_1, N2);
5136        }
5137        // Otherwise see if we can optimize the "and" to a better pattern.
5138        if (SDValue Combined = visitANDLike(N0, N1_0, N))
5139          return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined,
5140                             N1_1, N2);
5141      }
5142    }
5143    // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
5144    if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
5145      SDValue N2_0 = N2->getOperand(0);
5146      SDValue N2_1 = N2->getOperand(1);
5147      SDValue N2_2 = N2->getOperand(2);
5148      if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
5149        // Create the actual or node if we can generate good code for it.
5150        if (!normalizeToSequence) {
5151          SDValue Or = DAG.getNode(ISD::OR, SDLoc(N), N0.getValueType(),
5152                                   N0, N2_0);
5153          return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Or,
5154                             N1, N2_2);
5155        }
5156        // Otherwise see if we can optimize to a better pattern.
5157        if (SDValue Combined = visitORLike(N0, N2_0, N))
5158          return DAG.getNode(ISD::SELECT, SDLoc(N), N1.getValueType(), Combined,
5159                             N1, N2_2);
5160      }
5161    }
5162  }
5163
5164  // fold selects based on a setcc into other things, such as min/max/abs
5165  if (N0.getOpcode() == ISD::SETCC) {
5166    // select x, y (fcmp lt x, y) -> fminnum x, y
5167    // select x, y (fcmp gt x, y) -> fmaxnum x, y
5168    //
5169    // This is OK if we don't care about what happens if either operand is a
5170    // NaN.
5171    //
5172
5173    // FIXME: Instead of testing for UnsafeFPMath, this should be checking for
5174    // no signed zeros as well as no nans.
5175    const TargetOptions &Options = DAG.getTarget().Options;
5176    if (Options.UnsafeFPMath &&
5177        VT.isFloatingPoint() && N0.hasOneUse() &&
5178        DAG.isKnownNeverNaN(N1) && DAG.isKnownNeverNaN(N2)) {
5179      ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
5180
5181      if (SDValue FMinMax = combineMinNumMaxNum(SDLoc(N), VT, N0.getOperand(0),
5182                                                N0.getOperand(1), N1, N2, CC,
5183                                                TLI, DAG))
5184        return FMinMax;
5185    }
5186
5187    if ((!LegalOperations &&
5188         TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT)) ||
5189        TLI.isOperationLegal(ISD::SELECT_CC, VT))
5190      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), VT,
5191                         N0.getOperand(0), N0.getOperand(1),
5192                         N1, N2, N0.getOperand(2));
5193    return SimplifySelect(SDLoc(N), N0, N1, N2);
5194  }
5195
5196  return SDValue();
5197}
5198
5199static
5200std::pair<SDValue, SDValue> SplitVSETCC(const SDNode *N, SelectionDAG &DAG) {
5201  SDLoc DL(N);
5202  EVT LoVT, HiVT;
5203  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
5204
5205  // Split the inputs.
5206  SDValue Lo, Hi, LL, LH, RL, RH;
5207  std::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
5208  std::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
5209
5210  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
5211  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
5212
5213  return std::make_pair(Lo, Hi);
5214}
5215
5216// This function assumes all the vselect's arguments are CONCAT_VECTOR
5217// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
5218static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
5219  SDLoc dl(N);
5220  SDValue Cond = N->getOperand(0);
5221  SDValue LHS = N->getOperand(1);
5222  SDValue RHS = N->getOperand(2);
5223  EVT VT = N->getValueType(0);
5224  int NumElems = VT.getVectorNumElements();
5225  assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
5226         RHS.getOpcode() == ISD::CONCAT_VECTORS &&
5227         Cond.getOpcode() == ISD::BUILD_VECTOR);
5228
5229  // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
5230  // binary ones here.
5231  if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
5232    return SDValue();
5233
5234  // We're sure we have an even number of elements due to the
5235  // concat_vectors we have as arguments to vselect.
5236  // Skip BV elements until we find one that's not an UNDEF
5237  // After we find an UNDEF element, keep looping until we get to half the
5238  // length of the BV and see if all the non-undef nodes are the same.
5239  ConstantSDNode *BottomHalf = nullptr;
5240  for (int i = 0; i < NumElems / 2; ++i) {
5241    if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF)
5242      continue;
5243
5244    if (BottomHalf == nullptr)
5245      BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
5246    else if (Cond->getOperand(i).getNode() != BottomHalf)
5247      return SDValue();
5248  }
5249
5250  // Do the same for the second half of the BuildVector
5251  ConstantSDNode *TopHalf = nullptr;
5252  for (int i = NumElems / 2; i < NumElems; ++i) {
5253    if (Cond->getOperand(i)->getOpcode() == ISD::UNDEF)
5254      continue;
5255
5256    if (TopHalf == nullptr)
5257      TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
5258    else if (Cond->getOperand(i).getNode() != TopHalf)
5259      return SDValue();
5260  }
5261
5262  assert(TopHalf && BottomHalf &&
5263         "One half of the selector was all UNDEFs and the other was all the "
5264         "same value. This should have been addressed before this function.");
5265  return DAG.getNode(
5266      ISD::CONCAT_VECTORS, dl, VT,
5267      BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
5268      TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
5269}
5270
5271SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
5272
5273  if (Level >= AfterLegalizeTypes)
5274    return SDValue();
5275
5276  MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
5277  SDValue Mask = MSC->getMask();
5278  SDValue Data  = MSC->getValue();
5279  SDLoc DL(N);
5280
5281  // If the MSCATTER data type requires splitting and the mask is provided by a
5282  // SETCC, then split both nodes and its operands before legalization. This
5283  // prevents the type legalizer from unrolling SETCC into scalar comparisons
5284  // and enables future optimizations (e.g. min/max pattern matching on X86).
5285  if (Mask.getOpcode() != ISD::SETCC)
5286    return SDValue();
5287
5288  // Check if any splitting is required.
5289  if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
5290      TargetLowering::TypeSplitVector)
5291    return SDValue();
5292  SDValue MaskLo, MaskHi, Lo, Hi;
5293  std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5294
5295  EVT LoVT, HiVT;
5296  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MSC->getValueType(0));
5297
5298  SDValue Chain = MSC->getChain();
5299
5300  EVT MemoryVT = MSC->getMemoryVT();
5301  unsigned Alignment = MSC->getOriginalAlignment();
5302
5303  EVT LoMemVT, HiMemVT;
5304  std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5305
5306  SDValue DataLo, DataHi;
5307  std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
5308
5309  SDValue BasePtr = MSC->getBasePtr();
5310  SDValue IndexLo, IndexHi;
5311  std::tie(IndexLo, IndexHi) = DAG.SplitVector(MSC->getIndex(), DL);
5312
5313  MachineMemOperand *MMO = DAG.getMachineFunction().
5314    getMachineMemOperand(MSC->getPointerInfo(),
5315                          MachineMemOperand::MOStore,  LoMemVT.getStoreSize(),
5316                          Alignment, MSC->getAAInfo(), MSC->getRanges());
5317
5318  SDValue OpsLo[] = { Chain, DataLo, MaskLo, BasePtr, IndexLo };
5319  Lo = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataLo.getValueType(),
5320                            DL, OpsLo, MMO);
5321
5322  SDValue OpsHi[] = {Chain, DataHi, MaskHi, BasePtr, IndexHi};
5323  Hi = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), DataHi.getValueType(),
5324                            DL, OpsHi, MMO);
5325
5326  AddToWorklist(Lo.getNode());
5327  AddToWorklist(Hi.getNode());
5328
5329  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
5330}
5331
5332SDValue DAGCombiner::visitMSTORE(SDNode *N) {
5333
5334  if (Level >= AfterLegalizeTypes)
5335    return SDValue();
5336
5337  MaskedStoreSDNode *MST = dyn_cast<MaskedStoreSDNode>(N);
5338  SDValue Mask = MST->getMask();
5339  SDValue Data  = MST->getValue();
5340  SDLoc DL(N);
5341
5342  // If the MSTORE data type requires splitting and the mask is provided by a
5343  // SETCC, then split both nodes and its operands before legalization. This
5344  // prevents the type legalizer from unrolling SETCC into scalar comparisons
5345  // and enables future optimizations (e.g. min/max pattern matching on X86).
5346  if (Mask.getOpcode() == ISD::SETCC) {
5347
5348    // Check if any splitting is required.
5349    if (TLI.getTypeAction(*DAG.getContext(), Data.getValueType()) !=
5350        TargetLowering::TypeSplitVector)
5351      return SDValue();
5352
5353    SDValue MaskLo, MaskHi, Lo, Hi;
5354    std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5355
5356    EVT LoVT, HiVT;
5357    std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MST->getValueType(0));
5358
5359    SDValue Chain = MST->getChain();
5360    SDValue Ptr   = MST->getBasePtr();
5361
5362    EVT MemoryVT = MST->getMemoryVT();
5363    unsigned Alignment = MST->getOriginalAlignment();
5364
5365    // if Alignment is equal to the vector size,
5366    // take the half of it for the second part
5367    unsigned SecondHalfAlignment =
5368      (Alignment == Data->getValueType(0).getSizeInBits()/8) ?
5369         Alignment/2 : Alignment;
5370
5371    EVT LoMemVT, HiMemVT;
5372    std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5373
5374    SDValue DataLo, DataHi;
5375    std::tie(DataLo, DataHi) = DAG.SplitVector(Data, DL);
5376
5377    MachineMemOperand *MMO = DAG.getMachineFunction().
5378      getMachineMemOperand(MST->getPointerInfo(),
5379                           MachineMemOperand::MOStore,  LoMemVT.getStoreSize(),
5380                           Alignment, MST->getAAInfo(), MST->getRanges());
5381
5382    Lo = DAG.getMaskedStore(Chain, DL, DataLo, Ptr, MaskLo, LoMemVT, MMO,
5383                            MST->isTruncatingStore());
5384
5385    unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
5386    Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
5387                      DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
5388
5389    MMO = DAG.getMachineFunction().
5390      getMachineMemOperand(MST->getPointerInfo(),
5391                           MachineMemOperand::MOStore,  HiMemVT.getStoreSize(),
5392                           SecondHalfAlignment, MST->getAAInfo(),
5393                           MST->getRanges());
5394
5395    Hi = DAG.getMaskedStore(Chain, DL, DataHi, Ptr, MaskHi, HiMemVT, MMO,
5396                            MST->isTruncatingStore());
5397
5398    AddToWorklist(Lo.getNode());
5399    AddToWorklist(Hi.getNode());
5400
5401    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
5402  }
5403  return SDValue();
5404}
5405
5406SDValue DAGCombiner::visitMGATHER(SDNode *N) {
5407
5408  if (Level >= AfterLegalizeTypes)
5409    return SDValue();
5410
5411  MaskedGatherSDNode *MGT = dyn_cast<MaskedGatherSDNode>(N);
5412  SDValue Mask = MGT->getMask();
5413  SDLoc DL(N);
5414
5415  // If the MGATHER result requires splitting and the mask is provided by a
5416  // SETCC, then split both nodes and its operands before legalization. This
5417  // prevents the type legalizer from unrolling SETCC into scalar comparisons
5418  // and enables future optimizations (e.g. min/max pattern matching on X86).
5419
5420  if (Mask.getOpcode() != ISD::SETCC)
5421    return SDValue();
5422
5423  EVT VT = N->getValueType(0);
5424
5425  // Check if any splitting is required.
5426  if (TLI.getTypeAction(*DAG.getContext(), VT) !=
5427      TargetLowering::TypeSplitVector)
5428    return SDValue();
5429
5430  SDValue MaskLo, MaskHi, Lo, Hi;
5431  std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5432
5433  SDValue Src0 = MGT->getValue();
5434  SDValue Src0Lo, Src0Hi;
5435  std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
5436
5437  EVT LoVT, HiVT;
5438  std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
5439
5440  SDValue Chain = MGT->getChain();
5441  EVT MemoryVT = MGT->getMemoryVT();
5442  unsigned Alignment = MGT->getOriginalAlignment();
5443
5444  EVT LoMemVT, HiMemVT;
5445  std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5446
5447  SDValue BasePtr = MGT->getBasePtr();
5448  SDValue Index = MGT->getIndex();
5449  SDValue IndexLo, IndexHi;
5450  std::tie(IndexLo, IndexHi) = DAG.SplitVector(Index, DL);
5451
5452  MachineMemOperand *MMO = DAG.getMachineFunction().
5453    getMachineMemOperand(MGT->getPointerInfo(),
5454                          MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
5455                          Alignment, MGT->getAAInfo(), MGT->getRanges());
5456
5457  SDValue OpsLo[] = { Chain, Src0Lo, MaskLo, BasePtr, IndexLo };
5458  Lo = DAG.getMaskedGather(DAG.getVTList(LoVT, MVT::Other), LoVT, DL, OpsLo,
5459                            MMO);
5460
5461  SDValue OpsHi[] = {Chain, Src0Hi, MaskHi, BasePtr, IndexHi};
5462  Hi = DAG.getMaskedGather(DAG.getVTList(HiVT, MVT::Other), HiVT, DL, OpsHi,
5463                            MMO);
5464
5465  AddToWorklist(Lo.getNode());
5466  AddToWorklist(Hi.getNode());
5467
5468  // Build a factor node to remember that this load is independent of the
5469  // other one.
5470  Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
5471                      Hi.getValue(1));
5472
5473  // Legalized the chain result - switch anything that used the old chain to
5474  // use the new one.
5475  DAG.ReplaceAllUsesOfValueWith(SDValue(MGT, 1), Chain);
5476
5477  SDValue GatherRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
5478
5479  SDValue RetOps[] = { GatherRes, Chain };
5480  return DAG.getMergeValues(RetOps, DL);
5481}
5482
5483SDValue DAGCombiner::visitMLOAD(SDNode *N) {
5484
5485  if (Level >= AfterLegalizeTypes)
5486    return SDValue();
5487
5488  MaskedLoadSDNode *MLD = dyn_cast<MaskedLoadSDNode>(N);
5489  SDValue Mask = MLD->getMask();
5490  SDLoc DL(N);
5491
5492  // If the MLOAD result requires splitting and the mask is provided by a
5493  // SETCC, then split both nodes and its operands before legalization. This
5494  // prevents the type legalizer from unrolling SETCC into scalar comparisons
5495  // and enables future optimizations (e.g. min/max pattern matching on X86).
5496
5497  if (Mask.getOpcode() == ISD::SETCC) {
5498    EVT VT = N->getValueType(0);
5499
5500    // Check if any splitting is required.
5501    if (TLI.getTypeAction(*DAG.getContext(), VT) !=
5502        TargetLowering::TypeSplitVector)
5503      return SDValue();
5504
5505    SDValue MaskLo, MaskHi, Lo, Hi;
5506    std::tie(MaskLo, MaskHi) = SplitVSETCC(Mask.getNode(), DAG);
5507
5508    SDValue Src0 = MLD->getSrc0();
5509    SDValue Src0Lo, Src0Hi;
5510    std::tie(Src0Lo, Src0Hi) = DAG.SplitVector(Src0, DL);
5511
5512    EVT LoVT, HiVT;
5513    std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(MLD->getValueType(0));
5514
5515    SDValue Chain = MLD->getChain();
5516    SDValue Ptr   = MLD->getBasePtr();
5517    EVT MemoryVT = MLD->getMemoryVT();
5518    unsigned Alignment = MLD->getOriginalAlignment();
5519
5520    // if Alignment is equal to the vector size,
5521    // take the half of it for the second part
5522    unsigned SecondHalfAlignment =
5523      (Alignment == MLD->getValueType(0).getSizeInBits()/8) ?
5524         Alignment/2 : Alignment;
5525
5526    EVT LoMemVT, HiMemVT;
5527    std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
5528
5529    MachineMemOperand *MMO = DAG.getMachineFunction().
5530    getMachineMemOperand(MLD->getPointerInfo(),
5531                         MachineMemOperand::MOLoad,  LoMemVT.getStoreSize(),
5532                         Alignment, MLD->getAAInfo(), MLD->getRanges());
5533
5534    Lo = DAG.getMaskedLoad(LoVT, DL, Chain, Ptr, MaskLo, Src0Lo, LoMemVT, MMO,
5535                           ISD::NON_EXTLOAD);
5536
5537    unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
5538    Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
5539                      DAG.getConstant(IncrementSize, DL, Ptr.getValueType()));
5540
5541    MMO = DAG.getMachineFunction().
5542    getMachineMemOperand(MLD->getPointerInfo(),
5543                         MachineMemOperand::MOLoad,  HiMemVT.getStoreSize(),
5544                         SecondHalfAlignment, MLD->getAAInfo(), MLD->getRanges());
5545
5546    Hi = DAG.getMaskedLoad(HiVT, DL, Chain, Ptr, MaskHi, Src0Hi, HiMemVT, MMO,
5547                           ISD::NON_EXTLOAD);
5548
5549    AddToWorklist(Lo.getNode());
5550    AddToWorklist(Hi.getNode());
5551
5552    // Build a factor node to remember that this load is independent of the
5553    // other one.
5554    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo.getValue(1),
5555                        Hi.getValue(1));
5556
5557    // Legalized the chain result - switch anything that used the old chain to
5558    // use the new one.
5559    DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), Chain);
5560
5561    SDValue LoadRes = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
5562
5563    SDValue RetOps[] = { LoadRes, Chain };
5564    return DAG.getMergeValues(RetOps, DL);
5565  }
5566  return SDValue();
5567}
5568
5569SDValue DAGCombiner::visitVSELECT(SDNode *N) {
5570  SDValue N0 = N->getOperand(0);
5571  SDValue N1 = N->getOperand(1);
5572  SDValue N2 = N->getOperand(2);
5573  SDLoc DL(N);
5574
5575  // Canonicalize integer abs.
5576  // vselect (setg[te] X,  0),  X, -X ->
5577  // vselect (setgt    X, -1),  X, -X ->
5578  // vselect (setl[te] X,  0), -X,  X ->
5579  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
5580  if (N0.getOpcode() == ISD::SETCC) {
5581    SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
5582    ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
5583    bool isAbs = false;
5584    bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
5585
5586    if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
5587         (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
5588        N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
5589      isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
5590    else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
5591             N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
5592      isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
5593
5594    if (isAbs) {
5595      EVT VT = LHS.getValueType();
5596      SDValue Shift = DAG.getNode(
5597          ISD::SRA, DL, VT, LHS,
5598          DAG.getConstant(VT.getScalarType().getSizeInBits() - 1, DL, VT));
5599      SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
5600      AddToWorklist(Shift.getNode());
5601      AddToWorklist(Add.getNode());
5602      return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
5603    }
5604  }
5605
5606  if (SimplifySelectOps(N, N1, N2))
5607    return SDValue(N, 0);  // Don't revisit N.
5608
5609  // If the VSELECT result requires splitting and the mask is provided by a
5610  // SETCC, then split both nodes and its operands before legalization. This
5611  // prevents the type legalizer from unrolling SETCC into scalar comparisons
5612  // and enables future optimizations (e.g. min/max pattern matching on X86).
5613  if (N0.getOpcode() == ISD::SETCC) {
5614    EVT VT = N->getValueType(0);
5615
5616    // Check if any splitting is required.
5617    if (TLI.getTypeAction(*DAG.getContext(), VT) !=
5618        TargetLowering::TypeSplitVector)
5619      return SDValue();
5620
5621    SDValue Lo, Hi, CCLo, CCHi, LL, LH, RL, RH;
5622    std::tie(CCLo, CCHi) = SplitVSETCC(N0.getNode(), DAG);
5623    std::tie(LL, LH) = DAG.SplitVectorOperand(N, 1);
5624    std::tie(RL, RH) = DAG.SplitVectorOperand(N, 2);
5625
5626    Lo = DAG.getNode(N->getOpcode(), DL, LL.getValueType(), CCLo, LL, RL);
5627    Hi = DAG.getNode(N->getOpcode(), DL, LH.getValueType(), CCHi, LH, RH);
5628
5629    // Add the new VSELECT nodes to the work list in case they need to be split
5630    // again.
5631    AddToWorklist(Lo.getNode());
5632    AddToWorklist(Hi.getNode());
5633
5634    return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
5635  }
5636
5637  // Fold (vselect (build_vector all_ones), N1, N2) -> N1
5638  if (ISD::isBuildVectorAllOnes(N0.getNode()))
5639    return N1;
5640  // Fold (vselect (build_vector all_zeros), N1, N2) -> N2
5641  if (ISD::isBuildVectorAllZeros(N0.getNode()))
5642    return N2;
5643
5644  // The ConvertSelectToConcatVector function is assuming both the above
5645  // checks for (vselect (build_vector all{ones,zeros) ...) have been made
5646  // and addressed.
5647  if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
5648      N2.getOpcode() == ISD::CONCAT_VECTORS &&
5649      ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
5650    if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
5651      return CV;
5652  }
5653
5654  return SDValue();
5655}
5656
5657SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
5658  SDValue N0 = N->getOperand(0);
5659  SDValue N1 = N->getOperand(1);
5660  SDValue N2 = N->getOperand(2);
5661  SDValue N3 = N->getOperand(3);
5662  SDValue N4 = N->getOperand(4);
5663  ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
5664
5665  // fold select_cc lhs, rhs, x, x, cc -> x
5666  if (N2 == N3)
5667    return N2;
5668
5669  // Determine if the condition we're dealing with is constant
5670  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
5671                              N0, N1, CC, SDLoc(N), false);
5672  if (SCC.getNode()) {
5673    AddToWorklist(SCC.getNode());
5674
5675    if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
5676      if (!SCCC->isNullValue())
5677        return N2;    // cond always true -> true val
5678      else
5679        return N3;    // cond always false -> false val
5680    } else if (SCC->getOpcode() == ISD::UNDEF) {
5681      // When the condition is UNDEF, just return the first operand. This is
5682      // coherent the DAG creation, no setcc node is created in this case
5683      return N2;
5684    } else if (SCC.getOpcode() == ISD::SETCC) {
5685      // Fold to a simpler select_cc
5686      return DAG.getNode(ISD::SELECT_CC, SDLoc(N), N2.getValueType(),
5687                         SCC.getOperand(0), SCC.getOperand(1), N2, N3,
5688                         SCC.getOperand(2));
5689    }
5690  }
5691
5692  // If we can fold this based on the true/false value, do so.
5693  if (SimplifySelectOps(N, N2, N3))
5694    return SDValue(N, 0);  // Don't revisit N.
5695
5696  // fold select_cc into other things, such as min/max/abs
5697  return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
5698}
5699
5700SDValue DAGCombiner::visitSETCC(SDNode *N) {
5701  return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1),
5702                       cast<CondCodeSDNode>(N->getOperand(2))->get(),
5703                       SDLoc(N));
5704}
5705
5706SDValue DAGCombiner::visitSETCCE(SDNode *N) {
5707  SDValue LHS = N->getOperand(0);
5708  SDValue RHS = N->getOperand(1);
5709  SDValue Carry = N->getOperand(2);
5710  SDValue Cond = N->getOperand(3);
5711
5712  // If Carry is false, fold to a regular SETCC.
5713  if (Carry.getOpcode() == ISD::CARRY_FALSE)
5714    return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
5715
5716  return SDValue();
5717}
5718
5719/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
5720/// a build_vector of constants.
5721/// This function is called by the DAGCombiner when visiting sext/zext/aext
5722/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
5723/// Vector extends are not folded if operations are legal; this is to
5724/// avoid introducing illegal build_vector dag nodes.
5725static SDNode *tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
5726                                         SelectionDAG &DAG, bool LegalTypes,
5727                                         bool LegalOperations) {
5728  unsigned Opcode = N->getOpcode();
5729  SDValue N0 = N->getOperand(0);
5730  EVT VT = N->getValueType(0);
5731
5732  assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
5733         Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
5734         && "Expected EXTEND dag node in input!");
5735
5736  // fold (sext c1) -> c1
5737  // fold (zext c1) -> c1
5738  // fold (aext c1) -> c1
5739  if (isa<ConstantSDNode>(N0))
5740    return DAG.getNode(Opcode, SDLoc(N), VT, N0).getNode();
5741
5742  // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
5743  // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
5744  // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
5745  EVT SVT = VT.getScalarType();
5746  if (!(VT.isVector() &&
5747      (!LegalTypes || (!LegalOperations && TLI.isTypeLegal(SVT))) &&
5748      ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
5749    return nullptr;
5750
5751  // We can fold this node into a build_vector.
5752  unsigned VTBits = SVT.getSizeInBits();
5753  unsigned EVTBits = N0->getValueType(0).getScalarType().getSizeInBits();
5754  SmallVector<SDValue, 8> Elts;
5755  unsigned NumElts = VT.getVectorNumElements();
5756  SDLoc DL(N);
5757
5758  for (unsigned i=0; i != NumElts; ++i) {
5759    SDValue Op = N0->getOperand(i);
5760    if (Op->getOpcode() == ISD::UNDEF) {
5761      Elts.push_back(DAG.getUNDEF(SVT));
5762      continue;
5763    }
5764
5765    SDLoc DL(Op);
5766    // Get the constant value and if needed trunc it to the size of the type.
5767    // Nodes like build_vector might have constants wider than the scalar type.
5768    APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
5769    if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
5770      Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
5771    else
5772      Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
5773  }
5774
5775  return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Elts).getNode();
5776}
5777
5778// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
5779// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
5780// transformation. Returns true if extension are possible and the above
5781// mentioned transformation is profitable.
5782static bool ExtendUsesToFormExtLoad(SDNode *N, SDValue N0,
5783                                    unsigned ExtOpc,
5784                                    SmallVectorImpl<SDNode *> &ExtendNodes,
5785                                    const TargetLowering &TLI) {
5786  bool HasCopyToRegUses = false;
5787  bool isTruncFree = TLI.isTruncateFree(N->getValueType(0), N0.getValueType());
5788  for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
5789                            UE = N0.getNode()->use_end();
5790       UI != UE; ++UI) {
5791    SDNode *User = *UI;
5792    if (User == N)
5793      continue;
5794    if (UI.getUse().getResNo() != N0.getResNo())
5795      continue;
5796    // FIXME: Only extend SETCC N, N and SETCC N, c for now.
5797    if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
5798      ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
5799      if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
5800        // Sign bits will be lost after a zext.
5801        return false;
5802      bool Add = false;
5803      for (unsigned i = 0; i != 2; ++i) {
5804        SDValue UseOp = User->getOperand(i);
5805        if (UseOp == N0)
5806          continue;
5807        if (!isa<ConstantSDNode>(UseOp))
5808          return false;
5809        Add = true;
5810      }
5811      if (Add)
5812        ExtendNodes.push_back(User);
5813      continue;
5814    }
5815    // If truncates aren't free and there are users we can't
5816    // extend, it isn't worthwhile.
5817    if (!isTruncFree)
5818      return false;
5819    // Remember if this value is live-out.
5820    if (User->getOpcode() == ISD::CopyToReg)
5821      HasCopyToRegUses = true;
5822  }
5823
5824  if (HasCopyToRegUses) {
5825    bool BothLiveOut = false;
5826    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5827         UI != UE; ++UI) {
5828      SDUse &Use = UI.getUse();
5829      if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
5830        BothLiveOut = true;
5831        break;
5832      }
5833    }
5834    if (BothLiveOut)
5835      // Both unextended and extended values are live out. There had better be
5836      // a good reason for the transformation.
5837      return ExtendNodes.size();
5838  }
5839  return true;
5840}
5841
5842void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
5843                                  SDValue Trunc, SDValue ExtLoad, SDLoc DL,
5844                                  ISD::NodeType ExtType) {
5845  // Extend SetCC uses if necessary.
5846  for (unsigned i = 0, e = SetCCs.size(); i != e; ++i) {
5847    SDNode *SetCC = SetCCs[i];
5848    SmallVector<SDValue, 4> Ops;
5849
5850    for (unsigned j = 0; j != 2; ++j) {
5851      SDValue SOp = SetCC->getOperand(j);
5852      if (SOp == Trunc)
5853        Ops.push_back(ExtLoad);
5854      else
5855        Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
5856    }
5857
5858    Ops.push_back(SetCC->getOperand(2));
5859    CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
5860  }
5861}
5862
5863// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
5864SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
5865  SDValue N0 = N->getOperand(0);
5866  EVT DstVT = N->getValueType(0);
5867  EVT SrcVT = N0.getValueType();
5868
5869  assert((N->getOpcode() == ISD::SIGN_EXTEND ||
5870          N->getOpcode() == ISD::ZERO_EXTEND) &&
5871         "Unexpected node type (not an extend)!");
5872
5873  // fold (sext (load x)) to multiple smaller sextloads; same for zext.
5874  // For example, on a target with legal v4i32, but illegal v8i32, turn:
5875  //   (v8i32 (sext (v8i16 (load x))))
5876  // into:
5877  //   (v8i32 (concat_vectors (v4i32 (sextload x)),
5878  //                          (v4i32 (sextload (x + 16)))))
5879  // Where uses of the original load, i.e.:
5880  //   (v8i16 (load x))
5881  // are replaced with:
5882  //   (v8i16 (truncate
5883  //     (v8i32 (concat_vectors (v4i32 (sextload x)),
5884  //                            (v4i32 (sextload (x + 16)))))))
5885  //
5886  // This combine is only applicable to illegal, but splittable, vectors.
5887  // All legal types, and illegal non-vector types, are handled elsewhere.
5888  // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
5889  //
5890  if (N0->getOpcode() != ISD::LOAD)
5891    return SDValue();
5892
5893  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
5894
5895  if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
5896      !N0.hasOneUse() || LN0->isVolatile() || !DstVT.isVector() ||
5897      !DstVT.isPow2VectorType() || !TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
5898    return SDValue();
5899
5900  SmallVector<SDNode *, 4> SetCCs;
5901  if (!ExtendUsesToFormExtLoad(N, N0, N->getOpcode(), SetCCs, TLI))
5902    return SDValue();
5903
5904  ISD::LoadExtType ExtType =
5905      N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
5906
5907  // Try to split the vector types to get down to legal types.
5908  EVT SplitSrcVT = SrcVT;
5909  EVT SplitDstVT = DstVT;
5910  while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
5911         SplitSrcVT.getVectorNumElements() > 1) {
5912    SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
5913    SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
5914  }
5915
5916  if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
5917    return SDValue();
5918
5919  SDLoc DL(N);
5920  const unsigned NumSplits =
5921      DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
5922  const unsigned Stride = SplitSrcVT.getStoreSize();
5923  SmallVector<SDValue, 4> Loads;
5924  SmallVector<SDValue, 4> Chains;
5925
5926  SDValue BasePtr = LN0->getBasePtr();
5927  for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
5928    const unsigned Offset = Idx * Stride;
5929    const unsigned Align = MinAlign(LN0->getAlignment(), Offset);
5930
5931    SDValue SplitLoad = DAG.getExtLoad(
5932        ExtType, DL, SplitDstVT, LN0->getChain(), BasePtr,
5933        LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT,
5934        LN0->isVolatile(), LN0->isNonTemporal(), LN0->isInvariant(),
5935        Align, LN0->getAAInfo());
5936
5937    BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
5938                          DAG.getConstant(Stride, DL, BasePtr.getValueType()));
5939
5940    Loads.push_back(SplitLoad.getValue(0));
5941    Chains.push_back(SplitLoad.getValue(1));
5942  }
5943
5944  SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
5945  SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
5946
5947  CombineTo(N, NewValue);
5948
5949  // Replace uses of the original load (before extension)
5950  // with a truncate of the concatenated sextloaded vectors.
5951  SDValue Trunc =
5952      DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
5953  CombineTo(N0.getNode(), Trunc, NewChain);
5954  ExtendSetCCUses(SetCCs, Trunc, NewValue, DL,
5955                  (ISD::NodeType)N->getOpcode());
5956  return SDValue(N, 0); // Return N so it doesn't get rechecked!
5957}
5958
5959SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
5960  SDValue N0 = N->getOperand(0);
5961  EVT VT = N->getValueType(0);
5962
5963  if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
5964                                              LegalOperations))
5965    return SDValue(Res, 0);
5966
5967  // fold (sext (sext x)) -> (sext x)
5968  // fold (sext (aext x)) -> (sext x)
5969  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
5970    return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT,
5971                       N0.getOperand(0));
5972
5973  if (N0.getOpcode() == ISD::TRUNCATE) {
5974    // fold (sext (truncate (load x))) -> (sext (smaller load x))
5975    // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
5976    if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
5977      SDNode* oye = N0.getNode()->getOperand(0).getNode();
5978      if (NarrowLoad.getNode() != N0.getNode()) {
5979        CombineTo(N0.getNode(), NarrowLoad);
5980        // CombineTo deleted the truncate, if needed, but not what's under it.
5981        AddToWorklist(oye);
5982      }
5983      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
5984    }
5985
5986    // See if the value being truncated is already sign extended.  If so, just
5987    // eliminate the trunc/sext pair.
5988    SDValue Op = N0.getOperand(0);
5989    unsigned OpBits   = Op.getValueType().getScalarType().getSizeInBits();
5990    unsigned MidBits  = N0.getValueType().getScalarType().getSizeInBits();
5991    unsigned DestBits = VT.getScalarType().getSizeInBits();
5992    unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
5993
5994    if (OpBits == DestBits) {
5995      // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
5996      // bits, it is already ready.
5997      if (NumSignBits > DestBits-MidBits)
5998        return Op;
5999    } else if (OpBits < DestBits) {
6000      // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
6001      // bits, just sext from i32.
6002      if (NumSignBits > OpBits-MidBits)
6003        return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, Op);
6004    } else {
6005      // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
6006      // bits, just truncate to i32.
6007      if (NumSignBits > OpBits-MidBits)
6008        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
6009    }
6010
6011    // fold (sext (truncate x)) -> (sextinreg x).
6012    if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
6013                                                 N0.getValueType())) {
6014      if (OpBits < DestBits)
6015        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
6016      else if (OpBits > DestBits)
6017        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
6018      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, Op,
6019                         DAG.getValueType(N0.getValueType()));
6020    }
6021  }
6022
6023  // fold (sext (load x)) -> (sext (truncate (sextload x)))
6024  // Only generate vector extloads when 1) they're legal, and 2) they are
6025  // deemed desirable by the target.
6026  if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
6027      ((!LegalOperations && !VT.isVector() &&
6028        !cast<LoadSDNode>(N0)->isVolatile()) ||
6029       TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()))) {
6030    bool DoXform = true;
6031    SmallVector<SDNode*, 4> SetCCs;
6032    if (!N0.hasOneUse())
6033      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::SIGN_EXTEND, SetCCs, TLI);
6034    if (VT.isVector())
6035      DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
6036    if (DoXform) {
6037      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6038      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
6039                                       LN0->getChain(),
6040                                       LN0->getBasePtr(), N0.getValueType(),
6041                                       LN0->getMemOperand());
6042      CombineTo(N, ExtLoad);
6043      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6044                                  N0.getValueType(), ExtLoad);
6045      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
6046      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
6047                      ISD::SIGN_EXTEND);
6048      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6049    }
6050  }
6051
6052  // fold (sext (load x)) to multiple smaller sextloads.
6053  // Only on illegal but splittable vectors.
6054  if (SDValue ExtLoad = CombineExtLoad(N))
6055    return ExtLoad;
6056
6057  // fold (sext (sextload x)) -> (sext (truncate (sextload x)))
6058  // fold (sext ( extload x)) -> (sext (truncate (sextload x)))
6059  if ((ISD::isSEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
6060      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
6061    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6062    EVT MemVT = LN0->getMemoryVT();
6063    if ((!LegalOperations && !LN0->isVolatile()) ||
6064        TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT)) {
6065      SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
6066                                       LN0->getChain(),
6067                                       LN0->getBasePtr(), MemVT,
6068                                       LN0->getMemOperand());
6069      CombineTo(N, ExtLoad);
6070      CombineTo(N0.getNode(),
6071                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6072                            N0.getValueType(), ExtLoad),
6073                ExtLoad.getValue(1));
6074      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6075    }
6076  }
6077
6078  // fold (sext (and/or/xor (load x), cst)) ->
6079  //      (and/or/xor (sextload x), (sext cst))
6080  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
6081       N0.getOpcode() == ISD::XOR) &&
6082      isa<LoadSDNode>(N0.getOperand(0)) &&
6083      N0.getOperand(1).getOpcode() == ISD::Constant &&
6084      TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, N0.getValueType()) &&
6085      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
6086    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
6087    if (LN0->getExtensionType() != ISD::ZEXTLOAD && LN0->isUnindexed()) {
6088      bool DoXform = true;
6089      SmallVector<SDNode*, 4> SetCCs;
6090      if (!N0.hasOneUse())
6091        DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0), ISD::SIGN_EXTEND,
6092                                          SetCCs, TLI);
6093      if (DoXform) {
6094        SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN0), VT,
6095                                         LN0->getChain(), LN0->getBasePtr(),
6096                                         LN0->getMemoryVT(),
6097                                         LN0->getMemOperand());
6098        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6099        Mask = Mask.sext(VT.getSizeInBits());
6100        SDLoc DL(N);
6101        SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
6102                                  ExtLoad, DAG.getConstant(Mask, DL, VT));
6103        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
6104                                    SDLoc(N0.getOperand(0)),
6105                                    N0.getOperand(0).getValueType(), ExtLoad);
6106        CombineTo(N, And);
6107        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
6108        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL,
6109                        ISD::SIGN_EXTEND);
6110        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6111      }
6112    }
6113  }
6114
6115  if (N0.getOpcode() == ISD::SETCC) {
6116    EVT N0VT = N0.getOperand(0).getValueType();
6117    // sext(setcc) -> sext_in_reg(vsetcc) for vectors.
6118    // Only do this before legalize for now.
6119    if (VT.isVector() && !LegalOperations &&
6120        TLI.getBooleanContents(N0VT) ==
6121            TargetLowering::ZeroOrNegativeOneBooleanContent) {
6122      // On some architectures (such as SSE/NEON/etc) the SETCC result type is
6123      // of the same size as the compared operands. Only optimize sext(setcc())
6124      // if this is the case.
6125      EVT SVT = getSetCCResultType(N0VT);
6126
6127      // We know that the # elements of the results is the same as the
6128      // # elements of the compare (and the # elements of the compare result
6129      // for that matter).  Check to see that they are the same size.  If so,
6130      // we know that the element size of the sext'd result matches the
6131      // element size of the compare operands.
6132      if (VT.getSizeInBits() == SVT.getSizeInBits())
6133        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
6134                             N0.getOperand(1),
6135                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
6136
6137      // If the desired elements are smaller or larger than the source
6138      // elements we can use a matching integer vector type and then
6139      // truncate/sign extend
6140      EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
6141      if (SVT == MatchingVectorType) {
6142        SDValue VsetCC = DAG.getSetCC(SDLoc(N), MatchingVectorType,
6143                               N0.getOperand(0), N0.getOperand(1),
6144                               cast<CondCodeSDNode>(N0.getOperand(2))->get());
6145        return DAG.getSExtOrTrunc(VsetCC, SDLoc(N), VT);
6146      }
6147    }
6148
6149    // sext(setcc x, y, cc) -> (select (setcc x, y, cc), -1, 0)
6150    unsigned ElementWidth = VT.getScalarType().getSizeInBits();
6151    SDLoc DL(N);
6152    SDValue NegOne =
6153      DAG.getConstant(APInt::getAllOnesValue(ElementWidth), DL, VT);
6154    SDValue SCC =
6155      SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1),
6156                       NegOne, DAG.getConstant(0, DL, VT),
6157                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
6158    if (SCC.getNode()) return SCC;
6159
6160    if (!VT.isVector()) {
6161      EVT SetCCVT = getSetCCResultType(N0.getOperand(0).getValueType());
6162      if (!LegalOperations ||
6163          TLI.isOperationLegal(ISD::SETCC, N0.getOperand(0).getValueType())) {
6164        SDLoc DL(N);
6165        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
6166        SDValue SetCC = DAG.getSetCC(DL, SetCCVT,
6167                                     N0.getOperand(0), N0.getOperand(1), CC);
6168        return DAG.getSelect(DL, VT, SetCC,
6169                             NegOne, DAG.getConstant(0, DL, VT));
6170      }
6171    }
6172  }
6173
6174  // fold (sext x) -> (zext x) if the sign bit is known zero.
6175  if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
6176      DAG.SignBitIsZero(N0))
6177    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0);
6178
6179  return SDValue();
6180}
6181
6182// isTruncateOf - If N is a truncate of some other value, return true, record
6183// the value being truncated in Op and which of Op's bits are zero in KnownZero.
6184// This function computes KnownZero to avoid a duplicated call to
6185// computeKnownBits in the caller.
6186static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
6187                         APInt &KnownZero) {
6188  APInt KnownOne;
6189  if (N->getOpcode() == ISD::TRUNCATE) {
6190    Op = N->getOperand(0);
6191    DAG.computeKnownBits(Op, KnownZero, KnownOne);
6192    return true;
6193  }
6194
6195  if (N->getOpcode() != ISD::SETCC || N->getValueType(0) != MVT::i1 ||
6196      cast<CondCodeSDNode>(N->getOperand(2))->get() != ISD::SETNE)
6197    return false;
6198
6199  SDValue Op0 = N->getOperand(0);
6200  SDValue Op1 = N->getOperand(1);
6201  assert(Op0.getValueType() == Op1.getValueType());
6202
6203  if (isNullConstant(Op0))
6204    Op = Op1;
6205  else if (isNullConstant(Op1))
6206    Op = Op0;
6207  else
6208    return false;
6209
6210  DAG.computeKnownBits(Op, KnownZero, KnownOne);
6211
6212  if (!(KnownZero | APInt(Op.getValueSizeInBits(), 1)).isAllOnesValue())
6213    return false;
6214
6215  return true;
6216}
6217
6218SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
6219  SDValue N0 = N->getOperand(0);
6220  EVT VT = N->getValueType(0);
6221
6222  if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
6223                                              LegalOperations))
6224    return SDValue(Res, 0);
6225
6226  // fold (zext (zext x)) -> (zext x)
6227  // fold (zext (aext x)) -> (zext x)
6228  if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
6229    return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
6230                       N0.getOperand(0));
6231
6232  // fold (zext (truncate x)) -> (zext x) or
6233  //      (zext (truncate x)) -> (truncate x)
6234  // This is valid when the truncated bits of x are already zero.
6235  // FIXME: We should extend this to work for vectors too.
6236  SDValue Op;
6237  APInt KnownZero;
6238  if (!VT.isVector() && isTruncateOf(DAG, N0, Op, KnownZero)) {
6239    APInt TruncatedBits =
6240      (Op.getValueSizeInBits() == N0.getValueSizeInBits()) ?
6241      APInt(Op.getValueSizeInBits(), 0) :
6242      APInt::getBitsSet(Op.getValueSizeInBits(),
6243                        N0.getValueSizeInBits(),
6244                        std::min(Op.getValueSizeInBits(),
6245                                 VT.getSizeInBits()));
6246    if (TruncatedBits == (KnownZero & TruncatedBits)) {
6247      if (VT.bitsGT(Op.getValueType()))
6248        return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, Op);
6249      if (VT.bitsLT(Op.getValueType()))
6250        return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
6251
6252      return Op;
6253    }
6254  }
6255
6256  // fold (zext (truncate (load x))) -> (zext (smaller load x))
6257  // fold (zext (truncate (srl (load x), c))) -> (zext (small load (x+c/n)))
6258  if (N0.getOpcode() == ISD::TRUNCATE) {
6259    if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
6260      SDNode* oye = N0.getNode()->getOperand(0).getNode();
6261      if (NarrowLoad.getNode() != N0.getNode()) {
6262        CombineTo(N0.getNode(), NarrowLoad);
6263        // CombineTo deleted the truncate, if needed, but not what's under it.
6264        AddToWorklist(oye);
6265      }
6266      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6267    }
6268  }
6269
6270  // fold (zext (truncate x)) -> (and x, mask)
6271  if (N0.getOpcode() == ISD::TRUNCATE) {
6272    // fold (zext (truncate (load x))) -> (zext (smaller load x))
6273    // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
6274    if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
6275      SDNode *oye = N0.getNode()->getOperand(0).getNode();
6276      if (NarrowLoad.getNode() != N0.getNode()) {
6277        CombineTo(N0.getNode(), NarrowLoad);
6278        // CombineTo deleted the truncate, if needed, but not what's under it.
6279        AddToWorklist(oye);
6280      }
6281      return SDValue(N, 0); // Return N so it doesn't get rechecked!
6282    }
6283
6284    EVT SrcVT = N0.getOperand(0).getValueType();
6285    EVT MinVT = N0.getValueType();
6286
6287    // Try to mask before the extension to avoid having to generate a larger mask,
6288    // possibly over several sub-vectors.
6289    if (SrcVT.bitsLT(VT)) {
6290      if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
6291                               TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
6292        SDValue Op = N0.getOperand(0);
6293        Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
6294        AddToWorklist(Op.getNode());
6295        return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
6296      }
6297    }
6298
6299    if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
6300      SDValue Op = N0.getOperand(0);
6301      if (SrcVT.bitsLT(VT)) {
6302        Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, Op);
6303        AddToWorklist(Op.getNode());
6304      } else if (SrcVT.bitsGT(VT)) {
6305        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Op);
6306        AddToWorklist(Op.getNode());
6307      }
6308      return DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT.getScalarType());
6309    }
6310  }
6311
6312  // Fold (zext (and (trunc x), cst)) -> (and x, cst),
6313  // if either of the casts is not free.
6314  if (N0.getOpcode() == ISD::AND &&
6315      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6316      N0.getOperand(1).getOpcode() == ISD::Constant &&
6317      (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
6318                           N0.getValueType()) ||
6319       !TLI.isZExtFree(N0.getValueType(), VT))) {
6320    SDValue X = N0.getOperand(0).getOperand(0);
6321    if (X.getValueType().bitsLT(VT)) {
6322      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(X), VT, X);
6323    } else if (X.getValueType().bitsGT(VT)) {
6324      X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
6325    }
6326    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6327    Mask = Mask.zext(VT.getSizeInBits());
6328    SDLoc DL(N);
6329    return DAG.getNode(ISD::AND, DL, VT,
6330                       X, DAG.getConstant(Mask, DL, VT));
6331  }
6332
6333  // fold (zext (load x)) -> (zext (truncate (zextload x)))
6334  // Only generate vector extloads when 1) they're legal, and 2) they are
6335  // deemed desirable by the target.
6336  if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
6337      ((!LegalOperations && !VT.isVector() &&
6338        !cast<LoadSDNode>(N0)->isVolatile()) ||
6339       TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()))) {
6340    bool DoXform = true;
6341    SmallVector<SDNode*, 4> SetCCs;
6342    if (!N0.hasOneUse())
6343      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ZERO_EXTEND, SetCCs, TLI);
6344    if (VT.isVector())
6345      DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
6346    if (DoXform) {
6347      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6348      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
6349                                       LN0->getChain(),
6350                                       LN0->getBasePtr(), N0.getValueType(),
6351                                       LN0->getMemOperand());
6352      CombineTo(N, ExtLoad);
6353      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6354                                  N0.getValueType(), ExtLoad);
6355      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
6356
6357      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
6358                      ISD::ZERO_EXTEND);
6359      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6360    }
6361  }
6362
6363  // fold (zext (load x)) to multiple smaller zextloads.
6364  // Only on illegal but splittable vectors.
