ARMISelLowering.cpp revision 4a3d35abefa3a1f6558ef88b25f2a320c76d5328
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMAddressingModes.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMISelLowering.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMRegisterInfo.h"
21#include "ARMSubtarget.h"
22#include "ARMTargetMachine.h"
23#include "ARMTargetObjectFile.h"
24#include "llvm/CallingConv.h"
25#include "llvm/Constants.h"
26#include "llvm/Function.h"
27#include "llvm/Instruction.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/GlobalValue.h"
30#include "llvm/CodeGen/CallingConvLower.h"
31#include "llvm/CodeGen/MachineBasicBlock.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/VectorExtras.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/MathExtras.h"
42using namespace llvm;
43
44static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
45                                   CCValAssign::LocInfo &LocInfo,
46                                   ISD::ArgFlagsTy &ArgFlags,
47                                   CCState &State);
48static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
49                                    CCValAssign::LocInfo &LocInfo,
50                                    ISD::ArgFlagsTy &ArgFlags,
51                                    CCState &State);
52static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
53                                      CCValAssign::LocInfo &LocInfo,
54                                      ISD::ArgFlagsTy &ArgFlags,
55                                      CCState &State);
56static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
57                                       CCValAssign::LocInfo &LocInfo,
58                                       ISD::ArgFlagsTy &ArgFlags,
59                                       CCState &State);
60
61void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
62                                       MVT PromotedBitwiseVT) {
63  if (VT != PromotedLdStVT) {
64    setOperationAction(ISD::LOAD, VT, Promote);
65    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
66
67    setOperationAction(ISD::STORE, VT, Promote);
68    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
69  }
70
71  MVT ElemTy = VT.getVectorElementType();
72  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
73    setOperationAction(ISD::VSETCC, VT, Custom);
74  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
75    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
76  setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
77  setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
78  setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
79  setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
80  if (VT.isInteger()) {
81    setOperationAction(ISD::SHL, VT, Custom);
82    setOperationAction(ISD::SRA, VT, Custom);
83    setOperationAction(ISD::SRL, VT, Custom);
84  }
85
86  // Promote all bit-wise operations.
87  if (VT.isInteger() && VT != PromotedBitwiseVT) {
88    setOperationAction(ISD::AND, VT, Promote);
89    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
90    setOperationAction(ISD::OR,  VT, Promote);
91    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
92    setOperationAction(ISD::XOR, VT, Promote);
93    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
94  }
95}
96
97void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
98  addRegisterClass(VT, ARM::DPRRegisterClass);
99  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
100}
101
102void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
103  addRegisterClass(VT, ARM::QPRRegisterClass);
104  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
105}
106
107static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
108  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
109    return new TargetLoweringObjectFileMachO();
110  return new ARMElfTargetObjectFile();
111}
112
113ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
114    : TargetLowering(TM, createTLOF(TM)), ARMPCLabelIndex(0) {
115  Subtarget = &TM.getSubtarget<ARMSubtarget>();
116
117  if (Subtarget->isTargetDarwin()) {
118    // Uses VFP for Thumb libfuncs if available.
119    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
120      // Single-precision floating-point arithmetic.
121      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
122      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
123      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
124      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
125
126      // Double-precision floating-point arithmetic.
127      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
128      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
129      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
130      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
131
132      // Single-precision comparisons.
133      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
134      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
135      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
136      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
137      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
138      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
139      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
140      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
141
142      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
143      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
144      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
145      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
146      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
147      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
148      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
149      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
150
151      // Double-precision comparisons.
152      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
153      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
154      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
155      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
156      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
157      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
158      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
159      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
160
161      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
162      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
163      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
164      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
165      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
166      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
167      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
168      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
169
170      // Floating-point to integer conversions.
171      // i64 conversions are done via library routines even when generating VFP
172      // instructions, so use the same ones.
173      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
174      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
175      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
176      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
177
178      // Conversions between floating types.
179      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
180      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
181
182      // Integer to floating-point conversions.
183      // i64 conversions are done via library routines even when generating VFP
184      // instructions, so use the same ones.
185      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
186      // e.g., __floatunsidf vs. __floatunssidfvfp.
187      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
188      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
189      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
190      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
191    }
192  }
193
194  // These libcalls are not available in 32-bit.
195  setLibcallName(RTLIB::SHL_I128, 0);
196  setLibcallName(RTLIB::SRL_I128, 0);
197  setLibcallName(RTLIB::SRA_I128, 0);
198
199  if (Subtarget->isThumb1Only())
200    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
201  else
202    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
203  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
204    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
205    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
206
207    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
208  }
209
210  if (Subtarget->hasNEON()) {
211    addDRTypeForNEON(MVT::v2f32);
212    addDRTypeForNEON(MVT::v8i8);
213    addDRTypeForNEON(MVT::v4i16);
214    addDRTypeForNEON(MVT::v2i32);
215    addDRTypeForNEON(MVT::v1i64);
216
217    addQRTypeForNEON(MVT::v4f32);
218    addQRTypeForNEON(MVT::v2f64);
219    addQRTypeForNEON(MVT::v16i8);
220    addQRTypeForNEON(MVT::v8i16);
221    addQRTypeForNEON(MVT::v4i32);
222    addQRTypeForNEON(MVT::v2i64);
223
224    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
225    setTargetDAGCombine(ISD::SHL);
226    setTargetDAGCombine(ISD::SRL);
227    setTargetDAGCombine(ISD::SRA);
228    setTargetDAGCombine(ISD::SIGN_EXTEND);
229    setTargetDAGCombine(ISD::ZERO_EXTEND);
230    setTargetDAGCombine(ISD::ANY_EXTEND);
231  }
232
233  computeRegisterProperties();
234
235  // ARM does not have f32 extending load.
236  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
237
238  // ARM does not have i1 sign extending load.
239  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
240
241  // ARM supports all 4 flavors of integer indexed load / store.
242  if (!Subtarget->isThumb1Only()) {
243    for (unsigned im = (unsigned)ISD::PRE_INC;
244         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
245      setIndexedLoadAction(im,  MVT::i1,  Legal);
246      setIndexedLoadAction(im,  MVT::i8,  Legal);
247      setIndexedLoadAction(im,  MVT::i16, Legal);
248      setIndexedLoadAction(im,  MVT::i32, Legal);
249      setIndexedStoreAction(im, MVT::i1,  Legal);
250      setIndexedStoreAction(im, MVT::i8,  Legal);
251      setIndexedStoreAction(im, MVT::i16, Legal);
252      setIndexedStoreAction(im, MVT::i32, Legal);
253    }
254  }
255
256  // i64 operation support.
257  if (Subtarget->isThumb1Only()) {
258    setOperationAction(ISD::MUL,     MVT::i64, Expand);
259    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
260    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
261    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
262    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
263  } else {
264    setOperationAction(ISD::MUL,     MVT::i64, Expand);
265    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
266    if (!Subtarget->hasV6Ops())
267      setOperationAction(ISD::MULHS, MVT::i32, Expand);
268  }
269  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
270  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
271  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
272  setOperationAction(ISD::SRL,       MVT::i64, Custom);
273  setOperationAction(ISD::SRA,       MVT::i64, Custom);
274
275  // ARM does not have ROTL.
276  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
277  setOperationAction(ISD::CTTZ,  MVT::i32, Expand);
278  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
279  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
280    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
281
282  // Only ARMv6 has BSWAP.
283  if (!Subtarget->hasV6Ops())
284    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
285
286  // These are expanded into libcalls.
287  setOperationAction(ISD::SDIV,  MVT::i32, Expand);
288  setOperationAction(ISD::UDIV,  MVT::i32, Expand);
289  setOperationAction(ISD::SREM,  MVT::i32, Expand);
290  setOperationAction(ISD::UREM,  MVT::i32, Expand);
291  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
292  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
293
294  // Support label based line numbers.
295  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
296  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
297
298  setOperationAction(ISD::RET,           MVT::Other, Custom);
299  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
300  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
301  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
302  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
303
304  // Use the default implementation.
305  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
306  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
307  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
308  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
309  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
310  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
311  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Expand);
312  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
313
314  if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
315    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
316    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
317  }
318  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
319
320  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
321    // Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2.
322    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
323
324  // We want to custom lower some of our intrinsics.
325  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
326  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
327
328  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
329  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
330  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
331  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
332  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
333  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
334  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
335  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
336  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
337
338  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
339  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
340  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
341  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
342  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
343
344  // We don't support sin/cos/fmod/copysign/pow
345  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
346  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
347  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
348  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
349  setOperationAction(ISD::FREM,      MVT::f64, Expand);
350  setOperationAction(ISD::FREM,      MVT::f32, Expand);
351  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
352    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
353    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
354  }
355  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
356  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
357
358  // int <-> fp are custom expanded into bit_convert + ARMISD ops.
359  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
360    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
361    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
362    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
363    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
364  }
365
366  // We have target-specific dag combine patterns for the following nodes:
367  // ARMISD::FMRRD  - No need to call setTargetDAGCombine
368  setTargetDAGCombine(ISD::ADD);
369  setTargetDAGCombine(ISD::SUB);
370
371  setStackPointerRegisterToSaveRestore(ARM::SP);
372  setSchedulingPreference(SchedulingForRegPressure);
373  setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10);
374  setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2);
375
376  if (!Subtarget->isThumb()) {
377    // Use branch latency information to determine if-conversion limits.
378    // FIXME: If-converter should use instruction latency of the branch being
379    // eliminated to compute the threshold. For ARMv6, the branch "latency"
380    // varies depending on whether it's dynamically or statically predicted
381    // and on whether the destination is in the prefetch buffer.
382    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
383    const InstrItineraryData &InstrItins = Subtarget->getInstrItineraryData();
384    unsigned Latency= InstrItins.getLatency(TII->get(ARM::Bcc).getSchedClass());
385    if (Latency > 1) {
386      setIfCvtBlockSizeLimit(Latency-1);
387      if (Latency > 2)
388        setIfCvtDupBlockSizeLimit(Latency-2);
389    } else {
390      setIfCvtBlockSizeLimit(10);
391      setIfCvtDupBlockSizeLimit(2);
392    }
393  }
394
395  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
396  // Do not enable CodePlacementOpt for now: it currently runs after the
397  // ARMConstantIslandPass and messes up branch relaxation and placement
398  // of constant islands.
399  // benefitFromCodePlacementOpt = true;
400}
401
402const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
403  switch (Opcode) {
404  default: return 0;
405  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
406  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
407  case ARMISD::CALL:          return "ARMISD::CALL";
408  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
409  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
410  case ARMISD::tCALL:         return "ARMISD::tCALL";
411  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
412  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
413  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
414  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
415  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
416  case ARMISD::CMP:           return "ARMISD::CMP";
417  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
418  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
419  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
420  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
421  case ARMISD::CMOV:          return "ARMISD::CMOV";
422  case ARMISD::CNEG:          return "ARMISD::CNEG";
423
424  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
425  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
426  case ARMISD::SITOF:         return "ARMISD::SITOF";
427  case ARMISD::UITOF:         return "ARMISD::UITOF";
428
429  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
430  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
431  case ARMISD::RRX:           return "ARMISD::RRX";
432
433  case ARMISD::FMRRD:         return "ARMISD::FMRRD";
434  case ARMISD::FMDRR:         return "ARMISD::FMDRR";
435
436  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
437
438  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
439  case ARMISD::VCGE:          return "ARMISD::VCGE";
440  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
441  case ARMISD::VCGT:          return "ARMISD::VCGT";
442  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
443  case ARMISD::VTST:          return "ARMISD::VTST";
444
445  case ARMISD::VSHL:          return "ARMISD::VSHL";
446  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
447  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
448  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
449  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
450  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
451  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
452  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
453  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
454  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
455  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
456  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
457  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
458  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
459  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
460  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
461  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
462  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
463  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
464  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
465  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
466  case ARMISD::VDUPLANEQ:     return "ARMISD::VDUPLANEQ";
467  case ARMISD::VLD2D:         return "ARMISD::VLD2D";
468  case ARMISD::VLD3D:         return "ARMISD::VLD3D";
469  case ARMISD::VLD4D:         return "ARMISD::VLD4D";
470  }
471}
472
473/// getFunctionAlignment - Return the Log2 alignment of this function.
474unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
475  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
476}
477
478//===----------------------------------------------------------------------===//
479// Lowering Code
480//===----------------------------------------------------------------------===//
481
482/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
483static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
484  switch (CC) {
485  default: llvm_unreachable("Unknown condition code!");
486  case ISD::SETNE:  return ARMCC::NE;
487  case ISD::SETEQ:  return ARMCC::EQ;
488  case ISD::SETGT:  return ARMCC::GT;
489  case ISD::SETGE:  return ARMCC::GE;
490  case ISD::SETLT:  return ARMCC::LT;
491  case ISD::SETLE:  return ARMCC::LE;
492  case ISD::SETUGT: return ARMCC::HI;
493  case ISD::SETUGE: return ARMCC::HS;
494  case ISD::SETULT: return ARMCC::LO;
495  case ISD::SETULE: return ARMCC::LS;
496  }
497}
498
499/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
500/// returns true if the operands should be inverted to form the proper
501/// comparison.
