ARMISelLowering.cpp revision 575cd148cedec66af0adc266c5d7ecdbe1641d7e
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/PseudoSourceValue.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51#include <sstream>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// This option should go away when tail calls fully work.
57static cl::opt<bool>
58EnableARMTailCalls("arm-tail-calls", cl::Hidden,
59  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
60  cl::init(false));
61
62static cl::opt<bool>
63EnableARMLongCalls("arm-long-calls", cl::Hidden,
64  cl::desc("Generate calls via indirect call instructions"),
65  cl::init(false));
66
67static cl::opt<bool>
68ARMInterworking("arm-interworking", cl::Hidden,
69  cl::desc("Enable / disable ARM interworking (for debugging only)"),
70  cl::init(true));
71
72void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
73                                       EVT PromotedBitwiseVT) {
74  if (VT != PromotedLdStVT) {
75    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
76    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
77                       PromotedLdStVT.getSimpleVT());
78
79    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
80    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
81                       PromotedLdStVT.getSimpleVT());
82  }
83
84  EVT ElemTy = VT.getVectorElementType();
85  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
86    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
87  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
88    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
89  if (ElemTy != MVT::i32) {
90    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
91    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
92    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
93    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
94  }
95  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
96  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
97  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
98  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
99  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
100  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
101  if (VT.isInteger()) {
102    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
103    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
104    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
105    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
106    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
107  }
108  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
109
110  // Promote all bit-wise operations.
111  if (VT.isInteger() && VT != PromotedBitwiseVT) {
112    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
113    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
114                       PromotedBitwiseVT.getSimpleVT());
115    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
116    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
117                       PromotedBitwiseVT.getSimpleVT());
118    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
119    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
120                       PromotedBitwiseVT.getSimpleVT());
121  }
122
123  // Neon does not support vector divide/remainder operations.
124  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
125  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
126  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
127  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
128  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
129  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
130}
131
132void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
133  addRegisterClass(VT, ARM::DPRRegisterClass);
134  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
135}
136
137void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
138  addRegisterClass(VT, ARM::QPRRegisterClass);
139  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
140}
141
142static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
143  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
144    return new TargetLoweringObjectFileMachO();
145
146  return new ARMElfTargetObjectFile();
147}
148
149ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
150    : TargetLowering(TM, createTLOF(TM)) {
151  Subtarget = &TM.getSubtarget<ARMSubtarget>();
152  RegInfo = TM.getRegisterInfo();
153  Itins = TM.getInstrItineraryData();
154
155  if (Subtarget->isTargetDarwin()) {
156    // Uses VFP for Thumb libfuncs if available.
157    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
158      // Single-precision floating-point arithmetic.
159      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
160      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
161      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
162      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
163
164      // Double-precision floating-point arithmetic.
165      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
166      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
167      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
168      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
169
170      // Single-precision comparisons.
171      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
172      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
173      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
174      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
175      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
176      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
177      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
178      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
179
180      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
181      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
182      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
183      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
184      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
185      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
186      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
187      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
188
189      // Double-precision comparisons.
190      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
191      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
192      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
193      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
194      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
195      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
196      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
197      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
198
199      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
200      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
201      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
202      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
206      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
207
208      // Floating-point to integer conversions.
209      // i64 conversions are done via library routines even when generating VFP
210      // instructions, so use the same ones.
211      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
212      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
213      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
214      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
215
216      // Conversions between floating types.
217      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
218      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
219
220      // Integer to floating-point conversions.
221      // i64 conversions are done via library routines even when generating VFP
222      // instructions, so use the same ones.
223      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
224      // e.g., __floatunsidf vs. __floatunssidfvfp.
225      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
226      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
227      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
228      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
229    }
230  }
231
232  // These libcalls are not available in 32-bit.
233  setLibcallName(RTLIB::SHL_I128, 0);
234  setLibcallName(RTLIB::SRL_I128, 0);
235  setLibcallName(RTLIB::SRA_I128, 0);
236
237  if (Subtarget->isAAPCS_ABI()) {
238    // Double-precision floating-point arithmetic helper functions
239    // RTABI chapter 4.1.2, Table 2
240    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
241    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
242    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
243    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
244    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
245    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
246    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
247    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
248
249    // Double-precision floating-point comparison helper functions
250    // RTABI chapter 4.1.2, Table 3
251    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
252    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
253    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
254    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
255    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
256    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
257    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
258    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
259    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
260    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
261    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
262    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
263    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
264    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
265    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
266    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
267    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
268    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
269    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
270    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
271    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
272    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
275
276    // Single-precision floating-point arithmetic helper functions
277    // RTABI chapter 4.1.2, Table 4
278    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
279    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
280    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
281    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
282    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
283    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
284    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
285    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
286
287    // Single-precision floating-point comparison helper functions
288    // RTABI chapter 4.1.2, Table 5
289    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
290    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
291    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
292    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
293    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
294    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
295    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
296    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
297    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
298    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
299    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
300    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
301    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
302    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
303    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
304    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
305    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
306    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
307    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
308    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
309    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
310    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
313
314    // Floating-point to integer conversions.
315    // RTABI chapter 4.1.2, Table 6
316    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
317    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
318    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
319    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
320    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
321    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
322    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
323    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
324    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
325    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
326    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
327    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
332
333    // Conversions between floating types.
334    // RTABI chapter 4.1.2, Table 7
335    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
336    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
337    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
339
340    // Integer to floating-point conversions.
341    // RTABI chapter 4.1.2, Table 8
342    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
343    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
344    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
345    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
346    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
347    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
348    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
349    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
350    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
358
359    // Long long helper functions
360    // RTABI chapter 4.2, Table 9
361    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
362    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
363    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
364    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
365    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
366    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
367    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
368    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
369    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
370    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
371    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
372    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
373
374    // Integer division functions
375    // RTABI chapter 4.3.1
376    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
377    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
378    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
379    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
380    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
381    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
382    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
385    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
386    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
387    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
388  }
389
390  if (Subtarget->isThumb1Only())
391    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
392  else
393    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
394  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
395    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
396    if (!Subtarget->isFPOnlySP())
397      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
398
399    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
400  }
401
402  if (Subtarget->hasNEON()) {
403    addDRTypeForNEON(MVT::v2f32);
404    addDRTypeForNEON(MVT::v8i8);
405    addDRTypeForNEON(MVT::v4i16);
406    addDRTypeForNEON(MVT::v2i32);
407    addDRTypeForNEON(MVT::v1i64);
408
409    addQRTypeForNEON(MVT::v4f32);
410    addQRTypeForNEON(MVT::v2f64);
411    addQRTypeForNEON(MVT::v16i8);
412    addQRTypeForNEON(MVT::v8i16);
413    addQRTypeForNEON(MVT::v4i32);
414    addQRTypeForNEON(MVT::v2i64);
415
416    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
417    // neither Neon nor VFP support any arithmetic operations on it.
418    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
419    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
420    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
421    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
422    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
423    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
424    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
425    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
426    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
427    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
428    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
429    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
430    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
431    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
432    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
433    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
434    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
435    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
436    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
437    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
438    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
439    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
440    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
441    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
442
443    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
444
445    // Neon does not support some operations on v1i64 and v2i64 types.
446    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
447    // Custom handling for some quad-vector types to detect VMULL.
448    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
449    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
450    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
451    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
452    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
453
454    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
455    setTargetDAGCombine(ISD::SHL);
456    setTargetDAGCombine(ISD::SRL);
457    setTargetDAGCombine(ISD::SRA);
458    setTargetDAGCombine(ISD::SIGN_EXTEND);
459    setTargetDAGCombine(ISD::ZERO_EXTEND);
460    setTargetDAGCombine(ISD::ANY_EXTEND);
461    setTargetDAGCombine(ISD::SELECT_CC);
462    setTargetDAGCombine(ISD::BUILD_VECTOR);
463  }
464
465  computeRegisterProperties();
466
467  // ARM does not have f32 extending load.
468  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
469
470  // ARM does not have i1 sign extending load.
471  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
472
473  // ARM supports all 4 flavors of integer indexed load / store.
474  if (!Subtarget->isThumb1Only()) {
475    for (unsigned im = (unsigned)ISD::PRE_INC;
476         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
477      setIndexedLoadAction(im,  MVT::i1,  Legal);
478      setIndexedLoadAction(im,  MVT::i8,  Legal);
479      setIndexedLoadAction(im,  MVT::i16, Legal);
480      setIndexedLoadAction(im,  MVT::i32, Legal);
481      setIndexedStoreAction(im, MVT::i1,  Legal);
482      setIndexedStoreAction(im, MVT::i8,  Legal);
483      setIndexedStoreAction(im, MVT::i16, Legal);
484      setIndexedStoreAction(im, MVT::i32, Legal);
485    }
486  }
487
488  // i64 operation support.
489  if (Subtarget->isThumb1Only()) {
490    setOperationAction(ISD::MUL,     MVT::i64, Expand);
491    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
492    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
493    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
494    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
495  } else {
496    setOperationAction(ISD::MUL,     MVT::i64, Expand);
497    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
498    if (!Subtarget->hasV6Ops())
499      setOperationAction(ISD::MULHS, MVT::i32, Expand);
500  }
501  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
502  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
503  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
504  setOperationAction(ISD::SRL,       MVT::i64, Custom);
505  setOperationAction(ISD::SRA,       MVT::i64, Custom);
506
507  // ARM does not have ROTL.
508  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
509  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
510  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
511  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
512    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
513
514  // Only ARMv6 has BSWAP.
515  if (!Subtarget->hasV6Ops())
516    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
517
518  // These are expanded into libcalls.
519  if (!Subtarget->hasDivide()) {
520    // v7M has a hardware divider
521    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
522    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
523  }
524  setOperationAction(ISD::SREM,  MVT::i32, Expand);
525  setOperationAction(ISD::UREM,  MVT::i32, Expand);
526  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
527  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
528
529  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
530  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
531  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
532  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
533  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
534
535  setOperationAction(ISD::TRAP, MVT::Other, Legal);
536
537  // Use the default implementation.
538  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
539  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
540  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
541  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
542  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
543  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
544  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
545  // FIXME: Shouldn't need this, since no register is used, but the legalizer
546  // doesn't yet know how to not do that for SjLj.
547  setExceptionSelectorRegister(ARM::R0);
548  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
549  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
550  // the default expansion.
551  if (Subtarget->hasDataBarrier() ||
552      (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())) {
553    // membarrier needs custom lowering; the rest are legal and handled
554    // normally.
555    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
556  } else {
557    // Set them all for expansion, which will force libcalls.
558    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
559    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
560    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
561    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
562    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
563    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
564    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
565    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
566    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
567    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
568    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
569    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
570    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
571    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
572    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
573    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
574    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
575    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
576    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
577    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
578    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
579    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
580    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
581    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
582    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
583    // Since the libcalls include locking, fold in the fences
584    setShouldFoldAtomicFences(true);
585  }
586  // 64-bit versions are always libcalls (for now)
587  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
588  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
589  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
590  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
591  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
592  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
593  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
594  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
595
596  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
597  if (!Subtarget->hasV6Ops()) {
598    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
599    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
600  }
601  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
602
603  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
604    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
605    // iff target supports vfp2.
606    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
607    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
608  }
609
610  // We want to custom lower some of our intrinsics.
611  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
612  if (Subtarget->isTargetDarwin()) {
613    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
614    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
615  }
616
617  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
618  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
619  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
620  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
621  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
622  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
623  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
624  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
625  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
626
627  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
628  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
629  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
630  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
631  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
632
633  // We don't support sin/cos/fmod/copysign/pow
634  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
635  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
636  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
637  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
638  setOperationAction(ISD::FREM,      MVT::f64, Expand);
639  setOperationAction(ISD::FREM,      MVT::f32, Expand);
640  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
641    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
642    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
643  }
644  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
645  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
646
647  // Various VFP goodness
648  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
649    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
650    if (Subtarget->hasVFP2()) {
651      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
652      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
653      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
654      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
655    }
656    // Special handling for half-precision FP.
657    if (!Subtarget->hasFP16()) {
658      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
659      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
660    }
661  }
662
663  // We have target-specific dag combine patterns for the following nodes:
664  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
665  setTargetDAGCombine(ISD::ADD);
666  setTargetDAGCombine(ISD::SUB);
667  setTargetDAGCombine(ISD::MUL);
668
669  if (Subtarget->hasV6T2Ops())
670    setTargetDAGCombine(ISD::OR);
671
672  setStackPointerRegisterToSaveRestore(ARM::SP);
673
674  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
675    setSchedulingPreference(Sched::RegPressure);
676  else
677    setSchedulingPreference(Sched::Hybrid);
678
679  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
680
681  // On ARM arguments smaller than 4 bytes are extended, so all arguments
682  // are at least 4 bytes aligned.
683  setMinStackArgumentAlignment(4);
684
685  benefitFromCodePlacementOpt = true;
686}
687
688std::pair<const TargetRegisterClass*, uint8_t>
689ARMTargetLowering::findRepresentativeClass(EVT VT) const{
690  const TargetRegisterClass *RRC = 0;
691  uint8_t Cost = 1;
692  switch (VT.getSimpleVT().SimpleTy) {
693  default:
694    return TargetLowering::findRepresentativeClass(VT);
695  // Use DPR as representative register class for all floating point
696  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
697  // the cost is 1 for both f32 and f64.
698  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
699  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
700    RRC = ARM::DPRRegisterClass;
701    break;
702  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
703  case MVT::v4f32: case MVT::v2f64:
704    RRC = ARM::DPRRegisterClass;
705    Cost = 2;
706    break;
707  case MVT::v4i64:
708    RRC = ARM::DPRRegisterClass;
709    Cost = 4;
710    break;
711  case MVT::v8i64:
712    RRC = ARM::DPRRegisterClass;
713    Cost = 8;
714    break;
715  }
716  return std::make_pair(RRC, Cost);
717}
718
719const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
720  switch (Opcode) {
721  default: return 0;
722  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
723  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
724  case ARMISD::CALL:          return "ARMISD::CALL";
725  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
726  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
727  case ARMISD::tCALL:         return "ARMISD::tCALL";
728  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
729  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
730  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
731  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
732  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
733  case ARMISD::CMP:           return "ARMISD::CMP";
734  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
735  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
736  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
737  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
738  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
739  case ARMISD::CMOV:          return "ARMISD::CMOV";
740  case ARMISD::CNEG:          return "ARMISD::CNEG";
741
742  case ARMISD::RBIT:          return "ARMISD::RBIT";
743
744  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
745  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
746  case ARMISD::SITOF:         return "ARMISD::SITOF";
747  case ARMISD::UITOF:         return "ARMISD::UITOF";
748
749  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
750  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
751  case ARMISD::RRX:           return "ARMISD::RRX";
752
753  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
754  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
755
756  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
757  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
758
759  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
760
761  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
762
763  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
764
765  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
766  case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
767
768  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
769  case ARMISD::VCGE:          return "ARMISD::VCGE";
770  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
771  case ARMISD::VCGT:          return "ARMISD::VCGT";
772  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
773  case ARMISD::VTST:          return "ARMISD::VTST";
774
775  case ARMISD::VSHL:          return "ARMISD::VSHL";
776  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
777  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
778  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
779  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
780  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
781  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
782  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
783  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
784  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
785  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
786  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
787  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
788  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
789  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
790  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
791  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
792  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
793  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
794  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
795  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
796  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
797  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
798  case ARMISD::VDUP:          return "ARMISD::VDUP";
799  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
800  case ARMISD::VEXT:          return "ARMISD::VEXT";
801  case ARMISD::VREV64:        return "ARMISD::VREV64";
802  case ARMISD::VREV32:        return "ARMISD::VREV32";
803  case ARMISD::VREV16:        return "ARMISD::VREV16";
804  case ARMISD::VZIP:          return "ARMISD::VZIP";
805  case ARMISD::VUZP:          return "ARMISD::VUZP";
806  case ARMISD::VTRN:          return "ARMISD::VTRN";
807  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
808  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
809  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
810  case ARMISD::FMAX:          return "ARMISD::FMAX";
811  case ARMISD::FMIN:          return "ARMISD::FMIN";
812  case ARMISD::BFI:           return "ARMISD::BFI";
813  }
814}
815
816/// getRegClassFor - Return the register class that should be used for the
817/// specified value type.
818TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
819  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
820  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
821  // load / store 4 to 8 consecutive D registers.
822  if (Subtarget->hasNEON()) {
823    if (VT == MVT::v4i64)
824      return ARM::QQPRRegisterClass;
825    else if (VT == MVT::v8i64)
826      return ARM::QQQQPRRegisterClass;
827  }
828  return TargetLowering::getRegClassFor(VT);
829}
830
831// Create a fast isel object.
832FastISel *
833ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
834  return ARM::createFastISel(funcInfo);
835}
836
837/// getFunctionAlignment - Return the Log2 alignment of this function.
838unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
839  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
840}
841
842/// getMaximalGlobalOffset - Returns the maximal possible offset which can
843/// be used for loads / stores from the global.
844unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
845  return (Subtarget->isThumb1Only() ? 127 : 4095);
846}
847
848Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
849  unsigned NumVals = N->getNumValues();
850  if (!NumVals)
851    return Sched::RegPressure;
852
853  for (unsigned i = 0; i != NumVals; ++i) {
854    EVT VT = N->getValueType(i);
855    if (VT.isFloatingPoint() || VT.isVector())
856      return Sched::Latency;
857  }
858
859  if (!N->isMachineOpcode())
860    return Sched::RegPressure;
861
862  // Load are scheduled for latency even if there instruction itinerary
863  // is not available.
864  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
865  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
866  if (TID.mayLoad())
867    return Sched::Latency;
868
869  if (!Itins->isEmpty() && Itins->getStageLatency(TID.getSchedClass()) > 2)
870    return Sched::Latency;
871  return Sched::RegPressure;
872}
873
874unsigned
875ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
876                                       MachineFunction &MF) const {
877  switch (RC->getID()) {
878  default:
879    return 0;
880  case ARM::tGPRRegClassID:
881    return RegInfo->hasFP(MF) ? 4 : 5;
882  case ARM::GPRRegClassID: {
883    unsigned FP = RegInfo->hasFP(MF) ? 1 : 0;
884    return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
885  }
886  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
887  case ARM::DPRRegClassID:
888    return 32 - 10;
889  }
890}
891
892//===----------------------------------------------------------------------===//
893// Lowering Code
894//===----------------------------------------------------------------------===//
895
896/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
897static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
898  switch (CC) {
899  default: llvm_unreachable("Unknown condition code!");
900  case ISD::SETNE:  return ARMCC::NE;
901  case ISD::SETEQ:  return ARMCC::EQ;
902  case ISD::SETGT:  return ARMCC::GT;
903  case ISD::SETGE:  return ARMCC::GE;
904  case ISD::SETLT:  return ARMCC::LT;
905  case ISD::SETLE:  return ARMCC::LE;
906  case ISD::SETUGT: return ARMCC::HI;
907  case ISD::SETUGE: return ARMCC::HS;
908  case ISD::SETULT: return ARMCC::LO;
909  case ISD::SETULE: return ARMCC::LS;
910  }
911}
912
913/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
914static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
915                        ARMCC::CondCodes &CondCode2) {
916  CondCode2 = ARMCC::AL;
917  switch (CC) {
918  default: llvm_unreachable("Unknown FP condition!");
919  case ISD::SETEQ:
920  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
921  case ISD::SETGT:
922  case ISD::SETOGT: CondCode = ARMCC::GT; break;
923  case ISD::SETGE:
924  case ISD::SETOGE: CondCode = ARMCC::GE; break;
925  case ISD::SETOLT: CondCode = ARMCC::MI; break;
926  case ISD::SETOLE: CondCode = ARMCC::LS; break;
927  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
928  case ISD::SETO:   CondCode = ARMCC::VC; break;
929  case ISD::SETUO:  CondCode = ARMCC::VS; break;
930  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
931  case ISD::SETUGT: CondCode = ARMCC::HI; break;
932  case ISD::SETUGE: CondCode = ARMCC::PL; break;
933  case ISD::SETLT:
934  case ISD::SETULT: CondCode = ARMCC::LT; break;
935  case ISD::SETLE:
936  case ISD::SETULE: CondCode = ARMCC::LE; break;
937  case ISD::SETNE:
938  case ISD::SETUNE: CondCode = ARMCC::NE; break;
939  }
940}
941
942//===----------------------------------------------------------------------===//
943//                      Calling Convention Implementation
944//===----------------------------------------------------------------------===//
945
946#include "ARMGenCallingConv.inc"
947
948/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
949/// given CallingConvention value.
950CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
951                                                 bool Return,
952                                                 bool isVarArg) const {
953  switch (CC) {
954  default:
955    llvm_unreachable("Unsupported calling convention");
956  case CallingConv::C:
957  case CallingConv::Fast:
958    // Use target triple & subtarget features to do actual dispatch.