6365  if (SDValue ExtLoad = CombineExtLoad(N))
6366    return ExtLoad;
6367
6368  // fold (zext (and/or/xor (load x), cst)) ->
6369  //      (and/or/xor (zextload x), (zext cst))
6370  // Unless (and (load x) cst) will match as a zextload already and has
6371  // additional users.
6372  if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
6373       N0.getOpcode() == ISD::XOR) &&
6374      isa<LoadSDNode>(N0.getOperand(0)) &&
6375      N0.getOperand(1).getOpcode() == ISD::Constant &&
6376      TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, N0.getValueType()) &&
6377      (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
6378    LoadSDNode *LN0 = cast<LoadSDNode>(N0.getOperand(0));
6379    if (LN0->getExtensionType() != ISD::SEXTLOAD && LN0->isUnindexed()) {
6380      bool DoXform = true;
6381      SmallVector<SDNode*, 4> SetCCs;
6382      if (!N0.hasOneUse()) {
6383        if (N0.getOpcode() == ISD::AND) {
6384          auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
6385          auto NarrowLoad = false;
6386          EVT LoadResultTy = AndC->getValueType(0);
6387          EVT ExtVT, LoadedVT;
6388          if (isAndLoadExtLoad(AndC, LN0, LoadResultTy, ExtVT, LoadedVT,
6389                               NarrowLoad))
6390            DoXform = false;
6391        }
6392        if (DoXform)
6393          DoXform = ExtendUsesToFormExtLoad(N, N0.getOperand(0),
6394                                            ISD::ZERO_EXTEND, SetCCs, TLI);
6395      }
6396      if (DoXform) {
6397        SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN0), VT,
6398                                         LN0->getChain(), LN0->getBasePtr(),
6399                                         LN0->getMemoryVT(),
6400                                         LN0->getMemOperand());
6401        APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6402        Mask = Mask.zext(VT.getSizeInBits());
6403        SDLoc DL(N);
6404        SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
6405                                  ExtLoad, DAG.getConstant(Mask, DL, VT));
6406        SDValue Trunc = DAG.getNode(ISD::TRUNCATE,
6407                                    SDLoc(N0.getOperand(0)),
6408                                    N0.getOperand(0).getValueType(), ExtLoad);
6409        CombineTo(N, And);
6410        CombineTo(N0.getOperand(0).getNode(), Trunc, ExtLoad.getValue(1));
6411        ExtendSetCCUses(SetCCs, Trunc, ExtLoad, DL,
6412                        ISD::ZERO_EXTEND);
6413        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6414      }
6415    }
6416  }
6417
6418  // fold (zext (zextload x)) -> (zext (truncate (zextload x)))
6419  // fold (zext ( extload x)) -> (zext (truncate (zextload x)))
6420  if ((ISD::isZEXTLoad(N0.getNode()) || ISD::isEXTLoad(N0.getNode())) &&
6421      ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
6422    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6423    EVT MemVT = LN0->getMemoryVT();
6424    if ((!LegalOperations && !LN0->isVolatile()) ||
6425        TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT)) {
6426      SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT,
6427                                       LN0->getChain(),
6428                                       LN0->getBasePtr(), MemVT,
6429                                       LN0->getMemOperand());
6430      CombineTo(N, ExtLoad);
6431      CombineTo(N0.getNode(),
6432                DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(),
6433                            ExtLoad),
6434                ExtLoad.getValue(1));
6435      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6436    }
6437  }
6438
6439  if (N0.getOpcode() == ISD::SETCC) {
6440    if (!LegalOperations && VT.isVector() &&
6441        N0.getValueType().getVectorElementType() == MVT::i1) {
6442      EVT N0VT = N0.getOperand(0).getValueType();
6443      if (getSetCCResultType(N0VT) == N0.getValueType())
6444        return SDValue();
6445
6446      // zext(setcc) -> (and (vsetcc), (1, 1, ...) for vectors.
6447      // Only do this before legalize for now.
6448      EVT EltVT = VT.getVectorElementType();
6449      SDLoc DL(N);
6450      SmallVector<SDValue,8> OneOps(VT.getVectorNumElements(),
6451                                    DAG.getConstant(1, DL, EltVT));
6452      if (VT.getSizeInBits() == N0VT.getSizeInBits())
6453        // We know that the # elements of the results is the same as the
6454        // # elements of the compare (and the # elements of the compare result
6455        // for that matter).  Check to see that they are the same size.  If so,
6456        // we know that the element size of the sext'd result matches the
6457        // element size of the compare operands.
6458        return DAG.getNode(ISD::AND, DL, VT,
6459                           DAG.getSetCC(DL, VT, N0.getOperand(0),
6460                                         N0.getOperand(1),
6461                                 cast<CondCodeSDNode>(N0.getOperand(2))->get()),
6462                           DAG.getNode(ISD::BUILD_VECTOR, DL, VT,
6463                                       OneOps));
6464
6465      // If the desired elements are smaller or larger than the source
6466      // elements we can use a matching integer vector type and then
6467      // truncate/sign extend
6468      EVT MatchingElementType =
6469        EVT::getIntegerVT(*DAG.getContext(),
6470                          N0VT.getScalarType().getSizeInBits());
6471      EVT MatchingVectorType =
6472        EVT::getVectorVT(*DAG.getContext(), MatchingElementType,
6473                         N0VT.getVectorNumElements());
6474      SDValue VsetCC =
6475        DAG.getSetCC(DL, MatchingVectorType, N0.getOperand(0),
6476                      N0.getOperand(1),
6477                      cast<CondCodeSDNode>(N0.getOperand(2))->get());
6478      return DAG.getNode(ISD::AND, DL, VT,
6479                         DAG.getSExtOrTrunc(VsetCC, DL, VT),
6480                         DAG.getNode(ISD::BUILD_VECTOR, DL, VT, OneOps));
6481    }
6482
6483    // zext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
6484    SDLoc DL(N);
6485    SDValue SCC =
6486      SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1),
6487                       DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT),
6488                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
6489    if (SCC.getNode()) return SCC;
6490  }
6491
6492  // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
6493  if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
6494      isa<ConstantSDNode>(N0.getOperand(1)) &&
6495      N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
6496      N0.hasOneUse()) {
6497    SDValue ShAmt = N0.getOperand(1);
6498    unsigned ShAmtVal = cast<ConstantSDNode>(ShAmt)->getZExtValue();
6499    if (N0.getOpcode() == ISD::SHL) {
6500      SDValue InnerZExt = N0.getOperand(0);
6501      // If the original shl may be shifting out bits, do not perform this
6502      // transformation.
6503      unsigned KnownZeroBits = InnerZExt.getValueType().getSizeInBits() -
6504        InnerZExt.getOperand(0).getValueType().getSizeInBits();
6505      if (ShAmtVal > KnownZeroBits)
6506        return SDValue();
6507    }
6508
6509    SDLoc DL(N);
6510
6511    // Ensure that the shift amount is wide enough for the shifted value.
6512    if (VT.getSizeInBits() >= 256)
6513      ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
6514
6515    return DAG.getNode(N0.getOpcode(), DL, VT,
6516                       DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
6517                       ShAmt);
6518  }
6519
6520  return SDValue();
6521}
6522
6523SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
6524  SDValue N0 = N->getOperand(0);
6525  EVT VT = N->getValueType(0);
6526
6527  if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
6528                                              LegalOperations))
6529    return SDValue(Res, 0);
6530
6531  // fold (aext (aext x)) -> (aext x)
6532  // fold (aext (zext x)) -> (zext x)
6533  // fold (aext (sext x)) -> (sext x)
6534  if (N0.getOpcode() == ISD::ANY_EXTEND  ||
6535      N0.getOpcode() == ISD::ZERO_EXTEND ||
6536      N0.getOpcode() == ISD::SIGN_EXTEND)
6537    return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
6538
6539  // fold (aext (truncate (load x))) -> (aext (smaller load x))
6540  // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
6541  if (N0.getOpcode() == ISD::TRUNCATE) {
6542    if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
6543      SDNode* oye = N0.getNode()->getOperand(0).getNode();
6544      if (NarrowLoad.getNode() != N0.getNode()) {
6545        CombineTo(N0.getNode(), NarrowLoad);
6546        // CombineTo deleted the truncate, if needed, but not what's under it.
6547        AddToWorklist(oye);
6548      }
6549      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6550    }
6551  }
6552
6553  // fold (aext (truncate x))
6554  if (N0.getOpcode() == ISD::TRUNCATE) {
6555    SDValue TruncOp = N0.getOperand(0);
6556    if (TruncOp.getValueType() == VT)
6557      return TruncOp; // x iff x size == zext size.
6558    if (TruncOp.getValueType().bitsGT(VT))
6559      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, TruncOp);
6560    return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, TruncOp);
6561  }
6562
6563  // Fold (aext (and (trunc x), cst)) -> (and x, cst)
6564  // if the trunc is not free.
6565  if (N0.getOpcode() == ISD::AND &&
6566      N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6567      N0.getOperand(1).getOpcode() == ISD::Constant &&
6568      !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
6569                          N0.getValueType())) {
6570    SDValue X = N0.getOperand(0).getOperand(0);
6571    if (X.getValueType().bitsLT(VT)) {
6572      X = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, X);
6573    } else if (X.getValueType().bitsGT(VT)) {
6574      X = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, X);
6575    }
6576    APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
6577    Mask = Mask.zext(VT.getSizeInBits());
6578    SDLoc DL(N);
6579    return DAG.getNode(ISD::AND, DL, VT,
6580                       X, DAG.getConstant(Mask, DL, VT));
6581  }
6582
6583  // fold (aext (load x)) -> (aext (truncate (extload x)))
6584  // None of the supported targets knows how to perform load and any_ext
6585  // on vectors in one instruction.  We only perform this transformation on
6586  // scalars.
6587  if (ISD::isNON_EXTLoad(N0.getNode()) && !VT.isVector() &&
6588      ISD::isUNINDEXEDLoad(N0.getNode()) &&
6589      TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
6590    bool DoXform = true;
6591    SmallVector<SDNode*, 4> SetCCs;
6592    if (!N0.hasOneUse())
6593      DoXform = ExtendUsesToFormExtLoad(N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
6594    if (DoXform) {
6595      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6596      SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
6597                                       LN0->getChain(),
6598                                       LN0->getBasePtr(), N0.getValueType(),
6599                                       LN0->getMemOperand());
6600      CombineTo(N, ExtLoad);
6601      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6602                                  N0.getValueType(), ExtLoad);
6603      CombineTo(N0.getNode(), Trunc, ExtLoad.getValue(1));
6604      ExtendSetCCUses(SetCCs, Trunc, ExtLoad, SDLoc(N),
6605                      ISD::ANY_EXTEND);
6606      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6607    }
6608  }
6609
6610  // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
6611  // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
6612  // fold (aext ( extload x)) -> (aext (truncate (extload  x)))
6613  if (N0.getOpcode() == ISD::LOAD &&
6614      !ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
6615      N0.hasOneUse()) {
6616    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6617    ISD::LoadExtType ExtType = LN0->getExtensionType();
6618    EVT MemVT = LN0->getMemoryVT();
6619    if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
6620      SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
6621                                       VT, LN0->getChain(), LN0->getBasePtr(),
6622                                       MemVT, LN0->getMemOperand());
6623      CombineTo(N, ExtLoad);
6624      CombineTo(N0.getNode(),
6625                DAG.getNode(ISD::TRUNCATE, SDLoc(N0),
6626                            N0.getValueType(), ExtLoad),
6627                ExtLoad.getValue(1));
6628      return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6629    }
6630  }
6631
6632  if (N0.getOpcode() == ISD::SETCC) {
6633    // For vectors:
6634    // aext(setcc) -> vsetcc
6635    // aext(setcc) -> truncate(vsetcc)
6636    // aext(setcc) -> aext(vsetcc)
6637    // Only do this before legalize for now.
6638    if (VT.isVector() && !LegalOperations) {
6639      EVT N0VT = N0.getOperand(0).getValueType();
6640        // We know that the # elements of the results is the same as the
6641        // # elements of the compare (and the # elements of the compare result
6642        // for that matter).  Check to see that they are the same size.  If so,
6643        // we know that the element size of the sext'd result matches the
6644        // element size of the compare operands.
6645      if (VT.getSizeInBits() == N0VT.getSizeInBits())
6646        return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
6647                             N0.getOperand(1),
6648                             cast<CondCodeSDNode>(N0.getOperand(2))->get());
6649      // If the desired elements are smaller or larger than the source
6650      // elements we can use a matching integer vector type and then
6651      // truncate/any extend
6652      else {
6653        EVT MatchingVectorType = N0VT.changeVectorElementTypeToInteger();
6654        SDValue VsetCC =
6655          DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
6656                        N0.getOperand(1),
6657                        cast<CondCodeSDNode>(N0.getOperand(2))->get());
6658        return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
6659      }
6660    }
6661
6662    // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
6663    SDLoc DL(N);
6664    SDValue SCC =
6665      SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1),
6666                       DAG.getConstant(1, DL, VT), DAG.getConstant(0, DL, VT),
6667                       cast<CondCodeSDNode>(N0.getOperand(2))->get(), true);
6668    if (SCC.getNode())
6669      return SCC;
6670  }
6671
6672  return SDValue();
6673}
6674
6675/// See if the specified operand can be simplified with the knowledge that only
6676/// the bits specified by Mask are used.  If so, return the simpler operand,
6677/// otherwise return a null SDValue.
6678SDValue DAGCombiner::GetDemandedBits(SDValue V, const APInt &Mask) {
6679  switch (V.getOpcode()) {
6680  default: break;
6681  case ISD::Constant: {
6682    const ConstantSDNode *CV = cast<ConstantSDNode>(V.getNode());
6683    assert(CV && "Const value should be ConstSDNode.");
6684    const APInt &CVal = CV->getAPIntValue();
6685    APInt NewVal = CVal & Mask;
6686    if (NewVal != CVal)
6687      return DAG.getConstant(NewVal, SDLoc(V), V.getValueType());
6688    break;
6689  }
6690  case ISD::OR:
6691  case ISD::XOR:
6692    // If the LHS or RHS don't contribute bits to the or, drop them.
6693    if (DAG.MaskedValueIsZero(V.getOperand(0), Mask))
6694      return V.getOperand(1);
6695    if (DAG.MaskedValueIsZero(V.getOperand(1), Mask))
6696      return V.getOperand(0);
6697    break;
6698  case ISD::SRL:
6699    // Only look at single-use SRLs.
6700    if (!V.getNode()->hasOneUse())
6701      break;
6702    if (ConstantSDNode *RHSC = getAsNonOpaqueConstant(V.getOperand(1))) {
6703      // See if we can recursively simplify the LHS.
6704      unsigned Amt = RHSC->getZExtValue();
6705
6706      // Watch out for shift count overflow though.
6707      if (Amt >= Mask.getBitWidth()) break;
6708      APInt NewMask = Mask << Amt;
6709      if (SDValue SimplifyLHS = GetDemandedBits(V.getOperand(0), NewMask))
6710        return DAG.getNode(ISD::SRL, SDLoc(V), V.getValueType(),
6711                           SimplifyLHS, V.getOperand(1));
6712    }
6713  }
6714  return SDValue();
6715}
6716
6717/// If the result of a wider load is shifted to right of N  bits and then
6718/// truncated to a narrower type and where N is a multiple of number of bits of
6719/// the narrower type, transform it to a narrower load from address + N / num of
6720/// bits of new type. If the result is to be extended, also fold the extension
6721/// to form a extending load.
6722SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
6723  unsigned Opc = N->getOpcode();
6724
6725  ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
6726  SDValue N0 = N->getOperand(0);
6727  EVT VT = N->getValueType(0);
6728  EVT ExtVT = VT;
6729
6730  // This transformation isn't valid for vector loads.
6731  if (VT.isVector())
6732    return SDValue();
6733
6734  // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
6735  // extended to VT.
6736  if (Opc == ISD::SIGN_EXTEND_INREG) {
6737    ExtType = ISD::SEXTLOAD;
6738    ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6739  } else if (Opc == ISD::SRL) {
6740    // Another special-case: SRL is basically zero-extending a narrower value.
6741    ExtType = ISD::ZEXTLOAD;
6742    N0 = SDValue(N, 0);
6743    ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6744    if (!N01) return SDValue();
6745    ExtVT = EVT::getIntegerVT(*DAG.getContext(),
6746                              VT.getSizeInBits() - N01->getZExtValue());
6747  }
6748  if (LegalOperations && !TLI.isLoadExtLegal(ExtType, VT, ExtVT))
6749    return SDValue();
6750
6751  unsigned EVTBits = ExtVT.getSizeInBits();
6752
6753  // Do not generate loads of non-round integer types since these can
6754  // be expensive (and would be wrong if the type is not byte sized).
6755  if (!ExtVT.isRound())
6756    return SDValue();
6757
6758  unsigned ShAmt = 0;
6759  if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
6760    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
6761      ShAmt = N01->getZExtValue();
6762      // Is the shift amount a multiple of size of VT?
6763      if ((ShAmt & (EVTBits-1)) == 0) {
6764        N0 = N0.getOperand(0);
6765        // Is the load width a multiple of size of VT?
6766        if ((N0.getValueType().getSizeInBits() & (EVTBits-1)) != 0)
6767          return SDValue();
6768      }
6769
6770      // At this point, we must have a load or else we can't do the transform.
6771      if (!isa<LoadSDNode>(N0)) return SDValue();
6772
6773      // Because a SRL must be assumed to *need* to zero-extend the high bits
6774      // (as opposed to anyext the high bits), we can't combine the zextload
6775      // lowering of SRL and an sextload.
6776      if (cast<LoadSDNode>(N0)->getExtensionType() == ISD::SEXTLOAD)
6777        return SDValue();
6778
6779      // If the shift amount is larger than the input type then we're not
6780      // accessing any of the loaded bytes.  If the load was a zextload/extload
6781      // then the result of the shift+trunc is zero/undef (handled elsewhere).
6782      if (ShAmt >= cast<LoadSDNode>(N0)->getMemoryVT().getSizeInBits())
6783        return SDValue();
6784    }
6785  }
6786
6787  // If the load is shifted left (and the result isn't shifted back right),
6788  // we can fold the truncate through the shift.
6789  unsigned ShLeftAmt = 0;
6790  if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
6791      ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
6792    if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
6793      ShLeftAmt = N01->getZExtValue();
6794      N0 = N0.getOperand(0);
6795    }
6796  }
6797
6798  // If we haven't found a load, we can't narrow it.  Don't transform one with
6799  // multiple uses, this would require adding a new load.
6800  if (!isa<LoadSDNode>(N0) || !N0.hasOneUse())
6801    return SDValue();
6802
6803  // Don't change the width of a volatile load.
6804  LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6805  if (LN0->isVolatile())
6806    return SDValue();
6807
6808  // Verify that we are actually reducing a load width here.
6809  if (LN0->getMemoryVT().getSizeInBits() < EVTBits)
6810    return SDValue();
6811
6812  // For the transform to be legal, the load must produce only two values
6813  // (the value loaded and the chain).  Don't transform a pre-increment
6814  // load, for example, which produces an extra value.  Otherwise the
6815  // transformation is not equivalent, and the downstream logic to replace
6816  // uses gets things wrong.
6817  if (LN0->getNumValues() > 2)
6818    return SDValue();
6819
6820  // If the load that we're shrinking is an extload and we're not just
6821  // discarding the extension we can't simply shrink the load. Bail.
6822  // TODO: It would be possible to merge the extensions in some cases.
6823  if (LN0->getExtensionType() != ISD::NON_EXTLOAD &&
6824      LN0->getMemoryVT().getSizeInBits() < ExtVT.getSizeInBits() + ShAmt)
6825    return SDValue();
6826
6827  if (!TLI.shouldReduceLoadWidth(LN0, ExtType, ExtVT))
6828    return SDValue();
6829
6830  EVT PtrType = N0.getOperand(1).getValueType();
6831
6832  if (PtrType == MVT::Untyped || PtrType.isExtended())
6833    // It's not possible to generate a constant of extended or untyped type.
6834    return SDValue();
6835
6836  // For big endian targets, we need to adjust the offset to the pointer to
6837  // load the correct bytes.
6838  if (DAG.getDataLayout().isBigEndian()) {
6839    unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits();
6840    unsigned EVTStoreBits = ExtVT.getStoreSizeInBits();
6841    ShAmt = LVTStoreBits - EVTStoreBits - ShAmt;
6842  }
6843
6844  uint64_t PtrOff = ShAmt / 8;
6845  unsigned NewAlign = MinAlign(LN0->getAlignment(), PtrOff);
6846  SDLoc DL(LN0);
6847  SDValue NewPtr = DAG.getNode(ISD::ADD, DL,
6848                               PtrType, LN0->getBasePtr(),
6849                               DAG.getConstant(PtrOff, DL, PtrType));
6850  AddToWorklist(NewPtr.getNode());
6851
6852  SDValue Load;
6853  if (ExtType == ISD::NON_EXTLOAD)
6854    Load =  DAG.getLoad(VT, SDLoc(N0), LN0->getChain(), NewPtr,
6855                        LN0->getPointerInfo().getWithOffset(PtrOff),
6856                        LN0->isVolatile(), LN0->isNonTemporal(),
6857                        LN0->isInvariant(), NewAlign, LN0->getAAInfo());
6858  else
6859    Load = DAG.getExtLoad(ExtType, SDLoc(N0), VT, LN0->getChain(),NewPtr,
6860                          LN0->getPointerInfo().getWithOffset(PtrOff),
6861                          ExtVT, LN0->isVolatile(), LN0->isNonTemporal(),
6862                          LN0->isInvariant(), NewAlign, LN0->getAAInfo());
6863
6864  // Replace the old load's chain with the new load's chain.
6865  WorklistRemover DeadNodes(*this);
6866  DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
6867
6868  // Shift the result left, if we've swallowed a left shift.
6869  SDValue Result = Load;
6870  if (ShLeftAmt != 0) {
6871    EVT ShImmTy = getShiftAmountTy(Result.getValueType());
6872    if (!isUIntN(ShImmTy.getSizeInBits(), ShLeftAmt))
6873      ShImmTy = VT;
6874    // If the shift amount is as large as the result size (but, presumably,
6875    // no larger than the source) then the useful bits of the result are
6876    // zero; we can't simply return the shortened shift, because the result
6877    // of that operation is undefined.
6878    SDLoc DL(N0);
6879    if (ShLeftAmt >= VT.getSizeInBits())
6880      Result = DAG.getConstant(0, DL, VT);
6881    else
6882      Result = DAG.getNode(ISD::SHL, DL, VT,
6883                          Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
6884  }
6885
6886  // Return the new loaded value.
6887  return Result;
6888}
6889
6890SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
6891  SDValue N0 = N->getOperand(0);
6892  SDValue N1 = N->getOperand(1);
6893  EVT VT = N->getValueType(0);
6894  EVT EVT = cast<VTSDNode>(N1)->getVT();
6895  unsigned VTBits = VT.getScalarType().getSizeInBits();
6896  unsigned EVTBits = EVT.getScalarType().getSizeInBits();
6897
6898  if (N0.isUndef())
6899    return DAG.getUNDEF(VT);
6900
6901  // fold (sext_in_reg c1) -> c1
6902  if (isConstantIntBuildVectorOrConstantInt(N0))
6903    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
6904
6905  // If the input is already sign extended, just drop the extension.
6906  if (DAG.ComputeNumSignBits(N0) >= VTBits-EVTBits+1)
6907    return N0;
6908
6909  // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
6910  if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
6911      EVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
6912    return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
6913                       N0.getOperand(0), N1);
6914
6915  // fold (sext_in_reg (sext x)) -> (sext x)
6916  // fold (sext_in_reg (aext x)) -> (sext x)
6917  // if x is small enough.
6918  if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
6919    SDValue N00 = N0.getOperand(0);
6920    if (N00.getValueType().getScalarType().getSizeInBits() <= EVTBits &&
6921        (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
6922      return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
6923  }
6924
6925  // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
6926  if (DAG.MaskedValueIsZero(N0, APInt::getBitsSet(VTBits, EVTBits-1, EVTBits)))
6927    return DAG.getZeroExtendInReg(N0, SDLoc(N), EVT);
6928
6929  // fold operands of sext_in_reg based on knowledge that the top bits are not
6930  // demanded.
6931  if (SimplifyDemandedBits(SDValue(N, 0)))
6932    return SDValue(N, 0);
6933
6934  // fold (sext_in_reg (load x)) -> (smaller sextload x)
6935  // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
6936  if (SDValue NarrowLoad = ReduceLoadWidth(N))
6937    return NarrowLoad;
6938
6939  // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
6940  // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
6941  // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
6942  if (N0.getOpcode() == ISD::SRL) {
6943    if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
6944      if (ShAmt->getZExtValue()+EVTBits <= VTBits) {
6945        // We can turn this into an SRA iff the input to the SRL is already sign
6946        // extended enough.
6947        unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
6948        if (VTBits-(ShAmt->getZExtValue()+EVTBits) < InSignBits)
6949          return DAG.getNode(ISD::SRA, SDLoc(N), VT,
6950                             N0.getOperand(0), N0.getOperand(1));
6951      }
6952  }
6953
6954  // fold (sext_inreg (extload x)) -> (sextload x)
6955  if (ISD::isEXTLoad(N0.getNode()) &&
6956      ISD::isUNINDEXEDLoad(N0.getNode()) &&
6957      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
6958      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6959       TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
6960    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6961    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
6962                                     LN0->getChain(),
6963                                     LN0->getBasePtr(), EVT,
6964                                     LN0->getMemOperand());
6965    CombineTo(N, ExtLoad);
6966    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
6967    AddToWorklist(ExtLoad.getNode());
6968    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6969  }
6970  // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
6971  if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
6972      N0.hasOneUse() &&
6973      EVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
6974      ((!LegalOperations && !cast<LoadSDNode>(N0)->isVolatile()) ||
6975       TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, EVT))) {
6976    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
6977    SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
6978                                     LN0->getChain(),
6979                                     LN0->getBasePtr(), EVT,
6980                                     LN0->getMemOperand());
6981    CombineTo(N, ExtLoad);
6982    CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
6983    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
6984  }
6985
6986  // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
6987  if (EVTBits <= 16 && N0.getOpcode() == ISD::OR) {
6988    SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
6989                                       N0.getOperand(1), false);
6990    if (BSwap.getNode())
6991      return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
6992                         BSwap, N1);
6993  }
6994
6995  return SDValue();
6996}
6997
6998SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) {
6999  SDValue N0 = N->getOperand(0);
7000  EVT VT = N->getValueType(0);
7001
7002  if (N0.getOpcode() == ISD::UNDEF)
7003    return DAG.getUNDEF(VT);
7004
7005  if (SDNode *Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes,
7006                                              LegalOperations))
7007    return SDValue(Res, 0);
7008
7009  return SDValue();
7010}
7011
7012SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
7013  SDValue N0 = N->getOperand(0);
7014  EVT VT = N->getValueType(0);
7015  bool isLE = DAG.getDataLayout().isLittleEndian();
7016
7017  // noop truncate
7018  if (N0.getValueType() == N->getValueType(0))
7019    return N0;
7020  // fold (truncate c1) -> c1
7021  if (isConstantIntBuildVectorOrConstantInt(N0))
7022    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
7023  // fold (truncate (truncate x)) -> (truncate x)
7024  if (N0.getOpcode() == ISD::TRUNCATE)
7025    return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
7026  // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
7027  if (N0.getOpcode() == ISD::ZERO_EXTEND ||
7028      N0.getOpcode() == ISD::SIGN_EXTEND ||
7029      N0.getOpcode() == ISD::ANY_EXTEND) {
7030    if (N0.getOperand(0).getValueType().bitsLT(VT))
7031      // if the source is smaller than the dest, we still need an extend
7032      return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
7033                         N0.getOperand(0));
7034    if (N0.getOperand(0).getValueType().bitsGT(VT))
7035      // if the source is larger than the dest, than we just need the truncate
7036      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
7037    // if the source and dest are the same type, we can drop both the extend
7038    // and the truncate.
7039    return N0.getOperand(0);
7040  }
7041
7042  // Fold extract-and-trunc into a narrow extract. For example:
7043  //   i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
7044  //   i32 y = TRUNCATE(i64 x)
7045  //        -- becomes --
7046  //   v16i8 b = BITCAST (v2i64 val)
7047  //   i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
7048  //
7049  // Note: We only run this optimization after type legalization (which often
7050  // creates this pattern) and before operation legalization after which
7051  // we need to be more careful about the vector instructions that we generate.
7052  if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7053      LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
7054
7055    EVT VecTy = N0.getOperand(0).getValueType();
7056    EVT ExTy = N0.getValueType();
7057    EVT TrTy = N->getValueType(0);
7058
7059    unsigned NumElem = VecTy.getVectorNumElements();
7060    unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
7061
7062    EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, SizeRatio * NumElem);
7063    assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
7064
7065    SDValue EltNo = N0->getOperand(1);
7066    if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
7067      int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
7068      EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7069      int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
7070
7071      SDValue V = DAG.getNode(ISD::BITCAST, SDLoc(N),
7072                              NVT, N0.getOperand(0));
7073
7074      SDLoc DL(N);
7075      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
7076                         DL, TrTy, V,
7077                         DAG.getConstant(Index, DL, IndexTy));
7078    }
7079  }
7080
7081  // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
7082  if (N0.getOpcode() == ISD::SELECT) {
7083    EVT SrcVT = N0.getValueType();
7084    if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
7085        TLI.isTruncateFree(SrcVT, VT)) {
7086      SDLoc SL(N0);
7087      SDValue Cond = N0.getOperand(0);
7088      SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
7089      SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
7090      return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
7091    }
7092  }
7093
7094  // Fold a series of buildvector, bitcast, and truncate if possible.
7095  // For example fold
7096  //   (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
7097  //   (2xi32 (buildvector x, y)).
7098  if (Level == AfterLegalizeVectorOps && VT.isVector() &&
7099      N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
7100      N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
7101      N0.getOperand(0).hasOneUse()) {
7102
7103    SDValue BuildVect = N0.getOperand(0);
7104    EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
7105    EVT TruncVecEltTy = VT.getVectorElementType();
7106
7107    // Check that the element types match.
7108    if (BuildVectEltTy == TruncVecEltTy) {
7109      // Now we only need to compute the offset of the truncated elements.
7110      unsigned BuildVecNumElts =  BuildVect.getNumOperands();
7111      unsigned TruncVecNumElts = VT.getVectorNumElements();
7112      unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
7113
7114      assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
7115             "Invalid number of elements");
7116
7117      SmallVector<SDValue, 8> Opnds;
7118      for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
7119        Opnds.push_back(BuildVect.getOperand(i));
7120
7121      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds);
7122    }
7123  }
7124
7125  // See if we can simplify the input to this truncate through knowledge that
7126  // only the low bits are being used.
7127  // For example "trunc (or (shl x, 8), y)" // -> trunc y
7128  // Currently we only perform this optimization on scalars because vectors
7129  // may have different active low bits.
7130  if (!VT.isVector()) {
7131    SDValue Shorter =
7132      GetDemandedBits(N0, APInt::getLowBitsSet(N0.getValueSizeInBits(),
7133                                               VT.getSizeInBits()));
7134    if (Shorter.getNode())
7135      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
7136  }
7137  // fold (truncate (load x)) -> (smaller load x)
7138  // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
7139  if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
7140    if (SDValue Reduced = ReduceLoadWidth(N))
7141      return Reduced;
7142
7143    // Handle the case where the load remains an extending load even
7144    // after truncation.
7145    if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
7146      LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7147      if (!LN0->isVolatile() &&
7148          LN0->getMemoryVT().getStoreSizeInBits() < VT.getSizeInBits()) {
7149        SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
7150                                         VT, LN0->getChain(), LN0->getBasePtr(),
7151                                         LN0->getMemoryVT(),
7152                                         LN0->getMemOperand());
7153        DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
7154        return NewLoad;
7155      }
7156    }
7157  }
7158  // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
7159  // where ... are all 'undef'.
7160  if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
7161    SmallVector<EVT, 8> VTs;
7162    SDValue V;
7163    unsigned Idx = 0;
7164    unsigned NumDefs = 0;
7165
7166    for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
7167      SDValue X = N0.getOperand(i);
7168      if (X.getOpcode() != ISD::UNDEF) {
7169        V = X;
7170        Idx = i;
7171        NumDefs++;
7172      }
7173      // Stop if more than one members are non-undef.
7174      if (NumDefs > 1)
7175        break;
7176      VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
7177                                     VT.getVectorElementType(),
7178                                     X.getValueType().getVectorNumElements()));
7179    }
7180
7181    if (NumDefs == 0)
7182      return DAG.getUNDEF(VT);
7183
7184    if (NumDefs == 1) {
7185      assert(V.getNode() && "The single defined operand is empty!");
7186      SmallVector<SDValue, 8> Opnds;
7187      for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
7188        if (i != Idx) {
7189          Opnds.push_back(DAG.getUNDEF(VTs[i]));
7190          continue;
7191        }
7192        SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
7193        AddToWorklist(NV.getNode());
7194        Opnds.push_back(NV);
7195      }
7196      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
7197    }
7198  }
7199
7200  // Simplify the operands using demanded-bits information.
7201  if (!VT.isVector() &&
7202      SimplifyDemandedBits(SDValue(N, 0)))
7203    return SDValue(N, 0);
7204
7205  return SDValue();
7206}
7207
7208static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
7209  SDValue Elt = N->getOperand(i);
7210  if (Elt.getOpcode() != ISD::MERGE_VALUES)
7211    return Elt.getNode();
7212  return Elt.getOperand(Elt.getResNo()).getNode();
7213}
7214
7215/// build_pair (load, load) -> load
7216/// if load locations are consecutive.
7217SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
7218  assert(N->getOpcode() == ISD::BUILD_PAIR);
7219
7220  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
7221  LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
7222  if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
7223      LD1->getAddressSpace() != LD2->getAddressSpace())
7224    return SDValue();
7225  EVT LD1VT = LD1->getValueType(0);
7226
7227  if (ISD::isNON_EXTLoad(LD2) &&
7228      LD2->hasOneUse() &&
7229      // If both are volatile this would reduce the number of volatile loads.
7230      // If one is volatile it might be ok, but play conservative and bail out.
7231      !LD1->isVolatile() &&
7232      !LD2->isVolatile() &&
7233      DAG.isConsecutiveLoad(LD2, LD1, LD1VT.getSizeInBits()/8, 1)) {
7234    unsigned Align = LD1->getAlignment();
7235    unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
7236        VT.getTypeForEVT(*DAG.getContext()));
7237
7238    if (NewAlign <= Align &&
7239        (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
7240      return DAG.getLoad(VT, SDLoc(N), LD1->getChain(),
7241                         LD1->getBasePtr(), LD1->getPointerInfo(),
7242                         false, false, false, Align);
7243  }
7244
7245  return SDValue();
7246}
7247
7248static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
7249  // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
7250  // and Lo parts; on big-endian machines it doesn't.
7251  return DAG.getDataLayout().isBigEndian() ? 1 : 0;
7252}
7253
7254SDValue DAGCombiner::visitBITCAST(SDNode *N) {
7255  SDValue N0 = N->getOperand(0);
7256  EVT VT = N->getValueType(0);
7257
7258  // If the input is a BUILD_VECTOR with all constant elements, fold this now.
7259  // Only do this before legalize, since afterward the target may be depending
7260  // on the bitconvert.
7261  // First check to see if this is all constant.
7262  if (!LegalTypes &&
7263      N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
7264      VT.isVector()) {
7265    bool isSimple = cast<BuildVectorSDNode>(N0)->isConstant();
7266
7267    EVT DestEltVT = N->getValueType(0).getVectorElementType();
7268    assert(!DestEltVT.isVector() &&
7269           "Element type of vector ValueType must not be vector!");
7270    if (isSimple)
7271      return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), DestEltVT);
7272  }
7273
7274  // If the input is a constant, let getNode fold it.
7275  if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) {
7276    // If we can't allow illegal operations, we need to check that this is just
7277    // a fp -> int or int -> conversion and that the resulting operation will
7278    // be legal.
7279    if (!LegalOperations ||
7280        (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
7281         TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
7282        (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
7283         TLI.isOperationLegal(ISD::Constant, VT)))
7284      return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, N0);
7285  }
7286
7287  // (conv (conv x, t1), t2) -> (conv x, t2)
7288  if (N0.getOpcode() == ISD::BITCAST)
7289    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT,
7290                       N0.getOperand(0));
7291
7292  // fold (conv (load x)) -> (load (conv*)x)
7293  // If the resultant load doesn't need a higher alignment than the original!
7294  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
7295      // Do not change the width of a volatile load.
7296      !cast<LoadSDNode>(N0)->isVolatile() &&
7297      // Do not remove the cast if the types differ in endian layout.
7298      TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
7299          TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
7300      (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
7301      TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
7302    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
7303    unsigned Align = DAG.getDataLayout().getABITypeAlignment(
7304        VT.getTypeForEVT(*DAG.getContext()));
7305    unsigned OrigAlign = LN0->getAlignment();
7306
7307    if (Align <= OrigAlign) {
7308      SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(),
7309                                 LN0->getBasePtr(), LN0->getPointerInfo(),
7310                                 LN0->isVolatile(), LN0->isNonTemporal(),
7311                                 LN0->isInvariant(), OrigAlign,
7312                                 LN0->getAAInfo());
7313      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
7314      return Load;
7315    }
7316  }
7317
7318  // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
7319  // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
7320  //
7321  // For ppc_fp128:
7322  // fold (bitcast (fneg x)) ->
7323  //     flipbit = signbit
7324  //     (xor (bitcast x) (build_pair flipbit, flipbit))
7325  // fold (bitcast (fabs x)) ->
7326  //     flipbit = (and (extract_element (bitcast x), 0), signbit)
7327  //     (xor (bitcast x) (build_pair flipbit, flipbit))
7328  // This often reduces constant pool loads.
7329  if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
7330       (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
7331      N0.getNode()->hasOneUse() && VT.isInteger() &&
7332      !VT.isVector() && !N0.getValueType().isVector()) {
7333    SDValue NewConv = DAG.getNode(ISD::BITCAST, SDLoc(N0), VT,
7334                                  N0.getOperand(0));
7335    AddToWorklist(NewConv.getNode());
7336
7337    SDLoc DL(N);
7338    if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
7339      assert(VT.getSizeInBits() == 128);
7340      SDValue SignBit = DAG.getConstant(
7341          APInt::getSignBit(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
7342      SDValue FlipBit;
7343      if (N0.getOpcode() == ISD::FNEG) {
7344        FlipBit = SignBit;
7345        AddToWorklist(FlipBit.getNode());
7346      } else {
7347        assert(N0.getOpcode() == ISD::FABS);
7348        SDValue Hi =
7349            DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
7350                        DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
7351                                              SDLoc(NewConv)));
7352        AddToWorklist(Hi.getNode());
7353        FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
7354        AddToWorklist(FlipBit.getNode());
7355      }
7356      SDValue FlipBits =
7357          DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
7358      AddToWorklist(FlipBits.getNode());
7359      return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
7360    }
7361    APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
7362    if (N0.getOpcode() == ISD::FNEG)
7363      return DAG.getNode(ISD::XOR, DL, VT,
7364                         NewConv, DAG.getConstant(SignBit, DL, VT));
7365    assert(N0.getOpcode() == ISD::FABS);
7366    return DAG.getNode(ISD::AND, DL, VT,
7367                       NewConv, DAG.getConstant(~SignBit, DL, VT));
7368  }
7369
7370  // fold (bitconvert (fcopysign cst, x)) ->
7371  //         (or (and (bitconvert x), sign), (and cst, (not sign)))
7372  // Note that we don't handle (copysign x, cst) because this can always be
7373  // folded to an fneg or fabs.
7374  //
7375  // For ppc_fp128:
7376  // fold (bitcast (fcopysign cst, x)) ->
7377  //     flipbit = (and (extract_element
7378  //                     (xor (bitcast cst), (bitcast x)), 0),
7379  //                    signbit)
7380  //     (xor (bitcast cst) (build_pair flipbit, flipbit))
7381  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
7382      isa<ConstantFPSDNode>(N0.getOperand(0)) &&
7383      VT.isInteger() && !VT.isVector()) {
7384    unsigned OrigXWidth = N0.getOperand(1).getValueType().getSizeInBits();
7385    EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
7386    if (isTypeLegal(IntXVT)) {
7387      SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0),
7388                              IntXVT, N0.getOperand(1));
7389      AddToWorklist(X.getNode());
7390
7391      // If X has a different width than the result/lhs, sext it or truncate it.
7392      unsigned VTWidth = VT.getSizeInBits();
7393      if (OrigXWidth < VTWidth) {
7394        X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
7395        AddToWorklist(X.getNode());
7396      } else if (OrigXWidth > VTWidth) {
7397        // To get the sign bit in the right place, we have to shift it right
7398        // before truncating.
7399        SDLoc DL(X);
7400        X = DAG.getNode(ISD::SRL, DL,
7401                        X.getValueType(), X,
7402                        DAG.getConstant(OrigXWidth-VTWidth, DL,
7403                                        X.getValueType()));
7404        AddToWorklist(X.getNode());
7405        X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
7406        AddToWorklist(X.getNode());
7407      }
7408
7409      if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
7410        APInt SignBit = APInt::getSignBit(VT.getSizeInBits() / 2);
7411        SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0.getOperand(0)), VT,
7412                                  N0.getOperand(0));
7413        AddToWorklist(Cst.getNode());
7414        SDValue X = DAG.getNode(ISD::BITCAST, SDLoc(N0.getOperand(1)), VT,
7415                                N0.getOperand(1));
7416        AddToWorklist(X.getNode());
7417        SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
7418        AddToWorklist(XorResult.getNode());
7419        SDValue XorResult64 = DAG.getNode(
7420            ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
7421            DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
7422                                  SDLoc(XorResult)));
7423        AddToWorklist(XorResult64.getNode());
7424        SDValue FlipBit =
7425            DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
7426                        DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
7427        AddToWorklist(FlipBit.getNode());
7428        SDValue FlipBits =
7429            DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
7430        AddToWorklist(FlipBits.getNode());
7431        return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
7432      }
7433      APInt SignBit = APInt::getSignBit(VT.getSizeInBits());
7434      X = DAG.getNode(ISD::AND, SDLoc(X), VT,
7435                      X, DAG.getConstant(SignBit, SDLoc(X), VT));
7436      AddToWorklist(X.getNode());
7437
7438      SDValue Cst = DAG.getNode(ISD::BITCAST, SDLoc(N0),
7439                                VT, N0.getOperand(0));
7440      Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
7441                        Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
7442      AddToWorklist(Cst.getNode());
7443
7444      return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
7445    }
7446  }
7447
7448  // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
7449  if (N0.getOpcode() == ISD::BUILD_PAIR)
7450    if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
7451      return CombineLD;
7452
7453  // Remove double bitcasts from shuffles - this is often a legacy of
7454  // XformToShuffleWithZero being used to combine bitmaskings (of
7455  // float vectors bitcast to integer vectors) into shuffles.
7456  // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
7457  if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
7458      N0->getOpcode() == ISD::VECTOR_SHUFFLE &&
7459      VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
7460      !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
7461    ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
7462
7463    // If operands are a bitcast, peek through if it casts the original VT.
7464    // If operands are a constant, just bitcast back to original VT.
7465    auto PeekThroughBitcast = [&](SDValue Op) {
7466      if (Op.getOpcode() == ISD::BITCAST &&
7467          Op.getOperand(0).getValueType() == VT)
7468        return SDValue(Op.getOperand(0));
7469      if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
7470          ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
7471        return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
7472      return SDValue();
7473    };
7474
7475    SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
7476    SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
7477    if (!(SV0 && SV1))
7478      return SDValue();
7479
7480    int MaskScale =
7481        VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
7482    SmallVector<int, 8> NewMask;
7483    for (int M : SVN->getMask())
7484      for (int i = 0; i != MaskScale; ++i)
7485        NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
7486
7487    bool LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
7488    if (!LegalMask) {
7489      std::swap(SV0, SV1);
7490      ShuffleVectorSDNode::commuteMask(NewMask);
7491      LegalMask = TLI.isShuffleMaskLegal(NewMask, VT);
7492    }
7493
7494    if (LegalMask)
7495      return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask);
7496  }
7497
7498  return SDValue();
7499}
7500
7501SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
7502  EVT VT = N->getValueType(0);
7503  return CombineConsecutiveLoads(N, VT);
7504}
7505
7506/// We know that BV is a build_vector node with Constant, ConstantFP or Undef
7507/// operands. DstEltVT indicates the destination element value type.
7508SDValue DAGCombiner::
7509ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
7510  EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
7511
7512  // If this is already the right type, we're done.
7513  if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
7514
7515  unsigned SrcBitSize = SrcEltVT.getSizeInBits();
7516  unsigned DstBitSize = DstEltVT.getSizeInBits();
7517
7518  // If this is a conversion of N elements of one type to N elements of another
7519  // type, convert each element.  This handles FP<->INT cases.
7520  if (SrcBitSize == DstBitSize) {
7521    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
7522                              BV->getValueType(0).getVectorNumElements());
7523
7524    // Due to the FP element handling below calling this routine recursively,
7525    // we can end up with a scalar-to-vector node here.
7526    if (BV->getOpcode() == ISD::SCALAR_TO_VECTOR)
7527      return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(BV), VT,
7528                         DAG.getNode(ISD::BITCAST, SDLoc(BV),
7529                                     DstEltVT, BV->getOperand(0)));
7530
7531    SmallVector<SDValue, 8> Ops;
7532    for (SDValue Op : BV->op_values()) {
7533      // If the vector element type is not legal, the BUILD_VECTOR operands
7534      // are promoted and implicitly truncated.  Make that explicit here.
7535      if (Op.getValueType() != SrcEltVT)
7536        Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
7537      Ops.push_back(DAG.getNode(ISD::BITCAST, SDLoc(BV),
7538                                DstEltVT, Op));
7539      AddToWorklist(Ops.back().getNode());
7540    }
7541    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BV), VT, Ops);
7542  }
7543
7544  // Otherwise, we're growing or shrinking the elements.  To avoid having to
7545  // handle annoying details of growing/shrinking FP values, we convert them to
7546  // int first.
7547  if (SrcEltVT.isFloatingPoint()) {
7548    // Convert the input float vector to a int vector where the elements are the
7549    // same sizes.
7550    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
7551    BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
7552    SrcEltVT = IntVT;
7553  }
7554
7555  // Now we know the input is an integer vector.  If the output is a FP type,
7556  // convert to integer first, then to FP of the right size.
7557  if (DstEltVT.isFloatingPoint()) {
7558    EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
7559    SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
7560
7561    // Next, convert to FP elements of the same size.
7562    return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
7563  }
7564
7565  SDLoc DL(BV);
7566
7567  // Okay, we know the src/dst types are both integers of differing types.
7568  // Handling growing first.
7569  assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
7570  if (SrcBitSize < DstBitSize) {
7571    unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
7572
7573    SmallVector<SDValue, 8> Ops;
7574    for (unsigned i = 0, e = BV->getNumOperands(); i != e;
7575         i += NumInputsPerOutput) {
7576      bool isLE = DAG.getDataLayout().isLittleEndian();
7577      APInt NewBits = APInt(DstBitSize, 0);
7578      bool EltIsUndef = true;
7579      for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
7580        // Shift the previously computed bits over.
