ARMISelLowering.cpp revision 0521928ae7cc492f3f45ef0e0cedc349102489c5
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/PseudoSourceValue.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51#include <sstream>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// This option should go away when tail calls fully work.
57static cl::opt<bool>
58EnableARMTailCalls("arm-tail-calls", cl::Hidden,
59  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
60  cl::init(false));
61
62cl::opt<bool>
63EnableARMLongCalls("arm-long-calls", cl::Hidden,
64  cl::desc("Generate calls via indirect call instructions"),
65  cl::init(false));
66
67static cl::opt<bool>
68ARMInterworking("arm-interworking", cl::Hidden,
69  cl::desc("Enable / disable ARM interworking (for debugging only)"),
70  cl::init(true));
71
72void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
73                                       EVT PromotedBitwiseVT) {
74  if (VT != PromotedLdStVT) {
75    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
76    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
77                       PromotedLdStVT.getSimpleVT());
78
79    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
80    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
81                       PromotedLdStVT.getSimpleVT());
82  }
83
84  EVT ElemTy = VT.getVectorElementType();
85  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
86    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
87  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
88  if (ElemTy != MVT::i32) {
89    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
90    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
91    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
92    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
93  }
94  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
95  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
96  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
97  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
98  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
99  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
100  if (VT.isInteger()) {
101    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
102    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
103    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
104    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
105    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
106    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
107         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
108      setTruncStoreAction(VT.getSimpleVT(),
109                          (MVT::SimpleValueType)InnerVT, Expand);
110  }
111  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
112
113  // Promote all bit-wise operations.
114  if (VT.isInteger() && VT != PromotedBitwiseVT) {
115    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
116    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
117                       PromotedBitwiseVT.getSimpleVT());
118    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
119    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
120                       PromotedBitwiseVT.getSimpleVT());
121    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
122    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
123                       PromotedBitwiseVT.getSimpleVT());
124  }
125
126  // Neon does not support vector divide/remainder operations.
127  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
128  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
129  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
130  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
131  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
132  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
133}
134
135void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
136  addRegisterClass(VT, ARM::DPRRegisterClass);
137  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
138}
139
140void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
141  addRegisterClass(VT, ARM::QPRRegisterClass);
142  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
143}
144
145static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
146  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
147    return new TargetLoweringObjectFileMachO();
148
149  return new ARMElfTargetObjectFile();
150}
151
152ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
153    : TargetLowering(TM, createTLOF(TM)) {
154  Subtarget = &TM.getSubtarget<ARMSubtarget>();
155  RegInfo = TM.getRegisterInfo();
156  Itins = TM.getInstrItineraryData();
157
158  if (Subtarget->isTargetDarwin()) {
159    // Uses VFP for Thumb libfuncs if available.
160    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
161      // Single-precision floating-point arithmetic.
162      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
163      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
164      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
165      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
166
167      // Double-precision floating-point arithmetic.
168      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
169      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
170      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
171      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
172
173      // Single-precision comparisons.
174      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
175      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
176      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
177      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
178      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
179      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
180      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
181      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
182
183      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
184      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
185      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
186      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
187      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
188      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
189      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
190      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
191
192      // Double-precision comparisons.
193      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
194      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
195      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
196      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
197      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
198      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
199      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
200      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
201
202      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
209      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
210
211      // Floating-point to integer conversions.
212      // i64 conversions are done via library routines even when generating VFP
213      // instructions, so use the same ones.
214      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
215      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
216      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
217      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
218
219      // Conversions between floating types.
220      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
221      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
222
223      // Integer to floating-point conversions.
224      // i64 conversions are done via library routines even when generating VFP
225      // instructions, so use the same ones.
226      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
227      // e.g., __floatunsidf vs. __floatunssidfvfp.
228      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
229      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
230      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
231      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
232    }
233  }
234
235  // These libcalls are not available in 32-bit.
236  setLibcallName(RTLIB::SHL_I128, 0);
237  setLibcallName(RTLIB::SRL_I128, 0);
238  setLibcallName(RTLIB::SRA_I128, 0);
239
240  if (Subtarget->isAAPCS_ABI()) {
241    // Double-precision floating-point arithmetic helper functions
242    // RTABI chapter 4.1.2, Table 2
243    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
244    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
245    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
246    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
247    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
248    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
249    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
250    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
251
252    // Double-precision floating-point comparison helper functions
253    // RTABI chapter 4.1.2, Table 3
254    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
255    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
256    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
257    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
258    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
259    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
260    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
261    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
262    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
263    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
264    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
265    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
266    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
267    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
268    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
269    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
270    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
271    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
272    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
275    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
276    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
277    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
278
279    // Single-precision floating-point arithmetic helper functions
280    // RTABI chapter 4.1.2, Table 4
281    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
282    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
283    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
284    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
285    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
286    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
287    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
288    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
289
290    // Single-precision floating-point comparison helper functions
291    // RTABI chapter 4.1.2, Table 5
292    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
293    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
294    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
295    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
296    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
297    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
298    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
299    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
300    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
301    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
302    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
303    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
304    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
305    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
306    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
307    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
308    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
309    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
310    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
313    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
314    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
315    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
316
317    // Floating-point to integer conversions.
318    // RTABI chapter 4.1.2, Table 6
319    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
320    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
321    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
322    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
323    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
324    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
325    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
326    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
327    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
335
336    // Conversions between floating types.
337    // RTABI chapter 4.1.2, Table 7
338    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
339    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
340    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
341    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
342
343    // Integer to floating-point conversions.
344    // RTABI chapter 4.1.2, Table 8
345    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
346    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
347    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
348    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
349    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
350    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
351    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
352    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
353    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
358    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
359    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
361
362    // Long long helper functions
363    // RTABI chapter 4.2, Table 9
364    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
365    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
366    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
367    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
368    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
369    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
370    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
371    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
372    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
373    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
374    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
376
377    // Integer division functions
378    // RTABI chapter 4.3.1
379    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
380    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
381    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
382    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
383    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
384    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
385    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
386    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
387    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
388    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
389    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
391  }
392
393  if (Subtarget->isThumb1Only())
394    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
395  else
396    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
397  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
398    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
399    if (!Subtarget->isFPOnlySP())
400      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
401
402    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
403  }
404
405  if (Subtarget->hasNEON()) {
406    addDRTypeForNEON(MVT::v2f32);
407    addDRTypeForNEON(MVT::v8i8);
408    addDRTypeForNEON(MVT::v4i16);
409    addDRTypeForNEON(MVT::v2i32);
410    addDRTypeForNEON(MVT::v1i64);
411
412    addQRTypeForNEON(MVT::v4f32);
413    addQRTypeForNEON(MVT::v2f64);
414    addQRTypeForNEON(MVT::v16i8);
415    addQRTypeForNEON(MVT::v8i16);
416    addQRTypeForNEON(MVT::v4i32);
417    addQRTypeForNEON(MVT::v2i64);
418
419    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
420    // neither Neon nor VFP support any arithmetic operations on it.
421    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
422    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
423    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
424    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
425    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
426    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
427    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
428    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
429    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
430    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
431    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
432    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
433    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
434    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
435    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
436    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
437    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
438    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
439    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
440    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
441    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
442    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
443    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
444    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
445
446    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
447
448    // Neon does not support some operations on v1i64 and v2i64 types.
449    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
450    // Custom handling for some quad-vector types to detect VMULL.
451    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
452    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
453    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
454    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
455    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
456
457    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
458    setTargetDAGCombine(ISD::SHL);
459    setTargetDAGCombine(ISD::SRL);
460    setTargetDAGCombine(ISD::SRA);
461    setTargetDAGCombine(ISD::SIGN_EXTEND);
462    setTargetDAGCombine(ISD::ZERO_EXTEND);
463    setTargetDAGCombine(ISD::ANY_EXTEND);
464    setTargetDAGCombine(ISD::SELECT_CC);
465    setTargetDAGCombine(ISD::BUILD_VECTOR);
466    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
467    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
468    setTargetDAGCombine(ISD::STORE);
469  }
470
471  computeRegisterProperties();
472
473  // ARM does not have f32 extending load.
474  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
475
476  // ARM does not have i1 sign extending load.
477  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
478
479  // ARM supports all 4 flavors of integer indexed load / store.
480  if (!Subtarget->isThumb1Only()) {
481    for (unsigned im = (unsigned)ISD::PRE_INC;
482         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
483      setIndexedLoadAction(im,  MVT::i1,  Legal);
484      setIndexedLoadAction(im,  MVT::i8,  Legal);
485      setIndexedLoadAction(im,  MVT::i16, Legal);
486      setIndexedLoadAction(im,  MVT::i32, Legal);
487      setIndexedStoreAction(im, MVT::i1,  Legal);
488      setIndexedStoreAction(im, MVT::i8,  Legal);
489      setIndexedStoreAction(im, MVT::i16, Legal);
490      setIndexedStoreAction(im, MVT::i32, Legal);
491    }
492  }
493
494  // i64 operation support.
495  if (Subtarget->isThumb1Only()) {
496    setOperationAction(ISD::MUL,     MVT::i64, Expand);
497    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
498    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
499    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
500    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
501  } else {
502    setOperationAction(ISD::MUL,     MVT::i64, Expand);
503    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
504    if (!Subtarget->hasV6Ops())
505      setOperationAction(ISD::MULHS, MVT::i32, Expand);
506  }
507  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
508  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
509  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
510  setOperationAction(ISD::SRL,       MVT::i64, Custom);
511  setOperationAction(ISD::SRA,       MVT::i64, Custom);
512
513  // ARM does not have ROTL.
514  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
515  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
516  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
517  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
518    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
519
520  // Only ARMv6 has BSWAP.
521  if (!Subtarget->hasV6Ops())
522    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
523
524  // These are expanded into libcalls.
525  if (!Subtarget->hasDivide() || !Subtarget->isThumb2()) {
526    // v7M has a hardware divider
527    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
528    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
529  }
530  setOperationAction(ISD::SREM,  MVT::i32, Expand);
531  setOperationAction(ISD::UREM,  MVT::i32, Expand);
532  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
533  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
534
535  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
536  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
537  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
538  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
539  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
540
541  setOperationAction(ISD::TRAP, MVT::Other, Legal);
542
543  // Use the default implementation.
544  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
545  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
546  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
547  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
548  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
549  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
550  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
551  // FIXME: Shouldn't need this, since no register is used, but the legalizer
552  // doesn't yet know how to not do that for SjLj.
553  setExceptionSelectorRegister(ARM::R0);
554  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
555  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
556  // the default expansion.
557  if (Subtarget->hasDataBarrier() ||
558      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
559    // membarrier needs custom lowering; the rest are legal and handled
560    // normally.
561    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
562  } else {
563    // Set them all for expansion, which will force libcalls.
564    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
565    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
566    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
567    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
568    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
569    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
570    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
571    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
572    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
573    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
574    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
575    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
576    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
577    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
578    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
579    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
580    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
581    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
582    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
583    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
584    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
585    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
586    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
587    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
588    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
589    // Since the libcalls include locking, fold in the fences
590    setShouldFoldAtomicFences(true);
591  }
592  // 64-bit versions are always libcalls (for now)
593  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
594  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
595  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
596  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
597  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
598  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
599  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
600  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
601
602  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
603
604  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
605  if (!Subtarget->hasV6Ops()) {
606    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
607    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
608  }
609  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
610
611  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
612    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
613    // iff target supports vfp2.
614    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
615    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
616  }
617
618  // We want to custom lower some of our intrinsics.
619  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
620  if (Subtarget->isTargetDarwin()) {
621    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
622    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
623    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
624  }
625
626  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
627  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
628  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
629  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
630  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
631  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
632  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
633  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
634  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
635
636  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
637  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
638  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
639  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
640  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
641
642  // We don't support sin/cos/fmod/copysign/pow
643  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
644  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
645  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
646  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
647  setOperationAction(ISD::FREM,      MVT::f64, Expand);
648  setOperationAction(ISD::FREM,      MVT::f32, Expand);
649  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
650    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
651    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
652  }
653  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
654  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
655
656  // Various VFP goodness
657  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
658    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
659    if (Subtarget->hasVFP2()) {
660      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
661      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
662      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
663      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
664    }
665    // Special handling for half-precision FP.
666    if (!Subtarget->hasFP16()) {
667      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
668      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
669    }
670  }
671
672  // We have target-specific dag combine patterns for the following nodes:
673  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
674  setTargetDAGCombine(ISD::ADD);
675  setTargetDAGCombine(ISD::SUB);
676  setTargetDAGCombine(ISD::MUL);
677
678  if (Subtarget->hasV6T2Ops() || Subtarget->hasNEON())
679    setTargetDAGCombine(ISD::OR);
680  if (Subtarget->hasNEON())
681    setTargetDAGCombine(ISD::AND);
682
683  setStackPointerRegisterToSaveRestore(ARM::SP);
684
685  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
686    setSchedulingPreference(Sched::RegPressure);
687  else
688    setSchedulingPreference(Sched::Hybrid);
689
690  //// temporary - rewrite interface to use type
691  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
692
693  // On ARM arguments smaller than 4 bytes are extended, so all arguments
694  // are at least 4 bytes aligned.
695  setMinStackArgumentAlignment(4);
696
697  benefitFromCodePlacementOpt = true;
698}
699
700std::pair<const TargetRegisterClass*, uint8_t>
701ARMTargetLowering::findRepresentativeClass(EVT VT) const{
702  const TargetRegisterClass *RRC = 0;
703  uint8_t Cost = 1;
704  switch (VT.getSimpleVT().SimpleTy) {
705  default:
706    return TargetLowering::findRepresentativeClass(VT);
707  // Use DPR as representative register class for all floating point
708  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
709  // the cost is 1 for both f32 and f64.
710  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
711  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
712    RRC = ARM::DPRRegisterClass;
713    break;
714  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
715  case MVT::v4f32: case MVT::v2f64:
716    RRC = ARM::DPRRegisterClass;
717    Cost = 2;
718    break;
719  case MVT::v4i64:
720    RRC = ARM::DPRRegisterClass;
721    Cost = 4;
722    break;
723  case MVT::v8i64:
724    RRC = ARM::DPRRegisterClass;
725    Cost = 8;
726    break;
727  }
728  return std::make_pair(RRC, Cost);
729}
730
731const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
732  switch (Opcode) {
733  default: return 0;
734  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
735  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
736  case ARMISD::CALL:          return "ARMISD::CALL";
737  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
738  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
739  case ARMISD::tCALL:         return "ARMISD::tCALL";
740  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
741  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
742  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
743  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
744  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
745  case ARMISD::CMP:           return "ARMISD::CMP";
746  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
747  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
748  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
749  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
750  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
751  case ARMISD::CMOV:          return "ARMISD::CMOV";
752  case ARMISD::CNEG:          return "ARMISD::CNEG";
753
754  case ARMISD::RBIT:          return "ARMISD::RBIT";
755
756  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
757  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
758  case ARMISD::SITOF:         return "ARMISD::SITOF";
759  case ARMISD::UITOF:         return "ARMISD::UITOF";
760
761  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
762  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
763  case ARMISD::RRX:           return "ARMISD::RRX";
764
765  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
766  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
767
768  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
769  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
770  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
771
772  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
773
774  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
775
776  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
777
778  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
779  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
780
781  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
782
783  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
784  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
785  case ARMISD::VCGE:          return "ARMISD::VCGE";
786  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
787  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
788  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
789  case ARMISD::VCGT:          return "ARMISD::VCGT";
790  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
791  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
792  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
793  case ARMISD::VTST:          return "ARMISD::VTST";
794
795  case ARMISD::VSHL:          return "ARMISD::VSHL";
796  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
797  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
798  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
799  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
800  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
801  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
802  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
803  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
804  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
805  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
806  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
807  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
808  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
809  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
810  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
811  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
812  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
813  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
814  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
815  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
816  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
817  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
818  case ARMISD::VDUP:          return "ARMISD::VDUP";
819  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
820  case ARMISD::VEXT:          return "ARMISD::VEXT";
821  case ARMISD::VREV64:        return "ARMISD::VREV64";
822  case ARMISD::VREV32:        return "ARMISD::VREV32";
823  case ARMISD::VREV16:        return "ARMISD::VREV16";
824  case ARMISD::VZIP:          return "ARMISD::VZIP";
825  case ARMISD::VUZP:          return "ARMISD::VUZP";
826  case ARMISD::VTRN:          return "ARMISD::VTRN";
827  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
828  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
829  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
830  case ARMISD::FMAX:          return "ARMISD::FMAX";
831  case ARMISD::FMIN:          return "ARMISD::FMIN";
832  case ARMISD::BFI:           return "ARMISD::BFI";
833  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
834  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
835  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
836  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
837  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
838  }
839}
840
841/// getRegClassFor - Return the register class that should be used for the
842/// specified value type.
843TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
844  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
845  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
846  // load / store 4 to 8 consecutive D registers.
847  if (Subtarget->hasNEON()) {
848    if (VT == MVT::v4i64)
849      return ARM::QQPRRegisterClass;
850    else if (VT == MVT::v8i64)
851      return ARM::QQQQPRRegisterClass;
852  }
853  return TargetLowering::getRegClassFor(VT);
854}
855
856// Create a fast isel object.
857FastISel *
858ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
859  return ARM::createFastISel(funcInfo);
860}
861
862/// getFunctionAlignment - Return the Log2 alignment of this function.
863unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
864  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
865}
866
867/// getMaximalGlobalOffset - Returns the maximal possible offset which can
868/// be used for loads / stores from the global.
869unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
870  return (Subtarget->isThumb1Only() ? 127 : 4095);
871}
872
873Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
874  unsigned NumVals = N->getNumValues();
875  if (!NumVals)
876    return Sched::RegPressure;
877
878  for (unsigned i = 0; i != NumVals; ++i) {
879    EVT VT = N->getValueType(i);
880    if (VT == MVT::Glue || VT == MVT::Other)
881      continue;
882    if (VT.isFloatingPoint() || VT.isVector())
883      return Sched::Latency;
884  }
885
886  if (!N->isMachineOpcode())
887    return Sched::RegPressure;
888
889  // Load are scheduled for latency even if there instruction itinerary
890  // is not available.
891  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
892  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
893
894  if (TID.getNumDefs() == 0)
895    return Sched::RegPressure;
896  if (!Itins->isEmpty() &&
897      Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
898    return Sched::Latency;
899
900  return Sched::RegPressure;
901}
902
903unsigned
904ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
905                                       MachineFunction &MF) const {
906  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
907
908  switch (RC->getID()) {
909  default:
910    return 0;
911  case ARM::tGPRRegClassID:
912    return TFI->hasFP(MF) ? 4 : 5;
913  case ARM::GPRRegClassID: {
914    unsigned FP = TFI->hasFP(MF) ? 1 : 0;
915    return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
916  }
917  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
918  case ARM::DPRRegClassID:
919    return 32 - 10;
920  }
921}
922
923//===----------------------------------------------------------------------===//
924// Lowering Code
925//===----------------------------------------------------------------------===//
926
927/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
928static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
929  switch (CC) {
930  default: llvm_unreachable("Unknown condition code!");
931  case ISD::SETNE:  return ARMCC::NE;
932  case ISD::SETEQ:  return ARMCC::EQ;
933  case ISD::SETGT:  return ARMCC::GT;
934  case ISD::SETGE:  return ARMCC::GE;
935  case ISD::SETLT:  return ARMCC::LT;
936  case ISD::SETLE:  return ARMCC::LE;
937  case ISD::SETUGT: return ARMCC::HI;
938  case ISD::SETUGE: return ARMCC::HS;
939  case ISD::SETULT: return ARMCC::LO;
940  case ISD::SETULE: return ARMCC::LS;
941  }
942}
943
944/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
945static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
946                        ARMCC::CondCodes &CondCode2) {
947  CondCode2 = ARMCC::AL;
948  switch (CC) {
949  default: llvm_unreachable("Unknown FP condition!");
950  case ISD::SETEQ:
951  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
952  case ISD::SETGT:
953  case ISD::SETOGT: CondCode = ARMCC::GT; break;
954  case ISD::SETGE:
955  case ISD::SETOGE: CondCode = ARMCC::GE; break;
956  case ISD::SETOLT: CondCode = ARMCC::MI; break;
957  case ISD::SETOLE: CondCode = ARMCC::LS; break;
958  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
959  case ISD::SETO:   CondCode = ARMCC::VC; break;
960  case ISD::SETUO:  CondCode = ARMCC::VS; break;
961  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
962  case ISD::SETUGT: CondCode = ARMCC::HI; break;
963  case ISD::SETUGE: CondCode = ARMCC::PL; break;
964  case ISD::SETLT:
965  case ISD::SETULT: CondCode = ARMCC::LT; break;
966  case ISD::SETLE:
967  case ISD::SETULE: CondCode = ARMCC::LE; break;
968  case ISD::SETNE:
969  case ISD::SETUNE: CondCode = ARMCC::NE; break;
970  }
971}
972
973//===----------------------------------------------------------------------===//
974//                      Calling Convention Implementation
975//===----------------------------------------------------------------------===//
976
977#include "ARMGenCallingConv.inc"
978
979/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
980/// given CallingConvention value.
981CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
982                                                 bool Return,
983                                                 bool isVarArg) const {
984  switch (CC) {
985  default:
986    llvm_unreachable("Unsupported calling convention");
987  case CallingConv::Fast:
988    if (Subtarget->hasVFP2() && !isVarArg) {
989      if (!Subtarget->isAAPCS_ABI())
990        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
991      // For AAPCS ABI targets, just use VFP variant of the calling convention.
992      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
993    }
994    // Fallthrough
995  case CallingConv::C: {
996    // Use target triple & subtarget features to do actual dispatch.
997    if (!Subtarget->isAAPCS_ABI())
998      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
999    else if (Subtarget->hasVFP2() &&
1000             FloatABIType == FloatABI::Hard && !isVarArg)
1001      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1002    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1003  }
1004  case CallingConv::ARM_AAPCS_VFP:
1005    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1006  case CallingConv::ARM_AAPCS:
1007    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1008  case CallingConv::ARM_APCS:
1009    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1010  }
1011}
1012
1013/// LowerCallResult - Lower the result values of a call into the
1014/// appropriate copies out of appropriate physical registers.
1015SDValue
1016ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1017                                   CallingConv::ID CallConv, bool isVarArg,
1018                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1019                                   DebugLoc dl, SelectionDAG &DAG,
1020                                   SmallVectorImpl<SDValue> &InVals) const {
1021
1022  // Assign locations to each value returned by this call.
1023  SmallVector<CCValAssign, 16> RVLocs;
1024  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1025                 RVLocs, *DAG.getContext());
1026  CCInfo.AnalyzeCallResult(Ins,
1027                           CCAssignFnForNode(CallConv, /* Return*/ true,
1028                                             isVarArg));
1029
1030  // Copy all of the result registers out of their specified physreg.
1031  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1032    CCValAssign VA = RVLocs[i];
1033
1034    SDValue Val;
1035    if (VA.needsCustom()) {
1036      // Handle f64 or half of a v2f64.