959    if (Subtarget->isAAPCS_ABI()) {
960      if (Subtarget->hasVFP2() &&
961          FloatABIType == FloatABI::Hard && !isVarArg)
962        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
963      else
964        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
965    } else
966        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
967  case CallingConv::ARM_AAPCS_VFP:
968    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
969  case CallingConv::ARM_AAPCS:
970    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
971  case CallingConv::ARM_APCS:
972    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
973  }
974}
975
976/// LowerCallResult - Lower the result values of a call into the
977/// appropriate copies out of appropriate physical registers.
978SDValue
979ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
980                                   CallingConv::ID CallConv, bool isVarArg,
981                                   const SmallVectorImpl<ISD::InputArg> &Ins,
982                                   DebugLoc dl, SelectionDAG &DAG,
983                                   SmallVectorImpl<SDValue> &InVals) const {
984
985  // Assign locations to each value returned by this call.
986  SmallVector<CCValAssign, 16> RVLocs;
987  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
988                 RVLocs, *DAG.getContext());
989  CCInfo.AnalyzeCallResult(Ins,
990                           CCAssignFnForNode(CallConv, /* Return*/ true,
991                                             isVarArg));
992
993  // Copy all of the result registers out of their specified physreg.
994  for (unsigned i = 0; i != RVLocs.size(); ++i) {
995    CCValAssign VA = RVLocs[i];
996
997    SDValue Val;
998    if (VA.needsCustom()) {
999      // Handle f64 or half of a v2f64.
1000      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1001                                      InFlag);
1002      Chain = Lo.getValue(1);
1003      InFlag = Lo.getValue(2);
1004      VA = RVLocs[++i]; // skip ahead to next loc
1005      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1006                                      InFlag);
1007      Chain = Hi.getValue(1);
1008      InFlag = Hi.getValue(2);
1009      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1010
1011      if (VA.getLocVT() == MVT::v2f64) {
1012        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1013        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1014                          DAG.getConstant(0, MVT::i32));
1015
1016        VA = RVLocs[++i]; // skip ahead to next loc
1017        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1018        Chain = Lo.getValue(1);
1019        InFlag = Lo.getValue(2);
1020        VA = RVLocs[++i]; // skip ahead to next loc
1021        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1022        Chain = Hi.getValue(1);
1023        InFlag = Hi.getValue(2);
1024        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1025        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1026                          DAG.getConstant(1, MVT::i32));
1027      }
1028    } else {
1029      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1030                               InFlag);
1031      Chain = Val.getValue(1);
1032      InFlag = Val.getValue(2);
1033    }
1034
1035    switch (VA.getLocInfo()) {
1036    default: llvm_unreachable("Unknown loc info!");
1037    case CCValAssign::Full: break;
1038    case CCValAssign::BCvt:
1039      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
1040      break;
1041    }
1042
1043    InVals.push_back(Val);
1044  }
1045
1046  return Chain;
1047}
1048
1049/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1050/// by "Src" to address "Dst" of size "Size".  Alignment information is
1051/// specified by the specific parameter attribute.  The copy will be passed as
1052/// a byval function parameter.
1053/// Sometimes what we are copying is the end of a larger object, the part that
1054/// does not fit in registers.
1055static SDValue
1056CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1057                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1058                          DebugLoc dl) {
1059  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1060  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1061                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1062                       MachinePointerInfo(0), MachinePointerInfo(0));
1063}
1064
1065/// LowerMemOpCallTo - Store the argument to the stack.
1066SDValue
1067ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1068                                    SDValue StackPtr, SDValue Arg,
1069                                    DebugLoc dl, SelectionDAG &DAG,
1070                                    const CCValAssign &VA,
1071                                    ISD::ArgFlagsTy Flags) const {
1072  unsigned LocMemOffset = VA.getLocMemOffset();
1073  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1074  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1075  if (Flags.isByVal())
1076    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1077
1078  return DAG.getStore(Chain, dl, Arg, PtrOff,
1079                      MachinePointerInfo::getStack(LocMemOffset),
1080                      false, false, 0);
1081}
1082
1083void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1084                                         SDValue Chain, SDValue &Arg,
1085                                         RegsToPassVector &RegsToPass,
1086                                         CCValAssign &VA, CCValAssign &NextVA,
1087                                         SDValue &StackPtr,
1088                                         SmallVector<SDValue, 8> &MemOpChains,
1089                                         ISD::ArgFlagsTy Flags) const {
1090
1091  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1092                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1093  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1094
1095  if (NextVA.isRegLoc())
1096    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1097  else {
1098    assert(NextVA.isMemLoc());
1099    if (StackPtr.getNode() == 0)
1100      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1101
1102    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1103                                           dl, DAG, NextVA,
1104                                           Flags));
1105  }
1106}
1107
1108/// LowerCall - Lowering a call into a callseq_start <-
1109/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1110/// nodes.
1111SDValue
1112ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1113                             CallingConv::ID CallConv, bool isVarArg,
1114                             bool &isTailCall,
1115                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1116                             const SmallVectorImpl<SDValue> &OutVals,
1117                             const SmallVectorImpl<ISD::InputArg> &Ins,
1118                             DebugLoc dl, SelectionDAG &DAG,
1119                             SmallVectorImpl<SDValue> &InVals) const {
1120  MachineFunction &MF = DAG.getMachineFunction();
1121  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1122  bool IsSibCall = false;
1123  // Temporarily disable tail calls so things don't break.
1124  if (!EnableARMTailCalls)
1125    isTailCall = false;
1126  if (isTailCall) {
1127    // Check if it's really possible to do a tail call.
1128    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1129                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1130                                                   Outs, OutVals, Ins, DAG);
1131    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1132    // detected sibcalls.
1133    if (isTailCall) {
1134      ++NumTailCalls;
1135      IsSibCall = true;
1136    }
1137  }
1138
1139  // Analyze operands of the call, assigning locations to each operand.
1140  SmallVector<CCValAssign, 16> ArgLocs;
1141  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1142                 *DAG.getContext());
1143  CCInfo.AnalyzeCallOperands(Outs,
1144                             CCAssignFnForNode(CallConv, /* Return*/ false,
1145                                               isVarArg));
1146
1147  // Get a count of how many bytes are to be pushed on the stack.
1148  unsigned NumBytes = CCInfo.getNextStackOffset();
1149
1150  // For tail calls, memory operands are available in our caller's stack.
1151  if (IsSibCall)
1152    NumBytes = 0;
1153
1154  // Adjust the stack pointer for the new arguments...
1155  // These operations are automatically eliminated by the prolog/epilog pass
1156  if (!IsSibCall)
1157    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1158
1159  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1160
1161  RegsToPassVector RegsToPass;
1162  SmallVector<SDValue, 8> MemOpChains;
1163
1164  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1165  // of tail call optimization, arguments are handled later.
1166  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1167       i != e;
1168       ++i, ++realArgIdx) {
1169    CCValAssign &VA = ArgLocs[i];
1170    SDValue Arg = OutVals[realArgIdx];
1171    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1172
1173    // Promote the value if needed.
1174    switch (VA.getLocInfo()) {
1175    default: llvm_unreachable("Unknown loc info!");
1176    case CCValAssign::Full: break;
1177    case CCValAssign::SExt:
1178      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1179      break;
1180    case CCValAssign::ZExt:
1181      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1182      break;
1183    case CCValAssign::AExt:
1184      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1185      break;
1186    case CCValAssign::BCvt:
1187      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1188      break;
1189    }
1190
1191    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1192    if (VA.needsCustom()) {
1193      if (VA.getLocVT() == MVT::v2f64) {
1194        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1195                                  DAG.getConstant(0, MVT::i32));
1196        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1197                                  DAG.getConstant(1, MVT::i32));
1198
1199        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1200                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1201
1202        VA = ArgLocs[++i]; // skip ahead to next loc
1203        if (VA.isRegLoc()) {
1204          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1205                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1206        } else {
1207          assert(VA.isMemLoc());
1208
1209          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1210                                                 dl, DAG, VA, Flags));
1211        }
1212      } else {
1213        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1214                         StackPtr, MemOpChains, Flags);
1215      }
1216    } else if (VA.isRegLoc()) {
1217      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1218    } else if (!IsSibCall) {
1219      assert(VA.isMemLoc());
1220
1221      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1222                                             dl, DAG, VA, Flags));
1223    }
1224  }
1225
1226  if (!MemOpChains.empty())
1227    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1228                        &MemOpChains[0], MemOpChains.size());
1229
1230  // Build a sequence of copy-to-reg nodes chained together with token chain
1231  // and flag operands which copy the outgoing args into the appropriate regs.
1232  SDValue InFlag;
1233  // Tail call byval lowering might overwrite argument registers so in case of
1234  // tail call optimization the copies to registers are lowered later.
1235  if (!isTailCall)
1236    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1237      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1238                               RegsToPass[i].second, InFlag);
1239      InFlag = Chain.getValue(1);
1240    }
1241
1242  // For tail calls lower the arguments to the 'real' stack slot.
1243  if (isTailCall) {
1244    // Force all the incoming stack arguments to be loaded from the stack
1245    // before any new outgoing arguments are stored to the stack, because the
1246    // outgoing stack slots may alias the incoming argument stack slots, and
1247    // the alias isn't otherwise explicit. This is slightly more conservative
1248    // than necessary, because it means that each store effectively depends
1249    // on every argument instead of just those arguments it would clobber.
1250
1251    // Do not flag preceeding copytoreg stuff together with the following stuff.
1252    InFlag = SDValue();
1253    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1254      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1255                               RegsToPass[i].second, InFlag);
1256      InFlag = Chain.getValue(1);
1257    }
1258    InFlag =SDValue();
1259  }
1260
1261  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1262  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1263  // node so that legalize doesn't hack it.
1264  bool isDirect = false;
1265  bool isARMFunc = false;
1266  bool isLocalARMFunc = false;
1267  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1268
1269  if (EnableARMLongCalls) {
1270    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1271            && "long-calls with non-static relocation model!");
1272    // Handle a global address or an external symbol. If it's not one of
1273    // those, the target's already in a register, so we don't need to do
1274    // anything extra.
1275    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1276      const GlobalValue *GV = G->getGlobal();
1277      // Create a constant pool entry for the callee address
1278      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1279      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1280                                                           ARMPCLabelIndex,
1281                                                           ARMCP::CPValue, 0);
1282      // Get the address of the callee into a register
1283      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1284      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1285      Callee = DAG.getLoad(getPointerTy(), dl,
1286                           DAG.getEntryNode(), CPAddr,
1287                           MachinePointerInfo::getConstantPool(),
1288                           false, false, 0);
1289    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1290      const char *Sym = S->getSymbol();
1291
1292      // Create a constant pool entry for the callee address
1293      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1294      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1295                                                       Sym, ARMPCLabelIndex, 0);
1296      // Get the address of the callee into a register
1297      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1298      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1299      Callee = DAG.getLoad(getPointerTy(), dl,
1300                           DAG.getEntryNode(), CPAddr,
1301                           MachinePointerInfo::getConstantPool(),
1302                           false, false, 0);
1303    }
1304  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1305    const GlobalValue *GV = G->getGlobal();
1306    isDirect = true;
1307    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1308    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1309                   getTargetMachine().getRelocationModel() != Reloc::Static;
1310    isARMFunc = !Subtarget->isThumb() || isStub;
1311    // ARM call to a local ARM function is predicable.
1312    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1313    // tBX takes a register source operand.
1314    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1315      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1316      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1317                                                           ARMPCLabelIndex,
1318                                                           ARMCP::CPValue, 4);
1319      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1320      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1321      Callee = DAG.getLoad(getPointerTy(), dl,
1322                           DAG.getEntryNode(), CPAddr,
1323                           MachinePointerInfo::getConstantPool(),
1324                           false, false, 0);
1325      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1326      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1327                           getPointerTy(), Callee, PICLabel);
1328    } else {
1329      // On ELF targets for PIC code, direct calls should go through the PLT
1330      unsigned OpFlags = 0;
1331      if (Subtarget->isTargetELF() &&
1332                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1333        OpFlags = ARMII::MO_PLT;
1334      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1335    }
1336  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1337    isDirect = true;
1338    bool isStub = Subtarget->isTargetDarwin() &&
1339                  getTargetMachine().getRelocationModel() != Reloc::Static;
1340    isARMFunc = !Subtarget->isThumb() || isStub;
1341    // tBX takes a register source operand.
1342    const char *Sym = S->getSymbol();
1343    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1344      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1345      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1346                                                       Sym, ARMPCLabelIndex, 4);
1347      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1348      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1349      Callee = DAG.getLoad(getPointerTy(), dl,
1350                           DAG.getEntryNode(), CPAddr,
1351                           MachinePointerInfo::getConstantPool(),
1352                           false, false, 0);
1353      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1354      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1355                           getPointerTy(), Callee, PICLabel);
1356    } else {
1357      unsigned OpFlags = 0;
1358      // On ELF targets for PIC code, direct calls should go through the PLT
1359      if (Subtarget->isTargetELF() &&
1360                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1361        OpFlags = ARMII::MO_PLT;
1362      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1363    }
1364  }
1365
1366  // FIXME: handle tail calls differently.
1367  unsigned CallOpc;
1368  if (Subtarget->isThumb()) {
1369    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1370      CallOpc = ARMISD::CALL_NOLINK;
1371    else
1372      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1373  } else {
1374    CallOpc = (isDirect || Subtarget->hasV5TOps())
1375      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1376      : ARMISD::CALL_NOLINK;
1377  }
1378
1379  std::vector<SDValue> Ops;
1380  Ops.push_back(Chain);
1381  Ops.push_back(Callee);
1382
1383  // Add argument registers to the end of the list so that they are known live
1384  // into the call.
1385  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1386    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1387                                  RegsToPass[i].second.getValueType()));
1388
1389  if (InFlag.getNode())
1390    Ops.push_back(InFlag);
1391
1392  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1393  if (isTailCall)
1394    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1395
1396  // Returns a chain and a flag for retval copy to use.
1397  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1398  InFlag = Chain.getValue(1);
1399
1400  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1401                             DAG.getIntPtrConstant(0, true), InFlag);
1402  if (!Ins.empty())
1403    InFlag = Chain.getValue(1);
1404
1405  // Handle result values, copying them out of physregs into vregs that we
1406  // return.
1407  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1408                         dl, DAG, InVals);
1409}
1410
1411/// MatchingStackOffset - Return true if the given stack call argument is
1412/// already available in the same position (relatively) of the caller's
1413/// incoming argument stack.
1414static
1415bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1416                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1417                         const ARMInstrInfo *TII) {
1418  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1419  int FI = INT_MAX;
1420  if (Arg.getOpcode() == ISD::CopyFromReg) {
1421    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1422    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
1423      return false;
1424    MachineInstr *Def = MRI->getVRegDef(VR);
1425    if (!Def)
1426      return false;
1427    if (!Flags.isByVal()) {
1428      if (!TII->isLoadFromStackSlot(Def, FI))
1429        return false;
1430    } else {
1431      return false;
1432    }
1433  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1434    if (Flags.isByVal())
1435      // ByVal argument is passed in as a pointer but it's now being
1436      // dereferenced. e.g.
1437      // define @foo(%struct.X* %A) {
1438      //   tail call @bar(%struct.X* byval %A)
1439      // }
1440      return false;
1441    SDValue Ptr = Ld->getBasePtr();
1442    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1443    if (!FINode)
1444      return false;
1445    FI = FINode->getIndex();
1446  } else
1447    return false;
1448
1449  assert(FI != INT_MAX);
1450  if (!MFI->isFixedObjectIndex(FI))
1451    return false;
1452  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1453}
1454
1455/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1456/// for tail call optimization. Targets which want to do tail call
1457/// optimization should implement this function.
1458bool
1459ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1460                                                     CallingConv::ID CalleeCC,
1461                                                     bool isVarArg,
1462                                                     bool isCalleeStructRet,
1463                                                     bool isCallerStructRet,
1464                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1465                                    const SmallVectorImpl<SDValue> &OutVals,
1466                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1467                                                     SelectionDAG& DAG) const {
1468  const Function *CallerF = DAG.getMachineFunction().getFunction();
1469  CallingConv::ID CallerCC = CallerF->getCallingConv();
1470  bool CCMatch = CallerCC == CalleeCC;
1471
1472  // Look for obvious safe cases to perform tail call optimization that do not
1473  // require ABI changes. This is what gcc calls sibcall.
1474
1475  // Do not sibcall optimize vararg calls unless the call site is not passing
1476  // any arguments.
1477  if (isVarArg && !Outs.empty())
1478    return false;
1479
1480  // Also avoid sibcall optimization if either caller or callee uses struct
1481  // return semantics.
1482  if (isCalleeStructRet || isCallerStructRet)
1483    return false;
1484
1485  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1486  // emitEpilogue is not ready for them.
1487  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1488  // LR.  This means if we need to reload LR, it takes an extra instructions,
1489  // which outweighs the value of the tail call; but here we don't know yet
1490  // whether LR is going to be used.  Probably the right approach is to
1491  // generate the tail call here and turn it back into CALL/RET in
1492  // emitEpilogue if LR is used.
1493  if (Subtarget->isThumb1Only())
1494    return false;
1495
1496  // For the moment, we can only do this to functions defined in this
1497  // compilation, or to indirect calls.  A Thumb B to an ARM function,
1498  // or vice versa, is not easily fixed up in the linker unlike BL.
1499  // (We could do this by loading the address of the callee into a register;
1500  // that is an extra instruction over the direct call and burns a register
1501  // as well, so is not likely to be a win.)
1502
1503  // It might be safe to remove this restriction on non-Darwin.
1504
1505  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1506  // but we need to make sure there are enough registers; the only valid
1507  // registers are the 4 used for parameters.  We don't currently do this
1508  // case.
1509  if (isa<ExternalSymbolSDNode>(Callee))
1510      return false;
1511
1512  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1513    const GlobalValue *GV = G->getGlobal();
1514    if (GV->isDeclaration() || GV->isWeakForLinker())
1515      return false;
1516  }
1517
1518  // If the calling conventions do not match, then we'd better make sure the
1519  // results are returned in the same way as what the caller expects.
1520  if (!CCMatch) {
1521    SmallVector<CCValAssign, 16> RVLocs1;
1522    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1523                    RVLocs1, *DAG.getContext());
1524    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1525
1526    SmallVector<CCValAssign, 16> RVLocs2;
1527    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1528                    RVLocs2, *DAG.getContext());
1529    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1530
1531    if (RVLocs1.size() != RVLocs2.size())
1532      return false;
1533    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1534      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1535        return false;
1536      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1537        return false;
1538      if (RVLocs1[i].isRegLoc()) {
1539        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1540          return false;
1541      } else {
1542        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1543          return false;
1544      }
1545    }
1546  }
1547
1548  // If the callee takes no arguments then go on to check the results of the
1549  // call.
1550  if (!Outs.empty()) {
1551    // Check if stack adjustment is needed. For now, do not do this if any
1552    // argument is passed on the stack.
1553    SmallVector<CCValAssign, 16> ArgLocs;
1554    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1555                   ArgLocs, *DAG.getContext());
1556    CCInfo.AnalyzeCallOperands(Outs,
1557                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1558    if (CCInfo.getNextStackOffset()) {
1559      MachineFunction &MF = DAG.getMachineFunction();
1560
1561      // Check if the arguments are already laid out in the right way as
1562      // the caller's fixed stack objects.
1563      MachineFrameInfo *MFI = MF.getFrameInfo();
1564      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1565      const ARMInstrInfo *TII =
1566        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1567      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1568           i != e;
1569           ++i, ++realArgIdx) {
1570        CCValAssign &VA = ArgLocs[i];
1571        EVT RegVT = VA.getLocVT();
1572        SDValue Arg = OutVals[realArgIdx];
1573        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1574        if (VA.getLocInfo() == CCValAssign::Indirect)
1575          return false;
1576        if (VA.needsCustom()) {
1577          // f64 and vector types are split into multiple registers or
1578          // register/stack-slot combinations.  The types will not match
1579          // the registers; give up on memory f64 refs until we figure
1580          // out what to do about this.
1581          if (!VA.isRegLoc())
1582            return false;
1583          if (!ArgLocs[++i].isRegLoc())
1584            return false;
1585          if (RegVT == MVT::v2f64) {
1586            if (!ArgLocs[++i].isRegLoc())
1587              return false;
1588            if (!ArgLocs[++i].isRegLoc())
1589              return false;
1590          }
1591        } else if (!VA.isRegLoc()) {
1592          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1593                                   MFI, MRI, TII))
1594            return false;
1595        }
1596      }
1597    }
1598  }
1599
1600  return true;
1601}
1602
1603SDValue
1604ARMTargetLowering::LowerReturn(SDValue Chain,
1605                               CallingConv::ID CallConv, bool isVarArg,
1606                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1607                               const SmallVectorImpl<SDValue> &OutVals,
1608                               DebugLoc dl, SelectionDAG &DAG) const {
1609
1610  // CCValAssign - represent the assignment of the return value to a location.