7581        NewBits <<= SrcBitSize;
7582        SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
7583        if (Op.getOpcode() == ISD::UNDEF) continue;
7584        EltIsUndef = false;
7585
7586        NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
7587                   zextOrTrunc(SrcBitSize).zext(DstBitSize);
7588      }
7589
7590      if (EltIsUndef)
7591        Ops.push_back(DAG.getUNDEF(DstEltVT));
7592      else
7593        Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
7594    }
7595
7596    EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
7597    return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
7598  }
7599
7600  // Finally, this must be the case where we are shrinking elements: each input
7601  // turns into multiple outputs.
7602  unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
7603  EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
7604                            NumOutputsPerInput*BV->getNumOperands());
7605  SmallVector<SDValue, 8> Ops;
7606
7607  for (const SDValue &Op : BV->op_values()) {
7608    if (Op.getOpcode() == ISD::UNDEF) {
7609      Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
7610      continue;
7611    }
7612
7613    APInt OpVal = cast<ConstantSDNode>(Op)->
7614                  getAPIntValue().zextOrTrunc(SrcBitSize);
7615
7616    for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
7617      APInt ThisVal = OpVal.trunc(DstBitSize);
7618      Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
7619      OpVal = OpVal.lshr(DstBitSize);
7620    }
7621
7622    // For big endian targets, swap the order of the pieces of each element.
7623    if (DAG.getDataLayout().isBigEndian())
7624      std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
7625  }
7626
7627  return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
7628}
7629
7630/// Try to perform FMA combining on a given FADD node.
7631SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
7632  SDValue N0 = N->getOperand(0);
7633  SDValue N1 = N->getOperand(1);
7634  EVT VT = N->getValueType(0);
7635  SDLoc SL(N);
7636
7637  const TargetOptions &Options = DAG.getTarget().Options;
7638  bool AllowFusion =
7639      (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
7640
7641  // Floating-point multiply-add with intermediate rounding.
7642  bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
7643
7644  // Floating-point multiply-add without intermediate rounding.
7645  bool HasFMA =
7646      AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
7647      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
7648
7649  // No valid opcode, do not combine.
7650  if (!HasFMAD && !HasFMA)
7651    return SDValue();
7652
7653  // Always prefer FMAD to FMA for precision.
7654  unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
7655  bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
7656  bool LookThroughFPExt = TLI.isFPExtFree(VT);
7657
7658  // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
7659  // prefer to fold the multiply with fewer uses.
7660  if (Aggressive && N0.getOpcode() == ISD::FMUL &&
7661      N1.getOpcode() == ISD::FMUL) {
7662    if (N0.getNode()->use_size() > N1.getNode()->use_size())
7663      std::swap(N0, N1);
7664  }
7665
7666  // fold (fadd (fmul x, y), z) -> (fma x, y, z)
7667  if (N0.getOpcode() == ISD::FMUL &&
7668      (Aggressive || N0->hasOneUse())) {
7669    return DAG.getNode(PreferredFusedOpcode, SL, VT,
7670                       N0.getOperand(0), N0.getOperand(1), N1);
7671  }
7672
7673  // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
7674  // Note: Commutes FADD operands.
7675  if (N1.getOpcode() == ISD::FMUL &&
7676      (Aggressive || N1->hasOneUse())) {
7677    return DAG.getNode(PreferredFusedOpcode, SL, VT,
7678                       N1.getOperand(0), N1.getOperand(1), N0);
7679  }
7680
7681  // Look through FP_EXTEND nodes to do more combining.
7682  if (AllowFusion && LookThroughFPExt) {
7683    // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
7684    if (N0.getOpcode() == ISD::FP_EXTEND) {
7685      SDValue N00 = N0.getOperand(0);
7686      if (N00.getOpcode() == ISD::FMUL)
7687        return DAG.getNode(PreferredFusedOpcode, SL, VT,
7688                           DAG.getNode(ISD::FP_EXTEND, SL, VT,
7689                                       N00.getOperand(0)),
7690                           DAG.getNode(ISD::FP_EXTEND, SL, VT,
7691                                       N00.getOperand(1)), N1);
7692    }
7693
7694    // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
7695    // Note: Commutes FADD operands.
7696    if (N1.getOpcode() == ISD::FP_EXTEND) {
7697      SDValue N10 = N1.getOperand(0);
7698      if (N10.getOpcode() == ISD::FMUL)
7699        return DAG.getNode(PreferredFusedOpcode, SL, VT,
7700                           DAG.getNode(ISD::FP_EXTEND, SL, VT,
7701                                       N10.getOperand(0)),
7702                           DAG.getNode(ISD::FP_EXTEND, SL, VT,
7703                                       N10.getOperand(1)), N0);
7704    }
7705  }
7706
7707  // More folding opportunities when target permits.
7708  if ((AllowFusion || HasFMAD)  && Aggressive) {
7709    // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y (fma u, v, z))
7710    if (N0.getOpcode() == PreferredFusedOpcode &&
7711        N0.getOperand(2).getOpcode() == ISD::FMUL) {
7712      return DAG.getNode(PreferredFusedOpcode, SL, VT,
7713                         N0.getOperand(0), N0.getOperand(1),
7714                         DAG.getNode(PreferredFusedOpcode, SL, VT,
7715                                     N0.getOperand(2).getOperand(0),
7716                                     N0.getOperand(2).getOperand(1),
7717                                     N1));
7718    }
7719
7720    // fold (fadd x, (fma y, z, (fmul u, v)) -> (fma y, z (fma u, v, x))
7721    if (N1->getOpcode() == PreferredFusedOpcode &&
7722        N1.getOperand(2).getOpcode() == ISD::FMUL) {
7723      return DAG.getNode(PreferredFusedOpcode, SL, VT,
7724                         N1.getOperand(0), N1.getOperand(1),
7725                         DAG.getNode(PreferredFusedOpcode, SL, VT,
7726                                     N1.getOperand(2).getOperand(0),
7727                                     N1.getOperand(2).getOperand(1),
7728                                     N0));
7729    }
7730
7731    if (AllowFusion && LookThroughFPExt) {
7732      // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
7733      //   -> (fma x, y, (fma (fpext u), (fpext v), z))
7734      auto FoldFAddFMAFPExtFMul = [&] (
7735          SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) {
7736        return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
7737                           DAG.getNode(PreferredFusedOpcode, SL, VT,
7738                                       DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
7739                                       DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
7740                                       Z));
7741      };
7742      if (N0.getOpcode() == PreferredFusedOpcode) {
7743        SDValue N02 = N0.getOperand(2);
7744        if (N02.getOpcode() == ISD::FP_EXTEND) {
7745          SDValue N020 = N02.getOperand(0);
7746          if (N020.getOpcode() == ISD::FMUL)
7747            return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
7748                                        N020.getOperand(0), N020.getOperand(1),
7749                                        N1);
7750        }
7751      }
7752
7753      // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
7754      //   -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
7755      // FIXME: This turns two single-precision and one double-precision
7756      // operation into two double-precision operations, which might not be
7757      // interesting for all targets, especially GPUs.
7758      auto FoldFAddFPExtFMAFMul = [&] (
7759          SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) {
7760        return DAG.getNode(PreferredFusedOpcode, SL, VT,
7761                           DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
7762                           DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
7763                           DAG.getNode(PreferredFusedOpcode, SL, VT,
7764                                       DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
7765                                       DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
7766                                       Z));
7767      };
7768      if (N0.getOpcode() == ISD::FP_EXTEND) {
7769        SDValue N00 = N0.getOperand(0);
7770        if (N00.getOpcode() == PreferredFusedOpcode) {
7771          SDValue N002 = N00.getOperand(2);
7772          if (N002.getOpcode() == ISD::FMUL)
7773            return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
7774                                        N002.getOperand(0), N002.getOperand(1),
7775                                        N1);
7776        }
7777      }
7778
7779      // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
7780      //   -> (fma y, z, (fma (fpext u), (fpext v), x))
7781      if (N1.getOpcode() == PreferredFusedOpcode) {
7782        SDValue N12 = N1.getOperand(2);
7783        if (N12.getOpcode() == ISD::FP_EXTEND) {
7784          SDValue N120 = N12.getOperand(0);
7785          if (N120.getOpcode() == ISD::FMUL)
7786            return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
7787                                        N120.getOperand(0), N120.getOperand(1),
7788                                        N0);
7789        }
7790      }
7791
7792      // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
7793      //   -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
7794      // FIXME: This turns two single-precision and one double-precision
7795      // operation into two double-precision operations, which might not be
7796      // interesting for all targets, especially GPUs.
7797      if (N1.getOpcode() == ISD::FP_EXTEND) {
7798        SDValue N10 = N1.getOperand(0);
7799        if (N10.getOpcode() == PreferredFusedOpcode) {
7800          SDValue N102 = N10.getOperand(2);
7801          if (N102.getOpcode() == ISD::FMUL)
7802            return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
7803                                        N102.getOperand(0), N102.getOperand(1),
7804                                        N0);
7805        }
7806      }
7807    }
7808  }
7809
7810  return SDValue();
7811}
7812
7813/// Try to perform FMA combining on a given FSUB node.
7814SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
7815  SDValue N0 = N->getOperand(0);
7816  SDValue N1 = N->getOperand(1);
7817  EVT VT = N->getValueType(0);
7818  SDLoc SL(N);
7819
7820  const TargetOptions &Options = DAG.getTarget().Options;
7821  bool AllowFusion =
7822      (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
7823
7824  // Floating-point multiply-add with intermediate rounding.
7825  bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
7826
7827  // Floating-point multiply-add without intermediate rounding.
7828  bool HasFMA =
7829      AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
7830      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
7831
7832  // No valid opcode, do not combine.
7833  if (!HasFMAD && !HasFMA)
7834    return SDValue();
7835
7836  // Always prefer FMAD to FMA for precision.
7837  unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
7838  bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
7839  bool LookThroughFPExt = TLI.isFPExtFree(VT);
7840
7841  // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
7842  if (N0.getOpcode() == ISD::FMUL &&
7843      (Aggressive || N0->hasOneUse())) {
7844    return DAG.getNode(PreferredFusedOpcode, SL, VT,
7845                       N0.getOperand(0), N0.getOperand(1),
7846                       DAG.getNode(ISD::FNEG, SL, VT, N1));
7847  }
7848
7849  // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
7850  // Note: Commutes FSUB operands.
7851  if (N1.getOpcode() == ISD::FMUL &&
7852      (Aggressive || N1->hasOneUse()))
7853    return DAG.getNode(PreferredFusedOpcode, SL, VT,
7854                       DAG.getNode(ISD::FNEG, SL, VT,
7855                                   N1.getOperand(0)),
7856                       N1.getOperand(1), N0);
7857
7858  // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
7859  if (N0.getOpcode() == ISD::FNEG &&
7860      N0.getOperand(0).getOpcode() == ISD::FMUL &&
7861      (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
7862    SDValue N00 = N0.getOperand(0).getOperand(0);
7863    SDValue N01 = N0.getOperand(0).getOperand(1);
7864    return DAG.getNode(PreferredFusedOpcode, SL, VT,
7865                       DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
7866                       DAG.getNode(ISD::FNEG, SL, VT, N1));
7867  }
7868
7869  // Look through FP_EXTEND nodes to do more combining.
7870  if (AllowFusion && LookThroughFPExt) {
7871    // fold (fsub (fpext (fmul x, y)), z)
7872    //   -> (fma (fpext x), (fpext y), (fneg z))
7873    if (N0.getOpcode() == ISD::FP_EXTEND) {
7874      SDValue N00 = N0.getOperand(0);
7875      if (N00.getOpcode() == ISD::FMUL)
7876        return DAG.getNode(PreferredFusedOpcode, SL, VT,
7877                           DAG.getNode(ISD::FP_EXTEND, SL, VT,
7878                                       N00.getOperand(0)),
7879                           DAG.getNode(ISD::FP_EXTEND, SL, VT,
7880                                       N00.getOperand(1)),
7881                           DAG.getNode(ISD::FNEG, SL, VT, N1));
7882    }
7883
7884    // fold (fsub x, (fpext (fmul y, z)))
7885    //   -> (fma (fneg (fpext y)), (fpext z), x)
7886    // Note: Commutes FSUB operands.
7887    if (N1.getOpcode() == ISD::FP_EXTEND) {
7888      SDValue N10 = N1.getOperand(0);
7889      if (N10.getOpcode() == ISD::FMUL)
7890        return DAG.getNode(PreferredFusedOpcode, SL, VT,
7891                           DAG.getNode(ISD::FNEG, SL, VT,
7892                                       DAG.getNode(ISD::FP_EXTEND, SL, VT,
7893                                                   N10.getOperand(0))),
7894                           DAG.getNode(ISD::FP_EXTEND, SL, VT,
7895                                       N10.getOperand(1)),
7896                           N0);
7897    }
7898
7899    // fold (fsub (fpext (fneg (fmul, x, y))), z)
7900    //   -> (fneg (fma (fpext x), (fpext y), z))
7901    // Note: This could be removed with appropriate canonicalization of the
7902    // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
7903    // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
7904    // from implementing the canonicalization in visitFSUB.
7905    if (N0.getOpcode() == ISD::FP_EXTEND) {
7906      SDValue N00 = N0.getOperand(0);
7907      if (N00.getOpcode() == ISD::FNEG) {
7908        SDValue N000 = N00.getOperand(0);
7909        if (N000.getOpcode() == ISD::FMUL) {
7910          return DAG.getNode(ISD::FNEG, SL, VT,
7911                             DAG.getNode(PreferredFusedOpcode, SL, VT,
7912                                         DAG.getNode(ISD::FP_EXTEND, SL, VT,
7913                                                     N000.getOperand(0)),
7914                                         DAG.getNode(ISD::FP_EXTEND, SL, VT,
7915                                                     N000.getOperand(1)),
7916                                         N1));
7917        }
7918      }
7919    }
7920
7921    // fold (fsub (fneg (fpext (fmul, x, y))), z)
7922    //   -> (fneg (fma (fpext x)), (fpext y), z)
7923    // Note: This could be removed with appropriate canonicalization of the
7924    // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
7925    // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
7926    // from implementing the canonicalization in visitFSUB.
7927    if (N0.getOpcode() == ISD::FNEG) {
7928      SDValue N00 = N0.getOperand(0);
7929      if (N00.getOpcode() == ISD::FP_EXTEND) {
7930        SDValue N000 = N00.getOperand(0);
7931        if (N000.getOpcode() == ISD::FMUL) {
7932          return DAG.getNode(ISD::FNEG, SL, VT,
7933                             DAG.getNode(PreferredFusedOpcode, SL, VT,
7934                                         DAG.getNode(ISD::FP_EXTEND, SL, VT,
7935                                                     N000.getOperand(0)),
7936                                         DAG.getNode(ISD::FP_EXTEND, SL, VT,
7937                                                     N000.getOperand(1)),
7938                                         N1));
7939        }
7940      }
7941    }
7942
7943  }
7944
7945  // More folding opportunities when target permits.
7946  if ((AllowFusion || HasFMAD) && Aggressive) {
7947    // fold (fsub (fma x, y, (fmul u, v)), z)
7948    //   -> (fma x, y (fma u, v, (fneg z)))
7949    if (N0.getOpcode() == PreferredFusedOpcode &&
7950        N0.getOperand(2).getOpcode() == ISD::FMUL) {
7951      return DAG.getNode(PreferredFusedOpcode, SL, VT,
7952                         N0.getOperand(0), N0.getOperand(1),
7953                         DAG.getNode(PreferredFusedOpcode, SL, VT,
7954                                     N0.getOperand(2).getOperand(0),
7955                                     N0.getOperand(2).getOperand(1),
7956                                     DAG.getNode(ISD::FNEG, SL, VT,
7957                                                 N1)));
7958    }
7959
7960    // fold (fsub x, (fma y, z, (fmul u, v)))
7961    //   -> (fma (fneg y), z, (fma (fneg u), v, x))
7962    if (N1.getOpcode() == PreferredFusedOpcode &&
7963        N1.getOperand(2).getOpcode() == ISD::FMUL) {
7964      SDValue N20 = N1.getOperand(2).getOperand(0);
7965      SDValue N21 = N1.getOperand(2).getOperand(1);
7966      return DAG.getNode(PreferredFusedOpcode, SL, VT,
7967                         DAG.getNode(ISD::FNEG, SL, VT,
7968                                     N1.getOperand(0)),
7969                         N1.getOperand(1),
7970                         DAG.getNode(PreferredFusedOpcode, SL, VT,
7971                                     DAG.getNode(ISD::FNEG, SL, VT, N20),
7972
7973                                     N21, N0));
7974    }
7975
7976    if (AllowFusion && LookThroughFPExt) {
7977      // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
7978      //   -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
7979      if (N0.getOpcode() == PreferredFusedOpcode) {
7980        SDValue N02 = N0.getOperand(2);
7981        if (N02.getOpcode() == ISD::FP_EXTEND) {
7982          SDValue N020 = N02.getOperand(0);
7983          if (N020.getOpcode() == ISD::FMUL)
7984            return DAG.getNode(PreferredFusedOpcode, SL, VT,
7985                               N0.getOperand(0), N0.getOperand(1),
7986                               DAG.getNode(PreferredFusedOpcode, SL, VT,
7987                                           DAG.getNode(ISD::FP_EXTEND, SL, VT,
7988                                                       N020.getOperand(0)),
7989                                           DAG.getNode(ISD::FP_EXTEND, SL, VT,
7990                                                       N020.getOperand(1)),
7991                                           DAG.getNode(ISD::FNEG, SL, VT,
7992                                                       N1)));
7993        }
7994      }
7995
7996      // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
7997      //   -> (fma (fpext x), (fpext y),
7998      //           (fma (fpext u), (fpext v), (fneg z)))
7999      // FIXME: This turns two single-precision and one double-precision
8000      // operation into two double-precision operations, which might not be
8001      // interesting for all targets, especially GPUs.
8002      if (N0.getOpcode() == ISD::FP_EXTEND) {
8003        SDValue N00 = N0.getOperand(0);
8004        if (N00.getOpcode() == PreferredFusedOpcode) {
8005          SDValue N002 = N00.getOperand(2);
8006          if (N002.getOpcode() == ISD::FMUL)
8007            return DAG.getNode(PreferredFusedOpcode, SL, VT,
8008                               DAG.getNode(ISD::FP_EXTEND, SL, VT,
8009                                           N00.getOperand(0)),
8010                               DAG.getNode(ISD::FP_EXTEND, SL, VT,
8011                                           N00.getOperand(1)),
8012                               DAG.getNode(PreferredFusedOpcode, SL, VT,
8013                                           DAG.getNode(ISD::FP_EXTEND, SL, VT,
8014                                                       N002.getOperand(0)),
8015                                           DAG.getNode(ISD::FP_EXTEND, SL, VT,
8016                                                       N002.getOperand(1)),
8017                                           DAG.getNode(ISD::FNEG, SL, VT,
8018                                                       N1)));
8019        }
8020      }
8021
8022      // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
8023      //   -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
8024      if (N1.getOpcode() == PreferredFusedOpcode &&
8025        N1.getOperand(2).getOpcode() == ISD::FP_EXTEND) {
8026        SDValue N120 = N1.getOperand(2).getOperand(0);
8027        if (N120.getOpcode() == ISD::FMUL) {
8028          SDValue N1200 = N120.getOperand(0);
8029          SDValue N1201 = N120.getOperand(1);
8030          return DAG.getNode(PreferredFusedOpcode, SL, VT,
8031                             DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
8032                             N1.getOperand(1),
8033                             DAG.getNode(PreferredFusedOpcode, SL, VT,
8034                                         DAG.getNode(ISD::FNEG, SL, VT,
8035                                             DAG.getNode(ISD::FP_EXTEND, SL,
8036                                                         VT, N1200)),
8037                                         DAG.getNode(ISD::FP_EXTEND, SL, VT,
8038                                                     N1201),
8039                                         N0));
8040        }
8041      }
8042
8043      // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
8044      //   -> (fma (fneg (fpext y)), (fpext z),
8045      //           (fma (fneg (fpext u)), (fpext v), x))
8046      // FIXME: This turns two single-precision and one double-precision
8047      // operation into two double-precision operations, which might not be
8048      // interesting for all targets, especially GPUs.
8049      if (N1.getOpcode() == ISD::FP_EXTEND &&
8050        N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
8051        SDValue N100 = N1.getOperand(0).getOperand(0);
8052        SDValue N101 = N1.getOperand(0).getOperand(1);
8053        SDValue N102 = N1.getOperand(0).getOperand(2);
8054        if (N102.getOpcode() == ISD::FMUL) {
8055          SDValue N1020 = N102.getOperand(0);
8056          SDValue N1021 = N102.getOperand(1);
8057          return DAG.getNode(PreferredFusedOpcode, SL, VT,
8058                             DAG.getNode(ISD::FNEG, SL, VT,
8059                                         DAG.getNode(ISD::FP_EXTEND, SL, VT,
8060                                                     N100)),
8061                             DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
8062                             DAG.getNode(PreferredFusedOpcode, SL, VT,
8063                                         DAG.getNode(ISD::FNEG, SL, VT,
8064                                             DAG.getNode(ISD::FP_EXTEND, SL,
8065                                                         VT, N1020)),
8066                                         DAG.getNode(ISD::FP_EXTEND, SL, VT,
8067                                                     N1021),
8068                                         N0));
8069        }
8070      }
8071    }
8072  }
8073
8074  return SDValue();
8075}
8076
8077/// Try to perform FMA combining on a given FMUL node.
8078SDValue DAGCombiner::visitFMULForFMACombine(SDNode *N) {
8079  SDValue N0 = N->getOperand(0);
8080  SDValue N1 = N->getOperand(1);
8081  EVT VT = N->getValueType(0);
8082  SDLoc SL(N);
8083
8084  assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
8085
8086  const TargetOptions &Options = DAG.getTarget().Options;
8087  bool AllowFusion =
8088      (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
8089
8090  // Floating-point multiply-add with intermediate rounding.
8091  bool HasFMAD = (LegalOperations && TLI.isOperationLegal(ISD::FMAD, VT));
8092
8093  // Floating-point multiply-add without intermediate rounding.
8094  bool HasFMA =
8095      AllowFusion && TLI.isFMAFasterThanFMulAndFAdd(VT) &&
8096      (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
8097
8098  // No valid opcode, do not combine.
8099  if (!HasFMAD && !HasFMA)
8100    return SDValue();
8101
8102  // Always prefer FMAD to FMA for precision.
8103  unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
8104  bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
8105
8106  // fold (fmul (fadd x, +1.0), y) -> (fma x, y, y)
8107  // fold (fmul (fadd x, -1.0), y) -> (fma x, y, (fneg y))
8108  auto FuseFADD = [&](SDValue X, SDValue Y) {
8109    if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
8110      auto XC1 = isConstOrConstSplatFP(X.getOperand(1));
8111      if (XC1 && XC1->isExactlyValue(+1.0))
8112        return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y);
8113      if (XC1 && XC1->isExactlyValue(-1.0))
8114        return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
8115                           DAG.getNode(ISD::FNEG, SL, VT, Y));
8116    }
8117    return SDValue();
8118  };
8119
8120  if (SDValue FMA = FuseFADD(N0, N1))
8121    return FMA;
8122  if (SDValue FMA = FuseFADD(N1, N0))
8123    return FMA;
8124
8125  // fold (fmul (fsub +1.0, x), y) -> (fma (fneg x), y, y)
8126  // fold (fmul (fsub -1.0, x), y) -> (fma (fneg x), y, (fneg y))
8127  // fold (fmul (fsub x, +1.0), y) -> (fma x, y, (fneg y))
8128  // fold (fmul (fsub x, -1.0), y) -> (fma x, y, y)
8129  auto FuseFSUB = [&](SDValue X, SDValue Y) {
8130    if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
8131      auto XC0 = isConstOrConstSplatFP(X.getOperand(0));
8132      if (XC0 && XC0->isExactlyValue(+1.0))
8133        return DAG.getNode(PreferredFusedOpcode, SL, VT,
8134                           DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
8135                           Y);
8136      if (XC0 && XC0->isExactlyValue(-1.0))
8137        return DAG.getNode(PreferredFusedOpcode, SL, VT,
8138                           DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
8139                           DAG.getNode(ISD::FNEG, SL, VT, Y));
8140
8141      auto XC1 = isConstOrConstSplatFP(X.getOperand(1));
8142      if (XC1 && XC1->isExactlyValue(+1.0))
8143        return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
8144                           DAG.getNode(ISD::FNEG, SL, VT, Y));
8145      if (XC1 && XC1->isExactlyValue(-1.0))
8146        return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y);
8147    }
8148    return SDValue();
8149  };
8150
8151  if (SDValue FMA = FuseFSUB(N0, N1))
8152    return FMA;
8153  if (SDValue FMA = FuseFSUB(N1, N0))
8154    return FMA;
8155
8156  return SDValue();
8157}
8158
8159SDValue DAGCombiner::visitFADD(SDNode *N) {
8160  SDValue N0 = N->getOperand(0);
8161  SDValue N1 = N->getOperand(1);
8162  bool N0CFP = isConstantFPBuildVectorOrConstantFP(N0);
8163  bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
8164  EVT VT = N->getValueType(0);
8165  SDLoc DL(N);
8166  const TargetOptions &Options = DAG.getTarget().Options;
8167  const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
8168
8169  // fold vector ops
8170  if (VT.isVector())
8171    if (SDValue FoldedVOp = SimplifyVBinOp(N))
8172      return FoldedVOp;
8173
8174  // fold (fadd c1, c2) -> c1 + c2
8175  if (N0CFP && N1CFP)
8176    return DAG.getNode(ISD::FADD, DL, VT, N0, N1, Flags);
8177
8178  // canonicalize constant to RHS
8179  if (N0CFP && !N1CFP)
8180    return DAG.getNode(ISD::FADD, DL, VT, N1, N0, Flags);
8181
8182  // fold (fadd A, (fneg B)) -> (fsub A, B)
8183  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
8184      isNegatibleForFree(N1, LegalOperations, TLI, &Options) == 2)
8185    return DAG.getNode(ISD::FSUB, DL, VT, N0,
8186                       GetNegatedExpression(N1, DAG, LegalOperations), Flags);
8187
8188  // fold (fadd (fneg A), B) -> (fsub B, A)
8189  if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) &&
8190      isNegatibleForFree(N0, LegalOperations, TLI, &Options) == 2)
8191    return DAG.getNode(ISD::FSUB, DL, VT, N1,
8192                       GetNegatedExpression(N0, DAG, LegalOperations), Flags);
8193
8194  // If 'unsafe math' is enabled, fold lots of things.
8195  if (Options.UnsafeFPMath) {
8196    // No FP constant should be created after legalization as Instruction
8197    // Selection pass has a hard time dealing with FP constants.
8198    bool AllowNewConst = (Level < AfterLegalizeDAG);
8199
8200    // fold (fadd A, 0) -> A
8201    if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1))
8202      if (N1C->isZero())
8203        return N0;
8204
8205    // fold (fadd (fadd x, c1), c2) -> (fadd x, (fadd c1, c2))
8206    if (N1CFP && N0.getOpcode() == ISD::FADD && N0.getNode()->hasOneUse() &&
8207        isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)))
8208      return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0),
8209                         DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1,
8210                                     Flags),
8211                         Flags);
8212
8213    // If allowed, fold (fadd (fneg x), x) -> 0.0
8214    if (AllowNewConst && N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
8215      return DAG.getConstantFP(0.0, DL, VT);
8216
8217    // If allowed, fold (fadd x, (fneg x)) -> 0.0
8218    if (AllowNewConst && N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
8219      return DAG.getConstantFP(0.0, DL, VT);
8220
8221    // We can fold chains of FADD's of the same value into multiplications.
8222    // This transform is not safe in general because we are reducing the number
8223    // of rounding steps.
8224    if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
8225      if (N0.getOpcode() == ISD::FMUL) {
8226        bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
8227        bool CFP01 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
8228
8229        // (fadd (fmul x, c), x) -> (fmul x, c+1)
8230        if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
8231          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
8232                                       DAG.getConstantFP(1.0, DL, VT), Flags);
8233          return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP, Flags);
8234        }
8235
8236        // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
8237        if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
8238            N1.getOperand(0) == N1.getOperand(1) &&
8239            N0.getOperand(0) == N1.getOperand(0)) {
8240          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
8241                                       DAG.getConstantFP(2.0, DL, VT), Flags);
8242          return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP, Flags);
8243        }
8244      }
8245
8246      if (N1.getOpcode() == ISD::FMUL) {
8247        bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
8248        bool CFP11 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
8249
8250        // (fadd x, (fmul x, c)) -> (fmul x, c+1)
8251        if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
8252          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
8253                                       DAG.getConstantFP(1.0, DL, VT), Flags);
8254          return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP, Flags);
8255        }
8256
8257        // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
8258        if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
8259            N0.getOperand(0) == N0.getOperand(1) &&
8260            N1.getOperand(0) == N0.getOperand(0)) {
8261          SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
8262                                       DAG.getConstantFP(2.0, DL, VT), Flags);
8263          return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP, Flags);
8264        }
8265      }
8266
8267      if (N0.getOpcode() == ISD::FADD && AllowNewConst) {
8268        bool CFP00 = isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
8269        // (fadd (fadd x, x), x) -> (fmul x, 3.0)
8270        if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
8271            (N0.getOperand(0) == N1)) {
8272          return DAG.getNode(ISD::FMUL, DL, VT,
8273                             N1, DAG.getConstantFP(3.0, DL, VT), Flags);
8274        }
8275      }
8276
8277      if (N1.getOpcode() == ISD::FADD && AllowNewConst) {
8278        bool CFP10 = isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
8279        // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
8280        if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
8281            N1.getOperand(0) == N0) {
8282          return DAG.getNode(ISD::FMUL, DL, VT,
8283                             N0, DAG.getConstantFP(3.0, DL, VT), Flags);
8284        }
8285      }
8286
8287      // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
8288      if (AllowNewConst &&
8289          N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
8290          N0.getOperand(0) == N0.getOperand(1) &&
8291          N1.getOperand(0) == N1.getOperand(1) &&
8292          N0.getOperand(0) == N1.getOperand(0)) {
8293        return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
8294                           DAG.getConstantFP(4.0, DL, VT), Flags);
8295      }
8296    }
8297  } // enable-unsafe-fp-math
8298
8299  // FADD -> FMA combines:
8300  if (SDValue Fused = visitFADDForFMACombine(N)) {
8301    AddToWorklist(Fused.getNode());
8302    return Fused;
8303  }
8304
8305  return SDValue();
8306}
8307
8308SDValue DAGCombiner::visitFSUB(SDNode *N) {
8309  SDValue N0 = N->getOperand(0);
8310  SDValue N1 = N->getOperand(1);
8311  ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
8312  ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
8313  EVT VT = N->getValueType(0);
8314  SDLoc dl(N);
8315  const TargetOptions &Options = DAG.getTarget().Options;
8316  const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
8317
8318  // fold vector ops
8319  if (VT.isVector())
8320    if (SDValue FoldedVOp = SimplifyVBinOp(N))
8321      return FoldedVOp;
8322
8323  // fold (fsub c1, c2) -> c1-c2
8324  if (N0CFP && N1CFP)
8325    return DAG.getNode(ISD::FSUB, dl, VT, N0, N1, Flags);
8326
8327  // fold (fsub A, (fneg B)) -> (fadd A, B)
8328  if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
8329    return DAG.getNode(ISD::FADD, dl, VT, N0,
8330                       GetNegatedExpression(N1, DAG, LegalOperations), Flags);
8331
8332  // If 'unsafe math' is enabled, fold lots of things.
8333  if (Options.UnsafeFPMath) {
8334    // (fsub A, 0) -> A
8335    if (N1CFP && N1CFP->isZero())
8336      return N0;
8337
8338    // (fsub 0, B) -> -B
8339    if (N0CFP && N0CFP->isZero()) {
8340      if (isNegatibleForFree(N1, LegalOperations, TLI, &Options))
8341        return GetNegatedExpression(N1, DAG, LegalOperations);
8342      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
8343        return DAG.getNode(ISD::FNEG, dl, VT, N1);
8344    }
8345
8346    // (fsub x, x) -> 0.0
8347    if (N0 == N1)
8348      return DAG.getConstantFP(0.0f, dl, VT);
8349
8350    // (fsub x, (fadd x, y)) -> (fneg y)
8351    // (fsub x, (fadd y, x)) -> (fneg y)
8352    if (N1.getOpcode() == ISD::FADD) {
8353      SDValue N10 = N1->getOperand(0);
8354      SDValue N11 = N1->getOperand(1);
8355
8356      if (N10 == N0 && isNegatibleForFree(N11, LegalOperations, TLI, &Options))
8357        return GetNegatedExpression(N11, DAG, LegalOperations);
8358
8359      if (N11 == N0 && isNegatibleForFree(N10, LegalOperations, TLI, &Options))
8360        return GetNegatedExpression(N10, DAG, LegalOperations);
8361    }
8362  }
8363
8364  // FSUB -> FMA combines:
8365  if (SDValue Fused = visitFSUBForFMACombine(N)) {
8366    AddToWorklist(Fused.getNode());
8367    return Fused;
8368  }
8369
8370  return SDValue();
8371}
8372
8373SDValue DAGCombiner::visitFMUL(SDNode *N) {
8374  SDValue N0 = N->getOperand(0);
8375  SDValue N1 = N->getOperand(1);
8376  ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
8377  ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
8378  EVT VT = N->getValueType(0);
8379  SDLoc DL(N);
8380  const TargetOptions &Options = DAG.getTarget().Options;
8381  const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
8382
8383  // fold vector ops
8384  if (VT.isVector()) {
8385    // This just handles C1 * C2 for vectors. Other vector folds are below.
8386    if (SDValue FoldedVOp = SimplifyVBinOp(N))
8387      return FoldedVOp;
8388  }
8389
8390  // fold (fmul c1, c2) -> c1*c2
8391  if (N0CFP && N1CFP)
8392    return DAG.getNode(ISD::FMUL, DL, VT, N0, N1, Flags);
8393
8394  // canonicalize constant to RHS
8395  if (isConstantFPBuildVectorOrConstantFP(N0) &&
8396     !isConstantFPBuildVectorOrConstantFP(N1))
8397    return DAG.getNode(ISD::FMUL, DL, VT, N1, N0, Flags);
8398
8399  // fold (fmul A, 1.0) -> A
8400  if (N1CFP && N1CFP->isExactlyValue(1.0))
8401    return N0;
8402
8403  if (Options.UnsafeFPMath) {
8404    // fold (fmul A, 0) -> 0
8405    if (N1CFP && N1CFP->isZero())
8406      return N1;
8407
8408    // fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
8409    if (N0.getOpcode() == ISD::FMUL) {
8410      // Fold scalars or any vector constants (not just splats).
8411      // This fold is done in general by InstCombine, but extra fmul insts
8412      // may have been generated during lowering.
8413      SDValue N00 = N0.getOperand(0);
8414      SDValue N01 = N0.getOperand(1);
8415      auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
8416      auto *BV00 = dyn_cast<BuildVectorSDNode>(N00);
8417      auto *BV01 = dyn_cast<BuildVectorSDNode>(N01);
8418
8419      // Check 1: Make sure that the first operand of the inner multiply is NOT
8420      // a constant. Otherwise, we may induce infinite looping.
8421      if (!(isConstOrConstSplatFP(N00) || (BV00 && BV00->isConstant()))) {
8422        // Check 2: Make sure that the second operand of the inner multiply and
8423        // the second operand of the outer multiply are constants.
8424        if ((N1CFP && isConstOrConstSplatFP(N01)) ||
8425            (BV1 && BV01 && BV1->isConstant() && BV01->isConstant())) {
8426          SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1, Flags);
8427          return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts, Flags);
8428        }
8429      }
8430    }
8431
8432    // fold (fmul (fadd x, x), c) -> (fmul x, (fmul 2.0, c))
8433    // Undo the fmul 2.0, x -> fadd x, x transformation, since if it occurs
8434    // during an early run of DAGCombiner can prevent folding with fmuls
8435    // inserted during lowering.
8436    if (N0.getOpcode() == ISD::FADD &&
8437        (N0.getOperand(0) == N0.getOperand(1)) &&
8438        N0.hasOneUse()) {
8439      const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
8440      SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1, Flags);
8441      return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts, Flags);
8442    }
8443  }
8444
8445  // fold (fmul X, 2.0) -> (fadd X, X)
8446  if (N1CFP && N1CFP->isExactlyValue(+2.0))
8447    return DAG.getNode(ISD::FADD, DL, VT, N0, N0, Flags);
8448
8449  // fold (fmul X, -1.0) -> (fneg X)
8450  if (N1CFP && N1CFP->isExactlyValue(-1.0))
8451    if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
8452      return DAG.getNode(ISD::FNEG, DL, VT, N0);
8453
8454  // fold (fmul (fneg X), (fneg Y)) -> (fmul X, Y)
8455  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
8456    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
8457      // Both can be negated for free, check to see if at least one is cheaper
8458      // negated.
8459      if (LHSNeg == 2 || RHSNeg == 2)
8460        return DAG.getNode(ISD::FMUL, DL, VT,
8461                           GetNegatedExpression(N0, DAG, LegalOperations),
8462                           GetNegatedExpression(N1, DAG, LegalOperations),
8463                           Flags);
8464    }
8465  }
8466
8467  // FMUL -> FMA combines:
8468  if (SDValue Fused = visitFMULForFMACombine(N)) {
8469    AddToWorklist(Fused.getNode());
8470    return Fused;
8471  }
8472
8473  return SDValue();
8474}
8475
8476SDValue DAGCombiner::visitFMA(SDNode *N) {
8477  SDValue N0 = N->getOperand(0);
8478  SDValue N1 = N->getOperand(1);
8479  SDValue N2 = N->getOperand(2);
8480  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
8481  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
8482  EVT VT = N->getValueType(0);
8483  SDLoc dl(N);
8484  const TargetOptions &Options = DAG.getTarget().Options;
8485
8486  // Constant fold FMA.
8487  if (isa<ConstantFPSDNode>(N0) &&
8488      isa<ConstantFPSDNode>(N1) &&
8489      isa<ConstantFPSDNode>(N2)) {
8490    return DAG.getNode(ISD::FMA, dl, VT, N0, N1, N2);
8491  }
8492
8493  if (Options.UnsafeFPMath) {
8494    if (N0CFP && N0CFP->isZero())
8495      return N2;
8496    if (N1CFP && N1CFP->isZero())
8497      return N2;
8498  }
8499  // TODO: The FMA node should have flags that propagate to these nodes.
8500  if (N0CFP && N0CFP->isExactlyValue(1.0))
8501    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
8502  if (N1CFP && N1CFP->isExactlyValue(1.0))
8503    return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
8504
8505  // Canonicalize (fma c, x, y) -> (fma x, c, y)
8506  if (isConstantFPBuildVectorOrConstantFP(N0) &&
8507     !isConstantFPBuildVectorOrConstantFP(N1))
8508    return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
8509
8510  // TODO: FMA nodes should have flags that propagate to the created nodes.
8511  // For now, create a Flags object for use with all unsafe math transforms.
8512  SDNodeFlags Flags;
8513  Flags.setUnsafeAlgebra(true);
8514
8515  if (Options.UnsafeFPMath) {
8516    // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
8517    if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
8518        isConstantFPBuildVectorOrConstantFP(N1) &&
8519        isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
8520      return DAG.getNode(ISD::FMUL, dl, VT, N0,
8521                         DAG.getNode(ISD::FADD, dl, VT, N1, N2.getOperand(1),
8522                                     &Flags), &Flags);
8523    }
8524
8525    // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
8526    if (N0.getOpcode() == ISD::FMUL &&
8527        isConstantFPBuildVectorOrConstantFP(N1) &&
8528        isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
8529      return DAG.getNode(ISD::FMA, dl, VT,
8530                         N0.getOperand(0),
8531                         DAG.getNode(ISD::FMUL, dl, VT, N1, N0.getOperand(1),
8532                                     &Flags),
8533                         N2);
8534    }
8535  }
8536
8537  // (fma x, 1, y) -> (fadd x, y)
8538  // (fma x, -1, y) -> (fadd (fneg x), y)
8539  if (N1CFP) {
8540    if (N1CFP->isExactlyValue(1.0))
8541      // TODO: The FMA node should have flags that propagate to this node.
8542      return DAG.getNode(ISD::FADD, dl, VT, N0, N2);
8543
8544    if (N1CFP->isExactlyValue(-1.0) &&
8545        (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
8546      SDValue RHSNeg = DAG.getNode(ISD::FNEG, dl, VT, N0);
8547      AddToWorklist(RHSNeg.getNode());
8548      // TODO: The FMA node should have flags that propagate to this node.
8549      return DAG.getNode(ISD::FADD, dl, VT, N2, RHSNeg);
8550    }
8551  }
8552
8553  if (Options.UnsafeFPMath) {
8554    // (fma x, c, x) -> (fmul x, (c+1))
8555    if (N1CFP && N0 == N2) {
8556    return DAG.getNode(ISD::FMUL, dl, VT, N0,
8557                         DAG.getNode(ISD::FADD, dl, VT,
8558                                     N1, DAG.getConstantFP(1.0, dl, VT),
8559                                     &Flags), &Flags);
8560    }
8561
8562    // (fma x, c, (fneg x)) -> (fmul x, (c-1))
8563    if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
8564      return DAG.getNode(ISD::FMUL, dl, VT, N0,
8565                         DAG.getNode(ISD::FADD, dl, VT,
8566                                     N1, DAG.getConstantFP(-1.0, dl, VT),
8567                                     &Flags), &Flags);
8568    }
8569  }
8570
8571  return SDValue();
8572}
8573
8574// Combine multiple FDIVs with the same divisor into multiple FMULs by the
8575// reciprocal.
8576// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
8577// Notice that this is not always beneficial. One reason is different target
8578// may have different costs for FDIV and FMUL, so sometimes the cost of two
8579// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
8580// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
8581SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
8582  bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
8583  const SDNodeFlags *Flags = N->getFlags();
8584  if (!UnsafeMath && !Flags->hasAllowReciprocal())
8585    return SDValue();
8586
8587  // Skip if current node is a reciprocal.
8588  SDValue N0 = N->getOperand(0);
8589  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
8590  if (N0CFP && N0CFP->isExactlyValue(1.0))
8591    return SDValue();
8592
8593  // Exit early if the target does not want this transform or if there can't
8594  // possibly be enough uses of the divisor to make the transform worthwhile.
8595  SDValue N1 = N->getOperand(1);
8596  unsigned MinUses = TLI.combineRepeatedFPDivisors();
8597  if (!MinUses || N1->use_size() < MinUses)
8598    return SDValue();
8599
8600  // Find all FDIV users of the same divisor.
8601  // Use a set because duplicates may be present in the user list.
8602  SetVector<SDNode *> Users;
8603  for (auto *U : N1->uses()) {
8604    if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
8605      // This division is eligible for optimization only if global unsafe math
8606      // is enabled or if this division allows reciprocal formation.
8607      if (UnsafeMath || U->getFlags()->hasAllowReciprocal())
8608        Users.insert(U);
8609    }
8610  }
8611
8612  // Now that we have the actual number of divisor uses, make sure it meets
8613  // the minimum threshold specified by the target.
8614  if (Users.size() < MinUses)
8615    return SDValue();
8616
8617  EVT VT = N->getValueType(0);
8618  SDLoc DL(N);
8619  SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
8620  SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
8621
8622  // Dividend / Divisor -> Dividend * Reciprocal
8623  for (auto *U : Users) {
8624    SDValue Dividend = U->getOperand(0);
8625    if (Dividend != FPOne) {
8626      SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
8627                                    Reciprocal, Flags);
8628      CombineTo(U, NewNode);
8629    } else if (U != Reciprocal.getNode()) {
8630      // In the absence of fast-math-flags, this user node is always the
8631      // same node as Reciprocal, but with FMF they may be different nodes.
8632      CombineTo(U, Reciprocal);
8633    }
8634  }
8635  return SDValue(N, 0);  // N was replaced.
8636}
8637
8638SDValue DAGCombiner::visitFDIV(SDNode *N) {
8639  SDValue N0 = N->getOperand(0);
8640  SDValue N1 = N->getOperand(1);
8641  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
8642  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
8643  EVT VT = N->getValueType(0);
8644  SDLoc DL(N);
8645  const TargetOptions &Options = DAG.getTarget().Options;
8646  SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(N)->Flags;
8647
8648  // fold vector ops
8649  if (VT.isVector())
8650    if (SDValue FoldedVOp = SimplifyVBinOp(N))
8651      return FoldedVOp;
8652
8653  // fold (fdiv c1, c2) -> c1/c2
8654  if (N0CFP && N1CFP)
8655    return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1, Flags);
8656
8657  if (Options.UnsafeFPMath) {
8658    // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
8659    if (N1CFP) {
8660      // Compute the reciprocal 1.0 / c2.
8661      APFloat N1APF = N1CFP->getValueAPF();
8662      APFloat Recip(N1APF.getSemantics(), 1); // 1.0
8663      APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
8664      // Only do the transform if the reciprocal is a legal fp immediate that
8665      // isn't too nasty (eg NaN, denormal, ...).
8666      if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
8667          (!LegalOperations ||
8668           // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
8669           // backend)... we should handle this gracefully after Legalize.
8670           // TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT) ||
8671           TLI.isOperationLegal(llvm::ISD::ConstantFP, VT) ||
8672           TLI.isFPImmLegal(Recip, VT)))
8673        return DAG.getNode(ISD::FMUL, DL, VT, N0,
8674                           DAG.getConstantFP(Recip, DL, VT), Flags);
8675    }
8676
8677    // If this FDIV is part of a reciprocal square root, it may be folded
8678    // into a target-specific square root estimate instruction.
8679    if (N1.getOpcode() == ISD::FSQRT) {
8680      if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0), Flags)) {
8681        return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
8682      }
8683    } else if (N1.getOpcode() == ISD::FP_EXTEND &&
8684               N1.getOperand(0).getOpcode() == ISD::FSQRT) {
8685      if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0),
8686                                          Flags)) {
8687        RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
8688        AddToWorklist(RV.getNode());
8689        return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
8690      }
8691    } else if (N1.getOpcode() == ISD::FP_ROUND &&
8692               N1.getOperand(0).getOpcode() == ISD::FSQRT) {
8693      if (SDValue RV = BuildRsqrtEstimate(N1.getOperand(0).getOperand(0),
8694                                          Flags)) {
8695        RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
8696        AddToWorklist(RV.getNode());
8697        return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
8698      }
8699    } else if (N1.getOpcode() == ISD::FMUL) {
8700      // Look through an FMUL. Even though this won't remove the FDIV directly,
8701      // it's still worthwhile to get rid of the FSQRT if possible.