1037      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1038                                      InFlag);
1039      Chain = Lo.getValue(1);
1040      InFlag = Lo.getValue(2);
1041      VA = RVLocs[++i]; // skip ahead to next loc
1042      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1043                                      InFlag);
1044      Chain = Hi.getValue(1);
1045      InFlag = Hi.getValue(2);
1046      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1047
1048      if (VA.getLocVT() == MVT::v2f64) {
1049        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1050        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1051                          DAG.getConstant(0, MVT::i32));
1052
1053        VA = RVLocs[++i]; // skip ahead to next loc
1054        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1055        Chain = Lo.getValue(1);
1056        InFlag = Lo.getValue(2);
1057        VA = RVLocs[++i]; // skip ahead to next loc
1058        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1059        Chain = Hi.getValue(1);
1060        InFlag = Hi.getValue(2);
1061        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1062        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1063                          DAG.getConstant(1, MVT::i32));
1064      }
1065    } else {
1066      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1067                               InFlag);
1068      Chain = Val.getValue(1);
1069      InFlag = Val.getValue(2);
1070    }
1071
1072    switch (VA.getLocInfo()) {
1073    default: llvm_unreachable("Unknown loc info!");
1074    case CCValAssign::Full: break;
1075    case CCValAssign::BCvt:
1076      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1077      break;
1078    }
1079
1080    InVals.push_back(Val);
1081  }
1082
1083  return Chain;
1084}
1085
1086/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1087/// by "Src" to address "Dst" of size "Size".  Alignment information is
1088/// specified by the specific parameter attribute.  The copy will be passed as
1089/// a byval function parameter.
1090/// Sometimes what we are copying is the end of a larger object, the part that
1091/// does not fit in registers.
1092static SDValue
1093CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1094                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1095                          DebugLoc dl) {
1096  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1097  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1098                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1099                       MachinePointerInfo(0), MachinePointerInfo(0));
1100}
1101
1102/// LowerMemOpCallTo - Store the argument to the stack.
1103SDValue
1104ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1105                                    SDValue StackPtr, SDValue Arg,
1106                                    DebugLoc dl, SelectionDAG &DAG,
1107                                    const CCValAssign &VA,
1108                                    ISD::ArgFlagsTy Flags) const {
1109  unsigned LocMemOffset = VA.getLocMemOffset();
1110  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1111  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1112  if (Flags.isByVal())
1113    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1114
1115  return DAG.getStore(Chain, dl, Arg, PtrOff,
1116                      MachinePointerInfo::getStack(LocMemOffset),
1117                      false, false, 0);
1118}
1119
1120void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1121                                         SDValue Chain, SDValue &Arg,
1122                                         RegsToPassVector &RegsToPass,
1123                                         CCValAssign &VA, CCValAssign &NextVA,
1124                                         SDValue &StackPtr,
1125                                         SmallVector<SDValue, 8> &MemOpChains,
1126                                         ISD::ArgFlagsTy Flags) const {
1127
1128  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1129                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1130  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1131
1132  if (NextVA.isRegLoc())
1133    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1134  else {
1135    assert(NextVA.isMemLoc());
1136    if (StackPtr.getNode() == 0)
1137      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1138
1139    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1140                                           dl, DAG, NextVA,
1141                                           Flags));
1142  }
1143}
1144
1145/// LowerCall - Lowering a call into a callseq_start <-
1146/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1147/// nodes.
1148SDValue
1149ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1150                             CallingConv::ID CallConv, bool isVarArg,
1151                             bool &isTailCall,
1152                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1153                             const SmallVectorImpl<SDValue> &OutVals,
1154                             const SmallVectorImpl<ISD::InputArg> &Ins,
1155                             DebugLoc dl, SelectionDAG &DAG,
1156                             SmallVectorImpl<SDValue> &InVals) const {
1157  MachineFunction &MF = DAG.getMachineFunction();
1158  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1159  bool IsSibCall = false;
1160  // Temporarily disable tail calls so things don't break.
1161  if (!EnableARMTailCalls)
1162    isTailCall = false;
1163  if (isTailCall) {
1164    // Check if it's really possible to do a tail call.
1165    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1166                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1167                                                   Outs, OutVals, Ins, DAG);
1168    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1169    // detected sibcalls.
1170    if (isTailCall) {
1171      ++NumTailCalls;
1172      IsSibCall = true;
1173    }
1174  }
1175
1176  // Analyze operands of the call, assigning locations to each operand.
1177  SmallVector<CCValAssign, 16> ArgLocs;
1178  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1179                 *DAG.getContext());
1180  CCInfo.AnalyzeCallOperands(Outs,
1181                             CCAssignFnForNode(CallConv, /* Return*/ false,
1182                                               isVarArg));
1183
1184  // Get a count of how many bytes are to be pushed on the stack.
1185  unsigned NumBytes = CCInfo.getNextStackOffset();
1186
1187  // For tail calls, memory operands are available in our caller's stack.
1188  if (IsSibCall)
1189    NumBytes = 0;
1190
1191  // Adjust the stack pointer for the new arguments...
1192  // These operations are automatically eliminated by the prolog/epilog pass
1193  if (!IsSibCall)
1194    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1195
1196  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1197
1198  RegsToPassVector RegsToPass;
1199  SmallVector<SDValue, 8> MemOpChains;
1200
1201  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1202  // of tail call optimization, arguments are handled later.
1203  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1204       i != e;
1205       ++i, ++realArgIdx) {
1206    CCValAssign &VA = ArgLocs[i];
1207    SDValue Arg = OutVals[realArgIdx];
1208    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1209
1210    // Promote the value if needed.
1211    switch (VA.getLocInfo()) {
1212    default: llvm_unreachable("Unknown loc info!");
1213    case CCValAssign::Full: break;
1214    case CCValAssign::SExt:
1215      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1216      break;
1217    case CCValAssign::ZExt:
1218      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1219      break;
1220    case CCValAssign::AExt:
1221      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1222      break;
1223    case CCValAssign::BCvt:
1224      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1225      break;
1226    }
1227
1228    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1229    if (VA.needsCustom()) {
1230      if (VA.getLocVT() == MVT::v2f64) {
1231        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1232                                  DAG.getConstant(0, MVT::i32));
1233        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1234                                  DAG.getConstant(1, MVT::i32));
1235
1236        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1237                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1238
1239        VA = ArgLocs[++i]; // skip ahead to next loc
1240        if (VA.isRegLoc()) {
1241          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1242                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1243        } else {
1244          assert(VA.isMemLoc());
1245
1246          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1247                                                 dl, DAG, VA, Flags));
1248        }
1249      } else {
1250        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1251                         StackPtr, MemOpChains, Flags);
1252      }
1253    } else if (VA.isRegLoc()) {
1254      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1255    } else if (!IsSibCall) {
1256      assert(VA.isMemLoc());
1257
1258      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1259                                             dl, DAG, VA, Flags));
1260    }
1261  }
1262
1263  if (!MemOpChains.empty())
1264    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1265                        &MemOpChains[0], MemOpChains.size());
1266
1267  // Build a sequence of copy-to-reg nodes chained together with token chain
1268  // and flag operands which copy the outgoing args into the appropriate regs.
1269  SDValue InFlag;
1270  // Tail call byval lowering might overwrite argument registers so in case of
1271  // tail call optimization the copies to registers are lowered later.
1272  if (!isTailCall)
1273    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1274      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1275                               RegsToPass[i].second, InFlag);
1276      InFlag = Chain.getValue(1);
1277    }
1278
1279  // For tail calls lower the arguments to the 'real' stack slot.
1280  if (isTailCall) {
1281    // Force all the incoming stack arguments to be loaded from the stack
1282    // before any new outgoing arguments are stored to the stack, because the
1283    // outgoing stack slots may alias the incoming argument stack slots, and
1284    // the alias isn't otherwise explicit. This is slightly more conservative
1285    // than necessary, because it means that each store effectively depends
1286    // on every argument instead of just those arguments it would clobber.
1287
1288    // Do not flag preceeding copytoreg stuff together with the following stuff.
1289    InFlag = SDValue();
1290    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1291      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1292                               RegsToPass[i].second, InFlag);
1293      InFlag = Chain.getValue(1);
1294    }
1295    InFlag =SDValue();
1296  }
1297
1298  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1299  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1300  // node so that legalize doesn't hack it.
1301  bool isDirect = false;
1302  bool isARMFunc = false;
1303  bool isLocalARMFunc = false;
1304  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1305
1306  if (EnableARMLongCalls) {
1307    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1308            && "long-calls with non-static relocation model!");
1309    // Handle a global address or an external symbol. If it's not one of
1310    // those, the target's already in a register, so we don't need to do
1311    // anything extra.
1312    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1313      const GlobalValue *GV = G->getGlobal();
1314      // Create a constant pool entry for the callee address
1315      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1316      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1317                                                           ARMPCLabelIndex,
1318                                                           ARMCP::CPValue, 0);
1319      // Get the address of the callee into a register
1320      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1321      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1322      Callee = DAG.getLoad(getPointerTy(), dl,
1323                           DAG.getEntryNode(), CPAddr,
1324                           MachinePointerInfo::getConstantPool(),
1325                           false, false, 0);
1326    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1327      const char *Sym = S->getSymbol();
1328
1329      // Create a constant pool entry for the callee address
1330      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1331      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1332                                                       Sym, ARMPCLabelIndex, 0);
1333      // Get the address of the callee into a register
1334      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1335      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1336      Callee = DAG.getLoad(getPointerTy(), dl,
1337                           DAG.getEntryNode(), CPAddr,
1338                           MachinePointerInfo::getConstantPool(),
1339                           false, false, 0);
1340    }
1341  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1342    const GlobalValue *GV = G->getGlobal();
1343    isDirect = true;
1344    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1345    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1346                   getTargetMachine().getRelocationModel() != Reloc::Static;
1347    isARMFunc = !Subtarget->isThumb() || isStub;
1348    // ARM call to a local ARM function is predicable.
1349    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1350    // tBX takes a register source operand.
1351    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1352      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1353      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1354                                                           ARMPCLabelIndex,
1355                                                           ARMCP::CPValue, 4);
1356      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1357      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1358      Callee = DAG.getLoad(getPointerTy(), dl,
1359                           DAG.getEntryNode(), CPAddr,
1360                           MachinePointerInfo::getConstantPool(),
1361                           false, false, 0);
1362      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1363      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1364                           getPointerTy(), Callee, PICLabel);
1365    } else {
1366      // On ELF targets for PIC code, direct calls should go through the PLT
1367      unsigned OpFlags = 0;
1368      if (Subtarget->isTargetELF() &&
1369                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1370        OpFlags = ARMII::MO_PLT;
1371      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1372    }
1373  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1374    isDirect = true;
1375    bool isStub = Subtarget->isTargetDarwin() &&
1376                  getTargetMachine().getRelocationModel() != Reloc::Static;
1377    isARMFunc = !Subtarget->isThumb() || isStub;
1378    // tBX takes a register source operand.
1379    const char *Sym = S->getSymbol();
1380    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1381      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1382      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1383                                                       Sym, ARMPCLabelIndex, 4);
1384      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1385      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1386      Callee = DAG.getLoad(getPointerTy(), dl,
1387                           DAG.getEntryNode(), CPAddr,
1388                           MachinePointerInfo::getConstantPool(),
1389                           false, false, 0);
1390      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1391      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1392                           getPointerTy(), Callee, PICLabel);
1393    } else {
1394      unsigned OpFlags = 0;
1395      // On ELF targets for PIC code, direct calls should go through the PLT
1396      if (Subtarget->isTargetELF() &&
1397                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1398        OpFlags = ARMII::MO_PLT;
1399      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1400    }
1401  }
1402
1403  // FIXME: handle tail calls differently.
1404  unsigned CallOpc;
1405  if (Subtarget->isThumb()) {
1406    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1407      CallOpc = ARMISD::CALL_NOLINK;
1408    else
1409      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1410  } else {
1411    CallOpc = (isDirect || Subtarget->hasV5TOps())
1412      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1413      : ARMISD::CALL_NOLINK;
1414  }
1415
1416  std::vector<SDValue> Ops;
1417  Ops.push_back(Chain);
1418  Ops.push_back(Callee);
1419
1420  // Add argument registers to the end of the list so that they are known live
1421  // into the call.
1422  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1423    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1424                                  RegsToPass[i].second.getValueType()));
1425
1426  if (InFlag.getNode())
1427    Ops.push_back(InFlag);
1428
1429  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1430  if (isTailCall)
1431    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1432
1433  // Returns a chain and a flag for retval copy to use.
1434  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1435  InFlag = Chain.getValue(1);
1436
1437  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1438                             DAG.getIntPtrConstant(0, true), InFlag);
1439  if (!Ins.empty())
1440    InFlag = Chain.getValue(1);
1441
1442  // Handle result values, copying them out of physregs into vregs that we
1443  // return.
1444  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1445                         dl, DAG, InVals);
1446}
1447
1448/// MatchingStackOffset - Return true if the given stack call argument is
1449/// already available in the same position (relatively) of the caller's
1450/// incoming argument stack.
1451static
1452bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1453                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1454                         const ARMInstrInfo *TII) {
1455  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1456  int FI = INT_MAX;
1457  if (Arg.getOpcode() == ISD::CopyFromReg) {
1458    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1459    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
1460      return false;
1461    MachineInstr *Def = MRI->getVRegDef(VR);
1462    if (!Def)
1463      return false;
1464    if (!Flags.isByVal()) {
1465      if (!TII->isLoadFromStackSlot(Def, FI))
1466        return false;
1467    } else {
1468      return false;
1469    }
1470  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1471    if (Flags.isByVal())
1472      // ByVal argument is passed in as a pointer but it's now being
1473      // dereferenced. e.g.
1474      // define @foo(%struct.X* %A) {
1475      //   tail call @bar(%struct.X* byval %A)
1476      // }
1477      return false;
1478    SDValue Ptr = Ld->getBasePtr();
1479    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1480    if (!FINode)
1481      return false;
1482    FI = FINode->getIndex();
1483  } else
1484    return false;
1485
1486  assert(FI != INT_MAX);
1487  if (!MFI->isFixedObjectIndex(FI))
1488    return false;
1489  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1490}
1491
1492/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1493/// for tail call optimization. Targets which want to do tail call
1494/// optimization should implement this function.
1495bool
1496ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1497                                                     CallingConv::ID CalleeCC,
1498                                                     bool isVarArg,
1499                                                     bool isCalleeStructRet,
1500                                                     bool isCallerStructRet,
1501                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1502                                    const SmallVectorImpl<SDValue> &OutVals,
1503                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1504                                                     SelectionDAG& DAG) const {
1505  const Function *CallerF = DAG.getMachineFunction().getFunction();
1506  CallingConv::ID CallerCC = CallerF->getCallingConv();
1507  bool CCMatch = CallerCC == CalleeCC;
1508
1509  // Look for obvious safe cases to perform tail call optimization that do not
1510  // require ABI changes. This is what gcc calls sibcall.
1511
1512  // Do not sibcall optimize vararg calls unless the call site is not passing
1513  // any arguments.
1514  if (isVarArg && !Outs.empty())
1515    return false;
1516
1517  // Also avoid sibcall optimization if either caller or callee uses struct
1518  // return semantics.
1519  if (isCalleeStructRet || isCallerStructRet)
1520    return false;
1521
1522  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1523  // emitEpilogue is not ready for them.
1524  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1525  // LR.  This means if we need to reload LR, it takes an extra instructions,
1526  // which outweighs the value of the tail call; but here we don't know yet
1527  // whether LR is going to be used.  Probably the right approach is to
1528  // generate the tail call here and turn it back into CALL/RET in
1529  // emitEpilogue if LR is used.
1530
1531  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1532  // but we need to make sure there are enough registers; the only valid
1533  // registers are the 4 used for parameters.  We don't currently do this
1534  // case.
1535  if (Subtarget->isThumb1Only())
1536    return false;
1537
1538  // If the calling conventions do not match, then we'd better make sure the
1539  // results are returned in the same way as what the caller expects.
1540  if (!CCMatch) {
1541    SmallVector<CCValAssign, 16> RVLocs1;
1542    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1543                    RVLocs1, *DAG.getContext());
1544    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1545
1546    SmallVector<CCValAssign, 16> RVLocs2;
1547    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1548                    RVLocs2, *DAG.getContext());
1549    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1550
1551    if (RVLocs1.size() != RVLocs2.size())
1552      return false;
1553    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1554      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1555        return false;
1556      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1557        return false;
1558      if (RVLocs1[i].isRegLoc()) {
1559        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1560          return false;
1561      } else {
1562        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1563          return false;
1564      }
1565    }
1566  }
1567
1568  // If the callee takes no arguments then go on to check the results of the
1569  // call.
1570  if (!Outs.empty()) {
1571    // Check if stack adjustment is needed. For now, do not do this if any
1572    // argument is passed on the stack.
1573    SmallVector<CCValAssign, 16> ArgLocs;
1574    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1575                   ArgLocs, *DAG.getContext());
1576    CCInfo.AnalyzeCallOperands(Outs,
1577                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1578    if (CCInfo.getNextStackOffset()) {
1579      MachineFunction &MF = DAG.getMachineFunction();
1580
1581      // Check if the arguments are already laid out in the right way as
1582      // the caller's fixed stack objects.
1583      MachineFrameInfo *MFI = MF.getFrameInfo();
1584      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1585      const ARMInstrInfo *TII =
1586        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1587      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1588           i != e;
1589           ++i, ++realArgIdx) {
1590        CCValAssign &VA = ArgLocs[i];
1591        EVT RegVT = VA.getLocVT();
1592        SDValue Arg = OutVals[realArgIdx];
1593        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1594        if (VA.getLocInfo() == CCValAssign::Indirect)
1595          return false;
1596        if (VA.needsCustom()) {
1597          // f64 and vector types are split into multiple registers or
1598          // register/stack-slot combinations.  The types will not match
1599          // the registers; give up on memory f64 refs until we figure
1600          // out what to do about this.
1601          if (!VA.isRegLoc())
1602            return false;
1603          if (!ArgLocs[++i].isRegLoc())
1604            return false;
1605          if (RegVT == MVT::v2f64) {
1606            if (!ArgLocs[++i].isRegLoc())
1607              return false;
1608            if (!ArgLocs[++i].isRegLoc())
1609              return false;
1610          }
1611        } else if (!VA.isRegLoc()) {
1612          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1613                                   MFI, MRI, TII))
1614            return false;
1615        }
1616      }
1617    }
1618  }
1619
1620  return true;
1621}
1622
1623SDValue
1624ARMTargetLowering::LowerReturn(SDValue Chain,
1625                               CallingConv::ID CallConv, bool isVarArg,
1626                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1627                               const SmallVectorImpl<SDValue> &OutVals,
1628                               DebugLoc dl, SelectionDAG &DAG) const {
1629
1630  // CCValAssign - represent the assignment of the return value to a location.
1631  SmallVector<CCValAssign, 16> RVLocs;
1632
1633  // CCState - Info about the registers and stack slots.
1634  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1635                 *DAG.getContext());
1636
1637  // Analyze outgoing return values.
1638  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1639                                               isVarArg));
1640
1641  // If this is the first return lowered for this function, add
1642  // the regs to the liveout set for the function.
1643  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1644    for (unsigned i = 0; i != RVLocs.size(); ++i)
1645      if (RVLocs[i].isRegLoc())
1646        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1647  }
1648
1649  SDValue Flag;
1650
1651  // Copy the result values into the output registers.
1652  for (unsigned i = 0, realRVLocIdx = 0;
1653       i != RVLocs.size();
1654       ++i, ++realRVLocIdx) {
1655    CCValAssign &VA = RVLocs[i];
1656    assert(VA.isRegLoc() && "Can only return in registers!");
1657
1658    SDValue Arg = OutVals[realRVLocIdx];
1659
1660    switch (VA.getLocInfo()) {
1661    default: llvm_unreachable("Unknown loc info!");
1662    case CCValAssign::Full: break;
1663    case CCValAssign::BCvt:
1664      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1665      break;
1666    }
1667
1668    if (VA.needsCustom()) {
1669      if (VA.getLocVT() == MVT::v2f64) {
1670        // Extract the first half and return it in two registers.
1671        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1672                                   DAG.getConstant(0, MVT::i32));
1673        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1674                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1675
1676        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1677        Flag = Chain.getValue(1);
1678        VA = RVLocs[++i]; // skip ahead to next loc
1679        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1680                                 HalfGPRs.getValue(1), Flag);
1681        Flag = Chain.getValue(1);
1682        VA = RVLocs[++i]; // skip ahead to next loc
1683
1684        // Extract the 2nd half and fall through to handle it as an f64 value.
1685        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1686                          DAG.getConstant(1, MVT::i32));
1687      }
1688      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1689      // available.
1690      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1691                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1692      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1693      Flag = Chain.getValue(1);
1694      VA = RVLocs[++i]; // skip ahead to next loc
1695      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1696                               Flag);
1697    } else
1698      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1699
1700    // Guarantee that all emitted copies are
1701    // stuck together, avoiding something bad.
1702    Flag = Chain.getValue(1);
1703  }
1704
1705  SDValue result;
1706  if (Flag.getNode())
1707    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1708  else // Return Void
1709    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1710
1711  return result;
1712}
1713
1714bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N) const {
1715  if (N->getNumValues() != 1)
1716    return false;
1717  if (!N->hasNUsesOfValue(1, 0))
1718    return false;
1719
1720  unsigned NumCopies = 0;
1721  SDNode* Copies[2];
1722  SDNode *Use = *N->use_begin();
1723  if (Use->getOpcode() == ISD::CopyToReg) {
1724    Copies[NumCopies++] = Use;
1725  } else if (Use->getOpcode() == ARMISD::VMOVRRD) {
1726    // f64 returned in a pair of GPRs.
1727    for (SDNode::use_iterator UI = Use->use_begin(), UE = Use->use_end();
1728         UI != UE; ++UI) {
1729      if (UI->getOpcode() != ISD::CopyToReg)
1730        return false;
1731      Copies[UI.getUse().getResNo()] = *UI;
1732      ++NumCopies;
1733    }
1734  } else if (Use->getOpcode() == ISD::BITCAST) {
1735    // f32 returned in a single GPR.
1736    if (!Use->hasNUsesOfValue(1, 0))
1737      return false;
1738    Use = *Use->use_begin();
1739    if (Use->getOpcode() != ISD::CopyToReg || !Use->hasNUsesOfValue(1, 0))
1740      return false;
1741    Copies[NumCopies++] = Use;
1742  } else {
1743    return false;
1744  }
1745
1746  if (NumCopies != 1 && NumCopies != 2)
1747    return false;
1748
1749  bool HasRet = false;
1750  for (unsigned i = 0; i < NumCopies; ++i) {
1751    SDNode *Copy = Copies[i];
1752    for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1753         UI != UE; ++UI) {
1754      if (UI->getOpcode() == ISD::CopyToReg) {
1755        SDNode *Use = *UI;
1756        if (Use == Copies[0] || Use == Copies[1])
1757          continue;
1758        return false;
1759      }
1760      if (UI->getOpcode() != ARMISD::RET_FLAG)
1761        return false;
1762      HasRet = true;
1763    }
1764  }
1765
1766  return HasRet;
1767}
1768
1769// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1770// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1771// one of the above mentioned nodes. It has to be wrapped because otherwise
1772// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1773// be used to form addressing mode. These wrapped nodes will be selected
1774// into MOVi.