1611  SmallVector<CCValAssign, 16> RVLocs;
1612
1613  // CCState - Info about the registers and stack slots.
1614  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1615                 *DAG.getContext());
1616
1617  // Analyze outgoing return values.
1618  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1619                                               isVarArg));
1620
1621  // If this is the first return lowered for this function, add
1622  // the regs to the liveout set for the function.
1623  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1624    for (unsigned i = 0; i != RVLocs.size(); ++i)
1625      if (RVLocs[i].isRegLoc())
1626        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1627  }
1628
1629  SDValue Flag;
1630
1631  // Copy the result values into the output registers.
1632  for (unsigned i = 0, realRVLocIdx = 0;
1633       i != RVLocs.size();
1634       ++i, ++realRVLocIdx) {
1635    CCValAssign &VA = RVLocs[i];
1636    assert(VA.isRegLoc() && "Can only return in registers!");
1637
1638    SDValue Arg = OutVals[realRVLocIdx];
1639
1640    switch (VA.getLocInfo()) {
1641    default: llvm_unreachable("Unknown loc info!");
1642    case CCValAssign::Full: break;
1643    case CCValAssign::BCvt:
1644      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1645      break;
1646    }
1647
1648    if (VA.needsCustom()) {
1649      if (VA.getLocVT() == MVT::v2f64) {
1650        // Extract the first half and return it in two registers.
1651        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1652                                   DAG.getConstant(0, MVT::i32));
1653        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1654                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1655
1656        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1657        Flag = Chain.getValue(1);
1658        VA = RVLocs[++i]; // skip ahead to next loc
1659        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1660                                 HalfGPRs.getValue(1), Flag);
1661        Flag = Chain.getValue(1);
1662        VA = RVLocs[++i]; // skip ahead to next loc
1663
1664        // Extract the 2nd half and fall through to handle it as an f64 value.
1665        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1666                          DAG.getConstant(1, MVT::i32));
1667      }
1668      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1669      // available.
1670      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1671                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1672      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1673      Flag = Chain.getValue(1);
1674      VA = RVLocs[++i]; // skip ahead to next loc
1675      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1676                               Flag);
1677    } else
1678      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1679
1680    // Guarantee that all emitted copies are
1681    // stuck together, avoiding something bad.
1682    Flag = Chain.getValue(1);
1683  }
1684
1685  SDValue result;
1686  if (Flag.getNode())
1687    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1688  else // Return Void
1689    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1690
1691  return result;
1692}
1693
1694// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1695// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1696// one of the above mentioned nodes. It has to be wrapped because otherwise
1697// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1698// be used to form addressing mode. These wrapped nodes will be selected
1699// into MOVi.
1700static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1701  EVT PtrVT = Op.getValueType();
1702  // FIXME there is no actual debug info here
1703  DebugLoc dl = Op.getDebugLoc();
1704  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1705  SDValue Res;
1706  if (CP->isMachineConstantPoolEntry())
1707    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1708                                    CP->getAlignment());
1709  else
1710    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1711                                    CP->getAlignment());
1712  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1713}
1714
1715unsigned ARMTargetLowering::getJumpTableEncoding() const {
1716  return MachineJumpTableInfo::EK_Inline;
1717}
1718
1719SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1720                                             SelectionDAG &DAG) const {
1721  MachineFunction &MF = DAG.getMachineFunction();
1722  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1723  unsigned ARMPCLabelIndex = 0;
1724  DebugLoc DL = Op.getDebugLoc();
1725  EVT PtrVT = getPointerTy();
1726  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1727  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1728  SDValue CPAddr;
1729  if (RelocM == Reloc::Static) {
1730    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1731  } else {
1732    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1733    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1734    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1735                                                         ARMCP::CPBlockAddress,
1736                                                         PCAdj);
1737    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1738  }
1739  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1740  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1741                               MachinePointerInfo::getConstantPool(),
1742                               false, false, 0);
1743  if (RelocM == Reloc::Static)
1744    return Result;
1745  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1746  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1747}
1748
1749// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1750SDValue
1751ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1752                                                 SelectionDAG &DAG) const {
1753  DebugLoc dl = GA->getDebugLoc();
1754  EVT PtrVT = getPointerTy();
1755  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1756  MachineFunction &MF = DAG.getMachineFunction();
1757  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1758  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1759  ARMConstantPoolValue *CPV =
1760    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1761                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1762  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1763  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1764  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1765                         MachinePointerInfo::getConstantPool(),
1766                         false, false, 0);
1767  SDValue Chain = Argument.getValue(1);
1768
1769  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1770  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1771
1772  // call __tls_get_addr.
1773  ArgListTy Args;
1774  ArgListEntry Entry;
1775  Entry.Node = Argument;
1776  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1777  Args.push_back(Entry);
1778  // FIXME: is there useful debug info available here?
1779  std::pair<SDValue, SDValue> CallResult =
1780    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1781                false, false, false, false,
1782                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1783                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1784  return CallResult.first;
1785}
1786
1787// Lower ISD::GlobalTLSAddress using the "initial exec" or
1788// "local exec" model.
1789SDValue
1790ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1791                                        SelectionDAG &DAG) const {
1792  const GlobalValue *GV = GA->getGlobal();
1793  DebugLoc dl = GA->getDebugLoc();
1794  SDValue Offset;
1795  SDValue Chain = DAG.getEntryNode();
1796  EVT PtrVT = getPointerTy();
1797  // Get the Thread Pointer
1798  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1799
1800  if (GV->isDeclaration()) {
1801    MachineFunction &MF = DAG.getMachineFunction();
1802    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1803    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1804    // Initial exec model.
1805    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1806    ARMConstantPoolValue *CPV =
1807      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1808                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1809    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1810    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1811    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1812                         MachinePointerInfo::getConstantPool(),
1813                         false, false, 0);
1814    Chain = Offset.getValue(1);
1815
1816    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1817    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1818
1819    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1820                         MachinePointerInfo::getConstantPool(),
1821                         false, false, 0);
1822  } else {
1823    // local exec model
1824    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1825    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1826    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1827    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1828                         MachinePointerInfo::getConstantPool(),
1829                         false, false, 0);
1830  }
1831
1832  // The address of the thread local variable is the add of the thread
1833  // pointer with the offset of the variable.
1834  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1835}
1836
1837SDValue
1838ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1839  // TODO: implement the "local dynamic" model
1840  assert(Subtarget->isTargetELF() &&
1841         "TLS not implemented for non-ELF targets");
1842  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1843  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1844  // otherwise use the "Local Exec" TLS Model
1845  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1846    return LowerToTLSGeneralDynamicModel(GA, DAG);
1847  else
1848    return LowerToTLSExecModels(GA, DAG);
1849}
1850
1851SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1852                                                 SelectionDAG &DAG) const {
1853  EVT PtrVT = getPointerTy();
1854  DebugLoc dl = Op.getDebugLoc();
1855  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1856  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1857  if (RelocM == Reloc::PIC_) {
1858    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1859    ARMConstantPoolValue *CPV =
1860      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1861    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1862    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1863    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1864                                 CPAddr,
1865                                 MachinePointerInfo::getConstantPool(),
1866                                 false, false, 0);
1867    SDValue Chain = Result.getValue(1);
1868    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1869    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1870    if (!UseGOTOFF)
1871      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1872                           MachinePointerInfo::getGOT(), false, false, 0);
1873    return Result;
1874  } else {
1875    // If we have T2 ops, we can materialize the address directly via movt/movw
1876    // pair. This is always cheaper.
1877    if (Subtarget->useMovt()) {
1878      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1879                         DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1880    } else {
1881      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1882      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1883      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1884                         MachinePointerInfo::getConstantPool(),
1885                         false, false, 0);
1886    }
1887  }
1888}
1889
1890SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1891                                                    SelectionDAG &DAG) const {
1892  MachineFunction &MF = DAG.getMachineFunction();
1893  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1894  unsigned ARMPCLabelIndex = 0;
1895  EVT PtrVT = getPointerTy();
1896  DebugLoc dl = Op.getDebugLoc();
1897  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1898  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1899  SDValue CPAddr;
1900  if (RelocM == Reloc::Static)
1901    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1902  else {
1903    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1904    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1905    ARMConstantPoolValue *CPV =
1906      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1907    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1908  }
1909  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1910
1911  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1912                               MachinePointerInfo::getConstantPool(),
1913                               false, false, 0);
1914  SDValue Chain = Result.getValue(1);
1915
1916  if (RelocM == Reloc::PIC_) {
1917    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1918    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1919  }
1920
1921  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1922    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
1923                         false, false, 0);
1924
1925  return Result;
1926}
1927
1928SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1929                                                    SelectionDAG &DAG) const {
1930  assert(Subtarget->isTargetELF() &&
1931         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1932  MachineFunction &MF = DAG.getMachineFunction();
1933  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1934  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1935  EVT PtrVT = getPointerTy();
1936  DebugLoc dl = Op.getDebugLoc();
1937  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1938  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1939                                                       "_GLOBAL_OFFSET_TABLE_",
1940                                                       ARMPCLabelIndex, PCAdj);
1941  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1942  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1943  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1944                               MachinePointerInfo::getConstantPool(),
1945                               false, false, 0);
1946  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1947  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1948}
1949
1950SDValue
1951ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
1952  DebugLoc dl = Op.getDebugLoc();
1953  SDValue Val = DAG.getConstant(0, MVT::i32);
1954  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
1955                     Op.getOperand(1), Val);
1956}
1957
1958SDValue
1959ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
1960  DebugLoc dl = Op.getDebugLoc();
1961  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
1962                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
1963}
1964
1965SDValue
1966ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
1967                                          const ARMSubtarget *Subtarget) const {
1968  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1969  DebugLoc dl = Op.getDebugLoc();
1970  switch (IntNo) {
1971  default: return SDValue();    // Don't custom lower most intrinsics.
1972  case Intrinsic::arm_thread_pointer: {
1973    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1974    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1975  }
1976  case Intrinsic::eh_sjlj_lsda: {
1977    MachineFunction &MF = DAG.getMachineFunction();
1978    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1979    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1980    EVT PtrVT = getPointerTy();
1981    DebugLoc dl = Op.getDebugLoc();
1982    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1983    SDValue CPAddr;
1984    unsigned PCAdj = (RelocM != Reloc::PIC_)
1985      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1986    ARMConstantPoolValue *CPV =
1987      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
1988                               ARMCP::CPLSDA, PCAdj);
1989    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1990    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1991    SDValue Result =
1992      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1993                  MachinePointerInfo::getConstantPool(),
1994                  false, false, 0);
1995
1996    if (RelocM == Reloc::PIC_) {
1997      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1998      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1999    }
2000    return Result;
2001  }
2002  }
2003}
2004
2005static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2006                               const ARMSubtarget *Subtarget) {
2007  DebugLoc dl = Op.getDebugLoc();
2008  SDValue Op5 = Op.getOperand(5);
2009  unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
2010  // Some subtargets which have dmb and dsb instructions can handle barriers
2011  // directly. Some ARMv6 cpus can support them with the help of mcr
2012  // instruction. Thumb1 and pre-v6 ARM mode use a libcall instead and should
2013  // never get here.
2014  unsigned Opc = isDeviceBarrier ? ARMISD::SYNCBARRIER : ARMISD::MEMBARRIER;
2015  if (Subtarget->hasDataBarrier())
2016    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0));
2017  else {
2018    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb1Only() &&
2019           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2020    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0),
2021                       DAG.getConstant(0, MVT::i32));
2022  }
2023}
2024
2025static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2026  MachineFunction &MF = DAG.getMachineFunction();
2027  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2028
2029  // vastart just stores the address of the VarArgsFrameIndex slot into the
2030  // memory location argument.
2031  DebugLoc dl = Op.getDebugLoc();
2032  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2033  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2034  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2035  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2036                      MachinePointerInfo(SV), false, false, 0);
2037}
2038
2039SDValue
2040ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2041                                        SDValue &Root, SelectionDAG &DAG,
2042                                        DebugLoc dl) const {
2043  MachineFunction &MF = DAG.getMachineFunction();
2044  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2045
2046  TargetRegisterClass *RC;
2047  if (AFI->isThumb1OnlyFunction())
2048    RC = ARM::tGPRRegisterClass;
2049  else
2050    RC = ARM::GPRRegisterClass;
2051
2052  // Transform the arguments stored in physical registers into virtual ones.
2053  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2054  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2055
2056  SDValue ArgValue2;
2057  if (NextVA.isMemLoc()) {
2058    MachineFrameInfo *MFI = MF.getFrameInfo();
2059    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2060
2061    // Create load node to retrieve arguments from the stack.
2062    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2063    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2064                            MachinePointerInfo::getFixedStack(FI),
2065                            false, false, 0);
2066  } else {
2067    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2068    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2069  }
2070
2071  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2072}
2073
2074SDValue
2075ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2076                                        CallingConv::ID CallConv, bool isVarArg,
2077                                        const SmallVectorImpl<ISD::InputArg>
2078                                          &Ins,
2079                                        DebugLoc dl, SelectionDAG &DAG,
2080                                        SmallVectorImpl<SDValue> &InVals)
2081                                          const {
2082
2083  MachineFunction &MF = DAG.getMachineFunction();
2084  MachineFrameInfo *MFI = MF.getFrameInfo();
2085
2086  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2087
2088  // Assign locations to all of the incoming arguments.
2089  SmallVector<CCValAssign, 16> ArgLocs;
2090  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2091                 *DAG.getContext());
2092  CCInfo.AnalyzeFormalArguments(Ins,
2093                                CCAssignFnForNode(CallConv, /* Return*/ false,
2094                                                  isVarArg));
2095
2096  SmallVector<SDValue, 16> ArgValues;
2097
2098  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2099    CCValAssign &VA = ArgLocs[i];
2100
2101    // Arguments stored in registers.
2102    if (VA.isRegLoc()) {
2103      EVT RegVT = VA.getLocVT();
2104
2105      SDValue ArgValue;
2106      if (VA.needsCustom()) {
2107        // f64 and vector types are split up into multiple registers or
2108        // combinations of registers and stack slots.
2109        if (VA.getLocVT() == MVT::v2f64) {
2110          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2111                                                   Chain, DAG, dl);
2112          VA = ArgLocs[++i]; // skip ahead to next loc
2113          SDValue ArgValue2;
2114          if (VA.isMemLoc()) {
2115            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2116            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2117            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2118                                    MachinePointerInfo::getFixedStack(FI),
2119                                    false, false, 0);
2120          } else {
2121            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2122                                             Chain, DAG, dl);
2123          }
2124          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2125          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2126                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2127          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2128                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2129        } else
2130          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2131
2132      } else {
2133        TargetRegisterClass *RC;
2134
2135        if (RegVT == MVT::f32)
2136          RC = ARM::SPRRegisterClass;
2137        else if (RegVT == MVT::f64)
2138          RC = ARM::DPRRegisterClass;
2139        else if (RegVT == MVT::v2f64)
2140          RC = ARM::QPRRegisterClass;
2141        else if (RegVT == MVT::i32)
2142          RC = (AFI->isThumb1OnlyFunction() ?
2143                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2144        else
2145          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2146
2147        // Transform the arguments in physical registers into virtual ones.
2148        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2149        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2150      }
2151
2152      // If this is an 8 or 16-bit value, it is really passed promoted
2153      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2154      // truncate to the right size.
2155      switch (VA.getLocInfo()) {
2156      default: llvm_unreachable("Unknown loc info!");
2157      case CCValAssign::Full: break;
2158      case CCValAssign::BCvt:
2159        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
2160        break;
2161      case CCValAssign::SExt:
2162        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2163                               DAG.getValueType(VA.getValVT()));
2164        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2165        break;
2166      case CCValAssign::ZExt:
2167        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2168                               DAG.getValueType(VA.getValVT()));
2169        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2170        break;
2171      }
2172
2173      InVals.push_back(ArgValue);
2174
2175    } else { // VA.isRegLoc()
2176
2177      // sanity check
2178      assert(VA.isMemLoc());
2179      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2180
2181      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2182      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2183
2184      // Create load nodes to retrieve arguments from the stack.
2185      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2186      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2187                                   MachinePointerInfo::getFixedStack(FI),
2188                                   false, false, 0));
2189    }
2190  }
2191
2192  // varargs
2193  if (isVarArg) {
2194    static const unsigned GPRArgRegs[] = {
2195      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2196    };
2197
2198    unsigned NumGPRs = CCInfo.getFirstUnallocated
2199      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2200
2201    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
2202    unsigned VARegSize = (4 - NumGPRs) * 4;
2203    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2204    unsigned ArgOffset = CCInfo.getNextStackOffset();
2205    if (VARegSaveSize) {
2206      // If this function is vararg, store any remaining integer argument regs
2207      // to their spots on the stack so that they may be loaded by deferencing
2208      // the result of va_next.
2209      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2210      AFI->setVarArgsFrameIndex(
2211        MFI->CreateFixedObject(VARegSaveSize,
2212                               ArgOffset + VARegSaveSize - VARegSize,
2213                               false));
2214      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2215                                      getPointerTy());
2216
2217      SmallVector<SDValue, 4> MemOps;
2218      for (; NumGPRs < 4; ++NumGPRs) {
2219        TargetRegisterClass *RC;
2220        if (AFI->isThumb1OnlyFunction())
2221          RC = ARM::tGPRRegisterClass;
2222        else
2223          RC = ARM::GPRRegisterClass;
2224
2225        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2226        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2227        SDValue Store =
2228          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2229               MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2230                       false, false, 0);
2231        MemOps.push_back(Store);
2232        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2233                          DAG.getConstant(4, getPointerTy()));
2234      }
2235      if (!MemOps.empty())
2236        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2237                            &MemOps[0], MemOps.size());
2238    } else
2239      // This will point to the next argument passed via stack.
2240      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2241  }
2242
2243  return Chain;
2244}
2245
2246/// isFloatingPointZero - Return true if this is +0.0.
2247static bool isFloatingPointZero(SDValue Op) {
2248  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2249    return CFP->getValueAPF().isPosZero();
2250  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2251    // Maybe this has already been legalized into the constant pool?
2252    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2253      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2254      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2255        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2256          return CFP->getValueAPF().isPosZero();
2257    }
2258  }
2259  return false;
2260}
2261
2262/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2263/// the given operands.
2264SDValue
2265ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2266                             SDValue &ARMcc, SelectionDAG &DAG,
2267                             DebugLoc dl) const {
2268  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2269    unsigned C = RHSC->getZExtValue();
2270    if (!isLegalICmpImmediate(C)) {
2271      // Constant does not fit, try adjusting it by one?
2272      switch (CC) {
2273      default: break;
2274      case ISD::SETLT:
2275      case ISD::SETGE:
2276        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2277          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2278          RHS = DAG.getConstant(C-1, MVT::i32);
2279        }
2280        break;
2281      case ISD::SETULT:
2282      case ISD::SETUGE:
2283        if (C != 0 && isLegalICmpImmediate(C-1)) {
2284          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2285          RHS = DAG.getConstant(C-1, MVT::i32);
2286        }
2287        break;
2288      case ISD::SETLE:
2289      case ISD::SETGT:
2290        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2291          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2292          RHS = DAG.getConstant(C+1, MVT::i32);
2293        }
2294        break;
2295      case ISD::SETULE:
2296      case ISD::SETUGT:
2297        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2298          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2299          RHS = DAG.getConstant(C+1, MVT::i32);
2300        }
2301        break;
2302      }
2303    }
2304  }
2305
2306  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2307  ARMISD::NodeType CompareType;
2308  switch (CondCode) {
2309  default:
2310    CompareType = ARMISD::CMP;
2311    break;
2312  case ARMCC::EQ:
2313  case ARMCC::NE:
2314    // Uses only Z Flag
2315    CompareType = ARMISD::CMPZ;
2316    break;
2317  }
2318  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2319  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
2320}
2321
2322/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2323SDValue
2324ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2325                             DebugLoc dl) const {
2326  SDValue Cmp;
2327  if (!isFloatingPointZero(RHS))
2328    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
2329  else
2330    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
2331  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
2332}
2333
2334SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2335  SDValue Cond = Op.getOperand(0);
2336  SDValue SelectTrue = Op.getOperand(1);
2337  SDValue SelectFalse = Op.getOperand(2);
2338  DebugLoc dl = Op.getDebugLoc();
2339
2340  // Convert:
2341  //
2342  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2343  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2344  //
2345  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2346    const ConstantSDNode *CMOVTrue =
2347      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2348    const ConstantSDNode *CMOVFalse =
2349      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2350
2351    if (CMOVTrue && CMOVFalse) {
2352      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2353      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2354
2355      SDValue True;
2356      SDValue False;
2357      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2358        True = SelectTrue;
2359        False = SelectFalse;
2360      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2361        True = SelectFalse;
2362        False = SelectTrue;
2363      }
2364
2365      if (True.getNode() && False.getNode()) {
2366        EVT VT = Cond.getValueType();
2367        SDValue ARMcc = Cond.getOperand(2);
2368        SDValue CCR = Cond.getOperand(3);
2369        SDValue Cmp = Cond.getOperand(4);
2370        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2371      }
2372    }
2373  }
2374
2375  return DAG.getSelectCC(dl, Cond,
2376                         DAG.getConstant(0, Cond.getValueType()),
2377                         SelectTrue, SelectFalse, ISD::SETNE);
2378}
2379
2380SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2381  EVT VT = Op.getValueType();
2382  SDValue LHS = Op.getOperand(0);
2383  SDValue RHS = Op.getOperand(1);
2384  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2385  SDValue TrueVal = Op.getOperand(2);
2386  SDValue FalseVal = Op.getOperand(3);
2387  DebugLoc dl = Op.getDebugLoc();
2388
2389  if (LHS.getValueType() == MVT::i32) {
2390    SDValue ARMcc;
2391    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2392    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2393    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2394  }
2395
2396  ARMCC::CondCodes CondCode, CondCode2;
2397  FPCCToARMCC(CC, CondCode, CondCode2);
2398
2399  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2400  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2401  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2402  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2403                               ARMcc, CCR, Cmp);
2404  if (CondCode2 != ARMCC::AL) {
2405    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2406    // FIXME: Needs another CMP because flag can have but one use.