8702      SDValue SqrtOp;
8703      SDValue OtherOp;
8704      if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
8705        SqrtOp = N1.getOperand(0);
8706        OtherOp = N1.getOperand(1);
8707      } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
8708        SqrtOp = N1.getOperand(1);
8709        OtherOp = N1.getOperand(0);
8710      }
8711      if (SqrtOp.getNode()) {
8712        // We found a FSQRT, so try to make this fold:
8713        // x / (y * sqrt(z)) -> x * (rsqrt(z) / y)
8714        if (SDValue RV = BuildRsqrtEstimate(SqrtOp.getOperand(0), Flags)) {
8715          RV = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, RV, OtherOp, Flags);
8716          AddToWorklist(RV.getNode());
8717          return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
8718        }
8719      }
8720    }
8721
8722    // Fold into a reciprocal estimate and multiply instead of a real divide.
8723    if (SDValue RV = BuildReciprocalEstimate(N1, Flags)) {
8724      AddToWorklist(RV.getNode());
8725      return DAG.getNode(ISD::FMUL, DL, VT, N0, RV, Flags);
8726    }
8727  }
8728
8729  // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
8730  if (char LHSNeg = isNegatibleForFree(N0, LegalOperations, TLI, &Options)) {
8731    if (char RHSNeg = isNegatibleForFree(N1, LegalOperations, TLI, &Options)) {
8732      // Both can be negated for free, check to see if at least one is cheaper
8733      // negated.
8734      if (LHSNeg == 2 || RHSNeg == 2)
8735        return DAG.getNode(ISD::FDIV, SDLoc(N), VT,
8736                           GetNegatedExpression(N0, DAG, LegalOperations),
8737                           GetNegatedExpression(N1, DAG, LegalOperations),
8738                           Flags);
8739    }
8740  }
8741
8742  if (SDValue CombineRepeatedDivisors = combineRepeatedFPDivisors(N))
8743    return CombineRepeatedDivisors;
8744
8745  return SDValue();
8746}
8747
8748SDValue DAGCombiner::visitFREM(SDNode *N) {
8749  SDValue N0 = N->getOperand(0);
8750  SDValue N1 = N->getOperand(1);
8751  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
8752  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
8753  EVT VT = N->getValueType(0);
8754
8755  // fold (frem c1, c2) -> fmod(c1,c2)
8756  if (N0CFP && N1CFP)
8757    return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1,
8758                       &cast<BinaryWithFlagsSDNode>(N)->Flags);
8759
8760  return SDValue();
8761}
8762
8763SDValue DAGCombiner::visitFSQRT(SDNode *N) {
8764  if (!DAG.getTarget().Options.UnsafeFPMath || TLI.isFsqrtCheap())
8765    return SDValue();
8766
8767  // TODO: FSQRT nodes should have flags that propagate to the created nodes.
8768  // For now, create a Flags object for use with all unsafe math transforms.
8769  SDNodeFlags Flags;
8770  Flags.setUnsafeAlgebra(true);
8771
8772  // Compute this as X * (1/sqrt(X)) = X * (X ** -0.5)
8773  SDValue RV = BuildRsqrtEstimate(N->getOperand(0), &Flags);
8774  if (!RV)
8775    return SDValue();
8776
8777  EVT VT = RV.getValueType();
8778  SDLoc DL(N);
8779  RV = DAG.getNode(ISD::FMUL, DL, VT, N->getOperand(0), RV, &Flags);
8780  AddToWorklist(RV.getNode());
8781
8782  // Unfortunately, RV is now NaN if the input was exactly 0.
8783  // Select out this case and force the answer to 0.
8784  SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
8785  EVT CCVT = getSetCCResultType(VT);
8786  SDValue ZeroCmp = DAG.getSetCC(DL, CCVT, N->getOperand(0), Zero, ISD::SETEQ);
8787  AddToWorklist(ZeroCmp.getNode());
8788  AddToWorklist(RV.getNode());
8789
8790  return DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
8791                     ZeroCmp, Zero, RV);
8792}
8793
8794static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
8795  // copysign(x, fp_extend(y)) -> copysign(x, y)
8796  // copysign(x, fp_round(y)) -> copysign(x, y)
8797  // Do not optimize out type conversion of f128 type yet.
8798  // For some target like x86_64, configuration is changed
8799  // to keep one f128 value in one SSE register, but
8800  // instruction selection cannot handle FCOPYSIGN on
8801  // SSE registers yet.
8802  SDValue N1 = N->getOperand(1);
8803  EVT N1VT = N1->getValueType(0);
8804  EVT N1Op0VT = N1->getOperand(0)->getValueType(0);
8805  return (N1.getOpcode() == ISD::FP_EXTEND ||
8806          N1.getOpcode() == ISD::FP_ROUND) &&
8807         (N1VT == N1Op0VT || N1Op0VT != MVT::f128);
8808}
8809
8810SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
8811  SDValue N0 = N->getOperand(0);
8812  SDValue N1 = N->getOperand(1);
8813  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
8814  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
8815  EVT VT = N->getValueType(0);
8816
8817  if (N0CFP && N1CFP)  // Constant fold
8818    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
8819
8820  if (N1CFP) {
8821    const APFloat& V = N1CFP->getValueAPF();
8822    // copysign(x, c1) -> fabs(x)       iff ispos(c1)
8823    // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
8824    if (!V.isNegative()) {
8825      if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
8826        return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
8827    } else {
8828      if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
8829        return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
8830                           DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
8831    }
8832  }
8833
8834  // copysign(fabs(x), y) -> copysign(x, y)
8835  // copysign(fneg(x), y) -> copysign(x, y)
8836  // copysign(copysign(x,z), y) -> copysign(x, y)
8837  if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
8838      N0.getOpcode() == ISD::FCOPYSIGN)
8839    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
8840                       N0.getOperand(0), N1);
8841
8842  // copysign(x, abs(y)) -> abs(x)
8843  if (N1.getOpcode() == ISD::FABS)
8844    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
8845
8846  // copysign(x, copysign(y,z)) -> copysign(x, z)
8847  if (N1.getOpcode() == ISD::FCOPYSIGN)
8848    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
8849                       N0, N1.getOperand(1));
8850
8851  // copysign(x, fp_extend(y)) -> copysign(x, y)
8852  // copysign(x, fp_round(y)) -> copysign(x, y)
8853  if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
8854    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
8855                       N0, N1.getOperand(0));
8856
8857  return SDValue();
8858}
8859
8860SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
8861  SDValue N0 = N->getOperand(0);
8862  EVT VT = N->getValueType(0);
8863  EVT OpVT = N0.getValueType();
8864
8865  // fold (sint_to_fp c1) -> c1fp
8866  if (isConstantIntBuildVectorOrConstantInt(N0) &&
8867      // ...but only if the target supports immediate floating-point values
8868      (!LegalOperations ||
8869       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
8870    return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
8871
8872  // If the input is a legal type, and SINT_TO_FP is not legal on this target,
8873  // but UINT_TO_FP is legal on this target, try to convert.
8874  if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT) &&
8875      TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT)) {
8876    // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
8877    if (DAG.SignBitIsZero(N0))
8878      return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
8879  }
8880
8881  // The next optimizations are desirable only if SELECT_CC can be lowered.
8882  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
8883    // fold (sint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
8884    if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
8885        !VT.isVector() &&
8886        (!LegalOperations ||
8887         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
8888      SDLoc DL(N);
8889      SDValue Ops[] =
8890        { N0.getOperand(0), N0.getOperand(1),
8891          DAG.getConstantFP(-1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
8892          N0.getOperand(2) };
8893      return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
8894    }
8895
8896    // fold (sint_to_fp (zext (setcc x, y, cc))) ->
8897    //      (select_cc x, y, 1.0, 0.0,, cc)
8898    if (N0.getOpcode() == ISD::ZERO_EXTEND &&
8899        N0.getOperand(0).getOpcode() == ISD::SETCC &&!VT.isVector() &&
8900        (!LegalOperations ||
8901         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
8902      SDLoc DL(N);
8903      SDValue Ops[] =
8904        { N0.getOperand(0).getOperand(0), N0.getOperand(0).getOperand(1),
8905          DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
8906          N0.getOperand(0).getOperand(2) };
8907      return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
8908    }
8909  }
8910
8911  return SDValue();
8912}
8913
8914SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
8915  SDValue N0 = N->getOperand(0);
8916  EVT VT = N->getValueType(0);
8917  EVT OpVT = N0.getValueType();
8918
8919  // fold (uint_to_fp c1) -> c1fp
8920  if (isConstantIntBuildVectorOrConstantInt(N0) &&
8921      // ...but only if the target supports immediate floating-point values
8922      (!LegalOperations ||
8923       TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT)))
8924    return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
8925
8926  // If the input is a legal type, and UINT_TO_FP is not legal on this target,
8927  // but SINT_TO_FP is legal on this target, try to convert.
8928  if (!TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, OpVT) &&
8929      TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, OpVT)) {
8930    // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
8931    if (DAG.SignBitIsZero(N0))
8932      return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
8933  }
8934
8935  // The next optimizations are desirable only if SELECT_CC can be lowered.
8936  if (TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT) || !LegalOperations) {
8937    // fold (uint_to_fp (setcc x, y, cc)) -> (select_cc x, y, -1.0, 0.0,, cc)
8938
8939    if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
8940        (!LegalOperations ||
8941         TLI.isOperationLegalOrCustom(llvm::ISD::ConstantFP, VT))) {
8942      SDLoc DL(N);
8943      SDValue Ops[] =
8944        { N0.getOperand(0), N0.getOperand(1),
8945          DAG.getConstantFP(1.0, DL, VT), DAG.getConstantFP(0.0, DL, VT),
8946          N0.getOperand(2) };
8947      return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
8948    }
8949  }
8950
8951  return SDValue();
8952}
8953
8954// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
8955static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
8956  SDValue N0 = N->getOperand(0);
8957  EVT VT = N->getValueType(0);
8958
8959  if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
8960    return SDValue();
8961
8962  SDValue Src = N0.getOperand(0);
8963  EVT SrcVT = Src.getValueType();
8964  bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
8965  bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
8966
8967  // We can safely assume the conversion won't overflow the output range,
8968  // because (for example) (uint8_t)18293.f is undefined behavior.
8969
8970  // Since we can assume the conversion won't overflow, our decision as to
8971  // whether the input will fit in the float should depend on the minimum
8972  // of the input range and output range.
8973
8974  // This means this is also safe for a signed input and unsigned output, since
8975  // a negative input would lead to undefined behavior.
8976  unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
8977  unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
8978  unsigned ActualSize = std::min(InputSize, OutputSize);
8979  const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
8980
8981  // We can only fold away the float conversion if the input range can be
8982  // represented exactly in the float range.
8983  if (APFloat::semanticsPrecision(sem) >= ActualSize) {
8984    if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
8985      unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
8986                                                       : ISD::ZERO_EXTEND;
8987      return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
8988    }
8989    if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
8990      return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
8991    if (SrcVT == VT)
8992      return Src;
8993    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Src);
8994  }
8995  return SDValue();
8996}
8997
8998SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
8999  SDValue N0 = N->getOperand(0);
9000  EVT VT = N->getValueType(0);
9001
9002  // fold (fp_to_sint c1fp) -> c1
9003  if (isConstantFPBuildVectorOrConstantFP(N0))
9004    return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
9005
9006  return FoldIntToFPToInt(N, DAG);
9007}
9008
9009SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
9010  SDValue N0 = N->getOperand(0);
9011  EVT VT = N->getValueType(0);
9012
9013  // fold (fp_to_uint c1fp) -> c1
9014  if (isConstantFPBuildVectorOrConstantFP(N0))
9015    return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
9016
9017  return FoldIntToFPToInt(N, DAG);
9018}
9019
9020SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
9021  SDValue N0 = N->getOperand(0);
9022  SDValue N1 = N->getOperand(1);
9023  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
9024  EVT VT = N->getValueType(0);
9025
9026  // fold (fp_round c1fp) -> c1fp
9027  if (N0CFP)
9028    return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
9029
9030  // fold (fp_round (fp_extend x)) -> x
9031  if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
9032    return N0.getOperand(0);
9033
9034  // fold (fp_round (fp_round x)) -> (fp_round x)
9035  if (N0.getOpcode() == ISD::FP_ROUND) {
9036    const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
9037    const bool N0IsTrunc = N0.getNode()->getConstantOperandVal(1) == 1;
9038
9039    // Skip this folding if it results in an fp_round from f80 to f16.
9040    //
9041    // f80 to f16 always generates an expensive (and as yet, unimplemented)
9042    // libcall to __truncxfhf2 instead of selecting native f16 conversion
9043    // instructions from f32 or f64.  Moreover, the first (value-preserving)
9044    // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
9045    // x86.
9046    if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
9047      return SDValue();
9048
9049    // If the first fp_round isn't a value preserving truncation, it might
9050    // introduce a tie in the second fp_round, that wouldn't occur in the
9051    // single-step fp_round we want to fold to.
9052    // In other words, double rounding isn't the same as rounding.
9053    // Also, this is a value preserving truncation iff both fp_round's are.
9054    if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
9055      SDLoc DL(N);
9056      return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
9057                         DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
9058    }
9059  }
9060
9061  // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
9062  if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
9063    SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
9064                              N0.getOperand(0), N1);
9065    AddToWorklist(Tmp.getNode());
9066    return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
9067                       Tmp, N0.getOperand(1));
9068  }
9069
9070  return SDValue();
9071}
9072
9073SDValue DAGCombiner::visitFP_ROUND_INREG(SDNode *N) {
9074  SDValue N0 = N->getOperand(0);
9075  EVT VT = N->getValueType(0);
9076  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
9077  ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
9078
9079  // fold (fp_round_inreg c1fp) -> c1fp
9080  if (N0CFP && isTypeLegal(EVT)) {
9081    SDLoc DL(N);
9082    SDValue Round = DAG.getConstantFP(*N0CFP->getConstantFPValue(), DL, EVT);
9083    return DAG.getNode(ISD::FP_EXTEND, DL, VT, Round);
9084  }
9085
9086  return SDValue();
9087}
9088
9089SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
9090  SDValue N0 = N->getOperand(0);
9091  EVT VT = N->getValueType(0);
9092
9093  // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
9094  if (N->hasOneUse() &&
9095      N->use_begin()->getOpcode() == ISD::FP_ROUND)
9096    return SDValue();
9097
9098  // fold (fp_extend c1fp) -> c1fp
9099  if (isConstantFPBuildVectorOrConstantFP(N0))
9100    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
9101
9102  // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
9103  if (N0.getOpcode() == ISD::FP16_TO_FP &&
9104      TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
9105    return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
9106
9107  // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
9108  // value of X.
9109  if (N0.getOpcode() == ISD::FP_ROUND
9110      && N0.getNode()->getConstantOperandVal(1) == 1) {
9111    SDValue In = N0.getOperand(0);
9112    if (In.getValueType() == VT) return In;
9113    if (VT.bitsLT(In.getValueType()))
9114      return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
9115                         In, N0.getOperand(1));
9116    return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
9117  }
9118
9119  // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
9120  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
9121       TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
9122    LoadSDNode *LN0 = cast<LoadSDNode>(N0);
9123    SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
9124                                     LN0->getChain(),
9125                                     LN0->getBasePtr(), N0.getValueType(),
9126                                     LN0->getMemOperand());
9127    CombineTo(N, ExtLoad);
9128    CombineTo(N0.getNode(),
9129              DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
9130                          N0.getValueType(), ExtLoad,
9131                          DAG.getIntPtrConstant(1, SDLoc(N0))),
9132              ExtLoad.getValue(1));
9133    return SDValue(N, 0);   // Return N so it doesn't get rechecked!
9134  }
9135
9136  return SDValue();
9137}
9138
9139SDValue DAGCombiner::visitFCEIL(SDNode *N) {
9140  SDValue N0 = N->getOperand(0);
9141  EVT VT = N->getValueType(0);
9142
9143  // fold (fceil c1) -> fceil(c1)
9144  if (isConstantFPBuildVectorOrConstantFP(N0))
9145    return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
9146
9147  return SDValue();
9148}
9149
9150SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
9151  SDValue N0 = N->getOperand(0);
9152  EVT VT = N->getValueType(0);
9153
9154  // fold (ftrunc c1) -> ftrunc(c1)
9155  if (isConstantFPBuildVectorOrConstantFP(N0))
9156    return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
9157
9158  return SDValue();
9159}
9160
9161SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
9162  SDValue N0 = N->getOperand(0);
9163  EVT VT = N->getValueType(0);
9164
9165  // fold (ffloor c1) -> ffloor(c1)
9166  if (isConstantFPBuildVectorOrConstantFP(N0))
9167    return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
9168
9169  return SDValue();
9170}
9171
9172// FIXME: FNEG and FABS have a lot in common; refactor.
9173SDValue DAGCombiner::visitFNEG(SDNode *N) {
9174  SDValue N0 = N->getOperand(0);
9175  EVT VT = N->getValueType(0);
9176
9177  // Constant fold FNEG.
9178  if (isConstantFPBuildVectorOrConstantFP(N0))
9179    return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
9180
9181  if (isNegatibleForFree(N0, LegalOperations, DAG.getTargetLoweringInfo(),
9182                         &DAG.getTarget().Options))
9183    return GetNegatedExpression(N0, DAG, LegalOperations);
9184
9185  // Transform fneg(bitconvert(x)) -> bitconvert(x ^ sign) to avoid loading
9186  // constant pool values.
9187  if (!TLI.isFNegFree(VT) &&
9188      N0.getOpcode() == ISD::BITCAST &&
9189      N0.getNode()->hasOneUse()) {
9190    SDValue Int = N0.getOperand(0);
9191    EVT IntVT = Int.getValueType();
9192    if (IntVT.isInteger() && !IntVT.isVector()) {
9193      APInt SignMask;
9194      if (N0.getValueType().isVector()) {
9195        // For a vector, get a mask such as 0x80... per scalar element
9196        // and splat it.
9197        SignMask = APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
9198        SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
9199      } else {
9200        // For a scalar, just generate 0x80...
9201        SignMask = APInt::getSignBit(IntVT.getSizeInBits());
9202      }
9203      SDLoc DL0(N0);
9204      Int = DAG.getNode(ISD::XOR, DL0, IntVT, Int,
9205                        DAG.getConstant(SignMask, DL0, IntVT));
9206      AddToWorklist(Int.getNode());
9207      return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Int);
9208    }
9209  }
9210
9211  // (fneg (fmul c, x)) -> (fmul -c, x)
9212  if (N0.getOpcode() == ISD::FMUL &&
9213      (N0.getNode()->hasOneUse() || !TLI.isFNegFree(VT))) {
9214    ConstantFPSDNode *CFP1 = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9215    if (CFP1) {
9216      APFloat CVal = CFP1->getValueAPF();
9217      CVal.changeSign();
9218      if (Level >= AfterLegalizeDAG &&
9219          (TLI.isFPImmLegal(CVal, VT) ||
9220           TLI.isOperationLegal(ISD::ConstantFP, VT)))
9221        return DAG.getNode(ISD::FMUL, SDLoc(N), VT, N0.getOperand(0),
9222                           DAG.getNode(ISD::FNEG, SDLoc(N), VT,
9223                                       N0.getOperand(1)),
9224                           &cast<BinaryWithFlagsSDNode>(N0)->Flags);
9225    }
9226  }
9227
9228  return SDValue();
9229}
9230
9231SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
9232  SDValue N0 = N->getOperand(0);
9233  SDValue N1 = N->getOperand(1);
9234  EVT VT = N->getValueType(0);
9235  const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
9236  const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
9237
9238  if (N0CFP && N1CFP) {
9239    const APFloat &C0 = N0CFP->getValueAPF();
9240    const APFloat &C1 = N1CFP->getValueAPF();
9241    return DAG.getConstantFP(minnum(C0, C1), SDLoc(N), VT);
9242  }
9243
9244  // Canonicalize to constant on RHS.
9245  if (isConstantFPBuildVectorOrConstantFP(N0) &&
9246     !isConstantFPBuildVectorOrConstantFP(N1))
9247    return DAG.getNode(ISD::FMINNUM, SDLoc(N), VT, N1, N0);
9248
9249  return SDValue();
9250}
9251
9252SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
9253  SDValue N0 = N->getOperand(0);
9254  SDValue N1 = N->getOperand(1);
9255  EVT VT = N->getValueType(0);
9256  const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
9257  const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
9258
9259  if (N0CFP && N1CFP) {
9260    const APFloat &C0 = N0CFP->getValueAPF();
9261    const APFloat &C1 = N1CFP->getValueAPF();
9262    return DAG.getConstantFP(maxnum(C0, C1), SDLoc(N), VT);
9263  }
9264
9265  // Canonicalize to constant on RHS.
9266  if (isConstantFPBuildVectorOrConstantFP(N0) &&
9267     !isConstantFPBuildVectorOrConstantFP(N1))
9268    return DAG.getNode(ISD::FMAXNUM, SDLoc(N), VT, N1, N0);
9269
9270  return SDValue();
9271}
9272
9273SDValue DAGCombiner::visitFABS(SDNode *N) {
9274  SDValue N0 = N->getOperand(0);
9275  EVT VT = N->getValueType(0);
9276
9277  // fold (fabs c1) -> fabs(c1)
9278  if (isConstantFPBuildVectorOrConstantFP(N0))
9279    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
9280
9281  // fold (fabs (fabs x)) -> (fabs x)
9282  if (N0.getOpcode() == ISD::FABS)
9283    return N->getOperand(0);
9284
9285  // fold (fabs (fneg x)) -> (fabs x)
9286  // fold (fabs (fcopysign x, y)) -> (fabs x)
9287  if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
9288    return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
9289
9290  // Transform fabs(bitconvert(x)) -> bitconvert(x & ~sign) to avoid loading
9291  // constant pool values.
9292  if (!TLI.isFAbsFree(VT) &&
9293      N0.getOpcode() == ISD::BITCAST &&
9294      N0.getNode()->hasOneUse()) {
9295    SDValue Int = N0.getOperand(0);
9296    EVT IntVT = Int.getValueType();
9297    if (IntVT.isInteger() && !IntVT.isVector()) {
9298      APInt SignMask;
9299      if (N0.getValueType().isVector()) {
9300        // For a vector, get a mask such as 0x7f... per scalar element
9301        // and splat it.
9302        SignMask = ~APInt::getSignBit(N0.getValueType().getScalarSizeInBits());
9303        SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
9304      } else {
9305        // For a scalar, just generate 0x7f...
9306        SignMask = ~APInt::getSignBit(IntVT.getSizeInBits());
9307      }
9308      SDLoc DL(N0);
9309      Int = DAG.getNode(ISD::AND, DL, IntVT, Int,
9310                        DAG.getConstant(SignMask, DL, IntVT));
9311      AddToWorklist(Int.getNode());
9312      return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Int);
9313    }
9314  }
9315
9316  return SDValue();
9317}
9318
9319SDValue DAGCombiner::visitBRCOND(SDNode *N) {
9320  SDValue Chain = N->getOperand(0);
9321  SDValue N1 = N->getOperand(1);
9322  SDValue N2 = N->getOperand(2);
9323
9324  // If N is a constant we could fold this into a fallthrough or unconditional
9325  // branch. However that doesn't happen very often in normal code, because
9326  // Instcombine/SimplifyCFG should have handled the available opportunities.
9327  // If we did this folding here, it would be necessary to update the
9328  // MachineBasicBlock CFG, which is awkward.
9329
9330  // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
9331  // on the target.
9332  if (N1.getOpcode() == ISD::SETCC &&
9333      TLI.isOperationLegalOrCustom(ISD::BR_CC,
9334                                   N1.getOperand(0).getValueType())) {
9335    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
9336                       Chain, N1.getOperand(2),
9337                       N1.getOperand(0), N1.getOperand(1), N2);
9338  }
9339
9340  if ((N1.hasOneUse() && N1.getOpcode() == ISD::SRL) ||
9341      ((N1.getOpcode() == ISD::TRUNCATE && N1.hasOneUse()) &&
9342       (N1.getOperand(0).hasOneUse() &&
9343        N1.getOperand(0).getOpcode() == ISD::SRL))) {
9344    SDNode *Trunc = nullptr;
9345    if (N1.getOpcode() == ISD::TRUNCATE) {
9346      // Look pass the truncate.
9347      Trunc = N1.getNode();
9348      N1 = N1.getOperand(0);
9349    }
9350
9351    // Match this pattern so that we can generate simpler code:
9352    //
9353    //   %a = ...
9354    //   %b = and i32 %a, 2
9355    //   %c = srl i32 %b, 1
9356    //   brcond i32 %c ...
9357    //
9358    // into
9359    //
9360    //   %a = ...
9361    //   %b = and i32 %a, 2
9362    //   %c = setcc eq %b, 0
9363    //   brcond %c ...
9364    //
9365    // This applies only when the AND constant value has one bit set and the
9366    // SRL constant is equal to the log2 of the AND constant. The back-end is
9367    // smart enough to convert the result into a TEST/JMP sequence.
9368    SDValue Op0 = N1.getOperand(0);
9369    SDValue Op1 = N1.getOperand(1);
9370
9371    if (Op0.getOpcode() == ISD::AND &&
9372        Op1.getOpcode() == ISD::Constant) {
9373      SDValue AndOp1 = Op0.getOperand(1);
9374
9375      if (AndOp1.getOpcode() == ISD::Constant) {
9376        const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
9377
9378        if (AndConst.isPowerOf2() &&
9379            cast<ConstantSDNode>(Op1)->getAPIntValue()==AndConst.logBase2()) {
9380          SDLoc DL(N);
9381          SDValue SetCC =
9382            DAG.getSetCC(DL,
9383                         getSetCCResultType(Op0.getValueType()),
9384                         Op0, DAG.getConstant(0, DL, Op0.getValueType()),
9385                         ISD::SETNE);
9386
9387          SDValue NewBRCond = DAG.getNode(ISD::BRCOND, DL,
9388                                          MVT::Other, Chain, SetCC, N2);
9389          // Don't add the new BRCond into the worklist or else SimplifySelectCC
9390          // will convert it back to (X & C1) >> C2.
9391          CombineTo(N, NewBRCond, false);
9392          // Truncate is dead.
9393          if (Trunc)
9394            deleteAndRecombine(Trunc);
9395          // Replace the uses of SRL with SETCC
9396          WorklistRemover DeadNodes(*this);
9397          DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
9398          deleteAndRecombine(N1.getNode());
9399          return SDValue(N, 0);   // Return N so it doesn't get rechecked!
9400        }
9401      }
9402    }
9403
9404    if (Trunc)
9405      // Restore N1 if the above transformation doesn't match.
9406      N1 = N->getOperand(1);
9407  }
9408
9409  // Transform br(xor(x, y)) -> br(x != y)
9410  // Transform br(xor(xor(x,y), 1)) -> br (x == y)
9411  if (N1.hasOneUse() && N1.getOpcode() == ISD::XOR) {
9412    SDNode *TheXor = N1.getNode();
9413    SDValue Op0 = TheXor->getOperand(0);
9414    SDValue Op1 = TheXor->getOperand(1);
9415    if (Op0.getOpcode() == Op1.getOpcode()) {
9416      // Avoid missing important xor optimizations.
9417      if (SDValue Tmp = visitXOR(TheXor)) {
9418        if (Tmp.getNode() != TheXor) {
9419          DEBUG(dbgs() << "\nReplacing.8 ";
9420                TheXor->dump(&DAG);
9421                dbgs() << "\nWith: ";
9422                Tmp.getNode()->dump(&DAG);
9423                dbgs() << '\n');
9424          WorklistRemover DeadNodes(*this);
9425          DAG.ReplaceAllUsesOfValueWith(N1, Tmp);
9426          deleteAndRecombine(TheXor);
9427          return DAG.getNode(ISD::BRCOND, SDLoc(N),
9428                             MVT::Other, Chain, Tmp, N2);
9429        }
9430
9431        // visitXOR has changed XOR's operands or replaced the XOR completely,
9432        // bail out.
9433        return SDValue(N, 0);
9434      }
9435    }
9436
9437    if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
9438      bool Equal = false;
9439      if (isOneConstant(Op0) && Op0.hasOneUse() &&
9440          Op0.getOpcode() == ISD::XOR) {
9441        TheXor = Op0.getNode();
9442        Equal = true;
9443      }
9444
9445      EVT SetCCVT = N1.getValueType();
9446      if (LegalTypes)
9447        SetCCVT = getSetCCResultType(SetCCVT);
9448      SDValue SetCC = DAG.getSetCC(SDLoc(TheXor),
9449                                   SetCCVT,
9450                                   Op0, Op1,
9451                                   Equal ? ISD::SETEQ : ISD::SETNE);
9452      // Replace the uses of XOR with SETCC
9453      WorklistRemover DeadNodes(*this);
9454      DAG.ReplaceAllUsesOfValueWith(N1, SetCC);
9455      deleteAndRecombine(N1.getNode());
9456      return DAG.getNode(ISD::BRCOND, SDLoc(N),
9457                         MVT::Other, Chain, SetCC, N2);
9458    }
9459  }
9460
9461  return SDValue();
9462}
9463
9464// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
9465//
9466SDValue DAGCombiner::visitBR_CC(SDNode *N) {
9467  CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
9468  SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
9469
9470  // If N is a constant we could fold this into a fallthrough or unconditional
9471  // branch. However that doesn't happen very often in normal code, because
9472  // Instcombine/SimplifyCFG should have handled the available opportunities.
9473  // If we did this folding here, it would be necessary to update the
9474  // MachineBasicBlock CFG, which is awkward.
9475
9476  // Use SimplifySetCC to simplify SETCC's.
9477  SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
9478                               CondLHS, CondRHS, CC->get(), SDLoc(N),
9479                               false);
9480  if (Simp.getNode()) AddToWorklist(Simp.getNode());
9481
9482  // fold to a simpler setcc
9483  if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
9484    return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
9485                       N->getOperand(0), Simp.getOperand(2),
9486                       Simp.getOperand(0), Simp.getOperand(1),
9487                       N->getOperand(4));
9488
9489  return SDValue();
9490}
9491
9492/// Return true if 'Use' is a load or a store that uses N as its base pointer
9493/// and that N may be folded in the load / store addressing mode.
9494static bool canFoldInAddressingMode(SDNode *N, SDNode *Use,
9495                                    SelectionDAG &DAG,
9496                                    const TargetLowering &TLI) {
9497  EVT VT;
9498  unsigned AS;
9499
9500  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(Use)) {
9501    if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
9502      return false;
9503    VT = LD->getMemoryVT();
9504    AS = LD->getAddressSpace();
9505  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(Use)) {
9506    if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
9507      return false;
9508    VT = ST->getMemoryVT();
9509    AS = ST->getAddressSpace();
9510  } else
9511    return false;
9512
9513  TargetLowering::AddrMode AM;
9514  if (N->getOpcode() == ISD::ADD) {
9515    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
9516    if (Offset)
9517      // [reg +/- imm]
9518      AM.BaseOffs = Offset->getSExtValue();
9519    else
9520      // [reg +/- reg]
9521      AM.Scale = 1;
9522  } else if (N->getOpcode() == ISD::SUB) {
9523    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
9524    if (Offset)
9525      // [reg +/- imm]
9526      AM.BaseOffs = -Offset->getSExtValue();
9527    else
9528      // [reg +/- reg]
9529      AM.Scale = 1;
9530  } else
9531    return false;
9532
9533  return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
9534                                   VT.getTypeForEVT(*DAG.getContext()), AS);
9535}
9536
9537/// Try turning a load/store into a pre-indexed load/store when the base
9538/// pointer is an add or subtract and it has other uses besides the load/store.
9539/// After the transformation, the new indexed load/store has effectively folded
9540/// the add/subtract in and all of its other uses are redirected to the
9541/// new load/store.
9542bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
9543  if (Level < AfterLegalizeDAG)
9544    return false;
9545
9546  bool isLoad = true;
9547  SDValue Ptr;
9548  EVT VT;
9549  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
9550    if (LD->isIndexed())
9551      return false;
9552    VT = LD->getMemoryVT();
9553    if (!TLI.isIndexedLoadLegal(ISD::PRE_INC, VT) &&
9554        !TLI.isIndexedLoadLegal(ISD::PRE_DEC, VT))
9555      return false;
9556    Ptr = LD->getBasePtr();
9557  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
9558    if (ST->isIndexed())
9559      return false;
9560    VT = ST->getMemoryVT();
9561    if (!TLI.isIndexedStoreLegal(ISD::PRE_INC, VT) &&
9562        !TLI.isIndexedStoreLegal(ISD::PRE_DEC, VT))
9563      return false;
9564    Ptr = ST->getBasePtr();
9565    isLoad = false;
9566  } else {
9567    return false;
9568  }
9569
9570  // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
9571  // out.  There is no reason to make this a preinc/predec.
9572  if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
9573      Ptr.getNode()->hasOneUse())
9574    return false;
9575
9576  // Ask the target to do addressing mode selection.
9577  SDValue BasePtr;
9578  SDValue Offset;
9579  ISD::MemIndexedMode AM = ISD::UNINDEXED;
9580  if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
9581    return false;
9582
9583  // Backends without true r+i pre-indexed forms may need to pass a
9584  // constant base with a variable offset so that constant coercion
9585  // will work with the patterns in canonical form.
9586  bool Swapped = false;
9587  if (isa<ConstantSDNode>(BasePtr)) {
9588    std::swap(BasePtr, Offset);
9589    Swapped = true;
9590  }
9591
9592  // Don't create a indexed load / store with zero offset.
9593  if (isNullConstant(Offset))
9594    return false;
9595
9596  // Try turning it into a pre-indexed load / store except when:
9597  // 1) The new base ptr is a frame index.
9598  // 2) If N is a store and the new base ptr is either the same as or is a
9599  //    predecessor of the value being stored.
9600  // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
9601  //    that would create a cycle.
9602  // 4) All uses are load / store ops that use it as old base ptr.
9603
9604  // Check #1.  Preinc'ing a frame index would require copying the stack pointer
9605  // (plus the implicit offset) to a register to preinc anyway.
9606  if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
9607    return false;
9608
9609  // Check #2.
9610  if (!isLoad) {
9611    SDValue Val = cast<StoreSDNode>(N)->getValue();
9612    if (Val == BasePtr || BasePtr.getNode()->isPredecessorOf(Val.getNode()))
9613      return false;
9614  }
9615
9616  // If the offset is a constant, there may be other adds of constants that
9617  // can be folded with this one. We should do this to avoid having to keep
9618  // a copy of the original base pointer.
9619  SmallVector<SDNode *, 16> OtherUses;
9620  if (isa<ConstantSDNode>(Offset))
9621    for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
9622                              UE = BasePtr.getNode()->use_end();
9623         UI != UE; ++UI) {
9624      SDUse &Use = UI.getUse();
9625      // Skip the use that is Ptr and uses of other results from BasePtr's
9626      // node (important for nodes that return multiple results).
9627      if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
9628        continue;
9629
9630      if (Use.getUser()->isPredecessorOf(N))
9631        continue;
9632
9633      if (Use.getUser()->getOpcode() != ISD::ADD &&
9634          Use.getUser()->getOpcode() != ISD::SUB) {
9635        OtherUses.clear();
9636        break;
9637      }
9638
9639      SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
9640      if (!isa<ConstantSDNode>(Op1)) {
9641        OtherUses.clear();
9642        break;
9643      }
9644
9645      // FIXME: In some cases, we can be smarter about this.
9646      if (Op1.getValueType() != Offset.getValueType()) {
9647        OtherUses.clear();
9648        break;
9649      }
9650
9651      OtherUses.push_back(Use.getUser());
9652    }
9653
9654  if (Swapped)
9655    std::swap(BasePtr, Offset);
9656
9657  // Now check for #3 and #4.
9658  bool RealUse = false;
9659
9660  // Caches for hasPredecessorHelper
9661  SmallPtrSet<const SDNode *, 32> Visited;
9662  SmallVector<const SDNode *, 16> Worklist;
9663
9664  for (SDNode *Use : Ptr.getNode()->uses()) {
9665    if (Use == N)
9666      continue;
9667    if (N->hasPredecessorHelper(Use, Visited, Worklist))
9668      return false;
9669
9670    // If Ptr may be folded in addressing mode of other use, then it's
9671    // not profitable to do this transformation.
9672    if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
9673      RealUse = true;
9674  }
9675
9676  if (!RealUse)
9677    return false;
9678
9679  SDValue Result;
9680  if (isLoad)
9681    Result = DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
9682                                BasePtr, Offset, AM);
9683  else
9684    Result = DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
9685                                 BasePtr, Offset, AM);
9686  ++PreIndexedNodes;
9687  ++NodesCombined;
9688  DEBUG(dbgs() << "\nReplacing.4 ";
9689        N->dump(&DAG);
9690        dbgs() << "\nWith: ";
9691        Result.getNode()->dump(&DAG);
9692        dbgs() << '\n');
9693  WorklistRemover DeadNodes(*this);
9694  if (isLoad) {
9695    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
9696    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
9697  } else {
9698    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
9699  }
9700
9701  // Finally, since the node is now dead, remove it from the graph.
9702  deleteAndRecombine(N);
9703
9704  if (Swapped)
9705    std::swap(BasePtr, Offset);
9706
9707  // Replace other uses of BasePtr that can be updated to use Ptr
9708  for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
9709    unsigned OffsetIdx = 1;
9710    if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
9711      OffsetIdx = 0;
9712    assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
9713           BasePtr.getNode() && "Expected BasePtr operand");
9714
9715    // We need to replace ptr0 in the following expression:
9716    //   x0 * offset0 + y0 * ptr0 = t0
9717    // knowing that
9718    //   x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
9719    //
9720    // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
9721    // indexed load/store and the expresion that needs to be re-written.
9722    //
9723    // Therefore, we have:
9724    //   t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
9725
9726    ConstantSDNode *CN =
9727      cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
9728    int X0, X1, Y0, Y1;
9729    APInt Offset0 = CN->getAPIntValue();
9730    APInt Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
9731
9732    X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
9733    Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
9734    X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
9735    Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
9736
9737    unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
9738
9739    APInt CNV = Offset0;
9740    if (X0 < 0) CNV = -CNV;
9741    if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
9742    else CNV = CNV - Offset1;
9743
9744    SDLoc DL(OtherUses[i]);
9745
9746    // We can now generate the new expression.
9747    SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
9748    SDValue NewOp2 = Result.getValue(isLoad ? 1 : 0);
9749
9750    SDValue NewUse = DAG.getNode(Opcode,
9751                                 DL,
9752                                 OtherUses[i]->getValueType(0), NewOp1, NewOp2);
9753    DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
9754    deleteAndRecombine(OtherUses[i]);
9755  }
9756
9757  // Replace the uses of Ptr with uses of the updated base value.
9758  DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(isLoad ? 1 : 0));
9759  deleteAndRecombine(Ptr.getNode());
9760
9761  return true;
9762}
9763
9764/// Try to combine a load/store with a add/sub of the base pointer node into a
9765/// post-indexed load/store. The transformation folded the add/subtract into the
9766/// new indexed load/store effectively and all of its uses are redirected to the
9767/// new load/store.
9768bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
9769  if (Level < AfterLegalizeDAG)
9770    return false;
9771
9772  bool isLoad = true;
9773  SDValue Ptr;
9774  EVT VT;
9775  if (LoadSDNode *LD  = dyn_cast<LoadSDNode>(N)) {
9776    if (LD->isIndexed())
9777      return false;
9778    VT = LD->getMemoryVT();
9779    if (!TLI.isIndexedLoadLegal(ISD::POST_INC, VT) &&
9780        !TLI.isIndexedLoadLegal(ISD::POST_DEC, VT))
9781      return false;
9782    Ptr = LD->getBasePtr();
9783  } else if (StoreSDNode *ST  = dyn_cast<StoreSDNode>(N)) {
9784    if (ST->isIndexed())
9785      return false;
9786    VT = ST->getMemoryVT();
9787    if (!TLI.isIndexedStoreLegal(ISD::POST_INC, VT) &&
9788        !TLI.isIndexedStoreLegal(ISD::POST_DEC, VT))
9789      return false;
9790    Ptr = ST->getBasePtr();
9791    isLoad = false;
9792  } else {
9793    return false;
9794  }
9795
9796  if (Ptr.getNode()->hasOneUse())
9797    return false;
9798
9799  for (SDNode *Op : Ptr.getNode()->uses()) {
9800    if (Op == N ||
9801        (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB))
9802      continue;
9803
9804    SDValue BasePtr;
9805    SDValue Offset;
9806    ISD::MemIndexedMode AM = ISD::UNINDEXED;
9807    if (TLI.getPostIndexedAddressParts(N, Op, BasePtr, Offset, AM, DAG)) {
9808      // Don't create a indexed load / store with zero offset.
9809      if (isNullConstant(Offset))
9810        continue;
9811
9812      // Try turning it into a post-indexed load / store except when
9813      // 1) All uses are load / store ops that use it as base ptr (and
9814      //    it may be folded as addressing mmode).
9815      // 2) Op must be independent of N, i.e. Op is neither a predecessor
9816      //    nor a successor of N. Otherwise, if Op is folded that would
9817      //    create a cycle.
9818
9819      if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
9820        continue;
9821
9822      // Check for #1.
9823      bool TryNext = false;
9824      for (SDNode *Use : BasePtr.getNode()->uses()) {
9825        if (Use == Ptr.getNode())
9826          continue;
9827
9828        // If all the uses are load / store addresses, then don't do the
9829        // transformation.
9830        if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB){
9831          bool RealUse = false;
9832          for (SDNode *UseUse : Use->uses()) {
9833            if (!canFoldInAddressingMode(Use, UseUse, DAG, TLI))
9834              RealUse = true;
9835          }
9836
9837          if (!RealUse) {
9838            TryNext = true;
9839            break;
9840          }
9841        }
9842      }
9843
9844      if (TryNext)
9845        continue;
9846
9847      // Check for #2
9848      if (!Op->isPredecessorOf(N) && !N->isPredecessorOf(Op)) {
9849        SDValue Result = isLoad
9850          ? DAG.getIndexedLoad(SDValue(N,0), SDLoc(N),
9851                               BasePtr, Offset, AM)
9852          : DAG.getIndexedStore(SDValue(N,0), SDLoc(N),
9853                                BasePtr, Offset, AM);
9854        ++PostIndexedNodes;
9855        ++NodesCombined;
9856        DEBUG(dbgs() << "\nReplacing.5 ";
9857              N->dump(&DAG);
9858              dbgs() << "\nWith: ";
9859              Result.getNode()->dump(&DAG);
9860              dbgs() << '\n');
9861        WorklistRemover DeadNodes(*this);
9862        if (isLoad) {
9863          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
9864          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
9865        } else {
9866          DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
9867        }
9868
9869        // Finally, since the node is now dead, remove it from the graph.
9870        deleteAndRecombine(N);
9871
9872        // Replace the uses of Use with uses of the updated base value.
9873        DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
9874                                      Result.getValue(isLoad ? 1 : 0));
9875        deleteAndRecombine(Op);
9876        return true;
9877      }
9878    }
9879  }
9880
9881  return false;
9882}
9883
9884/// \brief Return the base-pointer arithmetic from an indexed \p LD.
9885SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
9886  ISD::MemIndexedMode AM = LD->getAddressingMode();
9887  assert(AM != ISD::UNINDEXED);
9888  SDValue BP = LD->getOperand(1);
9889  SDValue Inc = LD->getOperand(2);
9890
9891  // Some backends use TargetConstants for load offsets, but don't expect
9892  // TargetConstants in general ADD nodes. We can convert these constants into
9893  // regular Constants (if the constant is not opaque).
9894  assert((Inc.getOpcode() != ISD::TargetConstant ||
9895          !cast<ConstantSDNode>(Inc)->isOpaque()) &&
9896         "Cannot split out indexing using opaque target constants");
9897  if (Inc.getOpcode() == ISD::TargetConstant) {
9898    ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
9899    Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
9900                          ConstInc->getValueType(0));
9901  }
9902
9903  unsigned Opc =
9904      (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
9905  return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
9906}
9907
9908SDValue DAGCombiner::visitLOAD(SDNode *N) {
9909  LoadSDNode *LD  = cast<LoadSDNode>(N);
9910  SDValue Chain = LD->getChain();
9911  SDValue Ptr   = LD->getBasePtr();
9912
9913  // If load is not volatile and there are no uses of the loaded value (and
9914  // the updated indexed value in case of indexed loads), change uses of the
9915  // chain value into uses of the chain input (i.e. delete the dead load).
9916  if (!LD->isVolatile()) {
9917    if (N->getValueType(1) == MVT::Other) {
9918      // Unindexed loads.
9919      if (!N->hasAnyUseOfValue(0)) {
9920        // It's not safe to use the two value CombineTo variant here. e.g.
9921        // v1, chain2 = load chain1, loc
9922        // v2, chain3 = load chain2, loc
9923        // v3         = add v2, c
9924        // Now we replace use of chain2 with chain1.  This makes the second load
9925        // isomorphic to the one we are deleting, and thus makes this load live.
9926        DEBUG(dbgs() << "\nReplacing.6 ";
9927              N->dump(&DAG);
9928              dbgs() << "\nWith chain: ";
9929              Chain.getNode()->dump(&DAG);
9930              dbgs() << "\n");
9931        WorklistRemover DeadNodes(*this);
9932        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
9933
9934        if (N->use_empty())
9935          deleteAndRecombine(N);
9936
9937        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
9938      }
9939    } else {
9940      // Indexed loads.
9941      assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
9942
9943      // If this load has an opaque TargetConstant offset, then we cannot split
9944      // the indexing into an add/sub directly (that TargetConstant may not be
9945      // valid for a different type of node, and we cannot convert an opaque
9946      // target constant into a regular constant).
9947      bool HasOTCInc = LD->getOperand(2).getOpcode() == ISD::TargetConstant &&
9948                       cast<ConstantSDNode>(LD->getOperand(2))->isOpaque();
9949
9950      if (!N->hasAnyUseOfValue(0) &&
9951          ((MaySplitLoadIndex && !HasOTCInc) || !N->hasAnyUseOfValue(1))) {
9952        SDValue Undef = DAG.getUNDEF(N->getValueType(0));
9953        SDValue Index;
9954        if (N->hasAnyUseOfValue(1) && MaySplitLoadIndex && !HasOTCInc) {
9955          Index = SplitIndexingFromLoad(LD);
9956          // Try to fold the base pointer arithmetic into subsequent loads and
9957          // stores.
9958          AddUsersToWorklist(N);
9959        } else
9960          Index = DAG.getUNDEF(N->getValueType(1));
9961        DEBUG(dbgs() << "\nReplacing.7 ";
9962              N->dump(&DAG);
9963              dbgs() << "\nWith: ";
9964              Undef.getNode()->dump(&DAG);
9965              dbgs() << " and 2 other values\n");
9966        WorklistRemover DeadNodes(*this);
9967        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
9968        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
9969        DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
9970        deleteAndRecombine(N);
9971        return SDValue(N, 0);   // Return N so it doesn't get rechecked!
9972      }
9973    }
9974  }
9975
9976  // If this load is directly stored, replace the load value with the stored
9977  // value.
9978  // TODO: Handle store large -> read small portion.
9979  // TODO: Handle TRUNCSTORE/LOADEXT
9980  if (ISD::isNormalLoad(N) && !LD->isVolatile()) {
9981    if (ISD::isNON_TRUNCStore(Chain.getNode())) {
9982      StoreSDNode *PrevST = cast<StoreSDNode>(Chain);
9983      if (PrevST->getBasePtr() == Ptr &&
9984          PrevST->getValue().getValueType() == N->getValueType(0))
9985      return CombineTo(N, Chain.getOperand(1), Chain);
9986    }
9987  }
9988
9989  // Try to infer better alignment information than the load already has.
