ARMISelLowering.cpp revision 62204220e1dc2dc21256adf765728ae257b33eac
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the interfaces that ARM uses to lower LLVM code into a 11// selection DAG. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "arm-isel" 16#include "ARMISelLowering.h" 17#include "ARM.h" 18#include "ARMCallingConv.h" 19#include "ARMConstantPoolValue.h" 20#include "ARMMachineFunctionInfo.h" 21#include "ARMPerfectShuffle.h" 22#include "ARMSubtarget.h" 23#include "ARMTargetMachine.h" 24#include "ARMTargetObjectFile.h" 25#include "MCTargetDesc/ARMAddressingModes.h" 26#include "llvm/ADT/Statistic.h" 27#include "llvm/ADT/StringExtras.h" 28#include "llvm/CodeGen/CallingConvLower.h" 29#include "llvm/CodeGen/IntrinsicLowering.h" 30#include "llvm/CodeGen/MachineBasicBlock.h" 31#include "llvm/CodeGen/MachineFrameInfo.h" 32#include "llvm/CodeGen/MachineFunction.h" 33#include "llvm/CodeGen/MachineInstrBuilder.h" 34#include "llvm/CodeGen/MachineModuleInfo.h" 35#include "llvm/CodeGen/MachineRegisterInfo.h" 36#include "llvm/CodeGen/SelectionDAG.h" 37#include "llvm/IR/CallingConv.h" 38#include "llvm/IR/Constants.h" 39#include "llvm/IR/Function.h" 40#include "llvm/IR/GlobalValue.h" 41#include "llvm/IR/Instruction.h" 42#include "llvm/IR/Instructions.h" 43#include "llvm/IR/Intrinsics.h" 44#include "llvm/IR/Type.h" 45#include "llvm/MC/MCSectionMachO.h" 46#include "llvm/Support/CommandLine.h" 47#include "llvm/Support/ErrorHandling.h" 48#include "llvm/Support/MathExtras.h" 49#include "llvm/Support/raw_ostream.h" 50#include "llvm/Target/TargetOptions.h" 51using namespace llvm; 52 53STATISTIC(NumTailCalls, "Number of tail calls"); 54STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt"); 55STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments"); 56 57// This option should go away when tail calls fully work. 58static cl::opt<bool> 59EnableARMTailCalls("arm-tail-calls", cl::Hidden, 60 cl::desc("Generate tail calls (TEMPORARY OPTION)."), 61 cl::init(false)); 62 63cl::opt<bool> 64EnableARMLongCalls("arm-long-calls", cl::Hidden, 65 cl::desc("Generate calls via indirect call instructions"), 66 cl::init(false)); 67 68static cl::opt<bool> 69ARMInterworking("arm-interworking", cl::Hidden, 70 cl::desc("Enable / disable ARM interworking (for debugging only)"), 71 cl::init(true)); 72 73namespace { 74 class ARMCCState : public CCState { 75 public: 76 ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, 77 const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs, 78 LLVMContext &C, ParmContext PC) 79 : CCState(CC, isVarArg, MF, TM, locs, C) { 80 assert(((PC == Call) || (PC == Prologue)) && 81 "ARMCCState users must specify whether their context is call" 82 "or prologue generation."); 83 CallOrPrologue = PC; 84 } 85 }; 86} 87 88// The APCS parameter registers. 89static const uint16_t GPRArgRegs[] = { 90 ARM::R0, ARM::R1, ARM::R2, ARM::R3 91}; 92 93void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT, 94 MVT PromotedBitwiseVT) { 95 if (VT != PromotedLdStVT) { 96 setOperationAction(ISD::LOAD, VT, Promote); 97 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT); 98 99 setOperationAction(ISD::STORE, VT, Promote); 100 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT); 101 } 102 103 MVT ElemTy = VT.getVectorElementType(); 104 if (ElemTy != MVT::i64 && ElemTy != MVT::f64) 105 setOperationAction(ISD::SETCC, VT, Custom); 106 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 107 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 108 if (ElemTy == MVT::i32) { 109 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 110 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 111 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 112 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 113 } else { 114 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 115 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 116 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 117 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 118 } 119 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 120 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 121 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); 122 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); 123 setOperationAction(ISD::SELECT, VT, Expand); 124 setOperationAction(ISD::SELECT_CC, VT, Expand); 125 setOperationAction(ISD::VSELECT, VT, Expand); 126 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 127 if (VT.isInteger()) { 128 setOperationAction(ISD::SHL, VT, Custom); 129 setOperationAction(ISD::SRA, VT, Custom); 130 setOperationAction(ISD::SRL, VT, Custom); 131 } 132 133 // Promote all bit-wise operations. 134 if (VT.isInteger() && VT != PromotedBitwiseVT) { 135 setOperationAction(ISD::AND, VT, Promote); 136 AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT); 137 setOperationAction(ISD::OR, VT, Promote); 138 AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT); 139 setOperationAction(ISD::XOR, VT, Promote); 140 AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT); 141 } 142 143 // Neon does not support vector divide/remainder operations. 144 setOperationAction(ISD::SDIV, VT, Expand); 145 setOperationAction(ISD::UDIV, VT, Expand); 146 setOperationAction(ISD::FDIV, VT, Expand); 147 setOperationAction(ISD::SREM, VT, Expand); 148 setOperationAction(ISD::UREM, VT, Expand); 149 setOperationAction(ISD::FREM, VT, Expand); 150} 151 152void ARMTargetLowering::addDRTypeForNEON(MVT VT) { 153 addRegisterClass(VT, &ARM::DPRRegClass); 154 addTypeForNEON(VT, MVT::f64, MVT::v2i32); 155} 156 157void ARMTargetLowering::addQRTypeForNEON(MVT VT) { 158 addRegisterClass(VT, &ARM::QPRRegClass); 159 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); 160} 161 162static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) { 163 if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin()) 164 return new TargetLoweringObjectFileMachO(); 165 166 return new ARMElfTargetObjectFile(); 167} 168 169ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) 170 : TargetLowering(TM, createTLOF(TM)) { 171 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 172 RegInfo = TM.getRegisterInfo(); 173 Itins = TM.getInstrItineraryData(); 174 175 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 176 177 if (Subtarget->isTargetDarwin()) { 178 // Uses VFP for Thumb libfuncs if available. 179 if (Subtarget->isThumb() && Subtarget->hasVFP2()) { 180 // Single-precision floating-point arithmetic. 181 setLibcallName(RTLIB::ADD_F32, "__addsf3vfp"); 182 setLibcallName(RTLIB::SUB_F32, "__subsf3vfp"); 183 setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp"); 184 setLibcallName(RTLIB::DIV_F32, "__divsf3vfp"); 185 186 // Double-precision floating-point arithmetic. 187 setLibcallName(RTLIB::ADD_F64, "__adddf3vfp"); 188 setLibcallName(RTLIB::SUB_F64, "__subdf3vfp"); 189 setLibcallName(RTLIB::MUL_F64, "__muldf3vfp"); 190 setLibcallName(RTLIB::DIV_F64, "__divdf3vfp"); 191 192 // Single-precision comparisons. 193 setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp"); 194 setLibcallName(RTLIB::UNE_F32, "__nesf2vfp"); 195 setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp"); 196 setLibcallName(RTLIB::OLE_F32, "__lesf2vfp"); 197 setLibcallName(RTLIB::OGE_F32, "__gesf2vfp"); 198 setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp"); 199 setLibcallName(RTLIB::UO_F32, "__unordsf2vfp"); 200 setLibcallName(RTLIB::O_F32, "__unordsf2vfp"); 201 202 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); 203 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE); 204 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); 205 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); 206 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); 207 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); 208 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); 209 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); 210 211 // Double-precision comparisons. 212 setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp"); 213 setLibcallName(RTLIB::UNE_F64, "__nedf2vfp"); 214 setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp"); 215 setLibcallName(RTLIB::OLE_F64, "__ledf2vfp"); 216 setLibcallName(RTLIB::OGE_F64, "__gedf2vfp"); 217 setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp"); 218 setLibcallName(RTLIB::UO_F64, "__unorddf2vfp"); 219 setLibcallName(RTLIB::O_F64, "__unorddf2vfp"); 220 221 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); 222 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE); 223 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); 224 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); 225 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); 226 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); 227 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); 228 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); 229 230 // Floating-point to integer conversions. 231 // i64 conversions are done via library routines even when generating VFP 232 // instructions, so use the same ones. 233 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp"); 234 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp"); 235 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp"); 236 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp"); 237 238 // Conversions between floating types. 239 setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp"); 240 setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp"); 241 242 // Integer to floating-point conversions. 243 // i64 conversions are done via library routines even when generating VFP 244 // instructions, so use the same ones. 245 // FIXME: There appears to be some naming inconsistency in ARM libgcc: 246 // e.g., __floatunsidf vs. __floatunssidfvfp. 247 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp"); 248 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp"); 249 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp"); 250 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp"); 251 } 252 } 253 254 // These libcalls are not available in 32-bit. 255 setLibcallName(RTLIB::SHL_I128, 0); 256 setLibcallName(RTLIB::SRL_I128, 0); 257 setLibcallName(RTLIB::SRA_I128, 0); 258 259 if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) { 260 // Double-precision floating-point arithmetic helper functions 261 // RTABI chapter 4.1.2, Table 2 262 setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd"); 263 setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv"); 264 setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul"); 265 setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub"); 266 setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS); 267 setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS); 268 setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS); 269 setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS); 270 271 // Double-precision floating-point comparison helper functions 272 // RTABI chapter 4.1.2, Table 3 273 setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq"); 274 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); 275 setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq"); 276 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ); 277 setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt"); 278 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); 279 setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple"); 280 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); 281 setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge"); 282 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); 283 setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt"); 284 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); 285 setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun"); 286 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); 287 setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun"); 288 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); 289 setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS); 290 setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS); 291 setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS); 292 setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS); 293 setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS); 294 setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS); 295 setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS); 296 setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS); 297 298 // Single-precision floating-point arithmetic helper functions 299 // RTABI chapter 4.1.2, Table 4 300 setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd"); 301 setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv"); 302 setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul"); 303 setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub"); 304 setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS); 305 setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS); 306 setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS); 307 setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS); 308 309 // Single-precision floating-point comparison helper functions 310 // RTABI chapter 4.1.2, Table 5 311 setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq"); 312 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); 313 setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq"); 314 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ); 315 setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt"); 316 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); 317 setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple"); 318 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); 319 setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge"); 320 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); 321 setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt"); 322 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); 323 setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun"); 324 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); 325 setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun"); 326 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); 327 setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS); 328 setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS); 329 setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS); 330 setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS); 331 setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS); 332 setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS); 333 setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS); 334 setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS); 335 336 // Floating-point to integer conversions. 337 // RTABI chapter 4.1.2, Table 6 338 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz"); 339 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz"); 340 setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz"); 341 setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz"); 342 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz"); 343 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz"); 344 setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz"); 345 setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz"); 346 setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS); 347 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS); 348 setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS); 349 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS); 350 setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS); 351 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS); 352 setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS); 353 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS); 354 355 // Conversions between floating types. 356 // RTABI chapter 4.1.2, Table 7 357 setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f"); 358 setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d"); 359 setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS); 360 setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS); 361 362 // Integer to floating-point conversions. 363 // RTABI chapter 4.1.2, Table 8 364 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d"); 365 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d"); 366 setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d"); 367 setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d"); 368 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f"); 369 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f"); 370 setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f"); 371 setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f"); 372 setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS); 373 setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS); 374 setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS); 375 setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS); 376 setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS); 377 setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS); 378 setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS); 379 setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS); 380 381 // Long long helper functions 382 // RTABI chapter 4.2, Table 9 383 setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul"); 384 setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl"); 385 setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr"); 386 setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr"); 387 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS); 388 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS); 389 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS); 390 setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS); 391 setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS); 392 setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS); 393 394 // Integer division functions 395 // RTABI chapter 4.3.1 396 setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv"); 397 setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv"); 398 setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv"); 399 setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod"); 400 setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv"); 401 setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv"); 402 setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv"); 403 setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod"); 404 setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS); 405 setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS); 406 setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS); 407 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS); 408 setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS); 409 setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS); 410 setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS); 411 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS); 412 413 // Memory operations 414 // RTABI chapter 4.3.4 415 setLibcallName(RTLIB::MEMCPY, "__aeabi_memcpy"); 416 setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove"); 417 setLibcallName(RTLIB::MEMSET, "__aeabi_memset"); 418 setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS); 419 setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS); 420 setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS); 421 } 422 423 // Use divmod compiler-rt calls for iOS 5.0 and later. 424 if (Subtarget->getTargetTriple().getOS() == Triple::IOS && 425 !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) { 426 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); 427 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); 428 } 429 430 if (Subtarget->isThumb1Only()) 431 addRegisterClass(MVT::i32, &ARM::tGPRRegClass); 432 else 433 addRegisterClass(MVT::i32, &ARM::GPRRegClass); 434 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && 435 !Subtarget->isThumb1Only()) { 436 addRegisterClass(MVT::f32, &ARM::SPRRegClass); 437 if (!Subtarget->isFPOnlySP()) 438 addRegisterClass(MVT::f64, &ARM::DPRRegClass); 439 440 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 441 } 442 443 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 444 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { 445 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 446 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) 447 setTruncStoreAction((MVT::SimpleValueType)VT, 448 (MVT::SimpleValueType)InnerVT, Expand); 449 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); 450 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); 451 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); 452 } 453 454 setOperationAction(ISD::ConstantFP, MVT::f32, Custom); 455 456 if (Subtarget->hasNEON()) { 457 addDRTypeForNEON(MVT::v2f32); 458 addDRTypeForNEON(MVT::v8i8); 459 addDRTypeForNEON(MVT::v4i16); 460 addDRTypeForNEON(MVT::v2i32); 461 addDRTypeForNEON(MVT::v1i64); 462 463 addQRTypeForNEON(MVT::v4f32); 464 addQRTypeForNEON(MVT::v2f64); 465 addQRTypeForNEON(MVT::v16i8); 466 addQRTypeForNEON(MVT::v8i16); 467 addQRTypeForNEON(MVT::v4i32); 468 addQRTypeForNEON(MVT::v2i64); 469 470 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but 471 // neither Neon nor VFP support any arithmetic operations on it. 472 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively 473 // supported for v4f32. 474 setOperationAction(ISD::FADD, MVT::v2f64, Expand); 475 setOperationAction(ISD::FSUB, MVT::v2f64, Expand); 476 setOperationAction(ISD::FMUL, MVT::v2f64, Expand); 477 // FIXME: Code duplication: FDIV and FREM are expanded always, see 478 // ARMTargetLowering::addTypeForNEON method for details. 479 setOperationAction(ISD::FDIV, MVT::v2f64, Expand); 480 setOperationAction(ISD::FREM, MVT::v2f64, Expand); 481 // FIXME: Create unittest. 482 // In another words, find a way when "copysign" appears in DAG with vector 483 // operands. 484 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); 485 // FIXME: Code duplication: SETCC has custom operation action, see 486 // ARMTargetLowering::addTypeForNEON method for details. 