2407    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2408    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2409                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2410  }
2411  return Result;
2412}
2413
2414/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2415/// to morph to an integer compare sequence.
2416static bool canChangeToInt(SDValue Op, bool &SeenZero,
2417                           const ARMSubtarget *Subtarget) {
2418  SDNode *N = Op.getNode();
2419  if (!N->hasOneUse())
2420    // Otherwise it requires moving the value from fp to integer registers.
2421    return false;
2422  if (!N->getNumValues())
2423    return false;
2424  EVT VT = Op.getValueType();
2425  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2426    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2427    // vmrs are very slow, e.g. cortex-a8.
2428    return false;
2429
2430  if (isFloatingPointZero(Op)) {
2431    SeenZero = true;
2432    return true;
2433  }
2434  return ISD::isNormalLoad(N);
2435}
2436
2437static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2438  if (isFloatingPointZero(Op))
2439    return DAG.getConstant(0, MVT::i32);
2440
2441  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2442    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2443                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2444                       Ld->isVolatile(), Ld->isNonTemporal(),
2445                       Ld->getAlignment());
2446
2447  llvm_unreachable("Unknown VFP cmp argument!");
2448}
2449
2450static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2451                           SDValue &RetVal1, SDValue &RetVal2) {
2452  if (isFloatingPointZero(Op)) {
2453    RetVal1 = DAG.getConstant(0, MVT::i32);
2454    RetVal2 = DAG.getConstant(0, MVT::i32);
2455    return;
2456  }
2457
2458  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2459    SDValue Ptr = Ld->getBasePtr();
2460    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2461                          Ld->getChain(), Ptr,
2462                          Ld->getPointerInfo(),
2463                          Ld->isVolatile(), Ld->isNonTemporal(),
2464                          Ld->getAlignment());
2465
2466    EVT PtrType = Ptr.getValueType();
2467    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2468    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2469                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2470    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2471                          Ld->getChain(), NewPtr,
2472                          Ld->getPointerInfo().getWithOffset(4),
2473                          Ld->isVolatile(), Ld->isNonTemporal(),
2474                          NewAlign);
2475    return;
2476  }
2477
2478  llvm_unreachable("Unknown VFP cmp argument!");
2479}
2480
2481/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2482/// f32 and even f64 comparisons to integer ones.
2483SDValue
2484ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2485  SDValue Chain = Op.getOperand(0);
2486  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2487  SDValue LHS = Op.getOperand(2);
2488  SDValue RHS = Op.getOperand(3);
2489  SDValue Dest = Op.getOperand(4);
2490  DebugLoc dl = Op.getDebugLoc();
2491
2492  bool SeenZero = false;
2493  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2494      canChangeToInt(RHS, SeenZero, Subtarget) &&
2495      // If one of the operand is zero, it's safe to ignore the NaN case since
2496      // we only care about equality comparisons.
2497      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2498    // If unsafe fp math optimization is enabled and there are no othter uses of
2499    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
2500    // to an integer comparison.
2501    if (CC == ISD::SETOEQ)
2502      CC = ISD::SETEQ;
2503    else if (CC == ISD::SETUNE)
2504      CC = ISD::SETNE;
2505
2506    SDValue ARMcc;
2507    if (LHS.getValueType() == MVT::f32) {
2508      LHS = bitcastf32Toi32(LHS, DAG);
2509      RHS = bitcastf32Toi32(RHS, DAG);
2510      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2511      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2512      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2513                         Chain, Dest, ARMcc, CCR, Cmp);
2514    }
2515
2516    SDValue LHS1, LHS2;
2517    SDValue RHS1, RHS2;
2518    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2519    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2520    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2521    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2522    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2523    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2524    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2525  }
2526
2527  return SDValue();
2528}
2529
2530SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2531  SDValue Chain = Op.getOperand(0);
2532  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2533  SDValue LHS = Op.getOperand(2);
2534  SDValue RHS = Op.getOperand(3);
2535  SDValue Dest = Op.getOperand(4);
2536  DebugLoc dl = Op.getDebugLoc();
2537
2538  if (LHS.getValueType() == MVT::i32) {
2539    SDValue ARMcc;
2540    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2541    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2542    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2543                       Chain, Dest, ARMcc, CCR, Cmp);
2544  }
2545
2546  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2547
2548  if (UnsafeFPMath &&
2549      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2550       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2551    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2552    if (Result.getNode())
2553      return Result;
2554  }
2555
2556  ARMCC::CondCodes CondCode, CondCode2;
2557  FPCCToARMCC(CC, CondCode, CondCode2);
2558
2559  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2560  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2561  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2562  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2563  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2564  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2565  if (CondCode2 != ARMCC::AL) {
2566    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2567    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2568    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2569  }
2570  return Res;
2571}
2572
2573SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2574  SDValue Chain = Op.getOperand(0);
2575  SDValue Table = Op.getOperand(1);
2576  SDValue Index = Op.getOperand(2);
2577  DebugLoc dl = Op.getDebugLoc();
2578
2579  EVT PTy = getPointerTy();
2580  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2581  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2582  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2583  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2584  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2585  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2586  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2587  if (Subtarget->isThumb2()) {
2588    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2589    // which does another jump to the destination. This also makes it easier
2590    // to translate it to TBB / TBH later.
2591    // FIXME: This might not work if the function is extremely large.
2592    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2593                       Addr, Op.getOperand(2), JTI, UId);
2594  }
2595  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2596    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2597                       MachinePointerInfo::getJumpTable(),
2598                       false, false, 0);
2599    Chain = Addr.getValue(1);
2600    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2601    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2602  } else {
2603    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2604                       MachinePointerInfo::getJumpTable(), false, false, 0);
2605    Chain = Addr.getValue(1);
2606    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2607  }
2608}
2609
2610static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2611  DebugLoc dl = Op.getDebugLoc();
2612  unsigned Opc;
2613
2614  switch (Op.getOpcode()) {
2615  default:
2616    assert(0 && "Invalid opcode!");
2617  case ISD::FP_TO_SINT:
2618    Opc = ARMISD::FTOSI;
2619    break;
2620  case ISD::FP_TO_UINT:
2621    Opc = ARMISD::FTOUI;
2622    break;
2623  }
2624  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2625  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
2626}
2627
2628static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2629  EVT VT = Op.getValueType();
2630  DebugLoc dl = Op.getDebugLoc();
2631  unsigned Opc;
2632
2633  switch (Op.getOpcode()) {
2634  default:
2635    assert(0 && "Invalid opcode!");
2636  case ISD::SINT_TO_FP:
2637    Opc = ARMISD::SITOF;
2638    break;
2639  case ISD::UINT_TO_FP:
2640    Opc = ARMISD::UITOF;
2641    break;
2642  }
2643
2644  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
2645  return DAG.getNode(Opc, dl, VT, Op);
2646}
2647
2648SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2649  // Implement fcopysign with a fabs and a conditional fneg.
2650  SDValue Tmp0 = Op.getOperand(0);
2651  SDValue Tmp1 = Op.getOperand(1);
2652  DebugLoc dl = Op.getDebugLoc();
2653  EVT VT = Op.getValueType();
2654  EVT SrcVT = Tmp1.getValueType();
2655  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2656  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
2657  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
2658  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
2659  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2660  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
2661}
2662
2663SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2664  MachineFunction &MF = DAG.getMachineFunction();
2665  MachineFrameInfo *MFI = MF.getFrameInfo();
2666  MFI->setReturnAddressIsTaken(true);
2667
2668  EVT VT = Op.getValueType();
2669  DebugLoc dl = Op.getDebugLoc();
2670  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2671  if (Depth) {
2672    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2673    SDValue Offset = DAG.getConstant(4, MVT::i32);
2674    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2675                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2676                       MachinePointerInfo(), false, false, 0);
2677  }
2678
2679  // Return LR, which contains the return address. Mark it an implicit live-in.
2680  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
2681  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2682}
2683
2684SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2685  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2686  MFI->setFrameAddressIsTaken(true);
2687
2688  EVT VT = Op.getValueType();
2689  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2690  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2691  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2692    ? ARM::R7 : ARM::R11;
2693  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2694  while (Depth--)
2695    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2696                            MachinePointerInfo(),
2697                            false, false, 0);
2698  return FrameAddr;
2699}
2700
2701/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
2702/// expand a bit convert where either the source or destination type is i64 to
2703/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2704/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2705/// vectors), since the legalizer won't know what to do with that.
2706static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2707  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2708  DebugLoc dl = N->getDebugLoc();
2709  SDValue Op = N->getOperand(0);
2710
2711  // This function is only supposed to be called for i64 types, either as the
2712  // source or destination of the bit convert.
2713  EVT SrcVT = Op.getValueType();
2714  EVT DstVT = N->getValueType(0);
2715  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2716         "ExpandBIT_CONVERT called for non-i64 type");
2717
2718  // Turn i64->f64 into VMOVDRR.
2719  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2720    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2721                             DAG.getConstant(0, MVT::i32));
2722    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2723                             DAG.getConstant(1, MVT::i32));
2724    return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
2725                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2726  }
2727
2728  // Turn f64->i64 into VMOVRRD.
2729  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2730    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2731                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2732    // Merge the pieces into a single i64 value.
2733    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2734  }
2735
2736  return SDValue();
2737}
2738
2739/// getZeroVector - Returns a vector of specified type with all zero elements.
2740/// Zero vectors are used to represent vector negation and in those cases
2741/// will be implemented with the NEON VNEG instruction.  However, VNEG does
2742/// not support i64 elements, so sometimes the zero vectors will need to be
2743/// explicitly constructed.  Regardless, use a canonical VMOV to create the
2744/// zero vector.
2745static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2746  assert(VT.isVector() && "Expected a vector type");
2747  // The canonical modified immediate encoding of a zero vector is....0!
2748  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
2749  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
2750  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
2751  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
2752}
2753
2754/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2755/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2756SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2757                                                SelectionDAG &DAG) const {
2758  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2759  EVT VT = Op.getValueType();
2760  unsigned VTBits = VT.getSizeInBits();
2761  DebugLoc dl = Op.getDebugLoc();
2762  SDValue ShOpLo = Op.getOperand(0);
2763  SDValue ShOpHi = Op.getOperand(1);
2764  SDValue ShAmt  = Op.getOperand(2);
2765  SDValue ARMcc;
2766  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2767
2768  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2769
2770  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2771                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2772  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2773  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2774                                   DAG.getConstant(VTBits, MVT::i32));
2775  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2776  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2777  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2778
2779  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2780  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2781                          ARMcc, DAG, dl);
2782  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2783  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
2784                           CCR, Cmp);
2785
2786  SDValue Ops[2] = { Lo, Hi };
2787  return DAG.getMergeValues(Ops, 2, dl);
2788}
2789
2790/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2791/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2792SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2793                                               SelectionDAG &DAG) const {
2794  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2795  EVT VT = Op.getValueType();
2796  unsigned VTBits = VT.getSizeInBits();
2797  DebugLoc dl = Op.getDebugLoc();
2798  SDValue ShOpLo = Op.getOperand(0);
2799  SDValue ShOpHi = Op.getOperand(1);
2800  SDValue ShAmt  = Op.getOperand(2);
2801  SDValue ARMcc;
2802
2803  assert(Op.getOpcode() == ISD::SHL_PARTS);
2804  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2805                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2806  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2807  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2808                                   DAG.getConstant(VTBits, MVT::i32));
2809  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2810  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2811
2812  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2813  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2814  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2815                          ARMcc, DAG, dl);
2816  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2817  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
2818                           CCR, Cmp);
2819
2820  SDValue Ops[2] = { Lo, Hi };
2821  return DAG.getMergeValues(Ops, 2, dl);
2822}
2823
2824SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2825                                            SelectionDAG &DAG) const {
2826  // The rounding mode is in bits 23:22 of the FPSCR.
2827  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2828  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2829  // so that the shift + and get folded into a bitfield extract.
2830  DebugLoc dl = Op.getDebugLoc();
2831  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
2832                              DAG.getConstant(Intrinsic::arm_get_fpscr,
2833                                              MVT::i32));
2834  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
2835                                  DAG.getConstant(1U << 22, MVT::i32));
2836  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2837                              DAG.getConstant(22, MVT::i32));
2838  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2839                     DAG.getConstant(3, MVT::i32));
2840}
2841
2842static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2843                         const ARMSubtarget *ST) {
2844  EVT VT = N->getValueType(0);
2845  DebugLoc dl = N->getDebugLoc();
2846
2847  if (!ST->hasV6T2Ops())
2848    return SDValue();
2849
2850  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2851  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2852}
2853
2854static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2855                          const ARMSubtarget *ST) {
2856  EVT VT = N->getValueType(0);
2857  DebugLoc dl = N->getDebugLoc();
2858
2859  // Lower vector shifts on NEON to use VSHL.
2860  if (VT.isVector()) {
2861    assert(ST->hasNEON() && "unexpected vector shift");
2862
2863    // Left shifts translate directly to the vshiftu intrinsic.
2864    if (N->getOpcode() == ISD::SHL)
2865      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2866                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2867                         N->getOperand(0), N->getOperand(1));
2868
2869    assert((N->getOpcode() == ISD::SRA ||
2870            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2871
2872    // NEON uses the same intrinsics for both left and right shifts.  For
2873    // right shifts, the shift amounts are negative, so negate the vector of
2874    // shift amounts.
2875    EVT ShiftVT = N->getOperand(1).getValueType();
2876    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2877                                       getZeroVector(ShiftVT, DAG, dl),
2878                                       N->getOperand(1));
2879    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2880                               Intrinsic::arm_neon_vshifts :
2881                               Intrinsic::arm_neon_vshiftu);
2882    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2883                       DAG.getConstant(vshiftInt, MVT::i32),
2884                       N->getOperand(0), NegatedCount);
2885  }
2886
2887  // We can get here for a node like i32 = ISD::SHL i32, i64
2888  if (VT != MVT::i64)
2889    return SDValue();
2890
2891  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2892         "Unknown shift to lower!");
2893
2894  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2895  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2896      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2897    return SDValue();
2898
2899  // If we are in thumb mode, we don't have RRX.
2900  if (ST->isThumb1Only()) return SDValue();
2901
2902  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2903  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2904                           DAG.getConstant(0, MVT::i32));
2905  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2906                           DAG.getConstant(1, MVT::i32));
2907
2908  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2909  // captures the result into a carry flag.
2910  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2911  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2912
2913  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2914  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2915
2916  // Merge the pieces into a single i64 value.
2917 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2918}
2919
2920static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2921  SDValue TmpOp0, TmpOp1;
2922  bool Invert = false;
2923  bool Swap = false;
2924  unsigned Opc = 0;
2925
2926  SDValue Op0 = Op.getOperand(0);
2927  SDValue Op1 = Op.getOperand(1);
2928  SDValue CC = Op.getOperand(2);
2929  EVT VT = Op.getValueType();
2930  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2931  DebugLoc dl = Op.getDebugLoc();
2932
2933  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2934    switch (SetCCOpcode) {
2935    default: llvm_unreachable("Illegal FP comparison"); break;
2936    case ISD::SETUNE:
2937    case ISD::SETNE:  Invert = true; // Fallthrough
2938    case ISD::SETOEQ:
2939    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2940    case ISD::SETOLT:
2941    case ISD::SETLT: Swap = true; // Fallthrough
2942    case ISD::SETOGT:
2943    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2944    case ISD::SETOLE:
2945    case ISD::SETLE:  Swap = true; // Fallthrough
2946    case ISD::SETOGE:
2947    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2948    case ISD::SETUGE: Swap = true; // Fallthrough
2949    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2950    case ISD::SETUGT: Swap = true; // Fallthrough
2951    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2952    case ISD::SETUEQ: Invert = true; // Fallthrough
2953    case ISD::SETONE:
2954      // Expand this to (OLT | OGT).
2955      TmpOp0 = Op0;
2956      TmpOp1 = Op1;
2957      Opc = ISD::OR;
2958      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2959      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2960      break;
2961    case ISD::SETUO: Invert = true; // Fallthrough
2962    case ISD::SETO:
2963      // Expand this to (OLT | OGE).
2964      TmpOp0 = Op0;
2965      TmpOp1 = Op1;
2966      Opc = ISD::OR;
2967      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2968      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2969      break;
2970    }
2971  } else {
2972    // Integer comparisons.
2973    switch (SetCCOpcode) {
2974    default: llvm_unreachable("Illegal integer comparison"); break;
2975    case ISD::SETNE:  Invert = true;
2976    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2977    case ISD::SETLT:  Swap = true;
2978    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2979    case ISD::SETLE:  Swap = true;
2980    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2981    case ISD::SETULT: Swap = true;
2982    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2983    case ISD::SETULE: Swap = true;
2984    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2985    }
2986
2987    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2988    if (Opc == ARMISD::VCEQ) {
2989
2990      SDValue AndOp;
2991      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2992        AndOp = Op0;
2993      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2994        AndOp = Op1;
2995
2996      // Ignore bitconvert.
2997      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2998        AndOp = AndOp.getOperand(0);
2999
3000      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3001        Opc = ARMISD::VTST;
3002        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
3003        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
3004        Invert = !Invert;
3005      }
3006    }
3007  }
3008
3009  if (Swap)
3010    std::swap(Op0, Op1);
3011
3012  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3013
3014  if (Invert)
3015    Result = DAG.getNOT(dl, Result, VT);
3016
3017  return Result;
3018}
3019
3020/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3021/// valid vector constant for a NEON instruction with a "modified immediate"
3022/// operand (e.g., VMOV).  If so, return the encoded value.
3023static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3024                                 unsigned SplatBitSize, SelectionDAG &DAG,
3025                                 EVT &VT, bool is128Bits, bool isVMOV) {
3026  unsigned OpCmode, Imm;
3027
3028  // SplatBitSize is set to the smallest size that splats the vector, so a
3029  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3030  // immediate instructions others than VMOV do not support the 8-bit encoding
3031  // of a zero vector, and the default encoding of zero is supposed to be the
3032  // 32-bit version.
3033  if (SplatBits == 0)
3034    SplatBitSize = 32;
3035
3036  switch (SplatBitSize) {
3037  case 8:
3038    if (!isVMOV)
3039      return SDValue();
3040    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3041    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3042    OpCmode = 0xe;
3043    Imm = SplatBits;
3044    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3045    break;
3046
3047  case 16:
3048    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3049    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3050    if ((SplatBits & ~0xff) == 0) {
3051      // Value = 0x00nn: Op=x, Cmode=100x.
3052      OpCmode = 0x8;
3053      Imm = SplatBits;
3054      break;
3055    }
3056    if ((SplatBits & ~0xff00) == 0) {
3057      // Value = 0xnn00: Op=x, Cmode=101x.
3058      OpCmode = 0xa;
3059      Imm = SplatBits >> 8;
3060      break;
3061    }
3062    return SDValue();
3063
3064  case 32:
3065    // NEON's 32-bit VMOV supports splat values where:
3066    // * only one byte is nonzero, or
3067    // * the least significant byte is 0xff and the second byte is nonzero, or
3068    // * the least significant 2 bytes are 0xff and the third is nonzero.
3069    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3070    if ((SplatBits & ~0xff) == 0) {
3071      // Value = 0x000000nn: Op=x, Cmode=000x.
3072      OpCmode = 0;
3073      Imm = SplatBits;
3074      break;
3075    }
3076    if ((SplatBits & ~0xff00) == 0) {
3077      // Value = 0x0000nn00: Op=x, Cmode=001x.
3078      OpCmode = 0x2;
3079      Imm = SplatBits >> 8;
3080      break;
3081    }
3082    if ((SplatBits & ~0xff0000) == 0) {
3083      // Value = 0x00nn0000: Op=x, Cmode=010x.