9990  if (OptLevel != CodeGenOpt::None && LD->isUnindexed()) {
9991    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
9992      if (Align > LD->getMemOperand()->getBaseAlignment()) {
9993        SDValue NewLoad =
9994               DAG.getExtLoad(LD->getExtensionType(), SDLoc(N),
9995                              LD->getValueType(0),
9996                              Chain, Ptr, LD->getPointerInfo(),
9997                              LD->getMemoryVT(),
9998                              LD->isVolatile(), LD->isNonTemporal(),
9999                              LD->isInvariant(), Align, LD->getAAInfo());
10000        if (NewLoad.getNode() != N)
10001          return CombineTo(N, NewLoad, SDValue(NewLoad.getNode(), 1), true);
10002      }
10003    }
10004  }
10005
10006  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
10007                                                  : DAG.getSubtarget().useAA();
10008#ifndef NDEBUG
10009  if (CombinerAAOnlyFunc.getNumOccurrences() &&
10010      CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
10011    UseAA = false;
10012#endif
10013  if (UseAA && LD->isUnindexed()) {
10014    // Walk up chain skipping non-aliasing memory nodes.
10015    SDValue BetterChain = FindBetterChain(N, Chain);
10016
10017    // If there is a better chain.
10018    if (Chain != BetterChain) {
10019      SDValue ReplLoad;
10020
10021      // Replace the chain to void dependency.
10022      if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
10023        ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
10024                               BetterChain, Ptr, LD->getMemOperand());
10025      } else {
10026        ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
10027                                  LD->getValueType(0),
10028                                  BetterChain, Ptr, LD->getMemoryVT(),
10029                                  LD->getMemOperand());
10030      }
10031
10032      // Create token factor to keep old chain connected.
10033      SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
10034                                  MVT::Other, Chain, ReplLoad.getValue(1));
10035
10036      // Make sure the new and old chains are cleaned up.
10037      AddToWorklist(Token.getNode());
10038
10039      // Replace uses with load result and token factor. Don't add users
10040      // to work list.
10041      return CombineTo(N, ReplLoad.getValue(0), Token, false);
10042    }
10043  }
10044
10045  // Try transforming N to an indexed load.
10046  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
10047    return SDValue(N, 0);
10048
10049  // Try to slice up N to more direct loads if the slices are mapped to
10050  // different register banks or pairing can take place.
10051  if (SliceUpLoad(N))
10052    return SDValue(N, 0);
10053
10054  return SDValue();
10055}
10056
10057namespace {
10058/// \brief Helper structure used to slice a load in smaller loads.
10059/// Basically a slice is obtained from the following sequence:
10060/// Origin = load Ty1, Base
10061/// Shift = srl Ty1 Origin, CstTy Amount
10062/// Inst = trunc Shift to Ty2
10063///
10064/// Then, it will be rewriten into:
10065/// Slice = load SliceTy, Base + SliceOffset
10066/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
10067///
10068/// SliceTy is deduced from the number of bits that are actually used to
10069/// build Inst.
10070struct LoadedSlice {
10071  /// \brief Helper structure used to compute the cost of a slice.
10072  struct Cost {
10073    /// Are we optimizing for code size.
10074    bool ForCodeSize;
10075    /// Various cost.
10076    unsigned Loads;
10077    unsigned Truncates;
10078    unsigned CrossRegisterBanksCopies;
10079    unsigned ZExts;
10080    unsigned Shift;
10081
10082    Cost(bool ForCodeSize = false)
10083        : ForCodeSize(ForCodeSize), Loads(0), Truncates(0),
10084          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {}
10085
10086    /// \brief Get the cost of one isolated slice.
10087    Cost(const LoadedSlice &LS, bool ForCodeSize = false)
10088        : ForCodeSize(ForCodeSize), Loads(1), Truncates(0),
10089          CrossRegisterBanksCopies(0), ZExts(0), Shift(0) {
10090      EVT TruncType = LS.Inst->getValueType(0);
10091      EVT LoadedType = LS.getLoadedType();
10092      if (TruncType != LoadedType &&
10093          !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
10094        ZExts = 1;
10095    }
10096
10097    /// \brief Account for slicing gain in the current cost.
10098    /// Slicing provide a few gains like removing a shift or a
10099    /// truncate. This method allows to grow the cost of the original
10100    /// load with the gain from this slice.
10101    void addSliceGain(const LoadedSlice &LS) {
10102      // Each slice saves a truncate.
10103      const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
10104      if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
10105                              LS.Inst->getValueType(0)))
10106        ++Truncates;
10107      // If there is a shift amount, this slice gets rid of it.
10108      if (LS.Shift)
10109        ++Shift;
10110      // If this slice can merge a cross register bank copy, account for it.
10111      if (LS.canMergeExpensiveCrossRegisterBankCopy())
10112        ++CrossRegisterBanksCopies;
10113    }
10114
10115    Cost &operator+=(const Cost &RHS) {
10116      Loads += RHS.Loads;
10117      Truncates += RHS.Truncates;
10118      CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
10119      ZExts += RHS.ZExts;
10120      Shift += RHS.Shift;
10121      return *this;
10122    }
10123
10124    bool operator==(const Cost &RHS) const {
10125      return Loads == RHS.Loads && Truncates == RHS.Truncates &&
10126             CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
10127             ZExts == RHS.ZExts && Shift == RHS.Shift;
10128    }
10129
10130    bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
10131
10132    bool operator<(const Cost &RHS) const {
10133      // Assume cross register banks copies are as expensive as loads.
10134      // FIXME: Do we want some more target hooks?
10135      unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
10136      unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
10137      // Unless we are optimizing for code size, consider the
10138      // expensive operation first.
10139      if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
10140        return ExpensiveOpsLHS < ExpensiveOpsRHS;
10141      return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
10142             (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
10143    }
10144
10145    bool operator>(const Cost &RHS) const { return RHS < *this; }
10146
10147    bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
10148
10149    bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
10150  };
10151  // The last instruction that represent the slice. This should be a
10152  // truncate instruction.
10153  SDNode *Inst;
10154  // The original load instruction.
10155  LoadSDNode *Origin;
10156  // The right shift amount in bits from the original load.
10157  unsigned Shift;
10158  // The DAG from which Origin came from.
10159  // This is used to get some contextual information about legal types, etc.
10160  SelectionDAG *DAG;
10161
10162  LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
10163              unsigned Shift = 0, SelectionDAG *DAG = nullptr)
10164      : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
10165
10166  /// \brief Get the bits used in a chunk of bits \p BitWidth large.
10167  /// \return Result is \p BitWidth and has used bits set to 1 and
10168  ///         not used bits set to 0.
10169  APInt getUsedBits() const {
10170    // Reproduce the trunc(lshr) sequence:
10171    // - Start from the truncated value.
10172    // - Zero extend to the desired bit width.
10173    // - Shift left.
10174    assert(Origin && "No original load to compare against.");
10175    unsigned BitWidth = Origin->getValueSizeInBits(0);
10176    assert(Inst && "This slice is not bound to an instruction");
10177    assert(Inst->getValueSizeInBits(0) <= BitWidth &&
10178           "Extracted slice is bigger than the whole type!");
10179    APInt UsedBits(Inst->getValueSizeInBits(0), 0);
10180    UsedBits.setAllBits();
10181    UsedBits = UsedBits.zext(BitWidth);
10182    UsedBits <<= Shift;
10183    return UsedBits;
10184  }
10185
10186  /// \brief Get the size of the slice to be loaded in bytes.
10187  unsigned getLoadedSize() const {
10188    unsigned SliceSize = getUsedBits().countPopulation();
10189    assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
10190    return SliceSize / 8;
10191  }
10192
10193  /// \brief Get the type that will be loaded for this slice.
10194  /// Note: This may not be the final type for the slice.
10195  EVT getLoadedType() const {
10196    assert(DAG && "Missing context");
10197    LLVMContext &Ctxt = *DAG->getContext();
10198    return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
10199  }
10200
10201  /// \brief Get the alignment of the load used for this slice.
10202  unsigned getAlignment() const {
10203    unsigned Alignment = Origin->getAlignment();
10204    unsigned Offset = getOffsetFromBase();
10205    if (Offset != 0)
10206      Alignment = MinAlign(Alignment, Alignment + Offset);
10207    return Alignment;
10208  }
10209
10210  /// \brief Check if this slice can be rewritten with legal operations.
10211  bool isLegal() const {
10212    // An invalid slice is not legal.
10213    if (!Origin || !Inst || !DAG)
10214      return false;
10215
10216    // Offsets are for indexed load only, we do not handle that.
10217    if (Origin->getOffset().getOpcode() != ISD::UNDEF)
10218      return false;
10219
10220    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
10221
10222    // Check that the type is legal.
10223    EVT SliceType = getLoadedType();
10224    if (!TLI.isTypeLegal(SliceType))
10225      return false;
10226
10227    // Check that the load is legal for this type.
10228    if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
10229      return false;
10230
10231    // Check that the offset can be computed.
10232    // 1. Check its type.
10233    EVT PtrType = Origin->getBasePtr().getValueType();
10234    if (PtrType == MVT::Untyped || PtrType.isExtended())
10235      return false;
10236
10237    // 2. Check that it fits in the immediate.
10238    if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
10239      return false;
10240
10241    // 3. Check that the computation is legal.
10242    if (!TLI.isOperationLegal(ISD::ADD, PtrType))
10243      return false;
10244
10245    // Check that the zext is legal if it needs one.
10246    EVT TruncateType = Inst->getValueType(0);
10247    if (TruncateType != SliceType &&
10248        !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
10249      return false;
10250
10251    return true;
10252  }
10253
10254  /// \brief Get the offset in bytes of this slice in the original chunk of
10255  /// bits.
10256  /// \pre DAG != nullptr.
10257  uint64_t getOffsetFromBase() const {
10258    assert(DAG && "Missing context.");
10259    bool IsBigEndian = DAG->getDataLayout().isBigEndian();
10260    assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
10261    uint64_t Offset = Shift / 8;
10262    unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
10263    assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
10264           "The size of the original loaded type is not a multiple of a"
10265           " byte.");
10266    // If Offset is bigger than TySizeInBytes, it means we are loading all
10267    // zeros. This should have been optimized before in the process.
10268    assert(TySizeInBytes > Offset &&
10269           "Invalid shift amount for given loaded size");
10270    if (IsBigEndian)
10271      Offset = TySizeInBytes - Offset - getLoadedSize();
10272    return Offset;
10273  }
10274
10275  /// \brief Generate the sequence of instructions to load the slice
10276  /// represented by this object and redirect the uses of this slice to
10277  /// this new sequence of instructions.
10278  /// \pre this->Inst && this->Origin are valid Instructions and this
10279  /// object passed the legal check: LoadedSlice::isLegal returned true.
10280  /// \return The last instruction of the sequence used to load the slice.
10281  SDValue loadSlice() const {
10282    assert(Inst && Origin && "Unable to replace a non-existing slice.");
10283    const SDValue &OldBaseAddr = Origin->getBasePtr();
10284    SDValue BaseAddr = OldBaseAddr;
10285    // Get the offset in that chunk of bytes w.r.t. the endianess.
10286    int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
10287    assert(Offset >= 0 && "Offset too big to fit in int64_t!");
10288    if (Offset) {
10289      // BaseAddr = BaseAddr + Offset.
10290      EVT ArithType = BaseAddr.getValueType();
10291      SDLoc DL(Origin);
10292      BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
10293                              DAG->getConstant(Offset, DL, ArithType));
10294    }
10295
10296    // Create the type of the loaded slice according to its size.
10297    EVT SliceType = getLoadedType();
10298
10299    // Create the load for the slice.
10300    SDValue LastInst = DAG->getLoad(
10301        SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
10302        Origin->getPointerInfo().getWithOffset(Offset), Origin->isVolatile(),
10303        Origin->isNonTemporal(), Origin->isInvariant(), getAlignment());
10304    // If the final type is not the same as the loaded type, this means that
10305    // we have to pad with zero. Create a zero extend for that.
10306    EVT FinalType = Inst->getValueType(0);
10307    if (SliceType != FinalType)
10308      LastInst =
10309          DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
10310    return LastInst;
10311  }
10312
10313  /// \brief Check if this slice can be merged with an expensive cross register
10314  /// bank copy. E.g.,
10315  /// i = load i32
10316  /// f = bitcast i32 i to float
10317  bool canMergeExpensiveCrossRegisterBankCopy() const {
10318    if (!Inst || !Inst->hasOneUse())
10319      return false;
10320    SDNode *Use = *Inst->use_begin();
10321    if (Use->getOpcode() != ISD::BITCAST)
10322      return false;
10323    assert(DAG && "Missing context");
10324    const TargetLowering &TLI = DAG->getTargetLoweringInfo();
10325    EVT ResVT = Use->getValueType(0);
10326    const TargetRegisterClass *ResRC = TLI.getRegClassFor(ResVT.getSimpleVT());
10327    const TargetRegisterClass *ArgRC =
10328        TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT());
10329    if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
10330      return false;
10331
10332    // At this point, we know that we perform a cross-register-bank copy.
10333    // Check if it is expensive.
10334    const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
10335    // Assume bitcasts are cheap, unless both register classes do not
10336    // explicitly share a common sub class.
10337    if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
10338      return false;
10339
10340    // Check if it will be merged with the load.
10341    // 1. Check the alignment constraint.
10342    unsigned RequiredAlignment = DAG->getDataLayout().getABITypeAlignment(
10343        ResVT.getTypeForEVT(*DAG->getContext()));
10344
10345    if (RequiredAlignment > getAlignment())
10346      return false;
10347
10348    // 2. Check that the load is a legal operation for that type.
10349    if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
10350      return false;
10351
10352    // 3. Check that we do not have a zext in the way.
10353    if (Inst->getValueType(0) != getLoadedType())
10354      return false;
10355
10356    return true;
10357  }
10358};
10359}
10360
10361/// \brief Check that all bits set in \p UsedBits form a dense region, i.e.,
10362/// \p UsedBits looks like 0..0 1..1 0..0.
10363static bool areUsedBitsDense(const APInt &UsedBits) {
10364  // If all the bits are one, this is dense!
10365  if (UsedBits.isAllOnesValue())
10366    return true;
10367
10368  // Get rid of the unused bits on the right.
10369  APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
10370  // Get rid of the unused bits on the left.
10371  if (NarrowedUsedBits.countLeadingZeros())
10372    NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
10373  // Check that the chunk of bits is completely used.
10374  return NarrowedUsedBits.isAllOnesValue();
10375}
10376
10377/// \brief Check whether or not \p First and \p Second are next to each other
10378/// in memory. This means that there is no hole between the bits loaded
10379/// by \p First and the bits loaded by \p Second.
10380static bool areSlicesNextToEachOther(const LoadedSlice &First,
10381                                     const LoadedSlice &Second) {
10382  assert(First.Origin == Second.Origin && First.Origin &&
10383         "Unable to match different memory origins.");
10384  APInt UsedBits = First.getUsedBits();
10385  assert((UsedBits & Second.getUsedBits()) == 0 &&
10386         "Slices are not supposed to overlap.");
10387  UsedBits |= Second.getUsedBits();
10388  return areUsedBitsDense(UsedBits);
10389}
10390
10391/// \brief Adjust the \p GlobalLSCost according to the target
10392/// paring capabilities and the layout of the slices.
10393/// \pre \p GlobalLSCost should account for at least as many loads as
10394/// there is in the slices in \p LoadedSlices.
10395static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
10396                                 LoadedSlice::Cost &GlobalLSCost) {
10397  unsigned NumberOfSlices = LoadedSlices.size();
10398  // If there is less than 2 elements, no pairing is possible.
10399  if (NumberOfSlices < 2)
10400    return;
10401
10402  // Sort the slices so that elements that are likely to be next to each
10403  // other in memory are next to each other in the list.
10404  std::sort(LoadedSlices.begin(), LoadedSlices.end(),
10405            [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
10406    assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
10407    return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
10408  });
10409  const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
10410  // First (resp. Second) is the first (resp. Second) potentially candidate
10411  // to be placed in a paired load.
10412  const LoadedSlice *First = nullptr;
10413  const LoadedSlice *Second = nullptr;
10414  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
10415                // Set the beginning of the pair.
10416                                                           First = Second) {
10417
10418    Second = &LoadedSlices[CurrSlice];
10419
10420    // If First is NULL, it means we start a new pair.
10421    // Get to the next slice.
10422    if (!First)
10423      continue;
10424
10425    EVT LoadedType = First->getLoadedType();
10426
10427    // If the types of the slices are different, we cannot pair them.
10428    if (LoadedType != Second->getLoadedType())
10429      continue;
10430
10431    // Check if the target supplies paired loads for this type.
10432    unsigned RequiredAlignment = 0;
10433    if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
10434      // move to the next pair, this type is hopeless.
10435      Second = nullptr;
10436      continue;
10437    }
10438    // Check if we meet the alignment requirement.
10439    if (RequiredAlignment > First->getAlignment())
10440      continue;
10441
10442    // Check that both loads are next to each other in memory.
10443    if (!areSlicesNextToEachOther(*First, *Second))
10444      continue;
10445
10446    assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
10447    --GlobalLSCost.Loads;
10448    // Move to the next pair.
10449    Second = nullptr;
10450  }
10451}
10452
10453/// \brief Check the profitability of all involved LoadedSlice.
10454/// Currently, it is considered profitable if there is exactly two
10455/// involved slices (1) which are (2) next to each other in memory, and
10456/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
10457///
10458/// Note: The order of the elements in \p LoadedSlices may be modified, but not
10459/// the elements themselves.
10460///
10461/// FIXME: When the cost model will be mature enough, we can relax
10462/// constraints (1) and (2).
10463static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
10464                                const APInt &UsedBits, bool ForCodeSize) {
10465  unsigned NumberOfSlices = LoadedSlices.size();
10466  if (StressLoadSlicing)
10467    return NumberOfSlices > 1;
10468
10469  // Check (1).
10470  if (NumberOfSlices != 2)
10471    return false;
10472
10473  // Check (2).
10474  if (!areUsedBitsDense(UsedBits))
10475    return false;
10476
10477  // Check (3).
10478  LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
10479  // The original code has one big load.
10480  OrigCost.Loads = 1;
10481  for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
10482    const LoadedSlice &LS = LoadedSlices[CurrSlice];
10483    // Accumulate the cost of all the slices.
10484    LoadedSlice::Cost SliceCost(LS, ForCodeSize);
10485    GlobalSlicingCost += SliceCost;
10486
10487    // Account as cost in the original configuration the gain obtained
10488    // with the current slices.
10489    OrigCost.addSliceGain(LS);
10490  }
10491
10492  // If the target supports paired load, adjust the cost accordingly.
10493  adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
10494  return OrigCost > GlobalSlicingCost;
10495}
10496
10497/// \brief If the given load, \p LI, is used only by trunc or trunc(lshr)
10498/// operations, split it in the various pieces being extracted.
10499///
10500/// This sort of thing is introduced by SROA.
10501/// This slicing takes care not to insert overlapping loads.
10502/// \pre LI is a simple load (i.e., not an atomic or volatile load).
10503bool DAGCombiner::SliceUpLoad(SDNode *N) {
10504  if (Level < AfterLegalizeDAG)
10505    return false;
10506
10507  LoadSDNode *LD = cast<LoadSDNode>(N);
10508  if (LD->isVolatile() || !ISD::isNormalLoad(LD) ||
10509      !LD->getValueType(0).isInteger())
10510    return false;
10511
10512  // Keep track of already used bits to detect overlapping values.
10513  // In that case, we will just abort the transformation.
10514  APInt UsedBits(LD->getValueSizeInBits(0), 0);
10515
10516  SmallVector<LoadedSlice, 4> LoadedSlices;
10517
10518  // Check if this load is used as several smaller chunks of bits.
10519  // Basically, look for uses in trunc or trunc(lshr) and record a new chain
10520  // of computation for each trunc.
10521  for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
10522       UI != UIEnd; ++UI) {
10523    // Skip the uses of the chain.
10524    if (UI.getUse().getResNo() != 0)
10525      continue;
10526
10527    SDNode *User = *UI;
10528    unsigned Shift = 0;
10529
10530    // Check if this is a trunc(lshr).
10531    if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
10532        isa<ConstantSDNode>(User->getOperand(1))) {
10533      Shift = cast<ConstantSDNode>(User->getOperand(1))->getZExtValue();
10534      User = *User->use_begin();
10535    }
10536
10537    // At this point, User is a Truncate, iff we encountered, trunc or
10538    // trunc(lshr).
10539    if (User->getOpcode() != ISD::TRUNCATE)
10540      return false;
10541
10542    // The width of the type must be a power of 2 and greater than 8-bits.
10543    // Otherwise the load cannot be represented in LLVM IR.
10544    // Moreover, if we shifted with a non-8-bits multiple, the slice
10545    // will be across several bytes. We do not support that.
10546    unsigned Width = User->getValueSizeInBits(0);
10547    if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
10548      return 0;
10549
10550    // Build the slice for this chain of computations.
10551    LoadedSlice LS(User, LD, Shift, &DAG);
10552    APInt CurrentUsedBits = LS.getUsedBits();
10553
10554    // Check if this slice overlaps with another.
10555    if ((CurrentUsedBits & UsedBits) != 0)
10556      return false;
10557    // Update the bits used globally.
10558    UsedBits |= CurrentUsedBits;
10559
10560    // Check if the new slice would be legal.
10561    if (!LS.isLegal())
10562      return false;
10563
10564    // Record the slice.
10565    LoadedSlices.push_back(LS);
10566  }
10567
10568  // Abort slicing if it does not seem to be profitable.
10569  if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
10570    return false;
10571
10572  ++SlicedLoads;
10573
10574  // Rewrite each chain to use an independent load.
10575  // By construction, each chain can be represented by a unique load.
10576
10577  // Prepare the argument for the new token factor for all the slices.
10578  SmallVector<SDValue, 8> ArgChains;
10579  for (SmallVectorImpl<LoadedSlice>::const_iterator
10580           LSIt = LoadedSlices.begin(),
10581           LSItEnd = LoadedSlices.end();
10582       LSIt != LSItEnd; ++LSIt) {
10583    SDValue SliceInst = LSIt->loadSlice();
10584    CombineTo(LSIt->Inst, SliceInst, true);
10585    if (SliceInst.getNode()->getOpcode() != ISD::LOAD)
10586      SliceInst = SliceInst.getOperand(0);
10587    assert(SliceInst->getOpcode() == ISD::LOAD &&
10588           "It takes more than a zext to get to the loaded slice!!");
10589    ArgChains.push_back(SliceInst.getValue(1));
10590  }
10591
10592  SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
10593                              ArgChains);
10594  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
10595  return true;
10596}
10597
10598/// Check to see if V is (and load (ptr), imm), where the load is having
10599/// specific bytes cleared out.  If so, return the byte size being masked out
10600/// and the shift amount.
10601static std::pair<unsigned, unsigned>
10602CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
10603  std::pair<unsigned, unsigned> Result(0, 0);
10604
10605  // Check for the structure we're looking for.
10606  if (V->getOpcode() != ISD::AND ||
10607      !isa<ConstantSDNode>(V->getOperand(1)) ||
10608      !ISD::isNormalLoad(V->getOperand(0).getNode()))
10609    return Result;
10610
10611  // Check the chain and pointer.
10612  LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
10613  if (LD->getBasePtr() != Ptr) return Result;  // Not from same pointer.
10614
10615  // The store should be chained directly to the load or be an operand of a
10616  // tokenfactor.
10617  if (LD == Chain.getNode())
10618    ; // ok.
10619  else if (Chain->getOpcode() != ISD::TokenFactor)
10620    return Result; // Fail.
10621  else {
10622    bool isOk = false;
10623    for (const SDValue &ChainOp : Chain->op_values())
10624      if (ChainOp.getNode() == LD) {
10625        isOk = true;
10626        break;
10627      }
10628    if (!isOk) return Result;
10629  }
10630
10631  // This only handles simple types.
10632  if (V.getValueType() != MVT::i16 &&
10633      V.getValueType() != MVT::i32 &&
10634      V.getValueType() != MVT::i64)
10635    return Result;
10636
10637  // Check the constant mask.  Invert it so that the bits being masked out are
10638  // 0 and the bits being kept are 1.  Use getSExtValue so that leading bits
10639  // follow the sign bit for uniformity.
10640  uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
10641  unsigned NotMaskLZ = countLeadingZeros(NotMask);
10642  if (NotMaskLZ & 7) return Result;  // Must be multiple of a byte.
10643  unsigned NotMaskTZ = countTrailingZeros(NotMask);
10644  if (NotMaskTZ & 7) return Result;  // Must be multiple of a byte.
10645  if (NotMaskLZ == 64) return Result;  // All zero mask.
10646
10647  // See if we have a continuous run of bits.  If so, we have 0*1+0*
10648  if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
10649    return Result;
10650
10651  // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
10652  if (V.getValueType() != MVT::i64 && NotMaskLZ)
10653    NotMaskLZ -= 64-V.getValueSizeInBits();
10654
10655  unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
10656  switch (MaskedBytes) {
10657  case 1:
10658  case 2:
10659  case 4: break;
10660  default: return Result; // All one mask, or 5-byte mask.
10661  }
10662
10663  // Verify that the first bit starts at a multiple of mask so that the access
10664  // is aligned the same as the access width.
10665  if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
10666
10667  Result.first = MaskedBytes;
10668  Result.second = NotMaskTZ/8;
10669  return Result;
10670}
10671
10672
10673/// Check to see if IVal is something that provides a value as specified by
10674/// MaskInfo. If so, replace the specified store with a narrower store of
10675/// truncated IVal.
10676static SDNode *
10677ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
10678                                SDValue IVal, StoreSDNode *St,
10679                                DAGCombiner *DC) {
10680  unsigned NumBytes = MaskInfo.first;
10681  unsigned ByteShift = MaskInfo.second;
10682  SelectionDAG &DAG = DC->getDAG();
10683
10684  // Check to see if IVal is all zeros in the part being masked in by the 'or'
10685  // that uses this.  If not, this is not a replacement.
10686  APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
10687                                  ByteShift*8, (ByteShift+NumBytes)*8);
10688  if (!DAG.MaskedValueIsZero(IVal, Mask)) return nullptr;
10689
10690  // Check that it is legal on the target to do this.  It is legal if the new
10691  // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
10692  // legalization.
10693  MVT VT = MVT::getIntegerVT(NumBytes*8);
10694  if (!DC->isTypeLegal(VT))
10695    return nullptr;
10696
10697  // Okay, we can do this!  Replace the 'St' store with a store of IVal that is
10698  // shifted by ByteShift and truncated down to NumBytes.
10699  if (ByteShift) {
10700    SDLoc DL(IVal);
10701    IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
10702                       DAG.getConstant(ByteShift*8, DL,
10703                                    DC->getShiftAmountTy(IVal.getValueType())));
10704  }
10705
10706  // Figure out the offset for the store and the alignment of the access.
10707  unsigned StOffset;
10708  unsigned NewAlign = St->getAlignment();
10709
10710  if (DAG.getDataLayout().isLittleEndian())
10711    StOffset = ByteShift;
10712  else
10713    StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
10714
10715  SDValue Ptr = St->getBasePtr();
10716  if (StOffset) {
10717    SDLoc DL(IVal);
10718    Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(),
10719                      Ptr, DAG.getConstant(StOffset, DL, Ptr.getValueType()));
10720    NewAlign = MinAlign(NewAlign, StOffset);
10721  }
10722
10723  // Truncate down to the new size.
10724  IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
10725
10726  ++OpsNarrowed;
10727  return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
10728                      St->getPointerInfo().getWithOffset(StOffset),
10729                      false, false, NewAlign).getNode();
10730}
10731
10732
10733/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
10734/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
10735/// narrowing the load and store if it would end up being a win for performance
10736/// or code size.
10737SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
10738  StoreSDNode *ST  = cast<StoreSDNode>(N);
10739  if (ST->isVolatile())
10740    return SDValue();
10741
10742  SDValue Chain = ST->getChain();
10743  SDValue Value = ST->getValue();
10744  SDValue Ptr   = ST->getBasePtr();
10745  EVT VT = Value.getValueType();
10746
10747  if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
10748    return SDValue();
10749
10750  unsigned Opc = Value.getOpcode();
10751
10752  // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
10753  // is a byte mask indicating a consecutive number of bytes, check to see if
10754  // Y is known to provide just those bytes.  If so, we try to replace the
10755  // load + replace + store sequence with a single (narrower) store, which makes
10756  // the load dead.
10757  if (Opc == ISD::OR) {
10758    std::pair<unsigned, unsigned> MaskedLoad;
10759    MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
10760    if (MaskedLoad.first)
10761      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
10762                                                  Value.getOperand(1), ST,this))
10763        return SDValue(NewST, 0);
10764
10765    // Or is commutative, so try swapping X and Y.
10766    MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
10767    if (MaskedLoad.first)
10768      if (SDNode *NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
10769                                                  Value.getOperand(0), ST,this))
10770        return SDValue(NewST, 0);
10771  }
10772
10773  if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
10774      Value.getOperand(1).getOpcode() != ISD::Constant)
10775    return SDValue();
10776
10777  SDValue N0 = Value.getOperand(0);
10778  if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
10779      Chain == SDValue(N0.getNode(), 1)) {
10780    LoadSDNode *LD = cast<LoadSDNode>(N0);
10781    if (LD->getBasePtr() != Ptr ||
10782        LD->getPointerInfo().getAddrSpace() !=
10783        ST->getPointerInfo().getAddrSpace())
10784      return SDValue();
10785
10786    // Find the type to narrow it the load / op / store to.
10787    SDValue N1 = Value.getOperand(1);
10788    unsigned BitWidth = N1.getValueSizeInBits();
10789    APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
10790    if (Opc == ISD::AND)
10791      Imm ^= APInt::getAllOnesValue(BitWidth);
10792    if (Imm == 0 || Imm.isAllOnesValue())
10793      return SDValue();
10794    unsigned ShAmt = Imm.countTrailingZeros();
10795    unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
10796    unsigned NewBW = NextPowerOf2(MSB - ShAmt);
10797    EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
10798    // The narrowing should be profitable, the load/store operation should be
10799    // legal (or custom) and the store size should be equal to the NewVT width.
10800    while (NewBW < BitWidth &&
10801           (NewVT.getStoreSizeInBits() != NewBW ||
10802            !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
10803            !TLI.isNarrowingProfitable(VT, NewVT))) {
10804      NewBW = NextPowerOf2(NewBW);
10805      NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
10806    }
10807    if (NewBW >= BitWidth)
10808      return SDValue();
10809
10810    // If the lsb changed does not start at the type bitwidth boundary,
10811    // start at the previous one.
10812    if (ShAmt % NewBW)
10813      ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
10814    APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
10815                                   std::min(BitWidth, ShAmt + NewBW));
10816    if ((Imm & Mask) == Imm) {
10817      APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
10818      if (Opc == ISD::AND)
10819        NewImm ^= APInt::getAllOnesValue(NewBW);
10820      uint64_t PtrOff = ShAmt / 8;
10821      // For big endian targets, we need to adjust the offset to the pointer to
10822      // load the correct bytes.
10823      if (DAG.getDataLayout().isBigEndian())
10824        PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
10825
10826      unsigned NewAlign = MinAlign(LD->getAlignment(), PtrOff);
10827      Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
10828      if (NewAlign < DAG.getDataLayout().getABITypeAlignment(NewVTTy))
10829        return SDValue();
10830
10831      SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(LD),
10832                                   Ptr.getValueType(), Ptr,
10833                                   DAG.getConstant(PtrOff, SDLoc(LD),
10834                                                   Ptr.getValueType()));
10835      SDValue NewLD = DAG.getLoad(NewVT, SDLoc(N0),
10836                                  LD->getChain(), NewPtr,
10837                                  LD->getPointerInfo().getWithOffset(PtrOff),
10838                                  LD->isVolatile(), LD->isNonTemporal(),
10839                                  LD->isInvariant(), NewAlign,
10840                                  LD->getAAInfo());
10841      SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
10842                                   DAG.getConstant(NewImm, SDLoc(Value),
10843                                                   NewVT));
10844      SDValue NewST = DAG.getStore(Chain, SDLoc(N),
10845                                   NewVal, NewPtr,
10846                                   ST->getPointerInfo().getWithOffset(PtrOff),
10847                                   false, false, NewAlign);
10848
10849      AddToWorklist(NewPtr.getNode());
10850      AddToWorklist(NewLD.getNode());
10851      AddToWorklist(NewVal.getNode());
10852      WorklistRemover DeadNodes(*this);
10853      DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
10854      ++OpsNarrowed;
10855      return NewST;
10856    }
10857  }
10858
10859  return SDValue();
10860}
10861
10862/// For a given floating point load / store pair, if the load value isn't used
10863/// by any other operations, then consider transforming the pair to integer
10864/// load / store operations if the target deems the transformation profitable.
10865SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
10866  StoreSDNode *ST  = cast<StoreSDNode>(N);
10867  SDValue Chain = ST->getChain();
10868  SDValue Value = ST->getValue();
10869  if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
10870      Value.hasOneUse() &&
10871      Chain == SDValue(Value.getNode(), 1)) {
10872    LoadSDNode *LD = cast<LoadSDNode>(Value);
10873    EVT VT = LD->getMemoryVT();
10874    if (!VT.isFloatingPoint() ||
10875        VT != ST->getMemoryVT() ||
10876        LD->isNonTemporal() ||
10877        ST->isNonTemporal() ||
10878        LD->getPointerInfo().getAddrSpace() != 0 ||
10879        ST->getPointerInfo().getAddrSpace() != 0)
10880      return SDValue();
10881
10882    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10883    if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
10884        !TLI.isOperationLegal(ISD::STORE, IntVT) ||
10885        !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
10886        !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
10887      return SDValue();
10888
10889    unsigned LDAlign = LD->getAlignment();
10890    unsigned STAlign = ST->getAlignment();
10891    Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
10892    unsigned ABIAlign = DAG.getDataLayout().getABITypeAlignment(IntVTTy);
10893    if (LDAlign < ABIAlign || STAlign < ABIAlign)
10894      return SDValue();
10895
10896    SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value),
10897                                LD->getChain(), LD->getBasePtr(),
10898                                LD->getPointerInfo(),
10899                                false, false, false, LDAlign);
10900
10901    SDValue NewST = DAG.getStore(NewLD.getValue(1), SDLoc(N),
10902                                 NewLD, ST->getBasePtr(),
10903                                 ST->getPointerInfo(),
10904                                 false, false, STAlign);
10905
10906    AddToWorklist(NewLD.getNode());
10907    AddToWorklist(NewST.getNode());
10908    WorklistRemover DeadNodes(*this);
10909    DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
10910    ++LdStFP2Int;
10911    return NewST;
10912  }
10913
10914  return SDValue();
10915}
10916
10917namespace {
10918/// Helper struct to parse and store a memory address as base + index + offset.
10919/// We ignore sign extensions when it is safe to do so.
10920/// The following two expressions are not equivalent. To differentiate we need
10921/// to store whether there was a sign extension involved in the index
10922/// computation.
10923///  (load (i64 add (i64 copyfromreg %c)
10924///                 (i64 signextend (add (i8 load %index)
10925///                                      (i8 1))))
10926/// vs
10927///
10928/// (load (i64 add (i64 copyfromreg %c)
10929///                (i64 signextend (i32 add (i32 signextend (i8 load %index))
10930///                                         (i32 1)))))
10931struct BaseIndexOffset {
10932  SDValue Base;
10933  SDValue Index;
10934  int64_t Offset;
10935  bool IsIndexSignExt;
10936
10937  BaseIndexOffset() : Offset(0), IsIndexSignExt(false) {}
10938
10939  BaseIndexOffset(SDValue Base, SDValue Index, int64_t Offset,
10940                  bool IsIndexSignExt) :
10941    Base(Base), Index(Index), Offset(Offset), IsIndexSignExt(IsIndexSignExt) {}
10942
10943  bool equalBaseIndex(const BaseIndexOffset &Other) {
10944    return Other.Base == Base && Other.Index == Index &&
10945      Other.IsIndexSignExt == IsIndexSignExt;
10946  }
10947
10948  /// Parses tree in Ptr for base, index, offset addresses.
10949  static BaseIndexOffset match(SDValue Ptr) {
10950    bool IsIndexSignExt = false;
10951
10952    // We only can pattern match BASE + INDEX + OFFSET. If Ptr is not an ADD
10953    // instruction, then it could be just the BASE or everything else we don't
10954    // know how to handle. Just use Ptr as BASE and give up.
10955    if (Ptr->getOpcode() != ISD::ADD)
10956      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
10957
10958    // We know that we have at least an ADD instruction. Try to pattern match
10959    // the simple case of BASE + OFFSET.
10960    if (isa<ConstantSDNode>(Ptr->getOperand(1))) {
10961      int64_t Offset = cast<ConstantSDNode>(Ptr->getOperand(1))->getSExtValue();
10962      return  BaseIndexOffset(Ptr->getOperand(0), SDValue(), Offset,
10963                              IsIndexSignExt);
10964    }
10965
10966    // Inside a loop the current BASE pointer is calculated using an ADD and a
10967    // MUL instruction. In this case Ptr is the actual BASE pointer.
10968    // (i64 add (i64 %array_ptr)
10969    //          (i64 mul (i64 %induction_var)
10970    //                   (i64 %element_size)))
10971    if (Ptr->getOperand(1)->getOpcode() == ISD::MUL)
10972      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
10973
10974    // Look at Base + Index + Offset cases.
10975    SDValue Base = Ptr->getOperand(0);
10976    SDValue IndexOffset = Ptr->getOperand(1);
10977
10978    // Skip signextends.
10979    if (IndexOffset->getOpcode() == ISD::SIGN_EXTEND) {
10980      IndexOffset = IndexOffset->getOperand(0);
10981      IsIndexSignExt = true;
10982    }
10983
10984    // Either the case of Base + Index (no offset) or something else.
10985    if (IndexOffset->getOpcode() != ISD::ADD)
10986      return BaseIndexOffset(Base, IndexOffset, 0, IsIndexSignExt);
10987
10988    // Now we have the case of Base + Index + offset.
10989    SDValue Index = IndexOffset->getOperand(0);
10990    SDValue Offset = IndexOffset->getOperand(1);
10991
10992    if (!isa<ConstantSDNode>(Offset))
10993      return BaseIndexOffset(Ptr, SDValue(), 0, IsIndexSignExt);
10994
10995    // Ignore signextends.
10996    if (Index->getOpcode() == ISD::SIGN_EXTEND) {
10997      Index = Index->getOperand(0);
10998      IsIndexSignExt = true;
10999    } else IsIndexSignExt = false;
11000
11001    int64_t Off = cast<ConstantSDNode>(Offset)->getSExtValue();
11002    return BaseIndexOffset(Base, Index, Off, IsIndexSignExt);
11003  }
11004};
11005} // namespace
11006
11007// This is a helper function for visitMUL to check the profitability
11008// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
11009// MulNode is the original multiply, AddNode is (add x, c1),
11010// and ConstNode is c2.
11011//
11012// If the (add x, c1) has multiple uses, we could increase
11013// the number of adds if we make this transformation.
11014// It would only be worth doing this if we can remove a
11015// multiply in the process. Check for that here.
11016// To illustrate:
11017//     (A + c1) * c3
11018//     (A + c2) * c3
11019// We're checking for cases where we have common "c3 * A" expressions.
11020bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
11021                                              SDValue &AddNode,
11022                                              SDValue &ConstNode) {
11023  APInt Val;
11024
11025  // If the add only has one use, this would be OK to do.
11026  if (AddNode.getNode()->hasOneUse())
11027    return true;
11028
11029  // Walk all the users of the constant with which we're multiplying.
11030  for (SDNode *Use : ConstNode->uses()) {
11031
11032    if (Use == MulNode) // This use is the one we're on right now. Skip it.
11033      continue;
11034
11035    if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
11036      SDNode *OtherOp;
11037      SDNode *MulVar = AddNode.getOperand(0).getNode();
11038
11039      // OtherOp is what we're multiplying against the constant.
11040      if (Use->getOperand(0) == ConstNode)
11041        OtherOp = Use->getOperand(1).getNode();
11042      else
11043        OtherOp = Use->getOperand(0).getNode();
11044
11045      // Check to see if multiply is with the same operand of our "add".
11046      //
11047      //     ConstNode  = CONST
11048      //     Use = ConstNode * A  <-- visiting Use. OtherOp is A.
11049      //     ...
11050      //     AddNode  = (A + c1)  <-- MulVar is A.
11051      //         = AddNode * ConstNode   <-- current visiting instruction.
11052      //
11053      // If we make this transformation, we will have a common
11054      // multiply (ConstNode * A) that we can save.
11055      if (OtherOp == MulVar)
11056        return true;
11057
11058      // Now check to see if a future expansion will give us a common
11059      // multiply.
11060      //
11061      //     ConstNode  = CONST
11062      //     AddNode    = (A + c1)
11063      //     ...   = AddNode * ConstNode <-- current visiting instruction.
11064      //     ...
11065      //     OtherOp = (A + c2)
11066      //     Use     = OtherOp * ConstNode <-- visiting Use.
11067      //
11068      // If we make this transformation, we will have a common
11069      // multiply (CONST * A) after we also do the same transformation
11070      // to the "t2" instruction.
11071      if (OtherOp->getOpcode() == ISD::ADD &&
11072          isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
11073          OtherOp->getOperand(0).getNode() == MulVar)
11074        return true;
11075    }
11076  }
11077
11078  // Didn't find a case where this would be profitable.
11079  return false;
11080}
11081
11082SDValue DAGCombiner::getMergedConstantVectorStore(SelectionDAG &DAG,
11083                                                  SDLoc SL,
11084                                                  ArrayRef<MemOpLink> Stores,
11085                                                  SmallVectorImpl<SDValue> &Chains,
11086                                                  EVT Ty) const {
11087  SmallVector<SDValue, 8> BuildVector;
11088
11089  for (unsigned I = 0, E = Ty.getVectorNumElements(); I != E; ++I) {
11090    StoreSDNode *St = cast<StoreSDNode>(Stores[I].MemNode);
11091    Chains.push_back(St->getChain());
11092    BuildVector.push_back(St->getValue());
11093  }
11094
11095  return DAG.getNode(ISD::BUILD_VECTOR, SL, Ty, BuildVector);
11096}
11097
11098bool DAGCombiner::MergeStoresOfConstantsOrVecElts(
11099                  SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT,
11100                  unsigned NumStores, bool IsConstantSrc, bool UseVector) {
11101  // Make sure we have something to merge.
11102  if (NumStores < 2)
11103    return false;
11104
11105  int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8;
11106  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
11107  unsigned LatestNodeUsed = 0;
11108
11109  for (unsigned i=0; i < NumStores; ++i) {
11110    // Find a chain for the new wide-store operand. Notice that some
11111    // of the store nodes that we found may not be selected for inclusion
11112    // in the wide store. The chain we use needs to be the chain of the
11113    // latest store node which is *used* and replaced by the wide store.
11114    if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum)
11115      LatestNodeUsed = i;
11116  }
11117
11118  SmallVector<SDValue, 8> Chains;
11119
11120  // The latest Node in the DAG.
11121  LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode;
11122  SDLoc DL(StoreNodes[0].MemNode);
11123
11124  SDValue StoredVal;
11125  if (UseVector) {
11126    bool IsVec = MemVT.isVector();
11127    unsigned Elts = NumStores;
11128    if (IsVec) {
11129      // When merging vector stores, get the total number of elements.
11130      Elts *= MemVT.getVectorNumElements();
11131    }
11132    // Get the type for the merged vector store.
11133    EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
11134    assert(TLI.isTypeLegal(Ty) && "Illegal vector store");
11135
11136    if (IsConstantSrc) {
11137      StoredVal = getMergedConstantVectorStore(DAG, DL, StoreNodes, Chains, Ty);
11138    } else {
11139      SmallVector<SDValue, 8> Ops;
11140      for (unsigned i = 0; i < NumStores; ++i) {
11141        StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
11142        SDValue Val = St->getValue();
11143        // All operands of BUILD_VECTOR / CONCAT_VECTOR must have the same type.
11144        if (Val.getValueType() != MemVT)
11145          return false;
11146        Ops.push_back(Val);
11147        Chains.push_back(St->getChain());
11148      }
11149
11150      // Build the extracted vector elements back into a vector.
11151      StoredVal = DAG.getNode(IsVec ? ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
11152                              DL, Ty, Ops);    }
11153  } else {
11154    // We should always use a vector store when merging extracted vector
11155    // elements, so this path implies a store of constants.
11156    assert(IsConstantSrc && "Merged vector elements should use vector store");
11157
11158    unsigned SizeInBits = NumStores * ElementSizeBytes * 8;
11159    APInt StoreInt(SizeInBits, 0);
11160
11161    // Construct a single integer constant which is made of the smaller
11162    // constant inputs.
11163    bool IsLE = DAG.getDataLayout().isLittleEndian();
11164    for (unsigned i = 0; i < NumStores; ++i) {
11165      unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
11166      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
11167      Chains.push_back(St->getChain());
11168
11169      SDValue Val = St->getValue();
11170      StoreInt <<= ElementSizeBytes * 8;
11171      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
11172        StoreInt |= C->getAPIntValue().zext(SizeInBits);
11173      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
11174        StoreInt |= C->getValueAPF().bitcastToAPInt().zext(SizeInBits);
11175      } else {
11176        llvm_unreachable("Invalid constant element type");
11177      }
11178    }
11179
11180    // Create the new Load and Store operations.
11181    EVT StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
11182    StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
11183  }
11184
11185  assert(!Chains.empty());
11186
11187  SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
11188  SDValue NewStore = DAG.getStore(NewChain, DL, StoredVal,
11189                                  FirstInChain->getBasePtr(),
11190                                  FirstInChain->getPointerInfo(),
11191                                  false, false,
11192                                  FirstInChain->getAlignment());
11193
11194  // Replace the last store with the new store
11195  CombineTo(LatestOp, NewStore);
11196  // Erase all other stores.
11197  for (unsigned i = 0; i < NumStores; ++i) {
11198    if (StoreNodes[i].MemNode == LatestOp)
11199      continue;
11200    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
11201    // ReplaceAllUsesWith will replace all uses that existed when it was
11202    // called, but graph optimizations may cause new ones to appear. For
11203    // example, the case in pr14333 looks like
11204    //
11205    //  St's chain -> St -> another store -> X
11206    //
11207    // And the only difference from St to the other store is the chain.
11208    // When we change it's chain to be St's chain they become identical,
11209    // get CSEed and the net result is that X is now a use of St.
11210    // Since we know that St is redundant, just iterate.
11211    while (!St->use_empty())
11212      DAG.ReplaceAllUsesWith(SDValue(St, 0), St->getChain());
11213    deleteAndRecombine(St);
11214  }
11215
11216  return true;
11217}
11218
11219void DAGCombiner::getStoreMergeAndAliasCandidates(
11220    StoreSDNode* St, SmallVectorImpl<MemOpLink> &StoreNodes,
11221    SmallVectorImpl<LSBaseSDNode*> &AliasLoadNodes) {
11222  // This holds the base pointer, index, and the offset in bytes from the base
11223  // pointer.