1775static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1776  EVT PtrVT = Op.getValueType();
1777  // FIXME there is no actual debug info here
1778  DebugLoc dl = Op.getDebugLoc();
1779  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1780  SDValue Res;
1781  if (CP->isMachineConstantPoolEntry())
1782    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1783                                    CP->getAlignment());
1784  else
1785    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1786                                    CP->getAlignment());
1787  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1788}
1789
1790unsigned ARMTargetLowering::getJumpTableEncoding() const {
1791  return MachineJumpTableInfo::EK_Inline;
1792}
1793
1794SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1795                                             SelectionDAG &DAG) const {
1796  MachineFunction &MF = DAG.getMachineFunction();
1797  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1798  unsigned ARMPCLabelIndex = 0;
1799  DebugLoc DL = Op.getDebugLoc();
1800  EVT PtrVT = getPointerTy();
1801  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1802  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1803  SDValue CPAddr;
1804  if (RelocM == Reloc::Static) {
1805    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1806  } else {
1807    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1808    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1809    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1810                                                         ARMCP::CPBlockAddress,
1811                                                         PCAdj);
1812    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1813  }
1814  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1815  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1816                               MachinePointerInfo::getConstantPool(),
1817                               false, false, 0);
1818  if (RelocM == Reloc::Static)
1819    return Result;
1820  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1821  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1822}
1823
1824// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1825SDValue
1826ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1827                                                 SelectionDAG &DAG) const {
1828  DebugLoc dl = GA->getDebugLoc();
1829  EVT PtrVT = getPointerTy();
1830  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1831  MachineFunction &MF = DAG.getMachineFunction();
1832  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1833  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1834  ARMConstantPoolValue *CPV =
1835    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1836                             ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
1837  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1838  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1839  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1840                         MachinePointerInfo::getConstantPool(),
1841                         false, false, 0);
1842  SDValue Chain = Argument.getValue(1);
1843
1844  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1845  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1846
1847  // call __tls_get_addr.
1848  ArgListTy Args;
1849  ArgListEntry Entry;
1850  Entry.Node = Argument;
1851  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1852  Args.push_back(Entry);
1853  // FIXME: is there useful debug info available here?
1854  std::pair<SDValue, SDValue> CallResult =
1855    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1856                false, false, false, false,
1857                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1858                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1859  return CallResult.first;
1860}
1861
1862// Lower ISD::GlobalTLSAddress using the "initial exec" or
1863// "local exec" model.
1864SDValue
1865ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1866                                        SelectionDAG &DAG) const {
1867  const GlobalValue *GV = GA->getGlobal();
1868  DebugLoc dl = GA->getDebugLoc();
1869  SDValue Offset;
1870  SDValue Chain = DAG.getEntryNode();
1871  EVT PtrVT = getPointerTy();
1872  // Get the Thread Pointer
1873  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1874
1875  if (GV->isDeclaration()) {
1876    MachineFunction &MF = DAG.getMachineFunction();
1877    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1878    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1879    // Initial exec model.
1880    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1881    ARMConstantPoolValue *CPV =
1882      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1883                               ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, true);
1884    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1885    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1886    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1887                         MachinePointerInfo::getConstantPool(),
1888                         false, false, 0);
1889    Chain = Offset.getValue(1);
1890
1891    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1892    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1893
1894    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1895                         MachinePointerInfo::getConstantPool(),
1896                         false, false, 0);
1897  } else {
1898    // local exec model
1899    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMCP::TPOFF);
1900    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1901    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1902    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1903                         MachinePointerInfo::getConstantPool(),
1904                         false, false, 0);
1905  }
1906
1907  // The address of the thread local variable is the add of the thread
1908  // pointer with the offset of the variable.
1909  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1910}
1911
1912SDValue
1913ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1914  // TODO: implement the "local dynamic" model
1915  assert(Subtarget->isTargetELF() &&
1916         "TLS not implemented for non-ELF targets");
1917  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1918  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1919  // otherwise use the "Local Exec" TLS Model
1920  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1921    return LowerToTLSGeneralDynamicModel(GA, DAG);
1922  else
1923    return LowerToTLSExecModels(GA, DAG);
1924}
1925
1926SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1927                                                 SelectionDAG &DAG) const {
1928  EVT PtrVT = getPointerTy();
1929  DebugLoc dl = Op.getDebugLoc();
1930  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1931  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1932  if (RelocM == Reloc::PIC_) {
1933    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1934    ARMConstantPoolValue *CPV =
1935      new ARMConstantPoolValue(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
1936    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1937    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1938    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1939                                 CPAddr,
1940                                 MachinePointerInfo::getConstantPool(),
1941                                 false, false, 0);
1942    SDValue Chain = Result.getValue(1);
1943    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1944    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1945    if (!UseGOTOFF)
1946      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1947                           MachinePointerInfo::getGOT(), false, false, 0);
1948    return Result;
1949  } else {
1950    // If we have T2 ops, we can materialize the address directly via movt/movw
1951    // pair. This is always cheaper.
1952    if (Subtarget->useMovt()) {
1953      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1954                         DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1955    } else {
1956      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1957      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1958      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1959                         MachinePointerInfo::getConstantPool(),
1960                         false, false, 0);
1961    }
1962  }
1963}
1964
1965SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1966                                                    SelectionDAG &DAG) const {
1967  MachineFunction &MF = DAG.getMachineFunction();
1968  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1969  unsigned ARMPCLabelIndex = 0;
1970  EVT PtrVT = getPointerTy();
1971  DebugLoc dl = Op.getDebugLoc();
1972  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1973  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1974  SDValue CPAddr;
1975  if (RelocM == Reloc::Static)
1976    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1977  else {
1978    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1979    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1980    ARMConstantPoolValue *CPV =
1981      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1982    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1983  }
1984  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1985
1986  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1987                               MachinePointerInfo::getConstantPool(),
1988                               false, false, 0);
1989  SDValue Chain = Result.getValue(1);
1990
1991  if (RelocM == Reloc::PIC_) {
1992    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1993    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1994  }
1995
1996  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1997    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
1998                         false, false, 0);
1999
2000  return Result;
2001}
2002
2003SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2004                                                    SelectionDAG &DAG) const {
2005  assert(Subtarget->isTargetELF() &&
2006         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2007  MachineFunction &MF = DAG.getMachineFunction();
2008  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2009  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
2010  EVT PtrVT = getPointerTy();
2011  DebugLoc dl = Op.getDebugLoc();
2012  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2013  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
2014                                                       "_GLOBAL_OFFSET_TABLE_",
2015                                                       ARMPCLabelIndex, PCAdj);
2016  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2017  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2018  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2019                               MachinePointerInfo::getConstantPool(),
2020                               false, false, 0);
2021  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2022  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2023}
2024
2025SDValue
2026ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
2027  const {
2028  DebugLoc dl = Op.getDebugLoc();
2029  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
2030                     Op.getOperand(0), Op.getOperand(1));
2031}
2032
2033SDValue
2034ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2035  DebugLoc dl = Op.getDebugLoc();
2036  SDValue Val = DAG.getConstant(0, MVT::i32);
2037  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
2038                     Op.getOperand(1), Val);
2039}
2040
2041SDValue
2042ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2043  DebugLoc dl = Op.getDebugLoc();
2044  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2045                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2046}
2047
2048SDValue
2049ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2050                                          const ARMSubtarget *Subtarget) const {
2051  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2052  DebugLoc dl = Op.getDebugLoc();
2053  switch (IntNo) {
2054  default: return SDValue();    // Don't custom lower most intrinsics.
2055  case Intrinsic::arm_thread_pointer: {
2056    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2057    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2058  }
2059  case Intrinsic::eh_sjlj_lsda: {
2060    MachineFunction &MF = DAG.getMachineFunction();
2061    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2062    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
2063    EVT PtrVT = getPointerTy();
2064    DebugLoc dl = Op.getDebugLoc();
2065    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2066    SDValue CPAddr;
2067    unsigned PCAdj = (RelocM != Reloc::PIC_)
2068      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2069    ARMConstantPoolValue *CPV =
2070      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2071                               ARMCP::CPLSDA, PCAdj);
2072    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2073    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2074    SDValue Result =
2075      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2076                  MachinePointerInfo::getConstantPool(),
2077                  false, false, 0);
2078
2079    if (RelocM == Reloc::PIC_) {
2080      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2081      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2082    }
2083    return Result;
2084  }
2085  }
2086}
2087
2088static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2089                               const ARMSubtarget *Subtarget) {
2090  DebugLoc dl = Op.getDebugLoc();
2091  if (!Subtarget->hasDataBarrier()) {
2092    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2093    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2094    // here.
2095    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2096           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2097    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2098                       DAG.getConstant(0, MVT::i32));
2099  }
2100
2101  SDValue Op5 = Op.getOperand(5);
2102  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2103  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2104  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2105  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2106
2107  ARM_MB::MemBOpt DMBOpt;
2108  if (isDeviceBarrier)
2109    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2110  else
2111    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2112  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2113                     DAG.getConstant(DMBOpt, MVT::i32));
2114}
2115
2116static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2117                             const ARMSubtarget *Subtarget) {
2118  // ARM pre v5TE and Thumb1 does not have preload instructions.
2119  if (!(Subtarget->isThumb2() ||
2120        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2121    // Just preserve the chain.
2122    return Op.getOperand(0);
2123
2124  DebugLoc dl = Op.getDebugLoc();
2125  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2126  if (!isRead &&
2127      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2128    // ARMv7 with MP extension has PLDW.
2129    return Op.getOperand(0);
2130
2131  if (Subtarget->isThumb())
2132    // Invert the bits.
2133    isRead = ~isRead & 1;
2134  unsigned isData = Subtarget->isThumb() ? 0 : 1;
2135
2136  // Currently there is no intrinsic that matches pli.
2137  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2138                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2139                     DAG.getConstant(isData, MVT::i32));
2140}
2141
2142static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2143  MachineFunction &MF = DAG.getMachineFunction();
2144  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2145
2146  // vastart just stores the address of the VarArgsFrameIndex slot into the
2147  // memory location argument.
2148  DebugLoc dl = Op.getDebugLoc();
2149  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2150  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2151  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2152  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2153                      MachinePointerInfo(SV), false, false, 0);
2154}
2155
2156SDValue
2157ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2158                                        SDValue &Root, SelectionDAG &DAG,
2159                                        DebugLoc dl) const {
2160  MachineFunction &MF = DAG.getMachineFunction();
2161  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2162
2163  TargetRegisterClass *RC;
2164  if (AFI->isThumb1OnlyFunction())
2165    RC = ARM::tGPRRegisterClass;
2166  else
2167    RC = ARM::GPRRegisterClass;
2168
2169  // Transform the arguments stored in physical registers into virtual ones.
2170  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2171  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2172
2173  SDValue ArgValue2;
2174  if (NextVA.isMemLoc()) {
2175    MachineFrameInfo *MFI = MF.getFrameInfo();
2176    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2177
2178    // Create load node to retrieve arguments from the stack.
2179    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2180    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2181                            MachinePointerInfo::getFixedStack(FI),
2182                            false, false, 0);
2183  } else {
2184    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2185    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2186  }
2187
2188  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2189}
2190
2191SDValue
2192ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2193                                        CallingConv::ID CallConv, bool isVarArg,
2194                                        const SmallVectorImpl<ISD::InputArg>
2195                                          &Ins,
2196                                        DebugLoc dl, SelectionDAG &DAG,
2197                                        SmallVectorImpl<SDValue> &InVals)
2198                                          const {
2199
2200  MachineFunction &MF = DAG.getMachineFunction();
2201  MachineFrameInfo *MFI = MF.getFrameInfo();
2202
2203  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2204
2205  // Assign locations to all of the incoming arguments.
2206  SmallVector<CCValAssign, 16> ArgLocs;
2207  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2208                 *DAG.getContext());
2209  CCInfo.AnalyzeFormalArguments(Ins,
2210                                CCAssignFnForNode(CallConv, /* Return*/ false,
2211                                                  isVarArg));
2212
2213  SmallVector<SDValue, 16> ArgValues;
2214
2215  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2216    CCValAssign &VA = ArgLocs[i];
2217
2218    // Arguments stored in registers.
2219    if (VA.isRegLoc()) {
2220      EVT RegVT = VA.getLocVT();
2221
2222      SDValue ArgValue;
2223      if (VA.needsCustom()) {
2224        // f64 and vector types are split up into multiple registers or
2225        // combinations of registers and stack slots.
2226        if (VA.getLocVT() == MVT::v2f64) {
2227          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2228                                                   Chain, DAG, dl);
2229          VA = ArgLocs[++i]; // skip ahead to next loc
2230          SDValue ArgValue2;
2231          if (VA.isMemLoc()) {
2232            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2233            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2234            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2235                                    MachinePointerInfo::getFixedStack(FI),
2236                                    false, false, 0);
2237          } else {
2238            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2239                                             Chain, DAG, dl);
2240          }
2241          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2242          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2243                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2244          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2245                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2246        } else
2247          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2248
2249      } else {
2250        TargetRegisterClass *RC;
2251
2252        if (RegVT == MVT::f32)
2253          RC = ARM::SPRRegisterClass;
2254        else if (RegVT == MVT::f64)
2255          RC = ARM::DPRRegisterClass;
2256        else if (RegVT == MVT::v2f64)
2257          RC = ARM::QPRRegisterClass;
2258        else if (RegVT == MVT::i32)
2259          RC = (AFI->isThumb1OnlyFunction() ?
2260                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2261        else
2262          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2263
2264        // Transform the arguments in physical registers into virtual ones.
2265        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2266        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2267      }
2268
2269      // If this is an 8 or 16-bit value, it is really passed promoted
2270      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2271      // truncate to the right size.
2272      switch (VA.getLocInfo()) {
2273      default: llvm_unreachable("Unknown loc info!");
2274      case CCValAssign::Full: break;
2275      case CCValAssign::BCvt:
2276        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2277        break;
2278      case CCValAssign::SExt:
2279        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2280                               DAG.getValueType(VA.getValVT()));
2281        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2282        break;
2283      case CCValAssign::ZExt:
2284        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2285                               DAG.getValueType(VA.getValVT()));
2286        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2287        break;
2288      }
2289
2290      InVals.push_back(ArgValue);
2291
2292    } else { // VA.isRegLoc()
2293
2294      // sanity check
2295      assert(VA.isMemLoc());
2296      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2297
2298      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2299      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2300
2301      // Create load nodes to retrieve arguments from the stack.
2302      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2303      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2304                                   MachinePointerInfo::getFixedStack(FI),
2305                                   false, false, 0));
2306    }
2307  }
2308
2309  // varargs
2310  if (isVarArg) {
2311    static const unsigned GPRArgRegs[] = {
2312      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2313    };
2314
2315    unsigned NumGPRs = CCInfo.getFirstUnallocated
2316      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2317
2318    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
2319    unsigned VARegSize = (4 - NumGPRs) * 4;
2320    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2321    unsigned ArgOffset = CCInfo.getNextStackOffset();
2322    if (VARegSaveSize) {
2323      // If this function is vararg, store any remaining integer argument regs
2324      // to their spots on the stack so that they may be loaded by deferencing
2325      // the result of va_next.
2326      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2327      AFI->setVarArgsFrameIndex(
2328        MFI->CreateFixedObject(VARegSaveSize,
2329                               ArgOffset + VARegSaveSize - VARegSize,
2330                               false));
2331      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2332                                      getPointerTy());
2333
2334      SmallVector<SDValue, 4> MemOps;
2335      for (; NumGPRs < 4; ++NumGPRs) {
2336        TargetRegisterClass *RC;
2337        if (AFI->isThumb1OnlyFunction())
2338          RC = ARM::tGPRRegisterClass;
2339        else
2340          RC = ARM::GPRRegisterClass;
2341
2342        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2343        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2344        SDValue Store =
2345          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2346               MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2347                       false, false, 0);
2348        MemOps.push_back(Store);
2349        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2350                          DAG.getConstant(4, getPointerTy()));
2351      }
2352      if (!MemOps.empty())
2353        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2354                            &MemOps[0], MemOps.size());
2355    } else
2356      // This will point to the next argument passed via stack.
2357      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2358  }
2359
2360  return Chain;
2361}
2362
2363/// isFloatingPointZero - Return true if this is +0.0.
2364static bool isFloatingPointZero(SDValue Op) {
2365  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2366    return CFP->getValueAPF().isPosZero();
2367  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2368    // Maybe this has already been legalized into the constant pool?
2369    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2370      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2371      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2372        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2373          return CFP->getValueAPF().isPosZero();
2374    }
2375  }
2376  return false;
2377}
2378
2379/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2380/// the given operands.
2381SDValue
2382ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2383                             SDValue &ARMcc, SelectionDAG &DAG,
2384                             DebugLoc dl) const {
2385  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2386    unsigned C = RHSC->getZExtValue();
2387    if (!isLegalICmpImmediate(C)) {
2388      // Constant does not fit, try adjusting it by one?
2389      switch (CC) {
2390      default: break;
2391      case ISD::SETLT:
2392      case ISD::SETGE:
2393        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2394          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2395          RHS = DAG.getConstant(C-1, MVT::i32);
2396        }
2397        break;
2398      case ISD::SETULT:
2399      case ISD::SETUGE:
2400        if (C != 0 && isLegalICmpImmediate(C-1)) {
2401          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2402          RHS = DAG.getConstant(C-1, MVT::i32);
2403        }
2404        break;
2405      case ISD::SETLE:
2406      case ISD::SETGT:
2407        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2408          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2409          RHS = DAG.getConstant(C+1, MVT::i32);
2410        }
2411        break;
2412      case ISD::SETULE:
2413      case ISD::SETUGT:
2414        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2415          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2416          RHS = DAG.getConstant(C+1, MVT::i32);
2417        }
2418        break;
2419      }
2420    }
2421  }
2422
2423  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2424  ARMISD::NodeType CompareType;
2425  switch (CondCode) {
2426  default:
2427    CompareType = ARMISD::CMP;
2428    break;
2429  case ARMCC::EQ:
2430  case ARMCC::NE:
2431    // Uses only Z Flag
2432    CompareType = ARMISD::CMPZ;
2433    break;
2434  }
2435  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2436  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2437}
2438
2439/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2440SDValue
2441ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2442                             DebugLoc dl) const {
2443  SDValue Cmp;
2444  if (!isFloatingPointZero(RHS))
2445    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2446  else
2447    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2448  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2449}
2450
2451SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2452  SDValue Cond = Op.getOperand(0);
2453  SDValue SelectTrue = Op.getOperand(1);
2454  SDValue SelectFalse = Op.getOperand(2);
2455  DebugLoc dl = Op.getDebugLoc();
2456
2457  // Convert:
2458  //
2459  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2460  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2461  //
2462  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2463    const ConstantSDNode *CMOVTrue =
2464      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2465    const ConstantSDNode *CMOVFalse =
2466      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2467
2468    if (CMOVTrue && CMOVFalse) {
2469      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2470      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2471
2472      SDValue True;
2473      SDValue False;
2474      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2475        True = SelectTrue;
2476        False = SelectFalse;
2477      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2478        True = SelectFalse;
2479        False = SelectTrue;
2480      }
2481
2482      if (True.getNode() && False.getNode()) {
2483        EVT VT = Cond.getValueType();
2484        SDValue ARMcc = Cond.getOperand(2);
2485        SDValue CCR = Cond.getOperand(3);
2486        SDValue Cmp = Cond.getOperand(4);
2487        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2488      }
2489    }
2490  }
2491
2492  return DAG.getSelectCC(dl, Cond,
2493                         DAG.getConstant(0, Cond.getValueType()),
2494                         SelectTrue, SelectFalse, ISD::SETNE);
2495}
2496
2497SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2498  EVT VT = Op.getValueType();
2499  SDValue LHS = Op.getOperand(0);
2500  SDValue RHS = Op.getOperand(1);
2501  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2502  SDValue TrueVal = Op.getOperand(2);
2503  SDValue FalseVal = Op.getOperand(3);
2504  DebugLoc dl = Op.getDebugLoc();
2505
2506  if (LHS.getValueType() == MVT::i32) {
2507    SDValue ARMcc;
2508    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2509    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2510    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2511  }
2512
2513  ARMCC::CondCodes CondCode, CondCode2;
2514  FPCCToARMCC(CC, CondCode, CondCode2);
2515
2516  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2517  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2518  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2519  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2520                               ARMcc, CCR, Cmp);
2521  if (CondCode2 != ARMCC::AL) {
2522    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2523    // FIXME: Needs another CMP because flag can have but one use.
2524    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2525    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2526                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2527  }
2528  return Result;
2529}
2530
2531/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2532/// to morph to an integer compare sequence.
2533static bool canChangeToInt(SDValue Op, bool &SeenZero,
2534                           const ARMSubtarget *Subtarget) {
2535  SDNode *N = Op.getNode();
2536  if (!N->hasOneUse())
2537    // Otherwise it requires moving the value from fp to integer registers.
2538    return false;
2539  if (!N->getNumValues())
2540    return false;
2541  EVT VT = Op.getValueType();
2542  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2543    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2544    // vmrs are very slow, e.g. cortex-a8.
2545    return false;
2546
2547  if (isFloatingPointZero(Op)) {
2548    SeenZero = true;
2549    return true;
2550  }
2551  return ISD::isNormalLoad(N);
2552}
2553
2554static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2555  if (isFloatingPointZero(Op))
2556    return DAG.getConstant(0, MVT::i32);
2557
2558  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2559    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2560                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2561                       Ld->isVolatile(), Ld->isNonTemporal(),
2562                       Ld->getAlignment());
2563
2564  llvm_unreachable("Unknown VFP cmp argument!");
2565}
2566
2567static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2568                           SDValue &RetVal1, SDValue &RetVal2) {
2569  if (isFloatingPointZero(Op)) {
2570    RetVal1 = DAG.getConstant(0, MVT::i32);
2571    RetVal2 = DAG.getConstant(0, MVT::i32);
2572    return;
2573  }
2574
2575  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2576    SDValue Ptr = Ld->getBasePtr();
2577    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2578                          Ld->getChain(), Ptr,
2579                          Ld->getPointerInfo(),
2580                          Ld->isVolatile(), Ld->isNonTemporal(),
2581                          Ld->getAlignment());
2582
2583    EVT PtrType = Ptr.getValueType();
2584    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2585    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2586                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2587    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2588                          Ld->getChain(), NewPtr,
2589                          Ld->getPointerInfo().getWithOffset(4),
2590                          Ld->isVolatile(), Ld->isNonTemporal(),
2591                          NewAlign);
2592    return;
2593  }
2594
2595  llvm_unreachable("Unknown VFP cmp argument!");
2596}
2597
2598/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2599/// f32 and even f64 comparisons to integer ones.
2600SDValue
2601ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2602  SDValue Chain = Op.getOperand(0);
2603  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2604  SDValue LHS = Op.getOperand(2);
2605  SDValue RHS = Op.getOperand(3);
2606  SDValue Dest = Op.getOperand(4);
2607  DebugLoc dl = Op.getDebugLoc();
2608
2609  bool SeenZero = false;
2610  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2611      canChangeToInt(RHS, SeenZero, Subtarget) &&
2612      // If one of the operand is zero, it's safe to ignore the NaN case since
2613      // we only care about equality comparisons.
2614      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2615    // If unsafe fp math optimization is enabled and there are no othter uses of
2616    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
2617    // to an integer comparison.