3084      OpCmode = 0x4;
3085      Imm = SplatBits >> 16;
3086      break;
3087    }
3088    if ((SplatBits & ~0xff000000) == 0) {
3089      // Value = 0xnn000000: Op=x, Cmode=011x.
3090      OpCmode = 0x6;
3091      Imm = SplatBits >> 24;
3092      break;
3093    }
3094
3095    if ((SplatBits & ~0xffff) == 0 &&
3096        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3097      // Value = 0x0000nnff: Op=x, Cmode=1100.
3098      OpCmode = 0xc;
3099      Imm = SplatBits >> 8;
3100      SplatBits |= 0xff;
3101      break;
3102    }
3103
3104    if ((SplatBits & ~0xffffff) == 0 &&
3105        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3106      // Value = 0x00nnffff: Op=x, Cmode=1101.
3107      OpCmode = 0xd;
3108      Imm = SplatBits >> 16;
3109      SplatBits |= 0xffff;
3110      break;
3111    }
3112
3113    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3114    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3115    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3116    // and fall through here to test for a valid 64-bit splat.  But, then the
3117    // caller would also need to check and handle the change in size.
3118    return SDValue();
3119
3120  case 64: {
3121    if (!isVMOV)
3122      return SDValue();
3123    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3124    uint64_t BitMask = 0xff;
3125    uint64_t Val = 0;
3126    unsigned ImmMask = 1;
3127    Imm = 0;
3128    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3129      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3130        Val |= BitMask;
3131        Imm |= ImmMask;
3132      } else if ((SplatBits & BitMask) != 0) {
3133        return SDValue();
3134      }
3135      BitMask <<= 8;
3136      ImmMask <<= 1;
3137    }
3138    // Op=1, Cmode=1110.
3139    OpCmode = 0x1e;
3140    SplatBits = Val;
3141    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3142    break;
3143  }
3144
3145  default:
3146    llvm_unreachable("unexpected size for isNEONModifiedImm");
3147    return SDValue();
3148  }
3149
3150  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3151  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3152}
3153
3154static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3155                       bool &ReverseVEXT, unsigned &Imm) {
3156  unsigned NumElts = VT.getVectorNumElements();
3157  ReverseVEXT = false;
3158
3159  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3160  if (M[0] < 0)
3161    return false;
3162
3163  Imm = M[0];
3164
3165  // If this is a VEXT shuffle, the immediate value is the index of the first
3166  // element.  The other shuffle indices must be the successive elements after
3167  // the first one.
3168  unsigned ExpectedElt = Imm;
3169  for (unsigned i = 1; i < NumElts; ++i) {
3170    // Increment the expected index.  If it wraps around, it may still be
3171    // a VEXT but the source vectors must be swapped.
3172    ExpectedElt += 1;
3173    if (ExpectedElt == NumElts * 2) {
3174      ExpectedElt = 0;
3175      ReverseVEXT = true;
3176    }
3177
3178    if (M[i] < 0) continue; // ignore UNDEF indices
3179    if (ExpectedElt != static_cast<unsigned>(M[i]))
3180      return false;
3181  }
3182
3183  // Adjust the index value if the source operands will be swapped.
3184  if (ReverseVEXT)
3185    Imm -= NumElts;
3186
3187  return true;
3188}
3189
3190/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3191/// instruction with the specified blocksize.  (The order of the elements
3192/// within each block of the vector is reversed.)
3193static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3194                       unsigned BlockSize) {
3195  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3196         "Only possible block sizes for VREV are: 16, 32, 64");
3197
3198  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3199  if (EltSz == 64)
3200    return false;
3201
3202  unsigned NumElts = VT.getVectorNumElements();
3203  unsigned BlockElts = M[0] + 1;
3204  // If the first shuffle index is UNDEF, be optimistic.
3205  if (M[0] < 0)
3206    BlockElts = BlockSize / EltSz;
3207
3208  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3209    return false;
3210
3211  for (unsigned i = 0; i < NumElts; ++i) {
3212    if (M[i] < 0) continue; // ignore UNDEF indices
3213    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3214      return false;
3215  }
3216
3217  return true;
3218}
3219
3220static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3221                       unsigned &WhichResult) {
3222  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3223  if (EltSz == 64)
3224    return false;
3225
3226  unsigned NumElts = VT.getVectorNumElements();
3227  WhichResult = (M[0] == 0 ? 0 : 1);
3228  for (unsigned i = 0; i < NumElts; i += 2) {
3229    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3230        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3231      return false;
3232  }
3233  return true;
3234}
3235
3236/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3237/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3238/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3239static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3240                                unsigned &WhichResult) {
3241  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3242  if (EltSz == 64)
3243    return false;
3244
3245  unsigned NumElts = VT.getVectorNumElements();
3246  WhichResult = (M[0] == 0 ? 0 : 1);
3247  for (unsigned i = 0; i < NumElts; i += 2) {
3248    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3249        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3250      return false;
3251  }
3252  return true;
3253}
3254
3255static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3256                       unsigned &WhichResult) {
3257  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3258  if (EltSz == 64)
3259    return false;
3260
3261  unsigned NumElts = VT.getVectorNumElements();
3262  WhichResult = (M[0] == 0 ? 0 : 1);
3263  for (unsigned i = 0; i != NumElts; ++i) {
3264    if (M[i] < 0) continue; // ignore UNDEF indices
3265    if ((unsigned) M[i] != 2 * i + WhichResult)
3266      return false;
3267  }
3268
3269  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3270  if (VT.is64BitVector() && EltSz == 32)
3271    return false;
3272
3273  return true;
3274}
3275
3276/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3277/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3278/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3279static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3280                                unsigned &WhichResult) {
3281  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3282  if (EltSz == 64)
3283    return false;
3284
3285  unsigned Half = VT.getVectorNumElements() / 2;
3286  WhichResult = (M[0] == 0 ? 0 : 1);
3287  for (unsigned j = 0; j != 2; ++j) {
3288    unsigned Idx = WhichResult;
3289    for (unsigned i = 0; i != Half; ++i) {
3290      int MIdx = M[i + j * Half];
3291      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3292        return false;
3293      Idx += 2;
3294    }
3295  }
3296
3297  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3298  if (VT.is64BitVector() && EltSz == 32)
3299    return false;
3300
3301  return true;
3302}
3303
3304static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3305                       unsigned &WhichResult) {
3306  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3307  if (EltSz == 64)
3308    return false;
3309
3310  unsigned NumElts = VT.getVectorNumElements();
3311  WhichResult = (M[0] == 0 ? 0 : 1);
3312  unsigned Idx = WhichResult * NumElts / 2;
3313  for (unsigned i = 0; i != NumElts; i += 2) {
3314    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3315        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3316      return false;
3317    Idx += 1;
3318  }
3319
3320  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3321  if (VT.is64BitVector() && EltSz == 32)
3322    return false;
3323
3324  return true;
3325}
3326
3327/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3328/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3329/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3330static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3331                                unsigned &WhichResult) {
3332  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3333  if (EltSz == 64)
3334    return false;
3335
3336  unsigned NumElts = VT.getVectorNumElements();
3337  WhichResult = (M[0] == 0 ? 0 : 1);
3338  unsigned Idx = WhichResult * NumElts / 2;
3339  for (unsigned i = 0; i != NumElts; i += 2) {
3340    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3341        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3342      return false;
3343    Idx += 1;
3344  }
3345
3346  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3347  if (VT.is64BitVector() && EltSz == 32)
3348    return false;
3349
3350  return true;
3351}
3352
3353// If N is an integer constant that can be moved into a register in one
3354// instruction, return an SDValue of such a constant (will become a MOV
3355// instruction).  Otherwise return null.
3356static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3357                                     const ARMSubtarget *ST, DebugLoc dl) {
3358  uint64_t Val;
3359  if (!isa<ConstantSDNode>(N))
3360    return SDValue();
3361  Val = cast<ConstantSDNode>(N)->getZExtValue();
3362
3363  if (ST->isThumb1Only()) {
3364    if (Val <= 255 || ~Val <= 255)
3365      return DAG.getConstant(Val, MVT::i32);
3366  } else {
3367    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3368      return DAG.getConstant(Val, MVT::i32);
3369  }
3370  return SDValue();
3371}
3372
3373// If this is a case we can't handle, return null and let the default
3374// expansion code take care of it.
3375static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3376                                 const ARMSubtarget *ST) {
3377  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3378  DebugLoc dl = Op.getDebugLoc();
3379  EVT VT = Op.getValueType();
3380
3381  APInt SplatBits, SplatUndef;
3382  unsigned SplatBitSize;
3383  bool HasAnyUndefs;
3384  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3385    if (SplatBitSize <= 64) {
3386      // Check if an immediate VMOV works.
3387      EVT VmovVT;
3388      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3389                                      SplatUndef.getZExtValue(), SplatBitSize,
3390                                      DAG, VmovVT, VT.is128BitVector(), true);
3391      if (Val.getNode()) {
3392        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3393        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3394      }
3395
3396      // Try an immediate VMVN.
3397      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3398                             ((1LL << SplatBitSize) - 1));
3399      Val = isNEONModifiedImm(NegatedImm,
3400                                      SplatUndef.getZExtValue(), SplatBitSize,
3401                                      DAG, VmovVT, VT.is128BitVector(), false);
3402      if (Val.getNode()) {
3403        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3404        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3405      }
3406    }
3407  }
3408
3409  // Scan through the operands to see if only one value is used.
3410  unsigned NumElts = VT.getVectorNumElements();
3411  bool isOnlyLowElement = true;
3412  bool usesOnlyOneValue = true;
3413  bool isConstant = true;
3414  SDValue Value;
3415  for (unsigned i = 0; i < NumElts; ++i) {
3416    SDValue V = Op.getOperand(i);
3417    if (V.getOpcode() == ISD::UNDEF)
3418      continue;
3419    if (i > 0)
3420      isOnlyLowElement = false;
3421    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3422      isConstant = false;
3423
3424    if (!Value.getNode())
3425      Value = V;
3426    else if (V != Value)
3427      usesOnlyOneValue = false;
3428  }
3429
3430  if (!Value.getNode())
3431    return DAG.getUNDEF(VT);
3432
3433  if (isOnlyLowElement)
3434    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3435
3436  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3437
3438  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3439  // i32 and try again.
3440  if (usesOnlyOneValue && EltSize <= 32) {
3441    if (!isConstant)
3442      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3443    if (VT.getVectorElementType().isFloatingPoint()) {
3444      SmallVector<SDValue, 8> Ops;
3445      for (unsigned i = 0; i < NumElts; ++i)
3446        Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
3447                                  Op.getOperand(i)));
3448      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &Ops[0],
3449                                NumElts);
3450      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3451                         LowerBUILD_VECTOR(Val, DAG, ST));
3452    }
3453    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3454    if (Val.getNode())
3455      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3456  }
3457
3458  // If all elements are constants and the case above didn't get hit, fall back
3459  // to the default expansion, which will generate a load from the constant
3460  // pool.
3461  if (isConstant)
3462    return SDValue();
3463
3464  // Vectors with 32- or 64-bit elements can be built by directly assigning
3465  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3466  // will be legalized.
3467  if (EltSize >= 32) {
3468    // Do the expansion with floating-point types, since that is what the VFP
3469    // registers are defined to use, and since i64 is not legal.
3470    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3471    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3472    SmallVector<SDValue, 8> Ops;
3473    for (unsigned i = 0; i < NumElts; ++i)
3474      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
3475    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3476    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3477  }
3478
3479  return SDValue();
3480}
3481
3482/// isShuffleMaskLegal - Targets can use this to indicate that they only
3483/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3484/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3485/// are assumed to be legal.
3486bool
3487ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3488                                      EVT VT) const {
3489  if (VT.getVectorNumElements() == 4 &&
3490      (VT.is128BitVector() || VT.is64BitVector())) {
3491    unsigned PFIndexes[4];
3492    for (unsigned i = 0; i != 4; ++i) {
3493      if (M[i] < 0)
3494        PFIndexes[i] = 8;
3495      else
3496        PFIndexes[i] = M[i];
3497    }
3498
3499    // Compute the index in the perfect shuffle table.
3500    unsigned PFTableIndex =
3501      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3502    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3503    unsigned Cost = (PFEntry >> 30);
3504
3505    if (Cost <= 4)
3506      return true;
3507  }
3508
3509  bool ReverseVEXT;
3510  unsigned Imm, WhichResult;
3511
3512  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3513  return (EltSize >= 32 ||
3514          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3515          isVREVMask(M, VT, 64) ||
3516          isVREVMask(M, VT, 32) ||
3517          isVREVMask(M, VT, 16) ||
3518          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3519          isVTRNMask(M, VT, WhichResult) ||
3520          isVUZPMask(M, VT, WhichResult) ||
3521          isVZIPMask(M, VT, WhichResult) ||
3522          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3523          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3524          isVZIP_v_undef_Mask(M, VT, WhichResult));
3525}
3526
3527/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3528/// the specified operations to build the shuffle.
3529static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3530                                      SDValue RHS, SelectionDAG &DAG,
3531                                      DebugLoc dl) {
3532  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3533  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3534  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3535
3536  enum {
3537    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3538    OP_VREV,
3539    OP_VDUP0,
3540    OP_VDUP1,
3541    OP_VDUP2,
3542    OP_VDUP3,
3543    OP_VEXT1,
3544    OP_VEXT2,
3545    OP_VEXT3,
3546    OP_VUZPL, // VUZP, left result
3547    OP_VUZPR, // VUZP, right result
3548    OP_VZIPL, // VZIP, left result
3549    OP_VZIPR, // VZIP, right result
3550    OP_VTRNL, // VTRN, left result
3551    OP_VTRNR  // VTRN, right result
3552  };
3553
3554  if (OpNum == OP_COPY) {
3555    if (LHSID == (1*9+2)*9+3) return LHS;
3556    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3557    return RHS;
3558  }
3559
3560  SDValue OpLHS, OpRHS;
3561  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3562  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3563  EVT VT = OpLHS.getValueType();
3564
3565  switch (OpNum) {
3566  default: llvm_unreachable("Unknown shuffle opcode!");
3567  case OP_VREV:
3568    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3569  case OP_VDUP0:
3570  case OP_VDUP1:
3571  case OP_VDUP2:
3572  case OP_VDUP3:
3573    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3574                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3575  case OP_VEXT1:
3576  case OP_VEXT2:
3577  case OP_VEXT3:
3578    return DAG.getNode(ARMISD::VEXT, dl, VT,
3579                       OpLHS, OpRHS,
3580                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3581  case OP_VUZPL:
3582  case OP_VUZPR:
3583    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3584                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3585  case OP_VZIPL:
3586  case OP_VZIPR:
3587    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3588                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3589  case OP_VTRNL:
3590  case OP_VTRNR:
3591    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3592                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3593  }
3594}
3595
3596static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3597  SDValue V1 = Op.getOperand(0);
3598  SDValue V2 = Op.getOperand(1);
3599  DebugLoc dl = Op.getDebugLoc();
3600  EVT VT = Op.getValueType();
3601  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3602  SmallVector<int, 8> ShuffleMask;
3603
3604  // Convert shuffles that are directly supported on NEON to target-specific
3605  // DAG nodes, instead of keeping them as shuffles and matching them again
3606  // during code selection.  This is more efficient and avoids the possibility
3607  // of inconsistencies between legalization and selection.
3608  // FIXME: floating-point vectors should be canonicalized to integer vectors
3609  // of the same time so that they get CSEd properly.
3610  SVN->getMask(ShuffleMask);
3611
3612  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3613  if (EltSize <= 32) {
3614    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3615      int Lane = SVN->getSplatIndex();
3616      // If this is undef splat, generate it via "just" vdup, if possible.
3617      if (Lane == -1) Lane = 0;
3618
3619      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3620        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3621      }
3622      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3623                         DAG.getConstant(Lane, MVT::i32));
3624    }
3625
3626    bool ReverseVEXT;
3627    unsigned Imm;
3628    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3629      if (ReverseVEXT)
3630        std::swap(V1, V2);
3631      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3632                         DAG.getConstant(Imm, MVT::i32));
3633    }
3634
3635    if (isVREVMask(ShuffleMask, VT, 64))
3636      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3637    if (isVREVMask(ShuffleMask, VT, 32))
3638      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3639    if (isVREVMask(ShuffleMask, VT, 16))
3640      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3641
3642    // Check for Neon shuffles that modify both input vectors in place.
3643    // If both results are used, i.e., if there are two shuffles with the same
3644    // source operands and with masks corresponding to both results of one of
3645    // these operations, DAG memoization will ensure that a single node is
3646    // used for both shuffles.
3647    unsigned WhichResult;
3648    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3649      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3650                         V1, V2).getValue(WhichResult);
3651    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3652      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3653                         V1, V2).getValue(WhichResult);
3654    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3655      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3656                         V1, V2).getValue(WhichResult);
3657
3658    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3659      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3660                         V1, V1).getValue(WhichResult);
3661    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3662      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3663                         V1, V1).getValue(WhichResult);
3664    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3665      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3666                         V1, V1).getValue(WhichResult);
3667  }
3668
3669  // If the shuffle is not directly supported and it has 4 elements, use
3670  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3671  unsigned NumElts = VT.getVectorNumElements();
3672  if (NumElts == 4) {
3673    unsigned PFIndexes[4];
3674    for (unsigned i = 0; i != 4; ++i) {
3675      if (ShuffleMask[i] < 0)
3676        PFIndexes[i] = 8;
3677      else
3678        PFIndexes[i] = ShuffleMask[i];
3679    }
3680
3681    // Compute the index in the perfect shuffle table.
3682    unsigned PFTableIndex =
3683      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3684    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3685    unsigned Cost = (PFEntry >> 30);
3686
3687    if (Cost <= 4)
3688      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3689  }
3690
3691  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
3692  if (EltSize >= 32) {
3693    // Do the expansion with floating-point types, since that is what the VFP
3694    // registers are defined to use, and since i64 is not legal.
3695    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3696    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3697    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
3698    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
3699    SmallVector<SDValue, 8> Ops;
3700    for (unsigned i = 0; i < NumElts; ++i) {
3701      if (ShuffleMask[i] < 0)
3702        Ops.push_back(DAG.getUNDEF(EltVT));
3703      else
3704        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3705                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
3706                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
3707                                                  MVT::i32)));
3708    }
3709    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3710    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3711  }
3712
3713  return SDValue();
3714}
3715
3716static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3717  EVT VT = Op.getValueType();
3718  DebugLoc dl = Op.getDebugLoc();
3719  SDValue Vec = Op.getOperand(0);
3720  SDValue Lane = Op.getOperand(1);
3721  assert(VT == MVT::i32 &&
3722         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
3723         "unexpected type for custom-lowering vector extract");
3724  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3725}
3726
3727static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3728  // The only time a CONCAT_VECTORS operation can have legal types is when
3729  // two 64-bit vectors are concatenated to a 128-bit vector.
3730  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3731         "unexpected CONCAT_VECTORS");
3732  DebugLoc dl = Op.getDebugLoc();
3733  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3734  SDValue Op0 = Op.getOperand(0);
3735  SDValue Op1 = Op.getOperand(1);
3736  if (Op0.getOpcode() != ISD::UNDEF)
3737    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3738                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
3739                      DAG.getIntPtrConstant(0));
3740  if (Op1.getOpcode() != ISD::UNDEF)
3741    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3742                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
3743                      DAG.getIntPtrConstant(1));
3744  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
3745}
3746
3747/// SkipExtension - For a node that is either a SIGN_EXTEND, ZERO_EXTEND, or
3748/// an extending load, return the unextended value.
3749static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
3750  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
3751    return N->getOperand(0);
3752  LoadSDNode *LD = cast<LoadSDNode>(N);
3753  return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
3754                     LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
3755                     LD->isNonTemporal(), LD->getAlignment());
3756}
3757
3758static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
3759  // Multiplications are only custom-lowered for 128-bit vectors so that
3760  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
3761  EVT VT = Op.getValueType();
3762  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
3763  SDNode *N0 = Op.getOperand(0).getNode();
3764  SDNode *N1 = Op.getOperand(1).getNode();
3765  unsigned NewOpc = 0;
3766  if ((N0->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N0)) &&
3767      (N1->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N1))) {
3768    NewOpc = ARMISD::VMULLs;
3769  } else if ((N0->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N0)) &&
3770             (N1->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N1))) {
3771    NewOpc = ARMISD::VMULLu;
3772  } else if (VT.getSimpleVT().SimpleTy == MVT::v2i64) {
3773    // Fall through to expand this.  It is not legal.
3774    return SDValue();
3775  } else {
3776    // Other vector multiplications are legal.
3777    return Op;
3778  }
3779
3780  // Legalize to a VMULL instruction.