11224  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
11225
11226  // We must have a base and an offset.
11227  if (!BasePtr.Base.getNode())
11228    return;
11229
11230  // Do not handle stores to undef base pointers.
11231  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
11232    return;
11233
11234  // Walk up the chain and look for nodes with offsets from the same
11235  // base pointer. Stop when reaching an instruction with a different kind
11236  // or instruction which has a different base pointer.
11237  EVT MemVT = St->getMemoryVT();
11238  unsigned Seq = 0;
11239  StoreSDNode *Index = St;
11240
11241
11242  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
11243                                                  : DAG.getSubtarget().useAA();
11244
11245  if (UseAA) {
11246    // Look at other users of the same chain. Stores on the same chain do not
11247    // alias. If combiner-aa is enabled, non-aliasing stores are canonicalized
11248    // to be on the same chain, so don't bother looking at adjacent chains.
11249
11250    SDValue Chain = St->getChain();
11251    for (auto I = Chain->use_begin(), E = Chain->use_end(); I != E; ++I) {
11252      if (StoreSDNode *OtherST = dyn_cast<StoreSDNode>(*I)) {
11253        if (I.getOperandNo() != 0)
11254          continue;
11255
11256        if (OtherST->isVolatile() || OtherST->isIndexed())
11257          continue;
11258
11259        if (OtherST->getMemoryVT() != MemVT)
11260          continue;
11261
11262        BaseIndexOffset Ptr = BaseIndexOffset::match(OtherST->getBasePtr());
11263
11264        if (Ptr.equalBaseIndex(BasePtr))
11265          StoreNodes.push_back(MemOpLink(OtherST, Ptr.Offset, Seq++));
11266      }
11267    }
11268
11269    return;
11270  }
11271
11272  while (Index) {
11273    // If the chain has more than one use, then we can't reorder the mem ops.
11274    if (Index != St && !SDValue(Index, 0)->hasOneUse())
11275      break;
11276
11277    // Find the base pointer and offset for this memory node.
11278    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
11279
11280    // Check that the base pointer is the same as the original one.
11281    if (!Ptr.equalBaseIndex(BasePtr))
11282      break;
11283
11284    // The memory operands must not be volatile.
11285    if (Index->isVolatile() || Index->isIndexed())
11286      break;
11287
11288    // No truncation.
11289    if (StoreSDNode *St = dyn_cast<StoreSDNode>(Index))
11290      if (St->isTruncatingStore())
11291        break;
11292
11293    // The stored memory type must be the same.
11294    if (Index->getMemoryVT() != MemVT)
11295      break;
11296
11297    // We do not allow under-aligned stores in order to prevent
11298    // overriding stores. NOTE: this is a bad hack. Alignment SHOULD
11299    // be irrelevant here; what MATTERS is that we not move memory
11300    // operations that potentially overlap past each-other.
11301    if (Index->getAlignment() < MemVT.getStoreSize())
11302      break;
11303
11304    // We found a potential memory operand to merge.
11305    StoreNodes.push_back(MemOpLink(Index, Ptr.Offset, Seq++));
11306
11307    // Find the next memory operand in the chain. If the next operand in the
11308    // chain is a store then move up and continue the scan with the next
11309    // memory operand. If the next operand is a load save it and use alias
11310    // information to check if it interferes with anything.
11311    SDNode *NextInChain = Index->getChain().getNode();
11312    while (1) {
11313      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
11314        // We found a store node. Use it for the next iteration.
11315        Index = STn;
11316        break;
11317      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
11318        if (Ldn->isVolatile()) {
11319          Index = nullptr;
11320          break;
11321        }
11322
11323        // Save the load node for later. Continue the scan.
11324        AliasLoadNodes.push_back(Ldn);
11325        NextInChain = Ldn->getChain().getNode();
11326        continue;
11327      } else {
11328        Index = nullptr;
11329        break;
11330      }
11331    }
11332  }
11333}
11334
11335bool DAGCombiner::MergeConsecutiveStores(StoreSDNode* St) {
11336  if (OptLevel == CodeGenOpt::None)
11337    return false;
11338
11339  EVT MemVT = St->getMemoryVT();
11340  int64_t ElementSizeBytes = MemVT.getSizeInBits() / 8;
11341  bool NoVectors = DAG.getMachineFunction().getFunction()->hasFnAttribute(
11342      Attribute::NoImplicitFloat);
11343
11344  // This function cannot currently deal with non-byte-sized memory sizes.
11345  if (ElementSizeBytes * 8 != MemVT.getSizeInBits())
11346    return false;
11347
11348  if (!MemVT.isSimple())
11349    return false;
11350
11351  // Perform an early exit check. Do not bother looking at stored values that
11352  // are not constants, loads, or extracted vector elements.
11353  SDValue StoredVal = St->getValue();
11354  bool IsLoadSrc = isa<LoadSDNode>(StoredVal);
11355  bool IsConstantSrc = isa<ConstantSDNode>(StoredVal) ||
11356                       isa<ConstantFPSDNode>(StoredVal);
11357  bool IsExtractVecSrc = (StoredVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
11358                          StoredVal.getOpcode() == ISD::EXTRACT_SUBVECTOR);
11359
11360  if (!IsConstantSrc && !IsLoadSrc && !IsExtractVecSrc)
11361    return false;
11362
11363  // Don't merge vectors into wider vectors if the source data comes from loads.
11364  // TODO: This restriction can be lifted by using logic similar to the
11365  // ExtractVecSrc case.
11366  if (MemVT.isVector() && IsLoadSrc)
11367    return false;
11368
11369  // Only look at ends of store sequences.
11370  SDValue Chain = SDValue(St, 0);
11371  if (Chain->hasOneUse() && Chain->use_begin()->getOpcode() == ISD::STORE)
11372    return false;
11373
11374  // Save the LoadSDNodes that we find in the chain.
11375  // We need to make sure that these nodes do not interfere with
11376  // any of the store nodes.
11377  SmallVector<LSBaseSDNode*, 8> AliasLoadNodes;
11378
11379  // Save the StoreSDNodes that we find in the chain.
11380  SmallVector<MemOpLink, 8> StoreNodes;
11381
11382  getStoreMergeAndAliasCandidates(St, StoreNodes, AliasLoadNodes);
11383
11384  // Check if there is anything to merge.
11385  if (StoreNodes.size() < 2)
11386    return false;
11387
11388  // Sort the memory operands according to their distance from the
11389  // base pointer.  As a secondary criteria: make sure stores coming
11390  // later in the code come first in the list. This is important for
11391  // the non-UseAA case, because we're merging stores into the FINAL
11392  // store along a chain which potentially contains aliasing stores.
11393  // Thus, if there are multiple stores to the same address, the last
11394  // one can be considered for merging but not the others.
11395  std::sort(StoreNodes.begin(), StoreNodes.end(),
11396            [](MemOpLink LHS, MemOpLink RHS) {
11397    return LHS.OffsetFromBase < RHS.OffsetFromBase ||
11398           (LHS.OffsetFromBase == RHS.OffsetFromBase &&
11399            LHS.SequenceNum < RHS.SequenceNum);
11400  });
11401
11402  // Scan the memory operations on the chain and find the first non-consecutive
11403  // store memory address.
11404  unsigned LastConsecutiveStore = 0;
11405  int64_t StartAddress = StoreNodes[0].OffsetFromBase;
11406  for (unsigned i = 0, e = StoreNodes.size(); i < e; ++i) {
11407
11408    // Check that the addresses are consecutive starting from the second
11409    // element in the list of stores.
11410    if (i > 0) {
11411      int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
11412      if (CurrAddress - StartAddress != (ElementSizeBytes * i))
11413        break;
11414    }
11415
11416    // Check if this store interferes with any of the loads that we found.
11417    // If we find a load that alias with this store. Stop the sequence.
11418    if (std::any_of(AliasLoadNodes.begin(), AliasLoadNodes.end(),
11419                    [&](LSBaseSDNode* Ldn) {
11420                      return isAlias(Ldn, StoreNodes[i].MemNode);
11421                    }))
11422      break;
11423
11424    // Mark this node as useful.
11425    LastConsecutiveStore = i;
11426  }
11427
11428  // The node with the lowest store address.
11429  LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
11430  unsigned FirstStoreAS = FirstInChain->getAddressSpace();
11431  unsigned FirstStoreAlign = FirstInChain->getAlignment();
11432  LLVMContext &Context = *DAG.getContext();
11433  const DataLayout &DL = DAG.getDataLayout();
11434
11435  // Store the constants into memory as one consecutive store.
11436  if (IsConstantSrc) {
11437    unsigned LastLegalType = 0;
11438    unsigned LastLegalVectorType = 0;
11439    bool NonZero = false;
11440    for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
11441      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
11442      SDValue StoredVal = St->getValue();
11443
11444      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) {
11445        NonZero |= !C->isNullValue();
11446      } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) {
11447        NonZero |= !C->getConstantFPValue()->isNullValue();
11448      } else {
11449        // Non-constant.
11450        break;
11451      }
11452
11453      // Find a legal type for the constant store.
11454      unsigned SizeInBits = (i+1) * ElementSizeBytes * 8;
11455      EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
11456      bool IsFast;
11457      if (TLI.isTypeLegal(StoreTy) &&
11458          TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
11459                                 FirstStoreAlign, &IsFast) && IsFast) {
11460        LastLegalType = i+1;
11461      // Or check whether a truncstore is legal.
11462      } else if (TLI.getTypeAction(Context, StoreTy) ==
11463                 TargetLowering::TypePromoteInteger) {
11464        EVT LegalizedStoredValueTy =
11465          TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
11466        if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
11467            TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
11468                                   FirstStoreAS, FirstStoreAlign, &IsFast) &&
11469            IsFast) {
11470          LastLegalType = i + 1;
11471        }
11472      }
11473
11474      // We only use vectors if the constant is known to be zero or the target
11475      // allows it and the function is not marked with the noimplicitfloat
11476      // attribute.
11477      if ((!NonZero || TLI.storeOfVectorConstantIsCheap(MemVT, i+1,
11478                                                        FirstStoreAS)) &&
11479          !NoVectors) {
11480        // Find a legal type for the vector store.
11481        EVT Ty = EVT::getVectorVT(Context, MemVT, i+1);
11482        if (TLI.isTypeLegal(Ty) &&
11483            TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
11484                                   FirstStoreAlign, &IsFast) && IsFast)
11485          LastLegalVectorType = i + 1;
11486      }
11487    }
11488
11489    // Check if we found a legal integer type to store.
11490    if (LastLegalType == 0 && LastLegalVectorType == 0)
11491      return false;
11492
11493    bool UseVector = (LastLegalVectorType > LastLegalType) && !NoVectors;
11494    unsigned NumElem = UseVector ? LastLegalVectorType : LastLegalType;
11495
11496    return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem,
11497                                           true, UseVector);
11498  }
11499
11500  // When extracting multiple vector elements, try to store them
11501  // in one vector store rather than a sequence of scalar stores.
11502  if (IsExtractVecSrc) {
11503    unsigned NumStoresToMerge = 0;
11504    bool IsVec = MemVT.isVector();
11505    for (unsigned i = 0; i < LastConsecutiveStore + 1; ++i) {
11506      StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
11507      unsigned StoreValOpcode = St->getValue().getOpcode();
11508      // This restriction could be loosened.
11509      // Bail out if any stored values are not elements extracted from a vector.
11510      // It should be possible to handle mixed sources, but load sources need
11511      // more careful handling (see the block of code below that handles
11512      // consecutive loads).
11513      if (StoreValOpcode != ISD::EXTRACT_VECTOR_ELT &&
11514          StoreValOpcode != ISD::EXTRACT_SUBVECTOR)
11515        return false;
11516
11517      // Find a legal type for the vector store.
11518      unsigned Elts = i + 1;
11519      if (IsVec) {
11520        // When merging vector stores, get the total number of elements.
11521        Elts *= MemVT.getVectorNumElements();
11522      }
11523      EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
11524      bool IsFast;
11525      if (TLI.isTypeLegal(Ty) &&
11526          TLI.allowsMemoryAccess(Context, DL, Ty, FirstStoreAS,
11527                                 FirstStoreAlign, &IsFast) && IsFast)
11528        NumStoresToMerge = i + 1;
11529    }
11530
11531    return MergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumStoresToMerge,
11532                                           false, true);
11533  }
11534
11535  // Below we handle the case of multiple consecutive stores that
11536  // come from multiple consecutive loads. We merge them into a single
11537  // wide load and a single wide store.
11538
11539  // Look for load nodes which are used by the stored values.
11540  SmallVector<MemOpLink, 8> LoadNodes;
11541
11542  // Find acceptable loads. Loads need to have the same chain (token factor),
11543  // must not be zext, volatile, indexed, and they must be consecutive.
11544  BaseIndexOffset LdBasePtr;
11545  for (unsigned i=0; i<LastConsecutiveStore+1; ++i) {
11546    StoreSDNode *St  = cast<StoreSDNode>(StoreNodes[i].MemNode);
11547    LoadSDNode *Ld = dyn_cast<LoadSDNode>(St->getValue());
11548    if (!Ld) break;
11549
11550    // Loads must only have one use.
11551    if (!Ld->hasNUsesOfValue(1, 0))
11552      break;
11553
11554    // The memory operands must not be volatile.
11555    if (Ld->isVolatile() || Ld->isIndexed())
11556      break;
11557
11558    // We do not accept ext loads.
11559    if (Ld->getExtensionType() != ISD::NON_EXTLOAD)
11560      break;
11561
11562    // The stored memory type must be the same.
11563    if (Ld->getMemoryVT() != MemVT)
11564      break;
11565
11566    BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld->getBasePtr());
11567    // If this is not the first ptr that we check.
11568    if (LdBasePtr.Base.getNode()) {
11569      // The base ptr must be the same.
11570      if (!LdPtr.equalBaseIndex(LdBasePtr))
11571        break;
11572    } else {
11573      // Check that all other base pointers are the same as this one.
11574      LdBasePtr = LdPtr;
11575    }
11576
11577    // We found a potential memory operand to merge.
11578    LoadNodes.push_back(MemOpLink(Ld, LdPtr.Offset, 0));
11579  }
11580
11581  if (LoadNodes.size() < 2)
11582    return false;
11583
11584  // If we have load/store pair instructions and we only have two values,
11585  // don't bother.
11586  unsigned RequiredAlignment;
11587  if (LoadNodes.size() == 2 && TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
11588      St->getAlignment() >= RequiredAlignment)
11589    return false;
11590
11591  LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
11592  unsigned FirstLoadAS = FirstLoad->getAddressSpace();
11593  unsigned FirstLoadAlign = FirstLoad->getAlignment();
11594
11595  // Scan the memory operations on the chain and find the first non-consecutive
11596  // load memory address. These variables hold the index in the store node
11597  // array.
11598  unsigned LastConsecutiveLoad = 0;
11599  // This variable refers to the size and not index in the array.
11600  unsigned LastLegalVectorType = 0;
11601  unsigned LastLegalIntegerType = 0;
11602  StartAddress = LoadNodes[0].OffsetFromBase;
11603  SDValue FirstChain = FirstLoad->getChain();
11604  for (unsigned i = 1; i < LoadNodes.size(); ++i) {
11605    // All loads must share the same chain.
11606    if (LoadNodes[i].MemNode->getChain() != FirstChain)
11607      break;
11608
11609    int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
11610    if (CurrAddress - StartAddress != (ElementSizeBytes * i))
11611      break;
11612    LastConsecutiveLoad = i;
11613    // Find a legal type for the vector store.
11614    EVT StoreTy = EVT::getVectorVT(Context, MemVT, i+1);
11615    bool IsFastSt, IsFastLd;
11616    if (TLI.isTypeLegal(StoreTy) &&
11617        TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
11618                               FirstStoreAlign, &IsFastSt) && IsFastSt &&
11619        TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
11620                               FirstLoadAlign, &IsFastLd) && IsFastLd) {
11621      LastLegalVectorType = i + 1;
11622    }
11623
11624    // Find a legal type for the integer store.
11625    unsigned SizeInBits = (i+1) * ElementSizeBytes * 8;
11626    StoreTy = EVT::getIntegerVT(Context, SizeInBits);
11627    if (TLI.isTypeLegal(StoreTy) &&
11628        TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstStoreAS,
11629                               FirstStoreAlign, &IsFastSt) && IsFastSt &&
11630        TLI.allowsMemoryAccess(Context, DL, StoreTy, FirstLoadAS,
11631                               FirstLoadAlign, &IsFastLd) && IsFastLd)
11632      LastLegalIntegerType = i + 1;
11633    // Or check whether a truncstore and extload is legal.
11634    else if (TLI.getTypeAction(Context, StoreTy) ==
11635             TargetLowering::TypePromoteInteger) {
11636      EVT LegalizedStoredValueTy =
11637        TLI.getTypeToTransformTo(Context, StoreTy);
11638      if (TLI.isTruncStoreLegal(LegalizedStoredValueTy, StoreTy) &&
11639          TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
11640          TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValueTy, StoreTy) &&
11641          TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValueTy, StoreTy) &&
11642          TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
11643                                 FirstStoreAS, FirstStoreAlign, &IsFastSt) &&
11644          IsFastSt &&
11645          TLI.allowsMemoryAccess(Context, DL, LegalizedStoredValueTy,
11646                                 FirstLoadAS, FirstLoadAlign, &IsFastLd) &&
11647          IsFastLd)
11648        LastLegalIntegerType = i+1;
11649    }
11650  }
11651
11652  // Only use vector types if the vector type is larger than the integer type.
11653  // If they are the same, use integers.
11654  bool UseVectorTy = LastLegalVectorType > LastLegalIntegerType && !NoVectors;
11655  unsigned LastLegalType = std::max(LastLegalVectorType, LastLegalIntegerType);
11656
11657  // We add +1 here because the LastXXX variables refer to location while
11658  // the NumElem refers to array/index size.
11659  unsigned NumElem = std::min(LastConsecutiveStore, LastConsecutiveLoad) + 1;
11660  NumElem = std::min(LastLegalType, NumElem);
11661
11662  if (NumElem < 2)
11663    return false;
11664
11665  // Collect the chains from all merged stores.
11666  SmallVector<SDValue, 8> MergeStoreChains;
11667  MergeStoreChains.push_back(StoreNodes[0].MemNode->getChain());
11668
11669  // The latest Node in the DAG.
11670  unsigned LatestNodeUsed = 0;
11671  for (unsigned i=1; i<NumElem; ++i) {
11672    // Find a chain for the new wide-store operand. Notice that some
11673    // of the store nodes that we found may not be selected for inclusion
11674    // in the wide store. The chain we use needs to be the chain of the
11675    // latest store node which is *used* and replaced by the wide store.
11676    if (StoreNodes[i].SequenceNum < StoreNodes[LatestNodeUsed].SequenceNum)
11677      LatestNodeUsed = i;
11678
11679    MergeStoreChains.push_back(StoreNodes[i].MemNode->getChain());
11680  }
11681
11682  LSBaseSDNode *LatestOp = StoreNodes[LatestNodeUsed].MemNode;
11683
11684  // Find if it is better to use vectors or integers to load and store
11685  // to memory.
11686  EVT JointMemOpVT;
11687  if (UseVectorTy) {
11688    JointMemOpVT = EVT::getVectorVT(Context, MemVT, NumElem);
11689  } else {
11690    unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
11691    JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
11692  }
11693
11694  SDLoc LoadDL(LoadNodes[0].MemNode);
11695  SDLoc StoreDL(StoreNodes[0].MemNode);
11696
11697  // The merged loads are required to have the same incoming chain, so
11698  // using the first's chain is acceptable.
11699  SDValue NewLoad = DAG.getLoad(
11700      JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(),
11701      FirstLoad->getPointerInfo(), false, false, false, FirstLoadAlign);
11702
11703  SDValue NewStoreChain =
11704    DAG.getNode(ISD::TokenFactor, StoreDL, MVT::Other, MergeStoreChains);
11705
11706  SDValue NewStore = DAG.getStore(
11707    NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
11708      FirstInChain->getPointerInfo(), false, false, FirstStoreAlign);
11709
11710  // Transfer chain users from old loads to the new load.
11711  for (unsigned i = 0; i < NumElem; ++i) {
11712    LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
11713    DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
11714                                  SDValue(NewLoad.getNode(), 1));
11715  }
11716
11717  // Replace the last store with the new store.
11718  CombineTo(LatestOp, NewStore);
11719  // Erase all other stores.
11720  for (unsigned i = 0; i < NumElem ; ++i) {
11721    // Remove all Store nodes.
11722    if (StoreNodes[i].MemNode == LatestOp)
11723      continue;
11724    StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
11725    DAG.ReplaceAllUsesOfValueWith(SDValue(St, 0), St->getChain());
11726    deleteAndRecombine(St);
11727  }
11728
11729  return true;
11730}
11731
11732SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
11733  SDLoc SL(ST);
11734  SDValue ReplStore;
11735
11736  // Replace the chain to avoid dependency.
11737  if (ST->isTruncatingStore()) {
11738    ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
11739                                  ST->getBasePtr(), ST->getMemoryVT(),
11740                                  ST->getMemOperand());
11741  } else {
11742    ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
11743                             ST->getMemOperand());
11744  }
11745
11746  // Create token to keep both nodes around.
11747  SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
11748                              MVT::Other, ST->getChain(), ReplStore);
11749
11750  // Make sure the new and old chains are cleaned up.
11751  AddToWorklist(Token.getNode());
11752
11753  // Don't add users to work list.
11754  return CombineTo(ST, Token, false);
11755}
11756
11757SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
11758  SDValue Value = ST->getValue();
11759  if (Value.getOpcode() == ISD::TargetConstantFP)
11760    return SDValue();
11761
11762  SDLoc DL(ST);
11763
11764  SDValue Chain = ST->getChain();
11765  SDValue Ptr = ST->getBasePtr();
11766
11767  const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
11768
11769  // NOTE: If the original store is volatile, this transform must not increase
11770  // the number of stores.  For example, on x86-32 an f64 can be stored in one
11771  // processor operation but an i64 (which is not legal) requires two.  So the
11772  // transform should not be done in this case.
11773
11774  SDValue Tmp;
11775  switch (CFP->getSimpleValueType(0).SimpleTy) {
11776  default:
11777    llvm_unreachable("Unknown FP type");
11778  case MVT::f16:    // We don't do this for these yet.
11779  case MVT::f80:
11780  case MVT::f128:
11781  case MVT::ppcf128:
11782    return SDValue();
11783  case MVT::f32:
11784    if ((isTypeLegal(MVT::i32) && !LegalOperations && !ST->isVolatile()) ||
11785        TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
11786      ;
11787      Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
11788                            bitcastToAPInt().getZExtValue(), SDLoc(CFP),
11789                            MVT::i32);
11790      return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
11791    }
11792
11793    return SDValue();
11794  case MVT::f64:
11795    if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
11796         !ST->isVolatile()) ||
11797        TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
11798      ;
11799      Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
11800                            getZExtValue(), SDLoc(CFP), MVT::i64);
11801      return DAG.getStore(Chain, DL, Tmp,
11802                          Ptr, ST->getMemOperand());
11803    }
11804
11805    if (!ST->isVolatile() &&
11806        TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
11807      // Many FP stores are not made apparent until after legalize, e.g. for
11808      // argument passing.  Since this is so common, custom legalize the
11809      // 64-bit integer store into two 32-bit stores.
11810      uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
11811      SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
11812      SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
11813      if (DAG.getDataLayout().isBigEndian())
11814        std::swap(Lo, Hi);
11815
11816      unsigned Alignment = ST->getAlignment();
11817      bool isVolatile = ST->isVolatile();
11818      bool isNonTemporal = ST->isNonTemporal();
11819      AAMDNodes AAInfo = ST->getAAInfo();
11820
11821      SDValue St0 = DAG.getStore(Chain, DL, Lo,
11822                                 Ptr, ST->getPointerInfo(),
11823                                 isVolatile, isNonTemporal,
11824                                 ST->getAlignment(), AAInfo);
11825      Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
11826                        DAG.getConstant(4, DL, Ptr.getValueType()));
11827      Alignment = MinAlign(Alignment, 4U);
11828      SDValue St1 = DAG.getStore(Chain, DL, Hi,
11829                                 Ptr, ST->getPointerInfo().getWithOffset(4),
11830                                 isVolatile, isNonTemporal,
11831                                 Alignment, AAInfo);
11832      return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
11833                         St0, St1);
11834    }
11835
11836    return SDValue();
11837  }
11838}
11839
11840SDValue DAGCombiner::visitSTORE(SDNode *N) {
11841  StoreSDNode *ST  = cast<StoreSDNode>(N);
11842  SDValue Chain = ST->getChain();
11843  SDValue Value = ST->getValue();
11844  SDValue Ptr   = ST->getBasePtr();
11845
11846  // If this is a store of a bit convert, store the input value if the
11847  // resultant store does not need a higher alignment than the original.
11848  if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
11849      ST->isUnindexed()) {
11850    unsigned OrigAlign = ST->getAlignment();
11851    EVT SVT = Value.getOperand(0).getValueType();
11852    unsigned Align = DAG.getDataLayout().getABITypeAlignment(
11853        SVT.getTypeForEVT(*DAG.getContext()));
11854    if (Align <= OrigAlign &&
11855        ((!LegalOperations && !ST->isVolatile()) ||
11856         TLI.isOperationLegalOrCustom(ISD::STORE, SVT)))
11857      return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0),
11858                          Ptr, ST->getPointerInfo(), ST->isVolatile(),
11859                          ST->isNonTemporal(), OrigAlign,
11860                          ST->getAAInfo());
11861  }
11862
11863  // Turn 'store undef, Ptr' -> nothing.
11864  if (Value.getOpcode() == ISD::UNDEF && ST->isUnindexed())
11865    return Chain;
11866
11867  // Try to infer better alignment information than the store already has.
11868  if (OptLevel != CodeGenOpt::None && ST->isUnindexed()) {
11869    if (unsigned Align = DAG.InferPtrAlignment(Ptr)) {
11870      if (Align > ST->getAlignment()) {
11871        SDValue NewStore =
11872               DAG.getTruncStore(Chain, SDLoc(N), Value,
11873                                 Ptr, ST->getPointerInfo(), ST->getMemoryVT(),
11874                                 ST->isVolatile(), ST->isNonTemporal(), Align,
11875                                 ST->getAAInfo());
11876        if (NewStore.getNode() != N)
11877          return CombineTo(ST, NewStore, true);
11878      }
11879    }
11880  }
11881
11882  // Try transforming a pair floating point load / store ops to integer
11883  // load / store ops.
11884  if (SDValue NewST = TransformFPLoadStorePair(N))
11885    return NewST;
11886
11887  bool UseAA = CombinerAA.getNumOccurrences() > 0 ? CombinerAA
11888                                                  : DAG.getSubtarget().useAA();
11889#ifndef NDEBUG
11890  if (CombinerAAOnlyFunc.getNumOccurrences() &&
11891      CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
11892    UseAA = false;
11893#endif
11894  if (UseAA && ST->isUnindexed()) {
11895    // FIXME: We should do this even without AA enabled. AA will just allow
11896    // FindBetterChain to work in more situations. The problem with this is that
11897    // any combine that expects memory operations to be on consecutive chains
11898    // first needs to be updated to look for users of the same chain.
11899
11900    // Walk up chain skipping non-aliasing memory nodes, on this store and any
11901    // adjacent stores.
11902    if (findBetterNeighborChains(ST)) {
11903      // replaceStoreChain uses CombineTo, which handled all of the worklist
11904      // manipulation. Return the original node to not do anything else.
11905      return SDValue(ST, 0);
11906    }
11907  }
11908
11909  // Try transforming N to an indexed store.
11910  if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
11911    return SDValue(N, 0);
11912
11913  // FIXME: is there such a thing as a truncating indexed store?
11914  if (ST->isTruncatingStore() && ST->isUnindexed() &&
11915      Value.getValueType().isInteger()) {
11916    // See if we can simplify the input to this truncstore with knowledge that
11917    // only the low bits are being used.  For example:
11918    // "truncstore (or (shl x, 8), y), i8"  -> "truncstore y, i8"
11919    SDValue Shorter =
11920      GetDemandedBits(Value,
11921                      APInt::getLowBitsSet(
11922                        Value.getValueType().getScalarType().getSizeInBits(),
11923                        ST->getMemoryVT().getScalarType().getSizeInBits()));
11924    AddToWorklist(Value.getNode());
11925    if (Shorter.getNode())
11926      return DAG.getTruncStore(Chain, SDLoc(N), Shorter,
11927                               Ptr, ST->getMemoryVT(), ST->getMemOperand());
11928
11929    // Otherwise, see if we can simplify the operation with
11930    // SimplifyDemandedBits, which only works if the value has a single use.
11931    if (SimplifyDemandedBits(Value,
11932                        APInt::getLowBitsSet(
11933                          Value.getValueType().getScalarType().getSizeInBits(),
11934                          ST->getMemoryVT().getScalarType().getSizeInBits())))
11935      return SDValue(N, 0);
11936  }
11937
11938  // If this is a load followed by a store to the same location, then the store
11939  // is dead/noop.
11940  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
11941    if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
11942        ST->isUnindexed() && !ST->isVolatile() &&
11943        // There can't be any side effects between the load and store, such as
11944        // a call or store.
11945        Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
11946      // The store is dead, remove it.
11947      return Chain;
11948    }
11949  }
11950
11951  // If this is a store followed by a store with the same value to the same
11952  // location, then the store is dead/noop.
11953  if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
11954    if (ST1->getBasePtr() == Ptr && ST->getMemoryVT() == ST1->getMemoryVT() &&
11955        ST1->getValue() == Value && ST->isUnindexed() && !ST->isVolatile() &&
11956        ST1->isUnindexed() && !ST1->isVolatile()) {
11957      // The store is dead, remove it.
11958      return Chain;
11959    }
11960  }
11961
11962  // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
11963  // truncating store.  We can do this even if this is already a truncstore.
11964  if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE)
11965      && Value.getNode()->hasOneUse() && ST->isUnindexed() &&
11966      TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
11967                            ST->getMemoryVT())) {
11968    return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
11969                             Ptr, ST->getMemoryVT(), ST->getMemOperand());
11970  }
11971
11972  // Only perform this optimization before the types are legal, because we
11973  // don't want to perform this optimization on every DAGCombine invocation.
11974  if (!LegalTypes) {
11975    bool EverChanged = false;
11976
11977    do {
11978      // There can be multiple store sequences on the same chain.
11979      // Keep trying to merge store sequences until we are unable to do so
11980      // or until we merge the last store on the chain.
11981      bool Changed = MergeConsecutiveStores(ST);
11982      EverChanged |= Changed;
11983      if (!Changed) break;
11984    } while (ST->getOpcode() != ISD::DELETED_NODE);
11985
11986    if (EverChanged)
11987      return SDValue(N, 0);
11988  }
11989
11990  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
11991  //
11992  // Make sure to do this only after attempting to merge stores in order to
11993  //  avoid changing the types of some subset of stores due to visit order,
11994  //  preventing their merging.
11995  if (isa<ConstantFPSDNode>(Value)) {
11996    if (SDValue NewSt = replaceStoreOfFPConstant(ST))
11997      return NewSt;
11998  }
11999
12000  return ReduceLoadOpStoreWidth(N);
12001}
12002
12003SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
12004  SDValue InVec = N->getOperand(0);
12005  SDValue InVal = N->getOperand(1);
12006  SDValue EltNo = N->getOperand(2);
12007  SDLoc dl(N);
12008
12009  // If the inserted element is an UNDEF, just use the input vector.
12010  if (InVal.getOpcode() == ISD::UNDEF)
12011    return InVec;
12012
12013  EVT VT = InVec.getValueType();
12014
12015  // If we can't generate a legal BUILD_VECTOR, exit
12016  if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
12017    return SDValue();
12018
12019  // Check that we know which element is being inserted
12020  if (!isa<ConstantSDNode>(EltNo))
12021    return SDValue();
12022  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
12023
12024  // Canonicalize insert_vector_elt dag nodes.
12025  // Example:
12026  // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
12027  // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
12028  //
12029  // Do this only if the child insert_vector node has one use; also
12030  // do this only if indices are both constants and Idx1 < Idx0.
12031  if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
12032      && isa<ConstantSDNode>(InVec.getOperand(2))) {
12033    unsigned OtherElt =
12034      cast<ConstantSDNode>(InVec.getOperand(2))->getZExtValue();
12035    if (Elt < OtherElt) {
12036      // Swap nodes.
12037      SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VT,
12038                                  InVec.getOperand(0), InVal, EltNo);
12039      AddToWorklist(NewOp.getNode());
12040      return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
12041                         VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
12042    }
12043  }
12044
12045  // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
12046  // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
12047  // vector elements.
12048  SmallVector<SDValue, 8> Ops;
12049  // Do not combine these two vectors if the output vector will not replace
12050  // the input vector.
12051  if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
12052    Ops.append(InVec.getNode()->op_begin(),
12053               InVec.getNode()->op_end());
12054  } else if (InVec.getOpcode() == ISD::UNDEF) {
12055    unsigned NElts = VT.getVectorNumElements();
12056    Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
12057  } else {
12058    return SDValue();
12059  }
12060
12061  // Insert the element
12062  if (Elt < Ops.size()) {
12063    // All the operands of BUILD_VECTOR must have the same type;
12064    // we enforce that here.
12065    EVT OpVT = Ops[0].getValueType();
12066    if (InVal.getValueType() != OpVT)
12067      InVal = OpVT.bitsGT(InVal.getValueType()) ?
12068                DAG.getNode(ISD::ANY_EXTEND, dl, OpVT, InVal) :
12069                DAG.getNode(ISD::TRUNCATE, dl, OpVT, InVal);
12070    Ops[Elt] = InVal;
12071  }
12072
12073  // Return the new vector
12074  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
12075}
12076
12077SDValue DAGCombiner::ReplaceExtractVectorEltOfLoadWithNarrowedLoad(
12078    SDNode *EVE, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad) {
12079  EVT ResultVT = EVE->getValueType(0);
12080  EVT VecEltVT = InVecVT.getVectorElementType();
12081  unsigned Align = OriginalLoad->getAlignment();
12082  unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
12083      VecEltVT.getTypeForEVT(*DAG.getContext()));
12084
12085  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
12086    return SDValue();
12087
12088  Align = NewAlign;
12089
12090  SDValue NewPtr = OriginalLoad->getBasePtr();
12091  SDValue Offset;
12092  EVT PtrType = NewPtr.getValueType();
12093  MachinePointerInfo MPI;
12094  SDLoc DL(EVE);
12095  if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
12096    int Elt = ConstEltNo->getZExtValue();
12097    unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
12098    Offset = DAG.getConstant(PtrOff, DL, PtrType);
12099    MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
12100  } else {
12101    Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType);
12102    Offset = DAG.getNode(
12103        ISD::MUL, DL, PtrType, Offset,
12104        DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType));
12105    MPI = OriginalLoad->getPointerInfo();
12106  }
12107  NewPtr = DAG.getNode(ISD::ADD, DL, PtrType, NewPtr, Offset);
12108
12109  // The replacement we need to do here is a little tricky: we need to
12110  // replace an extractelement of a load with a load.
12111  // Use ReplaceAllUsesOfValuesWith to do the replacement.
12112  // Note that this replacement assumes that the extractvalue is the only
12113  // use of the load; that's okay because we don't want to perform this
12114  // transformation in other cases anyway.
12115  SDValue Load;
12116  SDValue Chain;
12117  if (ResultVT.bitsGT(VecEltVT)) {
12118    // If the result type of vextract is wider than the load, then issue an
12119    // extending load instead.
12120    ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
12121                                                  VecEltVT)
12122                                   ? ISD::ZEXTLOAD
12123                                   : ISD::EXTLOAD;
12124    Load = DAG.getExtLoad(
12125        ExtType, SDLoc(EVE), ResultVT, OriginalLoad->getChain(), NewPtr, MPI,
12126        VecEltVT, OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(),
12127        OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo());
12128    Chain = Load.getValue(1);
12129  } else {
12130    Load = DAG.getLoad(
12131        VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI,
12132        OriginalLoad->isVolatile(), OriginalLoad->isNonTemporal(),
12133        OriginalLoad->isInvariant(), Align, OriginalLoad->getAAInfo());
12134    Chain = Load.getValue(1);
12135    if (ResultVT.bitsLT(VecEltVT))
12136      Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
12137    else
12138      Load = DAG.getNode(ISD::BITCAST, SDLoc(EVE), ResultVT, Load);
12139  }
12140  WorklistRemover DeadNodes(*this);
12141  SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
12142  SDValue To[] = { Load, Chain };
12143  DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
12144  // Since we're explicitly calling ReplaceAllUses, add the new node to the
12145  // worklist explicitly as well.
12146  AddToWorklist(Load.getNode());
12147  AddUsersToWorklist(Load.getNode()); // Add users too
12148  // Make sure to revisit this node to clean it up; it will usually be dead.
12149  AddToWorklist(EVE);
12150  ++OpsNarrowed;
12151  return SDValue(EVE, 0);
12152}
12153
12154SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
12155  // (vextract (scalar_to_vector val, 0) -> val
12156  SDValue InVec = N->getOperand(0);
12157  EVT VT = InVec.getValueType();
12158  EVT NVT = N->getValueType(0);
12159
12160  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
12161    // Check if the result type doesn't match the inserted element type. A
12162    // SCALAR_TO_VECTOR may truncate the inserted element and the
12163    // EXTRACT_VECTOR_ELT may widen the extracted vector.
12164    SDValue InOp = InVec.getOperand(0);
12165    if (InOp.getValueType() != NVT) {
12166      assert(InOp.getValueType().isInteger() && NVT.isInteger());
12167      return DAG.getSExtOrTrunc(InOp, SDLoc(InVec), NVT);
12168    }
12169    return InOp;
12170  }
12171
12172  SDValue EltNo = N->getOperand(1);
12173  ConstantSDNode *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
12174
12175  // extract_vector_elt (build_vector x, y), 1 -> y
12176  if (ConstEltNo &&
12177      InVec.getOpcode() == ISD::BUILD_VECTOR &&
12178      TLI.isTypeLegal(VT) &&
12179      (InVec.hasOneUse() ||
12180       TLI.aggressivelyPreferBuildVectorSources(VT))) {
12181    SDValue Elt = InVec.getOperand(ConstEltNo->getZExtValue());
12182    EVT InEltVT = Elt.getValueType();
12183
12184    // Sometimes build_vector's scalar input types do not match result type.
12185    if (NVT == InEltVT)
12186      return Elt;
12187
12188    // TODO: It may be useful to truncate if free if the build_vector implicitly
12189    // converts.
12190  }
12191
12192  // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
12193  // We only perform this optimization before the op legalization phase because
12194  // we may introduce new vector instructions which are not backed by TD
12195  // patterns. For example on AVX, extracting elements from a wide vector
12196  // without using extract_subvector. However, if we can find an underlying
12197  // scalar value, then we can always use that.
12198  if (ConstEltNo && InVec.getOpcode() == ISD::VECTOR_SHUFFLE) {
12199    int NumElem = VT.getVectorNumElements();
12200    ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(InVec);
12201    // Find the new index to extract from.
12202    int OrigElt = SVOp->getMaskElt(ConstEltNo->getZExtValue());
12203
12204    // Extracting an undef index is undef.
12205    if (OrigElt == -1)
12206      return DAG.getUNDEF(NVT);
12207
12208    // Select the right vector half to extract from.
12209    SDValue SVInVec;
12210    if (OrigElt < NumElem) {
12211      SVInVec = InVec->getOperand(0);
12212    } else {
12213      SVInVec = InVec->getOperand(1);
12214      OrigElt -= NumElem;
12215    }
12216
12217    if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
12218      SDValue InOp = SVInVec.getOperand(OrigElt);
12219      if (InOp.getValueType() != NVT) {
12220        assert(InOp.getValueType().isInteger() && NVT.isInteger());
12221        InOp = DAG.getSExtOrTrunc(InOp, SDLoc(SVInVec), NVT);
12222      }
12223
12224      return InOp;
12225    }
12226
12227    // FIXME: We should handle recursing on other vector shuffles and
12228    // scalar_to_vector here as well.
12229
12230    if (!LegalOperations) {
12231      EVT IndexTy = TLI.getVectorIdxTy(DAG.getDataLayout());
12232      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), NVT, SVInVec,
12233                         DAG.getConstant(OrigElt, SDLoc(SVOp), IndexTy));
12234    }
12235  }
12236
12237  bool BCNumEltsChanged = false;
12238  EVT ExtVT = VT.getVectorElementType();
12239  EVT LVT = ExtVT;
12240
12241  // If the result of load has to be truncated, then it's not necessarily
12242  // profitable.
12243  if (NVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, NVT))
12244    return SDValue();
12245
12246  if (InVec.getOpcode() == ISD::BITCAST) {
12247    // Don't duplicate a load with other uses.
12248    if (!InVec.hasOneUse())
12249      return SDValue();
12250
12251    EVT BCVT = InVec.getOperand(0).getValueType();
12252    if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
12253      return SDValue();
12254    if (VT.getVectorNumElements() != BCVT.getVectorNumElements())
12255      BCNumEltsChanged = true;
12256    InVec = InVec.getOperand(0);
12257    ExtVT = BCVT.getVectorElementType();
12258  }
12259
12260  // (vextract (vN[if]M load $addr), i) -> ([if]M load $addr + i * size)
12261  if (!LegalOperations && !ConstEltNo && InVec.hasOneUse() &&
12262      ISD::isNormalLoad(InVec.getNode()) &&
12263      !N->getOperand(1)->hasPredecessor(InVec.getNode())) {
12264    SDValue Index = N->getOperand(1);
12265    if (LoadSDNode *OrigLoad = dyn_cast<LoadSDNode>(InVec))
12266      return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, Index,
12267                                                           OrigLoad);
12268  }
12269
12270  // Perform only after legalization to ensure build_vector / vector_shuffle
12271  // optimizations have already been done.
12272  if (!LegalOperations) return SDValue();
12273
12274  // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
12275  // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
12276  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
12277
12278  if (ConstEltNo) {
12279    int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
12280
12281    LoadSDNode *LN0 = nullptr;
12282    const ShuffleVectorSDNode *SVN = nullptr;
12283    if (ISD::isNormalLoad(InVec.getNode())) {
12284      LN0 = cast<LoadSDNode>(InVec);
12285    } else if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR &&
12286               InVec.getOperand(0).getValueType() == ExtVT &&
12287               ISD::isNormalLoad(InVec.getOperand(0).getNode())) {
12288      // Don't duplicate a load with other uses.
12289      if (!InVec.hasOneUse())
12290        return SDValue();
12291
12292      LN0 = cast<LoadSDNode>(InVec.getOperand(0));
12293    } else if ((SVN = dyn_cast<ShuffleVectorSDNode>(InVec))) {
12294      // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
12295      // =>
12296      // (load $addr+1*size)
12297
12298      // Don't duplicate a load with other uses.
12299      if (!InVec.hasOneUse())
12300        return SDValue();
12301
12302      // If the bit convert changed the number of elements, it is unsafe
12303      // to examine the mask.
12304      if (BCNumEltsChanged)
12305        return SDValue();
12306
12307      // Select the input vector, guarding against out of range extract vector.
12308      unsigned NumElems = VT.getVectorNumElements();
12309      int Idx = (Elt > (int)NumElems) ? -1 : SVN->getMaskElt(Elt);
12310      InVec = (Idx < (int)NumElems) ? InVec.getOperand(0) : InVec.getOperand(1);
12311
12312      if (InVec.getOpcode() == ISD::BITCAST) {
12313        // Don't duplicate a load with other uses.
12314        if (!InVec.hasOneUse())
12315          return SDValue();
12316
12317        InVec = InVec.getOperand(0);
12318      }
12319      if (ISD::isNormalLoad(InVec.getNode())) {
12320        LN0 = cast<LoadSDNode>(InVec);
12321        Elt = (Idx < (int)NumElems) ? Idx : Idx - (int)NumElems;
12322        EltNo = DAG.getConstant(Elt, SDLoc(EltNo), EltNo.getValueType());
12323      }
12324    }
12325
12326    // Make sure we found a non-volatile load and the extractelement is
12327    // the only use.
12328    if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
12329      return SDValue();
12330
12331    // If Idx was -1 above, Elt is going to be -1, so just return undef.
12332    if (Elt == -1)
12333      return DAG.getUNDEF(LVT);
12334
12335    return ReplaceExtractVectorEltOfLoadWithNarrowedLoad(N, VT, EltNo, LN0);
12336  }
12337
12338  return SDValue();
12339}
12340
12341// Simplify (build_vec (ext )) to (bitcast (build_vec ))
12342SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
12343  // We perform this optimization post type-legalization because
12344  // the type-legalizer often scalarizes integer-promoted vectors.
12345  // Performing this optimization before may create bit-casts which
12346  // will be type-legalized to complex code sequences.
12347  // We perform this optimization only before the operation legalizer because we
12348  // may introduce illegal operations.
12349  if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
12350    return SDValue();
12351
12352  unsigned NumInScalars = N->getNumOperands();
12353  SDLoc dl(N);
12354  EVT VT = N->getValueType(0);
12355
12356  // Check to see if this is a BUILD_VECTOR of a bunch of values
12357  // which come from any_extend or zero_extend nodes. If so, we can create
12358  // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
12359  // optimizations. We do not handle sign-extend because we can't fill the sign
12360  // using shuffles.
12361  EVT SourceType = MVT::Other;
12362  bool AllAnyExt = true;
12363
12364  for (unsigned i = 0; i != NumInScalars; ++i) {
12365    SDValue In = N->getOperand(i);
12366    // Ignore undef inputs.
12367    if (In.getOpcode() == ISD::UNDEF) continue;
12368
12369    bool AnyExt  = In.getOpcode() == ISD::ANY_EXTEND;
12370    bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
12371
12372    // Abort if the element is not an extension.
12373    if (!ZeroExt && !AnyExt) {
12374      SourceType = MVT::Other;
12375      break;
12376    }
12377
12378    // The input is a ZeroExt or AnyExt. Check the original type.
12379    EVT InTy = In.getOperand(0).getValueType();
12380
12381    // Check that all of the widened source types are the same.
12382    if (SourceType == MVT::Other)
12383      // First time.
12384      SourceType = InTy;
12385    else if (InTy != SourceType) {
12386      // Multiple income types. Abort.
12387      SourceType = MVT::Other;
12388      break;
12389    }
12390
12391    // Check if all of the extends are ANY_EXTENDs.
12392    AllAnyExt &= AnyExt;
12393  }
12394
12395  // In order to have valid types, all of the inputs must be extended from the
12396  // same source type and all of the inputs must be any or zero extend.
12397  // Scalar sizes must be a power of two.
12398  EVT OutScalarTy = VT.getScalarType();
12399  bool ValidTypes = SourceType != MVT::Other &&
12400                 isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
12401                 isPowerOf2_32(SourceType.getSizeInBits());
12402
12403  // Create a new simpler BUILD_VECTOR sequence which other optimizations can
12404  // turn into a single shuffle instruction.