502static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
503                        ARMCC::CondCodes &CondCode2) {
504  bool Invert = false;
505  CondCode2 = ARMCC::AL;
506  switch (CC) {
507  default: llvm_unreachable("Unknown FP condition!");
508  case ISD::SETEQ:
509  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
510  case ISD::SETGT:
511  case ISD::SETOGT: CondCode = ARMCC::GT; break;
512  case ISD::SETGE:
513  case ISD::SETOGE: CondCode = ARMCC::GE; break;
514  case ISD::SETOLT: CondCode = ARMCC::MI; break;
515  case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
516  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
517  case ISD::SETO:   CondCode = ARMCC::VC; break;
518  case ISD::SETUO:  CondCode = ARMCC::VS; break;
519  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
520  case ISD::SETUGT: CondCode = ARMCC::HI; break;
521  case ISD::SETUGE: CondCode = ARMCC::PL; break;
522  case ISD::SETLT:
523  case ISD::SETULT: CondCode = ARMCC::LT; break;
524  case ISD::SETLE:
525  case ISD::SETULE: CondCode = ARMCC::LE; break;
526  case ISD::SETNE:
527  case ISD::SETUNE: CondCode = ARMCC::NE; break;
528  }
529  return Invert;
530}
531
532//===----------------------------------------------------------------------===//
533//                      Calling Convention Implementation
534//
535//  The lower operations present on calling convention works on this order:
536//      LowerCALL (virt regs --> phys regs, virt regs --> stack)
537//      LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs)
538//      LowerRET (virt regs --> phys regs)
539//      LowerCALL (phys regs --> virt regs)
540//
541//===----------------------------------------------------------------------===//
542
543#include "ARMGenCallingConv.inc"
544
545// APCS f64 is in register pairs, possibly split to stack
546static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
547                          CCValAssign::LocInfo &LocInfo,
548                          CCState &State, bool CanFail) {
549  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
550
551  // Try to get the first register.
552  if (unsigned Reg = State.AllocateReg(RegList, 4))
553    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
554  else {
555    // For the 2nd half of a v2f64, do not fail.
556    if (CanFail)
557      return false;
558
559    // Put the whole thing on the stack.
560    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
561                                           State.AllocateStack(8, 4),
562                                           LocVT, LocInfo));
563    return true;
564  }
565
566  // Try to get the second register.
567  if (unsigned Reg = State.AllocateReg(RegList, 4))
568    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
569  else
570    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
571                                           State.AllocateStack(4, 4),
572                                           LocVT, LocInfo));
573  return true;
574}
575
576static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
577                                   CCValAssign::LocInfo &LocInfo,
578                                   ISD::ArgFlagsTy &ArgFlags,
579                                   CCState &State) {
580  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
581    return false;
582  if (LocVT == MVT::v2f64 &&
583      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
584    return false;
585  return true;  // we handled it
586}
587
588// AAPCS f64 is in aligned register pairs
589static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
590                           CCValAssign::LocInfo &LocInfo,
591                           CCState &State, bool CanFail) {
592  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
593  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
594
595  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
596  if (Reg == 0) {
597    // For the 2nd half of a v2f64, do not just fail.
598    if (CanFail)
599      return false;
600
601    // Put the whole thing on the stack.
602    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
603                                           State.AllocateStack(8, 8),
604                                           LocVT, LocInfo));
605    return true;
606  }
607
608  unsigned i;
609  for (i = 0; i < 2; ++i)
610    if (HiRegList[i] == Reg)
611      break;
612
613  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
614  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
615                                         LocVT, LocInfo));
616  return true;
617}
618
619static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
620                                    CCValAssign::LocInfo &LocInfo,
621                                    ISD::ArgFlagsTy &ArgFlags,
622                                    CCState &State) {
623  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
624    return false;
625  if (LocVT == MVT::v2f64 &&
626      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
627    return false;
628  return true;  // we handled it
629}
630
631static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
632                         CCValAssign::LocInfo &LocInfo, CCState &State) {
633  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
634  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
635
636  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
637  if (Reg == 0)
638    return false; // we didn't handle it
639
640  unsigned i;
641  for (i = 0; i < 2; ++i)
642    if (HiRegList[i] == Reg)
643      break;
644
645  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
646  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
647                                         LocVT, LocInfo));
648  return true;
649}
650
651static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
652                                      CCValAssign::LocInfo &LocInfo,
653                                      ISD::ArgFlagsTy &ArgFlags,
654                                      CCState &State) {
655  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
656    return false;
657  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
658    return false;
659  return true;  // we handled it
660}
661
662static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
663                                       CCValAssign::LocInfo &LocInfo,
664                                       ISD::ArgFlagsTy &ArgFlags,
665                                       CCState &State) {
666  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
667                                   State);
668}
669
670/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
671/// given CallingConvention value.
672CCAssignFn *ARMTargetLowering::CCAssignFnForNode(unsigned CC,
673                                                 bool Return) const {
674  switch (CC) {
675  default:
676   llvm_unreachable("Unsupported calling convention");
677  case CallingConv::C:
678  case CallingConv::Fast:
679   // Use target triple & subtarget features to do actual dispatch.
680   if (Subtarget->isAAPCS_ABI()) {
681     if (Subtarget->hasVFP2() &&
682         FloatABIType == FloatABI::Hard)
683       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
684     else
685       return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
686   } else
687     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
688  case CallingConv::ARM_AAPCS_VFP:
689   return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
690  case CallingConv::ARM_AAPCS:
691   return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
692  case CallingConv::ARM_APCS:
693   return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
694  }
695}
696
697/// LowerCallResult - Lower the result values of an ISD::CALL into the
698/// appropriate copies out of appropriate physical registers.  This assumes that
699/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
700/// being lowered.  The returns a SDNode with the same number of values as the
701/// ISD::CALL.
702SDNode *ARMTargetLowering::
703LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
704                unsigned CallingConv, SelectionDAG &DAG) {
705
706  DebugLoc dl = TheCall->getDebugLoc();
707  // Assign locations to each value returned by this call.
708  SmallVector<CCValAssign, 16> RVLocs;
709  bool isVarArg = TheCall->isVarArg();
710  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(),
711                 RVLocs, *DAG.getContext());
712  CCInfo.AnalyzeCallResult(TheCall,
713                           CCAssignFnForNode(CallingConv, /* Return*/ true));
714
715  SmallVector<SDValue, 8> ResultVals;
716
717  // Copy all of the result registers out of their specified physreg.
718  for (unsigned i = 0; i != RVLocs.size(); ++i) {
719    CCValAssign VA = RVLocs[i];
720
721    SDValue Val;
722    if (VA.needsCustom()) {
723      // Handle f64 or half of a v2f64.
724      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
725                                      InFlag);
726      Chain = Lo.getValue(1);
727      InFlag = Lo.getValue(2);
728      VA = RVLocs[++i]; // skip ahead to next loc
729      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
730                                      InFlag);
731      Chain = Hi.getValue(1);
732      InFlag = Hi.getValue(2);
733      Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
734
735      if (VA.getLocVT() == MVT::v2f64) {
736        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
737        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
738                          DAG.getConstant(0, MVT::i32));
739
740        VA = RVLocs[++i]; // skip ahead to next loc
741        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
742        Chain = Lo.getValue(1);
743        InFlag = Lo.getValue(2);
744        VA = RVLocs[++i]; // skip ahead to next loc
745        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
746        Chain = Hi.getValue(1);
747        InFlag = Hi.getValue(2);
748        Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
749        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
750                          DAG.getConstant(1, MVT::i32));
751      }
752    } else {
753      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
754                               InFlag);
755      Chain = Val.getValue(1);
756      InFlag = Val.getValue(2);
757    }
758
759    switch (VA.getLocInfo()) {
760    default: llvm_unreachable("Unknown loc info!");
761    case CCValAssign::Full: break;
762    case CCValAssign::BCvt:
763      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
764      break;
765    }
766
767    ResultVals.push_back(Val);
768  }
769
770  // Merge everything together with a MERGE_VALUES node.
771  ResultVals.push_back(Chain);
772  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
773                     &ResultVals[0], ResultVals.size()).getNode();
774}
775
776/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
777/// by "Src" to address "Dst" of size "Size".  Alignment information is
778/// specified by the specific parameter attribute.  The copy will be passed as
779/// a byval function parameter.
780/// Sometimes what we are copying is the end of a larger object, the part that
781/// does not fit in registers.
782static SDValue
783CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
784                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
785                          DebugLoc dl) {
786  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
787  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
788                       /*AlwaysInline=*/false, NULL, 0, NULL, 0);
789}
790
791/// LowerMemOpCallTo - Store the argument to the stack.
792SDValue
793ARMTargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
794                                    const SDValue &StackPtr,
795                                    const CCValAssign &VA, SDValue Chain,
796                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
797  DebugLoc dl = TheCall->getDebugLoc();
798  unsigned LocMemOffset = VA.getLocMemOffset();
799  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
800  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
801  if (Flags.isByVal()) {
802    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
803  }
804  return DAG.getStore(Chain, dl, Arg, PtrOff,
805                      PseudoSourceValue::getStack(), LocMemOffset);
806}
807
808void ARMTargetLowering::PassF64ArgInRegs(CallSDNode *TheCall, SelectionDAG &DAG,
809                                         SDValue Chain, SDValue &Arg,
810                                         RegsToPassVector &RegsToPass,
811                                         CCValAssign &VA, CCValAssign &NextVA,
812                                         SDValue &StackPtr,
813                                         SmallVector<SDValue, 8> &MemOpChains,
814                                         ISD::ArgFlagsTy Flags) {
815  DebugLoc dl = TheCall->getDebugLoc();
816
817  SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
818                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
819  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
820
821  if (NextVA.isRegLoc())
822    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
823  else {
824    assert(NextVA.isMemLoc());
825    if (StackPtr.getNode() == 0)
826      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
827
828    MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, NextVA,
829                                           Chain, fmrrd.getValue(1), Flags));
830  }
831}
832
833/// LowerCALL - Lowering a ISD::CALL node into a callseq_start <-
834/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
835/// nodes.
836SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
837  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
838  MVT RetVT           = TheCall->getRetValType(0);
839  SDValue Chain       = TheCall->getChain();
840  unsigned CC         = TheCall->getCallingConv();
841  bool isVarArg       = TheCall->isVarArg();
842  SDValue Callee      = TheCall->getCallee();
843  DebugLoc dl         = TheCall->getDebugLoc();
844
845  // Analyze operands of the call, assigning locations to each operand.
846  SmallVector<CCValAssign, 16> ArgLocs;
847  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
848  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC, /* Return*/ false));
849
850  // Get a count of how many bytes are to be pushed on the stack.
851  unsigned NumBytes = CCInfo.getNextStackOffset();
852
853  // Adjust the stack pointer for the new arguments...
854  // These operations are automatically eliminated by the prolog/epilog pass
855  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
856
857  SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
858
859  RegsToPassVector RegsToPass;
860  SmallVector<SDValue, 8> MemOpChains;
861
862  // Walk the register/memloc assignments, inserting copies/loads.  In the case
863  // of tail call optimization, arguments are handled later.
864  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
865       i != e;
866       ++i, ++realArgIdx) {
867    CCValAssign &VA = ArgLocs[i];
868    SDValue Arg = TheCall->getArg(realArgIdx);
869    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(realArgIdx);
870
871    // Promote the value if needed.
872    switch (VA.getLocInfo()) {
873    default: llvm_unreachable("Unknown loc info!");
874    case CCValAssign::Full: break;
875    case CCValAssign::SExt:
876      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
877      break;
878    case CCValAssign::ZExt:
879      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
880      break;
881    case CCValAssign::AExt:
882      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
883      break;
884    case CCValAssign::BCvt:
885      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
886      break;
887    }
888
889    // f64 and v2f64 are passed in i32 pairs and must be split into pieces
890    if (VA.needsCustom()) {
891      if (VA.getLocVT() == MVT::v2f64) {
892        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
893                                  DAG.getConstant(0, MVT::i32));
894        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
895                                  DAG.getConstant(1, MVT::i32));
896
897        PassF64ArgInRegs(TheCall, DAG, Chain, Op0, RegsToPass,
898                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
899
900        VA = ArgLocs[++i]; // skip ahead to next loc
901        if (VA.isRegLoc()) {
902          PassF64ArgInRegs(TheCall, DAG, Chain, Op1, RegsToPass,
903                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
904        } else {
905          assert(VA.isMemLoc());
906          if (StackPtr.getNode() == 0)
907            StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
908
909          MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
910                                                 Chain, Op1, Flags));
911        }
912      } else {
913        PassF64ArgInRegs(TheCall, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
914                         StackPtr, MemOpChains, Flags);
915      }
916    } else if (VA.isRegLoc()) {
917      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
918    } else {
919      assert(VA.isMemLoc());
920      if (StackPtr.getNode() == 0)
921        StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
922
923      MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
924                                             Chain, Arg, Flags));
925    }
926  }
927
928  if (!MemOpChains.empty())
929    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
930                        &MemOpChains[0], MemOpChains.size());
931
932  // Build a sequence of copy-to-reg nodes chained together with token chain
933  // and flag operands which copy the outgoing args into the appropriate regs.
934  SDValue InFlag;
935  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
936    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
937                             RegsToPass[i].second, InFlag);
938    InFlag = Chain.getValue(1);
939  }
940
941  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
942  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
943  // node so that legalize doesn't hack it.
944  bool isDirect = false;
945  bool isARMFunc = false;
946  bool isLocalARMFunc = false;
947  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
948    GlobalValue *GV = G->getGlobal();
949    isDirect = true;
950    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
951    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
952                   getTargetMachine().getRelocationModel() != Reloc::Static;
953    isARMFunc = !Subtarget->isThumb() || isStub;
954    // ARM call to a local ARM function is predicable.
955    isLocalARMFunc = !Subtarget->isThumb() && !isExt;
956    // tBX takes a register source operand.