3781  DebugLoc DL = Op.getDebugLoc();
3782  SDValue Op0 = SkipExtension(N0, DAG);
3783  SDValue Op1 = SkipExtension(N1, DAG);
3784
3785  assert(Op0.getValueType().is64BitVector() &&
3786         Op1.getValueType().is64BitVector() &&
3787         "unexpected types for extended operands to VMULL");
3788  return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
3789}
3790
3791SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3792  switch (Op.getOpcode()) {
3793  default: llvm_unreachable("Don't know how to custom lower this!");
3794  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
3795  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
3796  case ISD::GlobalAddress:
3797    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
3798      LowerGlobalAddressELF(Op, DAG);
3799  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3800  case ISD::SELECT:        return LowerSELECT(Op, DAG);
3801  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
3802  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
3803  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
3804  case ISD::VASTART:       return LowerVASTART(Op, DAG);
3805  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3806  case ISD::SINT_TO_FP:
3807  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3808  case ISD::FP_TO_SINT:
3809  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3810  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3811  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
3812  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3813  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3814  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
3815  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
3816  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
3817                                                               Subtarget);
3818  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3819  case ISD::SHL:
3820  case ISD::SRL:
3821  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3822  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3823  case ISD::SRL_PARTS:
3824  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3825  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
3826  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3827  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
3828  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3829  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3830  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3831  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
3832  case ISD::MUL:           return LowerMUL(Op, DAG);
3833  }
3834  return SDValue();
3835}
3836
3837/// ReplaceNodeResults - Replace the results of node with an illegal result
3838/// type with new values built out of custom code.
3839void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3840                                           SmallVectorImpl<SDValue>&Results,
3841                                           SelectionDAG &DAG) const {
3842  SDValue Res;
3843  switch (N->getOpcode()) {
3844  default:
3845    llvm_unreachable("Don't know how to custom expand this!");
3846    break;
3847  case ISD::BIT_CONVERT:
3848    Res = ExpandBIT_CONVERT(N, DAG);
3849    break;
3850  case ISD::SRL:
3851  case ISD::SRA:
3852    Res = LowerShift(N, DAG, Subtarget);
3853    break;
3854  }
3855  if (Res.getNode())
3856    Results.push_back(Res);
3857}
3858
3859//===----------------------------------------------------------------------===//
3860//                           ARM Scheduler Hooks
3861//===----------------------------------------------------------------------===//
3862
3863MachineBasicBlock *
3864ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3865                                     MachineBasicBlock *BB,
3866                                     unsigned Size) const {
3867  unsigned dest    = MI->getOperand(0).getReg();
3868  unsigned ptr     = MI->getOperand(1).getReg();
3869  unsigned oldval  = MI->getOperand(2).getReg();
3870  unsigned newval  = MI->getOperand(3).getReg();
3871  unsigned scratch = BB->getParent()->getRegInfo()
3872    .createVirtualRegister(ARM::GPRRegisterClass);
3873  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3874  DebugLoc dl = MI->getDebugLoc();
3875  bool isThumb2 = Subtarget->isThumb2();
3876
3877  unsigned ldrOpc, strOpc;
3878  switch (Size) {
3879  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3880  case 1:
3881    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3882    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3883    break;
3884  case 2:
3885    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3886    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3887    break;
3888  case 4:
3889    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3890    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3891    break;
3892  }
3893
3894  MachineFunction *MF = BB->getParent();
3895  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3896  MachineFunction::iterator It = BB;
3897  ++It; // insert the new blocks after the current block
3898
3899  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3900  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3901  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3902  MF->insert(It, loop1MBB);
3903  MF->insert(It, loop2MBB);
3904  MF->insert(It, exitMBB);
3905
3906  // Transfer the remainder of BB and its successor edges to exitMBB.
3907  exitMBB->splice(exitMBB->begin(), BB,
3908                  llvm::next(MachineBasicBlock::iterator(MI)),
3909                  BB->end());
3910  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3911
3912  //  thisMBB:
3913  //   ...
3914  //   fallthrough --> loop1MBB
3915  BB->addSuccessor(loop1MBB);
3916
3917  // loop1MBB:
3918  //   ldrex dest, [ptr]
3919  //   cmp dest, oldval
3920  //   bne exitMBB
3921  BB = loop1MBB;
3922  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3923  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
3924                 .addReg(dest).addReg(oldval));
3925  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3926    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3927  BB->addSuccessor(loop2MBB);
3928  BB->addSuccessor(exitMBB);
3929
3930  // loop2MBB:
3931  //   strex scratch, newval, [ptr]
3932  //   cmp scratch, #0
3933  //   bne loop1MBB
3934  BB = loop2MBB;
3935  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
3936                 .addReg(ptr));
3937  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3938                 .addReg(scratch).addImm(0));
3939  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3940    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3941  BB->addSuccessor(loop1MBB);
3942  BB->addSuccessor(exitMBB);
3943
3944  //  exitMBB:
3945  //   ...
3946  BB = exitMBB;
3947
3948  MI->eraseFromParent();   // The instruction is gone now.
3949
3950  return BB;
3951}
3952
3953MachineBasicBlock *
3954ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3955                                    unsigned Size, unsigned BinOpcode) const {
3956  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3957  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3958
3959  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3960  MachineFunction *MF = BB->getParent();
3961  MachineFunction::iterator It = BB;
3962  ++It;
3963
3964  unsigned dest = MI->getOperand(0).getReg();
3965  unsigned ptr = MI->getOperand(1).getReg();
3966  unsigned incr = MI->getOperand(2).getReg();
3967  DebugLoc dl = MI->getDebugLoc();
3968
3969  bool isThumb2 = Subtarget->isThumb2();
3970  unsigned ldrOpc, strOpc;
3971  switch (Size) {
3972  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3973  case 1:
3974    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3975    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
3976    break;
3977  case 2:
3978    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3979    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3980    break;
3981  case 4:
3982    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3983    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3984    break;
3985  }
3986
3987  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3988  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3989  MF->insert(It, loopMBB);
3990  MF->insert(It, exitMBB);
3991
3992  // Transfer the remainder of BB and its successor edges to exitMBB.
3993  exitMBB->splice(exitMBB->begin(), BB,
3994                  llvm::next(MachineBasicBlock::iterator(MI)),
3995                  BB->end());
3996  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3997
3998  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3999  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4000  unsigned scratch2 = (!BinOpcode) ? incr :
4001    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4002
4003  //  thisMBB:
4004  //   ...
4005  //   fallthrough --> loopMBB
4006  BB->addSuccessor(loopMBB);
4007
4008  //  loopMBB:
4009  //   ldrex dest, ptr
4010  //   <binop> scratch2, dest, incr
4011  //   strex scratch, scratch2, ptr
4012  //   cmp scratch, #0
4013  //   bne- loopMBB
4014  //   fallthrough --> exitMBB
4015  BB = loopMBB;
4016  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4017  if (BinOpcode) {
4018    // operand order needs to go the other way for NAND
4019    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
4020      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4021                     addReg(incr).addReg(dest)).addReg(0);
4022    else
4023      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4024                     addReg(dest).addReg(incr)).addReg(0);
4025  }
4026
4027  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
4028                 .addReg(ptr));
4029  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4030                 .addReg(scratch).addImm(0));
4031  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4032    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4033
4034  BB->addSuccessor(loopMBB);
4035  BB->addSuccessor(exitMBB);
4036
4037  //  exitMBB:
4038  //   ...
4039  BB = exitMBB;
4040
4041  MI->eraseFromParent();   // The instruction is gone now.
4042
4043  return BB;
4044}
4045
4046static
4047MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
4048  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
4049       E = MBB->succ_end(); I != E; ++I)
4050    if (*I != Succ)
4051      return *I;
4052  llvm_unreachable("Expecting a BB with two successors!");
4053}
4054
4055MachineBasicBlock *
4056ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4057                                               MachineBasicBlock *BB) const {
4058  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4059  DebugLoc dl = MI->getDebugLoc();
4060  bool isThumb2 = Subtarget->isThumb2();
4061  switch (MI->getOpcode()) {
4062  default:
4063    MI->dump();
4064    llvm_unreachable("Unexpected instr type to insert");
4065
4066  case ARM::ATOMIC_LOAD_ADD_I8:
4067     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4068  case ARM::ATOMIC_LOAD_ADD_I16:
4069     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4070  case ARM::ATOMIC_LOAD_ADD_I32:
4071     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4072
4073  case ARM::ATOMIC_LOAD_AND_I8:
4074     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4075  case ARM::ATOMIC_LOAD_AND_I16:
4076     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4077  case ARM::ATOMIC_LOAD_AND_I32:
4078     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4079
4080  case ARM::ATOMIC_LOAD_OR_I8:
4081     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4082  case ARM::ATOMIC_LOAD_OR_I16:
4083     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4084  case ARM::ATOMIC_LOAD_OR_I32:
4085     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4086
4087  case ARM::ATOMIC_LOAD_XOR_I8:
4088     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4089  case ARM::ATOMIC_LOAD_XOR_I16:
4090     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4091  case ARM::ATOMIC_LOAD_XOR_I32:
4092     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4093
4094  case ARM::ATOMIC_LOAD_NAND_I8:
4095     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4096  case ARM::ATOMIC_LOAD_NAND_I16:
4097     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4098  case ARM::ATOMIC_LOAD_NAND_I32:
4099     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4100
4101  case ARM::ATOMIC_LOAD_SUB_I8:
4102     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4103  case ARM::ATOMIC_LOAD_SUB_I16:
4104     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4105  case ARM::ATOMIC_LOAD_SUB_I32:
4106     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4107
4108  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
4109  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
4110  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
4111
4112  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
4113  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
4114  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
4115
4116  case ARM::tMOVCCr_pseudo: {
4117    // To "insert" a SELECT_CC instruction, we actually have to insert the
4118    // diamond control-flow pattern.  The incoming instruction knows the
4119    // destination vreg to set, the condition code register to branch on, the
4120    // true/false values to select between, and a branch opcode to use.
4121    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4122    MachineFunction::iterator It = BB;
4123    ++It;
4124
4125    //  thisMBB:
4126    //  ...
4127    //   TrueVal = ...
4128    //   cmpTY ccX, r1, r2
4129    //   bCC copy1MBB
4130    //   fallthrough --> copy0MBB
4131    MachineBasicBlock *thisMBB  = BB;
4132    MachineFunction *F = BB->getParent();
4133    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4134    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4135    F->insert(It, copy0MBB);
4136    F->insert(It, sinkMBB);
4137
4138    // Transfer the remainder of BB and its successor edges to sinkMBB.
4139    sinkMBB->splice(sinkMBB->begin(), BB,
4140                    llvm::next(MachineBasicBlock::iterator(MI)),
4141                    BB->end());
4142    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4143
4144    BB->addSuccessor(copy0MBB);
4145    BB->addSuccessor(sinkMBB);
4146
4147    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
4148      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
4149
4150    //  copy0MBB:
4151    //   %FalseValue = ...
4152    //   # fallthrough to sinkMBB
4153    BB = copy0MBB;
4154
4155    // Update machine-CFG edges
4156    BB->addSuccessor(sinkMBB);
4157
4158    //  sinkMBB:
4159    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4160    //  ...
4161    BB = sinkMBB;
4162    BuildMI(*BB, BB->begin(), dl,
4163            TII->get(ARM::PHI), MI->getOperand(0).getReg())
4164      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4165      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4166
4167    MI->eraseFromParent();   // The pseudo instruction is gone now.
4168    return BB;
4169  }
4170
4171  case ARM::BCCi64:
4172  case ARM::BCCZi64: {
4173    // Compare both parts that make up the double comparison separately for
4174    // equality.
4175    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
4176
4177    unsigned LHS1 = MI->getOperand(1).getReg();
4178    unsigned LHS2 = MI->getOperand(2).getReg();
4179    if (RHSisZero) {
4180      AddDefaultPred(BuildMI(BB, dl,
4181                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4182                     .addReg(LHS1).addImm(0));
4183      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4184        .addReg(LHS2).addImm(0)
4185        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4186    } else {
4187      unsigned RHS1 = MI->getOperand(3).getReg();
4188      unsigned RHS2 = MI->getOperand(4).getReg();
4189      AddDefaultPred(BuildMI(BB, dl,
4190                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4191                     .addReg(LHS1).addReg(RHS1));
4192      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4193        .addReg(LHS2).addReg(RHS2)
4194        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4195    }
4196
4197    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
4198    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
4199    if (MI->getOperand(0).getImm() == ARMCC::NE)
4200      std::swap(destMBB, exitMBB);
4201
4202    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4203      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
4204    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
4205      .addMBB(exitMBB);
4206
4207    MI->eraseFromParent();   // The pseudo instruction is gone now.
4208    return BB;
4209  }
4210  }
4211}
4212
4213//===----------------------------------------------------------------------===//
4214//                           ARM Optimization Hooks
4215//===----------------------------------------------------------------------===//
4216
4217static
4218SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
4219                            TargetLowering::DAGCombinerInfo &DCI) {
4220  SelectionDAG &DAG = DCI.DAG;
4221  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4222  EVT VT = N->getValueType(0);
4223  unsigned Opc = N->getOpcode();
4224  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
4225  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
4226  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
4227  ISD::CondCode CC = ISD::SETCC_INVALID;
4228
4229  if (isSlctCC) {
4230    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
4231  } else {
4232    SDValue CCOp = Slct.getOperand(0);
4233    if (CCOp.getOpcode() == ISD::SETCC)
4234      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
4235  }
4236
4237  bool DoXform = false;
4238  bool InvCC = false;
4239  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
4240          "Bad input!");
4241
4242  if (LHS.getOpcode() == ISD::Constant &&
4243      cast<ConstantSDNode>(LHS)->isNullValue()) {
4244    DoXform = true;
4245  } else if (CC != ISD::SETCC_INVALID &&
4246             RHS.getOpcode() == ISD::Constant &&
4247             cast<ConstantSDNode>(RHS)->isNullValue()) {
4248    std::swap(LHS, RHS);
4249    SDValue Op0 = Slct.getOperand(0);
4250    EVT OpVT = isSlctCC ? Op0.getValueType() :
4251                          Op0.getOperand(0).getValueType();
4252    bool isInt = OpVT.isInteger();
4253    CC = ISD::getSetCCInverse(CC, isInt);
4254
4255    if (!TLI.isCondCodeLegal(CC, OpVT))
4256      return SDValue();         // Inverse operator isn't legal.
4257
4258    DoXform = true;
4259    InvCC = true;
4260  }
4261
4262  if (DoXform) {
4263    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4264    if (isSlctCC)
4265      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4266                             Slct.getOperand(0), Slct.getOperand(1), CC);
4267    SDValue CCOp = Slct.getOperand(0);
4268    if (InvCC)
4269      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4270                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4271    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4272                       CCOp, OtherOp, Result);
4273  }
4274  return SDValue();
4275}
4276
4277/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4278/// operands N0 and N1.  This is a helper for PerformADDCombine that is
4279/// called with the default operands, and if that fails, with commuted
4280/// operands.
4281static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4282                                         TargetLowering::DAGCombinerInfo &DCI) {
4283  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4284  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4285    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4286    if (Result.getNode()) return Result;
4287  }
4288  return SDValue();
4289}
4290
4291/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4292///
4293static SDValue PerformADDCombine(SDNode *N,
4294                                 TargetLowering::DAGCombinerInfo &DCI) {
4295  SDValue N0 = N->getOperand(0);
4296  SDValue N1 = N->getOperand(1);
4297
4298  // First try with the default operand order.
4299  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
4300  if (Result.getNode())
4301    return Result;
4302
4303  // If that didn't work, try again with the operands commuted.
4304  return PerformADDCombineWithOperands(N, N1, N0, DCI);
4305}
4306
4307/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4308///
4309static SDValue PerformSUBCombine(SDNode *N,
4310                                 TargetLowering::DAGCombinerInfo &DCI) {
4311  SDValue N0 = N->getOperand(0);
4312  SDValue N1 = N->getOperand(1);
4313
4314  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4315  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4316    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4317    if (Result.getNode()) return Result;
4318  }
4319
4320  return SDValue();
4321}
4322
4323static SDValue PerformMULCombine(SDNode *N,
4324                                 TargetLowering::DAGCombinerInfo &DCI,
4325                                 const ARMSubtarget *Subtarget) {
4326  SelectionDAG &DAG = DCI.DAG;
4327
4328  if (Subtarget->isThumb1Only())
4329    return SDValue();
4330
4331  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4332    return SDValue();
4333
4334  EVT VT = N->getValueType(0);
4335  if (VT != MVT::i32)
4336    return SDValue();
4337
4338  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4339  if (!C)
4340    return SDValue();
4341
4342  uint64_t MulAmt = C->getZExtValue();
4343  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4344  ShiftAmt = ShiftAmt & (32 - 1);
4345  SDValue V = N->getOperand(0);
4346  DebugLoc DL = N->getDebugLoc();
4347
4348  SDValue Res;
4349  MulAmt >>= ShiftAmt;
4350  if (isPowerOf2_32(MulAmt - 1)) {
4351    // (mul x, 2^N + 1) => (add (shl x, N), x)
4352    Res = DAG.getNode(ISD::ADD, DL, VT,
4353                      V, DAG.getNode(ISD::SHL, DL, VT,
4354                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4355                                                        MVT::i32)));
4356  } else if (isPowerOf2_32(MulAmt + 1)) {
4357    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4358    Res = DAG.getNode(ISD::SUB, DL, VT,
4359                      DAG.getNode(ISD::SHL, DL, VT,
4360                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4361                                                     MVT::i32)),
4362                                                     V);
4363  } else
4364    return SDValue();
4365
4366  if (ShiftAmt != 0)
4367    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4368                      DAG.getConstant(ShiftAmt, MVT::i32));
4369
4370  // Do not add new nodes to DAG combiner worklist.
4371  DCI.CombineTo(N, Res, false);
4372  return SDValue();
4373}
4374
4375/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
4376static SDValue PerformORCombine(SDNode *N,
4377                                TargetLowering::DAGCombinerInfo &DCI,
4378                                const ARMSubtarget *Subtarget) {
4379  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
4380  // reasonable.
4381
4382  // BFI is only available on V6T2+
4383  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
4384    return SDValue();
4385
4386  SelectionDAG &DAG = DCI.DAG;
4387  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4388  DebugLoc DL = N->getDebugLoc();
4389  // 1) or (and A, mask), val => ARMbfi A, val, mask
4390  //      iff (val & mask) == val
4391  //
4392  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4393  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
4394  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4395  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
4396  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4397  //  (i.e., copy a bitfield value into another bitfield of the same width)
4398  if (N0.getOpcode() != ISD::AND)
4399    return SDValue();
4400
4401  EVT VT = N->getValueType(0);
4402  if (VT != MVT::i32)
4403    return SDValue();
4404
4405
4406  // The value and the mask need to be constants so we can verify this is
4407  // actually a bitfield set. If the mask is 0xffff, we can do better
4408  // via a movt instruction, so don't use BFI in that case.
4409  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4410  if (!C)
4411    return SDValue();
4412  unsigned Mask = C->getZExtValue();
4413  if (Mask == 0xffff)
4414    return SDValue();
4415  SDValue Res;
4416  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
4417  if ((C = dyn_cast<ConstantSDNode>(N1))) {
4418    unsigned Val = C->getZExtValue();
4419    if (!ARM::isBitFieldInvertedMask(Mask) || (Val & ~Mask) != Val)
4420      return SDValue();
4421    Val >>= CountTrailingZeros_32(~Mask);
4422
4423    Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0),
4424                      DAG.getConstant(Val, MVT::i32),
4425                      DAG.getConstant(Mask, MVT::i32));
4426
4427    // Do not add new nodes to DAG combiner worklist.
4428    DCI.CombineTo(N, Res, false);
4429  } else if (N1.getOpcode() == ISD::AND) {
4430    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4431    C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4432    if (!C)
4433      return SDValue();
4434    unsigned Mask2 = C->getZExtValue();
4435
4436    if (ARM::isBitFieldInvertedMask(Mask) &&
4437        ARM::isBitFieldInvertedMask(~Mask2) &&
4438        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
4439      // The pack halfword instruction works better for masks that fit it,
4440      // so use that when it's available.
4441      if (Subtarget->hasT2ExtractPack() &&
4442          (Mask == 0xffff || Mask == 0xffff0000))
4443        return SDValue();
4444      // 2a
4445      unsigned lsb = CountTrailingZeros_32(Mask2);
4446      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
4447                        DAG.getConstant(lsb, MVT::i32));
4448      Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0), Res,
4449                        DAG.getConstant(Mask, MVT::i32));
4450      // Do not add new nodes to DAG combiner worklist.
4451      DCI.CombineTo(N, Res, false);
4452    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
4453               ARM::isBitFieldInvertedMask(Mask2) &&
4454               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
4455      // The pack halfword instruction works better for masks that fit it,
4456      // so use that when it's available.