2618    if (CC == ISD::SETOEQ)
2619      CC = ISD::SETEQ;
2620    else if (CC == ISD::SETUNE)
2621      CC = ISD::SETNE;
2622
2623    SDValue ARMcc;
2624    if (LHS.getValueType() == MVT::f32) {
2625      LHS = bitcastf32Toi32(LHS, DAG);
2626      RHS = bitcastf32Toi32(RHS, DAG);
2627      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2628      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2629      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2630                         Chain, Dest, ARMcc, CCR, Cmp);
2631    }
2632
2633    SDValue LHS1, LHS2;
2634    SDValue RHS1, RHS2;
2635    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2636    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2637    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2638    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2639    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2640    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2641    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2642  }
2643
2644  return SDValue();
2645}
2646
2647SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2648  SDValue Chain = Op.getOperand(0);
2649  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2650  SDValue LHS = Op.getOperand(2);
2651  SDValue RHS = Op.getOperand(3);
2652  SDValue Dest = Op.getOperand(4);
2653  DebugLoc dl = Op.getDebugLoc();
2654
2655  if (LHS.getValueType() == MVT::i32) {
2656    SDValue ARMcc;
2657    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2658    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2659    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2660                       Chain, Dest, ARMcc, CCR, Cmp);
2661  }
2662
2663  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2664
2665  if (UnsafeFPMath &&
2666      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2667       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2668    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2669    if (Result.getNode())
2670      return Result;
2671  }
2672
2673  ARMCC::CondCodes CondCode, CondCode2;
2674  FPCCToARMCC(CC, CondCode, CondCode2);
2675
2676  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2677  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2678  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2679  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
2680  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2681  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2682  if (CondCode2 != ARMCC::AL) {
2683    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2684    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2685    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2686  }
2687  return Res;
2688}
2689
2690SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2691  SDValue Chain = Op.getOperand(0);
2692  SDValue Table = Op.getOperand(1);
2693  SDValue Index = Op.getOperand(2);
2694  DebugLoc dl = Op.getDebugLoc();
2695
2696  EVT PTy = getPointerTy();
2697  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2698  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2699  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2700  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2701  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2702  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2703  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2704  if (Subtarget->isThumb2()) {
2705    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2706    // which does another jump to the destination. This also makes it easier
2707    // to translate it to TBB / TBH later.
2708    // FIXME: This might not work if the function is extremely large.
2709    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2710                       Addr, Op.getOperand(2), JTI, UId);
2711  }
2712  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2713    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2714                       MachinePointerInfo::getJumpTable(),
2715                       false, false, 0);
2716    Chain = Addr.getValue(1);
2717    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2718    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2719  } else {
2720    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2721                       MachinePointerInfo::getJumpTable(), false, false, 0);
2722    Chain = Addr.getValue(1);
2723    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2724  }
2725}
2726
2727static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2728  DebugLoc dl = Op.getDebugLoc();
2729  unsigned Opc;
2730
2731  switch (Op.getOpcode()) {
2732  default:
2733    assert(0 && "Invalid opcode!");
2734  case ISD::FP_TO_SINT:
2735    Opc = ARMISD::FTOSI;
2736    break;
2737  case ISD::FP_TO_UINT:
2738    Opc = ARMISD::FTOUI;
2739    break;
2740  }
2741  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2742  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
2743}
2744
2745static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2746  EVT VT = Op.getValueType();
2747  DebugLoc dl = Op.getDebugLoc();
2748  unsigned Opc;
2749
2750  switch (Op.getOpcode()) {
2751  default:
2752    assert(0 && "Invalid opcode!");
2753  case ISD::SINT_TO_FP:
2754    Opc = ARMISD::SITOF;
2755    break;
2756  case ISD::UINT_TO_FP:
2757    Opc = ARMISD::UITOF;
2758    break;
2759  }
2760
2761  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
2762  return DAG.getNode(Opc, dl, VT, Op);
2763}
2764
2765SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2766  // Implement fcopysign with a fabs and a conditional fneg.
2767  SDValue Tmp0 = Op.getOperand(0);
2768  SDValue Tmp1 = Op.getOperand(1);
2769  DebugLoc dl = Op.getDebugLoc();
2770  EVT VT = Op.getValueType();
2771  EVT SrcVT = Tmp1.getValueType();
2772  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2773  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
2774  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
2775  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
2776  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2777  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
2778}
2779
2780SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2781  MachineFunction &MF = DAG.getMachineFunction();
2782  MachineFrameInfo *MFI = MF.getFrameInfo();
2783  MFI->setReturnAddressIsTaken(true);
2784
2785  EVT VT = Op.getValueType();
2786  DebugLoc dl = Op.getDebugLoc();
2787  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2788  if (Depth) {
2789    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2790    SDValue Offset = DAG.getConstant(4, MVT::i32);
2791    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2792                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2793                       MachinePointerInfo(), false, false, 0);
2794  }
2795
2796  // Return LR, which contains the return address. Mark it an implicit live-in.
2797  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
2798  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2799}
2800
2801SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2802  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2803  MFI->setFrameAddressIsTaken(true);
2804
2805  EVT VT = Op.getValueType();
2806  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2807  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2808  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2809    ? ARM::R7 : ARM::R11;
2810  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2811  while (Depth--)
2812    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2813                            MachinePointerInfo(),
2814                            false, false, 0);
2815  return FrameAddr;
2816}
2817
2818/// ExpandBITCAST - If the target supports VFP, this function is called to
2819/// expand a bit convert where either the source or destination type is i64 to
2820/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2821/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2822/// vectors), since the legalizer won't know what to do with that.
2823static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
2824  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2825  DebugLoc dl = N->getDebugLoc();
2826  SDValue Op = N->getOperand(0);
2827
2828  // This function is only supposed to be called for i64 types, either as the
2829  // source or destination of the bit convert.
2830  EVT SrcVT = Op.getValueType();
2831  EVT DstVT = N->getValueType(0);
2832  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2833         "ExpandBITCAST called for non-i64 type");
2834
2835  // Turn i64->f64 into VMOVDRR.
2836  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2837    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2838                             DAG.getConstant(0, MVT::i32));
2839    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2840                             DAG.getConstant(1, MVT::i32));
2841    return DAG.getNode(ISD::BITCAST, dl, DstVT,
2842                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2843  }
2844
2845  // Turn f64->i64 into VMOVRRD.
2846  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2847    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2848                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2849    // Merge the pieces into a single i64 value.
2850    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2851  }
2852
2853  return SDValue();
2854}
2855
2856/// getZeroVector - Returns a vector of specified type with all zero elements.
2857/// Zero vectors are used to represent vector negation and in those cases
2858/// will be implemented with the NEON VNEG instruction.  However, VNEG does
2859/// not support i64 elements, so sometimes the zero vectors will need to be
2860/// explicitly constructed.  Regardless, use a canonical VMOV to create the
2861/// zero vector.
2862static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2863  assert(VT.isVector() && "Expected a vector type");
2864  // The canonical modified immediate encoding of a zero vector is....0!
2865  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
2866  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
2867  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
2868  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
2869}
2870
2871/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2872/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2873SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2874                                                SelectionDAG &DAG) const {
2875  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2876  EVT VT = Op.getValueType();
2877  unsigned VTBits = VT.getSizeInBits();
2878  DebugLoc dl = Op.getDebugLoc();
2879  SDValue ShOpLo = Op.getOperand(0);
2880  SDValue ShOpHi = Op.getOperand(1);
2881  SDValue ShAmt  = Op.getOperand(2);
2882  SDValue ARMcc;
2883  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2884
2885  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2886
2887  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2888                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2889  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2890  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2891                                   DAG.getConstant(VTBits, MVT::i32));
2892  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2893  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2894  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2895
2896  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2897  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2898                          ARMcc, DAG, dl);
2899  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2900  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
2901                           CCR, Cmp);
2902
2903  SDValue Ops[2] = { Lo, Hi };
2904  return DAG.getMergeValues(Ops, 2, dl);
2905}
2906
2907/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2908/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2909SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2910                                               SelectionDAG &DAG) const {
2911  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2912  EVT VT = Op.getValueType();
2913  unsigned VTBits = VT.getSizeInBits();
2914  DebugLoc dl = Op.getDebugLoc();
2915  SDValue ShOpLo = Op.getOperand(0);
2916  SDValue ShOpHi = Op.getOperand(1);
2917  SDValue ShAmt  = Op.getOperand(2);
2918  SDValue ARMcc;
2919
2920  assert(Op.getOpcode() == ISD::SHL_PARTS);
2921  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2922                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2923  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2924  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2925                                   DAG.getConstant(VTBits, MVT::i32));
2926  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2927  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2928
2929  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2930  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2931  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2932                          ARMcc, DAG, dl);
2933  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2934  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
2935                           CCR, Cmp);
2936
2937  SDValue Ops[2] = { Lo, Hi };
2938  return DAG.getMergeValues(Ops, 2, dl);
2939}
2940
2941SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2942                                            SelectionDAG &DAG) const {
2943  // The rounding mode is in bits 23:22 of the FPSCR.
2944  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2945  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2946  // so that the shift + and get folded into a bitfield extract.
2947  DebugLoc dl = Op.getDebugLoc();
2948  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
2949                              DAG.getConstant(Intrinsic::arm_get_fpscr,
2950                                              MVT::i32));
2951  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
2952                                  DAG.getConstant(1U << 22, MVT::i32));
2953  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2954                              DAG.getConstant(22, MVT::i32));
2955  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2956                     DAG.getConstant(3, MVT::i32));
2957}
2958
2959static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2960                         const ARMSubtarget *ST) {
2961  EVT VT = N->getValueType(0);
2962  DebugLoc dl = N->getDebugLoc();
2963
2964  if (!ST->hasV6T2Ops())
2965    return SDValue();
2966
2967  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2968  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2969}
2970
2971static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2972                          const ARMSubtarget *ST) {
2973  EVT VT = N->getValueType(0);
2974  DebugLoc dl = N->getDebugLoc();
2975
2976  if (!VT.isVector())
2977    return SDValue();
2978
2979  // Lower vector shifts on NEON to use VSHL.
2980  assert(ST->hasNEON() && "unexpected vector shift");
2981
2982  // Left shifts translate directly to the vshiftu intrinsic.
2983  if (N->getOpcode() == ISD::SHL)
2984    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2985                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2986                       N->getOperand(0), N->getOperand(1));
2987
2988  assert((N->getOpcode() == ISD::SRA ||
2989          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2990
2991  // NEON uses the same intrinsics for both left and right shifts.  For
2992  // right shifts, the shift amounts are negative, so negate the vector of
2993  // shift amounts.
2994  EVT ShiftVT = N->getOperand(1).getValueType();
2995  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2996                                     getZeroVector(ShiftVT, DAG, dl),
2997                                     N->getOperand(1));
2998  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2999                             Intrinsic::arm_neon_vshifts :
3000                             Intrinsic::arm_neon_vshiftu);
3001  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3002                     DAG.getConstant(vshiftInt, MVT::i32),
3003                     N->getOperand(0), NegatedCount);
3004}
3005
3006static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3007                                const ARMSubtarget *ST) {
3008  EVT VT = N->getValueType(0);
3009  DebugLoc dl = N->getDebugLoc();
3010
3011  // We can get here for a node like i32 = ISD::SHL i32, i64
3012  if (VT != MVT::i64)
3013    return SDValue();
3014
3015  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3016         "Unknown shift to lower!");
3017
3018  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3019  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3020      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3021    return SDValue();
3022
3023  // If we are in thumb mode, we don't have RRX.
3024  if (ST->isThumb1Only()) return SDValue();
3025
3026  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3027  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3028                           DAG.getConstant(0, MVT::i32));
3029  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3030                           DAG.getConstant(1, MVT::i32));
3031
3032  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3033  // captures the result into a carry flag.
3034  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3035  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3036
3037  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3038  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3039
3040  // Merge the pieces into a single i64 value.
3041 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3042}
3043
3044static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3045  SDValue TmpOp0, TmpOp1;
3046  bool Invert = false;
3047  bool Swap = false;
3048  unsigned Opc = 0;
3049
3050  SDValue Op0 = Op.getOperand(0);
3051  SDValue Op1 = Op.getOperand(1);
3052  SDValue CC = Op.getOperand(2);
3053  EVT VT = Op.getValueType();
3054  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3055  DebugLoc dl = Op.getDebugLoc();
3056
3057  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3058    switch (SetCCOpcode) {
3059    default: llvm_unreachable("Illegal FP comparison"); break;
3060    case ISD::SETUNE:
3061    case ISD::SETNE:  Invert = true; // Fallthrough
3062    case ISD::SETOEQ:
3063    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3064    case ISD::SETOLT:
3065    case ISD::SETLT: Swap = true; // Fallthrough
3066    case ISD::SETOGT:
3067    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3068    case ISD::SETOLE:
3069    case ISD::SETLE:  Swap = true; // Fallthrough
3070    case ISD::SETOGE:
3071    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3072    case ISD::SETUGE: Swap = true; // Fallthrough
3073    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3074    case ISD::SETUGT: Swap = true; // Fallthrough
3075    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3076    case ISD::SETUEQ: Invert = true; // Fallthrough
3077    case ISD::SETONE:
3078      // Expand this to (OLT | OGT).
3079      TmpOp0 = Op0;
3080      TmpOp1 = Op1;
3081      Opc = ISD::OR;
3082      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3083      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3084      break;
3085    case ISD::SETUO: Invert = true; // Fallthrough
3086    case ISD::SETO:
3087      // Expand this to (OLT | OGE).
3088      TmpOp0 = Op0;
3089      TmpOp1 = Op1;
3090      Opc = ISD::OR;
3091      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3092      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3093      break;
3094    }
3095  } else {
3096    // Integer comparisons.
3097    switch (SetCCOpcode) {
3098    default: llvm_unreachable("Illegal integer comparison"); break;
3099    case ISD::SETNE:  Invert = true;
3100    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3101    case ISD::SETLT:  Swap = true;
3102    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3103    case ISD::SETLE:  Swap = true;
3104    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3105    case ISD::SETULT: Swap = true;
3106    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3107    case ISD::SETULE: Swap = true;
3108    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3109    }
3110
3111    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3112    if (Opc == ARMISD::VCEQ) {
3113
3114      SDValue AndOp;
3115      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3116        AndOp = Op0;
3117      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3118        AndOp = Op1;
3119
3120      // Ignore bitconvert.
3121      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3122        AndOp = AndOp.getOperand(0);
3123
3124      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3125        Opc = ARMISD::VTST;
3126        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3127        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3128        Invert = !Invert;
3129      }
3130    }
3131  }
3132
3133  if (Swap)
3134    std::swap(Op0, Op1);
3135
3136  // If one of the operands is a constant vector zero, attempt to fold the
3137  // comparison to a specialized compare-against-zero form.
3138  SDValue SingleOp;
3139  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3140    SingleOp = Op0;
3141  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3142    if (Opc == ARMISD::VCGE)
3143      Opc = ARMISD::VCLEZ;
3144    else if (Opc == ARMISD::VCGT)
3145      Opc = ARMISD::VCLTZ;
3146    SingleOp = Op1;
3147  }
3148
3149  SDValue Result;
3150  if (SingleOp.getNode()) {
3151    switch (Opc) {
3152    case ARMISD::VCEQ:
3153      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3154    case ARMISD::VCGE:
3155      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3156    case ARMISD::VCLEZ:
3157      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3158    case ARMISD::VCGT:
3159      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3160    case ARMISD::VCLTZ:
3161      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3162    default:
3163      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3164    }
3165  } else {
3166     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3167  }
3168
3169  if (Invert)
3170    Result = DAG.getNOT(dl, Result, VT);
3171
3172  return Result;
3173}
3174
3175/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3176/// valid vector constant for a NEON instruction with a "modified immediate"
3177/// operand (e.g., VMOV).  If so, return the encoded value.
3178static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3179                                 unsigned SplatBitSize, SelectionDAG &DAG,
3180                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3181  unsigned OpCmode, Imm;
3182
3183  // SplatBitSize is set to the smallest size that splats the vector, so a
3184  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3185  // immediate instructions others than VMOV do not support the 8-bit encoding
3186  // of a zero vector, and the default encoding of zero is supposed to be the
3187  // 32-bit version.
3188  if (SplatBits == 0)
3189    SplatBitSize = 32;
3190
3191  switch (SplatBitSize) {
3192  case 8:
3193    if (type != VMOVModImm)
3194      return SDValue();
3195    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3196    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3197    OpCmode = 0xe;
3198    Imm = SplatBits;
3199    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3200    break;
3201
3202  case 16:
3203    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3204    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3205    if ((SplatBits & ~0xff) == 0) {
3206      // Value = 0x00nn: Op=x, Cmode=100x.
3207      OpCmode = 0x8;
3208      Imm = SplatBits;
3209      break;
3210    }
3211    if ((SplatBits & ~0xff00) == 0) {
3212      // Value = 0xnn00: Op=x, Cmode=101x.
3213      OpCmode = 0xa;
3214      Imm = SplatBits >> 8;
3215      break;
3216    }
3217    return SDValue();
3218
3219  case 32:
3220    // NEON's 32-bit VMOV supports splat values where:
3221    // * only one byte is nonzero, or
3222    // * the least significant byte is 0xff and the second byte is nonzero, or
3223    // * the least significant 2 bytes are 0xff and the third is nonzero.
3224    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3225    if ((SplatBits & ~0xff) == 0) {
3226      // Value = 0x000000nn: Op=x, Cmode=000x.
3227      OpCmode = 0;
3228      Imm = SplatBits;
3229      break;
3230    }
3231    if ((SplatBits & ~0xff00) == 0) {
3232      // Value = 0x0000nn00: Op=x, Cmode=001x.
3233      OpCmode = 0x2;
3234      Imm = SplatBits >> 8;
3235      break;
3236    }
3237    if ((SplatBits & ~0xff0000) == 0) {
3238      // Value = 0x00nn0000: Op=x, Cmode=010x.
3239      OpCmode = 0x4;
3240      Imm = SplatBits >> 16;
3241      break;
3242    }
3243    if ((SplatBits & ~0xff000000) == 0) {
3244      // Value = 0xnn000000: Op=x, Cmode=011x.
3245      OpCmode = 0x6;
3246      Imm = SplatBits >> 24;
3247      break;
3248    }
3249
3250    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3251    if (type == OtherModImm) return SDValue();
3252
3253    if ((SplatBits & ~0xffff) == 0 &&
3254        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3255      // Value = 0x0000nnff: Op=x, Cmode=1100.
3256      OpCmode = 0xc;
3257      Imm = SplatBits >> 8;
3258      SplatBits |= 0xff;
3259      break;
3260    }
3261
3262    if ((SplatBits & ~0xffffff) == 0 &&
3263        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3264      // Value = 0x00nnffff: Op=x, Cmode=1101.
3265      OpCmode = 0xd;
3266      Imm = SplatBits >> 16;
3267      SplatBits |= 0xffff;
3268      break;
3269    }
3270
3271    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3272    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3273    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3274    // and fall through here to test for a valid 64-bit splat.  But, then the
3275    // caller would also need to check and handle the change in size.
3276    return SDValue();
3277
3278  case 64: {
3279    if (type != VMOVModImm)
3280      return SDValue();
3281    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3282    uint64_t BitMask = 0xff;
3283    uint64_t Val = 0;
3284    unsigned ImmMask = 1;
3285    Imm = 0;
3286    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3287      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3288        Val |= BitMask;
3289        Imm |= ImmMask;
3290      } else if ((SplatBits & BitMask) != 0) {
3291        return SDValue();
3292      }
3293      BitMask <<= 8;
3294      ImmMask <<= 1;
3295    }
3296    // Op=1, Cmode=1110.
3297    OpCmode = 0x1e;
3298    SplatBits = Val;
3299    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3300    break;
3301  }
3302
3303  default:
3304    llvm_unreachable("unexpected size for isNEONModifiedImm");
3305    return SDValue();
3306  }
3307
3308  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3309  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3310}
3311
3312static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3313                       bool &ReverseVEXT, unsigned &Imm) {
3314  unsigned NumElts = VT.getVectorNumElements();
3315  ReverseVEXT = false;
3316
3317  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3318  if (M[0] < 0)
3319    return false;
3320
3321  Imm = M[0];
3322
3323  // If this is a VEXT shuffle, the immediate value is the index of the first
3324  // element.  The other shuffle indices must be the successive elements after
3325  // the first one.
3326  unsigned ExpectedElt = Imm;
3327  for (unsigned i = 1; i < NumElts; ++i) {
3328    // Increment the expected index.  If it wraps around, it may still be
3329    // a VEXT but the source vectors must be swapped.
3330    ExpectedElt += 1;
3331    if (ExpectedElt == NumElts * 2) {
3332      ExpectedElt = 0;
3333      ReverseVEXT = true;
3334    }
3335
3336    if (M[i] < 0) continue; // ignore UNDEF indices
3337    if (ExpectedElt != static_cast<unsigned>(M[i]))
3338      return false;
3339  }
3340
3341  // Adjust the index value if the source operands will be swapped.
3342  if (ReverseVEXT)
3343    Imm -= NumElts;
3344
3345  return true;
3346}
3347
3348/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3349/// instruction with the specified blocksize.  (The order of the elements
3350/// within each block of the vector is reversed.)
3351static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3352                       unsigned BlockSize) {
3353  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3354         "Only possible block sizes for VREV are: 16, 32, 64");
3355
3356  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3357  if (EltSz == 64)
3358    return false;
3359
3360  unsigned NumElts = VT.getVectorNumElements();
3361  unsigned BlockElts = M[0] + 1;
3362  // If the first shuffle index is UNDEF, be optimistic.
3363  if (M[0] < 0)
3364    BlockElts = BlockSize / EltSz;
3365
3366  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3367    return false;
3368
3369  for (unsigned i = 0; i < NumElts; ++i) {
3370    if (M[i] < 0) continue; // ignore UNDEF indices
3371    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3372      return false;
3373  }
3374
3375  return true;
3376}
3377
3378static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3379                       unsigned &WhichResult) {
3380  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3381  if (EltSz == 64)
3382    return false;
3383
3384  unsigned NumElts = VT.getVectorNumElements();
3385  WhichResult = (M[0] == 0 ? 0 : 1);
3386  for (unsigned i = 0; i < NumElts; i += 2) {
3387    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3388        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3389      return false;
3390  }
3391  return true;
3392}
3393
3394/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3395/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3396/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3397static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3398                                unsigned &WhichResult) {
3399  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3400  if (EltSz == 64)
3401    return false;
3402
3403  unsigned NumElts = VT.getVectorNumElements();
3404  WhichResult = (M[0] == 0 ? 0 : 1);
3405  for (unsigned i = 0; i < NumElts; i += 2) {
3406    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3407        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3408      return false;
3409  }
3410  return true;
3411}
3412
3413static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3414                       unsigned &WhichResult) {
3415  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3416  if (EltSz == 64)
3417    return false;
3418
3419  unsigned NumElts = VT.getVectorNumElements();
3420  WhichResult = (M[0] == 0 ? 0 : 1);
3421  for (unsigned i = 0; i != NumElts; ++i) {
3422    if (M[i] < 0) continue; // ignore UNDEF indices
3423    if ((unsigned) M[i] != 2 * i + WhichResult)
3424      return false;
3425  }
3426
3427  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3428  if (VT.is64BitVector() && EltSz == 32)
3429    return false;
3430
3431  return true;
3432}
3433
3434/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3435/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3436/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3437static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3438                                unsigned &WhichResult) {
3439  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3440  if (EltSz == 64)
3441    return false;
3442
3443  unsigned Half = VT.getVectorNumElements() / 2;
3444  WhichResult = (M[0] == 0 ? 0 : 1);
3445  for (unsigned j = 0; j != 2; ++j) {
3446    unsigned Idx = WhichResult;
3447    for (unsigned i = 0; i != Half; ++i) {
3448      int MIdx = M[i + j * Half];
3449      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3450        return false;
3451      Idx += 2;
3452    }
3453  }
3454
3455  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3456  if (VT.is64BitVector() && EltSz == 32)
3457    return false;
3458
3459  return true;
3460}
3461
3462static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3463                       unsigned &WhichResult) {
3464  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3465  if (EltSz == 64)
3466    return false;
3467
3468  unsigned NumElts = VT.getVectorNumElements();
3469  WhichResult = (M[0] == 0 ? 0 : 1);
3470  unsigned Idx = WhichResult * NumElts / 2;
3471  for (unsigned i = 0; i != NumElts; i += 2) {
3472    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3473        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3474      return false;
3475    Idx += 1;
3476  }
3477
3478  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3479  if (VT.is64BitVector() && EltSz == 32)
3480    return false;
3481
3482  return true;
3483}
3484
3485/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3486/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3487/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3488static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3489                                unsigned &WhichResult) {
3490  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3491  if (EltSz == 64)
3492    return false;
3493
3494  unsigned NumElts = VT.getVectorNumElements();
3495  WhichResult = (M[0] == 0 ? 0 : 1);
3496  unsigned Idx = WhichResult * NumElts / 2;
3497  for (unsigned i = 0; i != NumElts; i += 2) {
3498    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3499        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3500      return false;
3501    Idx += 1;
3502  }
3503
3504  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3505  if (VT.is64BitVector() && EltSz == 32)
3506    return false;
3507
3508  return true;
3509}
3510
3511// If N is an integer constant that can be moved into a register in one
3512// instruction, return an SDValue of such a constant (will become a MOV
3513// instruction).  Otherwise return null.