957    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
958      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
959                                                           ARMCP::CPStub, 4);
960      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
961      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
962      Callee = DAG.getLoad(getPointerTy(), dl,
963                           DAG.getEntryNode(), CPAddr, NULL, 0);
964      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
965      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
966                           getPointerTy(), Callee, PICLabel);
967   } else
968      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
969  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
970    isDirect = true;
971    bool isStub = Subtarget->isTargetDarwin() &&
972                  getTargetMachine().getRelocationModel() != Reloc::Static;
973    isARMFunc = !Subtarget->isThumb() || isStub;
974    // tBX takes a register source operand.
975    const char *Sym = S->getSymbol();
976    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
977      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex,
978                                                           ARMCP::CPStub, 4);
979      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
980      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
981      Callee = DAG.getLoad(getPointerTy(), dl,
982                           DAG.getEntryNode(), CPAddr, NULL, 0);
983      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
984      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
985                           getPointerTy(), Callee, PICLabel);
986    } else
987      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
988  }
989
990  // FIXME: handle tail calls differently.
991  unsigned CallOpc;
992  if (Subtarget->isThumb()) {
993    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
994      CallOpc = ARMISD::CALL_NOLINK;
995    else
996      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
997  } else {
998    CallOpc = (isDirect || Subtarget->hasV5TOps())
999      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1000      : ARMISD::CALL_NOLINK;
1001  }
1002  if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
1003    // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
1004    Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
1005    InFlag = Chain.getValue(1);
1006  }
1007
1008  std::vector<SDValue> Ops;
1009  Ops.push_back(Chain);
1010  Ops.push_back(Callee);
1011
1012  // Add argument registers to the end of the list so that they are known live
1013  // into the call.
1014  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1015    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1016                                  RegsToPass[i].second.getValueType()));
1017
1018  if (InFlag.getNode())
1019    Ops.push_back(InFlag);
1020  // Returns a chain and a flag for retval copy to use.
1021  Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
1022                      &Ops[0], Ops.size());
1023  InFlag = Chain.getValue(1);
1024
1025  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1026                             DAG.getIntPtrConstant(0, true), InFlag);
1027  if (RetVT != MVT::Other)
1028    InFlag = Chain.getValue(1);
1029
1030  // Handle result values, copying them out of physregs into vregs that we
1031  // return.
1032  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1033                                 Op.getResNo());
1034}
1035
1036SDValue ARMTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
1037  // The chain is always operand #0
1038  SDValue Chain = Op.getOperand(0);
1039  DebugLoc dl = Op.getDebugLoc();
1040
1041  // CCValAssign - represent the assignment of the return value to a location.
1042  SmallVector<CCValAssign, 16> RVLocs;
1043  unsigned CC   = DAG.getMachineFunction().getFunction()->getCallingConv();
1044  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1045
1046  // CCState - Info about the registers and stack slots.
1047  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext());
1048
1049  // Analyze return values of ISD::RET.
1050  CCInfo.AnalyzeReturn(Op.getNode(), CCAssignFnForNode(CC, /* Return */ true));
1051
1052  // If this is the first return lowered for this function, add
1053  // the regs to the liveout set for the function.
1054  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1055    for (unsigned i = 0; i != RVLocs.size(); ++i)
1056      if (RVLocs[i].isRegLoc())
1057        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1058  }
1059
1060  SDValue Flag;
1061
1062  // Copy the result values into the output registers.
1063  for (unsigned i = 0, realRVLocIdx = 0;
1064       i != RVLocs.size();
1065       ++i, ++realRVLocIdx) {
1066    CCValAssign &VA = RVLocs[i];
1067    assert(VA.isRegLoc() && "Can only return in registers!");
1068
1069    // ISD::RET => ret chain, (regnum1,val1), ...
1070    // So i*2+1 index only the regnums
1071    SDValue Arg = Op.getOperand(realRVLocIdx*2+1);
1072
1073    switch (VA.getLocInfo()) {
1074    default: llvm_unreachable("Unknown loc info!");
1075    case CCValAssign::Full: break;
1076    case CCValAssign::BCvt:
1077      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1078      break;
1079    }
1080
1081    if (VA.needsCustom()) {
1082      if (VA.getLocVT() == MVT::v2f64) {
1083        // Extract the first half and return it in two registers.
1084        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1085                                   DAG.getConstant(0, MVT::i32));
1086        SDValue HalfGPRs = DAG.getNode(ARMISD::FMRRD, dl,
1087                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1088
1089        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1090        Flag = Chain.getValue(1);
1091        VA = RVLocs[++i]; // skip ahead to next loc
1092        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1093                                 HalfGPRs.getValue(1), Flag);
1094        Flag = Chain.getValue(1);
1095        VA = RVLocs[++i]; // skip ahead to next loc
1096
1097        // Extract the 2nd half and fall through to handle it as an f64 value.
1098        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1099                          DAG.getConstant(1, MVT::i32));
1100      }
1101      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1102      // available.
1103      SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
1104                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1105      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1106      Flag = Chain.getValue(1);
1107      VA = RVLocs[++i]; // skip ahead to next loc
1108      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1109                               Flag);
1110    } else
1111      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1112
1113    // Guarantee that all emitted copies are
1114    // stuck together, avoiding something bad.
1115    Flag = Chain.getValue(1);
1116  }
1117
1118  SDValue result;
1119  if (Flag.getNode())
1120    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1121  else // Return Void
1122    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1123
1124  return result;
1125}
1126
1127// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1128// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1129// one of the above mentioned nodes. It has to be wrapped because otherwise
1130// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1131// be used to form addressing mode. These wrapped nodes will be selected
1132// into MOVi.
1133static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1134  MVT PtrVT = Op.getValueType();
1135  // FIXME there is no actual debug info here
1136  DebugLoc dl = Op.getDebugLoc();
1137  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1138  SDValue Res;
1139  if (CP->isMachineConstantPoolEntry())
1140    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1141                                    CP->getAlignment());
1142  else
1143    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1144                                    CP->getAlignment());
1145  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1146}
1147
1148// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1149SDValue
1150ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1151                                                 SelectionDAG &DAG) {
1152  DebugLoc dl = GA->getDebugLoc();
1153  MVT PtrVT = getPointerTy();
1154  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1155  ARMConstantPoolValue *CPV =
1156    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1157                             PCAdj, "tlsgd", true);
1158  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1159  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1160  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, NULL, 0);
1161  SDValue Chain = Argument.getValue(1);
1162
1163  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1164  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1165
1166  // call __tls_get_addr.
1167  ArgListTy Args;
1168  ArgListEntry Entry;
1169  Entry.Node = Argument;
1170  Entry.Ty = (const Type *) Type::Int32Ty;
1171  Args.push_back(Entry);
1172  // FIXME: is there useful debug info available here?
1173  std::pair<SDValue, SDValue> CallResult =
1174    LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false, false, false,
1175                0, CallingConv::C, false,
1176                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1177  return CallResult.first;
1178}
1179
1180// Lower ISD::GlobalTLSAddress using the "initial exec" or
1181// "local exec" model.
1182SDValue
1183ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1184                                        SelectionDAG &DAG) {
1185  GlobalValue *GV = GA->getGlobal();
1186  DebugLoc dl = GA->getDebugLoc();
1187  SDValue Offset;
1188  SDValue Chain = DAG.getEntryNode();
1189  MVT PtrVT = getPointerTy();
1190  // Get the Thread Pointer
1191  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1192
1193  if (GV->isDeclaration()) {
1194    // initial exec model
1195    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1196    ARMConstantPoolValue *CPV =
1197      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1198                               PCAdj, "gottpoff", true);
1199    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1200    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1201    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1202    Chain = Offset.getValue(1);
1203
1204    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1205    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1206
1207    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1208  } else {
1209    // local exec model
1210    ARMConstantPoolValue *CPV =
1211      new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff");
1212    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1213    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1214    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1215  }
1216
1217  // The address of the thread local variable is the add of the thread
1218  // pointer with the offset of the variable.
1219  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1220}
1221
1222SDValue
1223ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
1224  // TODO: implement the "local dynamic" model
1225  assert(Subtarget->isTargetELF() &&
1226         "TLS not implemented for non-ELF targets");
1227  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1228  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1229  // otherwise use the "Local Exec" TLS Model
1230  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1231    return LowerToTLSGeneralDynamicModel(GA, DAG);
1232  else
1233    return LowerToTLSExecModels(GA, DAG);
1234}
1235
1236SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1237                                                 SelectionDAG &DAG) {
1238  MVT PtrVT = getPointerTy();
1239  DebugLoc dl = Op.getDebugLoc();
1240  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1241  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1242  if (RelocM == Reloc::PIC_) {
1243    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1244    ARMConstantPoolValue *CPV =
1245      new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT");
1246    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1247    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1248    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1249                                 CPAddr, NULL, 0);
1250    SDValue Chain = Result.getValue(1);
1251    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1252    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1253    if (!UseGOTOFF)
1254      Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1255    return Result;
1256  } else {
1257    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1258    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1259    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1260  }
1261}
1262
1263/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
1264/// even in non-static mode.
1265static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) {
1266  // If symbol visibility is hidden, the extra load is not needed if
1267  // the symbol is definitely defined in the current translation unit.
1268  bool isDecl = GV->isDeclaration() || GV->hasAvailableExternallyLinkage();
1269  if (GV->hasHiddenVisibility() && (!isDecl && !GV->hasCommonLinkage()))
1270    return false;
1271  return RelocM != Reloc::Static && (isDecl || GV->isWeakForLinker());
1272}
1273
1274SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1275                                                    SelectionDAG &DAG) {
1276  MVT PtrVT = getPointerTy();
1277  DebugLoc dl = Op.getDebugLoc();
1278  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1279  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1280  bool IsIndirect = GVIsIndirectSymbol(GV, RelocM);
1281  SDValue CPAddr;
1282  if (RelocM == Reloc::Static)
1283    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1284  else {
1285    unsigned PCAdj = (RelocM != Reloc::PIC_)
1286      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1287    ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr
1288      : ARMCP::CPValue;
1289    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
1290                                                         Kind, PCAdj);
1291    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1292  }
1293  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1294
1295  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1296  SDValue Chain = Result.getValue(1);
1297
1298  if (RelocM == Reloc::PIC_) {
1299    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1300    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1301  }
1302  if (IsIndirect)
1303    Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1304
1305  return Result;
1306}
1307
1308SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1309                                                    SelectionDAG &DAG){
1310  assert(Subtarget->isTargetELF() &&
1311         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1312  MVT PtrVT = getPointerTy();
1313  DebugLoc dl = Op.getDebugLoc();
1314  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1315  ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_",
1316                                                       ARMPCLabelIndex,
1317                                                       ARMCP::CPValue, PCAdj);
1318  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1319  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1320  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1321  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1322  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1323}
1324
1325static SDValue LowerNeonVLDIntrinsic(SDValue Op, SelectionDAG &DAG,
1326                                     unsigned Opcode) {
1327  SDNode *Node = Op.getNode();
1328  MVT VT = Node->getValueType(0);
1329  DebugLoc dl = Op.getDebugLoc();
1330
1331  if (!VT.is64BitVector())
1332    return SDValue(); // unimplemented
1333
1334  SDValue Ops[] = { Node->getOperand(0),
1335                    Node->getOperand(2) };
1336  return DAG.getNode(Opcode, dl, Node->getVTList(), Ops, 2);
1337}
1338
1339SDValue
1340ARMTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
1341  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1342  switch (IntNo) {
1343  case Intrinsic::arm_neon_vld2i:
1344  case Intrinsic::arm_neon_vld2f:
1345    return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD2D);
1346  case Intrinsic::arm_neon_vld3i:
1347  case Intrinsic::arm_neon_vld3f:
1348    return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD3D);
1349  case Intrinsic::arm_neon_vld4i:
1350  case Intrinsic::arm_neon_vld4f:
1351    return LowerNeonVLDIntrinsic(Op, DAG, ARMISD::VLD4D);
1352  case Intrinsic::arm_neon_vst2i:
1353  case Intrinsic::arm_neon_vst2f:
1354  case Intrinsic::arm_neon_vst3i:
1355  case Intrinsic::arm_neon_vst3f:
1356  case Intrinsic::arm_neon_vst4i:
1357  case Intrinsic::arm_neon_vst4f:
1358  default: return SDValue();    // Don't custom lower most intrinsics.
1359  }
1360}
1361
1362SDValue
1363ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
1364  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1365  DebugLoc dl = Op.getDebugLoc();
1366  switch (IntNo) {
1367  default: return SDValue();    // Don't custom lower most intrinsics.
1368  case Intrinsic::arm_thread_pointer: {
1369    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1370    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1371  }
1372  case Intrinsic::eh_sjlj_setjmp:
1373    return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1));
1374  }
1375}
1376
1377static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1378                            unsigned VarArgsFrameIndex) {
1379  // vastart just stores the address of the VarArgsFrameIndex slot into the
1380  // memory location argument.
1381  DebugLoc dl = Op.getDebugLoc();
1382  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1383  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1384  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1385  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1386}
1387
1388SDValue
1389ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1390                                        SDValue &Root, SelectionDAG &DAG,
1391                                        DebugLoc dl) {
1392  MachineFunction &MF = DAG.getMachineFunction();
1393  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1394
1395  TargetRegisterClass *RC;
1396  if (AFI->isThumb1OnlyFunction())
1397    RC = ARM::tGPRRegisterClass;
1398  else
1399    RC = ARM::GPRRegisterClass;
1400
1401  // Transform the arguments stored in physical registers into virtual ones.