487 setOperationAction(ISD::SETCC, MVT::v2f64, Expand); 488 // FIXME: Create unittest for FNEG and for FABS. 489 setOperationAction(ISD::FNEG, MVT::v2f64, Expand); 490 setOperationAction(ISD::FABS, MVT::v2f64, Expand); 491 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); 492 setOperationAction(ISD::FSIN, MVT::v2f64, Expand); 493 setOperationAction(ISD::FCOS, MVT::v2f64, Expand); 494 setOperationAction(ISD::FPOWI, MVT::v2f64, Expand); 495 setOperationAction(ISD::FPOW, MVT::v2f64, Expand); 496 setOperationAction(ISD::FLOG, MVT::v2f64, Expand); 497 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); 498 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); 499 setOperationAction(ISD::FEXP, MVT::v2f64, Expand); 500 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); 501 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR. 502 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); 503 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); 504 setOperationAction(ISD::FRINT, MVT::v2f64, Expand); 505 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); 506 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); 507 setOperationAction(ISD::FMA, MVT::v2f64, Expand); 508 509 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 510 setOperationAction(ISD::FSIN, MVT::v4f32, Expand); 511 setOperationAction(ISD::FCOS, MVT::v4f32, Expand); 512 setOperationAction(ISD::FPOWI, MVT::v4f32, Expand); 513 setOperationAction(ISD::FPOW, MVT::v4f32, Expand); 514 setOperationAction(ISD::FLOG, MVT::v4f32, Expand); 515 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand); 516 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand); 517 setOperationAction(ISD::FEXP, MVT::v4f32, Expand); 518 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand); 519 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand); 520 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand); 521 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 522 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 523 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand); 524 525 // Mark v2f32 intrinsics. 526 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand); 527 setOperationAction(ISD::FSIN, MVT::v2f32, Expand); 528 setOperationAction(ISD::FCOS, MVT::v2f32, Expand); 529 setOperationAction(ISD::FPOWI, MVT::v2f32, Expand); 530 setOperationAction(ISD::FPOW, MVT::v2f32, Expand); 531 setOperationAction(ISD::FLOG, MVT::v2f32, Expand); 532 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand); 533 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand); 534 setOperationAction(ISD::FEXP, MVT::v2f32, Expand); 535 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand); 536 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand); 537 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand); 538 setOperationAction(ISD::FRINT, MVT::v2f32, Expand); 539 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand); 540 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand); 541 542 // Neon does not support some operations on v1i64 and v2i64 types. 543 setOperationAction(ISD::MUL, MVT::v1i64, Expand); 544 // Custom handling for some quad-vector types to detect VMULL. 545 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 546 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 547 setOperationAction(ISD::MUL, MVT::v2i64, Custom); 548 // Custom handling for some vector types to avoid expensive expansions 549 setOperationAction(ISD::SDIV, MVT::v4i16, Custom); 550 setOperationAction(ISD::SDIV, MVT::v8i8, Custom); 551 setOperationAction(ISD::UDIV, MVT::v4i16, Custom); 552 setOperationAction(ISD::UDIV, MVT::v8i8, Custom); 553 setOperationAction(ISD::SETCC, MVT::v1i64, Expand); 554 setOperationAction(ISD::SETCC, MVT::v2i64, Expand); 555 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with 556 // a destination type that is wider than the source, and nor does 557 // it have a FP_TO_[SU]INT instruction with a narrower destination than 558 // source. 559 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 560 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 561 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom); 562 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom); 563 564 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 565 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand); 566 567 // Custom expand long extensions to vectors. 568 setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom); 569 setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom); 570 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom); 571 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom); 572 setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom); 573 setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom); 574 setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom); 575 setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom); 576 577 // NEON does not have single instruction CTPOP for vectors with element 578 // types wider than 8-bits. However, custom lowering can leverage the 579 // v8i8/v16i8 vcnt instruction. 580 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom); 581 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); 582 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom); 583 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom); 584 585 // NEON only has FMA instructions as of VFP4. 586 if (!Subtarget->hasVFP4()) { 587 setOperationAction(ISD::FMA, MVT::v2f32, Expand); 588 setOperationAction(ISD::FMA, MVT::v4f32, Expand); 589 } 590 591 setTargetDAGCombine(ISD::INTRINSIC_VOID); 592 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 593 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 594 setTargetDAGCombine(ISD::SHL); 595 setTargetDAGCombine(ISD::SRL); 596 setTargetDAGCombine(ISD::SRA); 597 setTargetDAGCombine(ISD::SIGN_EXTEND); 598 setTargetDAGCombine(ISD::ZERO_EXTEND); 599 setTargetDAGCombine(ISD::ANY_EXTEND); 600 setTargetDAGCombine(ISD::SELECT_CC); 601 setTargetDAGCombine(ISD::BUILD_VECTOR); 602 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 603 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 604 setTargetDAGCombine(ISD::STORE); 605 setTargetDAGCombine(ISD::FP_TO_SINT); 606 setTargetDAGCombine(ISD::FP_TO_UINT); 607 setTargetDAGCombine(ISD::FDIV); 608 609 // It is legal to extload from v4i8 to v4i16 or v4i32. 610 MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8, 611 MVT::v4i16, MVT::v2i16, 612 MVT::v2i32}; 613 for (unsigned i = 0; i < 6; ++i) { 614 setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal); 615 setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal); 616 setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal); 617 } 618 } 619 620 // ARM and Thumb2 support UMLAL/SMLAL. 621 if (!Subtarget->isThumb1Only()) 622 setTargetDAGCombine(ISD::ADDC); 623 624 625 computeRegisterProperties(); 626 627 // ARM does not have f32 extending load. 628 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); 629 630 // ARM does not have i1 sign extending load. 631 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 632 633 // ARM supports all 4 flavors of integer indexed load / store. 634 if (!Subtarget->isThumb1Only()) { 635 for (unsigned im = (unsigned)ISD::PRE_INC; 636 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 637 setIndexedLoadAction(im, MVT::i1, Legal); 638 setIndexedLoadAction(im, MVT::i8, Legal); 639 setIndexedLoadAction(im, MVT::i16, Legal); 640 setIndexedLoadAction(im, MVT::i32, Legal); 641 setIndexedStoreAction(im, MVT::i1, Legal); 642 setIndexedStoreAction(im, MVT::i8, Legal); 643 setIndexedStoreAction(im, MVT::i16, Legal); 644 setIndexedStoreAction(im, MVT::i32, Legal); 645 } 646 } 647 648 // i64 operation support. 649 setOperationAction(ISD::MUL, MVT::i64, Expand); 650 setOperationAction(ISD::MULHU, MVT::i32, Expand); 651 if (Subtarget->isThumb1Only()) { 652 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 653 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 654 } 655 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops() 656 || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP())) 657 setOperationAction(ISD::MULHS, MVT::i32, Expand); 658 659 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 660 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 661 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 662 setOperationAction(ISD::SRL, MVT::i64, Custom); 663 setOperationAction(ISD::SRA, MVT::i64, Custom); 664 665 if (!Subtarget->isThumb1Only()) { 666 // FIXME: We should do this for Thumb1 as well. 667 setOperationAction(ISD::ADDC, MVT::i32, Custom); 668 setOperationAction(ISD::ADDE, MVT::i32, Custom); 669 setOperationAction(ISD::SUBC, MVT::i32, Custom); 670 setOperationAction(ISD::SUBE, MVT::i32, Custom); 671 } 672 673 // ARM does not have ROTL. 674 setOperationAction(ISD::ROTL, MVT::i32, Expand); 675 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 676 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 677 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) 678 setOperationAction(ISD::CTLZ, MVT::i32, Expand); 679 680 // These just redirect to CTTZ and CTLZ on ARM. 681 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand); 682 setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand); 683 684 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 685 686 // Only ARMv6 has BSWAP. 687 if (!Subtarget->hasV6Ops()) 688 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 689 690 if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) && 691 !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) { 692 // These are expanded into libcalls if the cpu doesn't have HW divider. 693 setOperationAction(ISD::SDIV, MVT::i32, Expand); 694 setOperationAction(ISD::UDIV, MVT::i32, Expand); 695 } 696 setOperationAction(ISD::SREM, MVT::i32, Expand); 697 setOperationAction(ISD::UREM, MVT::i32, Expand); 698 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 699 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 700 701 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 702 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 703 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); 704 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 705 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 706 707 setOperationAction(ISD::TRAP, MVT::Other, Legal); 708 709 // Use the default implementation. 710 setOperationAction(ISD::VASTART, MVT::Other, Custom); 711 setOperationAction(ISD::VAARG, MVT::Other, Expand); 712 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 713 setOperationAction(ISD::VAEND, MVT::Other, Expand); 714 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 715 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 716 717 if (!Subtarget->isTargetDarwin()) { 718 // Non-Darwin platforms may return values in these registers via the 719 // personality function. 720 setExceptionPointerRegister(ARM::R0); 721 setExceptionSelectorRegister(ARM::R1); 722 } 723 724 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 725 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use 726 // the default expansion. 727 // FIXME: This should be checking for v6k, not just v6. 728 if (Subtarget->hasDataBarrier() || 729 (Subtarget->hasV6Ops() && !Subtarget->isThumb())) { 730 // membarrier needs custom lowering; the rest are legal and handled 731 // normally. 732 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 733 // Custom lowering for 64-bit ops 734 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); 735 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); 736 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); 737 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); 738 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); 739 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); 740 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom); 741 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom); 742 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom); 743 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom); 744 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); 745 // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc. 746 setInsertFencesForAtomic(true); 747 } else { 748 // Set them all for expansion, which will force libcalls. 749 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand); 750 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); 751 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); 752 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); 753 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); 754 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); 755 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); 756 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); 757 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); 758 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); 759 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); 760 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); 761 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); 762 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the 763 // Unordered/Monotonic case. 764 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 765 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 766 } 767 768 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 769 770 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes. 771 if (!Subtarget->hasV6Ops()) { 772 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 773 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 774 } 775 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 776 777 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && 778 !Subtarget->isThumb1Only()) { 779 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR 780 // iff target supports vfp2. 781 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 782 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 783 } 784 785 // We want to custom lower some of our intrinsics. 786 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 787 if (Subtarget->isTargetDarwin()) { 788 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 789 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 790 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 791 } 792 793 setOperationAction(ISD::SETCC, MVT::i32, Expand); 794 setOperationAction(ISD::SETCC, MVT::f32, Expand); 795 setOperationAction(ISD::SETCC, MVT::f64, Expand); 796 setOperationAction(ISD::SELECT, MVT::i32, Custom); 797 setOperationAction(ISD::SELECT, MVT::f32, Custom); 798 setOperationAction(ISD::SELECT, MVT::f64, Custom); 799 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 800 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 801 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 802 803 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 804 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 805 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 806 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 807 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 808 809 // We don't support sin/cos/fmod/copysign/pow 810 setOperationAction(ISD::FSIN, MVT::f64, Expand); 811 setOperationAction(ISD::FSIN, MVT::f32, Expand); 812 setOperationAction(ISD::FCOS, MVT::f32, Expand); 813 setOperationAction(ISD::FCOS, MVT::f64, Expand); 814 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 815 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 816 setOperationAction(ISD::FREM, MVT::f64, Expand); 817 setOperationAction(ISD::FREM, MVT::f32, Expand); 818 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && 819 !Subtarget->isThumb1Only()) { 820 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 821 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 822 } 823 setOperationAction(ISD::FPOW, MVT::f64, Expand); 824 setOperationAction(ISD::FPOW, MVT::f32, Expand); 825 826 if (!Subtarget->hasVFP4()) { 827 setOperationAction(ISD::FMA, MVT::f64, Expand); 828 setOperationAction(ISD::FMA, MVT::f32, Expand); 829 } 830 831 // Various VFP goodness 832 if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) { 833 // int <-> fp are custom expanded into bit_convert + ARMISD ops. 834 if (Subtarget->hasVFP2()) { 835 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 836 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 837 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 838 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 839 } 840 // Special handling for half-precision FP. 841 if (!Subtarget->hasFP16()) { 842 setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand); 843 setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand); 844 } 845 } 846 847 // We have target-specific dag combine patterns for the following nodes: 848 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine 849 setTargetDAGCombine(ISD::ADD); 850 setTargetDAGCombine(ISD::SUB); 851 setTargetDAGCombine(ISD::MUL); 852 setTargetDAGCombine(ISD::AND); 853 setTargetDAGCombine(ISD::OR); 854 setTargetDAGCombine(ISD::XOR); 855 856 if (Subtarget->hasV6Ops()) 857 setTargetDAGCombine(ISD::SRL); 858 859 setStackPointerRegisterToSaveRestore(ARM::SP); 860 861 if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() || 862 !Subtarget->hasVFP2()) 863 setSchedulingPreference(Sched::RegPressure); 864 else 865 setSchedulingPreference(Sched::Hybrid); 866 867 //// temporary - rewrite interface to use type 868 MaxStoresPerMemset = 8; 869 MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4; 870 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores 871 MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2; 872 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores 873 MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2; 874 875 // On ARM arguments smaller than 4 bytes are extended, so all arguments 876 // are at least 4 bytes aligned. 877 setMinStackArgumentAlignment(4); 878 879 // Prefer likely predicted branches to selects on out-of-order cores. 880 PredictableSelectIsExpensive = Subtarget->isLikeA9(); 881 882 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2); 883} 884 885// FIXME: It might make sense to define the representative register class as the 886// nearest super-register that has a non-null superset. For example, DPR_VFP2 is 887// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently, 888// SPR's representative would be DPR_VFP2. This should work well if register 889// pressure tracking were modified such that a register use would increment the 890// pressure of the register class's representative and all of it's super 891// classes' representatives transitively. We have not implemented this because 892// of the difficulty prior to coalescing of modeling operand register classes 893// due to the common occurrence of cross class copies and subregister insertions 894// and extractions. 895std::pair<const TargetRegisterClass*, uint8_t> 896ARMTargetLowering::findRepresentativeClass(MVT VT) const{ 897 const TargetRegisterClass *RRC = 0; 898 uint8_t Cost = 1; 899 switch (VT.SimpleTy) { 900 default: 901 return TargetLowering::findRepresentativeClass(VT); 902 // Use DPR as representative register class for all floating point 903 // and vector types. Since there are 32 SPR registers and 32 DPR registers so 904 // the cost is 1 for both f32 and f64. 905 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16: 906 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32: 907 RRC = &ARM::DPRRegClass; 908 // When NEON is used for SP, only half of the register file is available 909 // because operations that define both SP and DP results will be constrained 910 // to the VFP2 class (D0-D15). We currently model this constraint prior to 911 // coalescing by double-counting the SP regs. See the FIXME above. 