4457      if (Subtarget->hasT2ExtractPack() &&
4458          (Mask2 == 0xffff || Mask2 == 0xffff0000))
4459        return SDValue();
4460      // 2b
4461      unsigned lsb = CountTrailingZeros_32(Mask);
4462      Res = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4463                        DAG.getConstant(lsb, MVT::i32));
4464      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
4465                                DAG.getConstant(Mask2, MVT::i32));
4466      // Do not add new nodes to DAG combiner worklist.
4467      DCI.CombineTo(N, Res, false);
4468    }
4469  }
4470
4471  return SDValue();
4472}
4473
4474/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
4475/// ARMISD::VMOVRRD.
4476static SDValue PerformVMOVRRDCombine(SDNode *N,
4477                                     TargetLowering::DAGCombinerInfo &DCI) {
4478  // vmovrrd(vmovdrr x, y) -> x,y
4479  SDValue InDouble = N->getOperand(0);
4480  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
4481    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
4482  return SDValue();
4483}
4484
4485/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
4486/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
4487static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
4488  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
4489  SDValue Op0 = N->getOperand(0);
4490  SDValue Op1 = N->getOperand(1);
4491  if (Op0.getOpcode() == ISD::BIT_CONVERT)
4492    Op0 = Op0.getOperand(0);
4493  if (Op1.getOpcode() == ISD::BIT_CONVERT)
4494    Op1 = Op1.getOperand(0);
4495  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
4496      Op0.getNode() == Op1.getNode() &&
4497      Op0.getResNo() == 0 && Op1.getResNo() == 1)
4498    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
4499                       N->getValueType(0), Op0.getOperand(0));
4500  return SDValue();
4501}
4502
4503/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
4504/// ISD::BUILD_VECTOR.
4505static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG) {
4506  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
4507  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
4508  // into a pair of GPRs, which is fine when the value is used as a scalar,
4509  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
4510  if (N->getNumOperands() == 2)
4511    return PerformVMOVDRRCombine(N, DAG);
4512
4513  return SDValue();
4514}
4515
4516/// PerformVDUPLANECombine - Target-specific dag combine xforms for
4517/// ARMISD::VDUPLANE.
4518static SDValue PerformVDUPLANECombine(SDNode *N, SelectionDAG &DAG) {
4519  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
4520  // redundant.
4521  SDValue Op = N->getOperand(0);
4522  EVT VT = N->getValueType(0);
4523
4524  // Ignore bit_converts.
4525  while (Op.getOpcode() == ISD::BIT_CONVERT)
4526    Op = Op.getOperand(0);
4527  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
4528    return SDValue();
4529
4530  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
4531  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
4532  // The canonical VMOV for a zero vector uses a 32-bit element size.
4533  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4534  unsigned EltBits;
4535  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
4536    EltSize = 8;
4537  if (EltSize > VT.getVectorElementType().getSizeInBits())
4538    return SDValue();
4539
4540  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
4541}
4542
4543/// getVShiftImm - Check if this is a valid build_vector for the immediate
4544/// operand of a vector shift operation, where all the elements of the
4545/// build_vector must have the same constant integer value.
4546static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
4547  // Ignore bit_converts.
4548  while (Op.getOpcode() == ISD::BIT_CONVERT)
4549    Op = Op.getOperand(0);
4550  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4551  APInt SplatBits, SplatUndef;
4552  unsigned SplatBitSize;
4553  bool HasAnyUndefs;
4554  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
4555                                      HasAnyUndefs, ElementBits) ||
4556      SplatBitSize > ElementBits)
4557    return false;
4558  Cnt = SplatBits.getSExtValue();
4559  return true;
4560}
4561
4562/// isVShiftLImm - Check if this is a valid build_vector for the immediate
4563/// operand of a vector shift left operation.  That value must be in the range:
4564///   0 <= Value < ElementBits for a left shift; or
4565///   0 <= Value <= ElementBits for a long left shift.
4566static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
4567  assert(VT.isVector() && "vector shift count is not a vector type");
4568  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4569  if (! getVShiftImm(Op, ElementBits, Cnt))
4570    return false;
4571  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
4572}
4573
4574/// isVShiftRImm - Check if this is a valid build_vector for the immediate
4575/// operand of a vector shift right operation.  For a shift opcode, the value
4576/// is positive, but for an intrinsic the value count must be negative. The
4577/// absolute value must be in the range:
4578///   1 <= |Value| <= ElementBits for a right shift; or
4579///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
4580static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
4581                         int64_t &Cnt) {
4582  assert(VT.isVector() && "vector shift count is not a vector type");
4583  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4584  if (! getVShiftImm(Op, ElementBits, Cnt))
4585    return false;
4586  if (isIntrinsic)
4587    Cnt = -Cnt;
4588  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
4589}
4590
4591/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
4592static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
4593  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4594  switch (IntNo) {
4595  default:
4596    // Don't do anything for most intrinsics.
4597    break;
4598
4599  // Vector shifts: check for immediate versions and lower them.
4600  // Note: This is done during DAG combining instead of DAG legalizing because
4601  // the build_vectors for 64-bit vector element shift counts are generally
4602  // not legal, and it is hard to see their values after they get legalized to
4603  // loads from a constant pool.
4604  case Intrinsic::arm_neon_vshifts:
4605  case Intrinsic::arm_neon_vshiftu:
4606  case Intrinsic::arm_neon_vshiftls:
4607  case Intrinsic::arm_neon_vshiftlu:
4608  case Intrinsic::arm_neon_vshiftn:
4609  case Intrinsic::arm_neon_vrshifts:
4610  case Intrinsic::arm_neon_vrshiftu:
4611  case Intrinsic::arm_neon_vrshiftn:
4612  case Intrinsic::arm_neon_vqshifts:
4613  case Intrinsic::arm_neon_vqshiftu:
4614  case Intrinsic::arm_neon_vqshiftsu:
4615  case Intrinsic::arm_neon_vqshiftns:
4616  case Intrinsic::arm_neon_vqshiftnu:
4617  case Intrinsic::arm_neon_vqshiftnsu:
4618  case Intrinsic::arm_neon_vqrshiftns:
4619  case Intrinsic::arm_neon_vqrshiftnu:
4620  case Intrinsic::arm_neon_vqrshiftnsu: {
4621    EVT VT = N->getOperand(1).getValueType();
4622    int64_t Cnt;
4623    unsigned VShiftOpc = 0;
4624
4625    switch (IntNo) {
4626    case Intrinsic::arm_neon_vshifts:
4627    case Intrinsic::arm_neon_vshiftu:
4628      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
4629        VShiftOpc = ARMISD::VSHL;
4630        break;
4631      }
4632      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
4633        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
4634                     ARMISD::VSHRs : ARMISD::VSHRu);
4635        break;
4636      }
4637      return SDValue();
4638
4639    case Intrinsic::arm_neon_vshiftls:
4640    case Intrinsic::arm_neon_vshiftlu:
4641      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
4642        break;
4643      llvm_unreachable("invalid shift count for vshll intrinsic");
4644
4645    case Intrinsic::arm_neon_vrshifts:
4646    case Intrinsic::arm_neon_vrshiftu:
4647      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
4648        break;
4649      return SDValue();
4650
4651    case Intrinsic::arm_neon_vqshifts:
4652    case Intrinsic::arm_neon_vqshiftu:
4653      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4654        break;
4655      return SDValue();
4656
4657    case Intrinsic::arm_neon_vqshiftsu:
4658      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4659        break;
4660      llvm_unreachable("invalid shift count for vqshlu intrinsic");
4661
4662    case Intrinsic::arm_neon_vshiftn:
4663    case Intrinsic::arm_neon_vrshiftn:
4664    case Intrinsic::arm_neon_vqshiftns:
4665    case Intrinsic::arm_neon_vqshiftnu:
4666    case Intrinsic::arm_neon_vqshiftnsu:
4667    case Intrinsic::arm_neon_vqrshiftns:
4668    case Intrinsic::arm_neon_vqrshiftnu:
4669    case Intrinsic::arm_neon_vqrshiftnsu:
4670      // Narrowing shifts require an immediate right shift.
4671      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
4672        break;
4673      llvm_unreachable("invalid shift count for narrowing vector shift "
4674                       "intrinsic");
4675
4676    default:
4677      llvm_unreachable("unhandled vector shift");
4678    }
4679
4680    switch (IntNo) {
4681    case Intrinsic::arm_neon_vshifts:
4682    case Intrinsic::arm_neon_vshiftu:
4683      // Opcode already set above.
4684      break;
4685    case Intrinsic::arm_neon_vshiftls:
4686    case Intrinsic::arm_neon_vshiftlu:
4687      if (Cnt == VT.getVectorElementType().getSizeInBits())
4688        VShiftOpc = ARMISD::VSHLLi;
4689      else
4690        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
4691                     ARMISD::VSHLLs : ARMISD::VSHLLu);
4692      break;
4693    case Intrinsic::arm_neon_vshiftn:
4694      VShiftOpc = ARMISD::VSHRN; break;
4695    case Intrinsic::arm_neon_vrshifts:
4696      VShiftOpc = ARMISD::VRSHRs; break;
4697    case Intrinsic::arm_neon_vrshiftu:
4698      VShiftOpc = ARMISD::VRSHRu; break;
4699    case Intrinsic::arm_neon_vrshiftn:
4700      VShiftOpc = ARMISD::VRSHRN; break;
4701    case Intrinsic::arm_neon_vqshifts:
4702      VShiftOpc = ARMISD::VQSHLs; break;
4703    case Intrinsic::arm_neon_vqshiftu:
4704      VShiftOpc = ARMISD::VQSHLu; break;
4705    case Intrinsic::arm_neon_vqshiftsu:
4706      VShiftOpc = ARMISD::VQSHLsu; break;
4707    case Intrinsic::arm_neon_vqshiftns:
4708      VShiftOpc = ARMISD::VQSHRNs; break;
4709    case Intrinsic::arm_neon_vqshiftnu:
4710      VShiftOpc = ARMISD::VQSHRNu; break;
4711    case Intrinsic::arm_neon_vqshiftnsu:
4712      VShiftOpc = ARMISD::VQSHRNsu; break;
4713    case Intrinsic::arm_neon_vqrshiftns:
4714      VShiftOpc = ARMISD::VQRSHRNs; break;
4715    case Intrinsic::arm_neon_vqrshiftnu:
4716      VShiftOpc = ARMISD::VQRSHRNu; break;
4717    case Intrinsic::arm_neon_vqrshiftnsu:
4718      VShiftOpc = ARMISD::VQRSHRNsu; break;
4719    }
4720
4721    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4722                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
4723  }
4724
4725  case Intrinsic::arm_neon_vshiftins: {
4726    EVT VT = N->getOperand(1).getValueType();
4727    int64_t Cnt;
4728    unsigned VShiftOpc = 0;
4729
4730    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
4731      VShiftOpc = ARMISD::VSLI;
4732    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
4733      VShiftOpc = ARMISD::VSRI;
4734    else {
4735      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
4736    }
4737
4738    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4739                       N->getOperand(1), N->getOperand(2),
4740                       DAG.getConstant(Cnt, MVT::i32));
4741  }
4742
4743  case Intrinsic::arm_neon_vqrshifts:
4744  case Intrinsic::arm_neon_vqrshiftu:
4745    // No immediate versions of these to check for.
4746    break;
4747  }
4748
4749  return SDValue();
4750}
4751
4752/// PerformShiftCombine - Checks for immediate versions of vector shifts and
4753/// lowers them.  As with the vector shift intrinsics, this is done during DAG
4754/// combining instead of DAG legalizing because the build_vectors for 64-bit
4755/// vector element shift counts are generally not legal, and it is hard to see
4756/// their values after they get legalized to loads from a constant pool.
4757static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
4758                                   const ARMSubtarget *ST) {
4759  EVT VT = N->getValueType(0);
4760
4761  // Nothing to be done for scalar shifts.
4762  if (! VT.isVector())
4763    return SDValue();
4764
4765  assert(ST->hasNEON() && "unexpected vector shift");
4766  int64_t Cnt;
4767
4768  switch (N->getOpcode()) {
4769  default: llvm_unreachable("unexpected shift opcode");
4770
4771  case ISD::SHL:
4772    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
4773      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
4774                         DAG.getConstant(Cnt, MVT::i32));
4775    break;
4776
4777  case ISD::SRA:
4778  case ISD::SRL:
4779    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
4780      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
4781                            ARMISD::VSHRs : ARMISD::VSHRu);
4782      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
4783                         DAG.getConstant(Cnt, MVT::i32));
4784    }
4785  }
4786  return SDValue();
4787}
4788
4789/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
4790/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
4791static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
4792                                    const ARMSubtarget *ST) {
4793  SDValue N0 = N->getOperand(0);
4794
4795  // Check for sign- and zero-extensions of vector extract operations of 8-
4796  // and 16-bit vector elements.  NEON supports these directly.  They are
4797  // handled during DAG combining because type legalization will promote them
4798  // to 32-bit types and it is messy to recognize the operations after that.
4799  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4800    SDValue Vec = N0.getOperand(0);
4801    SDValue Lane = N0.getOperand(1);
4802    EVT VT = N->getValueType(0);
4803    EVT EltVT = N0.getValueType();
4804    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4805
4806    if (VT == MVT::i32 &&
4807        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
4808        TLI.isTypeLegal(Vec.getValueType())) {
4809
4810      unsigned Opc = 0;
4811      switch (N->getOpcode()) {
4812      default: llvm_unreachable("unexpected opcode");
4813      case ISD::SIGN_EXTEND:
4814        Opc = ARMISD::VGETLANEs;
4815        break;
4816      case ISD::ZERO_EXTEND:
4817      case ISD::ANY_EXTEND:
4818        Opc = ARMISD::VGETLANEu;
4819        break;
4820      }
4821      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
4822    }
4823  }
4824
4825  return SDValue();
4826}
4827
4828/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
4829/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
4830static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
4831                                       const ARMSubtarget *ST) {
4832  // If the target supports NEON, try to use vmax/vmin instructions for f32
4833  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
4834  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
4835  // a NaN; only do the transformation when it matches that behavior.
4836
4837  // For now only do this when using NEON for FP operations; if using VFP, it
4838  // is not obvious that the benefit outweighs the cost of switching to the
4839  // NEON pipeline.
4840  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
4841      N->getValueType(0) != MVT::f32)
4842    return SDValue();
4843
4844  SDValue CondLHS = N->getOperand(0);
4845  SDValue CondRHS = N->getOperand(1);
4846  SDValue LHS = N->getOperand(2);
4847  SDValue RHS = N->getOperand(3);
4848  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4849
4850  unsigned Opcode = 0;
4851  bool IsReversed;
4852  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
4853    IsReversed = false; // x CC y ? x : y
4854  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
4855    IsReversed = true ; // x CC y ? y : x
4856  } else {
4857    return SDValue();
4858  }
4859
4860  bool IsUnordered;
4861  switch (CC) {
4862  default: break;
4863  case ISD::SETOLT:
4864  case ISD::SETOLE:
4865  case ISD::SETLT:
4866  case ISD::SETLE:
4867  case ISD::SETULT:
4868  case ISD::SETULE:
4869    // If LHS is NaN, an ordered comparison will be false and the result will
4870    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
4871    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4872    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
4873    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4874      break;
4875    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
4876    // will return -0, so vmin can only be used for unsafe math or if one of
4877    // the operands is known to be nonzero.
4878    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
4879        !UnsafeFPMath &&
4880        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4881      break;
4882    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
4883    break;
4884
4885  case ISD::SETOGT:
4886  case ISD::SETOGE:
4887  case ISD::SETGT:
4888  case ISD::SETGE:
4889  case ISD::SETUGT:
4890  case ISD::SETUGE:
4891    // If LHS is NaN, an ordered comparison will be false and the result will
4892    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
4893    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4894    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
4895    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4896      break;
4897    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
4898    // will return +0, so vmax can only be used for unsafe math or if one of
4899    // the operands is known to be nonzero.
4900    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
4901        !UnsafeFPMath &&
4902        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4903      break;
4904    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
4905    break;
4906  }
4907
4908  if (!Opcode)
4909    return SDValue();
4910  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
4911}
4912
4913SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
4914                                             DAGCombinerInfo &DCI) const {
4915  switch (N->getOpcode()) {
4916  default: break;
4917  case ISD::ADD:        return PerformADDCombine(N, DCI);
4918  case ISD::SUB:        return PerformSUBCombine(N, DCI);
4919  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
4920  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
4921  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
4922  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
4923  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI.DAG);
4924  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI.DAG);
4925  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
4926  case ISD::SHL:
4927  case ISD::SRA:
4928  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
4929  case ISD::SIGN_EXTEND:
4930  case ISD::ZERO_EXTEND:
4931  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
4932  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
4933  }
4934  return SDValue();
4935}
4936
4937bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
4938  if (!Subtarget->allowsUnalignedMem())
4939    return false;
4940
4941  switch (VT.getSimpleVT().SimpleTy) {
4942  default:
4943    return false;
4944  case MVT::i8:
4945  case MVT::i16:
4946  case MVT::i32:
4947    return true;
4948  // FIXME: VLD1 etc with standard alignment is legal.
4949  }
4950}
4951
4952static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
4953  if (V < 0)
4954    return false;
4955
4956  unsigned Scale = 1;
4957  switch (VT.getSimpleVT().SimpleTy) {
4958  default: return false;
4959  case MVT::i1:
4960  case MVT::i8:
4961    // Scale == 1;
4962    break;
4963  case MVT::i16:
4964    // Scale == 2;
4965    Scale = 2;
4966    break;
4967  case MVT::i32:
4968    // Scale == 4;
4969    Scale = 4;
4970    break;
4971  }
4972
4973  if ((V & (Scale - 1)) != 0)
4974    return false;
4975  V /= Scale;
4976  return V == (V & ((1LL << 5) - 1));
4977}
4978
4979static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
4980                                      const ARMSubtarget *Subtarget) {
4981  bool isNeg = false;
4982  if (V < 0) {
4983    isNeg = true;
4984    V = - V;
4985  }
4986
4987  switch (VT.getSimpleVT().SimpleTy) {
4988  default: return false;
4989  case MVT::i1:
4990  case MVT::i8:
4991  case MVT::i16:
4992  case MVT::i32:
4993    // + imm12 or - imm8
4994    if (isNeg)
4995      return V == (V & ((1LL << 8) - 1));
4996    return V == (V & ((1LL << 12) - 1));
4997  case MVT::f32:
4998  case MVT::f64:
4999    // Same as ARM mode. FIXME: NEON?
5000    if (!Subtarget->hasVFP2())
5001      return false;
5002    if ((V & 3) != 0)
5003      return false;
5004    V >>= 2;
5005    return V == (V & ((1LL << 8) - 1));
5006  }
5007}
5008
5009/// isLegalAddressImmediate - Return true if the integer value can be used
5010/// as the offset of the target addressing mode for load / store of the
5011/// given type.
5012static bool isLegalAddressImmediate(int64_t V, EVT VT,
5013                                    const ARMSubtarget *Subtarget) {
5014  if (V == 0)
5015    return true;
5016
5017  if (!VT.isSimple())
5018    return false;
5019
5020  if (Subtarget->isThumb1Only())
5021    return isLegalT1AddressImmediate(V, VT);
5022  else if (Subtarget->isThumb2())
5023    return isLegalT2AddressImmediate(V, VT, Subtarget);
5024
5025  // ARM mode.
5026  if (V < 0)
5027    V = - V;
5028  switch (VT.getSimpleVT().SimpleTy) {
5029  default: return false;
5030  case MVT::i1:
5031  case MVT::i8:
5032  case MVT::i32:
5033    // +- imm12
5034    return V == (V & ((1LL << 12) - 1));
5035  case MVT::i16:
5036    // +- imm8
5037    return V == (V & ((1LL << 8) - 1));
5038  case MVT::f32:
5039  case MVT::f64:
5040    if (!Subtarget->hasVFP2()) // FIXME: NEON?
5041      return false;
5042    if ((V & 3) != 0)
5043      return false;
5044    V >>= 2;
5045    return V == (V & ((1LL << 8) - 1));
5046  }
5047}
5048
5049bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
5050                                                      EVT VT) const {
5051  int Scale = AM.Scale;
5052  if (Scale < 0)
5053    return false;
5054
5055  switch (VT.getSimpleVT().SimpleTy) {
5056  default: return false;
5057  case MVT::i1:
5058  case MVT::i8:
5059  case MVT::i16:
5060  case MVT::i32:
5061    if (Scale == 1)
5062      return true;
5063    // r + r << imm
5064    Scale = Scale & ~1;
5065    return Scale == 2 || Scale == 4 || Scale == 8;
5066  case MVT::i64:
5067    // r + r
5068    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5069      return true;
5070    return false;
5071  case MVT::isVoid:
5072    // Note, we allow "void" uses (basically, uses that aren't loads or
5073    // stores), because arm allows folding a scale into many arithmetic
5074    // operations.  This should be made more precise and revisited later.
5075
5076    // Allow r << imm, but the imm has to be a multiple of two.