1402  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1403  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1404
1405  SDValue ArgValue2;
1406  if (NextVA.isMemLoc()) {
1407    unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8;
1408    MachineFrameInfo *MFI = MF.getFrameInfo();
1409    int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset());
1410
1411    // Create load node to retrieve arguments from the stack.
1412    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1413    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, NULL, 0);
1414  } else {
1415    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1416    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1417  }
1418
1419  return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, ArgValue, ArgValue2);
1420}
1421
1422SDValue
1423ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1424  MachineFunction &MF = DAG.getMachineFunction();
1425  MachineFrameInfo *MFI = MF.getFrameInfo();
1426
1427  SDValue Root = Op.getOperand(0);
1428  DebugLoc dl = Op.getDebugLoc();
1429  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1430  unsigned CC = MF.getFunction()->getCallingConv();
1431  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1432
1433  // Assign locations to all of the incoming arguments.
1434  SmallVector<CCValAssign, 16> ArgLocs;
1435  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
1436  CCInfo.AnalyzeFormalArguments(Op.getNode(),
1437                                CCAssignFnForNode(CC, /* Return*/ false));
1438
1439  SmallVector<SDValue, 16> ArgValues;
1440
1441  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1442    CCValAssign &VA = ArgLocs[i];
1443
1444    // Arguments stored in registers.
1445    if (VA.isRegLoc()) {
1446      MVT RegVT = VA.getLocVT();
1447
1448      SDValue ArgValue;
1449      if (VA.needsCustom()) {
1450        // f64 and vector types are split up into multiple registers or
1451        // combinations of registers and stack slots.
1452        RegVT = MVT::i32;
1453
1454        if (VA.getLocVT() == MVT::v2f64) {
1455          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
1456                                                   Root, DAG, dl);
1457          VA = ArgLocs[++i]; // skip ahead to next loc
1458          SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
1459                                                   Root, DAG, dl);
1460          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1461          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1462                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
1463          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1464                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
1465        } else
1466          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Root, DAG, dl);
1467
1468      } else {
1469        TargetRegisterClass *RC;
1470        if (FloatABIType == FloatABI::Hard && RegVT == MVT::f32)
1471          RC = ARM::SPRRegisterClass;
1472        else if (FloatABIType == FloatABI::Hard && RegVT == MVT::f64)
1473          RC = ARM::DPRRegisterClass;
1474        else if (AFI->isThumb1OnlyFunction())
1475          RC = ARM::tGPRRegisterClass;
1476        else
1477          RC = ARM::GPRRegisterClass;
1478
1479        assert((RegVT == MVT::i32 || RegVT == MVT::f32 ||
1480                (FloatABIType == FloatABI::Hard && RegVT == MVT::f64)) &&
1481               "RegVT not supported by FORMAL_ARGUMENTS Lowering");
1482
1483        // Transform the arguments in physical registers into virtual ones.
1484        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1485        ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1486      }
1487
1488      // If this is an 8 or 16-bit value, it is really passed promoted
1489      // to 32 bits.  Insert an assert[sz]ext to capture this, then
1490      // truncate to the right size.
1491      switch (VA.getLocInfo()) {
1492      default: llvm_unreachable("Unknown loc info!");
1493      case CCValAssign::Full: break;
1494      case CCValAssign::BCvt:
1495        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1496        break;
1497      case CCValAssign::SExt:
1498        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1499                               DAG.getValueType(VA.getValVT()));
1500        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1501        break;
1502      case CCValAssign::ZExt:
1503        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1504                               DAG.getValueType(VA.getValVT()));
1505        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1506        break;
1507      }
1508
1509      ArgValues.push_back(ArgValue);
1510
1511    } else { // VA.isRegLoc()
1512
1513      // sanity check
1514      assert(VA.isMemLoc());
1515      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1516
1517      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1518      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset());
1519
1520      // Create load nodes to retrieve arguments from the stack.
1521      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1522      ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0));
1523    }
1524  }
1525
1526  // varargs
1527  if (isVarArg) {
1528    static const unsigned GPRArgRegs[] = {
1529      ARM::R0, ARM::R1, ARM::R2, ARM::R3
1530    };
1531
1532    unsigned NumGPRs = CCInfo.getFirstUnallocated
1533      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1534
1535    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1536    unsigned VARegSize = (4 - NumGPRs) * 4;
1537    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1538    unsigned ArgOffset = 0;
1539    if (VARegSaveSize) {
1540      // If this function is vararg, store any remaining integer argument regs
1541      // to their spots on the stack so that they may be loaded by deferencing
1542      // the result of va_next.
1543      AFI->setVarArgsRegSaveSize(VARegSaveSize);
1544      ArgOffset = CCInfo.getNextStackOffset();
1545      VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1546                                                 VARegSaveSize - VARegSize);
1547      SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1548
1549      SmallVector<SDValue, 4> MemOps;
1550      for (; NumGPRs < 4; ++NumGPRs) {
1551        TargetRegisterClass *RC;
1552        if (AFI->isThumb1OnlyFunction())
1553          RC = ARM::tGPRRegisterClass;
1554        else
1555          RC = ARM::GPRRegisterClass;
1556
1557        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1558        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
1559        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1560        MemOps.push_back(Store);
1561        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1562                          DAG.getConstant(4, getPointerTy()));
1563      }
1564      if (!MemOps.empty())
1565        Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1566                           &MemOps[0], MemOps.size());
1567    } else
1568      // This will point to the next argument passed via stack.
1569      VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1570  }
1571
1572  ArgValues.push_back(Root);
1573
1574  // Return the new list of results.
1575  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1576                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1577}
1578
1579/// isFloatingPointZero - Return true if this is +0.0.
1580static bool isFloatingPointZero(SDValue Op) {
1581  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1582    return CFP->getValueAPF().isPosZero();
1583  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1584    // Maybe this has already been legalized into the constant pool?
1585    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1586      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1587      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1588        if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1589          return CFP->getValueAPF().isPosZero();
1590    }
1591  }
1592  return false;
1593}
1594
1595static bool isLegalCmpImmediate(unsigned C, bool isThumb1Only) {
1596  return ( isThumb1Only && (C & ~255U) == 0) ||
1597         (!isThumb1Only && ARM_AM::getSOImmVal(C) != -1);
1598}
1599
1600/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1601/// the given operands.
1602static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1603                         SDValue &ARMCC, SelectionDAG &DAG, bool isThumb1Only,
1604                         DebugLoc dl) {
1605  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1606    unsigned C = RHSC->getZExtValue();
1607    if (!isLegalCmpImmediate(C, isThumb1Only)) {
1608      // Constant does not fit, try adjusting it by one?
1609      switch (CC) {
1610      default: break;
1611      case ISD::SETLT:
1612      case ISD::SETGE:
1613        if (isLegalCmpImmediate(C-1, isThumb1Only)) {
1614          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1615          RHS = DAG.getConstant(C-1, MVT::i32);
1616        }
1617        break;
1618      case ISD::SETULT:
1619      case ISD::SETUGE:
1620        if (C > 0 && isLegalCmpImmediate(C-1, isThumb1Only)) {
1621          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1622          RHS = DAG.getConstant(C-1, MVT::i32);
1623        }
1624        break;
1625      case ISD::SETLE:
1626      case ISD::SETGT:
1627        if (isLegalCmpImmediate(C+1, isThumb1Only)) {
1628          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1629          RHS = DAG.getConstant(C+1, MVT::i32);
1630        }
1631        break;
1632      case ISD::SETULE:
1633      case ISD::SETUGT:
1634        if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb1Only)) {
1635          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1636          RHS = DAG.getConstant(C+1, MVT::i32);
1637        }
1638        break;
1639      }
1640    }
1641  }
1642
1643  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1644  ARMISD::NodeType CompareType;
1645  switch (CondCode) {
1646  default:
1647    CompareType = ARMISD::CMP;
1648    break;
1649  case ARMCC::EQ:
1650  case ARMCC::NE:
1651    // Uses only Z Flag
1652    CompareType = ARMISD::CMPZ;
1653    break;
1654  }
1655  ARMCC = DAG.getConstant(CondCode, MVT::i32);
1656  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1657}
1658
1659/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1660static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1661                         DebugLoc dl) {
1662  SDValue Cmp;
1663  if (!isFloatingPointZero(RHS))
1664    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1665  else
1666    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1667  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1668}
1669
1670static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
1671                              const ARMSubtarget *ST) {
1672  MVT VT = Op.getValueType();
1673  SDValue LHS = Op.getOperand(0);
1674  SDValue RHS = Op.getOperand(1);
1675  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1676  SDValue TrueVal = Op.getOperand(2);
1677  SDValue FalseVal = Op.getOperand(3);
1678  DebugLoc dl = Op.getDebugLoc();
1679
1680  if (LHS.getValueType() == MVT::i32) {
1681    SDValue ARMCC;
1682    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1683    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1684    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1685  }
1686
1687  ARMCC::CondCodes CondCode, CondCode2;
1688  if (FPCCToARMCC(CC, CondCode, CondCode2))
1689    std::swap(TrueVal, FalseVal);
1690
1691  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1692  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1693  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1694  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1695                                 ARMCC, CCR, Cmp);
1696  if (CondCode2 != ARMCC::AL) {
1697    SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1698    // FIXME: Needs another CMP because flag can have but one use.
1699    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1700    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1701                         Result, TrueVal, ARMCC2, CCR, Cmp2);
1702  }
1703  return Result;
1704}
1705
1706static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
1707                          const ARMSubtarget *ST) {
1708  SDValue  Chain = Op.getOperand(0);
1709  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1710  SDValue    LHS = Op.getOperand(2);
1711  SDValue    RHS = Op.getOperand(3);
1712  SDValue   Dest = Op.getOperand(4);
1713  DebugLoc dl = Op.getDebugLoc();
1714
1715  if (LHS.getValueType() == MVT::i32) {
1716    SDValue ARMCC;
1717    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1718    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1719    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1720                       Chain, Dest, ARMCC, CCR,Cmp);
1721  }
1722
1723  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1724  ARMCC::CondCodes CondCode, CondCode2;
1725  if (FPCCToARMCC(CC, CondCode, CondCode2))
1726    // Swap the LHS/RHS of the comparison if needed.
1727    std::swap(LHS, RHS);
1728
1729  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1730  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1731  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1732  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1733  SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1734  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1735  if (CondCode2 != ARMCC::AL) {
1736    ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1737    SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1738    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1739  }
1740  return Res;
1741}
1742
1743SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1744  SDValue Chain = Op.getOperand(0);
1745  SDValue Table = Op.getOperand(1);
1746  SDValue Index = Op.getOperand(2);
1747  DebugLoc dl = Op.getDebugLoc();
1748
1749  MVT PTy = getPointerTy();
1750  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
1751  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
1752  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
1753  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
1754  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
1755  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
1756  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1757  if (Subtarget->isThumb2()) {
1758    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
1759    // which does another jump to the destination. This also makes it easier
1760    // to translate it to TBB / TBH later.
1761    // FIXME: This might not work if the function is extremely large.
1762    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
1763                       Addr, Op.getOperand(2), JTI, UId);
1764  }
1765  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1766    Addr = DAG.getLoad((MVT)MVT::i32, dl, Chain, Addr, NULL, 0);
1767    Chain = Addr.getValue(1);
1768    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
1769    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1770  } else {
1771    Addr = DAG.getLoad(PTy, dl, Chain, Addr, NULL, 0);
1772    Chain = Addr.getValue(1);
1773    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1774  }
1775}
1776
1777static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1778  DebugLoc dl = Op.getDebugLoc();
1779  unsigned Opc =
1780    Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
1781  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
1782  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
1783}
1784
1785static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1786  MVT VT = Op.getValueType();
1787  DebugLoc dl = Op.getDebugLoc();
1788  unsigned Opc =
1789    Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
1790
1791  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
1792  return DAG.getNode(Opc, dl, VT, Op);
1793}
1794
1795static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
1796  // Implement fcopysign with a fabs and a conditional fneg.
1797  SDValue Tmp0 = Op.getOperand(0);
1798  SDValue Tmp1 = Op.getOperand(1);
1799  DebugLoc dl = Op.getDebugLoc();
1800  MVT VT = Op.getValueType();
1801  MVT SrcVT = Tmp1.getValueType();
1802  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
1803  SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
1804  SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
1805  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1806  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
1807}
1808
1809SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
1810  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1811  MFI->setFrameAddressIsTaken(true);
1812  MVT VT = Op.getValueType();
1813  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
1814  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1815  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
1816    ? ARM::R7 : ARM::R11;
1817  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
1818  while (Depth--)
1819    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
1820  return FrameAddr;
1821}
1822
1823SDValue
1824ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1825                                           SDValue Chain,
1826                                           SDValue Dst, SDValue Src,
1827                                           SDValue Size, unsigned Align,
1828                                           bool AlwaysInline,
1829                                         const Value *DstSV, uint64_t DstSVOff,
1830                                         const Value *SrcSV, uint64_t SrcSVOff){
1831  // Do repeated 4-byte loads and stores. To be improved.
1832  // This requires 4-byte alignment.
1833  if ((Align & 3) != 0)
1834    return SDValue();
1835  // This requires the copy size to be a constant, preferrably
1836  // within a subtarget-specific limit.
1837  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
1838  if (!ConstantSize)
1839    return SDValue();
1840  uint64_t SizeVal = ConstantSize->getZExtValue();
1841  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
1842    return SDValue();
1843
1844  unsigned BytesLeft = SizeVal & 3;
1845  unsigned NumMemOps = SizeVal >> 2;
1846  unsigned EmittedNumMemOps = 0;
1847  MVT VT = MVT::i32;
1848  unsigned VTSize = 4;
1849  unsigned i = 0;
1850  const unsigned MAX_LOADS_IN_LDM = 6;
1851  SDValue TFOps[MAX_LOADS_IN_LDM];
1852  SDValue Loads[MAX_LOADS_IN_LDM];
1853  uint64_t SrcOff = 0, DstOff = 0;
1854
1855  // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
1856  // same number of stores.  The loads and stores will get combined into
1857  // ldm/stm later on.