912 if (Subtarget->useNEONForSinglePrecisionFP()) 913 Cost = 2; 914 break; 915 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: 916 case MVT::v4f32: case MVT::v2f64: 917 RRC = &ARM::DPRRegClass; 918 Cost = 2; 919 break; 920 case MVT::v4i64: 921 RRC = &ARM::DPRRegClass; 922 Cost = 4; 923 break; 924 case MVT::v8i64: 925 RRC = &ARM::DPRRegClass; 926 Cost = 8; 927 break; 928 } 929 return std::make_pair(RRC, Cost); 930} 931 932const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { 933 switch (Opcode) { 934 default: return 0; 935 case ARMISD::Wrapper: return "ARMISD::Wrapper"; 936 case ARMISD::WrapperDYN: return "ARMISD::WrapperDYN"; 937 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC"; 938 case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; 939 case ARMISD::CALL: return "ARMISD::CALL"; 940 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; 941 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; 942 case ARMISD::tCALL: return "ARMISD::tCALL"; 943 case ARMISD::BRCOND: return "ARMISD::BRCOND"; 944 case ARMISD::BR_JT: return "ARMISD::BR_JT"; 945 case ARMISD::BR2_JT: return "ARMISD::BR2_JT"; 946 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; 947 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; 948 case ARMISD::CMP: return "ARMISD::CMP"; 949 case ARMISD::CMN: return "ARMISD::CMN"; 950 case ARMISD::CMPZ: return "ARMISD::CMPZ"; 951 case ARMISD::CMPFP: return "ARMISD::CMPFP"; 952 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; 953 case ARMISD::BCC_i64: return "ARMISD::BCC_i64"; 954 case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; 955 956 case ARMISD::CMOV: return "ARMISD::CMOV"; 957 958 case ARMISD::RBIT: return "ARMISD::RBIT"; 959 960 case ARMISD::FTOSI: return "ARMISD::FTOSI"; 961 case ARMISD::FTOUI: return "ARMISD::FTOUI"; 962 case ARMISD::SITOF: return "ARMISD::SITOF"; 963 case ARMISD::UITOF: return "ARMISD::UITOF"; 964 965 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; 966 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; 967 case ARMISD::RRX: return "ARMISD::RRX"; 968 969 case ARMISD::ADDC: return "ARMISD::ADDC"; 970 case ARMISD::ADDE: return "ARMISD::ADDE"; 971 case ARMISD::SUBC: return "ARMISD::SUBC"; 972 case ARMISD::SUBE: return "ARMISD::SUBE"; 973 974 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD"; 975 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR"; 976 977 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP"; 978 case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP"; 979 980 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN"; 981 982 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; 983 984 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC"; 985 986 case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER"; 987 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR"; 988 989 case ARMISD::PRELOAD: return "ARMISD::PRELOAD"; 990 991 case ARMISD::VCEQ: return "ARMISD::VCEQ"; 992 case ARMISD::VCEQZ: return "ARMISD::VCEQZ"; 993 case ARMISD::VCGE: return "ARMISD::VCGE"; 994 case ARMISD::VCGEZ: return "ARMISD::VCGEZ"; 995 case ARMISD::VCLEZ: return "ARMISD::VCLEZ"; 996 case ARMISD::VCGEU: return "ARMISD::VCGEU"; 997 case ARMISD::VCGT: return "ARMISD::VCGT"; 998 case ARMISD::VCGTZ: return "ARMISD::VCGTZ"; 999 case ARMISD::VCLTZ: return "ARMISD::VCLTZ"; 1000 case ARMISD::VCGTU: return "ARMISD::VCGTU"; 1001 case ARMISD::VTST: return "ARMISD::VTST"; 1002 1003 case ARMISD::VSHL: return "ARMISD::VSHL"; 1004 case ARMISD::VSHRs: return "ARMISD::VSHRs"; 1005 case ARMISD::VSHRu: return "ARMISD::VSHRu"; 1006 case ARMISD::VSHLLs: return "ARMISD::VSHLLs"; 1007 case ARMISD::VSHLLu: return "ARMISD::VSHLLu"; 1008 case ARMISD::VSHLLi: return "ARMISD::VSHLLi"; 1009 case ARMISD::VSHRN: return "ARMISD::VSHRN"; 1010 case ARMISD::VRSHRs: return "ARMISD::VRSHRs"; 1011 case ARMISD::VRSHRu: return "ARMISD::VRSHRu"; 1012 case ARMISD::VRSHRN: return "ARMISD::VRSHRN"; 1013 case ARMISD::VQSHLs: return "ARMISD::VQSHLs"; 1014 case ARMISD::VQSHLu: return "ARMISD::VQSHLu"; 1015 case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu"; 1016 case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs"; 1017 case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu"; 1018 case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu"; 1019 case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs"; 1020 case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu"; 1021 case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu"; 1022 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu"; 1023 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs"; 1024 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM"; 1025 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM"; 1026 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM"; 1027 case ARMISD::VDUP: return "ARMISD::VDUP"; 1028 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE"; 1029 case ARMISD::VEXT: return "ARMISD::VEXT"; 1030 case ARMISD::VREV64: return "ARMISD::VREV64"; 1031 case ARMISD::VREV32: return "ARMISD::VREV32"; 1032 case ARMISD::VREV16: return "ARMISD::VREV16"; 1033 case ARMISD::VZIP: return "ARMISD::VZIP"; 1034 case ARMISD::VUZP: return "ARMISD::VUZP"; 1035 case ARMISD::VTRN: return "ARMISD::VTRN"; 1036 case ARMISD::VTBL1: return "ARMISD::VTBL1"; 1037 case ARMISD::VTBL2: return "ARMISD::VTBL2"; 1038 case ARMISD::VMULLs: return "ARMISD::VMULLs"; 1039 case ARMISD::VMULLu: return "ARMISD::VMULLu"; 1040 case ARMISD::UMLAL: return "ARMISD::UMLAL"; 1041 case ARMISD::SMLAL: return "ARMISD::SMLAL"; 1042 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR"; 1043 case ARMISD::FMAX: return "ARMISD::FMAX"; 1044 case ARMISD::FMIN: return "ARMISD::FMIN"; 1045 case ARMISD::BFI: return "ARMISD::BFI"; 1046 case ARMISD::VORRIMM: return "ARMISD::VORRIMM"; 1047 case ARMISD::VBICIMM: return "ARMISD::VBICIMM"; 1048 case ARMISD::VBSL: return "ARMISD::VBSL"; 1049 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP"; 1050 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP"; 1051 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP"; 1052 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD"; 1053 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD"; 1054 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD"; 1055 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD"; 1056 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD"; 1057 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD"; 1058 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD"; 1059 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD"; 1060 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD"; 1061 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD"; 1062 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD"; 1063 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD"; 1064 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD"; 1065 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD"; 1066 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD"; 1067 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD"; 1068 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD"; 1069 } 1070} 1071 1072EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { 1073 if (!VT.isVector()) return getPointerTy(); 1074 return VT.changeVectorElementTypeToInteger(); 1075} 1076 1077/// getRegClassFor - Return the register class that should be used for the 1078/// specified value type. 1079const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const { 1080 // Map v4i64 to QQ registers but do not make the type legal. Similarly map 1081 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to 1082 // load / store 4 to 8 consecutive D registers. 1083 if (Subtarget->hasNEON()) { 1084 if (VT == MVT::v4i64) 1085 return &ARM::QQPRRegClass; 1086 if (VT == MVT::v8i64) 1087 return &ARM::QQQQPRRegClass; 1088 } 1089 return TargetLowering::getRegClassFor(VT); 1090} 1091 1092// Create a fast isel object. 1093FastISel * 1094ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 1095 const TargetLibraryInfo *libInfo) const { 1096 return ARM::createFastISel(funcInfo, libInfo); 1097} 1098 1099/// getMaximalGlobalOffset - Returns the maximal possible offset which can 1100/// be used for loads / stores from the global. 1101unsigned ARMTargetLowering::getMaximalGlobalOffset() const { 1102 return (Subtarget->isThumb1Only() ? 127 : 4095); 1103} 1104 1105Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const { 1106 unsigned NumVals = N->getNumValues(); 1107 if (!NumVals) 1108 return Sched::RegPressure; 1109 1110 for (unsigned i = 0; i != NumVals; ++i) { 1111 EVT VT = N->getValueType(i); 1112 if (VT == MVT::Glue || VT == MVT::Other) 1113 continue; 1114 if (VT.isFloatingPoint() || VT.isVector()) 1115 return Sched::ILP; 1116 } 1117 1118 if (!N->isMachineOpcode()) 1119 return Sched::RegPressure; 1120 1121 // Load are scheduled for latency even if there instruction itinerary 1122 // is not available. 1123 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 1124 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 1125 1126 if (MCID.getNumDefs() == 0) 1127 return Sched::RegPressure; 1128 if (!Itins->isEmpty() && 1129 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2) 1130 return Sched::ILP; 1131 1132 return Sched::RegPressure; 1133} 1134 1135//===----------------------------------------------------------------------===// 1136// Lowering Code 1137//===----------------------------------------------------------------------===// 1138 1139/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC 1140static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { 1141 switch (CC) { 1142 default: llvm_unreachable("Unknown condition code!"); 1143 case ISD::SETNE: return ARMCC::NE; 1144 case ISD::SETEQ: return ARMCC::EQ; 1145 case ISD::SETGT: return ARMCC::GT; 1146 case ISD::SETGE: return ARMCC::GE; 1147 case ISD::SETLT: return ARMCC::LT; 1148 case ISD::SETLE: return ARMCC::LE; 1149 case ISD::SETUGT: return ARMCC::HI; 1150 case ISD::SETUGE: return ARMCC::HS; 1151 case ISD::SETULT: return ARMCC::LO; 1152 case ISD::SETULE: return ARMCC::LS; 1153 } 1154} 1155 1156/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. 1157static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, 1158 ARMCC::CondCodes &CondCode2) { 1159 CondCode2 = ARMCC::AL; 1160 switch (CC) { 1161 default: llvm_unreachable("Unknown FP condition!"); 1162 case ISD::SETEQ: 1163 case ISD::SETOEQ: CondCode = ARMCC::EQ; break; 1164 case ISD::SETGT: 1165 case ISD::SETOGT: CondCode = ARMCC::GT; break; 1166 case ISD::SETGE: 1167 case ISD::SETOGE: CondCode = ARMCC::GE; break; 1168 case ISD::SETOLT: CondCode = ARMCC::MI; break; 1169 case ISD::SETOLE: CondCode = ARMCC::LS; break; 1170 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; 1171 case ISD::SETO: CondCode = ARMCC::VC; break; 1172 case ISD::SETUO: CondCode = ARMCC::VS; break; 1173 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; 1174 case ISD::SETUGT: CondCode = ARMCC::HI; break; 1175 case ISD::SETUGE: CondCode = ARMCC::PL; break; 1176 case ISD::SETLT: 1177 case ISD::SETULT: CondCode = ARMCC::LT; break; 1178 case ISD::SETLE: 1179 case ISD::SETULE: CondCode = ARMCC::LE; break; 1180 case ISD::SETNE: 1181 case ISD::SETUNE: CondCode = ARMCC::NE; break; 1182 } 1183} 1184 1185//===----------------------------------------------------------------------===// 1186// Calling Convention Implementation 1187//===----------------------------------------------------------------------===// 1188 1189#include "ARMGenCallingConv.inc" 1190 1191/// CCAssignFnForNode - Selects the correct CCAssignFn for a the 1192/// given CallingConvention value. 1193CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, 1194 bool Return, 1195 bool isVarArg) const { 1196 switch (CC) { 1197 default: 1198 llvm_unreachable("Unsupported calling convention"); 1199 case CallingConv::Fast: 1200 if (Subtarget->hasVFP2() && !isVarArg) { 1201 if (!Subtarget->isAAPCS_ABI()) 1202 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1203 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1204 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1205 } 1206 // Fallthrough 1207 case CallingConv::C: { 1208 // Use target triple & subtarget features to do actual dispatch. 1209 if (!Subtarget->isAAPCS_ABI()) 1210 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); 1211 else if (Subtarget->hasVFP2() && 1212 getTargetMachine().Options.FloatABIType == FloatABI::Hard && 1213 !isVarArg) 1214 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1215 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); 1216 } 1217 case CallingConv::ARM_AAPCS_VFP: 1218 if (!isVarArg) 1219 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1220 // Fallthrough 1221 case CallingConv::ARM_AAPCS: 1222 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); 1223 case CallingConv::ARM_APCS: 1224 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); 1225 case CallingConv::GHC: 1226 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC); 1227 } 1228} 1229 1230/// LowerCallResult - Lower the result values of a call into the 1231/// appropriate copies out of appropriate physical registers. 1232SDValue 1233ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 1234 CallingConv::ID CallConv, bool isVarArg, 1235 const SmallVectorImpl<ISD::InputArg> &Ins, 1236 SDLoc dl, SelectionDAG &DAG, 1237 SmallVectorImpl<SDValue> &InVals, 1238 bool isThisReturn, SDValue ThisVal) const { 1239 1240 // Assign locations to each value returned by this call. 1241 SmallVector<CCValAssign, 16> RVLocs; 1242 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1243 getTargetMachine(), RVLocs, *DAG.getContext(), Call); 1244 CCInfo.AnalyzeCallResult(Ins, 1245 CCAssignFnForNode(CallConv, /* Return*/ true, 1246 isVarArg)); 1247 1248 // Copy all of the result registers out of their specified physreg. 1249 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1250 CCValAssign VA = RVLocs[i]; 1251 1252 // Pass 'this' value directly from the argument to return value, to avoid 1253 // reg unit interference 1254 if (i == 0 && isThisReturn) { 1255 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 && 1256 "unexpected return calling convention register assignment"); 1257 InVals.push_back(ThisVal); 1258 continue; 1259 } 1260 1261 SDValue Val; 1262 if (VA.needsCustom()) { 1263 // Handle f64 or half of a v2f64. 1264 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 1265 InFlag); 1266 Chain = Lo.getValue(1); 1267 InFlag = Lo.getValue(2); 1268 VA = RVLocs[++i]; // skip ahead to next loc 1269 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 1270 InFlag); 1271 Chain = Hi.getValue(1); 1272 InFlag = Hi.getValue(2); 1273 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 1274 1275 if (VA.getLocVT() == MVT::v2f64) { 1276 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); 1277 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, 1278 DAG.getConstant(0, MVT::i32)); 1279 1280 VA = RVLocs[++i]; // skip ahead to next loc 1281 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); 1282 Chain = Lo.getValue(1); 1283 InFlag = Lo.getValue(2); 1284 VA = RVLocs[++i]; // skip ahead to next loc 1285 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); 1286 Chain = Hi.getValue(1); 1287 InFlag = Hi.getValue(2); 1288 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 1289 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, 1290 DAG.getConstant(1, MVT::i32)); 1291 } 1292 } else { 1293 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), 1294 InFlag); 1295 Chain = Val.getValue(1); 1296 InFlag = Val.getValue(2); 1297 } 1298 1299 switch (VA.getLocInfo()) { 1300 default: llvm_unreachable("Unknown loc info!"); 1301 case CCValAssign::Full: break; 1302 case CCValAssign::BCvt: 1303 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); 1304 break; 1305 } 1306 1307 InVals.push_back(Val); 1308 } 1309 1310 return Chain; 1311} 1312 1313/// LowerMemOpCallTo - Store the argument to the stack. 1314SDValue 1315ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, 1316 SDValue StackPtr, SDValue Arg, 1317 SDLoc dl, SelectionDAG &DAG, 1318 const CCValAssign &VA, 1319 ISD::ArgFlagsTy Flags) const { 1320 unsigned LocMemOffset = VA.getLocMemOffset(); 1321 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 1322 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 1323 return DAG.getStore(Chain, dl, Arg, PtrOff, 1324 MachinePointerInfo::getStack(LocMemOffset), 1325 false, false, 0); 1326} 1327 1328void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG, 1329 SDValue Chain, SDValue &Arg, 1330 RegsToPassVector &RegsToPass, 1331 CCValAssign &VA, CCValAssign &NextVA, 1332 SDValue &StackPtr, 1333 SmallVector<SDValue, 8> &MemOpChains, 1334 ISD::ArgFlagsTy Flags) const { 1335 1336 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, 1337 DAG.getVTList(MVT::i32, MVT::i32), Arg); 1338 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd)); 1339 1340 if (NextVA.isRegLoc()) 1341 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1))); 1342 else { 1343 assert(NextVA.isMemLoc()); 1344 if (StackPtr.getNode() == 0) 1345 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); 1346 1347 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1), 1348 dl, DAG, NextVA, 1349 Flags)); 1350 } 1351} 1352 1353/// LowerCall - Lowering a call into a callseq_start <- 1354/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter 1355/// nodes. 1356SDValue 1357ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1358 SmallVectorImpl<SDValue> &InVals) const { 1359 SelectionDAG &DAG = CLI.DAG; 1360 SDLoc &dl = CLI.DL; 1361 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 1362 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 1363 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 1364 SDValue Chain = CLI.Chain; 1365 SDValue Callee = CLI.Callee; 1366 bool &isTailCall = CLI.IsTailCall; 1367 CallingConv::ID CallConv = CLI.CallConv; 1368 bool doesNotRet = CLI.DoesNotReturn; 1369 bool isVarArg = CLI.IsVarArg; 1370 1371 MachineFunction &MF = DAG.getMachineFunction(); 1372 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); 1373 bool isThisReturn = false; 1374 bool isSibCall = false; 1375 // Disable tail calls if they're not supported. 1376 if (!EnableARMTailCalls && !Subtarget->supportsTailCall()) 1377 isTailCall = false; 1378 if (isTailCall) { 1379 // Check if it's really possible to do a tail call. 1380 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, 1381 isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(), 1382 Outs, OutVals, Ins, DAG); 1383 // We don't support GuaranteedTailCallOpt for ARM, only automatically 1384 // detected sibcalls. 1385 if (isTailCall) { 1386 ++NumTailCalls; 1387 isSibCall = true; 1388 } 1389 } 1390 1391 // Analyze operands of the call, assigning locations to each operand. 1392 SmallVector<CCValAssign, 16> ArgLocs; 1393 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 1394 getTargetMachine(), ArgLocs, *DAG.getContext(), Call); 1395 CCInfo.AnalyzeCallOperands(Outs, 1396 CCAssignFnForNode(CallConv, /* Return*/ false, 1397 isVarArg)); 1398 1399 // Get a count of how many bytes are to be pushed on the stack. 1400 unsigned NumBytes = CCInfo.getNextStackOffset(); 1401 1402 // For tail calls, memory operands are available in our caller's stack. 1403 if (isSibCall) 1404 NumBytes = 0; 1405 1406 // Adjust the stack pointer for the new arguments... 1407 // These operations are automatically eliminated by the prolog/epilog pass 1408 if (!isSibCall) 1409 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), 1410 dl); 1411 1412 SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); 1413 1414 RegsToPassVector RegsToPass; 1415 SmallVector<SDValue, 8> MemOpChains; 1416 1417 // Walk the register/memloc assignments, inserting copies/loads. In the case 1418 // of tail call optimization, arguments are handled later. 1419 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); 1420 i != e; 1421 ++i, ++realArgIdx) { 1422 CCValAssign &VA = ArgLocs[i]; 1423 SDValue Arg = OutVals[realArgIdx]; 1424 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 1425 bool isByVal = Flags.isByVal(); 1426 1427 // Promote the value if needed. 1428 switch (VA.getLocInfo()) { 1429 default: llvm_unreachable("Unknown loc info!"); 1430 case CCValAssign::Full: break; 1431 case CCValAssign::SExt: 1432 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 1433 break; 1434 case CCValAssign::ZExt: 1435 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 1436 break; 1437 case CCValAssign::AExt: 1438 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 1439 break; 1440 case CCValAssign::BCvt: 1441 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 1442 break; 1443 } 1444 1445 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces 1446 if (VA.needsCustom()) { 1447 if (VA.getLocVT() == MVT::v2f64) { 1448 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 1449 DAG.getConstant(0, MVT::i32)); 1450 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 1451 DAG.getConstant(1, MVT::i32)); 1452 1453 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, 1454 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); 1455 1456 VA = ArgLocs[++i]; // skip ahead to next loc 1457 if (VA.isRegLoc()) { 1458 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, 1459 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); 1460 } else { 1461 assert(VA.isMemLoc()); 1462 1463 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1, 1464 dl, DAG, VA, Flags)); 1465 } 1466 } else { 1467 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], 1468 StackPtr, MemOpChains, Flags); 1469 } 1470 } else if (VA.isRegLoc()) { 1471 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) { 1472 assert(VA.getLocVT() == MVT::i32 && 1473 "unexpected calling convention register assignment"); 1474 assert(!Ins.empty() && Ins[0].VT == MVT::i32 && 1475 "unexpected use of 'returned'"); 1476 isThisReturn = true; 1477 } 1478 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1479 } else if (isByVal) { 1480 assert(VA.isMemLoc()); 1481 unsigned offset = 0; 1482 1483 // True if this byval aggregate will be split between registers 1484 // and memory. 1485 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount(); 1486 unsigned CurByValIdx = CCInfo.getInRegsParamsProceed(); 1487 1488 if (CurByValIdx < ByValArgsCount) { 1489 1490 unsigned RegBegin, RegEnd; 1491 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd); 1492 1493 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1494 unsigned int i, j; 1495 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) { 1496 SDValue Const = DAG.getConstant(4*i, MVT::i32); 1497 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 1498 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 1499 MachinePointerInfo(), 1500 false, false, false, 0); 1501 MemOpChains.push_back(Load.getValue(1)); 1502 RegsToPass.push_back(std::make_pair(j, Load)); 1503 } 1504 1505 // If parameter size outsides register area, "offset" value 1506 // helps us to calculate stack slot for remained part properly. 1507 offset = RegEnd - RegBegin; 1508 1509 CCInfo.nextInRegsParam(); 1510 } 1511 1512 if (Flags.getByValSize() > 4*offset) { 1513 unsigned LocMemOffset = VA.getLocMemOffset(); 1514 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset); 1515 SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, 1516 StkPtrOff); 1517 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset); 1518 SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset); 1519 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, 1520 MVT::i32); 1521 SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32); 1522 1523 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 1524 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode}; 1525 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs, 1526 Ops, array_lengthof(Ops))); 1527 } 1528 } else if (!isSibCall) { 1529 assert(VA.isMemLoc()); 1530 1531 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, 1532 dl, DAG, VA, Flags)); 1533 } 1534 } 1535 1536 if (!MemOpChains.empty()) 1537 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1538 &MemOpChains[0], MemOpChains.size()); 1539 1540 // Build a sequence of copy-to-reg nodes chained together with token chain 1541 // and flag operands which copy the outgoing args into the appropriate regs. 1542 SDValue InFlag; 1543 // Tail call byval lowering might overwrite argument registers so in case of 1544 // tail call optimization the copies to registers are lowered later. 1545 if (!isTailCall) 1546 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1547 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1548 RegsToPass[i].second, InFlag); 1549 InFlag = Chain.getValue(1); 1550 } 1551 1552 // For tail calls lower the arguments to the 'real' stack slot. 1553 if (isTailCall) { 1554 // Force all the incoming stack arguments to be loaded from the stack 1555 // before any new outgoing arguments are stored to the stack, because the 1556 // outgoing stack slots may alias the incoming argument stack slots, and 1557 // the alias isn't otherwise explicit. This is slightly more conservative 1558 // than necessary, because it means that each store effectively depends 1559 // on every argument instead of just those arguments it would clobber. 1560 1561 // Do not flag preceding copytoreg stuff together with the following stuff. 1562 InFlag = SDValue(); 1563 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1564 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1565 RegsToPass[i].second, InFlag); 1566 InFlag = Chain.getValue(1); 1567 } 1568 InFlag = SDValue(); 1569 } 1570 1571 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 1572 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 1573 // node so that legalize doesn't hack it. 1574 bool isDirect = false; 1575 bool isARMFunc = false; 1576 bool isLocalARMFunc = false; 1577 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1578 1579 if (EnableARMLongCalls) { 1580 assert (getTargetMachine().getRelocationModel() == Reloc::Static 1581 && "long-calls with non-static relocation model!"); 1582 // Handle a global address or an external symbol. If it's not one of 1583 // those, the target's already in a register, so we don't need to do 1584 // anything extra. 