3514static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3515                                     const ARMSubtarget *ST, DebugLoc dl) {
3516  uint64_t Val;
3517  if (!isa<ConstantSDNode>(N))
3518    return SDValue();
3519  Val = cast<ConstantSDNode>(N)->getZExtValue();
3520
3521  if (ST->isThumb1Only()) {
3522    if (Val <= 255 || ~Val <= 255)
3523      return DAG.getConstant(Val, MVT::i32);
3524  } else {
3525    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3526      return DAG.getConstant(Val, MVT::i32);
3527  }
3528  return SDValue();
3529}
3530
3531// If this is a case we can't handle, return null and let the default
3532// expansion code take care of it.
3533static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3534                                 const ARMSubtarget *ST) {
3535  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3536  DebugLoc dl = Op.getDebugLoc();
3537  EVT VT = Op.getValueType();
3538
3539  APInt SplatBits, SplatUndef;
3540  unsigned SplatBitSize;
3541  bool HasAnyUndefs;
3542  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3543    if (SplatBitSize <= 64) {
3544      // Check if an immediate VMOV works.
3545      EVT VmovVT;
3546      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3547                                      SplatUndef.getZExtValue(), SplatBitSize,
3548                                      DAG, VmovVT, VT.is128BitVector(),
3549                                      VMOVModImm);
3550      if (Val.getNode()) {
3551        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3552        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3553      }
3554
3555      // Try an immediate VMVN.
3556      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3557                             ((1LL << SplatBitSize) - 1));
3558      Val = isNEONModifiedImm(NegatedImm,
3559                                      SplatUndef.getZExtValue(), SplatBitSize,
3560                                      DAG, VmovVT, VT.is128BitVector(),
3561                                      VMVNModImm);
3562      if (Val.getNode()) {
3563        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3564        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3565      }
3566    }
3567  }
3568
3569  // Scan through the operands to see if only one value is used.
3570  unsigned NumElts = VT.getVectorNumElements();
3571  bool isOnlyLowElement = true;
3572  bool usesOnlyOneValue = true;
3573  bool isConstant = true;
3574  SDValue Value;
3575  for (unsigned i = 0; i < NumElts; ++i) {
3576    SDValue V = Op.getOperand(i);
3577    if (V.getOpcode() == ISD::UNDEF)
3578      continue;
3579    if (i > 0)
3580      isOnlyLowElement = false;
3581    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3582      isConstant = false;
3583
3584    if (!Value.getNode())
3585      Value = V;
3586    else if (V != Value)
3587      usesOnlyOneValue = false;
3588  }
3589
3590  if (!Value.getNode())
3591    return DAG.getUNDEF(VT);
3592
3593  if (isOnlyLowElement)
3594    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3595
3596  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3597
3598  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3599  // i32 and try again.
3600  if (usesOnlyOneValue && EltSize <= 32) {
3601    if (!isConstant)
3602      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3603    if (VT.getVectorElementType().isFloatingPoint()) {
3604      SmallVector<SDValue, 8> Ops;
3605      for (unsigned i = 0; i < NumElts; ++i)
3606        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
3607                                  Op.getOperand(i)));
3608      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
3609      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
3610      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3611      if (Val.getNode())
3612        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3613    }
3614    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3615    if (Val.getNode())
3616      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3617  }
3618
3619  // If all elements are constants and the case above didn't get hit, fall back
3620  // to the default expansion, which will generate a load from the constant
3621  // pool.
3622  if (isConstant)
3623    return SDValue();
3624
3625  // Vectors with 32- or 64-bit elements can be built by directly assigning
3626  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3627  // will be legalized.
3628  if (EltSize >= 32) {
3629    // Do the expansion with floating-point types, since that is what the VFP
3630    // registers are defined to use, and since i64 is not legal.
3631    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3632    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3633    SmallVector<SDValue, 8> Ops;
3634    for (unsigned i = 0; i < NumElts; ++i)
3635      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
3636    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3637    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3638  }
3639
3640  return SDValue();
3641}
3642
3643/// isShuffleMaskLegal - Targets can use this to indicate that they only
3644/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3645/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3646/// are assumed to be legal.
3647bool
3648ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3649                                      EVT VT) const {
3650  if (VT.getVectorNumElements() == 4 &&
3651      (VT.is128BitVector() || VT.is64BitVector())) {
3652    unsigned PFIndexes[4];
3653    for (unsigned i = 0; i != 4; ++i) {
3654      if (M[i] < 0)
3655        PFIndexes[i] = 8;
3656      else
3657        PFIndexes[i] = M[i];
3658    }
3659
3660    // Compute the index in the perfect shuffle table.
3661    unsigned PFTableIndex =
3662      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3663    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3664    unsigned Cost = (PFEntry >> 30);
3665
3666    if (Cost <= 4)
3667      return true;
3668  }
3669
3670  bool ReverseVEXT;
3671  unsigned Imm, WhichResult;
3672
3673  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3674  return (EltSize >= 32 ||
3675          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3676          isVREVMask(M, VT, 64) ||
3677          isVREVMask(M, VT, 32) ||
3678          isVREVMask(M, VT, 16) ||
3679          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3680          isVTRNMask(M, VT, WhichResult) ||
3681          isVUZPMask(M, VT, WhichResult) ||
3682          isVZIPMask(M, VT, WhichResult) ||
3683          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3684          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3685          isVZIP_v_undef_Mask(M, VT, WhichResult));
3686}
3687
3688/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3689/// the specified operations to build the shuffle.
3690static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3691                                      SDValue RHS, SelectionDAG &DAG,
3692                                      DebugLoc dl) {
3693  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3694  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3695  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3696
3697  enum {
3698    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3699    OP_VREV,
3700    OP_VDUP0,
3701    OP_VDUP1,
3702    OP_VDUP2,
3703    OP_VDUP3,
3704    OP_VEXT1,
3705    OP_VEXT2,
3706    OP_VEXT3,
3707    OP_VUZPL, // VUZP, left result
3708    OP_VUZPR, // VUZP, right result
3709    OP_VZIPL, // VZIP, left result
3710    OP_VZIPR, // VZIP, right result
3711    OP_VTRNL, // VTRN, left result
3712    OP_VTRNR  // VTRN, right result
3713  };
3714
3715  if (OpNum == OP_COPY) {
3716    if (LHSID == (1*9+2)*9+3) return LHS;
3717    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3718    return RHS;
3719  }
3720
3721  SDValue OpLHS, OpRHS;
3722  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3723  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3724  EVT VT = OpLHS.getValueType();
3725
3726  switch (OpNum) {
3727  default: llvm_unreachable("Unknown shuffle opcode!");
3728  case OP_VREV:
3729    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3730  case OP_VDUP0:
3731  case OP_VDUP1:
3732  case OP_VDUP2:
3733  case OP_VDUP3:
3734    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3735                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3736  case OP_VEXT1:
3737  case OP_VEXT2:
3738  case OP_VEXT3:
3739    return DAG.getNode(ARMISD::VEXT, dl, VT,
3740                       OpLHS, OpRHS,
3741                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3742  case OP_VUZPL:
3743  case OP_VUZPR:
3744    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3745                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3746  case OP_VZIPL:
3747  case OP_VZIPR:
3748    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3749                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3750  case OP_VTRNL:
3751  case OP_VTRNR:
3752    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3753                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3754  }
3755}
3756
3757static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3758  SDValue V1 = Op.getOperand(0);
3759  SDValue V2 = Op.getOperand(1);
3760  DebugLoc dl = Op.getDebugLoc();
3761  EVT VT = Op.getValueType();
3762  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3763  SmallVector<int, 8> ShuffleMask;
3764
3765  // Convert shuffles that are directly supported on NEON to target-specific
3766  // DAG nodes, instead of keeping them as shuffles and matching them again
3767  // during code selection.  This is more efficient and avoids the possibility
3768  // of inconsistencies between legalization and selection.
3769  // FIXME: floating-point vectors should be canonicalized to integer vectors
3770  // of the same time so that they get CSEd properly.
3771  SVN->getMask(ShuffleMask);
3772
3773  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3774  if (EltSize <= 32) {
3775    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3776      int Lane = SVN->getSplatIndex();
3777      // If this is undef splat, generate it via "just" vdup, if possible.
3778      if (Lane == -1) Lane = 0;
3779
3780      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3781        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3782      }
3783      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3784                         DAG.getConstant(Lane, MVT::i32));
3785    }
3786
3787    bool ReverseVEXT;
3788    unsigned Imm;
3789    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3790      if (ReverseVEXT)
3791        std::swap(V1, V2);
3792      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3793                         DAG.getConstant(Imm, MVT::i32));
3794    }
3795
3796    if (isVREVMask(ShuffleMask, VT, 64))
3797      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3798    if (isVREVMask(ShuffleMask, VT, 32))
3799      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3800    if (isVREVMask(ShuffleMask, VT, 16))
3801      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3802
3803    // Check for Neon shuffles that modify both input vectors in place.
3804    // If both results are used, i.e., if there are two shuffles with the same
3805    // source operands and with masks corresponding to both results of one of
3806    // these operations, DAG memoization will ensure that a single node is
3807    // used for both shuffles.
3808    unsigned WhichResult;
3809    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3810      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3811                         V1, V2).getValue(WhichResult);
3812    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3813      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3814                         V1, V2).getValue(WhichResult);
3815    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3816      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3817                         V1, V2).getValue(WhichResult);
3818
3819    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3820      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3821                         V1, V1).getValue(WhichResult);
3822    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3823      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3824                         V1, V1).getValue(WhichResult);
3825    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3826      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3827                         V1, V1).getValue(WhichResult);
3828  }
3829
3830  // If the shuffle is not directly supported and it has 4 elements, use
3831  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3832  unsigned NumElts = VT.getVectorNumElements();
3833  if (NumElts == 4) {
3834    unsigned PFIndexes[4];
3835    for (unsigned i = 0; i != 4; ++i) {
3836      if (ShuffleMask[i] < 0)
3837        PFIndexes[i] = 8;
3838      else
3839        PFIndexes[i] = ShuffleMask[i];
3840    }
3841
3842    // Compute the index in the perfect shuffle table.
3843    unsigned PFTableIndex =
3844      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3845    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3846    unsigned Cost = (PFEntry >> 30);
3847
3848    if (Cost <= 4)
3849      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3850  }
3851
3852  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
3853  if (EltSize >= 32) {
3854    // Do the expansion with floating-point types, since that is what the VFP
3855    // registers are defined to use, and since i64 is not legal.
3856    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3857    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3858    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
3859    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
3860    SmallVector<SDValue, 8> Ops;
3861    for (unsigned i = 0; i < NumElts; ++i) {
3862      if (ShuffleMask[i] < 0)
3863        Ops.push_back(DAG.getUNDEF(EltVT));
3864      else
3865        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3866                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
3867                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
3868                                                  MVT::i32)));
3869    }
3870    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3871    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
3872  }
3873
3874  return SDValue();
3875}
3876
3877static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3878  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
3879  SDValue Lane = Op.getOperand(1);
3880  if (!isa<ConstantSDNode>(Lane))
3881    return SDValue();
3882
3883  SDValue Vec = Op.getOperand(0);
3884  if (Op.getValueType() == MVT::i32 &&
3885      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
3886    DebugLoc dl = Op.getDebugLoc();
3887    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3888  }
3889
3890  return Op;
3891}
3892
3893static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3894  // The only time a CONCAT_VECTORS operation can have legal types is when
3895  // two 64-bit vectors are concatenated to a 128-bit vector.
3896  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3897         "unexpected CONCAT_VECTORS");
3898  DebugLoc dl = Op.getDebugLoc();
3899  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3900  SDValue Op0 = Op.getOperand(0);
3901  SDValue Op1 = Op.getOperand(1);
3902  if (Op0.getOpcode() != ISD::UNDEF)
3903    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3904                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
3905                      DAG.getIntPtrConstant(0));
3906  if (Op1.getOpcode() != ISD::UNDEF)
3907    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3908                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
3909                      DAG.getIntPtrConstant(1));
3910  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
3911}
3912
3913/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
3914/// element has been zero/sign-extended, depending on the isSigned parameter,
3915/// from an integer type half its size.
3916static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
3917                                   bool isSigned) {
3918  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
3919  EVT VT = N->getValueType(0);
3920  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
3921    SDNode *BVN = N->getOperand(0).getNode();
3922    if (BVN->getValueType(0) != MVT::v4i32 ||
3923        BVN->getOpcode() != ISD::BUILD_VECTOR)
3924      return false;
3925    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
3926    unsigned HiElt = 1 - LoElt;
3927    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
3928    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
3929    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
3930    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
3931    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
3932      return false;
3933    if (isSigned) {
3934      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
3935          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
3936        return true;
3937    } else {
3938      if (Hi0->isNullValue() && Hi1->isNullValue())
3939        return true;
3940    }
3941    return false;
3942  }
3943
3944  if (N->getOpcode() != ISD::BUILD_VECTOR)
3945    return false;
3946
3947  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
3948    SDNode *Elt = N->getOperand(i).getNode();
3949    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
3950      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3951      unsigned HalfSize = EltSize / 2;
3952      if (isSigned) {
3953        int64_t SExtVal = C->getSExtValue();
3954        if ((SExtVal >> HalfSize) != (SExtVal >> EltSize))
3955          return false;
3956      } else {
3957        if ((C->getZExtValue() >> HalfSize) != 0)
3958          return false;
3959      }
3960      continue;
3961    }
3962    return false;
3963  }
3964
3965  return true;
3966}
3967
3968/// isSignExtended - Check if a node is a vector value that is sign-extended
3969/// or a constant BUILD_VECTOR with sign-extended elements.
3970static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
3971  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
3972    return true;
3973  if (isExtendedBUILD_VECTOR(N, DAG, true))
3974    return true;
3975  return false;
3976}
3977
3978/// isZeroExtended - Check if a node is a vector value that is zero-extended
3979/// or a constant BUILD_VECTOR with zero-extended elements.
3980static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
3981  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
3982    return true;
3983  if (isExtendedBUILD_VECTOR(N, DAG, false))
3984    return true;
3985  return false;
3986}
3987
3988/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
3989/// load, or BUILD_VECTOR with extended elements, return the unextended value.
3990static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
3991  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
3992    return N->getOperand(0);
3993  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
3994    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
3995                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
3996                       LD->isNonTemporal(), LD->getAlignment());
3997  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
3998  // have been legalized as a BITCAST from v4i32.
3999  if (N->getOpcode() == ISD::BITCAST) {
4000    SDNode *BVN = N->getOperand(0).getNode();
4001    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4002           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4003    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4004    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4005                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4006  }
4007  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4008  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4009  EVT VT = N->getValueType(0);
4010  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4011  unsigned NumElts = VT.getVectorNumElements();
4012  MVT TruncVT = MVT::getIntegerVT(EltSize);
4013  SmallVector<SDValue, 8> Ops;
4014  for (unsigned i = 0; i != NumElts; ++i) {
4015    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4016    const APInt &CInt = C->getAPIntValue();
4017    Ops.push_back(DAG.getConstant(CInt.trunc(EltSize), TruncVT));
4018  }
4019  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4020                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4021}
4022
4023static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4024  // Multiplications are only custom-lowered for 128-bit vectors so that
4025  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4026  EVT VT = Op.getValueType();
4027  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4028  SDNode *N0 = Op.getOperand(0).getNode();
4029  SDNode *N1 = Op.getOperand(1).getNode();
4030  unsigned NewOpc = 0;
4031  if (isSignExtended(N0, DAG) && isSignExtended(N1, DAG))
4032    NewOpc = ARMISD::VMULLs;
4033  else if (isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG))
4034    NewOpc = ARMISD::VMULLu;
4035  else if (VT == MVT::v2i64)
4036    // Fall through to expand this.  It is not legal.
4037    return SDValue();
4038  else
4039    // Other vector multiplications are legal.
4040    return Op;
4041
4042  // Legalize to a VMULL instruction.
4043  DebugLoc DL = Op.getDebugLoc();
4044  SDValue Op0 = SkipExtension(N0, DAG);
4045  SDValue Op1 = SkipExtension(N1, DAG);
4046
4047  assert(Op0.getValueType().is64BitVector() &&
4048         Op1.getValueType().is64BitVector() &&
4049         "unexpected types for extended operands to VMULL");
4050  return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4051}
4052
4053SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4054  switch (Op.getOpcode()) {
4055  default: llvm_unreachable("Don't know how to custom lower this!");
4056  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
4057  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
4058  case ISD::GlobalAddress:
4059    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
4060      LowerGlobalAddressELF(Op, DAG);
4061  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4062  case ISD::SELECT:        return LowerSELECT(Op, DAG);
4063  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
4064  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
4065  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
4066  case ISD::VASTART:       return LowerVASTART(Op, DAG);
4067  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
4068  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
4069  case ISD::SINT_TO_FP:
4070  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
4071  case ISD::FP_TO_SINT:
4072  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
4073  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
4074  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
4075  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
4076  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
4077  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
4078  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
4079  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
4080  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
4081                                                               Subtarget);
4082  case ISD::BITCAST:   return ExpandBITCAST(Op.getNode(), DAG);
4083  case ISD::SHL:
4084  case ISD::SRL:
4085  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
4086  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
4087  case ISD::SRL_PARTS:
4088  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
4089  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
4090  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
4091  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
4092  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4093  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4094  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
4095  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
4096  case ISD::MUL:           return LowerMUL(Op, DAG);
4097  }
4098  return SDValue();
4099}
4100
4101/// ReplaceNodeResults - Replace the results of node with an illegal result
4102/// type with new values built out of custom code.
4103void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
4104                                           SmallVectorImpl<SDValue>&Results,
4105                                           SelectionDAG &DAG) const {
4106  SDValue Res;
4107  switch (N->getOpcode()) {
4108  default:
4109    llvm_unreachable("Don't know how to custom expand this!");
4110    break;
4111  case ISD::BITCAST:
4112    Res = ExpandBITCAST(N, DAG);
4113    break;
4114  case ISD::SRL:
4115  case ISD::SRA:
4116    Res = Expand64BitShift(N, DAG, Subtarget);
4117    break;
4118  }
4119  if (Res.getNode())
4120    Results.push_back(Res);
4121}
4122
4123//===----------------------------------------------------------------------===//
4124//                           ARM Scheduler Hooks
4125//===----------------------------------------------------------------------===//
4126
4127MachineBasicBlock *
4128ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
4129                                     MachineBasicBlock *BB,
4130                                     unsigned Size) const {
4131  unsigned dest    = MI->getOperand(0).getReg();
4132  unsigned ptr     = MI->getOperand(1).getReg();
4133  unsigned oldval  = MI->getOperand(2).getReg();
4134  unsigned newval  = MI->getOperand(3).getReg();
4135  unsigned scratch = BB->getParent()->getRegInfo()
4136    .createVirtualRegister(ARM::GPRRegisterClass);
4137  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4138  DebugLoc dl = MI->getDebugLoc();
4139  bool isThumb2 = Subtarget->isThumb2();
4140
4141  unsigned ldrOpc, strOpc;
4142  switch (Size) {
4143  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4144  case 1:
4145    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4146    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
4147    break;
4148  case 2:
4149    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4150    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4151    break;
4152  case 4:
4153    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4154    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4155    break;
4156  }
4157
4158  MachineFunction *MF = BB->getParent();
4159  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4160  MachineFunction::iterator It = BB;
4161  ++It; // insert the new blocks after the current block
4162
4163  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4164  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
4165  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4166  MF->insert(It, loop1MBB);
4167  MF->insert(It, loop2MBB);
4168  MF->insert(It, exitMBB);
4169
4170  // Transfer the remainder of BB and its successor edges to exitMBB.
4171  exitMBB->splice(exitMBB->begin(), BB,
4172                  llvm::next(MachineBasicBlock::iterator(MI)),
4173                  BB->end());
4174  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4175
4176  //  thisMBB:
4177  //   ...
4178  //   fallthrough --> loop1MBB
4179  BB->addSuccessor(loop1MBB);
4180
4181  // loop1MBB:
4182  //   ldrex dest, [ptr]
4183  //   cmp dest, oldval
4184  //   bne exitMBB
4185  BB = loop1MBB;
4186  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4187  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4188                 .addReg(dest).addReg(oldval));
4189  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4190    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4191  BB->addSuccessor(loop2MBB);
4192  BB->addSuccessor(exitMBB);
4193
4194  // loop2MBB:
4195  //   strex scratch, newval, [ptr]
4196  //   cmp scratch, #0
4197  //   bne loop1MBB
4198  BB = loop2MBB;
4199  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
4200                 .addReg(ptr));
4201  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4202                 .addReg(scratch).addImm(0));
4203  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4204    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4205  BB->addSuccessor(loop1MBB);
4206  BB->addSuccessor(exitMBB);
4207
4208  //  exitMBB:
4209  //   ...
4210  BB = exitMBB;
4211
4212  MI->eraseFromParent();   // The instruction is gone now.
4213
4214  return BB;
4215}
4216
4217MachineBasicBlock *
4218ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4219                                    unsigned Size, unsigned BinOpcode) const {
4220  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4221  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4222
4223  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4224  MachineFunction *MF = BB->getParent();
4225  MachineFunction::iterator It = BB;
4226  ++It;
4227
4228  unsigned dest = MI->getOperand(0).getReg();
4229  unsigned ptr = MI->getOperand(1).getReg();
4230  unsigned incr = MI->getOperand(2).getReg();
4231  DebugLoc dl = MI->getDebugLoc();
4232
4233  bool isThumb2 = Subtarget->isThumb2();
4234  unsigned ldrOpc, strOpc;
4235  switch (Size) {
4236  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4237  case 1:
4238    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4239    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4240    break;
4241  case 2:
4242    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4243    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4244    break;
4245  case 4:
4246    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4247    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4248    break;
4249  }
4250
4251  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4252  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4253  MF->insert(It, loopMBB);
4254  MF->insert(It, exitMBB);
4255
4256  // Transfer the remainder of BB and its successor edges to exitMBB.