1858  while (EmittedNumMemOps < NumMemOps) {
1859    for (i = 0;
1860         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1861      Loads[i] = DAG.getLoad(VT, dl, Chain,
1862                             DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1863                                         DAG.getConstant(SrcOff, MVT::i32)),
1864                             SrcSV, SrcSVOff + SrcOff);
1865      TFOps[i] = Loads[i].getValue(1);
1866      SrcOff += VTSize;
1867    }
1868    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1869
1870    for (i = 0;
1871         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1872      TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1873                           DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1874                                       DAG.getConstant(DstOff, MVT::i32)),
1875                           DstSV, DstSVOff + DstOff);
1876      DstOff += VTSize;
1877    }
1878    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1879
1880    EmittedNumMemOps += i;
1881  }
1882
1883  if (BytesLeft == 0)
1884    return Chain;
1885
1886  // Issue loads / stores for the trailing (1 - 3) bytes.
1887  unsigned BytesLeftSave = BytesLeft;
1888  i = 0;
1889  while (BytesLeft) {
1890    if (BytesLeft >= 2) {
1891      VT = MVT::i16;
1892      VTSize = 2;
1893    } else {
1894      VT = MVT::i8;
1895      VTSize = 1;
1896    }
1897
1898    Loads[i] = DAG.getLoad(VT, dl, Chain,
1899                           DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1900                                       DAG.getConstant(SrcOff, MVT::i32)),
1901                           SrcSV, SrcSVOff + SrcOff);
1902    TFOps[i] = Loads[i].getValue(1);
1903    ++i;
1904    SrcOff += VTSize;
1905    BytesLeft -= VTSize;
1906  }
1907  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1908
1909  i = 0;
1910  BytesLeft = BytesLeftSave;
1911  while (BytesLeft) {
1912    if (BytesLeft >= 2) {
1913      VT = MVT::i16;
1914      VTSize = 2;
1915    } else {
1916      VT = MVT::i8;
1917      VTSize = 1;
1918    }
1919
1920    TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1921                            DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1922                                        DAG.getConstant(DstOff, MVT::i32)),
1923                            DstSV, DstSVOff + DstOff);
1924    ++i;
1925    DstOff += VTSize;
1926    BytesLeft -= VTSize;
1927  }
1928  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1929}
1930
1931static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
1932  SDValue Op = N->getOperand(0);
1933  DebugLoc dl = N->getDebugLoc();
1934  if (N->getValueType(0) == MVT::f64) {
1935    // Turn i64->f64 into FMDRR.
1936    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
1937                             DAG.getConstant(0, MVT::i32));
1938    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
1939                             DAG.getConstant(1, MVT::i32));
1940    return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
1941  }
1942
1943  // Turn f64->i64 into FMRRD.
1944  SDValue Cvt = DAG.getNode(ARMISD::FMRRD, dl,
1945                            DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
1946
1947  // Merge the pieces into a single i64 value.
1948  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
1949}
1950
1951/// getZeroVector - Returns a vector of specified type with all zero elements.
1952///
1953static SDValue getZeroVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
1954  assert(VT.isVector() && "Expected a vector type");
1955
1956  // Zero vectors are used to represent vector negation and in those cases
1957  // will be implemented with the NEON VNEG instruction.  However, VNEG does
1958  // not support i64 elements, so sometimes the zero vectors will need to be
1959  // explicitly constructed.  For those cases, and potentially other uses in
1960  // the future, always build zero vectors as <4 x i32> or <2 x i32> bitcasted
1961  // to their dest type.  This ensures they get CSE'd.
1962  SDValue Vec;
1963  SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
1964  if (VT.getSizeInBits() == 64)
1965    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
1966  else
1967    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
1968
1969  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
1970}
1971
1972/// getOnesVector - Returns a vector of specified type with all bits set.
1973///
1974static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
1975  assert(VT.isVector() && "Expected a vector type");
1976
1977  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
1978  // type.  This ensures they get CSE'd.
1979  SDValue Vec;
1980  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
1981  if (VT.getSizeInBits() == 64)
1982    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
1983  else
1984    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
1985
1986  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
1987}
1988
1989static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
1990                          const ARMSubtarget *ST) {
1991  MVT VT = N->getValueType(0);
1992  DebugLoc dl = N->getDebugLoc();
1993
1994  // Lower vector shifts on NEON to use VSHL.
1995  if (VT.isVector()) {
1996    assert(ST->hasNEON() && "unexpected vector shift");
1997
1998    // Left shifts translate directly to the vshiftu intrinsic.
1999    if (N->getOpcode() == ISD::SHL)
2000      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2001                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2002                         N->getOperand(0), N->getOperand(1));
2003
2004    assert((N->getOpcode() == ISD::SRA ||
2005            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2006
2007    // NEON uses the same intrinsics for both left and right shifts.  For
2008    // right shifts, the shift amounts are negative, so negate the vector of
2009    // shift amounts.
2010    MVT ShiftVT = N->getOperand(1).getValueType();
2011    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2012                                       getZeroVector(ShiftVT, DAG, dl),
2013                                       N->getOperand(1));
2014    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2015                               Intrinsic::arm_neon_vshifts :
2016                               Intrinsic::arm_neon_vshiftu);
2017    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2018                       DAG.getConstant(vshiftInt, MVT::i32),
2019                       N->getOperand(0), NegatedCount);
2020  }
2021
2022  assert(VT == MVT::i64 &&
2023         (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2024         "Unknown shift to lower!");
2025
2026  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2027  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2028      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2029    return SDValue();
2030
2031  // If we are in thumb mode, we don't have RRX.
2032  if (ST->isThumb1Only()) return SDValue();
2033
2034  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2035  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2036                             DAG.getConstant(0, MVT::i32));
2037  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2038                             DAG.getConstant(1, MVT::i32));
2039
2040  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2041  // captures the result into a carry flag.
2042  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2043  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2044
2045  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2046  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2047
2048  // Merge the pieces into a single i64 value.
2049 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2050}
2051
2052static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2053  SDValue TmpOp0, TmpOp1;
2054  bool Invert = false;
2055  bool Swap = false;
2056  unsigned Opc = 0;
2057
2058  SDValue Op0 = Op.getOperand(0);
2059  SDValue Op1 = Op.getOperand(1);
2060  SDValue CC = Op.getOperand(2);
2061  MVT VT = Op.getValueType();
2062  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2063  DebugLoc dl = Op.getDebugLoc();
2064
2065  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2066    switch (SetCCOpcode) {
2067    default: llvm_unreachable("Illegal FP comparison"); break;
2068    case ISD::SETUNE:
2069    case ISD::SETNE:  Invert = true; // Fallthrough
2070    case ISD::SETOEQ:
2071    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2072    case ISD::SETOLT:
2073    case ISD::SETLT: Swap = true; // Fallthrough
2074    case ISD::SETOGT:
2075    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2076    case ISD::SETOLE:
2077    case ISD::SETLE:  Swap = true; // Fallthrough
2078    case ISD::SETOGE:
2079    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2080    case ISD::SETUGE: Swap = true; // Fallthrough
2081    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2082    case ISD::SETUGT: Swap = true; // Fallthrough
2083    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2084    case ISD::SETUEQ: Invert = true; // Fallthrough
2085    case ISD::SETONE:
2086      // Expand this to (OLT | OGT).
2087      TmpOp0 = Op0;
2088      TmpOp1 = Op1;
2089      Opc = ISD::OR;
2090      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2091      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2092      break;
2093    case ISD::SETUO: Invert = true; // Fallthrough
2094    case ISD::SETO:
2095      // Expand this to (OLT | OGE).
2096      TmpOp0 = Op0;
2097      TmpOp1 = Op1;
2098      Opc = ISD::OR;
2099      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2100      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2101      break;
2102    }
2103  } else {
2104    // Integer comparisons.
2105    switch (SetCCOpcode) {
2106    default: llvm_unreachable("Illegal integer comparison"); break;
2107    case ISD::SETNE:  Invert = true;
2108    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2109    case ISD::SETLT:  Swap = true;
2110    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2111    case ISD::SETLE:  Swap = true;
2112    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2113    case ISD::SETULT: Swap = true;
2114    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2115    case ISD::SETULE: Swap = true;
2116    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2117    }
2118
2119    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2120    if (Opc == ARMISD::VCEQ) {
2121
2122      SDValue AndOp;
2123      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2124        AndOp = Op0;
2125      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2126        AndOp = Op1;
2127
2128      // Ignore bitconvert.
2129      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2130        AndOp = AndOp.getOperand(0);
2131
2132      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2133        Opc = ARMISD::VTST;
2134        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2135        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2136        Invert = !Invert;
2137      }
2138    }
2139  }
2140
2141  if (Swap)
2142    std::swap(Op0, Op1);
2143
2144  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2145
2146  if (Invert)
2147    Result = DAG.getNOT(dl, Result, VT);
2148
2149  return Result;
2150}
2151
2152/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
2153/// VMOV instruction, and if so, return the constant being splatted.
2154static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
2155                           unsigned SplatBitSize, SelectionDAG &DAG) {
2156  switch (SplatBitSize) {
2157  case 8:
2158    // Any 1-byte value is OK.
2159    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2160    return DAG.getTargetConstant(SplatBits, MVT::i8);
2161
2162  case 16:
2163    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2164    if ((SplatBits & ~0xff) == 0 ||
2165        (SplatBits & ~0xff00) == 0)
2166      return DAG.getTargetConstant(SplatBits, MVT::i16);
2167    break;
2168
2169  case 32:
2170    // NEON's 32-bit VMOV supports splat values where:
2171    // * only one byte is nonzero, or
2172    // * the least significant byte is 0xff and the second byte is nonzero, or
2173    // * the least significant 2 bytes are 0xff and the third is nonzero.
2174    if ((SplatBits & ~0xff) == 0 ||
2175        (SplatBits & ~0xff00) == 0 ||
2176        (SplatBits & ~0xff0000) == 0 ||
2177        (SplatBits & ~0xff000000) == 0)
2178      return DAG.getTargetConstant(SplatBits, MVT::i32);
2179
2180    if ((SplatBits & ~0xffff) == 0 &&
2181        ((SplatBits | SplatUndef) & 0xff) == 0xff)
2182      return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
2183
2184    if ((SplatBits & ~0xffffff) == 0 &&
2185        ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
2186      return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
2187
2188    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2189    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2190    // VMOV.I32.  A (very) minor optimization would be to replicate the value
2191    // and fall through here to test for a valid 64-bit splat.  But, then the
2192    // caller would also need to check and handle the change in size.
2193    break;
2194
2195  case 64: {
2196    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2197    uint64_t BitMask = 0xff;
2198    uint64_t Val = 0;
2199    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2200      if (((SplatBits | SplatUndef) & BitMask) == BitMask)
2201        Val |= BitMask;
2202      else if ((SplatBits & BitMask) != 0)
2203        return SDValue();
2204      BitMask <<= 8;
2205    }
2206    return DAG.getTargetConstant(Val, MVT::i64);
2207  }
2208
2209  default:
2210    llvm_unreachable("unexpected size for isVMOVSplat");
2211    break;
2212  }
2213
2214  return SDValue();
2215}
2216
2217/// getVMOVImm - If this is a build_vector of constants which can be
2218/// formed by using a VMOV instruction of the specified element size,
2219/// return the constant being splatted.  The ByteSize field indicates the
2220/// number of bytes of each element [1248].
2221SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2222  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2223  APInt SplatBits, SplatUndef;
2224  unsigned SplatBitSize;
2225  bool HasAnyUndefs;
2226  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2227                                      HasAnyUndefs, ByteSize * 8))
2228    return SDValue();
2229
2230  if (SplatBitSize > ByteSize * 8)
2231    return SDValue();
2232
2233  return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2234                     SplatBitSize, DAG);
2235}
2236
2237/// isVREVMask - Check if a vector shuffle corresponds to a VREV
2238/// instruction with the specified blocksize.  (The order of the elements
2239/// within each block of the vector is reversed.)
2240bool ARM::isVREVMask(ShuffleVectorSDNode *N, unsigned BlockSize) {
2241  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
2242         "Only possible block sizes for VREV are: 16, 32, 64");
2243
2244  MVT VT = N->getValueType(0);
2245  unsigned NumElts = VT.getVectorNumElements();
2246  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2247  unsigned BlockElts = N->getMaskElt(0) + 1;
2248
2249  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
2250    return false;
2251
2252  for (unsigned i = 0; i < NumElts; ++i) {
2253    if ((unsigned) N->getMaskElt(i) !=
2254        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
2255      return false;
2256  }
2257
2258  return true;
2259}
2260
2261static SDValue BuildSplat(SDValue Val, MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2262  // Canonicalize all-zeros and all-ones vectors.