1585 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1586 const GlobalValue *GV = G->getGlobal(); 1587 // Create a constant pool entry for the callee address 1588 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1589 ARMConstantPoolValue *CPV = 1590 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0); 1591 1592 // Get the address of the callee into a register 1593 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); 1594 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1595 Callee = DAG.getLoad(getPointerTy(), dl, 1596 DAG.getEntryNode(), CPAddr, 1597 MachinePointerInfo::getConstantPool(), 1598 false, false, false, 0); 1599 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) { 1600 const char *Sym = S->getSymbol(); 1601 1602 // Create a constant pool entry for the callee address 1603 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1604 ARMConstantPoolValue *CPV = 1605 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, 1606 ARMPCLabelIndex, 0); 1607 // Get the address of the callee into a register 1608 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); 1609 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1610 Callee = DAG.getLoad(getPointerTy(), dl, 1611 DAG.getEntryNode(), CPAddr, 1612 MachinePointerInfo::getConstantPool(), 1613 false, false, false, 0); 1614 } 1615 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1616 const GlobalValue *GV = G->getGlobal(); 1617 isDirect = true; 1618 bool isExt = GV->isDeclaration() || GV->isWeakForLinker(); 1619 bool isStub = (isExt && Subtarget->isTargetDarwin()) && 1620 getTargetMachine().getRelocationModel() != Reloc::Static; 1621 isARMFunc = !Subtarget->isThumb() || isStub; 1622 // ARM call to a local ARM function is predicable. 1623 isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking); 1624 // tBX takes a register source operand. 1625 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { 1626 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1627 ARMConstantPoolValue *CPV = 1628 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4); 1629 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); 1630 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1631 Callee = DAG.getLoad(getPointerTy(), dl, 1632 DAG.getEntryNode(), CPAddr, 1633 MachinePointerInfo::getConstantPool(), 1634 false, false, false, 0); 1635 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 1636 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, 1637 getPointerTy(), Callee, PICLabel); 1638 } else { 1639 // On ELF targets for PIC code, direct calls should go through the PLT 1640 unsigned OpFlags = 0; 1641 if (Subtarget->isTargetELF() && 1642 getTargetMachine().getRelocationModel() == Reloc::PIC_) 1643 OpFlags = ARMII::MO_PLT; 1644 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); 1645 } 1646 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1647 isDirect = true; 1648 bool isStub = Subtarget->isTargetDarwin() && 1649 getTargetMachine().getRelocationModel() != Reloc::Static; 1650 isARMFunc = !Subtarget->isThumb() || isStub; 1651 // tBX takes a register source operand. 1652 const char *Sym = S->getSymbol(); 1653 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { 1654 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1655 ARMConstantPoolValue *CPV = 1656 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, 1657 ARMPCLabelIndex, 4); 1658 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); 1659 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1660 Callee = DAG.getLoad(getPointerTy(), dl, 1661 DAG.getEntryNode(), CPAddr, 1662 MachinePointerInfo::getConstantPool(), 1663 false, false, false, 0); 1664 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 1665 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, 1666 getPointerTy(), Callee, PICLabel); 1667 } else { 1668 unsigned OpFlags = 0; 1669 // On ELF targets for PIC code, direct calls should go through the PLT 1670 if (Subtarget->isTargetELF() && 1671 getTargetMachine().getRelocationModel() == Reloc::PIC_) 1672 OpFlags = ARMII::MO_PLT; 1673 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags); 1674 } 1675 } 1676 1677 // FIXME: handle tail calls differently. 1678 unsigned CallOpc; 1679 bool HasMinSizeAttr = MF.getFunction()->getAttributes(). 1680 hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize); 1681 if (Subtarget->isThumb()) { 1682 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) 1683 CallOpc = ARMISD::CALL_NOLINK; 1684 else 1685 CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; 1686 } else { 1687 if (!isDirect && !Subtarget->hasV5TOps()) 1688 CallOpc = ARMISD::CALL_NOLINK; 1689 else if (doesNotRet && isDirect && Subtarget->hasRAS() && 1690 // Emit regular call when code size is the priority 1691 !HasMinSizeAttr) 1692 // "mov lr, pc; b _foo" to avoid confusing the RSP 1693 CallOpc = ARMISD::CALL_NOLINK; 1694 else 1695 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL; 1696 } 1697 1698 std::vector<SDValue> Ops; 1699 Ops.push_back(Chain); 1700 Ops.push_back(Callee); 1701 1702 // Add argument registers to the end of the list so that they are known live 1703 // into the call. 1704 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1705 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1706 RegsToPass[i].second.getValueType())); 1707 1708 // Add a register mask operand representing the call-preserved registers. 1709 const uint32_t *Mask; 1710 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); 1711 const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo*>(TRI); 1712 if (isThisReturn) { 1713 // For 'this' returns, use the R0-preserving mask if applicable 1714 Mask = ARI->getThisReturnPreservedMask(CallConv); 1715 if (!Mask) { 1716 // Set isThisReturn to false if the calling convention is not one that 1717 // allows 'returned' to be modeled in this way, so LowerCallResult does 1718 // not try to pass 'this' straight through 1719 isThisReturn = false; 1720 Mask = ARI->getCallPreservedMask(CallConv); 1721 } 1722 } else 1723 Mask = ARI->getCallPreservedMask(CallConv); 1724 1725 assert(Mask && "Missing call preserved mask for calling convention"); 1726 Ops.push_back(DAG.getRegisterMask(Mask)); 1727 1728 if (InFlag.getNode()) 1729 Ops.push_back(InFlag); 1730 1731 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1732 if (isTailCall) 1733 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); 1734 1735 // Returns a chain and a flag for retval copy to use. 1736 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); 1737 InFlag = Chain.getValue(1); 1738 1739 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 1740 DAG.getIntPtrConstant(0, true), InFlag, dl); 1741 if (!Ins.empty()) 1742 InFlag = Chain.getValue(1); 1743 1744 // Handle result values, copying them out of physregs into vregs that we 1745 // return. 1746 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, 1747 InVals, isThisReturn, 1748 isThisReturn ? OutVals[0] : SDValue()); 1749} 1750 1751/// HandleByVal - Every parameter *after* a byval parameter is passed 1752/// on the stack. Remember the next parameter register to allocate, 1753/// and then confiscate the rest of the parameter registers to insure 1754/// this. 1755void 1756ARMTargetLowering::HandleByVal( 1757 CCState *State, unsigned &size, unsigned Align) const { 1758 unsigned reg = State->AllocateReg(GPRArgRegs, 4); 1759 assert((State->getCallOrPrologue() == Prologue || 1760 State->getCallOrPrologue() == Call) && 1761 "unhandled ParmContext"); 1762 1763 // For in-prologue parameters handling, we also introduce stack offset 1764 // for byval registers: see CallingConvLower.cpp, CCState::HandleByVal. 1765 // This behaviour outsides AAPCS rules (5.5 Parameters Passing) of how 1766 // NSAA should be evaluted (NSAA means "next stacked argument address"). 1767 // So: NextStackOffset = NSAAOffset + SizeOfByValParamsStoredInRegs. 1768 // Then: NSAAOffset = NextStackOffset - SizeOfByValParamsStoredInRegs. 1769 unsigned NSAAOffset = State->getNextStackOffset(); 1770 if (State->getCallOrPrologue() != Call) { 1771 for (unsigned i = 0, e = State->getInRegsParamsCount(); i != e; ++i) { 1772 unsigned RB, RE; 1773 State->getInRegsParamInfo(i, RB, RE); 1774 assert(NSAAOffset >= (RE-RB)*4 && 1775 "Stack offset for byval regs doesn't introduced anymore?"); 1776 NSAAOffset -= (RE-RB)*4; 1777 } 1778 } 1779 if ((ARM::R0 <= reg) && (reg <= ARM::R3)) { 1780 if (Subtarget->isAAPCS_ABI() && Align > 4) { 1781 unsigned AlignInRegs = Align / 4; 1782 unsigned Waste = (ARM::R4 - reg) % AlignInRegs; 1783 for (unsigned i = 0; i < Waste; ++i) 1784 reg = State->AllocateReg(GPRArgRegs, 4); 1785 } 1786 if (reg != 0) { 1787 unsigned excess = 4 * (ARM::R4 - reg); 1788 1789 // Special case when NSAA != SP and parameter size greater than size of 1790 // all remained GPR regs. In that case we can't split parameter, we must 1791 // send it to stack. We also must set NCRN to R4, so waste all 1792 // remained registers. 1793 if (Subtarget->isAAPCS_ABI() && NSAAOffset != 0 && size > excess) { 1794 while (State->AllocateReg(GPRArgRegs, 4)) 1795 ; 1796 return; 1797 } 1798 1799 // First register for byval parameter is the first register that wasn't 1800 // allocated before this method call, so it would be "reg". 1801 // If parameter is small enough to be saved in range [reg, r4), then 1802 // the end (first after last) register would be reg + param-size-in-regs, 1803 // else parameter would be splitted between registers and stack, 1804 // end register would be r4 in this case. 1805 unsigned ByValRegBegin = reg; 1806 unsigned ByValRegEnd = (size < excess) ? reg + size/4 : (unsigned)ARM::R4; 1807 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd); 1808 // Note, first register is allocated in the beginning of function already, 1809 // allocate remained amount of registers we need. 1810 for (unsigned i = reg+1; i != ByValRegEnd; ++i) 1811 State->AllocateReg(GPRArgRegs, 4); 1812 // At a call site, a byval parameter that is split between 1813 // registers and memory needs its size truncated here. In a 1814 // function prologue, such byval parameters are reassembled in 1815 // memory, and are not truncated. 1816 if (State->getCallOrPrologue() == Call) { 1817 // Make remained size equal to 0 in case, when 1818 // the whole structure may be stored into registers. 1819 if (size < excess) 1820 size = 0; 1821 else 1822 size -= excess; 1823 } 1824 } 1825 } 1826} 1827 1828/// MatchingStackOffset - Return true if the given stack call argument is 1829/// already available in the same position (relatively) of the caller's 1830/// incoming argument stack. 1831static 1832bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, 1833 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, 1834 const TargetInstrInfo *TII) { 1835 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; 1836 int FI = INT_MAX; 1837 if (Arg.getOpcode() == ISD::CopyFromReg) { 1838 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); 1839 if (!TargetRegisterInfo::isVirtualRegister(VR)) 1840 return false; 1841 MachineInstr *Def = MRI->getVRegDef(VR); 1842 if (!Def) 1843 return false; 1844 if (!Flags.isByVal()) { 1845 if (!TII->isLoadFromStackSlot(Def, FI)) 1846 return false; 1847 } else { 1848 return false; 1849 } 1850 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { 1851 if (Flags.isByVal()) 1852 // ByVal argument is passed in as a pointer but it's now being 1853 // dereferenced. e.g. 1854 // define @foo(%struct.X* %A) { 1855 // tail call @bar(%struct.X* byval %A) 1856 // } 1857 return false; 1858 SDValue Ptr = Ld->getBasePtr(); 1859 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); 1860 if (!FINode) 1861 return false; 1862 FI = FINode->getIndex(); 1863 } else 1864 return false; 1865 1866 assert(FI != INT_MAX); 1867 if (!MFI->isFixedObjectIndex(FI)) 1868 return false; 1869 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); 1870} 1871 1872/// IsEligibleForTailCallOptimization - Check whether the call is eligible 1873/// for tail call optimization. Targets which want to do tail call 1874/// optimization should implement this function. 1875bool 1876ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 1877 CallingConv::ID CalleeCC, 1878 bool isVarArg, 1879 bool isCalleeStructRet, 1880 bool isCallerStructRet, 1881 const SmallVectorImpl<ISD::OutputArg> &Outs, 1882 const SmallVectorImpl<SDValue> &OutVals, 1883 const SmallVectorImpl<ISD::InputArg> &Ins, 1884 SelectionDAG& DAG) const { 1885 const Function *CallerF = DAG.getMachineFunction().getFunction(); 1886 CallingConv::ID CallerCC = CallerF->getCallingConv(); 1887 bool CCMatch = CallerCC == CalleeCC; 1888 1889 // Look for obvious safe cases to perform tail call optimization that do not 1890 // require ABI changes. This is what gcc calls sibcall. 1891 1892 // Do not sibcall optimize vararg calls unless the call site is not passing 1893 // any arguments. 1894 if (isVarArg && !Outs.empty()) 1895 return false; 1896 1897 // Also avoid sibcall optimization if either caller or callee uses struct 1898 // return semantics. 1899 if (isCalleeStructRet || isCallerStructRet) 1900 return false; 1901 1902 // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo:: 1903 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as 1904 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation 1905 // support in the assembler and linker to be used. This would need to be 1906 // fixed to fully support tail calls in Thumb1. 1907 // 1908 // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take 1909 // LR. This means if we need to reload LR, it takes an extra instructions, 1910 // which outweighs the value of the tail call; but here we don't know yet 1911 // whether LR is going to be used. Probably the right approach is to 1912 // generate the tail call here and turn it back into CALL/RET in 1913 // emitEpilogue if LR is used. 1914 1915 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, 1916 // but we need to make sure there are enough registers; the only valid 1917 // registers are the 4 used for parameters. We don't currently do this 1918 // case. 1919 if (Subtarget->isThumb1Only()) 1920 return false; 1921 1922 // If the calling conventions do not match, then we'd better make sure the 1923 // results are returned in the same way as what the caller expects. 1924 if (!CCMatch) { 1925 SmallVector<CCValAssign, 16> RVLocs1; 1926 ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), 1927 getTargetMachine(), RVLocs1, *DAG.getContext(), Call); 1928 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg)); 1929 1930 SmallVector<CCValAssign, 16> RVLocs2; 1931 ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), 1932 getTargetMachine(), RVLocs2, *DAG.getContext(), Call); 1933 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg)); 1934 1935 if (RVLocs1.size() != RVLocs2.size()) 1936 return false; 1937 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { 1938 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) 1939 return false; 1940 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) 1941 return false; 1942 if (RVLocs1[i].isRegLoc()) { 1943 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) 1944 return false; 1945 } else { 1946 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) 1947 return false; 1948 } 1949 } 1950 } 1951 1952 // If Caller's vararg or byval argument has been split between registers and 1953 // stack, do not perform tail call, since part of the argument is in caller's 1954 // local frame. 1955 const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction(). 1956 getInfo<ARMFunctionInfo>(); 1957 if (AFI_Caller->getArgRegsSaveSize()) 1958 return false; 1959 1960 // If the callee takes no arguments then go on to check the results of the 1961 // call. 1962 if (!Outs.empty()) { 1963 // Check if stack adjustment is needed. For now, do not do this if any 1964 // argument is passed on the stack. 1965 SmallVector<CCValAssign, 16> ArgLocs; 1966 ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), 1967 getTargetMachine(), ArgLocs, *DAG.getContext(), Call); 1968 CCInfo.AnalyzeCallOperands(Outs, 1969 CCAssignFnForNode(CalleeCC, false, isVarArg)); 1970 if (CCInfo.getNextStackOffset()) { 1971 MachineFunction &MF = DAG.getMachineFunction(); 1972 1973 // Check if the arguments are already laid out in the right way as 1974 // the caller's fixed stack objects. 1975 MachineFrameInfo *MFI = MF.getFrameInfo(); 1976 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 1977 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 1978 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); 1979 i != e; 1980 ++i, ++realArgIdx) { 1981 CCValAssign &VA = ArgLocs[i]; 1982 EVT RegVT = VA.getLocVT(); 1983 SDValue Arg = OutVals[realArgIdx]; 1984 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 1985 if (VA.getLocInfo() == CCValAssign::Indirect) 1986 return false; 1987 if (VA.needsCustom()) { 1988 // f64 and vector types are split into multiple registers or 1989 // register/stack-slot combinations. The types will not match 1990 // the registers; give up on memory f64 refs until we figure 1991 // out what to do about this. 1992 if (!VA.isRegLoc()) 1993 return false; 1994 if (!ArgLocs[++i].isRegLoc()) 1995 return false; 1996 if (RegVT == MVT::v2f64) { 1997 if (!ArgLocs[++i].isRegLoc()) 1998 return false; 1999 if (!ArgLocs[++i].isRegLoc()) 2000 return false; 2001 } 2002 } else if (!VA.isRegLoc()) { 2003 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, 2004 MFI, MRI, TII)) 2005 return false; 2006 } 2007 } 2008 } 2009 } 2010 2011 return true; 2012} 2013 2014bool 2015ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 2016 MachineFunction &MF, bool isVarArg, 2017 const SmallVectorImpl<ISD::OutputArg> &Outs, 2018 LLVMContext &Context) const { 2019 SmallVector<CCValAssign, 16> RVLocs; 2020 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context); 2021 return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true, 2022 isVarArg)); 2023} 2024 2025SDValue 2026ARMTargetLowering::LowerReturn(SDValue Chain, 2027 CallingConv::ID CallConv, bool isVarArg, 2028 const SmallVectorImpl<ISD::OutputArg> &Outs, 2029 const SmallVectorImpl<SDValue> &OutVals, 2030 SDLoc dl, SelectionDAG &DAG) const { 2031 2032 // CCValAssign - represent the assignment of the return value to a location. 2033 SmallVector<CCValAssign, 16> RVLocs; 2034 2035 // CCState - Info about the registers and stack slots. 2036 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2037 getTargetMachine(), RVLocs, *DAG.getContext(), Call); 2038 2039 // Analyze outgoing return values. 2040 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true, 2041 isVarArg)); 2042 2043 SDValue Flag; 2044 SmallVector<SDValue, 4> RetOps; 2045 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2046 2047 // Copy the result values into the output registers. 2048 for (unsigned i = 0, realRVLocIdx = 0; 2049 i != RVLocs.size(); 2050 ++i, ++realRVLocIdx) { 2051 CCValAssign &VA = RVLocs[i]; 2052 assert(VA.isRegLoc() && "Can only return in registers!"); 2053 2054 SDValue Arg = OutVals[realRVLocIdx]; 2055 2056 switch (VA.getLocInfo()) { 2057 default: llvm_unreachable("Unknown loc info!"); 2058 case CCValAssign::Full: break; 2059 case CCValAssign::BCvt: 2060 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 2061 break; 2062 } 2063 2064 if (VA.needsCustom()) { 2065 if (VA.getLocVT() == MVT::v2f64) { 2066 // Extract the first half and return it in two registers. 2067 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 2068 DAG.getConstant(0, MVT::i32)); 2069 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, 2070 DAG.getVTList(MVT::i32, MVT::i32), Half); 2071 2072 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag); 2073 Flag = Chain.getValue(1); 2074 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2075 VA = RVLocs[++i]; // skip ahead to next loc 2076 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 2077 HalfGPRs.getValue(1), Flag); 2078 Flag = Chain.getValue(1); 2079 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2080 VA = RVLocs[++i]; // skip ahead to next loc 2081 2082 // Extract the 2nd half and fall through to handle it as an f64 value. 2083 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 2084 DAG.getConstant(1, MVT::i32)); 2085 } 2086 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is 2087 // available. 