4257  exitMBB->splice(exitMBB->begin(), BB,
4258                  llvm::next(MachineBasicBlock::iterator(MI)),
4259                  BB->end());
4260  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4261
4262  MachineRegisterInfo &RegInfo = MF->getRegInfo();
4263  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4264  unsigned scratch2 = (!BinOpcode) ? incr :
4265    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4266
4267  //  thisMBB:
4268  //   ...
4269  //   fallthrough --> loopMBB
4270  BB->addSuccessor(loopMBB);
4271
4272  //  loopMBB:
4273  //   ldrex dest, ptr
4274  //   <binop> scratch2, dest, incr
4275  //   strex scratch, scratch2, ptr
4276  //   cmp scratch, #0
4277  //   bne- loopMBB
4278  //   fallthrough --> exitMBB
4279  BB = loopMBB;
4280  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4281  if (BinOpcode) {
4282    // operand order needs to go the other way for NAND
4283    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
4284      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4285                     addReg(incr).addReg(dest)).addReg(0);
4286    else
4287      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4288                     addReg(dest).addReg(incr)).addReg(0);
4289  }
4290
4291  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
4292                 .addReg(ptr));
4293  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4294                 .addReg(scratch).addImm(0));
4295  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4296    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4297
4298  BB->addSuccessor(loopMBB);
4299  BB->addSuccessor(exitMBB);
4300
4301  //  exitMBB:
4302  //   ...
4303  BB = exitMBB;
4304
4305  MI->eraseFromParent();   // The instruction is gone now.
4306
4307  return BB;
4308}
4309
4310static
4311MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
4312  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
4313       E = MBB->succ_end(); I != E; ++I)
4314    if (*I != Succ)
4315      return *I;
4316  llvm_unreachable("Expecting a BB with two successors!");
4317}
4318
4319MachineBasicBlock *
4320ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4321                                               MachineBasicBlock *BB) const {
4322  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4323  DebugLoc dl = MI->getDebugLoc();
4324  bool isThumb2 = Subtarget->isThumb2();
4325  switch (MI->getOpcode()) {
4326  default:
4327    MI->dump();
4328    llvm_unreachable("Unexpected instr type to insert");
4329
4330  case ARM::ATOMIC_LOAD_ADD_I8:
4331     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4332  case ARM::ATOMIC_LOAD_ADD_I16:
4333     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4334  case ARM::ATOMIC_LOAD_ADD_I32:
4335     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4336
4337  case ARM::ATOMIC_LOAD_AND_I8:
4338     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4339  case ARM::ATOMIC_LOAD_AND_I16:
4340     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4341  case ARM::ATOMIC_LOAD_AND_I32:
4342     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4343
4344  case ARM::ATOMIC_LOAD_OR_I8:
4345     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4346  case ARM::ATOMIC_LOAD_OR_I16:
4347     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4348  case ARM::ATOMIC_LOAD_OR_I32:
4349     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4350
4351  case ARM::ATOMIC_LOAD_XOR_I8:
4352     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4353  case ARM::ATOMIC_LOAD_XOR_I16:
4354     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4355  case ARM::ATOMIC_LOAD_XOR_I32:
4356     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4357
4358  case ARM::ATOMIC_LOAD_NAND_I8:
4359     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4360  case ARM::ATOMIC_LOAD_NAND_I16:
4361     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4362  case ARM::ATOMIC_LOAD_NAND_I32:
4363     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4364
4365  case ARM::ATOMIC_LOAD_SUB_I8:
4366     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4367  case ARM::ATOMIC_LOAD_SUB_I16:
4368     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4369  case ARM::ATOMIC_LOAD_SUB_I32:
4370     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4371
4372  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
4373  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
4374  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
4375
4376  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
4377  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
4378  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
4379
4380  case ARM::tMOVCCr_pseudo: {
4381    // To "insert" a SELECT_CC instruction, we actually have to insert the
4382    // diamond control-flow pattern.  The incoming instruction knows the
4383    // destination vreg to set, the condition code register to branch on, the
4384    // true/false values to select between, and a branch opcode to use.
4385    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4386    MachineFunction::iterator It = BB;
4387    ++It;
4388
4389    //  thisMBB:
4390    //  ...
4391    //   TrueVal = ...
4392    //   cmpTY ccX, r1, r2
4393    //   bCC copy1MBB
4394    //   fallthrough --> copy0MBB
4395    MachineBasicBlock *thisMBB  = BB;
4396    MachineFunction *F = BB->getParent();
4397    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4398    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4399    F->insert(It, copy0MBB);
4400    F->insert(It, sinkMBB);
4401
4402    // Transfer the remainder of BB and its successor edges to sinkMBB.
4403    sinkMBB->splice(sinkMBB->begin(), BB,
4404                    llvm::next(MachineBasicBlock::iterator(MI)),
4405                    BB->end());
4406    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4407
4408    BB->addSuccessor(copy0MBB);
4409    BB->addSuccessor(sinkMBB);
4410
4411    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
4412      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
4413
4414    //  copy0MBB:
4415    //   %FalseValue = ...
4416    //   # fallthrough to sinkMBB
4417    BB = copy0MBB;
4418
4419    // Update machine-CFG edges
4420    BB->addSuccessor(sinkMBB);
4421
4422    //  sinkMBB:
4423    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4424    //  ...
4425    BB = sinkMBB;
4426    BuildMI(*BB, BB->begin(), dl,
4427            TII->get(ARM::PHI), MI->getOperand(0).getReg())
4428      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4429      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4430
4431    MI->eraseFromParent();   // The pseudo instruction is gone now.
4432    return BB;
4433  }
4434
4435  case ARM::BCCi64:
4436  case ARM::BCCZi64: {
4437    // If there is an unconditional branch to the other successor, remove it.
4438    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
4439
4440    // Compare both parts that make up the double comparison separately for
4441    // equality.
4442    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
4443
4444    unsigned LHS1 = MI->getOperand(1).getReg();
4445    unsigned LHS2 = MI->getOperand(2).getReg();
4446    if (RHSisZero) {
4447      AddDefaultPred(BuildMI(BB, dl,
4448                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4449                     .addReg(LHS1).addImm(0));
4450      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4451        .addReg(LHS2).addImm(0)
4452        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4453    } else {
4454      unsigned RHS1 = MI->getOperand(3).getReg();
4455      unsigned RHS2 = MI->getOperand(4).getReg();
4456      AddDefaultPred(BuildMI(BB, dl,
4457                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4458                     .addReg(LHS1).addReg(RHS1));
4459      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4460        .addReg(LHS2).addReg(RHS2)
4461        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4462    }
4463
4464    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
4465    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
4466    if (MI->getOperand(0).getImm() == ARMCC::NE)
4467      std::swap(destMBB, exitMBB);
4468
4469    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4470      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
4471    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
4472      .addMBB(exitMBB);
4473
4474    MI->eraseFromParent();   // The pseudo instruction is gone now.
4475    return BB;
4476  }
4477  }
4478}
4479
4480//===----------------------------------------------------------------------===//
4481//                           ARM Optimization Hooks
4482//===----------------------------------------------------------------------===//
4483
4484static
4485SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
4486                            TargetLowering::DAGCombinerInfo &DCI) {
4487  SelectionDAG &DAG = DCI.DAG;
4488  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4489  EVT VT = N->getValueType(0);
4490  unsigned Opc = N->getOpcode();
4491  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
4492  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
4493  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
4494  ISD::CondCode CC = ISD::SETCC_INVALID;
4495
4496  if (isSlctCC) {
4497    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
4498  } else {
4499    SDValue CCOp = Slct.getOperand(0);
4500    if (CCOp.getOpcode() == ISD::SETCC)
4501      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
4502  }
4503
4504  bool DoXform = false;
4505  bool InvCC = false;
4506  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
4507          "Bad input!");
4508
4509  if (LHS.getOpcode() == ISD::Constant &&
4510      cast<ConstantSDNode>(LHS)->isNullValue()) {
4511    DoXform = true;
4512  } else if (CC != ISD::SETCC_INVALID &&
4513             RHS.getOpcode() == ISD::Constant &&
4514             cast<ConstantSDNode>(RHS)->isNullValue()) {
4515    std::swap(LHS, RHS);
4516    SDValue Op0 = Slct.getOperand(0);
4517    EVT OpVT = isSlctCC ? Op0.getValueType() :
4518                          Op0.getOperand(0).getValueType();
4519    bool isInt = OpVT.isInteger();
4520    CC = ISD::getSetCCInverse(CC, isInt);
4521
4522    if (!TLI.isCondCodeLegal(CC, OpVT))
4523      return SDValue();         // Inverse operator isn't legal.
4524
4525    DoXform = true;
4526    InvCC = true;
4527  }
4528
4529  if (DoXform) {
4530    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4531    if (isSlctCC)
4532      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4533                             Slct.getOperand(0), Slct.getOperand(1), CC);
4534    SDValue CCOp = Slct.getOperand(0);
4535    if (InvCC)
4536      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4537                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4538    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4539                       CCOp, OtherOp, Result);
4540  }
4541  return SDValue();
4542}
4543
4544/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4545/// operands N0 and N1.  This is a helper for PerformADDCombine that is
4546/// called with the default operands, and if that fails, with commuted
4547/// operands.
4548static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4549                                         TargetLowering::DAGCombinerInfo &DCI) {
4550  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4551  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4552    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4553    if (Result.getNode()) return Result;
4554  }
4555  return SDValue();
4556}
4557
4558/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4559///
4560static SDValue PerformADDCombine(SDNode *N,
4561                                 TargetLowering::DAGCombinerInfo &DCI) {
4562  SDValue N0 = N->getOperand(0);
4563  SDValue N1 = N->getOperand(1);
4564
4565  // First try with the default operand order.
4566  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
4567  if (Result.getNode())
4568    return Result;
4569
4570  // If that didn't work, try again with the operands commuted.
4571  return PerformADDCombineWithOperands(N, N1, N0, DCI);
4572}
4573
4574/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4575///
4576static SDValue PerformSUBCombine(SDNode *N,
4577                                 TargetLowering::DAGCombinerInfo &DCI) {
4578  SDValue N0 = N->getOperand(0);
4579  SDValue N1 = N->getOperand(1);
4580
4581  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4582  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4583    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4584    if (Result.getNode()) return Result;
4585  }
4586
4587  return SDValue();
4588}
4589
4590static SDValue PerformMULCombine(SDNode *N,
4591                                 TargetLowering::DAGCombinerInfo &DCI,
4592                                 const ARMSubtarget *Subtarget) {
4593  SelectionDAG &DAG = DCI.DAG;
4594
4595  if (Subtarget->isThumb1Only())
4596    return SDValue();
4597
4598  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4599    return SDValue();
4600
4601  EVT VT = N->getValueType(0);
4602  if (VT != MVT::i32)
4603    return SDValue();
4604
4605  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4606  if (!C)
4607    return SDValue();
4608
4609  uint64_t MulAmt = C->getZExtValue();
4610  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4611  ShiftAmt = ShiftAmt & (32 - 1);
4612  SDValue V = N->getOperand(0);
4613  DebugLoc DL = N->getDebugLoc();
4614
4615  SDValue Res;
4616  MulAmt >>= ShiftAmt;
4617  if (isPowerOf2_32(MulAmt - 1)) {
4618    // (mul x, 2^N + 1) => (add (shl x, N), x)
4619    Res = DAG.getNode(ISD::ADD, DL, VT,
4620                      V, DAG.getNode(ISD::SHL, DL, VT,
4621                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4622                                                        MVT::i32)));
4623  } else if (isPowerOf2_32(MulAmt + 1)) {
4624    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4625    Res = DAG.getNode(ISD::SUB, DL, VT,
4626                      DAG.getNode(ISD::SHL, DL, VT,
4627                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4628                                                     MVT::i32)),
4629                                                     V);
4630  } else
4631    return SDValue();
4632
4633  if (ShiftAmt != 0)
4634    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4635                      DAG.getConstant(ShiftAmt, MVT::i32));
4636
4637  // Do not add new nodes to DAG combiner worklist.
4638  DCI.CombineTo(N, Res, false);
4639  return SDValue();
4640}
4641
4642static SDValue PerformANDCombine(SDNode *N,
4643                                TargetLowering::DAGCombinerInfo &DCI) {
4644  // Attempt to use immediate-form VBIC
4645  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
4646  DebugLoc dl = N->getDebugLoc();
4647  EVT VT = N->getValueType(0);
4648  SelectionDAG &DAG = DCI.DAG;
4649
4650  APInt SplatBits, SplatUndef;
4651  unsigned SplatBitSize;
4652  bool HasAnyUndefs;
4653  if (BVN &&
4654      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4655    if (SplatBitSize <= 64) {
4656      EVT VbicVT;
4657      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
4658                                      SplatUndef.getZExtValue(), SplatBitSize,
4659                                      DAG, VbicVT, VT.is128BitVector(),
4660                                      OtherModImm);
4661      if (Val.getNode()) {
4662        SDValue Input =
4663          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
4664        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
4665        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
4666      }
4667    }
4668  }
4669
4670  return SDValue();
4671}
4672
4673/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
4674static SDValue PerformORCombine(SDNode *N,
4675                                TargetLowering::DAGCombinerInfo &DCI,
4676                                const ARMSubtarget *Subtarget) {
4677  // Attempt to use immediate-form VORR
4678  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
4679  DebugLoc dl = N->getDebugLoc();
4680  EVT VT = N->getValueType(0);
4681  SelectionDAG &DAG = DCI.DAG;
4682
4683  APInt SplatBits, SplatUndef;
4684  unsigned SplatBitSize;
4685  bool HasAnyUndefs;
4686  if (BVN && Subtarget->hasNEON() &&
4687      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4688    if (SplatBitSize <= 64) {
4689      EVT VorrVT;
4690      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4691                                      SplatUndef.getZExtValue(), SplatBitSize,
4692                                      DAG, VorrVT, VT.is128BitVector(),
4693                                      OtherModImm);
4694      if (Val.getNode()) {
4695        SDValue Input =
4696          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
4697        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
4698        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
4699      }
4700    }
4701  }
4702
4703  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
4704  // reasonable.
4705
4706  // BFI is only available on V6T2+
4707  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
4708    return SDValue();
4709
4710  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4711  DebugLoc DL = N->getDebugLoc();
4712  // 1) or (and A, mask), val => ARMbfi A, val, mask
4713  //      iff (val & mask) == val
4714  //
4715  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4716  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
4717  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4718  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
4719  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4720  //  (i.e., copy a bitfield value into another bitfield of the same width)
4721  if (N0.getOpcode() != ISD::AND)
4722    return SDValue();
4723
4724  if (VT != MVT::i32)
4725    return SDValue();
4726
4727  SDValue N00 = N0.getOperand(0);
4728
4729  // The value and the mask need to be constants so we can verify this is
4730  // actually a bitfield set. If the mask is 0xffff, we can do better
4731  // via a movt instruction, so don't use BFI in that case.
4732  SDValue MaskOp = N0.getOperand(1);
4733  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
4734  if (!MaskC)
4735    return SDValue();
4736  unsigned Mask = MaskC->getZExtValue();
4737  if (Mask == 0xffff)
4738    return SDValue();
4739  SDValue Res;
4740  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
4741  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
4742  if (N1C) {
4743    unsigned Val = N1C->getZExtValue();
4744    if ((Val & ~Mask) != Val)
4745      return SDValue();
4746
4747    if (ARM::isBitFieldInvertedMask(Mask)) {
4748      Val >>= CountTrailingZeros_32(~Mask);
4749
4750      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
4751                        DAG.getConstant(Val, MVT::i32),
4752                        DAG.getConstant(Mask, MVT::i32));
4753
4754      // Do not add new nodes to DAG combiner worklist.
4755      DCI.CombineTo(N, Res, false);
4756      return SDValue();
4757    }
4758  } else if (N1.getOpcode() == ISD::AND) {
4759    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4760    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4761    if (!N11C)
4762      return SDValue();
4763    unsigned Mask2 = N11C->getZExtValue();
4764
4765    if (ARM::isBitFieldInvertedMask(Mask) &&
4766        ARM::isBitFieldInvertedMask(~Mask2) &&
4767        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
4768      // The pack halfword instruction works better for masks that fit it,
4769      // so use that when it's available.
4770      if (Subtarget->hasT2ExtractPack() &&
4771          (Mask == 0xffff || Mask == 0xffff0000))
4772        return SDValue();
4773      // 2a
4774      unsigned lsb = CountTrailingZeros_32(Mask2);
4775      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
4776                        DAG.getConstant(lsb, MVT::i32));
4777      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
4778                        DAG.getConstant(Mask, MVT::i32));
4779      // Do not add new nodes to DAG combiner worklist.
4780      DCI.CombineTo(N, Res, false);
4781      return SDValue();
4782    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
4783               ARM::isBitFieldInvertedMask(Mask2) &&
4784               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
4785      // The pack halfword instruction works better for masks that fit it,
4786      // so use that when it's available.
4787      if (Subtarget->hasT2ExtractPack() &&
4788          (Mask2 == 0xffff || Mask2 == 0xffff0000))
4789        return SDValue();
4790      // 2b
4791      unsigned lsb = CountTrailingZeros_32(Mask);
4792      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
4793                        DAG.getConstant(lsb, MVT::i32));
4794      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
4795                                DAG.getConstant(Mask2, MVT::i32));
4796      // Do not add new nodes to DAG combiner worklist.
4797      DCI.CombineTo(N, Res, false);
4798      return SDValue();
4799    }
4800  }
4801
4802  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
4803      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
4804      ARM::isBitFieldInvertedMask(~Mask)) {
4805    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
4806    // where lsb(mask) == #shamt and masked bits of B are known zero.
4807    SDValue ShAmt = N00.getOperand(1);
4808    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
4809    unsigned LSB = CountTrailingZeros_32(Mask);
4810    if (ShAmtC != LSB)
4811      return SDValue();
4812
4813    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
4814                      DAG.getConstant(~Mask, MVT::i32));
4815
4816    // Do not add new nodes to DAG combiner worklist.
4817    DCI.CombineTo(N, Res, false);
4818  }
4819
4820  return SDValue();
4821}
4822
4823/// PerformBFICombine - (bfi A, (and B, C1), C2) -> (bfi A, B, C2) iff
4824/// C1 & C2 == C1.
4825static SDValue PerformBFICombine(SDNode *N,
4826                                 TargetLowering::DAGCombinerInfo &DCI) {
4827  SDValue N1 = N->getOperand(1);
4828  if (N1.getOpcode() == ISD::AND) {
4829    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4830    if (!N11C)
4831      return SDValue();
4832    unsigned Mask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
4833    unsigned Mask2 = N11C->getZExtValue();
4834    if ((Mask & Mask2) == Mask2)
4835      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
4836                             N->getOperand(0), N1.getOperand(0),
4837                             N->getOperand(2));
4838  }
4839  return SDValue();
4840}
4841
4842/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
4843/// ARMISD::VMOVRRD.
4844static SDValue PerformVMOVRRDCombine(SDNode *N,
4845                                     TargetLowering::DAGCombinerInfo &DCI) {
4846  // vmovrrd(vmovdrr x, y) -> x,y
4847  SDValue InDouble = N->getOperand(0);
4848  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
4849    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
4850  return SDValue();
4851}
4852
4853/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
4854/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
4855static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
4856  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
4857  SDValue Op0 = N->getOperand(0);
4858  SDValue Op1 = N->getOperand(1);
4859  if (Op0.getOpcode() == ISD::BITCAST)
4860    Op0 = Op0.getOperand(0);
4861  if (Op1.getOpcode() == ISD::BITCAST)
4862    Op1 = Op1.getOperand(0);
4863  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
4864      Op0.getNode() == Op1.getNode() &&
4865      Op0.getResNo() == 0 && Op1.getResNo() == 1)
4866    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
4867                       N->getValueType(0), Op0.getOperand(0));
4868  return SDValue();
4869}
4870
4871/// PerformSTORECombine - Target-specific dag combine xforms for
4872/// ISD::STORE.
4873static SDValue PerformSTORECombine(SDNode *N,
4874                                   TargetLowering::DAGCombinerInfo &DCI) {
4875  // Bitcast an i64 store extracted from a vector to f64.
4876  // Otherwise, the i64 value will be legalized to a pair of i32 values.
4877  StoreSDNode *St = cast<StoreSDNode>(N);
4878  SDValue StVal = St->getValue();
4879  if (!ISD::isNormalStore(St) || St->isVolatile() ||
4880      StVal.getValueType() != MVT::i64 ||
4881      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
4882    return SDValue();
4883
4884  SelectionDAG &DAG = DCI.DAG;
4885  DebugLoc dl = StVal.getDebugLoc();
4886  SDValue IntVec = StVal.getOperand(0);
4887  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
4888                                 IntVec.getValueType().getVectorNumElements());
4889  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
4890  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
4891                               Vec, StVal.getOperand(1));
4892  dl = N->getDebugLoc();
4893  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
4894  // Make the DAGCombiner fold the bitcasts.
4895  DCI.AddToWorklist(Vec.getNode());
4896  DCI.AddToWorklist(ExtElt.getNode());
4897  DCI.AddToWorklist(V.getNode());
4898  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
4899                      St->getPointerInfo(), St->isVolatile(),
4900                      St->isNonTemporal(), St->getAlignment(),
4901                      St->getTBAAInfo());
4902}
4903
4904/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
4905/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
4906/// i64 vector to have f64 elements, since the value can then be loaded
4907/// directly into a VFP register.
4908static bool hasNormalLoadOperand(SDNode *N) {
4909  unsigned NumElts = N->getValueType(0).getVectorNumElements();
4910  for (unsigned i = 0; i < NumElts; ++i) {
4911    SDNode *Elt = N->getOperand(i).getNode();
4912    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
4913      return true;
4914  }
4915  return false;
4916}
4917
4918/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
4919/// ISD::BUILD_VECTOR.
4920static SDValue PerformBUILD_VECTORCombine(SDNode *N,
4921                                          TargetLowering::DAGCombinerInfo &DCI){
4922  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
4923  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
4924  // into a pair of GPRs, which is fine when the value is used as a scalar,
4925  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
4926  SelectionDAG &DAG = DCI.DAG;
4927  if (N->getNumOperands() == 2) {
4928    SDValue RV = PerformVMOVDRRCombine(N, DAG);
4929    if (RV.getNode())
4930      return RV;
4931  }
4932
4933  // Load i64 elements as f64 values so that type legalization does not split
4934  // them up into i32 values.
4935  EVT VT = N->getValueType(0);
4936  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
4937    return SDValue();
4938  DebugLoc dl = N->getDebugLoc();
4939  SmallVector<SDValue, 8> Ops;
4940  unsigned NumElts = VT.getVectorNumElements();
4941  for (unsigned i = 0; i < NumElts; ++i) {
4942    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
4943    Ops.push_back(V);
4944    // Make the DAGCombiner fold the bitcast.
4945    DCI.AddToWorklist(V.getNode());
4946  }
4947  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
4948  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
4949  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
4950}
4951
4952/// PerformInsertEltCombine - Target-specific dag combine xforms for
4953/// ISD::INSERT_VECTOR_ELT.
4954static SDValue PerformInsertEltCombine(SDNode *N,
4955                                       TargetLowering::DAGCombinerInfo &DCI) {
4956  // Bitcast an i64 load inserted into a vector to f64.