2263  ConstantSDNode *ConstVal = dyn_cast<ConstantSDNode>(Val.getNode());
2264  if (ConstVal->isNullValue())
2265    return getZeroVector(VT, DAG, dl);
2266  if (ConstVal->isAllOnesValue())
2267    return getOnesVector(VT, DAG, dl);
2268
2269  MVT CanonicalVT;
2270  if (VT.is64BitVector()) {
2271    switch (Val.getValueType().getSizeInBits()) {
2272    case 8:  CanonicalVT = MVT::v8i8; break;
2273    case 16: CanonicalVT = MVT::v4i16; break;
2274    case 32: CanonicalVT = MVT::v2i32; break;
2275    case 64: CanonicalVT = MVT::v1i64; break;
2276    default: llvm_unreachable("unexpected splat element type"); break;
2277    }
2278  } else {
2279    assert(VT.is128BitVector() && "unknown splat vector size");
2280    switch (Val.getValueType().getSizeInBits()) {
2281    case 8:  CanonicalVT = MVT::v16i8; break;
2282    case 16: CanonicalVT = MVT::v8i16; break;
2283    case 32: CanonicalVT = MVT::v4i32; break;
2284    case 64: CanonicalVT = MVT::v2i64; break;
2285    default: llvm_unreachable("unexpected splat element type"); break;
2286    }
2287  }
2288
2289  // Build a canonical splat for this value.
2290  SmallVector<SDValue, 8> Ops;
2291  Ops.assign(CanonicalVT.getVectorNumElements(), Val);
2292  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
2293                            Ops.size());
2294  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
2295}
2296
2297// If this is a case we can't handle, return null and let the default
2298// expansion code take care of it.
2299static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
2300  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
2301  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
2302  DebugLoc dl = Op.getDebugLoc();
2303  MVT VT = Op.getValueType();
2304
2305  APInt SplatBits, SplatUndef;
2306  unsigned SplatBitSize;
2307  bool HasAnyUndefs;
2308  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
2309    SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
2310                              SplatUndef.getZExtValue(), SplatBitSize, DAG);
2311    if (Val.getNode())
2312      return BuildSplat(Val, VT, DAG, dl);
2313  }
2314
2315  // If there are only 2 elements in a 128-bit vector, insert them into an
2316  // undef vector.  This handles the common case for 128-bit vector argument
2317  // passing, where the insertions should be translated to subreg accesses
2318  // with no real instructions.
2319  if (VT.is128BitVector() && Op.getNumOperands() == 2) {
2320    SDValue Val = DAG.getUNDEF(VT);
2321    SDValue Op0 = Op.getOperand(0);
2322    SDValue Op1 = Op.getOperand(1);
2323    if (Op0.getOpcode() != ISD::UNDEF)
2324      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0,
2325                        DAG.getIntPtrConstant(0));
2326    if (Op1.getOpcode() != ISD::UNDEF)
2327      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1,
2328                        DAG.getIntPtrConstant(1));
2329    return Val;
2330  }
2331
2332  return SDValue();
2333}
2334
2335static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2336  return Op;
2337}
2338
2339static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
2340  return Op;
2341}
2342
2343static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
2344  MVT VT = Op.getValueType();
2345  DebugLoc dl = Op.getDebugLoc();
2346  assert((VT == MVT::i8 || VT == MVT::i16) &&
2347         "unexpected type for custom-lowering vector extract");
2348  SDValue Vec = Op.getOperand(0);
2349  SDValue Lane = Op.getOperand(1);
2350  Op = DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
2351  Op = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Op, DAG.getValueType(VT));
2352  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
2353}
2354
2355static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
2356  // The only time a CONCAT_VECTORS operation can have legal types is when
2357  // two 64-bit vectors are concatenated to a 128-bit vector.
2358  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
2359         "unexpected CONCAT_VECTORS");
2360  DebugLoc dl = Op.getDebugLoc();
2361  SDValue Val = DAG.getUNDEF(MVT::v2f64);
2362  SDValue Op0 = Op.getOperand(0);
2363  SDValue Op1 = Op.getOperand(1);
2364  if (Op0.getOpcode() != ISD::UNDEF)
2365    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2366                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
2367                      DAG.getIntPtrConstant(0));
2368  if (Op1.getOpcode() != ISD::UNDEF)
2369    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2370                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
2371                      DAG.getIntPtrConstant(1));
2372  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
2373}
2374
2375SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
2376  switch (Op.getOpcode()) {
2377  default: llvm_unreachable("Don't know how to custom lower this!");
2378  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
2379  case ISD::GlobalAddress:
2380    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
2381      LowerGlobalAddressELF(Op, DAG);
2382  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2383  case ISD::CALL:          return LowerCALL(Op, DAG);
2384  case ISD::RET:           return LowerRET(Op, DAG);
2385  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG, Subtarget);
2386  case ISD::BR_CC:         return LowerBR_CC(Op, DAG, Subtarget);
2387  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
2388  case ISD::VASTART:       return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2389  case ISD::SINT_TO_FP:
2390  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
2391  case ISD::FP_TO_SINT:
2392  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
2393  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
2394  case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
2395  case ISD::RETURNADDR:    break;
2396  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
2397  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2398  case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
2399  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2400  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
2401  case ISD::SHL:
2402  case ISD::SRL:
2403  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
2404  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
2405  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
2406  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2407  case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
2408  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2409  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
2410  }
2411  return SDValue();
2412}
2413
2414/// ReplaceNodeResults - Replace the results of node with an illegal result
2415/// type with new values built out of custom code.
2416void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
2417                                           SmallVectorImpl<SDValue>&Results,
2418                                           SelectionDAG &DAG) {
2419  switch (N->getOpcode()) {
2420  default:
2421    llvm_unreachable("Don't know how to custom expand this!");
2422    return;
2423  case ISD::BIT_CONVERT:
2424    Results.push_back(ExpandBIT_CONVERT(N, DAG));
2425    return;
2426  case ISD::SRL:
2427  case ISD::SRA: {
2428    SDValue Res = LowerShift(N, DAG, Subtarget);
2429    if (Res.getNode())
2430      Results.push_back(Res);
2431    return;
2432  }
2433  }
2434}
2435
2436//===----------------------------------------------------------------------===//
2437//                           ARM Scheduler Hooks
2438//===----------------------------------------------------------------------===//
2439
2440MachineBasicBlock *
2441ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
2442                                               MachineBasicBlock *BB) const {
2443  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2444  DebugLoc dl = MI->getDebugLoc();
2445  switch (MI->getOpcode()) {
2446  default: assert(false && "Unexpected instr type to insert");
2447  case ARM::tMOVCCr: {
2448    // To "insert" a SELECT_CC instruction, we actually have to insert the
2449    // diamond control-flow pattern.  The incoming instruction knows the
2450    // destination vreg to set, the condition code register to branch on, the
2451    // true/false values to select between, and a branch opcode to use.
2452    const BasicBlock *LLVM_BB = BB->getBasicBlock();
2453    MachineFunction::iterator It = BB;
2454    ++It;
2455
2456    //  thisMBB:
2457    //  ...
2458    //   TrueVal = ...
2459    //   cmpTY ccX, r1, r2
2460    //   bCC copy1MBB
2461    //   fallthrough --> copy0MBB
2462    MachineBasicBlock *thisMBB  = BB;
2463    MachineFunction *F = BB->getParent();
2464    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
2465    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
2466    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
2467      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
2468    F->insert(It, copy0MBB);
2469    F->insert(It, sinkMBB);
2470    // Update machine-CFG edges by first adding all successors of the current
2471    // block to the new block which will contain the Phi node for the select.
2472    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2473        e = BB->succ_end(); i != e; ++i)
2474      sinkMBB->addSuccessor(*i);
2475    // Next, remove all successors of the current block, and add the true
2476    // and fallthrough blocks as its successors.
2477    while(!BB->succ_empty())
2478      BB->removeSuccessor(BB->succ_begin());
2479    BB->addSuccessor(copy0MBB);
2480    BB->addSuccessor(sinkMBB);
2481
2482    //  copy0MBB:
2483    //   %FalseValue = ...
2484    //   # fallthrough to sinkMBB
2485    BB = copy0MBB;
2486
2487    // Update machine-CFG edges
2488    BB->addSuccessor(sinkMBB);
2489
2490    //  sinkMBB:
2491    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2492    //  ...
2493    BB = sinkMBB;
2494    BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
2495      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
2496      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2497
2498    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
2499    return BB;
2500  }
2501  }
2502}
2503
2504//===----------------------------------------------------------------------===//
2505//                           ARM Optimization Hooks
2506//===----------------------------------------------------------------------===//
2507
2508static
2509SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
2510                            TargetLowering::DAGCombinerInfo &DCI) {
2511  SelectionDAG &DAG = DCI.DAG;
2512  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2513  MVT VT = N->getValueType(0);
2514  unsigned Opc = N->getOpcode();
2515  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
2516  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
2517  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
2518  ISD::CondCode CC = ISD::SETCC_INVALID;
2519
2520  if (isSlctCC) {
2521    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
2522  } else {
2523    SDValue CCOp = Slct.getOperand(0);
2524    if (CCOp.getOpcode() == ISD::SETCC)
2525      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
2526  }
2527
2528  bool DoXform = false;
2529  bool InvCC = false;
2530  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
2531          "Bad input!");
2532
2533  if (LHS.getOpcode() == ISD::Constant &&
2534      cast<ConstantSDNode>(LHS)->isNullValue()) {
2535    DoXform = true;
2536  } else if (CC != ISD::SETCC_INVALID &&
2537             RHS.getOpcode() == ISD::Constant &&
2538             cast<ConstantSDNode>(RHS)->isNullValue()) {
2539    std::swap(LHS, RHS);
2540    SDValue Op0 = Slct.getOperand(0);
2541    MVT OpVT = isSlctCC ? Op0.getValueType() :
2542                          Op0.getOperand(0).getValueType();
2543    bool isInt = OpVT.isInteger();
2544    CC = ISD::getSetCCInverse(CC, isInt);
2545
2546    if (!TLI.isCondCodeLegal(CC, OpVT))
2547      return SDValue();         // Inverse operator isn't legal.
2548
2549    DoXform = true;
2550    InvCC = true;
2551  }
2552
2553  if (DoXform) {
2554    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
2555    if (isSlctCC)
2556      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
2557                             Slct.getOperand(0), Slct.getOperand(1), CC);
2558    SDValue CCOp = Slct.getOperand(0);
2559    if (InvCC)
2560      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
2561                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
2562    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
2563                       CCOp, OtherOp, Result);
2564  }
2565  return SDValue();
2566}
2567
2568/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
2569static SDValue PerformADDCombine(SDNode *N,
2570                                 TargetLowering::DAGCombinerInfo &DCI) {
2571  // added by evan in r37685 with no testcase.
2572  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2573
2574  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
2575  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
2576    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
2577    if (Result.getNode()) return Result;
2578  }
2579  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2580    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2581    if (Result.getNode()) return Result;
2582  }
2583
2584  return SDValue();
2585}
2586
2587/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
2588static SDValue PerformSUBCombine(SDNode *N,
2589                                 TargetLowering::DAGCombinerInfo &DCI) {
2590  // added by evan in r37685 with no testcase.
2591  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2592
2593  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
2594  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2595    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2596    if (Result.getNode()) return Result;
2597  }
2598
2599  return SDValue();
2600}
2601
2602
2603/// PerformFMRRDCombine - Target-specific dag combine xforms for ARMISD::FMRRD.
2604static SDValue PerformFMRRDCombine(SDNode *N,
2605                                   TargetLowering::DAGCombinerInfo &DCI) {
2606  // fmrrd(fmdrr x, y) -> x,y
2607  SDValue InDouble = N->getOperand(0);
2608  if (InDouble.getOpcode() == ARMISD::FMDRR)
2609    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
2610  return SDValue();
2611}
2612
2613/// getVShiftImm - Check if this is a valid build_vector for the immediate
2614/// operand of a vector shift operation, where all the elements of the
2615/// build_vector must have the same constant integer value.
2616static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
2617  // Ignore bit_converts.
2618  while (Op.getOpcode() == ISD::BIT_CONVERT)
2619    Op = Op.getOperand(0);
2620  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
2621  APInt SplatBits, SplatUndef;
2622  unsigned SplatBitSize;
2623  bool HasAnyUndefs;
2624  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2625                                      HasAnyUndefs, ElementBits) ||
2626      SplatBitSize > ElementBits)
2627    return false;
2628  Cnt = SplatBits.getSExtValue();
2629  return true;
2630}
2631
2632/// isVShiftLImm - Check if this is a valid build_vector for the immediate
2633/// operand of a vector shift left operation.  That value must be in the range:
2634///   0 <= Value < ElementBits for a left shift; or
2635///   0 <= Value <= ElementBits for a long left shift.
2636static bool isVShiftLImm(SDValue Op, MVT VT, bool isLong, int64_t &Cnt) {
2637  assert(VT.isVector() && "vector shift count is not a vector type");
2638  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2639  if (! getVShiftImm(Op, ElementBits, Cnt))
2640    return false;
2641  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
2642}
2643
2644/// isVShiftRImm - Check if this is a valid build_vector for the immediate
2645/// operand of a vector shift right operation.  For a shift opcode, the value
2646/// is positive, but for an intrinsic the value count must be negative. The
2647/// absolute value must be in the range:
2648///   1 <= |Value| <= ElementBits for a right shift; or
2649///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
2650static bool isVShiftRImm(SDValue Op, MVT VT, bool isNarrow, bool isIntrinsic,
2651                         int64_t &Cnt) {
2652  assert(VT.isVector() && "vector shift count is not a vector type");
2653  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2654  if (! getVShiftImm(Op, ElementBits, Cnt))
2655    return false;
2656  if (isIntrinsic)
2657    Cnt = -Cnt;
2658  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
2659}
2660
2661/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
2662static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
2663  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2664  switch (IntNo) {
2665  default:
2666    // Don't do anything for most intrinsics.
2667    break;
2668
2669  // Vector shifts: check for immediate versions and lower them.