2088 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, 2089 DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1); 2090 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag); 2091 Flag = Chain.getValue(1); 2092 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2093 VA = RVLocs[++i]; // skip ahead to next loc 2094 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1), 2095 Flag); 2096 } else 2097 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 2098 2099 // Guarantee that all emitted copies are 2100 // stuck together, avoiding something bad. 2101 Flag = Chain.getValue(1); 2102 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2103 } 2104 2105 // Update chain and glue. 2106 RetOps[0] = Chain; 2107 if (Flag.getNode()) 2108 RetOps.push_back(Flag); 2109 2110 return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, 2111 RetOps.data(), RetOps.size()); 2112} 2113 2114bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { 2115 if (N->getNumValues() != 1) 2116 return false; 2117 if (!N->hasNUsesOfValue(1, 0)) 2118 return false; 2119 2120 SDValue TCChain = Chain; 2121 SDNode *Copy = *N->use_begin(); 2122 if (Copy->getOpcode() == ISD::CopyToReg) { 2123 // If the copy has a glue operand, we conservatively assume it isn't safe to 2124 // perform a tail call. 2125 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) 2126 return false; 2127 TCChain = Copy->getOperand(0); 2128 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) { 2129 SDNode *VMov = Copy; 2130 // f64 returned in a pair of GPRs. 2131 SmallPtrSet<SDNode*, 2> Copies; 2132 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); 2133 UI != UE; ++UI) { 2134 if (UI->getOpcode() != ISD::CopyToReg) 2135 return false; 2136 Copies.insert(*UI); 2137 } 2138 if (Copies.size() > 2) 2139 return false; 2140 2141 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); 2142 UI != UE; ++UI) { 2143 SDValue UseChain = UI->getOperand(0); 2144 if (Copies.count(UseChain.getNode())) 2145 // Second CopyToReg 2146 Copy = *UI; 2147 else 2148 // First CopyToReg 2149 TCChain = UseChain; 2150 } 2151 } else if (Copy->getOpcode() == ISD::BITCAST) { 2152 // f32 returned in a single GPR. 2153 if (!Copy->hasOneUse()) 2154 return false; 2155 Copy = *Copy->use_begin(); 2156 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0)) 2157 return false; 2158 TCChain = Copy->getOperand(0); 2159 } else { 2160 return false; 2161 } 2162 2163 bool HasRet = false; 2164 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); 2165 UI != UE; ++UI) { 2166 if (UI->getOpcode() != ARMISD::RET_FLAG) 2167 return false; 2168 HasRet = true; 2169 } 2170 2171 if (!HasRet) 2172 return false; 2173 2174 Chain = TCChain; 2175 return true; 2176} 2177 2178bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 2179 if (!EnableARMTailCalls && !Subtarget->supportsTailCall()) 2180 return false; 2181 2182 if (!CI->isTailCall()) 2183 return false; 2184 2185 return !Subtarget->isThumb1Only(); 2186} 2187 2188// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as 2189// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is 2190// one of the above mentioned nodes. It has to be wrapped because otherwise 2191// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only 2192// be used to form addressing mode. These wrapped nodes will be selected 2193// into MOVi. 2194static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) { 2195 EVT PtrVT = Op.getValueType(); 2196 // FIXME there is no actual debug info here 2197 SDLoc dl(Op); 2198 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2199 SDValue Res; 2200 if (CP->isMachineConstantPoolEntry()) 2201 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2202 CP->getAlignment()); 2203 else 2204 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2205 CP->getAlignment()); 2206 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); 2207} 2208 2209unsigned ARMTargetLowering::getJumpTableEncoding() const { 2210 return MachineJumpTableInfo::EK_Inline; 2211} 2212 2213SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, 2214 SelectionDAG &DAG) const { 2215 MachineFunction &MF = DAG.getMachineFunction(); 2216 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2217 unsigned ARMPCLabelIndex = 0; 2218 SDLoc DL(Op); 2219 EVT PtrVT = getPointerTy(); 2220 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 2221 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2222 SDValue CPAddr; 2223 if (RelocM == Reloc::Static) { 2224 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4); 2225 } else { 2226 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2227 ARMPCLabelIndex = AFI->createPICLabelUId(); 2228 ARMConstantPoolValue *CPV = 2229 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex, 2230 ARMCP::CPBlockAddress, PCAdj); 2231 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2232 } 2233 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); 2234 SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr, 2235 MachinePointerInfo::getConstantPool(), 2236 false, false, false, 0); 2237 if (RelocM == Reloc::Static) 2238 return Result; 2239 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2240 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); 2241} 2242 2243// Lower ISD::GlobalTLSAddress using the "general dynamic" model 2244SDValue 2245ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, 2246 SelectionDAG &DAG) const { 2247 SDLoc dl(GA); 2248 EVT PtrVT = getPointerTy(); 2249 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; 2250 MachineFunction &MF = DAG.getMachineFunction(); 2251 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2252 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2253 ARMConstantPoolValue *CPV = 2254 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, 2255 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true); 2256 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2257 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); 2258 Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, 2259 MachinePointerInfo::getConstantPool(), 2260 false, false, false, 0); 2261 SDValue Chain = Argument.getValue(1); 2262 2263 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2264 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); 2265 2266 // call __tls_get_addr. 2267 ArgListTy Args; 2268 ArgListEntry Entry; 2269 Entry.Node = Argument; 2270 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext()); 2271 Args.push_back(Entry); 2272 // FIXME: is there useful debug info available here? 2273 TargetLowering::CallLoweringInfo CLI(Chain, 2274 (Type *) Type::getInt32Ty(*DAG.getContext()), 2275 false, false, false, false, 2276 0, CallingConv::C, /*isTailCall=*/false, 2277 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 2278 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl); 2279 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2280 return CallResult.first; 2281} 2282 2283// Lower ISD::GlobalTLSAddress using the "initial exec" or 2284// "local exec" model. 2285SDValue 2286ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, 2287 SelectionDAG &DAG, 2288 TLSModel::Model model) const { 2289 const GlobalValue *GV = GA->getGlobal(); 2290 SDLoc dl(GA); 2291 SDValue Offset; 2292 SDValue Chain = DAG.getEntryNode(); 2293 EVT PtrVT = getPointerTy(); 2294 // Get the Thread Pointer 2295 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); 2296 2297 if (model == TLSModel::InitialExec) { 2298 MachineFunction &MF = DAG.getMachineFunction(); 2299 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2300 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2301 // Initial exec model. 2302 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; 2303 ARMConstantPoolValue *CPV = 2304 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, 2305 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, 2306 true); 2307 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2308 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); 2309 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, 2310 MachinePointerInfo::getConstantPool(), 2311 false, false, false, 0); 2312 Chain = Offset.getValue(1); 2313 2314 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2315 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); 2316 2317 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, 2318 MachinePointerInfo::getConstantPool(), 2319 false, false, false, 0); 2320 } else { 2321 // local exec model 2322 assert(model == TLSModel::LocalExec); 2323 ARMConstantPoolValue *CPV = 2324 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF); 2325 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2326 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); 2327 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, 2328 MachinePointerInfo::getConstantPool(), 2329 false, false, false, 0); 2330 } 2331 2332 // The address of the thread local variable is the add of the thread 2333 // pointer with the offset of the variable. 2334 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); 2335} 2336 2337SDValue 2338ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { 2339 // TODO: implement the "local dynamic" model 2340 assert(Subtarget->isTargetELF() && 2341 "TLS not implemented for non-ELF targets"); 2342 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2343 2344 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal()); 2345 2346 switch (model) { 2347 case TLSModel::GeneralDynamic: 2348 case TLSModel::LocalDynamic: 2349 return LowerToTLSGeneralDynamicModel(GA, DAG); 2350 case TLSModel::InitialExec: 2351 case TLSModel::LocalExec: 2352 return LowerToTLSExecModels(GA, DAG, model); 2353 } 2354 llvm_unreachable("bogus TLS model"); 2355} 2356 2357SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, 2358 SelectionDAG &DAG) const { 2359 EVT PtrVT = getPointerTy(); 2360 SDLoc dl(Op); 2361 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 2362 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { 2363 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 2364 ARMConstantPoolValue *CPV = 2365 ARMConstantPoolConstant::Create(GV, 2366 UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 2367 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2368 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2369 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 2370 CPAddr, 2371 MachinePointerInfo::getConstantPool(), 2372 false, false, false, 0); 2373 SDValue Chain = Result.getValue(1); 2374 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2375 Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT); 2376 if (!UseGOTOFF) 2377 Result = DAG.getLoad(PtrVT, dl, Chain, Result, 2378 MachinePointerInfo::getGOT(), 2379 false, false, false, 0); 2380 return Result; 2381 } 2382 2383 // If we have T2 ops, we can materialize the address directly via movt/movw 2384 // pair. This is always cheaper. 2385 if (Subtarget->useMovt()) { 2386 ++NumMovwMovt; 2387 // FIXME: Once remat is capable of dealing with instructions with register 2388 // operands, expand this into two nodes. 2389 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, 2390 DAG.getTargetGlobalAddress(GV, dl, PtrVT)); 2391 } else { 2392 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); 2393 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2394 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, 2395 MachinePointerInfo::getConstantPool(), 2396 false, false, false, 0); 2397 } 2398} 2399 2400SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, 2401 SelectionDAG &DAG) const { 2402 EVT PtrVT = getPointerTy(); 2403 SDLoc dl(Op); 2404 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 2405 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2406 2407 // FIXME: Enable this for static codegen when tool issues are fixed. Also 2408 // update ARMFastISel::ARMMaterializeGV. 2409 if (Subtarget->useMovt() && RelocM != Reloc::Static) { 2410 ++NumMovwMovt; 2411 // FIXME: Once remat is capable of dealing with instructions with register 2412 // operands, expand this into two nodes. 2413 if (RelocM == Reloc::Static) 2414 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, 2415 DAG.getTargetGlobalAddress(GV, dl, PtrVT)); 2416 2417 unsigned Wrapper = (RelocM == Reloc::PIC_) 2418 ? ARMISD::WrapperPIC : ARMISD::WrapperDYN; 2419 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, 2420 DAG.getTargetGlobalAddress(GV, dl, PtrVT)); 2421 if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) 2422 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, 2423 MachinePointerInfo::getGOT(), 2424 false, false, false, 0); 2425 return Result; 2426 } 2427 2428 unsigned ARMPCLabelIndex = 0; 2429 SDValue CPAddr; 2430 if (RelocM == Reloc::Static) { 2431 CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); 2432 } else { 2433 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); 2434 ARMPCLabelIndex = AFI->createPICLabelUId(); 2435 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8); 2436 ARMConstantPoolValue *CPV = 2437 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 2438 PCAdj); 2439 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2440 } 2441 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2442 2443 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, 2444 MachinePointerInfo::getConstantPool(), 2445 false, false, false, 0); 2446 SDValue Chain = Result.getValue(1); 2447 2448 if (RelocM == Reloc::PIC_) { 2449 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2450 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); 2451 } 2452 2453 if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) 2454 Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(), 2455 false, false, false, 0); 2456 2457 return Result; 2458} 2459 2460SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, 2461 SelectionDAG &DAG) const { 2462 assert(Subtarget->isTargetELF() && 2463 "GLOBAL OFFSET TABLE not implemented for non-ELF targets"); 2464 MachineFunction &MF = DAG.getMachineFunction(); 2465 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2466 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2467 EVT PtrVT = getPointerTy(); 2468 SDLoc dl(Op); 2469 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2470 ARMConstantPoolValue *CPV = 2471 ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_", 2472 ARMPCLabelIndex, PCAdj); 2473 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2474 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2475 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, 2476 MachinePointerInfo::getConstantPool(), 2477 false, false, false, 0); 2478 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2479 return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); 2480} 2481 2482SDValue 2483ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { 2484 SDLoc dl(Op); 2485 SDValue Val = DAG.getConstant(0, MVT::i32); 2486 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, 2487 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 2488 Op.getOperand(1), Val); 2489} 2490 2491SDValue 2492ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { 2493 SDLoc dl(Op); 2494 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0), 2495 Op.getOperand(1), DAG.getConstant(0, MVT::i32)); 2496} 2497 2498SDValue 2499ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, 2500 const ARMSubtarget *Subtarget) const { 2501 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2502 SDLoc dl(Op); 2503 switch (IntNo) { 2504 default: return SDValue(); // Don't custom lower most intrinsics. 2505 case Intrinsic::arm_thread_pointer: { 2506 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2507 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); 2508 } 2509 case Intrinsic::eh_sjlj_lsda: { 2510 MachineFunction &MF = DAG.getMachineFunction(); 2511 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2512 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2513 EVT PtrVT = getPointerTy(); 2514 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2515 SDValue CPAddr; 2516 unsigned PCAdj = (RelocM != Reloc::PIC_) 2517 ? 0 : (Subtarget->isThumb() ? 4 : 8); 2518 ARMConstantPoolValue *CPV = 2519 ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex, 2520 ARMCP::CPLSDA, PCAdj); 2521 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2522 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2523 SDValue Result = 2524 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, 2525 MachinePointerInfo::getConstantPool(), 2526 false, false, false, 0); 2527 2528 if (RelocM == Reloc::PIC_) { 2529 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2530 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); 2531 } 2532 return Result; 2533 } 2534 case Intrinsic::arm_neon_vmulls: 2535 case Intrinsic::arm_neon_vmullu: { 2536 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls) 2537 ? ARMISD::VMULLs : ARMISD::VMULLu; 2538 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 2539 Op.getOperand(1), Op.getOperand(2)); 2540 } 2541 } 2542} 2543 2544static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, 2545 const ARMSubtarget *Subtarget) { 2546 // FIXME: handle "fence singlethread" more efficiently. 2547 SDLoc dl(Op); 2548 if (!Subtarget->hasDataBarrier()) { 2549 // Some ARMv6 cpus can support data barriers with an mcr instruction. 2550 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get 2551 // here. 2552 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() && 2553 "Unexpected ISD::MEMBARRIER encountered. Should be libcall!"); 2554 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0), 2555 DAG.getConstant(0, MVT::i32)); 2556 } 2557 2558 ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1)); 2559 AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue()); 2560 unsigned Domain = ARM_MB::ISH; 2561 if (Subtarget->isSwift() && Ord == Release) { 2562 // Swift happens to implement ISHST barriers in a way that's compatible with 2563 // Release semantics but weaker than ISH so we'd be fools not to use 2564 // it. Beware: other processors probably don't! 2565 Domain = ARM_MB::ISHST; 2566 } 2567 2568 return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0), 2569 DAG.getConstant(Domain, MVT::i32)); 2570} 2571 2572static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG, 2573 const ARMSubtarget *Subtarget) { 2574 // ARM pre v5TE and Thumb1 does not have preload instructions. 2575 if (!(Subtarget->isThumb2() || 2576 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps()))) 2577 // Just preserve the chain. 2578 return Op.getOperand(0); 2579 2580 SDLoc dl(Op); 2581 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1; 2582 if (!isRead && 2583 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension())) 2584 // ARMv7 with MP extension has PLDW. 2585 return Op.getOperand(0); 2586 2587 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 2588 if (Subtarget->isThumb()) { 2589 // Invert the bits. 2590 isRead = ~isRead & 1; 2591 isData = ~isData & 1; 2592 } 2593 2594 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0), 2595 Op.getOperand(1), DAG.getConstant(isRead, MVT::i32), 2596 DAG.getConstant(isData, MVT::i32)); 2597} 2598 2599static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { 2600 MachineFunction &MF = DAG.getMachineFunction(); 2601 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>(); 2602 2603 // vastart just stores the address of the VarArgsFrameIndex slot into the 2604 // memory location argument. 2605 SDLoc dl(Op); 2606 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2607 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2608 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2609 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2610 MachinePointerInfo(SV), false, false, 0); 2611} 2612 2613SDValue 2614ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, 2615 SDValue &Root, SelectionDAG &DAG, 2616 SDLoc dl) const { 2617 MachineFunction &MF = DAG.getMachineFunction(); 2618 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2619 2620 const TargetRegisterClass *RC; 2621 if (AFI->isThumb1OnlyFunction()) 2622 RC = &ARM::tGPRRegClass; 2623 else 2624 RC = &ARM::GPRRegClass; 2625 2626 // Transform the arguments stored in physical registers into virtual ones. 2627 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2628 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); 2629 2630 SDValue ArgValue2; 2631 if (NextVA.isMemLoc()) { 2632 MachineFrameInfo *MFI = MF.getFrameInfo(); 2633 int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true); 2634 2635 // Create load node to retrieve arguments from the stack. 2636 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 2637 ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, 2638 MachinePointerInfo::getFixedStack(FI), 2639 false, false, false, 0); 2640 } else { 2641 Reg = MF.addLiveIn(NextVA.getLocReg(), RC); 2642 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); 2643 } 2644 2645 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); 2646} 2647 2648void 2649ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF, 2650 unsigned InRegsParamRecordIdx, 2651 unsigned ArgSize, 2652 unsigned &ArgRegsSize, 2653 unsigned &ArgRegsSaveSize) 2654 const { 2655 unsigned NumGPRs; 2656 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) { 2657 unsigned RBegin, REnd; 2658 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd); 2659 NumGPRs = REnd - RBegin; 2660 } else { 2661 unsigned int firstUnalloced; 2662 firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs, 2663 sizeof(GPRArgRegs) / 2664 sizeof(GPRArgRegs[0])); 2665 NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0; 2666 } 2667 2668 unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment(); 2669 ArgRegsSize = NumGPRs * 4; 2670 2671 // If parameter is split between stack and GPRs... 2672 if (NumGPRs && Align == 8 && 2673 (ArgRegsSize < ArgSize || 2674 InRegsParamRecordIdx >= CCInfo.getInRegsParamsCount())) { 2675 // Add padding for part of param recovered from GPRs, so 2676 // its last byte must be at address K*8 - 1. 2677 // We need to do it, since remained (stack) part of parameter has 2678 // stack alignment, and we need to "attach" "GPRs head" without gaps 2679 // to it: 2680 // Stack: 2681 // |---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes... 2682 // [ [padding] [GPRs head] ] [ Tail passed via stack .... 2683 // 2684 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2685 unsigned Padding = 2686 ((ArgRegsSize + AFI->getArgRegsSaveSize() + Align - 1) & ~(Align-1)) - 2687 (ArgRegsSize + AFI->getArgRegsSaveSize()); 2688 ArgRegsSaveSize = ArgRegsSize + Padding; 2689 } else 2690 // We don't need to extend regs save size for byval parameters if they 2691 // are passed via GPRs only. 2692 ArgRegsSaveSize = ArgRegsSize; 2693} 2694 2695// The remaining GPRs hold either the beginning of variable-argument 2696// data, or the beginning of an aggregate passed by value (usually 2697// byval). Either way, we allocate stack slots adjacent to the data 2698// provided by our caller, and store the unallocated registers there. 2699// If this is a variadic function, the va_list pointer will begin with 2700// these values; otherwise, this reassembles a (byval) structure that 2701// was split between registers and memory. 2702// Return: The frame index registers were stored into. 2703int 2704ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, 2705 SDLoc dl, SDValue &Chain, 2706 const Value *OrigArg, 2707 unsigned InRegsParamRecordIdx, 2708 unsigned OffsetFromOrigArg, 2709 unsigned ArgOffset, 2710 unsigned ArgSize, 2711 bool ForceMutable) const { 2712 2713 // Currently, two use-cases possible: 2714 // Case #1. Non var-args function, and we meet first byval parameter. 2715 // Setup first unallocated register as first byval register; 2716 // eat all remained registers 2717 // (these two actions are performed by HandleByVal method). 2718 // Then, here, we initialize stack frame with 2719 // "store-reg" instructions. 2720 // Case #2. Var-args function, that doesn't contain byval parameters. 2721 // The same: eat all remained unallocated registers, 2722 // initialize stack frame. 2723 2724 MachineFunction &MF = DAG.getMachineFunction(); 2725 MachineFrameInfo *MFI = MF.getFrameInfo(); 2726 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2727 unsigned firstRegToSaveIndex, lastRegToSaveIndex; 2728 unsigned RBegin, REnd; 2729 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) { 2730 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd); 2731 firstRegToSaveIndex = RBegin - ARM::R0; 2732 lastRegToSaveIndex = REnd - ARM::R0; 2733 } else { 2734 firstRegToSaveIndex = CCInfo.getFirstUnallocated 2735 (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0])); 2736 lastRegToSaveIndex = 4; 2737 } 2738 2739 unsigned ArgRegsSize, ArgRegsSaveSize; 2740 computeRegArea(CCInfo, MF, InRegsParamRecordIdx, ArgSize, 2741 ArgRegsSize, ArgRegsSaveSize); 2742 2743 // Store any by-val regs to their spots on the stack so that they may be 2744 // loaded by deferencing the result of formal parameter pointer or va_next. 2745 // Note: once stack area for byval/varargs registers 2746 // was initialized, it can't be initialized again. 