12405  if (!ValidTypes)
12406    return SDValue();
12407
12408  bool isLE = DAG.getDataLayout().isLittleEndian();
12409  unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
12410  assert(ElemRatio > 1 && "Invalid element size ratio");
12411  SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
12412                               DAG.getConstant(0, SDLoc(N), SourceType);
12413
12414  unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
12415  SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
12416
12417  // Populate the new build_vector
12418  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
12419    SDValue Cast = N->getOperand(i);
12420    assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
12421            Cast.getOpcode() == ISD::ZERO_EXTEND ||
12422            Cast.getOpcode() == ISD::UNDEF) && "Invalid cast opcode");
12423    SDValue In;
12424    if (Cast.getOpcode() == ISD::UNDEF)
12425      In = DAG.getUNDEF(SourceType);
12426    else
12427      In = Cast->getOperand(0);
12428    unsigned Index = isLE ? (i * ElemRatio) :
12429                            (i * ElemRatio + (ElemRatio - 1));
12430
12431    assert(Index < Ops.size() && "Invalid index");
12432    Ops[Index] = In;
12433  }
12434
12435  // The type of the new BUILD_VECTOR node.
12436  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
12437  assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
12438         "Invalid vector size");
12439  // Check if the new vector type is legal.
12440  if (!isTypeLegal(VecVT)) return SDValue();
12441
12442  // Make the new BUILD_VECTOR.
12443  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
12444
12445  // The new BUILD_VECTOR node has the potential to be further optimized.
12446  AddToWorklist(BV.getNode());
12447  // Bitcast to the desired type.
12448  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
12449}
12450
12451SDValue DAGCombiner::reduceBuildVecConvertToConvertBuildVec(SDNode *N) {
12452  EVT VT = N->getValueType(0);
12453
12454  unsigned NumInScalars = N->getNumOperands();
12455  SDLoc dl(N);
12456
12457  EVT SrcVT = MVT::Other;
12458  unsigned Opcode = ISD::DELETED_NODE;
12459  unsigned NumDefs = 0;
12460
12461  for (unsigned i = 0; i != NumInScalars; ++i) {
12462    SDValue In = N->getOperand(i);
12463    unsigned Opc = In.getOpcode();
12464
12465    if (Opc == ISD::UNDEF)
12466      continue;
12467
12468    // If all scalar values are floats and converted from integers.
12469    if (Opcode == ISD::DELETED_NODE &&
12470        (Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP)) {
12471      Opcode = Opc;
12472    }
12473
12474    if (Opc != Opcode)
12475      return SDValue();
12476
12477    EVT InVT = In.getOperand(0).getValueType();
12478
12479    // If all scalar values are typed differently, bail out. It's chosen to
12480    // simplify BUILD_VECTOR of integer types.
12481    if (SrcVT == MVT::Other)
12482      SrcVT = InVT;
12483    if (SrcVT != InVT)
12484      return SDValue();
12485    NumDefs++;
12486  }
12487
12488  // If the vector has just one element defined, it's not worth to fold it into
12489  // a vectorized one.
12490  if (NumDefs < 2)
12491    return SDValue();
12492
12493  assert((Opcode == ISD::UINT_TO_FP || Opcode == ISD::SINT_TO_FP)
12494         && "Should only handle conversion from integer to float.");
12495  assert(SrcVT != MVT::Other && "Cannot determine source type!");
12496
12497  EVT NVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumInScalars);
12498
12499  if (!TLI.isOperationLegalOrCustom(Opcode, NVT))
12500    return SDValue();
12501
12502  // Just because the floating-point vector type is legal does not necessarily
12503  // mean that the corresponding integer vector type is.
12504  if (!isTypeLegal(NVT))
12505    return SDValue();
12506
12507  SmallVector<SDValue, 8> Opnds;
12508  for (unsigned i = 0; i != NumInScalars; ++i) {
12509    SDValue In = N->getOperand(i);
12510
12511    if (In.getOpcode() == ISD::UNDEF)
12512      Opnds.push_back(DAG.getUNDEF(SrcVT));
12513    else
12514      Opnds.push_back(In.getOperand(0));
12515  }
12516  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Opnds);
12517  AddToWorklist(BV.getNode());
12518
12519  return DAG.getNode(Opcode, dl, VT, BV);
12520}
12521
12522SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
12523  unsigned NumInScalars = N->getNumOperands();
12524  SDLoc dl(N);
12525  EVT VT = N->getValueType(0);
12526
12527  // A vector built entirely of undefs is undef.
12528  if (ISD::allOperandsUndef(N))
12529    return DAG.getUNDEF(VT);
12530
12531  if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
12532    return V;
12533
12534  if (SDValue V = reduceBuildVecConvertToConvertBuildVec(N))
12535    return V;
12536
12537  // Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
12538  // operations.  If so, and if the EXTRACT_VECTOR_ELT vector inputs come from
12539  // at most two distinct vectors, turn this into a shuffle node.
12540
12541  // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
12542  if (!isTypeLegal(VT))
12543    return SDValue();
12544
12545  // May only combine to shuffle after legalize if shuffle is legal.
12546  if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
12547    return SDValue();
12548
12549  SDValue VecIn1, VecIn2;
12550  bool UsesZeroVector = false;
12551  for (unsigned i = 0; i != NumInScalars; ++i) {
12552    SDValue Op = N->getOperand(i);
12553    // Ignore undef inputs.
12554    if (Op.getOpcode() == ISD::UNDEF) continue;
12555
12556    // See if we can combine this build_vector into a blend with a zero vector.
12557    if (!VecIn2.getNode() && (isNullConstant(Op) || isNullFPConstant(Op))) {
12558      UsesZeroVector = true;
12559      continue;
12560    }
12561
12562    // If this input is something other than a EXTRACT_VECTOR_ELT with a
12563    // constant index, bail out.
12564    if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12565        !isa<ConstantSDNode>(Op.getOperand(1))) {
12566      VecIn1 = VecIn2 = SDValue(nullptr, 0);
12567      break;
12568    }
12569
12570    // We allow up to two distinct input vectors.
12571    SDValue ExtractedFromVec = Op.getOperand(0);
12572    if (ExtractedFromVec == VecIn1 || ExtractedFromVec == VecIn2)
12573      continue;
12574
12575    if (!VecIn1.getNode()) {
12576      VecIn1 = ExtractedFromVec;
12577    } else if (!VecIn2.getNode() && !UsesZeroVector) {
12578      VecIn2 = ExtractedFromVec;
12579    } else {
12580      // Too many inputs.
12581      VecIn1 = VecIn2 = SDValue(nullptr, 0);
12582      break;
12583    }
12584  }
12585
12586  // If everything is good, we can make a shuffle operation.
12587  if (VecIn1.getNode()) {
12588    unsigned InNumElements = VecIn1.getValueType().getVectorNumElements();
12589    SmallVector<int, 8> Mask;
12590    for (unsigned i = 0; i != NumInScalars; ++i) {
12591      unsigned Opcode = N->getOperand(i).getOpcode();
12592      if (Opcode == ISD::UNDEF) {
12593        Mask.push_back(-1);
12594        continue;
12595      }
12596
12597      // Operands can also be zero.
12598      if (Opcode != ISD::EXTRACT_VECTOR_ELT) {
12599        assert(UsesZeroVector &&
12600               (Opcode == ISD::Constant || Opcode == ISD::ConstantFP) &&
12601               "Unexpected node found!");
12602        Mask.push_back(NumInScalars+i);
12603        continue;
12604      }
12605
12606      // If extracting from the first vector, just use the index directly.
12607      SDValue Extract = N->getOperand(i);
12608      SDValue ExtVal = Extract.getOperand(1);
12609      unsigned ExtIndex = cast<ConstantSDNode>(ExtVal)->getZExtValue();
12610      if (Extract.getOperand(0) == VecIn1) {
12611        Mask.push_back(ExtIndex);
12612        continue;
12613      }
12614
12615      // Otherwise, use InIdx + InputVecSize
12616      Mask.push_back(InNumElements + ExtIndex);
12617    }
12618
12619    // Avoid introducing illegal shuffles with zero.
12620    if (UsesZeroVector && !TLI.isVectorClearMaskLegal(Mask, VT))
12621      return SDValue();
12622
12623    // We can't generate a shuffle node with mismatched input and output types.
12624    // Attempt to transform a single input vector to the correct type.
12625    if ((VT != VecIn1.getValueType())) {
12626      // If the input vector type has a different base type to the output
12627      // vector type, bail out.
12628      EVT VTElemType = VT.getVectorElementType();
12629      if ((VecIn1.getValueType().getVectorElementType() != VTElemType) ||
12630          (VecIn2.getNode() &&
12631           (VecIn2.getValueType().getVectorElementType() != VTElemType)))
12632        return SDValue();
12633
12634      // If the input vector is too small, widen it.
12635      // We only support widening of vectors which are half the size of the
12636      // output registers. For example XMM->YMM widening on X86 with AVX.
12637      EVT VecInT = VecIn1.getValueType();
12638      if (VecInT.getSizeInBits() * 2 == VT.getSizeInBits()) {
12639        // If we only have one small input, widen it by adding undef values.
12640        if (!VecIn2.getNode())
12641          VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1,
12642                               DAG.getUNDEF(VecIn1.getValueType()));
12643        else if (VecIn1.getValueType() == VecIn2.getValueType()) {
12644          // If we have two small inputs of the same type, try to concat them.
12645          VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, VecIn1, VecIn2);
12646          VecIn2 = SDValue(nullptr, 0);
12647        } else
12648          return SDValue();
12649      } else if (VecInT.getSizeInBits() == VT.getSizeInBits() * 2) {
12650        // If the input vector is too large, try to split it.
12651        // We don't support having two input vectors that are too large.
12652        // If the zero vector was used, we can not split the vector,
12653        // since we'd need 3 inputs.
12654        if (UsesZeroVector || VecIn2.getNode())
12655          return SDValue();
12656
12657        if (!TLI.isExtractSubvectorCheap(VT, VT.getVectorNumElements()))
12658          return SDValue();
12659
12660        // Try to replace VecIn1 with two extract_subvectors
12661        // No need to update the masks, they should still be correct.
12662        VecIn2 = DAG.getNode(
12663            ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
12664            DAG.getConstant(VT.getVectorNumElements(), dl,
12665                            TLI.getVectorIdxTy(DAG.getDataLayout())));
12666        VecIn1 = DAG.getNode(
12667            ISD::EXTRACT_SUBVECTOR, dl, VT, VecIn1,
12668            DAG.getConstant(0, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
12669      } else
12670        return SDValue();
12671    }
12672
12673    if (UsesZeroVector)
12674      VecIn2 = VT.isInteger() ? DAG.getConstant(0, dl, VT) :
12675                                DAG.getConstantFP(0.0, dl, VT);
12676    else
12677      // If VecIn2 is unused then change it to undef.
12678      VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
12679
12680    // Check that we were able to transform all incoming values to the same
12681    // type.
12682    if (VecIn2.getValueType() != VecIn1.getValueType() ||
12683        VecIn1.getValueType() != VT)
12684          return SDValue();
12685
12686    // Return the new VECTOR_SHUFFLE node.
12687    SDValue Ops[2];
12688    Ops[0] = VecIn1;
12689    Ops[1] = VecIn2;
12690    return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &Mask[0]);
12691  }
12692
12693  return SDValue();
12694}
12695
12696static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
12697  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12698  EVT OpVT = N->getOperand(0).getValueType();
12699
12700  // If the operands are legal vectors, leave them alone.
12701  if (TLI.isTypeLegal(OpVT))
12702    return SDValue();
12703
12704  SDLoc DL(N);
12705  EVT VT = N->getValueType(0);
12706  SmallVector<SDValue, 8> Ops;
12707
12708  EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
12709  SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
12710
12711  // Keep track of what we encounter.
12712  bool AnyInteger = false;
12713  bool AnyFP = false;
12714  for (const SDValue &Op : N->ops()) {
12715    if (ISD::BITCAST == Op.getOpcode() &&
12716        !Op.getOperand(0).getValueType().isVector())
12717      Ops.push_back(Op.getOperand(0));
12718    else if (ISD::UNDEF == Op.getOpcode())
12719      Ops.push_back(ScalarUndef);
12720    else
12721      return SDValue();
12722
12723    // Note whether we encounter an integer or floating point scalar.
12724    // If it's neither, bail out, it could be something weird like x86mmx.
12725    EVT LastOpVT = Ops.back().getValueType();
12726    if (LastOpVT.isFloatingPoint())
12727      AnyFP = true;
12728    else if (LastOpVT.isInteger())
12729      AnyInteger = true;
12730    else
12731      return SDValue();
12732  }
12733
12734  // If any of the operands is a floating point scalar bitcast to a vector,
12735  // use floating point types throughout, and bitcast everything.
12736  // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
12737  if (AnyFP) {
12738    SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
12739    ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
12740    if (AnyInteger) {
12741      for (SDValue &Op : Ops) {
12742        if (Op.getValueType() == SVT)
12743          continue;
12744        if (Op.getOpcode() == ISD::UNDEF)
12745          Op = ScalarUndef;
12746        else
12747          Op = DAG.getNode(ISD::BITCAST, DL, SVT, Op);
12748      }
12749    }
12750  }
12751
12752  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
12753                               VT.getSizeInBits() / SVT.getSizeInBits());
12754  return DAG.getNode(ISD::BITCAST, DL, VT,
12755                     DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, Ops));
12756}
12757
12758// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
12759// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
12760// most two distinct vectors the same size as the result, attempt to turn this
12761// into a legal shuffle.
12762static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
12763  EVT VT = N->getValueType(0);
12764  EVT OpVT = N->getOperand(0).getValueType();
12765  int NumElts = VT.getVectorNumElements();
12766  int NumOpElts = OpVT.getVectorNumElements();
12767
12768  SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
12769  SmallVector<int, 8> Mask;
12770
12771  for (SDValue Op : N->ops()) {
12772    // Peek through any bitcast.
12773    while (Op.getOpcode() == ISD::BITCAST)
12774      Op = Op.getOperand(0);
12775
12776    // UNDEF nodes convert to UNDEF shuffle mask values.
12777    if (Op.getOpcode() == ISD::UNDEF) {
12778      Mask.append((unsigned)NumOpElts, -1);
12779      continue;
12780    }
12781
12782    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
12783      return SDValue();
12784
12785    // What vector are we extracting the subvector from and at what index?
12786    SDValue ExtVec = Op.getOperand(0);
12787
12788    // We want the EVT of the original extraction to correctly scale the
12789    // extraction index.
12790    EVT ExtVT = ExtVec.getValueType();
12791
12792    // Peek through any bitcast.
12793    while (ExtVec.getOpcode() == ISD::BITCAST)
12794      ExtVec = ExtVec.getOperand(0);
12795
12796    // UNDEF nodes convert to UNDEF shuffle mask values.
12797    if (ExtVec.getOpcode() == ISD::UNDEF) {
12798      Mask.append((unsigned)NumOpElts, -1);
12799      continue;
12800    }
12801
12802    if (!isa<ConstantSDNode>(Op.getOperand(1)))
12803      return SDValue();
12804    int ExtIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
12805
12806    // Ensure that we are extracting a subvector from a vector the same
12807    // size as the result.
12808    if (ExtVT.getSizeInBits() != VT.getSizeInBits())
12809      return SDValue();
12810
12811    // Scale the subvector index to account for any bitcast.
12812    int NumExtElts = ExtVT.getVectorNumElements();
12813    if (0 == (NumExtElts % NumElts))
12814      ExtIdx /= (NumExtElts / NumElts);
12815    else if (0 == (NumElts % NumExtElts))
12816      ExtIdx *= (NumElts / NumExtElts);
12817    else
12818      return SDValue();
12819
12820    // At most we can reference 2 inputs in the final shuffle.
12821    if (SV0.getOpcode() == ISD::UNDEF || SV0 == ExtVec) {
12822      SV0 = ExtVec;
12823      for (int i = 0; i != NumOpElts; ++i)
12824        Mask.push_back(i + ExtIdx);
12825    } else if (SV1.getOpcode() == ISD::UNDEF || SV1 == ExtVec) {
12826      SV1 = ExtVec;
12827      for (int i = 0; i != NumOpElts; ++i)
12828        Mask.push_back(i + ExtIdx + NumElts);
12829    } else {
12830      return SDValue();
12831    }
12832  }
12833
12834  if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(Mask, VT))
12835    return SDValue();
12836
12837  return DAG.getVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
12838                              DAG.getBitcast(VT, SV1), Mask);
12839}
12840
12841SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
12842  // If we only have one input vector, we don't need to do any concatenation.
12843  if (N->getNumOperands() == 1)
12844    return N->getOperand(0);
12845
12846  // Check if all of the operands are undefs.
12847  EVT VT = N->getValueType(0);
12848  if (ISD::allOperandsUndef(N))
12849    return DAG.getUNDEF(VT);
12850
12851  // Optimize concat_vectors where all but the first of the vectors are undef.
12852  if (std::all_of(std::next(N->op_begin()), N->op_end(), [](const SDValue &Op) {
12853        return Op.getOpcode() == ISD::UNDEF;
12854      })) {
12855    SDValue In = N->getOperand(0);
12856    assert(In.getValueType().isVector() && "Must concat vectors");
12857
12858    // Transform: concat_vectors(scalar, undef) -> scalar_to_vector(sclr).
12859    if (In->getOpcode() == ISD::BITCAST &&
12860        !In->getOperand(0)->getValueType(0).isVector()) {
12861      SDValue Scalar = In->getOperand(0);
12862
12863      // If the bitcast type isn't legal, it might be a trunc of a legal type;
12864      // look through the trunc so we can still do the transform:
12865      //   concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
12866      if (Scalar->getOpcode() == ISD::TRUNCATE &&
12867          !TLI.isTypeLegal(Scalar.getValueType()) &&
12868          TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
12869        Scalar = Scalar->getOperand(0);
12870
12871      EVT SclTy = Scalar->getValueType(0);
12872
12873      if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
12874        return SDValue();
12875
12876      EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy,
12877                                 VT.getSizeInBits() / SclTy.getSizeInBits());
12878      if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
12879        return SDValue();
12880
12881      SDLoc dl = SDLoc(N);
12882      SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NVT, Scalar);
12883      return DAG.getNode(ISD::BITCAST, dl, VT, Res);
12884    }
12885  }
12886
12887  // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
12888  // We have already tested above for an UNDEF only concatenation.
12889  // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
12890  // -> (BUILD_VECTOR A, B, ..., C, D, ...)
12891  auto IsBuildVectorOrUndef = [](const SDValue &Op) {
12892    return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
12893  };
12894  bool AllBuildVectorsOrUndefs =
12895      std::all_of(N->op_begin(), N->op_end(), IsBuildVectorOrUndef);
12896  if (AllBuildVectorsOrUndefs) {
12897    SmallVector<SDValue, 8> Opnds;
12898    EVT SVT = VT.getScalarType();
12899
12900    EVT MinVT = SVT;
12901    if (!SVT.isFloatingPoint()) {
12902      // If BUILD_VECTOR are from built from integer, they may have different
12903      // operand types. Get the smallest type and truncate all operands to it.
12904      bool FoundMinVT = false;
12905      for (const SDValue &Op : N->ops())
12906        if (ISD::BUILD_VECTOR == Op.getOpcode()) {
12907          EVT OpSVT = Op.getOperand(0)->getValueType(0);
12908          MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
12909          FoundMinVT = true;
12910        }
12911      assert(FoundMinVT && "Concat vector type mismatch");
12912    }
12913
12914    for (const SDValue &Op : N->ops()) {
12915      EVT OpVT = Op.getValueType();
12916      unsigned NumElts = OpVT.getVectorNumElements();
12917
12918      if (ISD::UNDEF == Op.getOpcode())
12919        Opnds.append(NumElts, DAG.getUNDEF(MinVT));
12920
12921      if (ISD::BUILD_VECTOR == Op.getOpcode()) {
12922        if (SVT.isFloatingPoint()) {
12923          assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
12924          Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
12925        } else {
12926          for (unsigned i = 0; i != NumElts; ++i)
12927            Opnds.push_back(
12928                DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
12929        }
12930      }
12931    }
12932
12933    assert(VT.getVectorNumElements() == Opnds.size() &&
12934           "Concat vector type mismatch");
12935    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Opnds);
12936  }
12937
12938  // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
12939  if (SDValue V = combineConcatVectorOfScalars(N, DAG))
12940    return V;
12941
12942  // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
12943  if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
12944    if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
12945      return V;
12946
12947  // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
12948  // nodes often generate nop CONCAT_VECTOR nodes.
12949  // Scan the CONCAT_VECTOR operands and look for a CONCAT operations that
12950  // place the incoming vectors at the exact same location.
12951  SDValue SingleSource = SDValue();
12952  unsigned PartNumElem = N->getOperand(0).getValueType().getVectorNumElements();
12953
12954  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
12955    SDValue Op = N->getOperand(i);
12956
12957    if (Op.getOpcode() == ISD::UNDEF)
12958      continue;
12959
12960    // Check if this is the identity extract:
12961    if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
12962      return SDValue();
12963
12964    // Find the single incoming vector for the extract_subvector.
12965    if (SingleSource.getNode()) {
12966      if (Op.getOperand(0) != SingleSource)
12967        return SDValue();
12968    } else {
12969      SingleSource = Op.getOperand(0);
12970
12971      // Check the source type is the same as the type of the result.
12972      // If not, this concat may extend the vector, so we can not
12973      // optimize it away.
12974      if (SingleSource.getValueType() != N->getValueType(0))
12975        return SDValue();
12976    }
12977
12978    unsigned IdentityIndex = i * PartNumElem;
12979    ConstantSDNode *CS = dyn_cast<ConstantSDNode>(Op.getOperand(1));
12980    // The extract index must be constant.
12981    if (!CS)
12982      return SDValue();
12983
12984    // Check that we are reading from the identity index.
12985    if (CS->getZExtValue() != IdentityIndex)
12986      return SDValue();
12987  }
12988
12989  if (SingleSource.getNode())
12990    return SingleSource;
12991
12992  return SDValue();
12993}
12994
12995SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode* N) {
12996  EVT NVT = N->getValueType(0);
12997  SDValue V = N->getOperand(0);
12998
12999  if (V->getOpcode() == ISD::CONCAT_VECTORS) {
13000    // Combine:
13001    //    (extract_subvec (concat V1, V2, ...), i)
13002    // Into:
13003    //    Vi if possible
13004    // Only operand 0 is checked as 'concat' assumes all inputs of the same
13005    // type.
13006    if (V->getOperand(0).getValueType() != NVT)
13007      return SDValue();
13008    unsigned Idx = N->getConstantOperandVal(1);
13009    unsigned NumElems = NVT.getVectorNumElements();
13010    assert((Idx % NumElems) == 0 &&
13011           "IDX in concat is not a multiple of the result vector length.");
13012    return V->getOperand(Idx / NumElems);
13013  }
13014
13015  // Skip bitcasting
13016  if (V->getOpcode() == ISD::BITCAST)
13017    V = V.getOperand(0);
13018
13019  if (V->getOpcode() == ISD::INSERT_SUBVECTOR) {
13020    SDLoc dl(N);
13021    // Handle only simple case where vector being inserted and vector
13022    // being extracted are of same type, and are half size of larger vectors.
13023    EVT BigVT = V->getOperand(0).getValueType();
13024    EVT SmallVT = V->getOperand(1).getValueType();
13025    if (!NVT.bitsEq(SmallVT) || NVT.getSizeInBits()*2 != BigVT.getSizeInBits())
13026      return SDValue();
13027
13028    // Only handle cases where both indexes are constants with the same type.
13029    ConstantSDNode *ExtIdx = dyn_cast<ConstantSDNode>(N->getOperand(1));
13030    ConstantSDNode *InsIdx = dyn_cast<ConstantSDNode>(V->getOperand(2));
13031
13032    if (InsIdx && ExtIdx &&
13033        InsIdx->getValueType(0).getSizeInBits() <= 64 &&
13034        ExtIdx->getValueType(0).getSizeInBits() <= 64) {
13035      // Combine:
13036      //    (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
13037      // Into:
13038      //    indices are equal or bit offsets are equal => V1
13039      //    otherwise => (extract_subvec V1, ExtIdx)
13040      if (InsIdx->getZExtValue() * SmallVT.getScalarType().getSizeInBits() ==
13041          ExtIdx->getZExtValue() * NVT.getScalarType().getSizeInBits())
13042        return DAG.getNode(ISD::BITCAST, dl, NVT, V->getOperand(1));
13043      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT,
13044                         DAG.getNode(ISD::BITCAST, dl,
13045                                     N->getOperand(0).getValueType(),
13046                                     V->getOperand(0)), N->getOperand(1));
13047    }
13048  }
13049
13050  return SDValue();
13051}
13052
13053static SDValue simplifyShuffleOperandRecursively(SmallBitVector &UsedElements,
13054                                                 SDValue V, SelectionDAG &DAG) {
13055  SDLoc DL(V);
13056  EVT VT = V.getValueType();
13057
13058  switch (V.getOpcode()) {
13059  default:
13060    return V;
13061
13062  case ISD::CONCAT_VECTORS: {
13063    EVT OpVT = V->getOperand(0).getValueType();
13064    int OpSize = OpVT.getVectorNumElements();
13065    SmallBitVector OpUsedElements(OpSize, false);
13066    bool FoundSimplification = false;
13067    SmallVector<SDValue, 4> NewOps;
13068    NewOps.reserve(V->getNumOperands());
13069    for (int i = 0, NumOps = V->getNumOperands(); i < NumOps; ++i) {
13070      SDValue Op = V->getOperand(i);
13071      bool OpUsed = false;
13072      for (int j = 0; j < OpSize; ++j)
13073        if (UsedElements[i * OpSize + j]) {
13074          OpUsedElements[j] = true;
13075          OpUsed = true;
13076        }
13077      NewOps.push_back(
13078          OpUsed ? simplifyShuffleOperandRecursively(OpUsedElements, Op, DAG)
13079                 : DAG.getUNDEF(OpVT));
13080      FoundSimplification |= Op == NewOps.back();
13081      OpUsedElements.reset();
13082    }
13083    if (FoundSimplification)
13084      V = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, NewOps);
13085    return V;
13086  }
13087
13088  case ISD::INSERT_SUBVECTOR: {
13089    SDValue BaseV = V->getOperand(0);
13090    SDValue SubV = V->getOperand(1);
13091    auto *IdxN = dyn_cast<ConstantSDNode>(V->getOperand(2));
13092    if (!IdxN)
13093      return V;
13094
13095    int SubSize = SubV.getValueType().getVectorNumElements();
13096    int Idx = IdxN->getZExtValue();
13097    bool SubVectorUsed = false;
13098    SmallBitVector SubUsedElements(SubSize, false);
13099    for (int i = 0; i < SubSize; ++i)
13100      if (UsedElements[i + Idx]) {
13101        SubVectorUsed = true;
13102        SubUsedElements[i] = true;
13103        UsedElements[i + Idx] = false;
13104      }
13105
13106    // Now recurse on both the base and sub vectors.
13107    SDValue SimplifiedSubV =
13108        SubVectorUsed
13109            ? simplifyShuffleOperandRecursively(SubUsedElements, SubV, DAG)
13110            : DAG.getUNDEF(SubV.getValueType());
13111    SDValue SimplifiedBaseV = simplifyShuffleOperandRecursively(UsedElements, BaseV, DAG);
13112    if (SimplifiedSubV != SubV || SimplifiedBaseV != BaseV)
13113      V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
13114                      SimplifiedBaseV, SimplifiedSubV, V->getOperand(2));
13115    return V;
13116  }
13117  }
13118}
13119
13120static SDValue simplifyShuffleOperands(ShuffleVectorSDNode *SVN, SDValue N0,
13121                                       SDValue N1, SelectionDAG &DAG) {
13122  EVT VT = SVN->getValueType(0);
13123  int NumElts = VT.getVectorNumElements();
13124  SmallBitVector N0UsedElements(NumElts, false), N1UsedElements(NumElts, false);
13125  for (int M : SVN->getMask())
13126    if (M >= 0 && M < NumElts)
13127      N0UsedElements[M] = true;
13128    else if (M >= NumElts)
13129      N1UsedElements[M - NumElts] = true;
13130
13131  SDValue S0 = simplifyShuffleOperandRecursively(N0UsedElements, N0, DAG);
13132  SDValue S1 = simplifyShuffleOperandRecursively(N1UsedElements, N1, DAG);
13133  if (S0 == N0 && S1 == N1)
13134    return SDValue();
13135
13136  return DAG.getVectorShuffle(VT, SDLoc(SVN), S0, S1, SVN->getMask());
13137}
13138
13139// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
13140// or turn a shuffle of a single concat into simpler shuffle then concat.
13141static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
13142  EVT VT = N->getValueType(0);
13143  unsigned NumElts = VT.getVectorNumElements();
13144
13145  SDValue N0 = N->getOperand(0);
13146  SDValue N1 = N->getOperand(1);
13147  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
13148
13149  SmallVector<SDValue, 4> Ops;
13150  EVT ConcatVT = N0.getOperand(0).getValueType();
13151  unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
13152  unsigned NumConcats = NumElts / NumElemsPerConcat;
13153
13154  // Special case: shuffle(concat(A,B)) can be more efficiently represented
13155  // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
13156  // half vector elements.
13157  if (NumElemsPerConcat * 2 == NumElts && N1.getOpcode() == ISD::UNDEF &&
13158      std::all_of(SVN->getMask().begin() + NumElemsPerConcat,
13159                  SVN->getMask().end(), [](int i) { return i == -1; })) {
13160    N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), N0.getOperand(1),
13161                              makeArrayRef(SVN->getMask().begin(), NumElemsPerConcat));
13162    N1 = DAG.getUNDEF(ConcatVT);
13163    return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
13164  }
13165
13166  // Look at every vector that's inserted. We're looking for exact
13167  // subvector-sized copies from a concatenated vector
13168  for (unsigned I = 0; I != NumConcats; ++I) {
13169    // Make sure we're dealing with a copy.
13170    unsigned Begin = I * NumElemsPerConcat;
13171    bool AllUndef = true, NoUndef = true;
13172    for (unsigned J = Begin; J != Begin + NumElemsPerConcat; ++J) {
13173      if (SVN->getMaskElt(J) >= 0)
13174        AllUndef = false;
13175      else
13176        NoUndef = false;
13177    }
13178
13179    if (NoUndef) {
13180      if (SVN->getMaskElt(Begin) % NumElemsPerConcat != 0)
13181        return SDValue();
13182
13183      for (unsigned J = 1; J != NumElemsPerConcat; ++J)
13184        if (SVN->getMaskElt(Begin + J - 1) + 1 != SVN->getMaskElt(Begin + J))
13185          return SDValue();
13186
13187      unsigned FirstElt = SVN->getMaskElt(Begin) / NumElemsPerConcat;
13188      if (FirstElt < N0.getNumOperands())
13189        Ops.push_back(N0.getOperand(FirstElt));
13190      else
13191        Ops.push_back(N1.getOperand(FirstElt - N0.getNumOperands()));
13192
13193    } else if (AllUndef) {
13194      Ops.push_back(DAG.getUNDEF(N0.getOperand(0).getValueType()));
13195    } else { // Mixed with general masks and undefs, can't do optimization.
13196      return SDValue();
13197    }
13198  }
13199
13200  return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
13201}
13202
13203SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
13204  EVT VT = N->getValueType(0);
13205  unsigned NumElts = VT.getVectorNumElements();
13206
13207  SDValue N0 = N->getOperand(0);
13208  SDValue N1 = N->getOperand(1);
13209
13210  assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
13211
13212  // Canonicalize shuffle undef, undef -> undef
13213  if (N0.getOpcode() == ISD::UNDEF && N1.getOpcode() == ISD::UNDEF)
13214    return DAG.getUNDEF(VT);
13215
13216  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
13217
13218  // Canonicalize shuffle v, v -> v, undef
13219  if (N0 == N1) {
13220    SmallVector<int, 8> NewMask;
13221    for (unsigned i = 0; i != NumElts; ++i) {
13222      int Idx = SVN->getMaskElt(i);
13223      if (Idx >= (int)NumElts) Idx -= NumElts;
13224      NewMask.push_back(Idx);
13225    }
13226    return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
13227                                &NewMask[0]);
13228  }
13229
13230  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
13231  if (N0.getOpcode() == ISD::UNDEF) {
13232    SmallVector<int, 8> NewMask;
13233    for (unsigned i = 0; i != NumElts; ++i) {
13234      int Idx = SVN->getMaskElt(i);
13235      if (Idx >= 0) {
13236        if (Idx >= (int)NumElts)
13237          Idx -= NumElts;
13238        else
13239          Idx = -1; // remove reference to lhs
13240      }
13241      NewMask.push_back(Idx);
13242    }
13243    return DAG.getVectorShuffle(VT, SDLoc(N), N1, DAG.getUNDEF(VT),
13244                                &NewMask[0]);
13245  }
13246
13247  // Remove references to rhs if it is undef
13248  if (N1.getOpcode() == ISD::UNDEF) {
13249    bool Changed = false;
13250    SmallVector<int, 8> NewMask;
13251    for (unsigned i = 0; i != NumElts; ++i) {
13252      int Idx = SVN->getMaskElt(i);
13253      if (Idx >= (int)NumElts) {
13254        Idx = -1;
13255        Changed = true;
13256      }
13257      NewMask.push_back(Idx);
13258    }
13259    if (Changed)
13260      return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, &NewMask[0]);
13261  }
13262
13263  // If it is a splat, check if the argument vector is another splat or a
13264  // build_vector.
13265  if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
13266    SDNode *V = N0.getNode();
13267
13268    // If this is a bit convert that changes the element type of the vector but
13269    // not the number of vector elements, look through it.  Be careful not to
13270    // look though conversions that change things like v4f32 to v2f64.
13271    if (V->getOpcode() == ISD::BITCAST) {
13272      SDValue ConvInput = V->getOperand(0);
13273      if (ConvInput.getValueType().isVector() &&
13274          ConvInput.getValueType().getVectorNumElements() == NumElts)
13275        V = ConvInput.getNode();
13276    }
13277
13278    if (V->getOpcode() == ISD::BUILD_VECTOR) {
13279      assert(V->getNumOperands() == NumElts &&
13280             "BUILD_VECTOR has wrong number of operands");
13281      SDValue Base;
13282      bool AllSame = true;
13283      for (unsigned i = 0; i != NumElts; ++i) {
13284        if (V->getOperand(i).getOpcode() != ISD::UNDEF) {
13285          Base = V->getOperand(i);
13286          break;
13287        }
13288      }
13289      // Splat of <u, u, u, u>, return <u, u, u, u>
13290      if (!Base.getNode())
13291        return N0;
13292      for (unsigned i = 0; i != NumElts; ++i) {
13293        if (V->getOperand(i) != Base) {
13294          AllSame = false;
13295          break;
13296        }
13297      }
13298      // Splat of <x, x, x, x>, return <x, x, x, x>
13299      if (AllSame)
13300        return N0;
13301
13302      // Canonicalize any other splat as a build_vector.
13303      const SDValue &Splatted = V->getOperand(SVN->getSplatIndex());
13304      SmallVector<SDValue, 8> Ops(NumElts, Splatted);
13305      SDValue NewBV = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
13306                                  V->getValueType(0), Ops);
13307
13308      // We may have jumped through bitcasts, so the type of the
13309      // BUILD_VECTOR may not match the type of the shuffle.
13310      if (V->getValueType(0) != VT)
13311        NewBV = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, NewBV);
13312      return NewBV;
13313    }
13314  }
13315
13316  // There are various patterns used to build up a vector from smaller vectors,
13317  // subvectors, or elements. Scan chains of these and replace unused insertions
13318  // or components with undef.
13319  if (SDValue S = simplifyShuffleOperands(SVN, N0, N1, DAG))
13320    return S;
13321
13322  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
13323      Level < AfterLegalizeVectorOps &&
13324      (N1.getOpcode() == ISD::UNDEF ||
13325      (N1.getOpcode() == ISD::CONCAT_VECTORS &&
13326       N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
13327    SDValue V = partitionShuffleOfConcats(N, DAG);
13328
13329    if (V.getNode())
13330      return V;
13331  }
13332
13333  // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
13334  // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
13335  if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) {
13336    SmallVector<SDValue, 8> Ops;
13337    for (int M : SVN->getMask()) {
13338      SDValue Op = DAG.getUNDEF(VT.getScalarType());
13339      if (M >= 0) {
13340        int Idx = M % NumElts;
13341        SDValue &S = (M < (int)NumElts ? N0 : N1);
13342        if (S.getOpcode() == ISD::BUILD_VECTOR && S.hasOneUse()) {
13343          Op = S.getOperand(Idx);
13344        } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR && S.hasOneUse()) {
13345          if (Idx == 0)
13346            Op = S.getOperand(0);
13347        } else {
13348          // Operand can't be combined - bail out.
13349          break;
13350        }
13351      }
13352      Ops.push_back(Op);
13353    }
13354    if (Ops.size() == VT.getVectorNumElements()) {
13355      // BUILD_VECTOR requires all inputs to be of the same type, find the
13356      // maximum type and extend them all.
13357      EVT SVT = VT.getScalarType();
13358      if (SVT.isInteger())
13359        for (SDValue &Op : Ops)
13360          SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
13361      if (SVT != VT.getScalarType())
13362        for (SDValue &Op : Ops)
13363          Op = TLI.isZExtFree(Op.getValueType(), SVT)
13364                   ? DAG.getZExtOrTrunc(Op, SDLoc(N), SVT)
13365                   : DAG.getSExtOrTrunc(Op, SDLoc(N), SVT);
13366      return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), VT, Ops);
13367    }
13368  }
13369
13370  // If this shuffle only has a single input that is a bitcasted shuffle,
13371  // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
13372  // back to their original types.
13373  if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
13374      N1.getOpcode() == ISD::UNDEF && Level < AfterLegalizeVectorOps &&
13375      TLI.isTypeLegal(VT)) {
13376
13377    // Peek through the bitcast only if there is one user.
13378    SDValue BC0 = N0;
13379    while (BC0.getOpcode() == ISD::BITCAST) {
13380      if (!BC0.hasOneUse())
13381        break;
13382      BC0 = BC0.getOperand(0);
13383    }
13384
13385    auto ScaleShuffleMask = [](ArrayRef<int> Mask, int Scale) {
13386      if (Scale == 1)
13387        return SmallVector<int, 8>(Mask.begin(), Mask.end());
13388
13389      SmallVector<int, 8> NewMask;
13390      for (int M : Mask)
13391        for (int s = 0; s != Scale; ++s)
13392          NewMask.push_back(M < 0 ? -1 : Scale * M + s);
13393      return NewMask;
13394    };
13395
13396    if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
13397      EVT SVT = VT.getScalarType();
13398      EVT InnerVT = BC0->getValueType(0);
13399      EVT InnerSVT = InnerVT.getScalarType();
13400
13401      // Determine which shuffle works with the smaller scalar type.
13402      EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
13403      EVT ScaleSVT = ScaleVT.getScalarType();
13404
13405      if (TLI.isTypeLegal(ScaleVT) &&
13406          0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
13407          0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
13408
13409        int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
13410        int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
13411
13412        // Scale the shuffle masks to the smaller scalar type.
13413        ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
13414        SmallVector<int, 8> InnerMask =
13415            ScaleShuffleMask(InnerSVN->getMask(), InnerScale);
13416        SmallVector<int, 8> OuterMask =
13417            ScaleShuffleMask(SVN->getMask(), OuterScale);
13418
13419        // Merge the shuffle masks.
13420        SmallVector<int, 8> NewMask;
13421        for (int M : OuterMask)
13422          NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
13423
13424        // Test for shuffle mask legality over both commutations.
13425        SDValue SV0 = BC0->getOperand(0);
13426        SDValue SV1 = BC0->getOperand(1);
13427        bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
13428        if (!LegalMask) {
13429          std::swap(SV0, SV1);
13430          ShuffleVectorSDNode::commuteMask(NewMask);
13431          LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
13432        }
13433
13434        if (LegalMask) {
13435          SV0 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV0);
13436          SV1 = DAG.getNode(ISD::BITCAST, SDLoc(N), ScaleVT, SV1);
13437          return DAG.getNode(
13438              ISD::BITCAST, SDLoc(N), VT,
13439              DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
13440        }
13441      }
13442    }
13443  }
13444
13445  // Canonicalize shuffles according to rules:
13446  //  shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
13447  //  shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
13448  //  shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
13449  if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
13450      N0.getOpcode() != ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG &&
13451      TLI.isTypeLegal(VT)) {
13452    // The incoming shuffle must be of the same type as the result of the
13453    // current shuffle.
13454    assert(N1->getOperand(0).getValueType() == VT &&
13455           "Shuffle types don't match");
13456
13457    SDValue SV0 = N1->getOperand(0);
13458    SDValue SV1 = N1->getOperand(1);
13459    bool HasSameOp0 = N0 == SV0;
13460    bool IsSV1Undef = SV1.getOpcode() == ISD::UNDEF;
13461    if (HasSameOp0 || IsSV1Undef || N0 == SV1)
13462      // Commute the operands of this shuffle so that next rule
13463      // will trigger.
13464      return DAG.getCommutedVectorShuffle(*SVN);
13465  }
13466
13467  // Try to fold according to rules:
13468  //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
13469  //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
13470  //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
13471  // Don't try to fold shuffles with illegal type.
13472  // Only fold if this shuffle is the only user of the other shuffle.
13473  if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) &&
13474      Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
13475    ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0);
13476
13477    // The incoming shuffle must be of the same type as the result of the
13478    // current shuffle.
13479    assert(OtherSV->getOperand(0).getValueType() == VT &&
13480           "Shuffle types don't match");
13481
13482    SDValue SV0, SV1;
13483    SmallVector<int, 4> Mask;
13484    // Compute the combined shuffle mask for a shuffle with SV0 as the first
13485    // operand, and SV1 as the second operand.
13486    for (unsigned i = 0; i != NumElts; ++i) {
13487      int Idx = SVN->getMaskElt(i);
13488      if (Idx < 0) {
13489        // Propagate Undef.
13490        Mask.push_back(Idx);
13491        continue;
13492      }
13493
13494      SDValue CurrentVec;
13495      if (Idx < (int)NumElts) {
13496        // This shuffle index refers to the inner shuffle N0. Lookup the inner
13497        // shuffle mask to identify which vector is actually referenced.
13498        Idx = OtherSV->getMaskElt(Idx);
13499        if (Idx < 0) {
13500          // Propagate Undef.
13501          Mask.push_back(Idx);
13502          continue;
13503        }
13504
13505        CurrentVec = (Idx < (int) NumElts) ? OtherSV->getOperand(0)
13506                                           : OtherSV->getOperand(1);
13507      } else {
13508        // This shuffle index references an element within N1.
13509        CurrentVec = N1;
13510      }
13511
13512      // Simple case where 'CurrentVec' is UNDEF.
13513      if (CurrentVec.getOpcode() == ISD::UNDEF) {
13514        Mask.push_back(-1);
13515        continue;
13516      }
13517
13518      // Canonicalize the shuffle index. We don't know yet if CurrentVec
13519      // will be the first or second operand of the combined shuffle.
13520      Idx = Idx % NumElts;
13521      if (!SV0.getNode() || SV0 == CurrentVec) {
13522        // Ok. CurrentVec is the left hand side.
13523        // Update the mask accordingly.
13524        SV0 = CurrentVec;
13525        Mask.push_back(Idx);
13526        continue;
13527      }
13528
13529      // Bail out if we cannot convert the shuffle pair into a single shuffle.
13530      if (SV1.getNode() && SV1 != CurrentVec)
13531        return SDValue();
13532
13533      // Ok. CurrentVec is the right hand side.
13534      // Update the mask accordingly.
13535      SV1 = CurrentVec;
13536      Mask.push_back(Idx + NumElts);
13537    }
13538
13539    // Check if all indices in Mask are Undef. In case, propagate Undef.
13540    bool isUndefMask = true;
13541    for (unsigned i = 0; i != NumElts && isUndefMask; ++i)
13542      isUndefMask &= Mask[i] < 0;
13543
13544    if (isUndefMask)
13545      return DAG.getUNDEF(VT);
13546
13547    if (!SV0.getNode())
13548      SV0 = DAG.getUNDEF(VT);
13549    if (!SV1.getNode())
13550      SV1 = DAG.getUNDEF(VT);
13551
13552    // Avoid introducing shuffles with illegal mask.
13553    if (!TLI.isShuffleMaskLegal(Mask, VT)) {
13554      ShuffleVectorSDNode::commuteMask(Mask);
13555
13556      if (!TLI.isShuffleMaskLegal(Mask, VT))
13557        return SDValue();
13558
13559      //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
13560      //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
13561      //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
13562      std::swap(SV0, SV1);
13563    }
13564
13565    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
13566    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
13567    //   shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
13568    return DAG.getVectorShuffle(VT, SDLoc(N), SV0, SV1, &Mask[0]);
13569  }
13570
13571  return SDValue();
13572}
13573
13574SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
13575  SDValue InVal = N->getOperand(0);
13576  EVT VT = N->getValueType(0);
13577
13578  // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
13579  // with a VECTOR_SHUFFLE.
13580  if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13581    SDValue InVec = InVal->getOperand(0);
13582    SDValue EltNo = InVal->getOperand(1);
13583
13584    // FIXME: We could support implicit truncation if the shuffle can be
13585    // scaled to a smaller vector scalar type.
13586    ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo);
13587    if (C0 && VT == InVec.getValueType() &&
13588        VT.getScalarType() == InVal.getValueType()) {
13589      SmallVector<int, 8> NewMask(VT.getVectorNumElements(), -1);
13590      int Elt = C0->getZExtValue();
13591      NewMask[0] = Elt;
13592
13593      if (TLI.isShuffleMaskLegal(NewMask, VT))
13594        return DAG.getVectorShuffle(VT, SDLoc(N), InVec, DAG.getUNDEF(VT),
13595                                    NewMask);
13596    }
13597  }
13598
13599  return SDValue();
13600}
13601
13602SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
13603  SDValue N0 = N->getOperand(0);
13604  SDValue N2 = N->getOperand(2);
13605
13606  // If the input vector is a concatenation, and the insert replaces
13607  // one of the halves, we can optimize into a single concat_vectors.
13608  if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
13609      N0->getNumOperands() == 2 && N2.getOpcode() == ISD::Constant) {
13610    APInt InsIdx = cast<ConstantSDNode>(N2)->getAPIntValue();
13611    EVT VT = N->getValueType(0);
13612
13613    // Lower half: fold (insert_subvector (concat_vectors X, Y), Z) ->
13614    // (concat_vectors Z, Y)
13615    if (InsIdx == 0)
13616      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
13617                         N->getOperand(1), N0.getOperand(1));
13618
13619    // Upper half: fold (insert_subvector (concat_vectors X, Y), Z) ->
13620    // (concat_vectors X, Z)
13621    if (InsIdx == VT.getVectorNumElements()/2)
13622      return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
13623                         N0.getOperand(0), N->getOperand(1));
13624  }
13625
13626  return SDValue();
13627}
13628
13629SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
13630  SDValue N0 = N->getOperand(0);
13631
13632  // fold (fp_to_fp16 (fp16_to_fp op)) -> op
13633  if (N0->getOpcode() == ISD::FP16_TO_FP)
13634    return N0->getOperand(0);
13635
13636  return SDValue();
13637}
13638
13639SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
13640  SDValue N0 = N->getOperand(0);
13641
13642  // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
13643  if (N0->getOpcode() == ISD::AND) {
13644    ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
13645    if (AndConst && AndConst->getAPIntValue() == 0xffff) {
13646      return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
13647                         N0.getOperand(0));
13648    }
13649  }
13650
13651  return SDValue();
13652}
13653
13654/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
13655/// with the destination vector and a zero vector.