5077    if (Scale & 1) return false;
5078    return isPowerOf2_32(Scale);
5079  }
5080}
5081
5082/// isLegalAddressingMode - Return true if the addressing mode represented
5083/// by AM is legal for this target, for a load/store of the specified type.
5084bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5085                                              const Type *Ty) const {
5086  EVT VT = getValueType(Ty, true);
5087  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
5088    return false;
5089
5090  // Can never fold addr of global into load/store.
5091  if (AM.BaseGV)
5092    return false;
5093
5094  switch (AM.Scale) {
5095  case 0:  // no scale reg, must be "r+i" or "r", or "i".
5096    break;
5097  case 1:
5098    if (Subtarget->isThumb1Only())
5099      return false;
5100    // FALL THROUGH.
5101  default:
5102    // ARM doesn't support any R+R*scale+imm addr modes.
5103    if (AM.BaseOffs)
5104      return false;
5105
5106    if (!VT.isSimple())
5107      return false;
5108
5109    if (Subtarget->isThumb2())
5110      return isLegalT2ScaledAddressingMode(AM, VT);
5111
5112    int Scale = AM.Scale;
5113    switch (VT.getSimpleVT().SimpleTy) {
5114    default: return false;
5115    case MVT::i1:
5116    case MVT::i8:
5117    case MVT::i32:
5118      if (Scale < 0) Scale = -Scale;
5119      if (Scale == 1)
5120        return true;
5121      // r + r << imm
5122      return isPowerOf2_32(Scale & ~1);
5123    case MVT::i16:
5124    case MVT::i64:
5125      // r + r
5126      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5127        return true;
5128      return false;
5129
5130    case MVT::isVoid:
5131      // Note, we allow "void" uses (basically, uses that aren't loads or
5132      // stores), because arm allows folding a scale into many arithmetic
5133      // operations.  This should be made more precise and revisited later.
5134
5135      // Allow r << imm, but the imm has to be a multiple of two.
5136      if (Scale & 1) return false;
5137      return isPowerOf2_32(Scale);
5138    }
5139    break;
5140  }
5141  return true;
5142}
5143
5144/// isLegalICmpImmediate - Return true if the specified immediate is legal
5145/// icmp immediate, that is the target has icmp instructions which can compare
5146/// a register against the immediate without having to materialize the
5147/// immediate into a register.
5148bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
5149  if (!Subtarget->isThumb())
5150    return ARM_AM::getSOImmVal(Imm) != -1;
5151  if (Subtarget->isThumb2())
5152    return ARM_AM::getT2SOImmVal(Imm) != -1;
5153  return Imm >= 0 && Imm <= 255;
5154}
5155
5156static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
5157                                      bool isSEXTLoad, SDValue &Base,
5158                                      SDValue &Offset, bool &isInc,
5159                                      SelectionDAG &DAG) {
5160  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5161    return false;
5162
5163  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
5164    // AddressingMode 3
5165    Base = Ptr->getOperand(0);
5166    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5167      int RHSC = (int)RHS->getZExtValue();
5168      if (RHSC < 0 && RHSC > -256) {
5169        assert(Ptr->getOpcode() == ISD::ADD);
5170        isInc = false;
5171        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5172        return true;
5173      }
5174    }
5175    isInc = (Ptr->getOpcode() == ISD::ADD);
5176    Offset = Ptr->getOperand(1);
5177    return true;
5178  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
5179    // AddressingMode 2
5180    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5181      int RHSC = (int)RHS->getZExtValue();
5182      if (RHSC < 0 && RHSC > -0x1000) {
5183        assert(Ptr->getOpcode() == ISD::ADD);
5184        isInc = false;
5185        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5186        Base = Ptr->getOperand(0);
5187        return true;
5188      }
5189    }
5190
5191    if (Ptr->getOpcode() == ISD::ADD) {
5192      isInc = true;
5193      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
5194      if (ShOpcVal != ARM_AM::no_shift) {
5195        Base = Ptr->getOperand(1);
5196        Offset = Ptr->getOperand(0);
5197      } else {
5198        Base = Ptr->getOperand(0);
5199        Offset = Ptr->getOperand(1);
5200      }
5201      return true;
5202    }
5203
5204    isInc = (Ptr->getOpcode() == ISD::ADD);
5205    Base = Ptr->getOperand(0);
5206    Offset = Ptr->getOperand(1);
5207    return true;
5208  }
5209
5210  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
5211  return false;
5212}
5213
5214static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
5215                                     bool isSEXTLoad, SDValue &Base,
5216                                     SDValue &Offset, bool &isInc,
5217                                     SelectionDAG &DAG) {
5218  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5219    return false;
5220
5221  Base = Ptr->getOperand(0);
5222  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5223    int RHSC = (int)RHS->getZExtValue();
5224    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
5225      assert(Ptr->getOpcode() == ISD::ADD);
5226      isInc = false;
5227      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5228      return true;
5229    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
5230      isInc = Ptr->getOpcode() == ISD::ADD;
5231      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
5232      return true;
5233    }
5234  }
5235
5236  return false;
5237}
5238
5239/// getPreIndexedAddressParts - returns true by value, base pointer and
5240/// offset pointer and addressing mode by reference if the node's address
5241/// can be legally represented as pre-indexed load / store address.
5242bool
5243ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
5244                                             SDValue &Offset,
5245                                             ISD::MemIndexedMode &AM,
5246                                             SelectionDAG &DAG) const {
5247  if (Subtarget->isThumb1Only())
5248    return false;
5249
5250  EVT VT;
5251  SDValue Ptr;
5252  bool isSEXTLoad = false;
5253  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5254    Ptr = LD->getBasePtr();
5255    VT  = LD->getMemoryVT();
5256    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5257  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5258    Ptr = ST->getBasePtr();
5259    VT  = ST->getMemoryVT();
5260  } else
5261    return false;
5262
5263  bool isInc;
5264  bool isLegal = false;
5265  if (Subtarget->isThumb2())
5266    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5267                                       Offset, isInc, DAG);
5268  else
5269    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5270                                        Offset, isInc, DAG);
5271  if (!isLegal)
5272    return false;
5273
5274  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
5275  return true;
5276}
5277
5278/// getPostIndexedAddressParts - returns true by value, base pointer and
5279/// offset pointer and addressing mode by reference if this node can be
5280/// combined with a load / store to form a post-indexed load / store.
5281bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
5282                                                   SDValue &Base,
5283                                                   SDValue &Offset,
5284                                                   ISD::MemIndexedMode &AM,
5285                                                   SelectionDAG &DAG) const {
5286  if (Subtarget->isThumb1Only())
5287    return false;
5288
5289  EVT VT;
5290  SDValue Ptr;
5291  bool isSEXTLoad = false;
5292  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5293    VT  = LD->getMemoryVT();
5294    Ptr = LD->getBasePtr();
5295    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5296  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5297    VT  = ST->getMemoryVT();
5298    Ptr = ST->getBasePtr();
5299  } else
5300    return false;
5301
5302  bool isInc;
5303  bool isLegal = false;
5304  if (Subtarget->isThumb2())
5305    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5306                                       isInc, DAG);
5307  else
5308    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5309                                        isInc, DAG);
5310  if (!isLegal)
5311    return false;
5312
5313  if (Ptr != Base) {
5314    // Swap base ptr and offset to catch more post-index load / store when
5315    // it's legal. In Thumb2 mode, offset must be an immediate.
5316    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
5317        !Subtarget->isThumb2())
5318      std::swap(Base, Offset);
5319
5320    // Post-indexed load / store update the base pointer.
5321    if (Ptr != Base)
5322      return false;
5323  }
5324
5325  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
5326  return true;
5327}
5328
5329void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5330                                                       const APInt &Mask,
5331                                                       APInt &KnownZero,
5332                                                       APInt &KnownOne,
5333                                                       const SelectionDAG &DAG,
5334                                                       unsigned Depth) const {
5335  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5336  switch (Op.getOpcode()) {
5337  default: break;
5338  case ARMISD::CMOV: {
5339    // Bits are known zero/one if known on the LHS and RHS.
5340    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
5341    if (KnownZero == 0 && KnownOne == 0) return;
5342
5343    APInt KnownZeroRHS, KnownOneRHS;
5344    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
5345                          KnownZeroRHS, KnownOneRHS, Depth+1);
5346    KnownZero &= KnownZeroRHS;
5347    KnownOne  &= KnownOneRHS;
5348    return;
5349  }
5350  }
5351}
5352
5353//===----------------------------------------------------------------------===//
5354//                           ARM Inline Assembly Support
5355//===----------------------------------------------------------------------===//
5356
5357/// getConstraintType - Given a constraint letter, return the type of
5358/// constraint it is for this target.
5359ARMTargetLowering::ConstraintType
5360ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
5361  if (Constraint.size() == 1) {
5362    switch (Constraint[0]) {
5363    default:  break;
5364    case 'l': return C_RegisterClass;
5365    case 'w': return C_RegisterClass;
5366    }
5367  }
5368  return TargetLowering::getConstraintType(Constraint);
5369}
5370
5371std::pair<unsigned, const TargetRegisterClass*>
5372ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5373                                                EVT VT) const {
5374  if (Constraint.size() == 1) {
5375    // GCC ARM Constraint Letters
5376    switch (Constraint[0]) {
5377    case 'l':
5378      if (Subtarget->isThumb())
5379        return std::make_pair(0U, ARM::tGPRRegisterClass);
5380      else
5381        return std::make_pair(0U, ARM::GPRRegisterClass);
5382    case 'r':
5383      return std::make_pair(0U, ARM::GPRRegisterClass);
5384    case 'w':
5385      if (VT == MVT::f32)
5386        return std::make_pair(0U, ARM::SPRRegisterClass);
5387      if (VT.getSizeInBits() == 64)
5388        return std::make_pair(0U, ARM::DPRRegisterClass);
5389      if (VT.getSizeInBits() == 128)
5390        return std::make_pair(0U, ARM::QPRRegisterClass);
5391      break;
5392    }
5393  }
5394  if (StringRef("{cc}").equals_lower(Constraint))
5395    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
5396
5397  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5398}
5399
5400std::vector<unsigned> ARMTargetLowering::
5401getRegClassForInlineAsmConstraint(const std::string &Constraint,
5402                                  EVT VT) const {
5403  if (Constraint.size() != 1)
5404    return std::vector<unsigned>();
5405
5406  switch (Constraint[0]) {      // GCC ARM Constraint Letters
5407  default: break;
5408  case 'l':
5409    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5410                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5411                                 0);
5412  case 'r':
5413    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5414                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5415                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
5416                                 ARM::R12, ARM::LR, 0);
5417  case 'w':
5418    if (VT == MVT::f32)
5419      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
5420                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
5421                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
5422                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
5423                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
5424                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
5425                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
5426                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
5427    if (VT.getSizeInBits() == 64)
5428      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
5429                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
5430                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
5431                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
5432    if (VT.getSizeInBits() == 128)
5433      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
5434                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
5435      break;
5436  }
5437
5438  return std::vector<unsigned>();
5439}
5440
5441/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5442/// vector.  If it is invalid, don't add anything to Ops.
5443void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5444                                                     char Constraint,
5445                                                     std::vector<SDValue>&Ops,
5446                                                     SelectionDAG &DAG) const {
5447  SDValue Result(0, 0);
5448
5449  switch (Constraint) {
5450  default: break;
5451  case 'I': case 'J': case 'K': case 'L':
5452  case 'M': case 'N': case 'O':
5453    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5454    if (!C)
5455      return;
5456
5457    int64_t CVal64 = C->getSExtValue();
5458    int CVal = (int) CVal64;
5459    // None of these constraints allow values larger than 32 bits.  Check
5460    // that the value fits in an int.
5461    if (CVal != CVal64)
5462      return;
5463
5464    switch (Constraint) {
5465      case 'I':
5466        if (Subtarget->isThumb1Only()) {
5467          // This must be a constant between 0 and 255, for ADD
5468          // immediates.
5469          if (CVal >= 0 && CVal <= 255)
5470            break;
5471        } else if (Subtarget->isThumb2()) {
5472          // A constant that can be used as an immediate value in a
5473          // data-processing instruction.
5474          if (ARM_AM::getT2SOImmVal(CVal) != -1)
5475            break;
5476        } else {
5477          // A constant that can be used as an immediate value in a
5478          // data-processing instruction.
5479          if (ARM_AM::getSOImmVal(CVal) != -1)
5480            break;
5481        }
5482        return;
5483
5484      case 'J':
5485        if (Subtarget->isThumb()) {  // FIXME thumb2
5486          // This must be a constant between -255 and -1, for negated ADD
5487          // immediates. This can be used in GCC with an "n" modifier that
5488          // prints the negated value, for use with SUB instructions. It is
5489          // not useful otherwise but is implemented for compatibility.
5490          if (CVal >= -255 && CVal <= -1)
5491            break;
5492        } else {
5493          // This must be a constant between -4095 and 4095. It is not clear
5494          // what this constraint is intended for. Implemented for
5495          // compatibility with GCC.
5496          if (CVal >= -4095 && CVal <= 4095)
5497            break;
5498        }
5499        return;
5500
5501      case 'K':
5502        if (Subtarget->isThumb1Only()) {
5503          // A 32-bit value where only one byte has a nonzero value. Exclude
5504          // zero to match GCC. This constraint is used by GCC internally for
5505          // constants that can be loaded with a move/shift combination.
5506          // It is not useful otherwise but is implemented for compatibility.
5507          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
5508            break;
5509        } else if (Subtarget->isThumb2()) {
5510          // A constant whose bitwise inverse can be used as an immediate
5511          // value in a data-processing instruction. This can be used in GCC
5512          // with a "B" modifier that prints the inverted value, for use with
5513          // BIC and MVN instructions. It is not useful otherwise but is
5514          // implemented for compatibility.
5515          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
5516            break;
5517        } else {
5518          // A constant whose bitwise inverse can be used as an immediate
5519          // value in a data-processing instruction. This can be used in GCC
5520          // with a "B" modifier that prints the inverted value, for use with
5521          // BIC and MVN instructions. It is not useful otherwise but is
5522          // implemented for compatibility.
5523          if (ARM_AM::getSOImmVal(~CVal) != -1)
5524            break;
5525        }
5526        return;
5527
5528      case 'L':
5529        if (Subtarget->isThumb1Only()) {
5530          // This must be a constant between -7 and 7,
5531          // for 3-operand ADD/SUB immediate instructions.
5532          if (CVal >= -7 && CVal < 7)
5533            break;
5534        } else if (Subtarget->isThumb2()) {
5535          // A constant whose negation can be used as an immediate value in a
5536          // data-processing instruction. This can be used in GCC with an "n"
5537          // modifier that prints the negated value, for use with SUB
5538          // instructions. It is not useful otherwise but is implemented for
5539          // compatibility.
5540          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
5541            break;
5542        } else {
5543          // A constant whose negation can be used as an immediate value in a
5544          // data-processing instruction. This can be used in GCC with an "n"
5545          // modifier that prints the negated value, for use with SUB
5546          // instructions. It is not useful otherwise but is implemented for
5547          // compatibility.
5548          if (ARM_AM::getSOImmVal(-CVal) != -1)
5549            break;
5550        }
5551        return;
5552
5553      case 'M':
5554        if (Subtarget->isThumb()) { // FIXME thumb2
5555          // This must be a multiple of 4 between 0 and 1020, for
5556          // ADD sp + immediate.
5557          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
5558            break;
5559        } else {
5560          // A power of two or a constant between 0 and 32.  This is used in
5561          // GCC for the shift amount on shifted register operands, but it is
5562          // useful in general for any shift amounts.
5563          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
5564            break;
5565        }
5566        return;
5567
5568      case 'N':
5569        if (Subtarget->isThumb()) {  // FIXME thumb2
5570          // This must be a constant between 0 and 31, for shift amounts.
5571          if (CVal >= 0 && CVal <= 31)
5572            break;
5573        }
5574        return;
5575
5576      case 'O':
5577        if (Subtarget->isThumb()) {  // FIXME thumb2
5578          // This must be a multiple of 4 between -508 and 508, for
5579          // ADD/SUB sp = sp + immediate.
5580          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
5581            break;
5582        }
5583        return;
5584    }
5585    Result = DAG.getTargetConstant(CVal, Op.getValueType());
5586    break;
5587  }
5588
5589  if (Result.getNode()) {
5590    Ops.push_back(Result);
5591    return;
5592  }
5593  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5594}
5595
5596bool
5597ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5598  // The ARM target isn't yet aware of offsets.
5599  return false;
5600}
5601
5602int ARM::getVFPf32Imm(const APFloat &FPImm) {
5603  APInt Imm = FPImm.bitcastToAPInt();
5604  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
5605  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
5606  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
5607
5608  // We can handle 4 bits of mantissa.
5609  // mantissa = (16+UInt(e:f:g:h))/16.
5610  if (Mantissa & 0x7ffff)
5611    return -1;
5612  Mantissa >>= 19;
5613  if ((Mantissa & 0xf) != Mantissa)
5614    return -1;
5615
5616  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5617  if (Exp < -3 || Exp > 4)
5618    return -1;
5619  Exp = ((Exp+3) & 0x7) ^ 4;
5620
5621  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5622}
5623
5624int ARM::getVFPf64Imm(const APFloat &FPImm) {
5625  APInt Imm = FPImm.bitcastToAPInt();
5626  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
5627  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
5628  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
5629
5630  // We can handle 4 bits of mantissa.
5631  // mantissa = (16+UInt(e:f:g:h))/16.
5632  if (Mantissa & 0xffffffffffffLL)
5633    return -1;
5634  Mantissa >>= 48;
5635  if ((Mantissa & 0xf) != Mantissa)
5636    return -1;
5637
5638  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5639  if (Exp < -3 || Exp > 4)
5640    return -1;
5641  Exp = ((Exp+3) & 0x7) ^ 4;
5642
5643  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5644}
5645
5646bool ARM::isBitFieldInvertedMask(unsigned v) {
5647  if (v == 0xffffffff)
5648    return 0;
5649  // there can be 1's on either or both "outsides", all the "inside"
5650  // bits must be 0's
5651  unsigned int lsb = 0, msb = 31;
5652  while (v & (1 << msb)) --msb;
5653  while (v & (1 << lsb)) ++lsb;
5654  for (unsigned int i = lsb; i <= msb; ++i) {
5655    if (v & (1 << i))
5656      return 0;
5657  }
5658  return 1;
5659}
5660
5661/// isFPImmLegal - Returns true if the target can instruction select the
5662/// specified FP immediate natively. If false, the legalizer will
5663/// materialize the FP immediate as a load from a constant pool.
5664bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5665  if (!Subtarget->hasVFP3())
5666    return false;
5667  if (VT == MVT::f32)
5668    return ARM::getVFPf32Imm(Imm) != -1;
5669  if (VT == MVT::f64)
5670    return ARM::getVFPf64Imm(Imm) != -1;
5671  return false;
5672}
5673
5674/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
5675/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
5676/// specified in the intrinsic calls.
5677bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
5678                                           const CallInst &I,
5679                                           unsigned Intrinsic) const {
5680  switch (Intrinsic) {
5681  case Intrinsic::arm_neon_vld1:
5682  case Intrinsic::arm_neon_vld2:
5683  case Intrinsic::arm_neon_vld3:
5684  case Intrinsic::arm_neon_vld4:
5685  case Intrinsic::arm_neon_vld2lane:
5686  case Intrinsic::arm_neon_vld3lane:
5687  case Intrinsic::arm_neon_vld4lane: {
5688    Info.opc = ISD::INTRINSIC_W_CHAIN;
5689    // Conservatively set memVT to the entire set of vectors loaded.
5690    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
5691    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5692    Info.ptrVal = I.getArgOperand(0);
5693    Info.offset = 0;
5694    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
5695    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
5696    Info.vol = false; // volatile loads with NEON intrinsics not supported
5697    Info.readMem = true;
5698    Info.writeMem = false;
5699    return true;
5700  }
5701  case Intrinsic::arm_neon_vst1:
5702  case Intrinsic::arm_neon_vst2:
5703  case Intrinsic::arm_neon_vst3:
5704  case Intrinsic::arm_neon_vst4:
5705  case Intrinsic::arm_neon_vst2lane:
5706  case Intrinsic::arm_neon_vst3lane:
5707  case Intrinsic::arm_neon_vst4lane: {
5708    Info.opc = ISD::INTRINSIC_VOID;
5709    // Conservatively set memVT to the entire set of vectors stored.
5710    unsigned NumElts = 0;
5711    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
5712      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
5713      if (!ArgTy->isVectorTy())
5714        break;
5715      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
5716    }
5717    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5718    Info.ptrVal = I.getArgOperand(0);
5719    Info.offset = 0;
5720    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
5721    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
5722    Info.vol = false; // volatile stores with NEON intrinsics not supported
5723    Info.readMem = false;
5724    Info.writeMem = true;
5725    return true;
5726  }
5727  default:
5728    break;
5729  }
5730
5731  return false;
5732}
5733