2670  // Note: This is done during DAG combining instead of DAG legalizing because
2671  // the build_vectors for 64-bit vector element shift counts are generally
2672  // not legal, and it is hard to see their values after they get legalized to
2673  // loads from a constant pool.
2674  case Intrinsic::arm_neon_vshifts:
2675  case Intrinsic::arm_neon_vshiftu:
2676  case Intrinsic::arm_neon_vshiftls:
2677  case Intrinsic::arm_neon_vshiftlu:
2678  case Intrinsic::arm_neon_vshiftn:
2679  case Intrinsic::arm_neon_vrshifts:
2680  case Intrinsic::arm_neon_vrshiftu:
2681  case Intrinsic::arm_neon_vrshiftn:
2682  case Intrinsic::arm_neon_vqshifts:
2683  case Intrinsic::arm_neon_vqshiftu:
2684  case Intrinsic::arm_neon_vqshiftsu:
2685  case Intrinsic::arm_neon_vqshiftns:
2686  case Intrinsic::arm_neon_vqshiftnu:
2687  case Intrinsic::arm_neon_vqshiftnsu:
2688  case Intrinsic::arm_neon_vqrshiftns:
2689  case Intrinsic::arm_neon_vqrshiftnu:
2690  case Intrinsic::arm_neon_vqrshiftnsu: {
2691    MVT VT = N->getOperand(1).getValueType();
2692    int64_t Cnt;
2693    unsigned VShiftOpc = 0;
2694
2695    switch (IntNo) {
2696    case Intrinsic::arm_neon_vshifts:
2697    case Intrinsic::arm_neon_vshiftu:
2698      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
2699        VShiftOpc = ARMISD::VSHL;
2700        break;
2701      }
2702      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
2703        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
2704                     ARMISD::VSHRs : ARMISD::VSHRu);
2705        break;
2706      }
2707      return SDValue();
2708
2709    case Intrinsic::arm_neon_vshiftls:
2710    case Intrinsic::arm_neon_vshiftlu:
2711      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
2712        break;
2713      llvm_unreachable("invalid shift count for vshll intrinsic");
2714
2715    case Intrinsic::arm_neon_vrshifts:
2716    case Intrinsic::arm_neon_vrshiftu:
2717      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
2718        break;
2719      return SDValue();
2720
2721    case Intrinsic::arm_neon_vqshifts:
2722    case Intrinsic::arm_neon_vqshiftu:
2723      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2724        break;
2725      return SDValue();
2726
2727    case Intrinsic::arm_neon_vqshiftsu:
2728      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2729        break;
2730      llvm_unreachable("invalid shift count for vqshlu intrinsic");
2731
2732    case Intrinsic::arm_neon_vshiftn:
2733    case Intrinsic::arm_neon_vrshiftn:
2734    case Intrinsic::arm_neon_vqshiftns:
2735    case Intrinsic::arm_neon_vqshiftnu:
2736    case Intrinsic::arm_neon_vqshiftnsu:
2737    case Intrinsic::arm_neon_vqrshiftns:
2738    case Intrinsic::arm_neon_vqrshiftnu:
2739    case Intrinsic::arm_neon_vqrshiftnsu:
2740      // Narrowing shifts require an immediate right shift.
2741      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
2742        break;
2743      llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
2744
2745    default:
2746      llvm_unreachable("unhandled vector shift");
2747    }
2748
2749    switch (IntNo) {
2750    case Intrinsic::arm_neon_vshifts:
2751    case Intrinsic::arm_neon_vshiftu:
2752      // Opcode already set above.
2753      break;
2754    case Intrinsic::arm_neon_vshiftls:
2755    case Intrinsic::arm_neon_vshiftlu:
2756      if (Cnt == VT.getVectorElementType().getSizeInBits())
2757        VShiftOpc = ARMISD::VSHLLi;
2758      else
2759        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
2760                     ARMISD::VSHLLs : ARMISD::VSHLLu);
2761      break;
2762    case Intrinsic::arm_neon_vshiftn:
2763      VShiftOpc = ARMISD::VSHRN; break;
2764    case Intrinsic::arm_neon_vrshifts:
2765      VShiftOpc = ARMISD::VRSHRs; break;
2766    case Intrinsic::arm_neon_vrshiftu:
2767      VShiftOpc = ARMISD::VRSHRu; break;
2768    case Intrinsic::arm_neon_vrshiftn:
2769      VShiftOpc = ARMISD::VRSHRN; break;
2770    case Intrinsic::arm_neon_vqshifts:
2771      VShiftOpc = ARMISD::VQSHLs; break;
2772    case Intrinsic::arm_neon_vqshiftu:
2773      VShiftOpc = ARMISD::VQSHLu; break;
2774    case Intrinsic::arm_neon_vqshiftsu:
2775      VShiftOpc = ARMISD::VQSHLsu; break;
2776    case Intrinsic::arm_neon_vqshiftns:
2777      VShiftOpc = ARMISD::VQSHRNs; break;
2778    case Intrinsic::arm_neon_vqshiftnu:
2779      VShiftOpc = ARMISD::VQSHRNu; break;
2780    case Intrinsic::arm_neon_vqshiftnsu:
2781      VShiftOpc = ARMISD::VQSHRNsu; break;
2782    case Intrinsic::arm_neon_vqrshiftns:
2783      VShiftOpc = ARMISD::VQRSHRNs; break;
2784    case Intrinsic::arm_neon_vqrshiftnu:
2785      VShiftOpc = ARMISD::VQRSHRNu; break;
2786    case Intrinsic::arm_neon_vqrshiftnsu:
2787      VShiftOpc = ARMISD::VQRSHRNsu; break;
2788    }
2789
2790    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
2791                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
2792  }
2793
2794  case Intrinsic::arm_neon_vshiftins: {
2795    MVT VT = N->getOperand(1).getValueType();
2796    int64_t Cnt;
2797    unsigned VShiftOpc = 0;
2798
2799    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
2800      VShiftOpc = ARMISD::VSLI;
2801    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
2802      VShiftOpc = ARMISD::VSRI;
2803    else {
2804      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
2805    }
2806
2807    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
2808                       N->getOperand(1), N->getOperand(2),
2809                       DAG.getConstant(Cnt, MVT::i32));
2810  }
2811
2812  case Intrinsic::arm_neon_vqrshifts:
2813  case Intrinsic::arm_neon_vqrshiftu:
2814    // No immediate versions of these to check for.
2815    break;
2816  }
2817
2818  return SDValue();
2819}
2820
2821/// PerformShiftCombine - Checks for immediate versions of vector shifts and
2822/// lowers them.  As with the vector shift intrinsics, this is done during DAG
2823/// combining instead of DAG legalizing because the build_vectors for 64-bit
2824/// vector element shift counts are generally not legal, and it is hard to see
2825/// their values after they get legalized to loads from a constant pool.
2826static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
2827                                   const ARMSubtarget *ST) {
2828  MVT VT = N->getValueType(0);
2829
2830  // Nothing to be done for scalar shifts.
2831  if (! VT.isVector())
2832    return SDValue();
2833
2834  assert(ST->hasNEON() && "unexpected vector shift");
2835  int64_t Cnt;
2836
2837  switch (N->getOpcode()) {
2838  default: llvm_unreachable("unexpected shift opcode");
2839
2840  case ISD::SHL:
2841    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
2842      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
2843                         DAG.getConstant(Cnt, MVT::i32));
2844    break;
2845
2846  case ISD::SRA:
2847  case ISD::SRL:
2848    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
2849      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
2850                            ARMISD::VSHRs : ARMISD::VSHRu);
2851      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
2852                         DAG.getConstant(Cnt, MVT::i32));
2853    }
2854  }
2855  return SDValue();
2856}
2857
2858/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
2859/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
2860static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
2861                                    const ARMSubtarget *ST) {
2862  SDValue N0 = N->getOperand(0);
2863
2864  // Check for sign- and zero-extensions of vector extract operations of 8-
2865  // and 16-bit vector elements.  NEON supports these directly.  They are
2866  // handled during DAG combining because type legalization will promote them
2867  // to 32-bit types and it is messy to recognize the operations after that.
2868  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2869    SDValue Vec = N0.getOperand(0);
2870    SDValue Lane = N0.getOperand(1);
2871    MVT VT = N->getValueType(0);
2872    MVT EltVT = N0.getValueType();
2873    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2874
2875    if (VT == MVT::i32 &&
2876        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
2877        TLI.isTypeLegal(Vec.getValueType())) {
2878
2879      unsigned Opc = 0;
2880      switch (N->getOpcode()) {
2881      default: llvm_unreachable("unexpected opcode");
2882      case ISD::SIGN_EXTEND:
2883        Opc = ARMISD::VGETLANEs;
2884        break;
2885      case ISD::ZERO_EXTEND:
2886      case ISD::ANY_EXTEND:
2887        Opc = ARMISD::VGETLANEu;
2888        break;
2889      }
2890      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
2891    }
2892  }
2893
2894  return SDValue();
2895}
2896
2897SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
2898                                             DAGCombinerInfo &DCI) const {
2899  switch (N->getOpcode()) {
2900  default: break;
2901  case ISD::ADD:      return PerformADDCombine(N, DCI);
2902  case ISD::SUB:      return PerformSUBCombine(N, DCI);
2903  case ARMISD::FMRRD: return PerformFMRRDCombine(N, DCI);
2904  case ISD::INTRINSIC_WO_CHAIN:
2905    return PerformIntrinsicCombine(N, DCI.DAG);
2906  case ISD::SHL:
2907  case ISD::SRA:
2908  case ISD::SRL:
2909    return PerformShiftCombine(N, DCI.DAG, Subtarget);
2910  case ISD::SIGN_EXTEND:
2911  case ISD::ZERO_EXTEND:
2912  case ISD::ANY_EXTEND:
2913    return PerformExtendCombine(N, DCI.DAG, Subtarget);
2914  }
2915  return SDValue();
2916}
2917
2918/// isLegalAddressImmediate - Return true if the integer value can be used
2919/// as the offset of the target addressing mode for load / store of the
2920/// given type.
2921static bool isLegalAddressImmediate(int64_t V, MVT VT,
2922                                    const ARMSubtarget *Subtarget) {
2923  if (V == 0)
2924    return true;
2925
2926  if (!VT.isSimple())
2927    return false;
2928
2929  if (Subtarget->isThumb()) { // FIXME for thumb2
2930    if (V < 0)
2931      return false;
2932
2933    unsigned Scale = 1;
2934    switch (VT.getSimpleVT()) {
2935    default: return false;
2936    case MVT::i1:
2937    case MVT::i8:
2938      // Scale == 1;
2939      break;
2940    case MVT::i16:
2941      // Scale == 2;
2942      Scale = 2;
2943      break;
2944    case MVT::i32:
2945      // Scale == 4;
2946      Scale = 4;
2947      break;
2948    }
2949
2950    if ((V & (Scale - 1)) != 0)
2951      return false;
2952    V /= Scale;
2953    return V == (V & ((1LL << 5) - 1));
2954  }
2955
2956  if (V < 0)
2957    V = - V;
2958  switch (VT.getSimpleVT()) {
2959  default: return false;
2960  case MVT::i1:
2961  case MVT::i8:
2962  case MVT::i32:
2963    // +- imm12
2964    return V == (V & ((1LL << 12) - 1));
2965  case MVT::i16:
2966    // +- imm8
2967    return V == (V & ((1LL << 8) - 1));
2968  case MVT::f32:
2969  case MVT::f64:
2970    if (!Subtarget->hasVFP2())
2971      return false;
2972    if ((V & 3) != 0)
2973      return false;
2974    V >>= 2;
2975    return V == (V & ((1LL << 8) - 1));
2976  }
2977}
2978
2979/// isLegalAddressingMode - Return true if the addressing mode represented
2980/// by AM is legal for this target, for a load/store of the specified type.
2981bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
2982                                              const Type *Ty) const {
2983  MVT VT = getValueType(Ty, true);
2984  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
2985    return false;
2986
2987  // Can never fold addr of global into load/store.
2988  if (AM.BaseGV)
2989    return false;
2990
2991  switch (AM.Scale) {
2992  case 0:  // no scale reg, must be "r+i" or "r", or "i".
2993    break;
2994  case 1:
2995    if (Subtarget->isThumb())  // FIXME for thumb2
2996      return false;
2997    // FALL THROUGH.
2998  default:
2999    // ARM doesn't support any R+R*scale+imm addr modes.
3000    if (AM.BaseOffs)
3001      return false;
3002
3003    if (!VT.isSimple())
3004      return false;
3005
3006    int Scale = AM.Scale;
3007    switch (VT.getSimpleVT()) {
3008    default: return false;
3009    case MVT::i1:
3010    case MVT::i8:
3011    case MVT::i32:
3012    case MVT::i64:
3013      // This assumes i64 is legalized to a pair of i32. If not (i.e.
3014      // ldrd / strd are used, then its address mode is same as i16.
3015      // r + r
3016      if (Scale < 0) Scale = -Scale;
3017      if (Scale == 1)
3018        return true;
3019      // r + r << imm
3020      return isPowerOf2_32(Scale & ~1);
3021    case MVT::i16:
3022      // r + r
3023      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
3024        return true;
3025      return false;
3026
3027    case MVT::isVoid:
3028      // Note, we allow "void" uses (basically, uses that aren't loads or
3029      // stores), because arm allows folding a scale into many arithmetic
3030      // operations.  This should be made more precise and revisited later.
3031
3032      // Allow r << imm, but the imm has to be a multiple of two.