2747 if (ArgRegsSaveSize) { 2748 2749 unsigned Padding = ArgRegsSaveSize - ArgRegsSize; 2750 2751 if (Padding) { 2752 assert(AFI->getStoredByValParamsPadding() == 0 && 2753 "The only parameter may be padded."); 2754 AFI->setStoredByValParamsPadding(Padding); 2755 } 2756 2757 int FrameIndex = MFI->CreateFixedObject( 2758 ArgRegsSaveSize, 2759 Padding + ArgOffset, 2760 false); 2761 SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy()); 2762 2763 SmallVector<SDValue, 4> MemOps; 2764 for (unsigned i = 0; firstRegToSaveIndex < lastRegToSaveIndex; 2765 ++firstRegToSaveIndex, ++i) { 2766 const TargetRegisterClass *RC; 2767 if (AFI->isThumb1OnlyFunction()) 2768 RC = &ARM::tGPRRegClass; 2769 else 2770 RC = &ARM::GPRRegClass; 2771 2772 unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC); 2773 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 2774 SDValue Store = 2775 DAG.getStore(Val.getValue(1), dl, Val, FIN, 2776 MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i), 2777 false, false, 0); 2778 MemOps.push_back(Store); 2779 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, 2780 DAG.getConstant(4, getPointerTy())); 2781 } 2782 2783 AFI->setArgRegsSaveSize(ArgRegsSaveSize + AFI->getArgRegsSaveSize()); 2784 2785 if (!MemOps.empty()) 2786 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2787 &MemOps[0], MemOps.size()); 2788 return FrameIndex; 2789 } else 2790 // This will point to the next argument passed via stack. 2791 return MFI->CreateFixedObject( 2792 4, AFI->getStoredByValParamsPadding() + ArgOffset, !ForceMutable); 2793} 2794 2795// Setup stack frame, the va_list pointer will start from. 2796void 2797ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, 2798 SDLoc dl, SDValue &Chain, 2799 unsigned ArgOffset, 2800 bool ForceMutable) const { 2801 MachineFunction &MF = DAG.getMachineFunction(); 2802 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2803 2804 // Try to store any remaining integer argument regs 2805 // to their spots on the stack so that they may be loaded by deferencing 2806 // the result of va_next. 2807 // If there is no regs to be stored, just point address after last 2808 // argument passed via stack. 2809 int FrameIndex = 2810 StoreByValRegs(CCInfo, DAG, dl, Chain, 0, CCInfo.getInRegsParamsCount(), 2811 0, ArgOffset, 0, ForceMutable); 2812 2813 AFI->setVarArgsFrameIndex(FrameIndex); 2814} 2815 2816SDValue 2817ARMTargetLowering::LowerFormalArguments(SDValue Chain, 2818 CallingConv::ID CallConv, bool isVarArg, 2819 const SmallVectorImpl<ISD::InputArg> 2820 &Ins, 2821 SDLoc dl, SelectionDAG &DAG, 2822 SmallVectorImpl<SDValue> &InVals) 2823 const { 2824 MachineFunction &MF = DAG.getMachineFunction(); 2825 MachineFrameInfo *MFI = MF.getFrameInfo(); 2826 2827 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2828 2829 // Assign locations to all of the incoming arguments. 2830 SmallVector<CCValAssign, 16> ArgLocs; 2831 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), 2832 getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue); 2833 CCInfo.AnalyzeFormalArguments(Ins, 2834 CCAssignFnForNode(CallConv, /* Return*/ false, 2835 isVarArg)); 2836 2837 SmallVector<SDValue, 16> ArgValues; 2838 int lastInsIndex = -1; 2839 SDValue ArgValue; 2840 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); 2841 unsigned CurArgIdx = 0; 2842 2843 // Initially ArgRegsSaveSize is zero. 2844 // Then we increase this value each time we meet byval parameter. 2845 // We also increase this value in case of varargs function. 2846 AFI->setArgRegsSaveSize(0); 2847 2848 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2849 CCValAssign &VA = ArgLocs[i]; 2850 std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx); 2851 CurArgIdx = Ins[VA.getValNo()].OrigArgIndex; 2852 // Arguments stored in registers. 2853 if (VA.isRegLoc()) { 2854 EVT RegVT = VA.getLocVT(); 2855 2856 if (VA.needsCustom()) { 2857 // f64 and vector types are split up into multiple registers or 2858 // combinations of registers and stack slots. 2859 if (VA.getLocVT() == MVT::v2f64) { 2860 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], 2861 Chain, DAG, dl); 2862 VA = ArgLocs[++i]; // skip ahead to next loc 2863 SDValue ArgValue2; 2864 if (VA.isMemLoc()) { 2865 int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true); 2866 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 2867 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN, 2868 MachinePointerInfo::getFixedStack(FI), 2869 false, false, false, 0); 2870 } else { 2871 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], 2872 Chain, DAG, dl); 2873 } 2874 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); 2875 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, 2876 ArgValue, ArgValue1, DAG.getIntPtrConstant(0)); 2877 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, 2878 ArgValue, ArgValue2, DAG.getIntPtrConstant(1)); 2879 } else 2880 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); 2881 2882 } else { 2883 const TargetRegisterClass *RC; 2884 2885 if (RegVT == MVT::f32) 2886 RC = &ARM::SPRRegClass; 2887 else if (RegVT == MVT::f64) 2888 RC = &ARM::DPRRegClass; 2889 else if (RegVT == MVT::v2f64) 2890 RC = &ARM::QPRRegClass; 2891 else if (RegVT == MVT::i32) 2892 RC = AFI->isThumb1OnlyFunction() ? 2893 (const TargetRegisterClass*)&ARM::tGPRRegClass : 2894 (const TargetRegisterClass*)&ARM::GPRRegClass; 2895 else 2896 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); 2897 2898 // Transform the arguments in physical registers into virtual ones. 2899 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2900 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); 2901 } 2902 2903 // If this is an 8 or 16-bit value, it is really passed promoted 2904 // to 32 bits. Insert an assert[sz]ext to capture this, then 2905 // truncate to the right size. 2906 switch (VA.getLocInfo()) { 2907 default: llvm_unreachable("Unknown loc info!"); 2908 case CCValAssign::Full: break; 2909 case CCValAssign::BCvt: 2910 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); 2911 break; 2912 case CCValAssign::SExt: 2913 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, 2914 DAG.getValueType(VA.getValVT())); 2915 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 2916 break; 2917 case CCValAssign::ZExt: 2918 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, 2919 DAG.getValueType(VA.getValVT())); 2920 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 2921 break; 2922 } 2923 2924 InVals.push_back(ArgValue); 2925 2926 } else { // VA.isRegLoc() 2927 2928 // sanity check 2929 assert(VA.isMemLoc()); 2930 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); 2931 2932 int index = ArgLocs[i].getValNo(); 2933 2934 // Some Ins[] entries become multiple ArgLoc[] entries. 2935 // Process them only once. 2936 if (index != lastInsIndex) 2937 { 2938 ISD::ArgFlagsTy Flags = Ins[index].Flags; 2939 // FIXME: For now, all byval parameter objects are marked mutable. 2940 // This can be changed with more analysis. 2941 // In case of tail call optimization mark all arguments mutable. 2942 // Since they could be overwritten by lowering of arguments in case of 2943 // a tail call. 2944 if (Flags.isByVal()) { 2945 unsigned CurByValIndex = CCInfo.getInRegsParamsProceed(); 2946 int FrameIndex = StoreByValRegs( 2947 CCInfo, DAG, dl, Chain, CurOrigArg, 2948 CurByValIndex, 2949 Ins[VA.getValNo()].PartOffset, 2950 VA.getLocMemOffset(), 2951 Flags.getByValSize(), 2952 true /*force mutable frames*/); 2953 InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy())); 2954 CCInfo.nextInRegsParam(); 2955 } else { 2956 unsigned FIOffset = VA.getLocMemOffset() + 2957 AFI->getStoredByValParamsPadding(); 2958 int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, 2959 FIOffset, true); 2960 2961 // Create load nodes to retrieve arguments from the stack. 2962 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 2963 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 2964 MachinePointerInfo::getFixedStack(FI), 2965 false, false, false, 0)); 2966 } 2967 lastInsIndex = index; 2968 } 2969 } 2970 } 2971 2972 // varargs 2973 if (isVarArg) 2974 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 2975 CCInfo.getNextStackOffset()); 2976 2977 return Chain; 2978} 2979 2980/// isFloatingPointZero - Return true if this is +0.0. 2981static bool isFloatingPointZero(SDValue Op) { 2982 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 2983 return CFP->getValueAPF().isPosZero(); 2984 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 2985 // Maybe this has already been legalized into the constant pool? 2986 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { 2987 SDValue WrapperOp = Op.getOperand(1).getOperand(0); 2988 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) 2989 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 2990 return CFP->getValueAPF().isPosZero(); 2991 } 2992 } 2993 return false; 2994} 2995 2996/// Returns appropriate ARM CMP (cmp) and corresponding condition code for 2997/// the given operands. 2998SDValue 2999ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, 3000 SDValue &ARMcc, SelectionDAG &DAG, 3001 SDLoc dl) const { 3002 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { 3003 unsigned C = RHSC->getZExtValue(); 3004 if (!isLegalICmpImmediate(C)) { 3005 // Constant does not fit, try adjusting it by one? 3006 switch (CC) { 3007 default: break; 3008 case ISD::SETLT: 3009 case ISD::SETGE: 3010 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) { 3011 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; 3012 RHS = DAG.getConstant(C-1, MVT::i32); 3013 } 3014 break; 3015 case ISD::SETULT: 3016 case ISD::SETUGE: 3017 if (C != 0 && isLegalICmpImmediate(C-1)) { 3018 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; 3019 RHS = DAG.getConstant(C-1, MVT::i32); 3020 } 3021 break; 3022 case ISD::SETLE: 3023 case ISD::SETGT: 3024 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) { 3025 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; 3026 RHS = DAG.getConstant(C+1, MVT::i32); 3027 } 3028 break; 3029 case ISD::SETULE: 3030 case ISD::SETUGT: 3031 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) { 3032 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3033 RHS = DAG.getConstant(C+1, MVT::i32); 3034 } 3035 break; 3036 } 3037 } 3038 } 3039 3040 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 3041 ARMISD::NodeType CompareType; 3042 switch (CondCode) { 3043 default: 3044 CompareType = ARMISD::CMP; 3045 break; 3046 case ARMCC::EQ: 3047 case ARMCC::NE: 3048 // Uses only Z Flag 3049 CompareType = ARMISD::CMPZ; 3050 break; 3051 } 3052 ARMcc = DAG.getConstant(CondCode, MVT::i32); 3053 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS); 3054} 3055 3056/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. 3057SDValue 3058ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, 3059 SDLoc dl) const { 3060 SDValue Cmp; 3061 if (!isFloatingPointZero(RHS)) 3062 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS); 3063 else 3064 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS); 3065 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp); 3066} 3067 3068/// duplicateCmp - Glue values can have only one use, so this function 3069/// duplicates a comparison node. 3070SDValue 3071ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const { 3072 unsigned Opc = Cmp.getOpcode(); 3073 SDLoc DL(Cmp); 3074 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ) 3075 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); 3076 3077 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation"); 3078 Cmp = Cmp.getOperand(0); 3079 Opc = Cmp.getOpcode(); 3080 if (Opc == ARMISD::CMPFP) 3081 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); 3082 else { 3083 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"); 3084 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0)); 3085 } 3086 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp); 3087} 3088 3089SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3090 SDValue Cond = Op.getOperand(0); 3091 SDValue SelectTrue = Op.getOperand(1); 3092 SDValue SelectFalse = Op.getOperand(2); 3093 SDLoc dl(Op); 3094 3095 // Convert: 3096 // 3097 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond) 3098 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond) 3099 // 3100 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) { 3101 const ConstantSDNode *CMOVTrue = 3102 dyn_cast<ConstantSDNode>(Cond.getOperand(0)); 3103 const ConstantSDNode *CMOVFalse = 3104 dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3105 3106 if (CMOVTrue && CMOVFalse) { 3107 unsigned CMOVTrueVal = CMOVTrue->getZExtValue(); 3108 unsigned CMOVFalseVal = CMOVFalse->getZExtValue(); 3109 3110 SDValue True; 3111 SDValue False; 3112 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) { 3113 True = SelectTrue; 3114 False = SelectFalse; 3115 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) { 3116 True = SelectFalse; 3117 False = SelectTrue; 3118 } 3119 3120 if (True.getNode() && False.getNode()) { 3121 EVT VT = Op.getValueType(); 3122 SDValue ARMcc = Cond.getOperand(2); 3123 SDValue CCR = Cond.getOperand(3); 3124 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG); 3125 assert(True.getValueType() == VT); 3126 return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp); 3127 } 3128 } 3129 } 3130 3131 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the 3132 // undefined bits before doing a full-word comparison with zero. 3133 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond, 3134 DAG.getConstant(1, Cond.getValueType())); 3135 3136 return DAG.getSelectCC(dl, Cond, 3137 DAG.getConstant(0, Cond.getValueType()), 3138 SelectTrue, SelectFalse, ISD::SETNE); 3139} 3140 3141SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 3142 EVT VT = Op.getValueType(); 3143 SDValue LHS = Op.getOperand(0); 3144 SDValue RHS = Op.getOperand(1); 3145 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3146 SDValue TrueVal = Op.getOperand(2); 3147 SDValue FalseVal = Op.getOperand(3); 3148 SDLoc dl(Op); 3149 3150 if (LHS.getValueType() == MVT::i32) { 3151 SDValue ARMcc; 3152 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3153 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 3154 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp); 3155 } 3156 3157 ARMCC::CondCodes CondCode, CondCode2; 3158 FPCCToARMCC(CC, CondCode, CondCode2); 3159 3160 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32); 3161 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); 3162 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3163 SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, 3164 ARMcc, CCR, Cmp); 3165 if (CondCode2 != ARMCC::AL) { 3166 SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32); 3167 // FIXME: Needs another CMP because flag can have but one use. 3168 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); 3169 Result = DAG.getNode(ARMISD::CMOV, dl, VT, 3170 Result, TrueVal, ARMcc2, CCR, Cmp2); 3171 } 3172 return Result; 3173} 3174 3175/// canChangeToInt - Given the fp compare operand, return true if it is suitable 3176/// to morph to an integer compare sequence. 3177static bool canChangeToInt(SDValue Op, bool &SeenZero, 3178 const ARMSubtarget *Subtarget) { 3179 SDNode *N = Op.getNode(); 3180 if (!N->hasOneUse()) 3181 // Otherwise it requires moving the value from fp to integer registers. 3182 return false; 3183 if (!N->getNumValues()) 3184 return false; 3185 EVT VT = Op.getValueType(); 3186 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow()) 3187 // f32 case is generally profitable. f64 case only makes sense when vcmpe + 3188 // vmrs are very slow, e.g. cortex-a8. 3189 return false; 3190 3191 if (isFloatingPointZero(Op)) { 3192 SeenZero = true; 3193 return true; 3194 } 3195 return ISD::isNormalLoad(N); 3196} 3197 3198static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) { 3199 if (isFloatingPointZero(Op)) 3200 return DAG.getConstant(0, MVT::i32); 3201 3202 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) 3203 return DAG.getLoad(MVT::i32, SDLoc(Op), 3204 Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), 3205 Ld->isVolatile(), Ld->isNonTemporal(), 3206 Ld->isInvariant(), Ld->getAlignment()); 3207 3208 llvm_unreachable("Unknown VFP cmp argument!"); 3209} 3210 3211static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, 3212 SDValue &RetVal1, SDValue &RetVal2) { 3213 if (isFloatingPointZero(Op)) { 3214 RetVal1 = DAG.getConstant(0, MVT::i32); 3215 RetVal2 = DAG.getConstant(0, MVT::i32); 3216 return; 3217 } 3218 3219 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) { 3220 SDValue Ptr = Ld->getBasePtr(); 3221 RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op), 3222 Ld->getChain(), Ptr, 3223 Ld->getPointerInfo(), 3224 Ld->isVolatile(), Ld->isNonTemporal(), 3225 Ld->isInvariant(), Ld->getAlignment()); 3226 3227 EVT PtrType = Ptr.getValueType(); 3228 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4); 3229 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op), 3230 PtrType, Ptr, DAG.getConstant(4, PtrType)); 3231 RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op), 3232 Ld->getChain(), NewPtr, 3233 Ld->getPointerInfo().getWithOffset(4), 3234 Ld->isVolatile(), Ld->isNonTemporal(), 3235 Ld->isInvariant(), NewAlign); 3236 return; 3237 } 3238 3239 llvm_unreachable("Unknown VFP cmp argument!"); 3240} 3241 3242/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some 3243/// f32 and even f64 comparisons to integer ones. 3244SDValue 3245ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const { 3246 SDValue Chain = Op.getOperand(0); 3247 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3248 SDValue LHS = Op.getOperand(2); 3249 SDValue RHS = Op.getOperand(3); 3250 SDValue Dest = Op.getOperand(4); 3251 SDLoc dl(Op); 3252 3253 bool LHSSeenZero = false; 3254 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget); 3255 bool RHSSeenZero = false; 3256 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget); 3257 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) { 3258 // If unsafe fp math optimization is enabled and there are no other uses of 3259 // the CMP operands, and the condition code is EQ or NE, we can optimize it 3260 // to an integer comparison. 3261 if (CC == ISD::SETOEQ) 3262 CC = ISD::SETEQ; 3263 else if (CC == ISD::SETUNE) 3264 CC = ISD::SETNE; 3265 3266 SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32); 3267 SDValue ARMcc; 3268 if (LHS.getValueType() == MVT::f32) { 3269 LHS = DAG.getNode(ISD::AND, dl, MVT::i32, 3270 bitcastf32Toi32(LHS, DAG), Mask); 3271 RHS = DAG.getNode(ISD::AND, dl, MVT::i32, 3272 bitcastf32Toi32(RHS, DAG), Mask); 3273 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 3274 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3275 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, 3276 Chain, Dest, ARMcc, CCR, Cmp); 3277 } 3278 3279 SDValue LHS1, LHS2; 3280 SDValue RHS1, RHS2; 3281 expandf64Toi32(LHS, DAG, LHS1, LHS2); 3282 expandf64Toi32(RHS, DAG, RHS1, RHS2); 3283 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask); 3284 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask); 3285 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 3286 ARMcc = DAG.getConstant(CondCode, MVT::i32); 3287 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); 3288 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest }; 3289 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7); 3290 } 3291 3292 return SDValue(); 3293} 3294 3295SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3296 SDValue Chain = Op.getOperand(0); 3297 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3298 SDValue LHS = Op.getOperand(2); 3299 SDValue RHS = Op.getOperand(3); 3300 SDValue Dest = Op.getOperand(4); 3301 SDLoc dl(Op); 3302 3303 if (LHS.getValueType() == MVT::i32) { 3304 SDValue ARMcc; 3305 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 3306 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3307 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, 3308 Chain, Dest, ARMcc, CCR, Cmp); 3309 } 3310 3311 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); 3312 3313 if (getTargetMachine().Options.UnsafeFPMath && 3314 (CC == ISD::SETEQ || CC == ISD::SETOEQ || 3315 CC == ISD::SETNE || CC == ISD::SETUNE)) { 3316 SDValue Result = OptimizeVFPBrcond(Op, DAG); 3317 if (Result.getNode()) 3318 return Result; 3319 } 3320 3321 ARMCC::CondCodes CondCode, CondCode2; 3322 FPCCToARMCC(CC, CondCode, CondCode2); 3323 3324 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32); 3325 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); 3326 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3327 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); 3328 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp }; 3329 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); 3330 if (CondCode2 != ARMCC::AL) { 3331 ARMcc = DAG.getConstant(CondCode2, MVT::i32); 3332 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) }; 3333 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); 3334 } 3335 return Res; 3336} 3337 3338SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { 3339 SDValue Chain = Op.getOperand(0); 3340 SDValue Table = Op.getOperand(1); 3341 SDValue Index = Op.getOperand(2); 3342 SDLoc dl(Op); 3343 3344 EVT PTy = getPointerTy(); 3345 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 3346 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); 3347 SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy); 3348 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); 3349 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId); 3350 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy)); 3351 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3352 if (Subtarget->isThumb2()) { 3353 // Thumb2 uses a two-level jump. That is, it jumps into the jump table 3354 // which does another jump to the destination. This also makes it easier 3355 // to translate it to TBB / TBH later. 3356 // FIXME: This might not work if the function is extremely large. 