13656/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
13657///      vector_shuffle V, Zero, <0, 4, 2, 4>
13658SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
13659  EVT VT = N->getValueType(0);
13660  SDValue LHS = N->getOperand(0);
13661  SDValue RHS = N->getOperand(1);
13662  SDLoc dl(N);
13663
13664  // Make sure we're not running after operation legalization where it
13665  // may have custom lowered the vector shuffles.
13666  if (LegalOperations)
13667    return SDValue();
13668
13669  if (N->getOpcode() != ISD::AND)
13670    return SDValue();
13671
13672  if (RHS.getOpcode() == ISD::BITCAST)
13673    RHS = RHS.getOperand(0);
13674
13675  if (RHS.getOpcode() != ISD::BUILD_VECTOR)
13676    return SDValue();
13677
13678  EVT RVT = RHS.getValueType();
13679  unsigned NumElts = RHS.getNumOperands();
13680
13681  // Attempt to create a valid clear mask, splitting the mask into
13682  // sub elements and checking to see if each is
13683  // all zeros or all ones - suitable for shuffle masking.
13684  auto BuildClearMask = [&](int Split) {
13685    int NumSubElts = NumElts * Split;
13686    int NumSubBits = RVT.getScalarSizeInBits() / Split;
13687
13688    SmallVector<int, 8> Indices;
13689    for (int i = 0; i != NumSubElts; ++i) {
13690      int EltIdx = i / Split;
13691      int SubIdx = i % Split;
13692      SDValue Elt = RHS.getOperand(EltIdx);
13693      if (Elt.getOpcode() == ISD::UNDEF) {
13694        Indices.push_back(-1);
13695        continue;
13696      }
13697
13698      APInt Bits;
13699      if (isa<ConstantSDNode>(Elt))
13700        Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
13701      else if (isa<ConstantFPSDNode>(Elt))
13702        Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
13703      else
13704        return SDValue();
13705
13706      // Extract the sub element from the constant bit mask.
13707      if (DAG.getDataLayout().isBigEndian()) {
13708        Bits = Bits.lshr((Split - SubIdx - 1) * NumSubBits);
13709      } else {
13710        Bits = Bits.lshr(SubIdx * NumSubBits);
13711      }
13712
13713      if (Split > 1)
13714        Bits = Bits.trunc(NumSubBits);
13715
13716      if (Bits.isAllOnesValue())
13717        Indices.push_back(i);
13718      else if (Bits == 0)
13719        Indices.push_back(i + NumSubElts);
13720      else
13721        return SDValue();
13722    }
13723
13724    // Let's see if the target supports this vector_shuffle.
13725    EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
13726    EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
13727    if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
13728      return SDValue();
13729
13730    SDValue Zero = DAG.getConstant(0, dl, ClearVT);
13731    return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, dl,
13732                                                   DAG.getBitcast(ClearVT, LHS),
13733                                                   Zero, &Indices[0]));
13734  };
13735
13736  // Determine maximum split level (byte level masking).
13737  int MaxSplit = 1;
13738  if (RVT.getScalarSizeInBits() % 8 == 0)
13739    MaxSplit = RVT.getScalarSizeInBits() / 8;
13740
13741  for (int Split = 1; Split <= MaxSplit; ++Split)
13742    if (RVT.getScalarSizeInBits() % Split == 0)
13743      if (SDValue S = BuildClearMask(Split))
13744        return S;
13745
13746  return SDValue();
13747}
13748
13749/// Visit a binary vector operation, like ADD.
13750SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
13751  assert(N->getValueType(0).isVector() &&
13752         "SimplifyVBinOp only works on vectors!");
13753
13754  SDValue LHS = N->getOperand(0);
13755  SDValue RHS = N->getOperand(1);
13756  SDValue Ops[] = {LHS, RHS};
13757
13758  // See if we can constant fold the vector operation.
13759  if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
13760          N->getOpcode(), SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
13761    return Fold;
13762
13763  // Try to convert a constant mask AND into a shuffle clear mask.
13764  if (SDValue Shuffle = XformToShuffleWithZero(N))
13765    return Shuffle;
13766
13767  // Type legalization might introduce new shuffles in the DAG.
13768  // Fold (VBinOp (shuffle (A, Undef, Mask)), (shuffle (B, Undef, Mask)))
13769  //   -> (shuffle (VBinOp (A, B)), Undef, Mask).
13770  if (LegalTypes && isa<ShuffleVectorSDNode>(LHS) &&
13771      isa<ShuffleVectorSDNode>(RHS) && LHS.hasOneUse() && RHS.hasOneUse() &&
13772      LHS.getOperand(1).getOpcode() == ISD::UNDEF &&
13773      RHS.getOperand(1).getOpcode() == ISD::UNDEF) {
13774    ShuffleVectorSDNode *SVN0 = cast<ShuffleVectorSDNode>(LHS);
13775    ShuffleVectorSDNode *SVN1 = cast<ShuffleVectorSDNode>(RHS);
13776
13777    if (SVN0->getMask().equals(SVN1->getMask())) {
13778      EVT VT = N->getValueType(0);
13779      SDValue UndefVector = LHS.getOperand(1);
13780      SDValue NewBinOp = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
13781                                     LHS.getOperand(0), RHS.getOperand(0),
13782                                     N->getFlags());
13783      AddUsersToWorklist(N);
13784      return DAG.getVectorShuffle(VT, SDLoc(N), NewBinOp, UndefVector,
13785                                  &SVN0->getMask()[0]);
13786    }
13787  }
13788
13789  return SDValue();
13790}
13791
13792SDValue DAGCombiner::SimplifySelect(SDLoc DL, SDValue N0,
13793                                    SDValue N1, SDValue N2){
13794  assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
13795
13796  SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
13797                                 cast<CondCodeSDNode>(N0.getOperand(2))->get());
13798
13799  // If we got a simplified select_cc node back from SimplifySelectCC, then
13800  // break it down into a new SETCC node, and a new SELECT node, and then return
13801  // the SELECT node, since we were called with a SELECT node.
13802  if (SCC.getNode()) {
13803    // Check to see if we got a select_cc back (to turn into setcc/select).
13804    // Otherwise, just return whatever node we got back, like fabs.
13805    if (SCC.getOpcode() == ISD::SELECT_CC) {
13806      SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
13807                                  N0.getValueType(),
13808                                  SCC.getOperand(0), SCC.getOperand(1),
13809                                  SCC.getOperand(4));
13810      AddToWorklist(SETCC.getNode());
13811      return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
13812                           SCC.getOperand(2), SCC.getOperand(3));
13813    }
13814
13815    return SCC;
13816  }
13817  return SDValue();
13818}
13819
13820/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
13821/// being selected between, see if we can simplify the select.  Callers of this
13822/// should assume that TheSelect is deleted if this returns true.  As such, they
13823/// should return the appropriate thing (e.g. the node) back to the top-level of
13824/// the DAG combiner loop to avoid it being looked at.
13825bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
13826                                    SDValue RHS) {
13827
13828  // fold (select (setcc x, -0.0, *lt), NaN, (fsqrt x))
13829  // The select + setcc is redundant, because fsqrt returns NaN for X < -0.
13830  if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
13831    if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
13832      // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
13833      SDValue Sqrt = RHS;
13834      ISD::CondCode CC;
13835      SDValue CmpLHS;
13836      const ConstantFPSDNode *NegZero = nullptr;
13837
13838      if (TheSelect->getOpcode() == ISD::SELECT_CC) {
13839        CC = dyn_cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
13840        CmpLHS = TheSelect->getOperand(0);
13841        NegZero = isConstOrConstSplatFP(TheSelect->getOperand(1));
13842      } else {
13843        // SELECT or VSELECT
13844        SDValue Cmp = TheSelect->getOperand(0);
13845        if (Cmp.getOpcode() == ISD::SETCC) {
13846          CC = dyn_cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
13847          CmpLHS = Cmp.getOperand(0);
13848          NegZero = isConstOrConstSplatFP(Cmp.getOperand(1));
13849        }
13850      }
13851      if (NegZero && NegZero->isNegative() && NegZero->isZero() &&
13852          Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
13853          CC == ISD::SETULT || CC == ISD::SETLT)) {
13854        // We have: (select (setcc x, -0.0, *lt), NaN, (fsqrt x))
13855        CombineTo(TheSelect, Sqrt);
13856        return true;
13857      }
13858    }
13859  }
13860  // Cannot simplify select with vector condition
13861  if (TheSelect->getOperand(0).getValueType().isVector()) return false;
13862
13863  // If this is a select from two identical things, try to pull the operation
13864  // through the select.
13865  if (LHS.getOpcode() != RHS.getOpcode() ||
13866      !LHS.hasOneUse() || !RHS.hasOneUse())
13867    return false;
13868
13869  // If this is a load and the token chain is identical, replace the select
13870  // of two loads with a load through a select of the address to load from.
13871  // This triggers in things like "select bool X, 10.0, 123.0" after the FP
13872  // constants have been dropped into the constant pool.
13873  if (LHS.getOpcode() == ISD::LOAD) {
13874    LoadSDNode *LLD = cast<LoadSDNode>(LHS);
13875    LoadSDNode *RLD = cast<LoadSDNode>(RHS);
13876
13877    // Token chains must be identical.
13878    if (LHS.getOperand(0) != RHS.getOperand(0) ||
13879        // Do not let this transformation reduce the number of volatile loads.
13880        LLD->isVolatile() || RLD->isVolatile() ||
13881        // FIXME: If either is a pre/post inc/dec load,
13882        // we'd need to split out the address adjustment.
13883        LLD->isIndexed() || RLD->isIndexed() ||
13884        // If this is an EXTLOAD, the VT's must match.
13885        LLD->getMemoryVT() != RLD->getMemoryVT() ||
13886        // If this is an EXTLOAD, the kind of extension must match.
13887        (LLD->getExtensionType() != RLD->getExtensionType() &&
13888         // The only exception is if one of the extensions is anyext.
13889         LLD->getExtensionType() != ISD::EXTLOAD &&
13890         RLD->getExtensionType() != ISD::EXTLOAD) ||
13891        // FIXME: this discards src value information.  This is
13892        // over-conservative. It would be beneficial to be able to remember
13893        // both potential memory locations.  Since we are discarding
13894        // src value info, don't do the transformation if the memory
13895        // locations are not in the default address space.
13896        LLD->getPointerInfo().getAddrSpace() != 0 ||
13897        RLD->getPointerInfo().getAddrSpace() != 0 ||
13898        !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
13899                                      LLD->getBasePtr().getValueType()))
13900      return false;
13901
13902    // Check that the select condition doesn't reach either load.  If so,
13903    // folding this will induce a cycle into the DAG.  If not, this is safe to
13904    // xform, so create a select of the addresses.
13905    SDValue Addr;
13906    if (TheSelect->getOpcode() == ISD::SELECT) {
13907      SDNode *CondNode = TheSelect->getOperand(0).getNode();
13908      if ((LLD->hasAnyUseOfValue(1) && LLD->isPredecessorOf(CondNode)) ||
13909          (RLD->hasAnyUseOfValue(1) && RLD->isPredecessorOf(CondNode)))
13910        return false;
13911      // The loads must not depend on one another.
13912      if (LLD->isPredecessorOf(RLD) ||
13913          RLD->isPredecessorOf(LLD))
13914        return false;
13915      Addr = DAG.getSelect(SDLoc(TheSelect),
13916                           LLD->getBasePtr().getValueType(),
13917                           TheSelect->getOperand(0), LLD->getBasePtr(),
13918                           RLD->getBasePtr());
13919    } else {  // Otherwise SELECT_CC
13920      SDNode *CondLHS = TheSelect->getOperand(0).getNode();
13921      SDNode *CondRHS = TheSelect->getOperand(1).getNode();
13922
13923      if ((LLD->hasAnyUseOfValue(1) &&
13924           (LLD->isPredecessorOf(CondLHS) || LLD->isPredecessorOf(CondRHS))) ||
13925          (RLD->hasAnyUseOfValue(1) &&
13926           (RLD->isPredecessorOf(CondLHS) || RLD->isPredecessorOf(CondRHS))))
13927        return false;
13928
13929      Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
13930                         LLD->getBasePtr().getValueType(),
13931                         TheSelect->getOperand(0),
13932                         TheSelect->getOperand(1),
13933                         LLD->getBasePtr(), RLD->getBasePtr(),
13934                         TheSelect->getOperand(4));
13935    }
13936
13937    SDValue Load;
13938    // It is safe to replace the two loads if they have different alignments,
13939    // but the new load must be the minimum (most restrictive) alignment of the
13940    // inputs.
13941    bool isInvariant = LLD->isInvariant() & RLD->isInvariant();
13942    unsigned Alignment = std::min(LLD->getAlignment(), RLD->getAlignment());
13943    if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
13944      Load = DAG.getLoad(TheSelect->getValueType(0),
13945                         SDLoc(TheSelect),
13946                         // FIXME: Discards pointer and AA info.
13947                         LLD->getChain(), Addr, MachinePointerInfo(),
13948                         LLD->isVolatile(), LLD->isNonTemporal(),
13949                         isInvariant, Alignment);
13950    } else {
13951      Load = DAG.getExtLoad(LLD->getExtensionType() == ISD::EXTLOAD ?
13952                            RLD->getExtensionType() : LLD->getExtensionType(),
13953                            SDLoc(TheSelect),
13954                            TheSelect->getValueType(0),
13955                            // FIXME: Discards pointer and AA info.
13956                            LLD->getChain(), Addr, MachinePointerInfo(),
13957                            LLD->getMemoryVT(), LLD->isVolatile(),
13958                            LLD->isNonTemporal(), isInvariant, Alignment);
13959    }
13960
13961    // Users of the select now use the result of the load.
13962    CombineTo(TheSelect, Load);
13963
13964    // Users of the old loads now use the new load's chain.  We know the
13965    // old-load value is dead now.
13966    CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
13967    CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
13968    return true;
13969  }
13970
13971  return false;
13972}
13973
13974/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
13975/// where 'cond' is the comparison specified by CC.
13976SDValue DAGCombiner::SimplifySelectCC(SDLoc DL, SDValue N0, SDValue N1,
13977                                      SDValue N2, SDValue N3,
13978                                      ISD::CondCode CC, bool NotExtCompare) {
13979  // (x ? y : y) -> y.
13980  if (N2 == N3) return N2;
13981
13982  EVT VT = N2.getValueType();
13983  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
13984  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
13985
13986  // Determine if the condition we're dealing with is constant
13987  SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()),
13988                              N0, N1, CC, DL, false);
13989  if (SCC.getNode()) AddToWorklist(SCC.getNode());
13990
13991  if (ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.getNode())) {
13992    // fold select_cc true, x, y -> x
13993    // fold select_cc false, x, y -> y
13994    return !SCCC->isNullValue() ? N2 : N3;
13995  }
13996
13997  // Check to see if we can simplify the select into an fabs node
13998  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) {
13999    // Allow either -0.0 or 0.0
14000    if (CFP->isZero()) {
14001      // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs
14002      if ((CC == ISD::SETGE || CC == ISD::SETGT) &&
14003          N0 == N2 && N3.getOpcode() == ISD::FNEG &&
14004          N2 == N3.getOperand(0))
14005        return DAG.getNode(ISD::FABS, DL, VT, N0);
14006
14007      // select (setl[te] X, +/-0.0), fneg(X), X -> fabs
14008      if ((CC == ISD::SETLT || CC == ISD::SETLE) &&
14009          N0 == N3 && N2.getOpcode() == ISD::FNEG &&
14010          N2.getOperand(0) == N3)
14011        return DAG.getNode(ISD::FABS, DL, VT, N3);
14012    }
14013  }
14014
14015  // Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
14016  // where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
14017  // in it.  This is a win when the constant is not otherwise available because
14018  // it replaces two constant pool loads with one.  We only do this if the FP
14019  // type is known to be legal, because if it isn't, then we are before legalize
14020  // types an we want the other legalization to happen first (e.g. to avoid
14021  // messing with soft float) and if the ConstantFP is not legal, because if
14022  // it is legal, we may not need to store the FP constant in a constant pool.
14023  if (ConstantFPSDNode *TV = dyn_cast<ConstantFPSDNode>(N2))
14024    if (ConstantFPSDNode *FV = dyn_cast<ConstantFPSDNode>(N3)) {
14025      if (TLI.isTypeLegal(N2.getValueType()) &&
14026          (TLI.getOperationAction(ISD::ConstantFP, N2.getValueType()) !=
14027               TargetLowering::Legal &&
14028           !TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0)) &&
14029           !TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0))) &&
14030          // If both constants have multiple uses, then we won't need to do an
14031          // extra load, they are likely around in registers for other users.
14032          (TV->hasOneUse() || FV->hasOneUse())) {
14033        Constant *Elts[] = {
14034          const_cast<ConstantFP*>(FV->getConstantFPValue()),
14035          const_cast<ConstantFP*>(TV->getConstantFPValue())
14036        };
14037        Type *FPTy = Elts[0]->getType();
14038        const DataLayout &TD = DAG.getDataLayout();
14039
14040        // Create a ConstantArray of the two constants.
14041        Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
14042        SDValue CPIdx =
14043            DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
14044                                TD.getPrefTypeAlignment(FPTy));
14045        unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
14046
14047        // Get the offsets to the 0 and 1 element of the array so that we can
14048        // select between them.
14049        SDValue Zero = DAG.getIntPtrConstant(0, DL);
14050        unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
14051        SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
14052
14053        SDValue Cond = DAG.getSetCC(DL,
14054                                    getSetCCResultType(N0.getValueType()),
14055                                    N0, N1, CC);
14056        AddToWorklist(Cond.getNode());
14057        SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(),
14058                                          Cond, One, Zero);
14059        AddToWorklist(CstOffset.getNode());
14060        CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx,
14061                            CstOffset);
14062        AddToWorklist(CPIdx.getNode());
14063        return DAG.getLoad(
14064            TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
14065            MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
14066            false, false, false, Alignment);
14067      }
14068    }
14069
14070  // Check to see if we can perform the "gzip trick", transforming
14071  // (select_cc setlt X, 0, A, 0) -> (and (sra X, (sub size(X), 1), A)
14072  if (isNullConstant(N3) && CC == ISD::SETLT &&
14073      (isNullConstant(N1) ||                 // (a < 0) ? b : 0
14074       (isOneConstant(N1) && N0 == N2))) {   // (a < 1) ? a : 0
14075    EVT XType = N0.getValueType();
14076    EVT AType = N2.getValueType();
14077    if (XType.bitsGE(AType)) {
14078      // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a
14079      // single-bit constant.
14080      if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
14081        unsigned ShCtV = N2C->getAPIntValue().logBase2();
14082        ShCtV = XType.getSizeInBits() - ShCtV - 1;
14083        SDValue ShCt = DAG.getConstant(ShCtV, SDLoc(N0),
14084                                       getShiftAmountTy(N0.getValueType()));
14085        SDValue Shift = DAG.getNode(ISD::SRL, SDLoc(N0),
14086                                    XType, N0, ShCt);
14087        AddToWorklist(Shift.getNode());
14088
14089        if (XType.bitsGT(AType)) {
14090          Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
14091          AddToWorklist(Shift.getNode());
14092        }
14093
14094        return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
14095      }
14096
14097      SDValue Shift = DAG.getNode(ISD::SRA, SDLoc(N0),
14098                                  XType, N0,
14099                                  DAG.getConstant(XType.getSizeInBits() - 1,
14100                                                  SDLoc(N0),
14101                                         getShiftAmountTy(N0.getValueType())));
14102      AddToWorklist(Shift.getNode());
14103
14104      if (XType.bitsGT(AType)) {
14105        Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
14106        AddToWorklist(Shift.getNode());
14107      }
14108
14109      return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
14110    }
14111  }
14112
14113  // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
14114  // where y is has a single bit set.
14115  // A plaintext description would be, we can turn the SELECT_CC into an AND
14116  // when the condition can be materialized as an all-ones register.  Any
14117  // single bit-test can be materialized as an all-ones register with
14118  // shift-left and shift-right-arith.
14119  if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
14120      N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
14121    SDValue AndLHS = N0->getOperand(0);
14122    ConstantSDNode *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
14123    if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
14124      // Shift the tested bit over the sign bit.
14125      APInt AndMask = ConstAndRHS->getAPIntValue();
14126      SDValue ShlAmt =
14127        DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
14128                        getShiftAmountTy(AndLHS.getValueType()));
14129      SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
14130
14131      // Now arithmetic right shift it all the way over, so the result is either
14132      // all-ones, or zero.
14133      SDValue ShrAmt =
14134        DAG.getConstant(AndMask.getBitWidth() - 1, SDLoc(Shl),
14135                        getShiftAmountTy(Shl.getValueType()));
14136      SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
14137
14138      return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
14139    }
14140  }
14141
14142  // fold select C, 16, 0 -> shl C, 4
14143  if (N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2() &&
14144      TLI.getBooleanContents(N0.getValueType()) ==
14145          TargetLowering::ZeroOrOneBooleanContent) {
14146
14147    // If the caller doesn't want us to simplify this into a zext of a compare,
14148    // don't do it.
14149    if (NotExtCompare && N2C->isOne())
14150      return SDValue();
14151
14152    // Get a SetCC of the condition
14153    // NOTE: Don't create a SETCC if it's not legal on this target.
14154    if (!LegalOperations ||
14155        TLI.isOperationLegal(ISD::SETCC, N0.getValueType())) {
14156      SDValue Temp, SCC;
14157      // cast from setcc result type to select result type
14158      if (LegalTypes) {
14159        SCC  = DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()),
14160                            N0, N1, CC);
14161        if (N2.getValueType().bitsLT(SCC.getValueType()))
14162          Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2),
14163                                        N2.getValueType());
14164        else
14165          Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
14166                             N2.getValueType(), SCC);
14167      } else {
14168        SCC  = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
14169        Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2),
14170                           N2.getValueType(), SCC);
14171      }
14172
14173      AddToWorklist(SCC.getNode());
14174      AddToWorklist(Temp.getNode());
14175
14176      if (N2C->isOne())
14177        return Temp;
14178
14179      // shl setcc result by log2 n2c
14180      return DAG.getNode(
14181          ISD::SHL, DL, N2.getValueType(), Temp,
14182          DAG.getConstant(N2C->getAPIntValue().logBase2(), SDLoc(Temp),
14183                          getShiftAmountTy(Temp.getValueType())));
14184    }
14185  }
14186
14187  // Check to see if this is an integer abs.
14188  // select_cc setg[te] X,  0,  X, -X ->
14189  // select_cc setgt    X, -1,  X, -X ->
14190  // select_cc setl[te] X,  0, -X,  X ->
14191  // select_cc setlt    X,  1, -X,  X ->
14192  // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
14193  if (N1C) {
14194    ConstantSDNode *SubC = nullptr;
14195    if (((N1C->isNullValue() && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
14196         (N1C->isAllOnesValue() && CC == ISD::SETGT)) &&
14197        N0 == N2 && N3.getOpcode() == ISD::SUB && N0 == N3.getOperand(1))
14198      SubC = dyn_cast<ConstantSDNode>(N3.getOperand(0));
14199    else if (((N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE)) ||
14200              (N1C->isOne() && CC == ISD::SETLT)) &&
14201             N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1))
14202      SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0));
14203
14204    EVT XType = N0.getValueType();
14205    if (SubC && SubC->isNullValue() && XType.isInteger()) {
14206      SDLoc DL(N0);
14207      SDValue Shift = DAG.getNode(ISD::SRA, DL, XType,
14208                                  N0,
14209                                  DAG.getConstant(XType.getSizeInBits() - 1, DL,
14210                                         getShiftAmountTy(N0.getValueType())));
14211      SDValue Add = DAG.getNode(ISD::ADD, DL,
14212                                XType, N0, Shift);
14213      AddToWorklist(Shift.getNode());
14214      AddToWorklist(Add.getNode());
14215      return DAG.getNode(ISD::XOR, DL, XType, Add, Shift);
14216    }
14217  }
14218
14219  return SDValue();
14220}
14221
14222/// This is a stub for TargetLowering::SimplifySetCC.
14223SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0,
14224                                   SDValue N1, ISD::CondCode Cond,
14225                                   SDLoc DL, bool foldBooleans) {
14226  TargetLowering::DAGCombinerInfo
14227    DagCombineInfo(DAG, Level, false, this);
14228  return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
14229}
14230
14231/// Given an ISD::SDIV node expressing a divide by constant, return
14232/// a DAG expression to select that will generate the same value by multiplying
14233/// by a magic number.
14234/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
14235SDValue DAGCombiner::BuildSDIV(SDNode *N) {
14236  ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
14237  if (!C)
14238    return SDValue();
14239
14240  // Avoid division by zero.
14241  if (C->isNullValue())
14242    return SDValue();
14243
14244  std::vector<SDNode*> Built;
14245  SDValue S =
14246      TLI.BuildSDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
14247
14248  for (SDNode *N : Built)
14249    AddToWorklist(N);
14250  return S;
14251}
14252
14253/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
14254/// DAG expression that will generate the same value by right shifting.
14255SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
14256  ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
14257  if (!C)
14258    return SDValue();
14259
14260  // Avoid division by zero.
14261  if (C->isNullValue())
14262    return SDValue();
14263
14264  std::vector<SDNode *> Built;
14265  SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, &Built);
14266
14267  for (SDNode *N : Built)
14268    AddToWorklist(N);
14269  return S;
14270}
14271
14272/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
14273/// expression that will generate the same value by multiplying by a magic
14274/// number.
14275/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
14276SDValue DAGCombiner::BuildUDIV(SDNode *N) {
14277  ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
14278  if (!C)
14279    return SDValue();
14280
14281  // Avoid division by zero.
14282  if (C->isNullValue())
14283    return SDValue();
14284
14285  std::vector<SDNode*> Built;
14286  SDValue S =
14287      TLI.BuildUDIV(N, C->getAPIntValue(), DAG, LegalOperations, &Built);
14288
14289  for (SDNode *N : Built)
14290    AddToWorklist(N);
14291  return S;
14292}
14293
14294SDValue DAGCombiner::BuildReciprocalEstimate(SDValue Op, SDNodeFlags *Flags) {
14295  if (Level >= AfterLegalizeDAG)
14296    return SDValue();
14297
14298  // Expose the DAG combiner to the target combiner implementations.
14299  TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
14300
14301  unsigned Iterations = 0;
14302  if (SDValue Est = TLI.getRecipEstimate(Op, DCI, Iterations)) {
14303    if (Iterations) {
14304      // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
14305      // For the reciprocal, we need to find the zero of the function:
14306      //   F(X) = A X - 1 [which has a zero at X = 1/A]
14307      //     =>
14308      //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
14309      //     does not require additional intermediate precision]
14310      EVT VT = Op.getValueType();
14311      SDLoc DL(Op);
14312      SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
14313
14314      AddToWorklist(Est.getNode());
14315
14316      // Newton iterations: Est = Est + Est (1 - Arg * Est)
14317      for (unsigned i = 0; i < Iterations; ++i) {
14318        SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, Est, Flags);
14319        AddToWorklist(NewEst.getNode());
14320
14321        NewEst = DAG.getNode(ISD::FSUB, DL, VT, FPOne, NewEst, Flags);
14322        AddToWorklist(NewEst.getNode());
14323
14324        NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
14325        AddToWorklist(NewEst.getNode());
14326
14327        Est = DAG.getNode(ISD::FADD, DL, VT, Est, NewEst, Flags);
14328        AddToWorklist(Est.getNode());
14329      }
14330    }
14331    return Est;
14332  }
14333
14334  return SDValue();
14335}
14336
14337/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
14338/// For the reciprocal sqrt, we need to find the zero of the function:
14339///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
14340///     =>
14341///   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
14342/// As a result, we precompute A/2 prior to the iteration loop.
14343SDValue DAGCombiner::BuildRsqrtNROneConst(SDValue Arg, SDValue Est,
14344                                          unsigned Iterations,
14345                                          SDNodeFlags *Flags) {
14346  EVT VT = Arg.getValueType();
14347  SDLoc DL(Arg);
14348  SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
14349
14350  // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
14351  // this entire sequence requires only one FP constant.
14352  SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
14353  AddToWorklist(HalfArg.getNode());
14354
14355  HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
14356  AddToWorklist(HalfArg.getNode());
14357
14358  // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
14359  for (unsigned i = 0; i < Iterations; ++i) {
14360    SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
14361    AddToWorklist(NewEst.getNode());
14362
14363    NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
14364    AddToWorklist(NewEst.getNode());
14365
14366    NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
14367    AddToWorklist(NewEst.getNode());
14368
14369    Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
14370    AddToWorklist(Est.getNode());
14371  }
14372  return Est;
14373}
14374
14375/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
14376/// For the reciprocal sqrt, we need to find the zero of the function:
14377///   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
14378///     =>
14379///   X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
14380SDValue DAGCombiner::BuildRsqrtNRTwoConst(SDValue Arg, SDValue Est,
14381                                          unsigned Iterations,
14382                                          SDNodeFlags *Flags) {
14383  EVT VT = Arg.getValueType();
14384  SDLoc DL(Arg);
14385  SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
14386  SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
14387
14388  // Newton iterations: Est = -0.5 * Est * (-3.0 + Arg * Est * Est)
14389  for (unsigned i = 0; i < Iterations; ++i) {
14390    SDValue HalfEst = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
14391    AddToWorklist(HalfEst.getNode());
14392
14393    Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
14394    AddToWorklist(Est.getNode());
14395
14396    Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
14397    AddToWorklist(Est.getNode());
14398
14399    Est = DAG.getNode(ISD::FADD, DL, VT, Est, MinusThree, Flags);
14400    AddToWorklist(Est.getNode());
14401
14402    Est = DAG.getNode(ISD::FMUL, DL, VT, Est, HalfEst, Flags);
14403    AddToWorklist(Est.getNode());
14404  }
14405  return Est;
14406}
14407
14408SDValue DAGCombiner::BuildRsqrtEstimate(SDValue Op, SDNodeFlags *Flags) {
14409  if (Level >= AfterLegalizeDAG)
14410    return SDValue();
14411
14412  // Expose the DAG combiner to the target combiner implementations.
14413  TargetLowering::DAGCombinerInfo DCI(DAG, Level, false, this);
14414  unsigned Iterations = 0;
14415  bool UseOneConstNR = false;
14416  if (SDValue Est = TLI.getRsqrtEstimate(Op, DCI, Iterations, UseOneConstNR)) {
14417    AddToWorklist(Est.getNode());
14418    if (Iterations) {
14419      Est = UseOneConstNR ?
14420        BuildRsqrtNROneConst(Op, Est, Iterations, Flags) :
14421        BuildRsqrtNRTwoConst(Op, Est, Iterations, Flags);
14422    }
14423    return Est;
14424  }
14425
14426  return SDValue();
14427}
14428
14429/// Return true if base is a frame index, which is known not to alias with
14430/// anything but itself.  Provides base object and offset as results.
14431static bool FindBaseOffset(SDValue Ptr, SDValue &Base, int64_t &Offset,
14432                           const GlobalValue *&GV, const void *&CV) {
14433  // Assume it is a primitive operation.
14434  Base = Ptr; Offset = 0; GV = nullptr; CV = nullptr;
14435
14436  // If it's an adding a simple constant then integrate the offset.
14437  if (Base.getOpcode() == ISD::ADD) {
14438    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Base.getOperand(1))) {
14439      Base = Base.getOperand(0);
14440      Offset += C->getZExtValue();
14441    }
14442  }
14443
14444  // Return the underlying GlobalValue, and update the Offset.  Return false
14445  // for GlobalAddressSDNode since the same GlobalAddress may be represented
14446  // by multiple nodes with different offsets.
14447  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Base)) {
14448    GV = G->getGlobal();
14449    Offset += G->getOffset();
14450    return false;
14451  }
14452
14453  // Return the underlying Constant value, and update the Offset.  Return false
14454  // for ConstantSDNodes since the same constant pool entry may be represented
14455  // by multiple nodes with different offsets.
14456  if (ConstantPoolSDNode *C = dyn_cast<ConstantPoolSDNode>(Base)) {
14457    CV = C->isMachineConstantPoolEntry() ? (const void *)C->getMachineCPVal()
14458                                         : (const void *)C->getConstVal();
14459    Offset += C->getOffset();
14460    return false;
14461  }
14462  // If it's any of the following then it can't alias with anything but itself.
14463  return isa<FrameIndexSDNode>(Base);
14464}
14465
14466/// Return true if there is any possibility that the two addresses overlap.
14467bool DAGCombiner::isAlias(LSBaseSDNode *Op0, LSBaseSDNode *Op1) const {
14468  // If they are the same then they must be aliases.
14469  if (Op0->getBasePtr() == Op1->getBasePtr()) return true;
14470
14471  // If they are both volatile then they cannot be reordered.
14472  if (Op0->isVolatile() && Op1->isVolatile()) return true;
14473
14474  // If one operation reads from invariant memory, and the other may store, they
14475  // cannot alias. These should really be checking the equivalent of mayWrite,
14476  // but it only matters for memory nodes other than load /store.
14477  if (Op0->isInvariant() && Op1->writeMem())
14478    return false;
14479
14480  if (Op1->isInvariant() && Op0->writeMem())
14481    return false;
14482
14483  // Gather base node and offset information.
14484  SDValue Base1, Base2;
14485  int64_t Offset1, Offset2;
14486  const GlobalValue *GV1, *GV2;
14487  const void *CV1, *CV2;
14488  bool isFrameIndex1 = FindBaseOffset(Op0->getBasePtr(),
14489                                      Base1, Offset1, GV1, CV1);
14490  bool isFrameIndex2 = FindBaseOffset(Op1->getBasePtr(),
14491                                      Base2, Offset2, GV2, CV2);
14492
14493  // If they have a same base address then check to see if they overlap.
14494  if (Base1 == Base2 || (GV1 && (GV1 == GV2)) || (CV1 && (CV1 == CV2)))
14495    return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
14496             (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
14497
14498  // It is possible for different frame indices to alias each other, mostly
14499  // when tail call optimization reuses return address slots for arguments.
14500  // To catch this case, look up the actual index of frame indices to compute
14501  // the real alias relationship.
14502  if (isFrameIndex1 && isFrameIndex2) {
14503    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
14504    Offset1 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base1)->getIndex());
14505    Offset2 += MFI->getObjectOffset(cast<FrameIndexSDNode>(Base2)->getIndex());
14506    return !((Offset1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= Offset2 ||
14507             (Offset2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= Offset1);
14508  }
14509
14510  // Otherwise, if we know what the bases are, and they aren't identical, then
14511  // we know they cannot alias.
14512  if ((isFrameIndex1 || CV1 || GV1) && (isFrameIndex2 || CV2 || GV2))
14513    return false;
14514
14515  // If we know required SrcValue1 and SrcValue2 have relatively large alignment
14516  // compared to the size and offset of the access, we may be able to prove they
14517  // do not alias.  This check is conservative for now to catch cases created by
14518  // splitting vector types.
14519  if ((Op0->getOriginalAlignment() == Op1->getOriginalAlignment()) &&
14520      (Op0->getSrcValueOffset() != Op1->getSrcValueOffset()) &&
14521      (Op0->getMemoryVT().getSizeInBits() >> 3 ==
14522       Op1->getMemoryVT().getSizeInBits() >> 3) &&
14523      (Op0->getOriginalAlignment() > Op0->getMemoryVT().getSizeInBits()) >> 3) {
14524    int64_t OffAlign1 = Op0->getSrcValueOffset() % Op0->getOriginalAlignment();
14525    int64_t OffAlign2 = Op1->getSrcValueOffset() % Op1->getOriginalAlignment();
14526
14527    // There is no overlap between these relatively aligned accesses of similar
14528    // size, return no alias.
14529    if ((OffAlign1 + (Op0->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign2 ||
14530        (OffAlign2 + (Op1->getMemoryVT().getSizeInBits() >> 3)) <= OffAlign1)
14531      return false;
14532  }
14533
14534  bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
14535                   ? CombinerGlobalAA
14536                   : DAG.getSubtarget().useAA();
14537#ifndef NDEBUG
14538  if (CombinerAAOnlyFunc.getNumOccurrences() &&
14539      CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
14540    UseAA = false;
14541#endif
14542  if (UseAA &&
14543      Op0->getMemOperand()->getValue() && Op1->getMemOperand()->getValue()) {
14544    // Use alias analysis information.
14545    int64_t MinOffset = std::min(Op0->getSrcValueOffset(),
14546                                 Op1->getSrcValueOffset());
14547    int64_t Overlap1 = (Op0->getMemoryVT().getSizeInBits() >> 3) +
14548        Op0->getSrcValueOffset() - MinOffset;
14549    int64_t Overlap2 = (Op1->getMemoryVT().getSizeInBits() >> 3) +
14550        Op1->getSrcValueOffset() - MinOffset;
14551    AliasResult AAResult =
14552        AA.alias(MemoryLocation(Op0->getMemOperand()->getValue(), Overlap1,
14553                                UseTBAA ? Op0->getAAInfo() : AAMDNodes()),
14554                 MemoryLocation(Op1->getMemOperand()->getValue(), Overlap2,
14555                                UseTBAA ? Op1->getAAInfo() : AAMDNodes()));
14556    if (AAResult == NoAlias)
14557      return false;
14558  }
14559
14560  // Otherwise we have to assume they alias.
14561  return true;
14562}
14563
14564/// Walk up chain skipping non-aliasing memory nodes,
14565/// looking for aliasing nodes and adding them to the Aliases vector.
14566void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
14567                                   SmallVectorImpl<SDValue> &Aliases) {
14568  SmallVector<SDValue, 8> Chains;     // List of chains to visit.
14569  SmallPtrSet<SDNode *, 16> Visited;  // Visited node set.
14570
14571  // Get alias information for node.
14572  bool IsLoad = isa<LoadSDNode>(N) && !cast<LSBaseSDNode>(N)->isVolatile();
14573
14574  // Starting off.
14575  Chains.push_back(OriginalChain);
14576  unsigned Depth = 0;
14577
14578  // Look at each chain and determine if it is an alias.  If so, add it to the
14579  // aliases list.  If not, then continue up the chain looking for the next
14580  // candidate.
14581  while (!Chains.empty()) {
14582    SDValue Chain = Chains.pop_back_val();
14583
14584    // For TokenFactor nodes, look at each operand and only continue up the
14585    // chain until we reach the depth limit.
14586    //
14587    // FIXME: The depth check could be made to return the last non-aliasing
14588    // chain we found before we hit a tokenfactor rather than the original
14589    // chain.
14590    if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
14591      Aliases.clear();
14592      Aliases.push_back(OriginalChain);
14593      return;
14594    }
14595
14596    // Don't bother if we've been before.
14597    if (!Visited.insert(Chain.getNode()).second)
14598      continue;
14599
14600    switch (Chain.getOpcode()) {
14601    case ISD::EntryToken:
14602      // Entry token is ideal chain operand, but handled in FindBetterChain.
14603      break;
14604
14605    case ISD::LOAD:
14606    case ISD::STORE: {
14607      // Get alias information for Chain.
14608      bool IsOpLoad = isa<LoadSDNode>(Chain.getNode()) &&
14609          !cast<LSBaseSDNode>(Chain.getNode())->isVolatile();
14610
14611      // If chain is alias then stop here.
14612      if (!(IsLoad && IsOpLoad) &&
14613          isAlias(cast<LSBaseSDNode>(N), cast<LSBaseSDNode>(Chain.getNode()))) {
14614        Aliases.push_back(Chain);
14615      } else {
14616        // Look further up the chain.
14617        Chains.push_back(Chain.getOperand(0));
14618        ++Depth;
14619      }
14620      break;
14621    }
14622
14623    case ISD::TokenFactor:
14624      // We have to check each of the operands of the token factor for "small"
14625      // token factors, so we queue them up.  Adding the operands to the queue
14626      // (stack) in reverse order maintains the original order and increases the
14627      // likelihood that getNode will find a matching token factor (CSE.)
14628      if (Chain.getNumOperands() > 16) {
14629        Aliases.push_back(Chain);
14630        break;
14631      }
14632      for (unsigned n = Chain.getNumOperands(); n;)
14633        Chains.push_back(Chain.getOperand(--n));
14634      ++Depth;
14635      break;
14636
14637    default:
14638      // For all other instructions we will just have to take what we can get.
14639      Aliases.push_back(Chain);
14640      break;
14641    }
14642  }
14643
14644  // We need to be careful here to also search for aliases through the
14645  // value operand of a store, etc. Consider the following situation:
14646  //   Token1 = ...
14647  //   L1 = load Token1, %52
14648  //   S1 = store Token1, L1, %51
14649  //   L2 = load Token1, %52+8
14650  //   S2 = store Token1, L2, %51+8
14651  //   Token2 = Token(S1, S2)
14652  //   L3 = load Token2, %53
14653  //   S3 = store Token2, L3, %52
14654  //   L4 = load Token2, %53+8
14655  //   S4 = store Token2, L4, %52+8
14656  // If we search for aliases of S3 (which loads address %52), and we look
14657  // only through the chain, then we'll miss the trivial dependence on L1
14658  // (which also loads from %52). We then might change all loads and
14659  // stores to use Token1 as their chain operand, which could result in
14660  // copying %53 into %52 before copying %52 into %51 (which should
14661  // happen first).
14662  //
14663  // The problem is, however, that searching for such data dependencies
14664  // can become expensive, and the cost is not directly related to the
14665  // chain depth. Instead, we'll rule out such configurations here by
14666  // insisting that we've visited all chain users (except for users
14667  // of the original chain, which is not necessary). When doing this,
14668  // we need to look through nodes we don't care about (otherwise, things
14669  // like register copies will interfere with trivial cases).
14670
14671  SmallVector<const SDNode *, 16> Worklist;
14672  for (const SDNode *N : Visited)
14673    if (N != OriginalChain.getNode())
14674      Worklist.push_back(N);
14675
14676  while (!Worklist.empty()) {
14677    const SDNode *M = Worklist.pop_back_val();
14678
14679    // We have already visited M, and want to make sure we've visited any uses
14680    // of M that we care about. For uses that we've not visisted, and don't
14681    // care about, queue them to the worklist.
14682
14683    for (SDNode::use_iterator UI = M->use_begin(),
14684         UIE = M->use_end(); UI != UIE; ++UI)
14685      if (UI.getUse().getValueType() == MVT::Other &&
14686          Visited.insert(*UI).second) {
14687        if (isa<MemSDNode>(*UI)) {
14688          // We've not visited this use, and we care about it (it could have an
14689          // ordering dependency with the original node).
14690          Aliases.clear();
14691          Aliases.push_back(OriginalChain);
14692          return;
14693        }
14694
14695        // We've not visited this use, but we don't care about it. Mark it as
14696        // visited and enqueue it to the worklist.
14697        Worklist.push_back(*UI);
14698      }
14699  }
14700}
14701
14702/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
14703/// (aliasing node.)
14704SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
14705  SmallVector<SDValue, 8> Aliases;  // Ops for replacing token factor.
14706
14707  // Accumulate all the aliases to this node.
14708  GatherAllAliases(N, OldChain, Aliases);
14709
14710  // If no operands then chain to entry token.
14711  if (Aliases.size() == 0)
14712    return DAG.getEntryNode();
14713
14714  // If a single operand then chain to it.  We don't need to revisit it.
14715  if (Aliases.size() == 1)
14716    return Aliases[0];
14717
14718  // Construct a custom tailored token factor.
14719  return DAG.getNode(ISD::TokenFactor, SDLoc(N), MVT::Other, Aliases);
14720}
14721
14722bool DAGCombiner::findBetterNeighborChains(StoreSDNode* St) {
14723  // This holds the base pointer, index, and the offset in bytes from the base
14724  // pointer.
14725  BaseIndexOffset BasePtr = BaseIndexOffset::match(St->getBasePtr());
14726
14727  // We must have a base and an offset.
14728  if (!BasePtr.Base.getNode())
14729    return false;
14730
14731  // Do not handle stores to undef base pointers.
14732  if (BasePtr.Base.getOpcode() == ISD::UNDEF)
14733    return false;
14734
14735  SmallVector<StoreSDNode *, 8> ChainedStores;
14736  ChainedStores.push_back(St);
14737
14738  // Walk up the chain and look for nodes with offsets from the same
14739  // base pointer. Stop when reaching an instruction with a different kind
14740  // or instruction which has a different base pointer.
14741  StoreSDNode *Index = St;
14742  while (Index) {
14743    // If the chain has more than one use, then we can't reorder the mem ops.
14744    if (Index != St && !SDValue(Index, 0)->hasOneUse())
14745      break;
14746
14747    if (Index->isVolatile() || Index->isIndexed())
14748      break;
14749
14750    // Find the base pointer and offset for this memory node.
14751    BaseIndexOffset Ptr = BaseIndexOffset::match(Index->getBasePtr());
14752
14753    // Check that the base pointer is the same as the original one.
14754    if (!Ptr.equalBaseIndex(BasePtr))
14755      break;
14756
14757    // Find the next memory operand in the chain. If the next operand in the
14758    // chain is a store then move up and continue the scan with the next
14759    // memory operand. If the next operand is a load save it and use alias
14760    // information to check if it interferes with anything.
14761    SDNode *NextInChain = Index->getChain().getNode();
14762    while (true) {
14763      if (StoreSDNode *STn = dyn_cast<StoreSDNode>(NextInChain)) {
14764        // We found a store node. Use it for the next iteration.
14765        if (STn->isVolatile() || STn->isIndexed()) {
14766          Index = nullptr;
14767          break;
14768        }
14769        ChainedStores.push_back(STn);
14770        Index = STn;
14771        break;
14772      } else if (LoadSDNode *Ldn = dyn_cast<LoadSDNode>(NextInChain)) {
14773        NextInChain = Ldn->getChain().getNode();
14774        continue;
14775      } else {
14776        Index = nullptr;
14777        break;
14778      }
14779    }
14780  }
14781
14782  bool MadeChange = false;
14783  SmallVector<std::pair<StoreSDNode *, SDValue>, 8> BetterChains;
14784
14785  for (StoreSDNode *ChainedStore : ChainedStores) {
14786    SDValue Chain = ChainedStore->getChain();
14787    SDValue BetterChain = FindBetterChain(ChainedStore, Chain);
14788
14789    if (Chain != BetterChain) {
14790      MadeChange = true;
14791      BetterChains.push_back(std::make_pair(ChainedStore, BetterChain));
14792    }
14793  }
14794
14795  // Do all replacements after finding the replacements to make to avoid making
14796  // the chains more complicated by introducing new TokenFactors.
14797  for (auto Replacement : BetterChains)
14798    replaceStoreChain(Replacement.first, Replacement.second);
14799
14800  return MadeChange;
14801}
14802
14803/// This is the entry point for the file.
14804void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis &AA,
14805                           CodeGenOpt::Level OptLevel) {
14806  /// This is the main entry point to this class.
14807  DAGCombiner(*this, AA, OptLevel).Run(Level);
14808}
14809