3033      if (AM.Scale & 1) return false;
3034      return isPowerOf2_32(AM.Scale);
3035    }
3036    break;
3037  }
3038  return true;
3039}
3040
3041static bool getARMIndexedAddressParts(SDNode *Ptr, MVT VT,
3042                                      bool isSEXTLoad, SDValue &Base,
3043                                      SDValue &Offset, bool &isInc,
3044                                      SelectionDAG &DAG) {
3045  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
3046    return false;
3047
3048  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
3049    // AddressingMode 3
3050    Base = Ptr->getOperand(0);
3051    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3052      int RHSC = (int)RHS->getZExtValue();
3053      if (RHSC < 0 && RHSC > -256) {
3054        assert(Ptr->getOpcode() == ISD::ADD);
3055        isInc = false;
3056        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3057        return true;
3058      }
3059    }
3060    isInc = (Ptr->getOpcode() == ISD::ADD);
3061    Offset = Ptr->getOperand(1);
3062    return true;
3063  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
3064    // AddressingMode 2
3065    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3066      int RHSC = (int)RHS->getZExtValue();
3067      if (RHSC < 0 && RHSC > -0x1000) {
3068        assert(Ptr->getOpcode() == ISD::ADD);
3069        isInc = false;
3070        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3071        Base = Ptr->getOperand(0);
3072        return true;
3073      }
3074    }
3075
3076    if (Ptr->getOpcode() == ISD::ADD) {
3077      isInc = true;
3078      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
3079      if (ShOpcVal != ARM_AM::no_shift) {
3080        Base = Ptr->getOperand(1);
3081        Offset = Ptr->getOperand(0);
3082      } else {
3083        Base = Ptr->getOperand(0);
3084        Offset = Ptr->getOperand(1);
3085      }
3086      return true;
3087    }
3088
3089    isInc = (Ptr->getOpcode() == ISD::ADD);
3090    Base = Ptr->getOperand(0);
3091    Offset = Ptr->getOperand(1);
3092    return true;
3093  }
3094
3095  // FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
3096  return false;
3097}
3098
3099static bool getT2IndexedAddressParts(SDNode *Ptr, MVT VT,
3100                                     bool isSEXTLoad, SDValue &Base,
3101                                     SDValue &Offset, bool &isInc,
3102                                     SelectionDAG &DAG) {
3103  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
3104    return false;
3105
3106  Base = Ptr->getOperand(0);
3107  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3108    int RHSC = (int)RHS->getZExtValue();
3109    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
3110      assert(Ptr->getOpcode() == ISD::ADD);
3111      isInc = false;
3112      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3113      return true;
3114    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
3115      isInc = Ptr->getOpcode() == ISD::ADD;
3116      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
3117      return true;
3118    }
3119  }
3120
3121  return false;
3122}
3123
3124/// getPreIndexedAddressParts - returns true by value, base pointer and
3125/// offset pointer and addressing mode by reference if the node's address
3126/// can be legally represented as pre-indexed load / store address.
3127bool
3128ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
3129                                             SDValue &Offset,
3130                                             ISD::MemIndexedMode &AM,
3131                                             SelectionDAG &DAG) const {
3132  if (Subtarget->isThumb1Only())
3133    return false;
3134
3135  MVT VT;
3136  SDValue Ptr;
3137  bool isSEXTLoad = false;
3138  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3139    Ptr = LD->getBasePtr();
3140    VT  = LD->getMemoryVT();
3141    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3142  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3143    Ptr = ST->getBasePtr();
3144    VT  = ST->getMemoryVT();
3145  } else
3146    return false;
3147
3148  bool isInc;
3149  bool isLegal = false;
3150  if (Subtarget->isThumb() && Subtarget->hasThumb2())
3151    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3152                                       Offset, isInc, DAG);
3153  else
3154    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3155                                        Offset, isInc, DAG);
3156  if (!isLegal)
3157    return false;
3158
3159  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
3160  return true;
3161}
3162
3163/// getPostIndexedAddressParts - returns true by value, base pointer and
3164/// offset pointer and addressing mode by reference if this node can be
3165/// combined with a load / store to form a post-indexed load / store.
3166bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
3167                                                   SDValue &Base,
3168                                                   SDValue &Offset,
3169                                                   ISD::MemIndexedMode &AM,
3170                                                   SelectionDAG &DAG) const {
3171  if (Subtarget->isThumb1Only())
3172    return false;
3173
3174  MVT VT;
3175  SDValue Ptr;
3176  bool isSEXTLoad = false;
3177  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3178    VT  = LD->getMemoryVT();
3179    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3180  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3181    VT  = ST->getMemoryVT();
3182  } else
3183    return false;
3184
3185  bool isInc;
3186  bool isLegal = false;
3187  if (Subtarget->isThumb() && Subtarget->hasThumb2())
3188    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3189                                        isInc, DAG);
3190  else
3191    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3192                                        isInc, DAG);
3193  if (!isLegal)
3194    return false;
3195
3196  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
3197  return true;
3198}
3199
3200void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
3201                                                       const APInt &Mask,
3202                                                       APInt &KnownZero,
3203                                                       APInt &KnownOne,
3204                                                       const SelectionDAG &DAG,
3205                                                       unsigned Depth) const {
3206  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3207  switch (Op.getOpcode()) {
3208  default: break;
3209  case ARMISD::CMOV: {
3210    // Bits are known zero/one if known on the LHS and RHS.
3211    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
3212    if (KnownZero == 0 && KnownOne == 0) return;
3213
3214    APInt KnownZeroRHS, KnownOneRHS;
3215    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
3216                          KnownZeroRHS, KnownOneRHS, Depth+1);
3217    KnownZero &= KnownZeroRHS;
3218    KnownOne  &= KnownOneRHS;
3219    return;
3220  }
3221  }
3222}
3223
3224//===----------------------------------------------------------------------===//
3225//                           ARM Inline Assembly Support
3226//===----------------------------------------------------------------------===//
3227
3228/// getConstraintType - Given a constraint letter, return the type of
3229/// constraint it is for this target.
3230ARMTargetLowering::ConstraintType
3231ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
3232  if (Constraint.size() == 1) {
3233    switch (Constraint[0]) {
3234    default:  break;
3235    case 'l': return C_RegisterClass;
3236    case 'w': return C_RegisterClass;
3237    }
3238  }
3239  return TargetLowering::getConstraintType(Constraint);
3240}
3241
3242std::pair<unsigned, const TargetRegisterClass*>
3243ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3244                                                MVT VT) const {
3245  if (Constraint.size() == 1) {
3246    // GCC RS6000 Constraint Letters
3247    switch (Constraint[0]) {
3248    case 'l':
3249      if (Subtarget->isThumb1Only())
3250        return std::make_pair(0U, ARM::tGPRRegisterClass);
3251      else
3252        return std::make_pair(0U, ARM::GPRRegisterClass);
3253    case 'r':
3254      return std::make_pair(0U, ARM::GPRRegisterClass);
3255    case 'w':
3256      if (VT == MVT::f32)
3257        return std::make_pair(0U, ARM::SPRRegisterClass);
3258      if (VT == MVT::f64)
3259        return std::make_pair(0U, ARM::DPRRegisterClass);
3260      break;
3261    }
3262  }
3263  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3264}
3265
3266std::vector<unsigned> ARMTargetLowering::
3267getRegClassForInlineAsmConstraint(const std::string &Constraint,
3268                                  MVT VT) const {
3269  if (Constraint.size() != 1)
3270    return std::vector<unsigned>();
3271
3272  switch (Constraint[0]) {      // GCC ARM Constraint Letters
3273  default: break;
3274  case 'l':
3275    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3276                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3277                                 0);
3278  case 'r':
3279    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3280                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3281                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
3282                                 ARM::R12, ARM::LR, 0);
3283  case 'w':
3284    if (VT == MVT::f32)
3285      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
3286                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
3287                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
3288                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
3289                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
3290                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
3291                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
3292                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
3293    if (VT == MVT::f64)
3294      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
3295                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
3296                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
3297                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
3298      break;
3299  }
3300
3301  return std::vector<unsigned>();
3302}
3303
3304/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3305/// vector.  If it is invalid, don't add anything to Ops.
3306void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3307                                                     char Constraint,
3308                                                     bool hasMemory,
3309                                                     std::vector<SDValue>&Ops,
3310                                                     SelectionDAG &DAG) const {
3311  SDValue Result(0, 0);
3312
3313  switch (Constraint) {
3314  default: break;
3315  case 'I': case 'J': case 'K': case 'L':
3316  case 'M': case 'N': case 'O':
3317    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3318    if (!C)
3319      return;
3320
3321    int64_t CVal64 = C->getSExtValue();
3322    int CVal = (int) CVal64;
3323    // None of these constraints allow values larger than 32 bits.  Check
3324    // that the value fits in an int.
3325    if (CVal != CVal64)
3326      return;
3327
3328    switch (Constraint) {
3329      case 'I':
3330        if (Subtarget->isThumb1Only()) {
3331          // This must be a constant between 0 and 255, for ADD
3332          // immediates.
3333          if (CVal >= 0 && CVal <= 255)
3334            break;
3335        } else if (Subtarget->isThumb2()) {
3336          // A constant that can be used as an immediate value in a
3337          // data-processing instruction.
3338          if (ARM_AM::getT2SOImmVal(CVal) != -1)
3339            break;
3340        } else {
3341          // A constant that can be used as an immediate value in a
3342          // data-processing instruction.
3343          if (ARM_AM::getSOImmVal(CVal) != -1)
3344            break;
3345        }
3346        return;
3347
3348      case 'J':
3349        if (Subtarget->isThumb()) {  // FIXME thumb2
3350          // This must be a constant between -255 and -1, for negated ADD
3351          // immediates. This can be used in GCC with an "n" modifier that
3352          // prints the negated value, for use with SUB instructions. It is
3353          // not useful otherwise but is implemented for compatibility.
3354          if (CVal >= -255 && CVal <= -1)
3355            break;
3356        } else {
3357          // This must be a constant between -4095 and 4095. It is not clear
3358          // what this constraint is intended for. Implemented for
3359          // compatibility with GCC.
3360          if (CVal >= -4095 && CVal <= 4095)
3361            break;
3362        }
3363        return;
3364
3365      case 'K':
3366        if (Subtarget->isThumb1Only()) {
3367          // A 32-bit value where only one byte has a nonzero value. Exclude
3368          // zero to match GCC. This constraint is used by GCC internally for
3369          // constants that can be loaded with a move/shift combination.
3370          // It is not useful otherwise but is implemented for compatibility.
3371          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
3372            break;
3373        } else if (Subtarget->isThumb2()) {
3374          // A constant whose bitwise inverse can be used as an immediate
3375          // value in a data-processing instruction. This can be used in GCC
3376          // with a "B" modifier that prints the inverted value, for use with
3377          // BIC and MVN instructions. It is not useful otherwise but is
3378          // implemented for compatibility.
3379          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
3380            break;
3381        } else {
3382          // A constant whose bitwise inverse can be used as an immediate
3383          // value in a data-processing instruction. This can be used in GCC
3384          // with a "B" modifier that prints the inverted value, for use with
3385          // BIC and MVN instructions. It is not useful otherwise but is
3386          // implemented for compatibility.
3387          if (ARM_AM::getSOImmVal(~CVal) != -1)
3388            break;
3389        }
3390        return;
3391
3392      case 'L':
3393        if (Subtarget->isThumb1Only()) {
3394          // This must be a constant between -7 and 7,
3395          // for 3-operand ADD/SUB immediate instructions.
3396          if (CVal >= -7 && CVal < 7)
3397            break;
3398        } else if (Subtarget->isThumb2()) {
3399          // A constant whose negation can be used as an immediate value in a
3400          // data-processing instruction. This can be used in GCC with an "n"
3401          // modifier that prints the negated value, for use with SUB
3402          // instructions. It is not useful otherwise but is implemented for
3403          // compatibility.
3404          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
3405            break;
3406        } else {
3407          // A constant whose negation can be used as an immediate value in a
3408          // data-processing instruction. This can be used in GCC with an "n"
3409          // modifier that prints the negated value, for use with SUB
3410          // instructions. It is not useful otherwise but is implemented for
3411          // compatibility.
3412          if (ARM_AM::getSOImmVal(-CVal) != -1)
3413            break;
3414        }
3415        return;
3416
3417      case 'M':
3418        if (Subtarget->isThumb()) { // FIXME thumb2
3419          // This must be a multiple of 4 between 0 and 1020, for
3420          // ADD sp + immediate.
3421          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
3422            break;
3423        } else {
3424          // A power of two or a constant between 0 and 32.  This is used in
3425          // GCC for the shift amount on shifted register operands, but it is
3426          // useful in general for any shift amounts.
3427          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
3428            break;
3429        }
3430        return;
3431
3432      case 'N':
3433        if (Subtarget->isThumb()) {  // FIXME thumb2
3434          // This must be a constant between 0 and 31, for shift amounts.
3435          if (CVal >= 0 && CVal <= 31)
3436            break;
3437        }
3438        return;
3439
3440      case 'O':
3441        if (Subtarget->isThumb()) {  // FIXME thumb2
3442          // This must be a multiple of 4 between -508 and 508, for
3443          // ADD/SUB sp = sp + immediate.
3444          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
3445            break;
3446        }
3447        return;
3448    }
3449    Result = DAG.getTargetConstant(CVal, Op.getValueType());
3450    break;
3451  }
3452
3453  if (Result.getNode()) {
3454    Ops.push_back(Result);
3455    return;
3456  }
3457  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
3458                                                      Ops, DAG);
3459}
3460