3357 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, 3358 Addr, Op.getOperand(2), JTI, UId); 3359 } 3360 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { 3361 Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, 3362 MachinePointerInfo::getJumpTable(), 3363 false, false, false, 0); 3364 Chain = Addr.getValue(1); 3365 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table); 3366 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); 3367 } else { 3368 Addr = DAG.getLoad(PTy, dl, Chain, Addr, 3369 MachinePointerInfo::getJumpTable(), 3370 false, false, false, 0); 3371 Chain = Addr.getValue(1); 3372 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); 3373 } 3374} 3375 3376static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { 3377 EVT VT = Op.getValueType(); 3378 SDLoc dl(Op); 3379 3380 if (Op.getValueType().getVectorElementType() == MVT::i32) { 3381 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32) 3382 return Op; 3383 return DAG.UnrollVectorOp(Op.getNode()); 3384 } 3385 3386 assert(Op.getOperand(0).getValueType() == MVT::v4f32 && 3387 "Invalid type for custom lowering!"); 3388 if (VT != MVT::v4i16) 3389 return DAG.UnrollVectorOp(Op.getNode()); 3390 3391 Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0)); 3392 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op); 3393} 3394 3395static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) { 3396 EVT VT = Op.getValueType(); 3397 if (VT.isVector()) 3398 return LowerVectorFP_TO_INT(Op, DAG); 3399 3400 SDLoc dl(Op); 3401 unsigned Opc; 3402 3403 switch (Op.getOpcode()) { 3404 default: llvm_unreachable("Invalid opcode!"); 3405 case ISD::FP_TO_SINT: 3406 Opc = ARMISD::FTOSI; 3407 break; 3408 case ISD::FP_TO_UINT: 3409 Opc = ARMISD::FTOUI; 3410 break; 3411 } 3412 Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0)); 3413 return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3414} 3415 3416static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 3417 EVT VT = Op.getValueType(); 3418 SDLoc dl(Op); 3419 3420 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) { 3421 if (VT.getVectorElementType() == MVT::f32) 3422 return Op; 3423 return DAG.UnrollVectorOp(Op.getNode()); 3424 } 3425 3426 assert(Op.getOperand(0).getValueType() == MVT::v4i16 && 3427 "Invalid type for custom lowering!"); 3428 if (VT != MVT::v4f32) 3429 return DAG.UnrollVectorOp(Op.getNode()); 3430 3431 unsigned CastOpc; 3432 unsigned Opc; 3433 switch (Op.getOpcode()) { 3434 default: llvm_unreachable("Invalid opcode!"); 3435 case ISD::SINT_TO_FP: 3436 CastOpc = ISD::SIGN_EXTEND; 3437 Opc = ISD::SINT_TO_FP; 3438 break; 3439 case ISD::UINT_TO_FP: 3440 CastOpc = ISD::ZERO_EXTEND; 3441 Opc = ISD::UINT_TO_FP; 3442 break; 3443 } 3444 3445 Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0)); 3446 return DAG.getNode(Opc, dl, VT, Op); 3447} 3448 3449static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 3450 EVT VT = Op.getValueType(); 3451 if (VT.isVector()) 3452 return LowerVectorINT_TO_FP(Op, DAG); 3453 3454 SDLoc dl(Op); 3455 unsigned Opc; 3456 3457 switch (Op.getOpcode()) { 3458 default: llvm_unreachable("Invalid opcode!"); 3459 case ISD::SINT_TO_FP: 3460 Opc = ARMISD::SITOF; 3461 break; 3462 case ISD::UINT_TO_FP: 3463 Opc = ARMISD::UITOF; 3464 break; 3465 } 3466 3467 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0)); 3468 return DAG.getNode(Opc, dl, VT, Op); 3469} 3470 3471SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { 3472 // Implement fcopysign with a fabs and a conditional fneg. 3473 SDValue Tmp0 = Op.getOperand(0); 3474 SDValue Tmp1 = Op.getOperand(1); 3475 SDLoc dl(Op); 3476 EVT VT = Op.getValueType(); 3477 EVT SrcVT = Tmp1.getValueType(); 3478 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST || 3479 Tmp0.getOpcode() == ARMISD::VMOVDRR; 3480 bool UseNEON = !InGPR && Subtarget->hasNEON(); 3481 3482 if (UseNEON) { 3483 // Use VBSL to copy the sign bit. 3484 unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80); 3485 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32, 3486 DAG.getTargetConstant(EncodedVal, MVT::i32)); 3487 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64; 3488 if (VT == MVT::f64) 3489 Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT, 3490 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask), 3491 DAG.getConstant(32, MVT::i32)); 3492 else /*if (VT == MVT::f32)*/ 3493 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0); 3494 if (SrcVT == MVT::f32) { 3495 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1); 3496 if (VT == MVT::f64) 3497 Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT, 3498 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1), 3499 DAG.getConstant(32, MVT::i32)); 3500 } else if (VT == MVT::f32) 3501 Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64, 3502 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1), 3503 DAG.getConstant(32, MVT::i32)); 3504 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0); 3505 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1); 3506 3507 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff), 3508 MVT::i32); 3509 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes); 3510 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask, 3511 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes)); 3512 3513 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT, 3514 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask), 3515 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot)); 3516 if (VT == MVT::f32) { 3517 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res); 3518 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res, 3519 DAG.getConstant(0, MVT::i32)); 3520 } else { 3521 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res); 3522 } 3523 3524 return Res; 3525 } 3526 3527 // Bitcast operand 1 to i32. 3528 if (SrcVT == MVT::f64) 3529 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), 3530 &Tmp1, 1).getValue(1); 3531 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1); 3532 3533 // Or in the signbit with integer operations. 3534 SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32); 3535 SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32); 3536 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1); 3537 if (VT == MVT::f32) { 3538 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32, 3539 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2); 3540 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3541 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1)); 3542 } 3543 3544 // f64: Or the high part with signbit and then combine two parts. 3545 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), 3546 &Tmp0, 1); 3547 SDValue Lo = Tmp0.getValue(0); 3548 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2); 3549 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1); 3550 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 3551} 3552 3553SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ 3554 MachineFunction &MF = DAG.getMachineFunction(); 3555 MachineFrameInfo *MFI = MF.getFrameInfo(); 3556 MFI->setReturnAddressIsTaken(true); 3557 3558 EVT VT = Op.getValueType(); 3559 SDLoc dl(Op); 3560 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3561 if (Depth) { 3562 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 3563 SDValue Offset = DAG.getConstant(4, MVT::i32); 3564 return DAG.getLoad(VT, dl, DAG.getEntryNode(), 3565 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), 3566 MachinePointerInfo(), false, false, false, 0); 3567 } 3568 3569 // Return LR, which contains the return address. Mark it an implicit live-in. 3570 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); 3571 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); 3572} 3573 3574SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 3575 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 3576 MFI->setFrameAddressIsTaken(true); 3577 3578 EVT VT = Op.getValueType(); 3579 SDLoc dl(Op); // FIXME probably not meaningful 3580 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3581 unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin()) 3582 ? ARM::R7 : ARM::R11; 3583 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); 3584 while (Depth--) 3585 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 3586 MachinePointerInfo(), 3587 false, false, false, 0); 3588 return FrameAddr; 3589} 3590 3591/// Custom Expand long vector extensions, where size(DestVec) > 2*size(SrcVec), 3592/// and size(DestVec) > 128-bits. 3593/// This is achieved by doing the one extension from the SrcVec, splitting the 3594/// result, extending these parts, and then concatenating these into the 3595/// destination. 3596static SDValue ExpandVectorExtension(SDNode *N, SelectionDAG &DAG) { 3597 SDValue Op = N->getOperand(0); 3598 EVT SrcVT = Op.getValueType(); 3599 EVT DestVT = N->getValueType(0); 3600 3601 assert(DestVT.getSizeInBits() > 128 && 3602 "Custom sext/zext expansion needs >128-bit vector."); 3603 // If this is a normal length extension, use the default expansion. 3604 if (SrcVT.getSizeInBits()*4 != DestVT.getSizeInBits() && 3605 SrcVT.getSizeInBits()*8 != DestVT.getSizeInBits()) 3606 return SDValue(); 3607 3608 SDLoc dl(N); 3609 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits(); 3610 unsigned DestEltSize = DestVT.getVectorElementType().getSizeInBits(); 3611 unsigned NumElts = SrcVT.getVectorNumElements(); 3612 LLVMContext &Ctx = *DAG.getContext(); 3613 SDValue Mid, SplitLo, SplitHi, ExtLo, ExtHi; 3614 3615 EVT MidVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2), 3616 NumElts); 3617 EVT SplitVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2), 3618 NumElts/2); 3619 EVT ExtVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, DestEltSize), 3620 NumElts/2); 3621 3622 Mid = DAG.getNode(N->getOpcode(), dl, MidVT, Op); 3623 SplitLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid, 3624 DAG.getIntPtrConstant(0)); 3625 SplitHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid, 3626 DAG.getIntPtrConstant(NumElts/2)); 3627 ExtLo = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitLo); 3628 ExtHi = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitHi); 3629 return DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, ExtLo, ExtHi); 3630} 3631 3632/// ExpandBITCAST - If the target supports VFP, this function is called to 3633/// expand a bit convert where either the source or destination type is i64 to 3634/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64 3635/// operand type is illegal (e.g., v2f32 for a target that doesn't support 3636/// vectors), since the legalizer won't know what to do with that. 3637static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) { 3638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3639 SDLoc dl(N); 3640 SDValue Op = N->getOperand(0); 3641 3642 // This function is only supposed to be called for i64 types, either as the 3643 // source or destination of the bit convert. 3644 EVT SrcVT = Op.getValueType(); 3645 EVT DstVT = N->getValueType(0); 3646 assert((SrcVT == MVT::i64 || DstVT == MVT::i64) && 3647 "ExpandBITCAST called for non-i64 type"); 3648 3649 // Turn i64->f64 into VMOVDRR. 3650 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { 3651 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, 3652 DAG.getConstant(0, MVT::i32)); 3653 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, 3654 DAG.getConstant(1, MVT::i32)); 3655 return DAG.getNode(ISD::BITCAST, dl, DstVT, 3656 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi)); 3657 } 3658 3659 // Turn f64->i64 into VMOVRRD. 3660 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { 3661 SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, 3662 DAG.getVTList(MVT::i32, MVT::i32), &Op, 1); 3663 // Merge the pieces into a single i64 value. 3664 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); 3665 } 3666 3667 return SDValue(); 3668} 3669 3670/// getZeroVector - Returns a vector of specified type with all zero elements. 3671/// Zero vectors are used to represent vector negation and in those cases 3672/// will be implemented with the NEON VNEG instruction. However, VNEG does 3673/// not support i64 elements, so sometimes the zero vectors will need to be 3674/// explicitly constructed. Regardless, use a canonical VMOV to create the 3675/// zero vector. 3676static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) { 3677 assert(VT.isVector() && "Expected a vector type"); 3678 // The canonical modified immediate encoding of a zero vector is....0! 3679 SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32); 3680 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; 3681 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal); 3682 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 3683} 3684 3685/// LowerShiftRightParts - Lower SRA_PARTS, which returns two 3686/// i32 values and take a 2 x i32 value to shift plus a shift amount. 3687SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, 3688 SelectionDAG &DAG) const { 3689 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 3690 EVT VT = Op.getValueType(); 3691 unsigned VTBits = VT.getSizeInBits(); 3692 SDLoc dl(Op); 3693 SDValue ShOpLo = Op.getOperand(0); 3694 SDValue ShOpHi = Op.getOperand(1); 3695 SDValue ShAmt = Op.getOperand(2); 3696 SDValue ARMcc; 3697 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; 3698 3699 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); 3700 3701 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 3702 DAG.getConstant(VTBits, MVT::i32), ShAmt); 3703 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); 3704 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 3705 DAG.getConstant(VTBits, MVT::i32)); 3706 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); 3707 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 3708 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); 3709 3710 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3711 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, 3712 ARMcc, DAG, dl); 3713 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 3714 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, 3715 CCR, Cmp); 3716 3717 SDValue Ops[2] = { Lo, Hi }; 3718 return DAG.getMergeValues(Ops, 2, dl); 3719} 3720 3721/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two 3722/// i32 values and take a 2 x i32 value to shift plus a shift amount. 3723SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, 3724 SelectionDAG &DAG) const { 3725 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 3726 EVT VT = Op.getValueType(); 3727 unsigned VTBits = VT.getSizeInBits(); 3728 SDLoc dl(Op); 3729 SDValue ShOpLo = Op.getOperand(0); 3730 SDValue ShOpHi = Op.getOperand(1); 3731 SDValue ShAmt = Op.getOperand(2); 3732 SDValue ARMcc; 3733 3734 assert(Op.getOpcode() == ISD::SHL_PARTS); 3735 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 3736 DAG.getConstant(VTBits, MVT::i32), ShAmt); 3737 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 3738 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 3739 DAG.getConstant(VTBits, MVT::i32)); 3740 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 3741 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 3742 3743 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 3744 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3745 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, 3746 ARMcc, DAG, dl); 3747 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 3748 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc, 3749 CCR, Cmp); 3750 3751 SDValue Ops[2] = { Lo, Hi }; 3752 return DAG.getMergeValues(Ops, 2, dl); 3753} 3754 3755SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 3756 SelectionDAG &DAG) const { 3757 // The rounding mode is in bits 23:22 of the FPSCR. 3758 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 3759 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) 3760 // so that the shift + and get folded into a bitfield extract. 3761 SDLoc dl(Op); 3762 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32, 3763 DAG.getConstant(Intrinsic::arm_get_fpscr, 3764 MVT::i32)); 3765 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR, 3766 DAG.getConstant(1U << 22, MVT::i32)); 3767 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, 3768 DAG.getConstant(22, MVT::i32)); 3769 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, 3770 DAG.getConstant(3, MVT::i32)); 3771} 3772 3773static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, 3774 const ARMSubtarget *ST) { 3775 EVT VT = N->getValueType(0); 3776 SDLoc dl(N); 3777 3778 if (!ST->hasV6T2Ops()) 3779 return SDValue(); 3780 3781 SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0)); 3782 return DAG.getNode(ISD::CTLZ, dl, VT, rbit); 3783} 3784 3785/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count 3786/// for each 16-bit element from operand, repeated. The basic idea is to 3787/// leverage vcnt to get the 8-bit counts, gather and add the results. 3788/// 3789/// Trace for v4i16: 3790/// input = [v0 v1 v2 v3 ] (vi 16-bit element) 3791/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element) 3792/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi) 3793/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6] 3794/// [b0 b1 b2 b3 b4 b5 b6 b7] 3795/// +[b1 b0 b3 b2 b5 b4 b7 b6] 3796/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0, 3797/// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits) 3798static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) { 3799 EVT VT = N->getValueType(0); 3800 SDLoc DL(N); 3801 3802 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; 3803 SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0)); 3804 SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0); 3805 SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1); 3806 SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2); 3807 return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3); 3808} 3809 3810/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the 3811/// bit-count for each 16-bit element from the operand. We need slightly 3812/// different sequencing for v4i16 and v8i16 to stay within NEON's available 3813/// 64/128-bit registers. 3814/// 3815/// Trace for v4i16: 3816/// input = [v0 v1 v2 v3 ] (vi 16-bit element) 3817/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi) 3818/// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ] 3819/// v4i16:Extracted = [k0 k1 k2 k3 ] 3820static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) { 3821 EVT VT = N->getValueType(0); 3822 SDLoc DL(N); 3823 3824 SDValue BitCounts = getCTPOP16BitCounts(N, DAG); 3825 if (VT.is64BitVector()) { 3826 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts); 3827 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended, 3828 DAG.getIntPtrConstant(0)); 3829 } else { 3830 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, 3831 BitCounts, DAG.getIntPtrConstant(0)); 3832 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted); 3833 } 3834} 3835 3836/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the 3837/// bit-count for each 32-bit element from the operand. The idea here is 3838/// to split the vector into 16-bit elements, leverage the 16-bit count 3839/// routine, and then combine the results. 3840/// 3841/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged): 3842/// input = [v0 v1 ] (vi: 32-bit elements) 3843/// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1]) 3844/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi) 3845/// vrev: N0 = [k1 k0 k3 k2 ] 3846/// [k0 k1 k2 k3 ] 3847/// N1 =+[k1 k0 k3 k2 ] 3848/// [k0 k2 k1 k3 ] 3849/// N2 =+[k1 k3 k0 k2 ] 3850/// [k0 k2 k1 k3 ] 3851/// Extended =+[k1 k3 k0 k2 ] 3852/// [k0 k2 ] 3853/// Extracted=+[k1 k3 ] 3854/// 3855static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) { 3856 EVT VT = N->getValueType(0); 3857 SDLoc DL(N); 3858 3859 EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16; 3860 3861 SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0)); 3862 SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG); 3863 SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16); 3864 SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0); 3865 SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1); 3866 3867 if (VT.is64BitVector()) { 3868 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2); 3869 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended, 3870 DAG.getIntPtrConstant(0)); 3871 } else { 3872 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2, 3873 DAG.getIntPtrConstant(0)); 3874 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted); 3875 } 3876} 3877 3878static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG, 3879 const ARMSubtarget *ST) { 3880 EVT VT = N->getValueType(0); 3881 3882 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON."); 3883 assert((VT == MVT::v2i32 || VT == MVT::v4i32 || 3884 VT == MVT::v4i16 || VT == MVT::v8i16) && 3885 "Unexpected type for custom ctpop lowering"); 3886 3887 if (VT.getVectorElementType() == MVT::i32) 3888 return lowerCTPOP32BitElements(N, DAG); 3889 else 3890 return lowerCTPOP16BitElements(N, DAG); 3891} 3892 3893static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, 3894 const ARMSubtarget *ST) { 3895 EVT VT = N->getValueType(0); 3896 SDLoc dl(N); 3897 3898 if (!VT.isVector()) 3899 return SDValue(); 3900 3901 // Lower vector shifts on NEON to use VSHL. 3902 assert(ST->hasNEON() && "unexpected vector shift"); 3903 3904 // Left shifts translate directly to the vshiftu intrinsic. 3905 if (N->getOpcode() == ISD::SHL) 3906 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 3907 DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32), 3908 N->getOperand(0), N->getOperand(1)); 3909 3910 assert((N->getOpcode() == ISD::SRA || 3911 N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); 3912 3913 // NEON uses the same intrinsics for both left and right shifts. For 3914 // right shifts, the shift amounts are negative, so negate the vector of 3915 // shift amounts. 3916 EVT ShiftVT = N->getOperand(1).getValueType(); 3917 SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT, 3918 getZeroVector(ShiftVT, DAG, dl), 3919 N->getOperand(1)); 3920 Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ? 3921 Intrinsic::arm_neon_vshifts : 3922 Intrinsic::arm_neon_vshiftu); 3923 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 3924 DAG.getConstant(vshiftInt, MVT::i32), 3925 N->getOperand(0), NegatedCount); 3926} 3927 3928static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, 3929 const ARMSubtarget *ST) { 3930 EVT VT = N->getValueType(0); 3931 SDLoc dl(N); 3932 3933 // We can get here for a node like i32 = ISD::SHL i32, i64 3934 if (VT != MVT::i64) 3935 return SDValue(); 3936 3937 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && 3938 "Unknown shift to lower!"); 3939 3940 // We only lower SRA, SRL of 1 here, all others use generic lowering. 