4957  // Otherwise, the i64 value will be legalized to a pair of i32 values.
4958  EVT VT = N->getValueType(0);
4959  SDNode *Elt = N->getOperand(1).getNode();
4960  if (VT.getVectorElementType() != MVT::i64 ||
4961      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
4962    return SDValue();
4963
4964  SelectionDAG &DAG = DCI.DAG;
4965  DebugLoc dl = N->getDebugLoc();
4966  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
4967                                 VT.getVectorNumElements());
4968  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
4969  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
4970  // Make the DAGCombiner fold the bitcasts.
4971  DCI.AddToWorklist(Vec.getNode());
4972  DCI.AddToWorklist(V.getNode());
4973  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
4974                               Vec, V, N->getOperand(2));
4975  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
4976}
4977
4978/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
4979/// ISD::VECTOR_SHUFFLE.
4980static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
4981  // The LLVM shufflevector instruction does not require the shuffle mask
4982  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
4983  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
4984  // operands do not match the mask length, they are extended by concatenating
4985  // them with undef vectors.  That is probably the right thing for other
4986  // targets, but for NEON it is better to concatenate two double-register
4987  // size vector operands into a single quad-register size vector.  Do that
4988  // transformation here:
4989  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
4990  //   shuffle(concat(v1, v2), undef)
4991  SDValue Op0 = N->getOperand(0);
4992  SDValue Op1 = N->getOperand(1);
4993  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
4994      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
4995      Op0.getNumOperands() != 2 ||
4996      Op1.getNumOperands() != 2)
4997    return SDValue();
4998  SDValue Concat0Op1 = Op0.getOperand(1);
4999  SDValue Concat1Op1 = Op1.getOperand(1);
5000  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
5001      Concat1Op1.getOpcode() != ISD::UNDEF)
5002    return SDValue();
5003  // Skip the transformation if any of the types are illegal.
5004  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5005  EVT VT = N->getValueType(0);
5006  if (!TLI.isTypeLegal(VT) ||
5007      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
5008      !TLI.isTypeLegal(Concat1Op1.getValueType()))
5009    return SDValue();
5010
5011  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
5012                                  Op0.getOperand(0), Op1.getOperand(0));
5013  // Translate the shuffle mask.
5014  SmallVector<int, 16> NewMask;
5015  unsigned NumElts = VT.getVectorNumElements();
5016  unsigned HalfElts = NumElts/2;
5017  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5018  for (unsigned n = 0; n < NumElts; ++n) {
5019    int MaskElt = SVN->getMaskElt(n);
5020    int NewElt = -1;
5021    if (MaskElt < (int)HalfElts)
5022      NewElt = MaskElt;
5023    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
5024      NewElt = HalfElts + MaskElt - NumElts;
5025    NewMask.push_back(NewElt);
5026  }
5027  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
5028                              DAG.getUNDEF(VT), NewMask.data());
5029}
5030
5031/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
5032/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
5033/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
5034/// return true.
5035static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
5036  SelectionDAG &DAG = DCI.DAG;
5037  EVT VT = N->getValueType(0);
5038  // vldN-dup instructions only support 64-bit vectors for N > 1.
5039  if (!VT.is64BitVector())
5040    return false;
5041
5042  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
5043  SDNode *VLD = N->getOperand(0).getNode();
5044  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
5045    return false;
5046  unsigned NumVecs = 0;
5047  unsigned NewOpc = 0;
5048  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
5049  if (IntNo == Intrinsic::arm_neon_vld2lane) {
5050    NumVecs = 2;
5051    NewOpc = ARMISD::VLD2DUP;
5052  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
5053    NumVecs = 3;
5054    NewOpc = ARMISD::VLD3DUP;
5055  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
5056    NumVecs = 4;
5057    NewOpc = ARMISD::VLD4DUP;
5058  } else {
5059    return false;
5060  }
5061
5062  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
5063  // numbers match the load.
5064  unsigned VLDLaneNo =
5065    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
5066  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
5067       UI != UE; ++UI) {
5068    // Ignore uses of the chain result.
5069    if (UI.getUse().getResNo() == NumVecs)
5070      continue;
5071    SDNode *User = *UI;
5072    if (User->getOpcode() != ARMISD::VDUPLANE ||
5073        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
5074      return false;
5075  }
5076
5077  // Create the vldN-dup node.
5078  EVT Tys[5];
5079  unsigned n;
5080  for (n = 0; n < NumVecs; ++n)
5081    Tys[n] = VT;
5082  Tys[n] = MVT::Other;
5083  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
5084  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
5085  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
5086  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
5087                                           Ops, 2, VLDMemInt->getMemoryVT(),
5088                                           VLDMemInt->getMemOperand());
5089
5090  // Update the uses.
5091  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
5092       UI != UE; ++UI) {
5093    unsigned ResNo = UI.getUse().getResNo();
5094    // Ignore uses of the chain result.
5095    if (ResNo == NumVecs)
5096      continue;
5097    SDNode *User = *UI;
5098    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
5099  }
5100
5101  // Now the vldN-lane intrinsic is dead except for its chain result.
5102  // Update uses of the chain.
5103  std::vector<SDValue> VLDDupResults;
5104  for (unsigned n = 0; n < NumVecs; ++n)
5105    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
5106  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
5107  DCI.CombineTo(VLD, VLDDupResults);
5108
5109  return true;
5110}
5111
5112/// PerformVDUPLANECombine - Target-specific dag combine xforms for
5113/// ARMISD::VDUPLANE.
5114static SDValue PerformVDUPLANECombine(SDNode *N,
5115                                      TargetLowering::DAGCombinerInfo &DCI) {
5116  SDValue Op = N->getOperand(0);
5117
5118  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
5119  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
5120  if (CombineVLDDUP(N, DCI))
5121    return SDValue(N, 0);
5122
5123  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
5124  // redundant.  Ignore bit_converts for now; element sizes are checked below.
5125  while (Op.getOpcode() == ISD::BITCAST)
5126    Op = Op.getOperand(0);
5127  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
5128    return SDValue();
5129
5130  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
5131  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
5132  // The canonical VMOV for a zero vector uses a 32-bit element size.
5133  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5134  unsigned EltBits;
5135  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
5136    EltSize = 8;
5137  EVT VT = N->getValueType(0);
5138  if (EltSize > VT.getVectorElementType().getSizeInBits())
5139    return SDValue();
5140
5141  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
5142}
5143
5144/// getVShiftImm - Check if this is a valid build_vector for the immediate
5145/// operand of a vector shift operation, where all the elements of the
5146/// build_vector must have the same constant integer value.
5147static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
5148  // Ignore bit_converts.
5149  while (Op.getOpcode() == ISD::BITCAST)
5150    Op = Op.getOperand(0);
5151  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5152  APInt SplatBits, SplatUndef;
5153  unsigned SplatBitSize;
5154  bool HasAnyUndefs;
5155  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
5156                                      HasAnyUndefs, ElementBits) ||
5157      SplatBitSize > ElementBits)
5158    return false;
5159  Cnt = SplatBits.getSExtValue();
5160  return true;
5161}
5162
5163/// isVShiftLImm - Check if this is a valid build_vector for the immediate
5164/// operand of a vector shift left operation.  That value must be in the range:
5165///   0 <= Value < ElementBits for a left shift; or
5166///   0 <= Value <= ElementBits for a long left shift.
5167static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
5168  assert(VT.isVector() && "vector shift count is not a vector type");
5169  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5170  if (! getVShiftImm(Op, ElementBits, Cnt))
5171    return false;
5172  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
5173}
5174
5175/// isVShiftRImm - Check if this is a valid build_vector for the immediate
5176/// operand of a vector shift right operation.  For a shift opcode, the value
5177/// is positive, but for an intrinsic the value count must be negative. The
5178/// absolute value must be in the range:
5179///   1 <= |Value| <= ElementBits for a right shift; or
5180///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
5181static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
5182                         int64_t &Cnt) {
5183  assert(VT.isVector() && "vector shift count is not a vector type");
5184  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
5185  if (! getVShiftImm(Op, ElementBits, Cnt))
5186    return false;
5187  if (isIntrinsic)
5188    Cnt = -Cnt;
5189  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
5190}
5191
5192/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
5193static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
5194  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5195  switch (IntNo) {
5196  default:
5197    // Don't do anything for most intrinsics.
5198    break;
5199
5200  // Vector shifts: check for immediate versions and lower them.
5201  // Note: This is done during DAG combining instead of DAG legalizing because
5202  // the build_vectors for 64-bit vector element shift counts are generally
5203  // not legal, and it is hard to see their values after they get legalized to
5204  // loads from a constant pool.
5205  case Intrinsic::arm_neon_vshifts:
5206  case Intrinsic::arm_neon_vshiftu:
5207  case Intrinsic::arm_neon_vshiftls:
5208  case Intrinsic::arm_neon_vshiftlu:
5209  case Intrinsic::arm_neon_vshiftn:
5210  case Intrinsic::arm_neon_vrshifts:
5211  case Intrinsic::arm_neon_vrshiftu:
5212  case Intrinsic::arm_neon_vrshiftn:
5213  case Intrinsic::arm_neon_vqshifts:
5214  case Intrinsic::arm_neon_vqshiftu:
5215  case Intrinsic::arm_neon_vqshiftsu:
5216  case Intrinsic::arm_neon_vqshiftns:
5217  case Intrinsic::arm_neon_vqshiftnu:
5218  case Intrinsic::arm_neon_vqshiftnsu:
5219  case Intrinsic::arm_neon_vqrshiftns:
5220  case Intrinsic::arm_neon_vqrshiftnu:
5221  case Intrinsic::arm_neon_vqrshiftnsu: {
5222    EVT VT = N->getOperand(1).getValueType();
5223    int64_t Cnt;
5224    unsigned VShiftOpc = 0;
5225
5226    switch (IntNo) {
5227    case Intrinsic::arm_neon_vshifts:
5228    case Intrinsic::arm_neon_vshiftu:
5229      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
5230        VShiftOpc = ARMISD::VSHL;
5231        break;
5232      }
5233      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
5234        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
5235                     ARMISD::VSHRs : ARMISD::VSHRu);
5236        break;
5237      }
5238      return SDValue();
5239
5240    case Intrinsic::arm_neon_vshiftls:
5241    case Intrinsic::arm_neon_vshiftlu:
5242      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
5243        break;
5244      llvm_unreachable("invalid shift count for vshll intrinsic");
5245
5246    case Intrinsic::arm_neon_vrshifts:
5247    case Intrinsic::arm_neon_vrshiftu:
5248      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
5249        break;
5250      return SDValue();
5251
5252    case Intrinsic::arm_neon_vqshifts:
5253    case Intrinsic::arm_neon_vqshiftu:
5254      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
5255        break;
5256      return SDValue();
5257
5258    case Intrinsic::arm_neon_vqshiftsu:
5259      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
5260        break;
5261      llvm_unreachable("invalid shift count for vqshlu intrinsic");
5262
5263    case Intrinsic::arm_neon_vshiftn:
5264    case Intrinsic::arm_neon_vrshiftn:
5265    case Intrinsic::arm_neon_vqshiftns:
5266    case Intrinsic::arm_neon_vqshiftnu:
5267    case Intrinsic::arm_neon_vqshiftnsu:
5268    case Intrinsic::arm_neon_vqrshiftns:
5269    case Intrinsic::arm_neon_vqrshiftnu:
5270    case Intrinsic::arm_neon_vqrshiftnsu:
5271      // Narrowing shifts require an immediate right shift.
5272      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
5273        break;
5274      llvm_unreachable("invalid shift count for narrowing vector shift "
5275                       "intrinsic");
5276
5277    default:
5278      llvm_unreachable("unhandled vector shift");
5279    }
5280
5281    switch (IntNo) {
5282    case Intrinsic::arm_neon_vshifts:
5283    case Intrinsic::arm_neon_vshiftu:
5284      // Opcode already set above.
5285      break;
5286    case Intrinsic::arm_neon_vshiftls:
5287    case Intrinsic::arm_neon_vshiftlu:
5288      if (Cnt == VT.getVectorElementType().getSizeInBits())
5289        VShiftOpc = ARMISD::VSHLLi;
5290      else
5291        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
5292                     ARMISD::VSHLLs : ARMISD::VSHLLu);
5293      break;
5294    case Intrinsic::arm_neon_vshiftn:
5295      VShiftOpc = ARMISD::VSHRN; break;
5296    case Intrinsic::arm_neon_vrshifts:
5297      VShiftOpc = ARMISD::VRSHRs; break;
5298    case Intrinsic::arm_neon_vrshiftu:
5299      VShiftOpc = ARMISD::VRSHRu; break;
5300    case Intrinsic::arm_neon_vrshiftn:
5301      VShiftOpc = ARMISD::VRSHRN; break;
5302    case Intrinsic::arm_neon_vqshifts:
5303      VShiftOpc = ARMISD::VQSHLs; break;
5304    case Intrinsic::arm_neon_vqshiftu:
5305      VShiftOpc = ARMISD::VQSHLu; break;
5306    case Intrinsic::arm_neon_vqshiftsu:
5307      VShiftOpc = ARMISD::VQSHLsu; break;
5308    case Intrinsic::arm_neon_vqshiftns:
5309      VShiftOpc = ARMISD::VQSHRNs; break;
5310    case Intrinsic::arm_neon_vqshiftnu:
5311      VShiftOpc = ARMISD::VQSHRNu; break;
5312    case Intrinsic::arm_neon_vqshiftnsu:
5313      VShiftOpc = ARMISD::VQSHRNsu; break;
5314    case Intrinsic::arm_neon_vqrshiftns:
5315      VShiftOpc = ARMISD::VQRSHRNs; break;
5316    case Intrinsic::arm_neon_vqrshiftnu:
5317      VShiftOpc = ARMISD::VQRSHRNu; break;
5318    case Intrinsic::arm_neon_vqrshiftnsu:
5319      VShiftOpc = ARMISD::VQRSHRNsu; break;
5320    }
5321
5322    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
5323                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
5324  }
5325
5326  case Intrinsic::arm_neon_vshiftins: {
5327    EVT VT = N->getOperand(1).getValueType();
5328    int64_t Cnt;
5329    unsigned VShiftOpc = 0;
5330
5331    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
5332      VShiftOpc = ARMISD::VSLI;
5333    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
5334      VShiftOpc = ARMISD::VSRI;
5335    else {
5336      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
5337    }
5338
5339    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
5340                       N->getOperand(1), N->getOperand(2),
5341                       DAG.getConstant(Cnt, MVT::i32));
5342  }
5343
5344  case Intrinsic::arm_neon_vqrshifts:
5345  case Intrinsic::arm_neon_vqrshiftu:
5346    // No immediate versions of these to check for.
5347    break;
5348  }
5349
5350  return SDValue();
5351}
5352
5353/// PerformShiftCombine - Checks for immediate versions of vector shifts and
5354/// lowers them.  As with the vector shift intrinsics, this is done during DAG
5355/// combining instead of DAG legalizing because the build_vectors for 64-bit
5356/// vector element shift counts are generally not legal, and it is hard to see
5357/// their values after they get legalized to loads from a constant pool.
5358static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
5359                                   const ARMSubtarget *ST) {
5360  EVT VT = N->getValueType(0);
5361
5362  // Nothing to be done for scalar shifts.
5363  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5364  if (!VT.isVector() || !TLI.isTypeLegal(VT))
5365    return SDValue();
5366
5367  assert(ST->hasNEON() && "unexpected vector shift");
5368  int64_t Cnt;
5369
5370  switch (N->getOpcode()) {
5371  default: llvm_unreachable("unexpected shift opcode");
5372
5373  case ISD::SHL:
5374    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
5375      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
5376                         DAG.getConstant(Cnt, MVT::i32));
5377    break;
5378
5379  case ISD::SRA:
5380  case ISD::SRL:
5381    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
5382      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
5383                            ARMISD::VSHRs : ARMISD::VSHRu);
5384      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
5385                         DAG.getConstant(Cnt, MVT::i32));
5386    }
5387  }
5388  return SDValue();
5389}
5390
5391/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
5392/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
5393static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
5394                                    const ARMSubtarget *ST) {
5395  SDValue N0 = N->getOperand(0);
5396
5397  // Check for sign- and zero-extensions of vector extract operations of 8-
5398  // and 16-bit vector elements.  NEON supports these directly.  They are
5399  // handled during DAG combining because type legalization will promote them
5400  // to 32-bit types and it is messy to recognize the operations after that.
5401  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
5402    SDValue Vec = N0.getOperand(0);
5403    SDValue Lane = N0.getOperand(1);
5404    EVT VT = N->getValueType(0);
5405    EVT EltVT = N0.getValueType();
5406    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5407
5408    if (VT == MVT::i32 &&
5409        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
5410        TLI.isTypeLegal(Vec.getValueType()) &&
5411        isa<ConstantSDNode>(Lane)) {
5412
5413      unsigned Opc = 0;
5414      switch (N->getOpcode()) {
5415      default: llvm_unreachable("unexpected opcode");
5416      case ISD::SIGN_EXTEND:
5417        Opc = ARMISD::VGETLANEs;
5418        break;
5419      case ISD::ZERO_EXTEND:
5420      case ISD::ANY_EXTEND:
5421        Opc = ARMISD::VGETLANEu;
5422        break;
5423      }
5424      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
5425    }
5426  }
5427
5428  return SDValue();
5429}
5430
5431/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
5432/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
5433static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
5434                                       const ARMSubtarget *ST) {
5435  // If the target supports NEON, try to use vmax/vmin instructions for f32
5436  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
5437  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
5438  // a NaN; only do the transformation when it matches that behavior.
5439
5440  // For now only do this when using NEON for FP operations; if using VFP, it
5441  // is not obvious that the benefit outweighs the cost of switching to the
5442  // NEON pipeline.
5443  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
5444      N->getValueType(0) != MVT::f32)
5445    return SDValue();
5446
5447  SDValue CondLHS = N->getOperand(0);
5448  SDValue CondRHS = N->getOperand(1);
5449  SDValue LHS = N->getOperand(2);
5450  SDValue RHS = N->getOperand(3);
5451  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
5452
5453  unsigned Opcode = 0;
5454  bool IsReversed;
5455  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
5456    IsReversed = false; // x CC y ? x : y
5457  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
5458    IsReversed = true ; // x CC y ? y : x
5459  } else {
5460    return SDValue();
5461  }
5462
5463  bool IsUnordered;
5464  switch (CC) {
5465  default: break;
5466  case ISD::SETOLT:
5467  case ISD::SETOLE:
5468  case ISD::SETLT:
5469  case ISD::SETLE:
5470  case ISD::SETULT:
5471  case ISD::SETULE:
5472    // If LHS is NaN, an ordered comparison will be false and the result will
5473    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
5474    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
5475    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
5476    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
5477      break;
5478    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
5479    // will return -0, so vmin can only be used for unsafe math or if one of
5480    // the operands is known to be nonzero.
5481    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
5482        !UnsafeFPMath &&
5483        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
5484      break;
5485    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
5486    break;
5487
5488  case ISD::SETOGT:
5489  case ISD::SETOGE:
5490  case ISD::SETGT:
5491  case ISD::SETGE:
5492  case ISD::SETUGT:
5493  case ISD::SETUGE:
5494    // If LHS is NaN, an ordered comparison will be false and the result will
5495    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
5496    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
5497    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
5498    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
5499      break;
5500    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
5501    // will return +0, so vmax can only be used for unsafe math or if one of
5502    // the operands is known to be nonzero.
5503    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
5504        !UnsafeFPMath &&
5505        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
5506      break;
5507    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
5508    break;
5509  }
5510
5511  if (!Opcode)
5512    return SDValue();
5513  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
5514}
5515
5516SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
5517                                             DAGCombinerInfo &DCI) const {
5518  switch (N->getOpcode()) {
5519  default: break;
5520  case ISD::ADD:        return PerformADDCombine(N, DCI);
5521  case ISD::SUB:        return PerformSUBCombine(N, DCI);
5522  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
5523  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
5524  case ISD::AND:        return PerformANDCombine(N, DCI);
5525  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
5526  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
5527  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
5528  case ISD::STORE:      return PerformSTORECombine(N, DCI);
5529  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
5530  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
5531  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
5532  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
5533  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
5534  case ISD::SHL:
5535  case ISD::SRA:
5536  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
5537  case ISD::SIGN_EXTEND:
5538  case ISD::ZERO_EXTEND:
5539  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
5540  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
5541  }
5542  return SDValue();
5543}
5544
5545bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
5546  if (!Subtarget->allowsUnalignedMem())
5547    return false;
5548
5549  switch (VT.getSimpleVT().SimpleTy) {
5550  default:
5551    return false;
5552  case MVT::i8:
5553  case MVT::i16:
5554  case MVT::i32:
5555    return true;
5556  // FIXME: VLD1 etc with standard alignment is legal.
5557  }
5558}
5559
5560static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
5561  if (V < 0)
5562    return false;
5563
5564  unsigned Scale = 1;
5565  switch (VT.getSimpleVT().SimpleTy) {
5566  default: return false;
5567  case MVT::i1:
5568  case MVT::i8:
5569    // Scale == 1;
5570    break;
5571  case MVT::i16:
5572    // Scale == 2;
5573    Scale = 2;
5574    break;
5575  case MVT::i32:
5576    // Scale == 4;
5577    Scale = 4;
5578    break;
5579  }
5580
5581  if ((V & (Scale - 1)) != 0)
5582    return false;
5583  V /= Scale;
5584  return V == (V & ((1LL << 5) - 1));
5585}
5586
5587static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
5588                                      const ARMSubtarget *Subtarget) {
5589  bool isNeg = false;
5590  if (V < 0) {
5591    isNeg = true;
5592    V = - V;
5593  }
5594
5595  switch (VT.getSimpleVT().SimpleTy) {
5596  default: return false;
5597  case MVT::i1:
5598  case MVT::i8:
5599  case MVT::i16:
5600  case MVT::i32:
5601    // + imm12 or - imm8
5602    if (isNeg)
5603      return V == (V & ((1LL << 8) - 1));
5604    return V == (V & ((1LL << 12) - 1));
5605  case MVT::f32:
5606  case MVT::f64:
5607    // Same as ARM mode. FIXME: NEON?
5608    if (!Subtarget->hasVFP2())
5609      return false;
5610    if ((V & 3) != 0)
5611      return false;
5612    V >>= 2;
5613    return V == (V & ((1LL << 8) - 1));
5614  }
5615}
5616
5617/// isLegalAddressImmediate - Return true if the integer value can be used
5618/// as the offset of the target addressing mode for load / store of the
5619/// given type.
5620static bool isLegalAddressImmediate(int64_t V, EVT VT,
5621                                    const ARMSubtarget *Subtarget) {
5622  if (V == 0)
5623    return true;
5624
5625  if (!VT.isSimple())
5626    return false;
5627
5628  if (Subtarget->isThumb1Only())
5629    return isLegalT1AddressImmediate(V, VT);
5630  else if (Subtarget->isThumb2())
5631    return isLegalT2AddressImmediate(V, VT, Subtarget);
5632
5633  // ARM mode.
5634  if (V < 0)
5635    V = - V;
5636  switch (VT.getSimpleVT().SimpleTy) {
5637  default: return false;
5638  case MVT::i1:
5639  case MVT::i8:
5640  case MVT::i32:
5641    // +- imm12
5642    return V == (V & ((1LL << 12) - 1));
5643  case MVT::i16:
5644    // +- imm8
5645    return V == (V & ((1LL << 8) - 1));
5646  case MVT::f32:
5647  case MVT::f64:
5648    if (!Subtarget->hasVFP2()) // FIXME: NEON?
5649      return false;
5650    if ((V & 3) != 0)
5651      return false;
5652    V >>= 2;
5653    return V == (V & ((1LL << 8) - 1));
5654  }
5655}
5656
5657bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
5658                                                      EVT VT) const {
5659  int Scale = AM.Scale;
5660  if (Scale < 0)
5661    return false;
5662
5663  switch (VT.getSimpleVT().SimpleTy) {
5664  default: return false;
5665  case MVT::i1:
5666  case MVT::i8:
5667  case MVT::i16:
5668  case MVT::i32:
5669    if (Scale == 1)
5670      return true;
5671    // r + r << imm
5672    Scale = Scale & ~1;
5673    return Scale == 2 || Scale == 4 || Scale == 8;
5674  case MVT::i64:
5675    // r + r
5676    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5677      return true;
5678    return false;
5679  case MVT::isVoid:
5680    // Note, we allow "void" uses (basically, uses that aren't loads or
5681    // stores), because arm allows folding a scale into many arithmetic
5682    // operations.  This should be made more precise and revisited later.
5683
5684    // Allow r << imm, but the imm has to be a multiple of two.
5685    if (Scale & 1) return false;
5686    return isPowerOf2_32(Scale);
5687  }
5688}
5689
5690/// isLegalAddressingMode - Return true if the addressing mode represented
5691/// by AM is legal for this target, for a load/store of the specified type.
5692bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5693                                              const Type *Ty) const {
5694  EVT VT = getValueType(Ty, true);
5695  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
5696    return false;
5697
5698  // Can never fold addr of global into load/store.
5699  if (AM.BaseGV)
5700    return false;
5701
5702  switch (AM.Scale) {
5703  case 0:  // no scale reg, must be "r+i" or "r", or "i".
5704    break;
5705  case 1:
5706    if (Subtarget->isThumb1Only())
5707      return false;
5708    // FALL THROUGH.
5709  default:
5710    // ARM doesn't support any R+R*scale+imm addr modes.
5711    if (AM.BaseOffs)
5712      return false;
5713
5714    if (!VT.isSimple())
5715      return false;
5716
5717    if (Subtarget->isThumb2())
5718      return isLegalT2ScaledAddressingMode(AM, VT);
5719
5720    int Scale = AM.Scale;
5721    switch (VT.getSimpleVT().SimpleTy) {
5722    default: return false;
5723    case MVT::i1:
5724    case MVT::i8:
5725    case MVT::i32:
5726      if (Scale < 0) Scale = -Scale;
5727      if (Scale == 1)
5728        return true;
5729      // r + r << imm
5730      return isPowerOf2_32(Scale & ~1);
5731    case MVT::i16:
5732    case MVT::i64:
5733      // r + r
5734      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5735        return true;
5736      return false;
5737
5738    case MVT::isVoid:
5739      // Note, we allow "void" uses (basically, uses that aren't loads or
5740      // stores), because arm allows folding a scale into many arithmetic
5741      // operations.  This should be made more precise and revisited later.
5742
5743      // Allow r << imm, but the imm has to be a multiple of two.
5744      if (Scale & 1) return false;
5745      return isPowerOf2_32(Scale);
5746    }
5747    break;
5748  }
5749  return true;
5750}
5751
5752/// isLegalICmpImmediate - Return true if the specified immediate is legal
5753/// icmp immediate, that is the target has icmp instructions which can compare
5754/// a register against the immediate without having to materialize the
5755/// immediate into a register.
5756bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
5757  if (!Subtarget->isThumb())
5758    return ARM_AM::getSOImmVal(Imm) != -1;
5759  if (Subtarget->isThumb2())
5760    return ARM_AM::getT2SOImmVal(Imm) != -1;
5761  return Imm >= 0 && Imm <= 255;
5762}
5763
5764static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
5765                                      bool isSEXTLoad, SDValue &Base,
5766                                      SDValue &Offset, bool &isInc,
5767                                      SelectionDAG &DAG) {
5768  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5769    return false;
5770
5771  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
5772    // AddressingMode 3
5773    Base = Ptr->getOperand(0);
5774    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5775      int RHSC = (int)RHS->getZExtValue();
5776      if (RHSC < 0 && RHSC > -256) {
5777        assert(Ptr->getOpcode() == ISD::ADD);
5778        isInc = false;
5779        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5780        return true;
5781      }
5782    }
5783    isInc = (Ptr->getOpcode() == ISD::ADD);
5784    Offset = Ptr->getOperand(1);
5785    return true;
5786  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
5787    // AddressingMode 2
5788    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5789      int RHSC = (int)RHS->getZExtValue();
5790      if (RHSC < 0 && RHSC > -0x1000) {
5791        assert(Ptr->getOpcode() == ISD::ADD);
5792        isInc = false;
5793        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5794        Base = Ptr->getOperand(0);
5795        return true;
5796      }
5797    }
5798
5799    if (Ptr->getOpcode() == ISD::ADD) {
5800      isInc = true;
5801      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
5802      if (ShOpcVal != ARM_AM::no_shift) {
5803        Base = Ptr->getOperand(1);
5804        Offset = Ptr->getOperand(0);
5805      } else {
5806        Base = Ptr->getOperand(0);
5807        Offset = Ptr->getOperand(1);
5808      }
5809      return true;
5810    }
5811
5812    isInc = (Ptr->getOpcode() == ISD::ADD);
5813    Base = Ptr->getOperand(0);
5814    Offset = Ptr->getOperand(1);
5815    return true;
5816  }
5817
5818  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
5819  return false;
5820}
5821
5822static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
5823                                     bool isSEXTLoad, SDValue &Base,
5824                                     SDValue &Offset, bool &isInc,
5825                                     SelectionDAG &DAG) {
5826  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5827    return false;
5828
5829  Base = Ptr->getOperand(0);
5830  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5831    int RHSC = (int)RHS->getZExtValue();
5832    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
5833      assert(Ptr->getOpcode() == ISD::ADD);
5834      isInc = false;
5835      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5836      return true;
5837    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
5838      isInc = Ptr->getOpcode() == ISD::ADD;
5839      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
5840      return true;
5841    }
5842  }
5843
5844  return false;
5845}
5846
5847/// getPreIndexedAddressParts - returns true by value, base pointer and
5848/// offset pointer and addressing mode by reference if the node's address
5849/// can be legally represented as pre-indexed load / store address.
5850bool
5851ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
5852                                             SDValue &Offset,
5853                                             ISD::MemIndexedMode &AM,
5854                                             SelectionDAG &DAG) const {
5855  if (Subtarget->isThumb1Only())
5856    return false;
5857
5858  EVT VT;
5859  SDValue Ptr;
5860  bool isSEXTLoad = false;
5861  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5862    Ptr = LD->getBasePtr();
5863    VT  = LD->getMemoryVT();
5864    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5865  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5866    Ptr = ST->getBasePtr();
5867    VT  = ST->getMemoryVT();
5868  } else
5869    return false;
5870
5871  bool isInc;
5872  bool isLegal = false;
5873  if (Subtarget->isThumb2())
5874    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5875                                       Offset, isInc, DAG);
5876  else
5877    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5878                                        Offset, isInc, DAG);
5879  if (!isLegal)
5880    return false;
5881
5882  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
5883  return true;
5884}
5885
5886/// getPostIndexedAddressParts - returns true by value, base pointer and
5887/// offset pointer and addressing mode by reference if this node can be
5888/// combined with a load / store to form a post-indexed load / store.
5889bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
5890                                                   SDValue &Base,
5891                                                   SDValue &Offset,
5892                                                   ISD::MemIndexedMode &AM,
5893                                                   SelectionDAG &DAG) const {
5894  if (Subtarget->isThumb1Only())
5895    return false;
5896
5897  EVT VT;
5898  SDValue Ptr;
5899  bool isSEXTLoad = false;
5900  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5901    VT  = LD->getMemoryVT();
5902    Ptr = LD->getBasePtr();
5903    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5904  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5905    VT  = ST->getMemoryVT();
5906    Ptr = ST->getBasePtr();
5907  } else
5908    return false;
5909
5910  bool isInc;
5911  bool isLegal = false;
5912  if (Subtarget->isThumb2())
5913    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5914                                       isInc, DAG);
5915  else
5916    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5917                                        isInc, DAG);
5918  if (!isLegal)
5919    return false;
5920
5921  if (Ptr != Base) {
5922    // Swap base ptr and offset to catch more post-index load / store when
5923    // it's legal. In Thumb2 mode, offset must be an immediate.
5924    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
5925        !Subtarget->isThumb2())
5926      std::swap(Base, Offset);
5927
5928    // Post-indexed load / store update the base pointer.
5929    if (Ptr != Base)
5930      return false;
5931  }
5932
5933  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
5934  return true;
5935}
5936
5937void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5938                                                       const APInt &Mask,
5939                                                       APInt &KnownZero,
5940                                                       APInt &KnownOne,
5941                                                       const SelectionDAG &DAG,
5942                                                       unsigned Depth) const {
5943  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5944  switch (Op.getOpcode()) {
5945  default: break;
5946  case ARMISD::CMOV: {
5947    // Bits are known zero/one if known on the LHS and RHS.
5948    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
5949    if (KnownZero == 0 && KnownOne == 0) return;
5950
5951    APInt KnownZeroRHS, KnownOneRHS;
5952    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
5953                          KnownZeroRHS, KnownOneRHS, Depth+1);
5954    KnownZero &= KnownZeroRHS;
5955    KnownOne  &= KnownOneRHS;
5956    return;
5957  }
5958  }
5959}
5960
5961//===----------------------------------------------------------------------===//
5962//                           ARM Inline Assembly Support
5963//===----------------------------------------------------------------------===//
5964
5965/// getConstraintType - Given a constraint letter, return the type of
5966/// constraint it is for this target.
5967ARMTargetLowering::ConstraintType
5968ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
5969  if (Constraint.size() == 1) {
5970    switch (Constraint[0]) {
5971    default:  break;
5972    case 'l': return C_RegisterClass;
5973    case 'w': return C_RegisterClass;
5974    }
5975  }
5976  return TargetLowering::getConstraintType(Constraint);
5977}
5978
5979/// Examine constraint type and operand type and determine a weight value.
5980/// This object must already have been set up with the operand type
5981/// and the current alternative constraint selected.
5982TargetLowering::ConstraintWeight
5983ARMTargetLowering::getSingleConstraintMatchWeight(
5984    AsmOperandInfo &info, const char *constraint) const {
5985  ConstraintWeight weight = CW_Invalid;
5986  Value *CallOperandVal = info.CallOperandVal;
5987    // If we don't have a value, we can't do a match,
5988    // but allow it at the lowest weight.
5989  if (CallOperandVal == NULL)
5990    return CW_Default;
5991  const Type *type = CallOperandVal->getType();
5992  // Look at the constraint type.
5993  switch (*constraint) {
5994  default:
5995    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5996    break;
5997  case 'l':
5998    if (type->isIntegerTy()) {
5999      if (Subtarget->isThumb())
6000        weight = CW_SpecificReg;
6001      else
6002        weight = CW_Register;
6003    }
6004    break;
6005  case 'w':
6006    if (type->isFloatingPointTy())
6007      weight = CW_Register;
6008    break;
6009  }
6010  return weight;
6011}
6012
6013std::pair<unsigned, const TargetRegisterClass*>
6014ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6015                                                EVT VT) const {
6016  if (Constraint.size() == 1) {
6017    // GCC ARM Constraint Letters
6018    switch (Constraint[0]) {
6019    case 'l':
6020      if (Subtarget->isThumb())
6021        return std::make_pair(0U, ARM::tGPRRegisterClass);
6022      else
6023        return std::make_pair(0U, ARM::GPRRegisterClass);
6024    case 'r':
6025      return std::make_pair(0U, ARM::GPRRegisterClass);
6026    case 'w':
6027      if (VT == MVT::f32)
6028        return std::make_pair(0U, ARM::SPRRegisterClass);
6029      if (VT.getSizeInBits() == 64)
6030        return std::make_pair(0U, ARM::DPRRegisterClass);
6031      if (VT.getSizeInBits() == 128)
6032        return std::make_pair(0U, ARM::QPRRegisterClass);
6033      break;
6034    }
6035  }
6036  if (StringRef("{cc}").equals_lower(Constraint))
6037    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
6038
6039  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6040}
6041
6042std::vector<unsigned> ARMTargetLowering::
6043getRegClassForInlineAsmConstraint(const std::string &Constraint,
6044                                  EVT VT) const {
6045  if (Constraint.size() != 1)
6046    return std::vector<unsigned>();
6047
6048  switch (Constraint[0]) {      // GCC ARM Constraint Letters
6049  default: break;
6050  case 'l':
6051    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
6052                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
6053                                 0);
6054  case 'r':
6055    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
6056                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
6057                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
6058                                 ARM::R12, ARM::LR, 0);
6059  case 'w':
6060    if (VT == MVT::f32)
6061      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
6062                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
6063                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
6064                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
6065                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
6066                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
6067                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
6068                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
6069    if (VT.getSizeInBits() == 64)
6070      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
6071                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
6072                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
6073                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
6074    if (VT.getSizeInBits() == 128)
6075      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
6076                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
6077      break;
6078  }
6079
6080  return std::vector<unsigned>();
6081}
6082
6083/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6084/// vector.  If it is invalid, don't add anything to Ops.
6085void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
6086                                                     char Constraint,
6087                                                     std::vector<SDValue>&Ops,
6088                                                     SelectionDAG &DAG) const {
6089  SDValue Result(0, 0);
6090
6091  switch (Constraint) {
6092  default: break;
6093  case 'I': case 'J': case 'K': case 'L':
6094  case 'M': case 'N': case 'O':
6095    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
6096    if (!C)
6097      return;
6098
6099    int64_t CVal64 = C->getSExtValue();
6100    int CVal = (int) CVal64;
6101    // None of these constraints allow values larger than 32 bits.  Check
6102    // that the value fits in an int.
6103    if (CVal != CVal64)
6104      return;
6105
6106    switch (Constraint) {
6107      case 'I':
6108        if (Subtarget->isThumb1Only()) {
6109          // This must be a constant between 0 and 255, for ADD
6110          // immediates.
6111          if (CVal >= 0 && CVal <= 255)
6112            break;
6113        } else if (Subtarget->isThumb2()) {
6114          // A constant that can be used as an immediate value in a
6115          // data-processing instruction.
6116          if (ARM_AM::getT2SOImmVal(CVal) != -1)
6117            break;
6118        } else {
6119          // A constant that can be used as an immediate value in a
6120          // data-processing instruction.
6121          if (ARM_AM::getSOImmVal(CVal) != -1)
6122            break;
6123        }
6124        return;
6125
6126      case 'J':
6127        if (Subtarget->isThumb()) {  // FIXME thumb2
6128          // This must be a constant between -255 and -1, for negated ADD
6129          // immediates. This can be used in GCC with an "n" modifier that
6130          // prints the negated value, for use with SUB instructions. It is
6131          // not useful otherwise but is implemented for compatibility.
6132          if (CVal >= -255 && CVal <= -1)
6133            break;
6134        } else {
6135          // This must be a constant between -4095 and 4095. It is not clear
6136          // what this constraint is intended for. Implemented for
6137          // compatibility with GCC.
6138          if (CVal >= -4095 && CVal <= 4095)
6139            break;
6140        }
6141        return;
6142
6143      case 'K':
6144        if (Subtarget->isThumb1Only()) {
6145          // A 32-bit value where only one byte has a nonzero value. Exclude
6146          // zero to match GCC. This constraint is used by GCC internally for
6147          // constants that can be loaded with a move/shift combination.
6148          // It is not useful otherwise but is implemented for compatibility.
6149          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
6150            break;
6151        } else if (Subtarget->isThumb2()) {
6152          // A constant whose bitwise inverse can be used as an immediate
6153          // value in a data-processing instruction. This can be used in GCC
6154          // with a "B" modifier that prints the inverted value, for use with
6155          // BIC and MVN instructions. It is not useful otherwise but is
6156          // implemented for compatibility.
6157          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
6158            break;
6159        } else {
6160          // A constant whose bitwise inverse can be used as an immediate
6161          // value in a data-processing instruction. This can be used in GCC
6162          // with a "B" modifier that prints the inverted value, for use with
6163          // BIC and MVN instructions. It is not useful otherwise but is
6164          // implemented for compatibility.
6165          if (ARM_AM::getSOImmVal(~CVal) != -1)
6166            break;
6167        }
6168        return;
6169
6170      case 'L':
6171        if (Subtarget->isThumb1Only()) {
6172          // This must be a constant between -7 and 7,
6173          // for 3-operand ADD/SUB immediate instructions.
6174          if (CVal >= -7 && CVal < 7)
6175            break;
6176        } else if (Subtarget->isThumb2()) {
6177          // A constant whose negation can be used as an immediate value in a
6178          // data-processing instruction. This can be used in GCC with an "n"
6179          // modifier that prints the negated value, for use with SUB
6180          // instructions. It is not useful otherwise but is implemented for
6181          // compatibility.
6182          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
6183            break;
6184        } else {
6185          // A constant whose negation can be used as an immediate value in a
6186          // data-processing instruction. This can be used in GCC with an "n"
6187          // modifier that prints the negated value, for use with SUB
6188          // instructions. It is not useful otherwise but is implemented for
6189          // compatibility.
6190          if (ARM_AM::getSOImmVal(-CVal) != -1)
6191            break;
6192        }
6193        return;
6194
6195      case 'M':
6196        if (Subtarget->isThumb()) { // FIXME thumb2
6197          // This must be a multiple of 4 between 0 and 1020, for
6198          // ADD sp + immediate.
6199          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
6200            break;
6201        } else {
6202          // A power of two or a constant between 0 and 32.  This is used in
6203          // GCC for the shift amount on shifted register operands, but it is
6204          // useful in general for any shift amounts.
6205          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
6206            break;
6207        }
6208        return;
6209
6210      case 'N':
6211        if (Subtarget->isThumb()) {  // FIXME thumb2
6212          // This must be a constant between 0 and 31, for shift amounts.
6213          if (CVal >= 0 && CVal <= 31)
6214            break;
6215        }
6216        return;
6217
6218      case 'O':
6219        if (Subtarget->isThumb()) {  // FIXME thumb2
6220          // This must be a multiple of 4 between -508 and 508, for
6221          // ADD/SUB sp = sp + immediate.
6222          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
6223            break;
6224        }
6225        return;
6226    }
6227    Result = DAG.getTargetConstant(CVal, Op.getValueType());
6228    break;
6229  }
6230
6231  if (Result.getNode()) {
6232    Ops.push_back(Result);
6233    return;
6234  }
6235  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6236}
6237
6238bool
6239ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
6240  // The ARM target isn't yet aware of offsets.
6241  return false;
6242}
6243
6244int ARM::getVFPf32Imm(const APFloat &FPImm) {
6245  APInt Imm = FPImm.bitcastToAPInt();
6246  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
6247  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
6248  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
6249
6250  // We can handle 4 bits of mantissa.
6251  // mantissa = (16+UInt(e:f:g:h))/16.
6252  if (Mantissa & 0x7ffff)
6253    return -1;
6254  Mantissa >>= 19;
6255  if ((Mantissa & 0xf) != Mantissa)
6256    return -1;
6257
6258  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
6259  if (Exp < -3 || Exp > 4)
6260    return -1;
6261  Exp = ((Exp+3) & 0x7) ^ 4;
6262
6263  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
6264}
6265
6266int ARM::getVFPf64Imm(const APFloat &FPImm) {
6267  APInt Imm = FPImm.bitcastToAPInt();
6268  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
6269  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
6270  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
6271
6272  // We can handle 4 bits of mantissa.
6273  // mantissa = (16+UInt(e:f:g:h))/16.
6274  if (Mantissa & 0xffffffffffffLL)
6275    return -1;
6276  Mantissa >>= 48;
6277  if ((Mantissa & 0xf) != Mantissa)
6278    return -1;
6279
6280  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
6281  if (Exp < -3 || Exp > 4)
6282    return -1;
6283  Exp = ((Exp+3) & 0x7) ^ 4;
6284
6285  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
6286}
6287
6288bool ARM::isBitFieldInvertedMask(unsigned v) {
6289  if (v == 0xffffffff)
6290    return 0;
6291  // there can be 1's on either or both "outsides", all the "inside"
6292  // bits must be 0's
6293  unsigned int lsb = 0, msb = 31;
6294  while (v & (1 << msb)) --msb;
6295  while (v & (1 << lsb)) ++lsb;
6296  for (unsigned int i = lsb; i <= msb; ++i) {
6297    if (v & (1 << i))
6298      return 0;
6299  }
6300  return 1;
6301}
6302
6303/// isFPImmLegal - Returns true if the target can instruction select the
6304/// specified FP immediate natively. If false, the legalizer will
6305/// materialize the FP immediate as a load from a constant pool.
6306bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
6307  if (!Subtarget->hasVFP3())
6308    return false;
6309  if (VT == MVT::f32)
6310    return ARM::getVFPf32Imm(Imm) != -1;
6311  if (VT == MVT::f64)
6312    return ARM::getVFPf64Imm(Imm) != -1;
6313  return false;
6314}
6315
6316/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
6317/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
6318/// specified in the intrinsic calls.
6319bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
6320                                           const CallInst &I,
6321                                           unsigned Intrinsic) const {
6322  switch (Intrinsic) {
6323  case Intrinsic::arm_neon_vld1:
6324  case Intrinsic::arm_neon_vld2:
6325  case Intrinsic::arm_neon_vld3:
6326  case Intrinsic::arm_neon_vld4:
6327  case Intrinsic::arm_neon_vld2lane:
6328  case Intrinsic::arm_neon_vld3lane:
6329  case Intrinsic::arm_neon_vld4lane: {
6330    Info.opc = ISD::INTRINSIC_W_CHAIN;
6331    // Conservatively set memVT to the entire set of vectors loaded.
6332    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
6333    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6334    Info.ptrVal = I.getArgOperand(0);
6335    Info.offset = 0;
6336    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
6337    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
6338    Info.vol = false; // volatile loads with NEON intrinsics not supported
6339    Info.readMem = true;
6340    Info.writeMem = false;
6341    return true;
6342  }
6343  case Intrinsic::arm_neon_vst1:
6344  case Intrinsic::arm_neon_vst2:
6345  case Intrinsic::arm_neon_vst3:
6346  case Intrinsic::arm_neon_vst4:
6347  case Intrinsic::arm_neon_vst2lane:
6348  case Intrinsic::arm_neon_vst3lane:
6349  case Intrinsic::arm_neon_vst4lane: {
6350    Info.opc = ISD::INTRINSIC_VOID;
6351    // Conservatively set memVT to the entire set of vectors stored.
6352    unsigned NumElts = 0;
6353    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
6354      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
6355      if (!ArgTy->isVectorTy())
6356        break;
6357      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
6358    }
6359    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
6360    Info.ptrVal = I.getArgOperand(0);
6361    Info.offset = 0;
6362    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
6363    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
6364    Info.vol = false; // volatile stores with NEON intrinsics not supported
6365    Info.readMem = false;
6366    Info.writeMem = true;
6367    return true;
6368  }
6369  default:
6370    break;
6371  }
6372
6373  return false;
6374}
6375