3941 if (!isa<ConstantSDNode>(N->getOperand(1)) || 3942 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1) 3943 return SDValue(); 3944 3945 // If we are in thumb mode, we don't have RRX. 3946 if (ST->isThumb1Only()) return SDValue(); 3947 3948 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. 3949 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), 3950 DAG.getConstant(0, MVT::i32)); 3951 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), 3952 DAG.getConstant(1, MVT::i32)); 3953 3954 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and 3955 // captures the result into a carry flag. 3956 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; 3957 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1); 3958 3959 // The low part is an ARMISD::RRX operand, which shifts the carry in. 3960 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); 3961 3962 // Merge the pieces into a single i64 value. 3963 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 3964} 3965 3966static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) { 3967 SDValue TmpOp0, TmpOp1; 3968 bool Invert = false; 3969 bool Swap = false; 3970 unsigned Opc = 0; 3971 3972 SDValue Op0 = Op.getOperand(0); 3973 SDValue Op1 = Op.getOperand(1); 3974 SDValue CC = Op.getOperand(2); 3975 EVT VT = Op.getValueType(); 3976 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 3977 SDLoc dl(Op); 3978 3979 if (Op.getOperand(1).getValueType().isFloatingPoint()) { 3980 switch (SetCCOpcode) { 3981 default: llvm_unreachable("Illegal FP comparison"); 3982 case ISD::SETUNE: 3983 case ISD::SETNE: Invert = true; // Fallthrough 3984 case ISD::SETOEQ: 3985 case ISD::SETEQ: Opc = ARMISD::VCEQ; break; 3986 case ISD::SETOLT: 3987 case ISD::SETLT: Swap = true; // Fallthrough 3988 case ISD::SETOGT: 3989 case ISD::SETGT: Opc = ARMISD::VCGT; break; 3990 case ISD::SETOLE: 3991 case ISD::SETLE: Swap = true; // Fallthrough 3992 case ISD::SETOGE: 3993 case ISD::SETGE: Opc = ARMISD::VCGE; break; 3994 case ISD::SETUGE: Swap = true; // Fallthrough 3995 case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break; 3996 case ISD::SETUGT: Swap = true; // Fallthrough 3997 case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break; 3998 case ISD::SETUEQ: Invert = true; // Fallthrough 3999 case ISD::SETONE: 4000 // Expand this to (OLT | OGT). 4001 TmpOp0 = Op0; 4002 TmpOp1 = Op1; 4003 Opc = ISD::OR; 4004 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); 4005 Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1); 4006 break; 4007 case ISD::SETUO: Invert = true; // Fallthrough 4008 case ISD::SETO: 4009 // Expand this to (OLT | OGE). 4010 TmpOp0 = Op0; 4011 TmpOp1 = Op1; 4012 Opc = ISD::OR; 4013 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); 4014 Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1); 4015 break; 4016 } 4017 } else { 4018 // Integer comparisons. 4019 switch (SetCCOpcode) { 4020 default: llvm_unreachable("Illegal integer comparison"); 4021 case ISD::SETNE: Invert = true; 4022 case ISD::SETEQ: Opc = ARMISD::VCEQ; break; 4023 case ISD::SETLT: Swap = true; 4024 case ISD::SETGT: Opc = ARMISD::VCGT; break; 4025 case ISD::SETLE: Swap = true; 4026 case ISD::SETGE: Opc = ARMISD::VCGE; break; 4027 case ISD::SETULT: Swap = true; 4028 case ISD::SETUGT: Opc = ARMISD::VCGTU; break; 4029 case ISD::SETULE: Swap = true; 4030 case ISD::SETUGE: Opc = ARMISD::VCGEU; break; 4031 } 4032 4033 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). 4034 if (Opc == ARMISD::VCEQ) { 4035 4036 SDValue AndOp; 4037 if (ISD::isBuildVectorAllZeros(Op1.getNode())) 4038 AndOp = Op0; 4039 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) 4040 AndOp = Op1; 4041 4042 // Ignore bitconvert. 4043 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST) 4044 AndOp = AndOp.getOperand(0); 4045 4046 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { 4047 Opc = ARMISD::VTST; 4048 Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0)); 4049 Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1)); 4050 Invert = !Invert; 4051 } 4052 } 4053 } 4054 4055 if (Swap) 4056 std::swap(Op0, Op1); 4057 4058 // If one of the operands is a constant vector zero, attempt to fold the 4059 // comparison to a specialized compare-against-zero form. 4060 SDValue SingleOp; 4061 if (ISD::isBuildVectorAllZeros(Op1.getNode())) 4062 SingleOp = Op0; 4063 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 4064 if (Opc == ARMISD::VCGE) 4065 Opc = ARMISD::VCLEZ; 4066 else if (Opc == ARMISD::VCGT) 4067 Opc = ARMISD::VCLTZ; 4068 SingleOp = Op1; 4069 } 4070 4071 SDValue Result; 4072 if (SingleOp.getNode()) { 4073 switch (Opc) { 4074 case ARMISD::VCEQ: 4075 Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break; 4076 case ARMISD::VCGE: 4077 Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break; 4078 case ARMISD::VCLEZ: 4079 Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break; 4080 case ARMISD::VCGT: 4081 Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break; 4082 case ARMISD::VCLTZ: 4083 Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break; 4084 default: 4085 Result = DAG.getNode(Opc, dl, VT, Op0, Op1); 4086 } 4087 } else { 4088 Result = DAG.getNode(Opc, dl, VT, Op0, Op1); 4089 } 4090 4091 if (Invert) 4092 Result = DAG.getNOT(dl, Result, VT); 4093 4094 return Result; 4095} 4096 4097/// isNEONModifiedImm - Check if the specified splat value corresponds to a 4098/// valid vector constant for a NEON instruction with a "modified immediate" 4099/// operand (e.g., VMOV). If so, return the encoded value. 4100static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, 4101 unsigned SplatBitSize, SelectionDAG &DAG, 4102 EVT &VT, bool is128Bits, NEONModImmType type) { 4103 unsigned OpCmode, Imm; 4104 4105 // SplatBitSize is set to the smallest size that splats the vector, so a 4106 // zero vector will always have SplatBitSize == 8. However, NEON modified 4107 // immediate instructions others than VMOV do not support the 8-bit encoding 4108 // of a zero vector, and the default encoding of zero is supposed to be the 4109 // 32-bit version. 4110 if (SplatBits == 0) 4111 SplatBitSize = 32; 4112 4113 switch (SplatBitSize) { 4114 case 8: 4115 if (type != VMOVModImm) 4116 return SDValue(); 4117 // Any 1-byte value is OK. Op=0, Cmode=1110. 4118 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); 4119 OpCmode = 0xe; 4120 Imm = SplatBits; 4121 VT = is128Bits ? MVT::v16i8 : MVT::v8i8; 4122 break; 4123 4124 case 16: 4125 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. 4126 VT = is128Bits ? MVT::v8i16 : MVT::v4i16; 4127 if ((SplatBits & ~0xff) == 0) { 4128 // Value = 0x00nn: Op=x, Cmode=100x. 4129 OpCmode = 0x8; 4130 Imm = SplatBits; 4131 break; 4132 } 4133 if ((SplatBits & ~0xff00) == 0) { 4134 // Value = 0xnn00: Op=x, Cmode=101x. 4135 OpCmode = 0xa; 4136 Imm = SplatBits >> 8; 4137 break; 4138 } 4139 return SDValue(); 4140 4141 case 32: 4142 // NEON's 32-bit VMOV supports splat values where: 4143 // * only one byte is nonzero, or 4144 // * the least significant byte is 0xff and the second byte is nonzero, or 4145 // * the least significant 2 bytes are 0xff and the third is nonzero. 4146 VT = is128Bits ? MVT::v4i32 : MVT::v2i32; 4147 if ((SplatBits & ~0xff) == 0) { 4148 // Value = 0x000000nn: Op=x, Cmode=000x. 4149 OpCmode = 0; 4150 Imm = SplatBits; 4151 break; 4152 } 4153 if ((SplatBits & ~0xff00) == 0) { 4154 // Value = 0x0000nn00: Op=x, Cmode=001x. 4155 OpCmode = 0x2; 4156 Imm = SplatBits >> 8; 4157 break; 4158 } 4159 if ((SplatBits & ~0xff0000) == 0) { 4160 // Value = 0x00nn0000: Op=x, Cmode=010x. 4161 OpCmode = 0x4; 4162 Imm = SplatBits >> 16; 4163 break; 4164 } 4165 if ((SplatBits & ~0xff000000) == 0) { 4166 // Value = 0xnn000000: Op=x, Cmode=011x. 4167 OpCmode = 0x6; 4168 Imm = SplatBits >> 24; 4169 break; 4170 } 4171 4172 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC 4173 if (type == OtherModImm) return SDValue(); 4174 4175 if ((SplatBits & ~0xffff) == 0 && 4176 ((SplatBits | SplatUndef) & 0xff) == 0xff) { 4177 // Value = 0x0000nnff: Op=x, Cmode=1100. 4178 OpCmode = 0xc; 4179 Imm = SplatBits >> 8; 4180 SplatBits |= 0xff; 4181 break; 4182 } 4183 4184 if ((SplatBits & ~0xffffff) == 0 && 4185 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { 4186 // Value = 0x00nnffff: Op=x, Cmode=1101. 4187 OpCmode = 0xd; 4188 Imm = SplatBits >> 16; 4189 SplatBits |= 0xffff; 4190 break; 4191 } 4192 4193 // Note: there are a few 32-bit splat values (specifically: 00ffff00, 4194 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not 4195 // VMOV.I32. A (very) minor optimization would be to replicate the value 4196 // and fall through here to test for a valid 64-bit splat. But, then the 4197 // caller would also need to check and handle the change in size. 4198 return SDValue(); 4199 4200 case 64: { 4201 if (type != VMOVModImm) 4202 return SDValue(); 4203 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. 4204 uint64_t BitMask = 0xff; 4205 uint64_t Val = 0; 4206 unsigned ImmMask = 1; 4207 Imm = 0; 4208 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { 4209 if (((SplatBits | SplatUndef) & BitMask) == BitMask) { 4210 Val |= BitMask; 4211 Imm |= ImmMask; 4212 } else if ((SplatBits & BitMask) != 0) { 4213 return SDValue(); 4214 } 4215 BitMask <<= 8; 4216 ImmMask <<= 1; 4217 } 4218 // Op=1, Cmode=1110. 4219 OpCmode = 0x1e; 4220 SplatBits = Val; 4221 VT = is128Bits ? MVT::v2i64 : MVT::v1i64; 4222 break; 4223 } 4224 4225 default: 4226 llvm_unreachable("unexpected size for isNEONModifiedImm"); 4227 } 4228 4229 unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm); 4230 return DAG.getTargetConstant(EncodedVal, MVT::i32); 4231} 4232 4233SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG, 4234 const ARMSubtarget *ST) const { 4235 if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16()) 4236 return SDValue(); 4237 4238 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op); 4239 assert(Op.getValueType() == MVT::f32 && 4240 "ConstantFP custom lowering should only occur for f32."); 4241 4242 // Try splatting with a VMOV.f32... 4243 APFloat FPVal = CFP->getValueAPF(); 4244 int ImmVal = ARM_AM::getFP32Imm(FPVal); 4245 if (ImmVal != -1) { 4246 SDLoc DL(Op); 4247 SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32); 4248 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32, 4249 NewVal); 4250 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant, 4251 DAG.getConstant(0, MVT::i32)); 4252 } 4253 4254 // If that fails, try a VMOV.i32 4255 EVT VMovVT; 4256 unsigned iVal = FPVal.bitcastToAPInt().getZExtValue(); 4257 SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false, 4258 VMOVModImm); 4259 if (NewVal != SDValue()) { 4260 SDLoc DL(Op); 4261 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT, 4262 NewVal); 4263 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, 4264 VecConstant); 4265 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, 4266 DAG.getConstant(0, MVT::i32)); 4267 } 4268 4269 // Finally, try a VMVN.i32 4270 NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false, 4271 VMVNModImm); 4272 if (NewVal != SDValue()) { 4273 SDLoc DL(Op); 4274 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal); 4275 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, 4276 VecConstant); 4277 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, 4278 DAG.getConstant(0, MVT::i32)); 4279 } 4280 4281 return SDValue(); 4282} 4283 4284// check if an VEXT instruction can handle the shuffle mask when the 4285// vector sources of the shuffle are the same. 4286static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { 4287 unsigned NumElts = VT.getVectorNumElements(); 4288 4289 // Assume that the first shuffle index is not UNDEF. Fail if it is. 4290 if (M[0] < 0) 4291 return false; 4292 4293 Imm = M[0]; 4294 4295 // If this is a VEXT shuffle, the immediate value is the index of the first 4296 // element. The other shuffle indices must be the successive elements after 4297 // the first one. 4298 unsigned ExpectedElt = Imm; 4299 for (unsigned i = 1; i < NumElts; ++i) { 4300 // Increment the expected index. If it wraps around, just follow it 4301 // back to index zero and keep going. 4302 ++ExpectedElt; 4303 if (ExpectedElt == NumElts) 4304 ExpectedElt = 0; 4305 4306 if (M[i] < 0) continue; // ignore UNDEF indices 4307 if (ExpectedElt != static_cast<unsigned>(M[i])) 4308 return false; 4309 } 4310 4311 return true; 4312} 4313 4314 4315static bool isVEXTMask(ArrayRef<int> M, EVT VT, 4316 bool &ReverseVEXT, unsigned &Imm) { 4317 unsigned NumElts = VT.getVectorNumElements(); 4318 ReverseVEXT = false; 4319 4320 // Assume that the first shuffle index is not UNDEF. Fail if it is. 4321 if (M[0] < 0) 4322 return false; 4323 4324 Imm = M[0]; 4325 4326 // If this is a VEXT shuffle, the immediate value is the index of the first 4327 // element. The other shuffle indices must be the successive elements after 4328 // the first one. 4329 unsigned ExpectedElt = Imm; 4330 for (unsigned i = 1; i < NumElts; ++i) { 4331 // Increment the expected index. If it wraps around, it may still be 4332 // a VEXT but the source vectors must be swapped. 4333 ExpectedElt += 1; 4334 if (ExpectedElt == NumElts * 2) { 4335 ExpectedElt = 0; 4336 ReverseVEXT = true; 4337 } 4338 4339 if (M[i] < 0) continue; // ignore UNDEF indices 4340 if (ExpectedElt != static_cast<unsigned>(M[i])) 4341 return false; 4342 } 4343 4344 // Adjust the index value if the source operands will be swapped. 4345 if (ReverseVEXT) 4346 Imm -= NumElts; 4347 4348 return true; 4349} 4350 4351/// isVREVMask - Check if a vector shuffle corresponds to a VREV 4352/// instruction with the specified blocksize. (The order of the elements 4353/// within each block of the vector is reversed.) 4354static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { 4355 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && 4356 "Only possible block sizes for VREV are: 16, 32, 64"); 4357 4358 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4359 if (EltSz == 64) 4360 return false; 4361 4362 unsigned NumElts = VT.getVectorNumElements(); 4363 unsigned BlockElts = M[0] + 1; 4364 // If the first shuffle index is UNDEF, be optimistic. 4365 if (M[0] < 0) 4366 BlockElts = BlockSize / EltSz; 4367 4368 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) 4369 return false; 4370 4371 for (unsigned i = 0; i < NumElts; ++i) { 4372 if (M[i] < 0) continue; // ignore UNDEF indices 4373 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) 4374 return false; 4375 } 4376 4377 return true; 4378} 4379 4380static bool isVTBLMask(ArrayRef<int> M, EVT VT) { 4381 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of 4382 // range, then 0 is placed into the resulting vector. So pretty much any mask 4383 // of 8 elements can work here. 4384 return VT == MVT::v8i8 && M.size() == 8; 4385} 4386 4387static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 4388 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4389 if (EltSz == 64) 4390 return false; 4391 4392 unsigned NumElts = VT.getVectorNumElements(); 4393 WhichResult = (M[0] == 0 ? 0 : 1); 4394 for (unsigned i = 0; i < NumElts; i += 2) { 4395 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) || 4396 (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult)) 4397 return false; 4398 } 4399 return true; 4400} 4401 4402/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of 4403/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 4404/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. 4405static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 4406 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4407 if (EltSz == 64) 4408 return false; 4409 4410 unsigned NumElts = VT.getVectorNumElements(); 4411 WhichResult = (M[0] == 0 ? 0 : 1); 4412 for (unsigned i = 0; i < NumElts; i += 2) { 4413 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) || 4414 (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult)) 4415 return false; 4416 } 4417 return true; 4418} 4419 4420static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 4421 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4422 if (EltSz == 64) 4423 return false; 4424 4425 unsigned NumElts = VT.getVectorNumElements(); 4426 WhichResult = (M[0] == 0 ? 0 : 1); 4427 for (unsigned i = 0; i != NumElts; ++i) { 4428 if (M[i] < 0) continue; // ignore UNDEF indices 4429 if ((unsigned) M[i] != 2 * i + WhichResult) 4430 return false; 4431 } 4432 4433 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 4434 if (VT.is64BitVector() && EltSz == 32) 4435 return false; 4436 4437 return true; 4438} 4439 4440/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of 4441/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 4442/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, 4443static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 4444 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4445 if (EltSz == 64) 4446 return false; 4447 4448 unsigned Half = VT.getVectorNumElements() / 2; 4449 WhichResult = (M[0] == 0 ? 0 : 1); 4450 for (unsigned j = 0; j != 2; ++j) { 4451 unsigned Idx = WhichResult; 4452 for (unsigned i = 0; i != Half; ++i) { 4453 int MIdx = M[i + j * Half]; 4454 if (MIdx >= 0 && (unsigned) MIdx != Idx) 4455 return false; 4456 Idx += 2; 4457 } 4458 } 4459 4460 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 4461 if (VT.is64BitVector() && EltSz == 32) 4462 return false; 4463 4464 return true; 4465} 4466 4467static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 4468 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4469 if (EltSz == 64) 4470 return false; 4471 4472 unsigned NumElts = VT.getVectorNumElements(); 4473 WhichResult = (M[0] == 0 ? 0 : 1); 4474 unsigned Idx = WhichResult * NumElts / 2; 4475 for (unsigned i = 0; i != NumElts; i += 2) { 4476 if ((M[i] >= 0 && (unsigned) M[i] != Idx) || 4477 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts)) 4478 return false; 4479 Idx += 1; 4480 } 4481 4482 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 4483 if (VT.is64BitVector() && EltSz == 32) 4484 return false; 4485 4486 return true; 4487} 4488 4489/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of 4490/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 4491/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. 4492static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 4493 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4494 if (EltSz == 64) 4495 return false; 4496 4497 unsigned NumElts = VT.getVectorNumElements(); 4498 WhichResult = (M[0] == 0 ? 0 : 1); 4499 unsigned Idx = WhichResult * NumElts / 2; 4500 for (unsigned i = 0; i != NumElts; i += 2) { 4501 if ((M[i] >= 0 && (unsigned) M[i] != Idx) || 4502 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx)) 4503 return false; 4504 Idx += 1; 4505 } 4506 4507 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 4508 if (VT.is64BitVector() && EltSz == 32) 4509 return false; 4510 4511 return true; 4512} 4513 4514/// \return true if this is a reverse operation on an vector. 4515static bool isReverseMask(ArrayRef<int> M, EVT VT) { 4516 unsigned NumElts = VT.getVectorNumElements(); 4517 // Make sure the mask has the right size. 4518 if (NumElts != M.size()) 4519 return false; 4520 4521 // Look for <15, ..., 3, -1, 1, 0>. 4522 for (unsigned i = 0; i != NumElts; ++i) 4523 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i)) 4524 return false; 4525 4526 return true; 4527} 4528 4529// If N is an integer constant that can be moved into a register in one 4530// instruction, return an SDValue of such a constant (will become a MOV 4531// instruction). Otherwise return null. 4532static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, 4533 const ARMSubtarget *ST, SDLoc dl) { 4534 uint64_t Val; 4535 if (!isa<ConstantSDNode>(N)) 4536 return SDValue(); 4537 Val = cast<ConstantSDNode>(N)->getZExtValue(); 4538 4539 if (ST->isThumb1Only()) { 4540 if (Val <= 255 || ~Val <= 255) 4541 return DAG.getConstant(Val, MVT::i32); 4542 } else { 4543 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1) 4544 return DAG.getConstant(Val, MVT::i32); 4545 } 4546 return SDValue(); 4547} 4548 4549// If this is a case we can't handle, return null and let the default 4550// expansion code take care of it. 4551SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 4552 const ARMSubtarget *ST) const { 4553 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4554 SDLoc dl(Op); 4555 EVT VT = Op.getValueType(); 4556 4557 APInt SplatBits, SplatUndef; 4558 unsigned SplatBitSize; 4559 bool HasAnyUndefs; 4560 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 4561 if (SplatBitSize <= 64) { 4562 // Check if an immediate VMOV works. 4563 EVT VmovVT; 4564 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), 4565 SplatUndef.getZExtValue(), SplatBitSize, 4566 DAG, VmovVT, VT.is128BitVector(), 4567 VMOVModImm); 4568 if (Val.getNode()) { 4569 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val); 4570 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 4571 } 4572 4573 // Try an immediate VMVN. 4574 uint64_t NegatedImm = (~SplatBits).getZExtValue(); 4575 Val = isNEONModifiedImm(NegatedImm, 4576 SplatUndef.getZExtValue(), SplatBitSize, 4577 DAG, VmovVT, VT.is128BitVector(), 4578 VMVNModImm); 4579 if (Val.getNode()) { 4580 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val); 4581 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 4582 } 4583 4584 // Use vmov.f32 to materialize other v2f32 and v4f32 splats. 4585 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) { 4586 int ImmVal = ARM_AM::getFP32Imm(SplatBits); 4587 if (ImmVal != -1) { 4588 SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32); 4589 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val); 4590 } 4591 } 4592 } 4593 } 4594 4595 // Scan through the operands to see if only one value is used. 4596 // 4597 // As an optimisation, even if more than one value is used it may be more 4598 // profitable to splat with one value then change some lanes. 4599 // 4600 // Heuristically we decide to do this if the vector has a "dominant" value, 4601 // defined as splatted to more than half of the lanes. 4602 unsigned NumElts = VT.getVectorNumElements(); 4603 bool isOnlyLowElement = true; 4604 bool usesOnlyOneValue = true; 4605 bool hasDominantValue = false; 4606 bool isConstant = true; 4607 4608 // Map of the number of times a particular SDValue appears in the 4609 // element list. 4610 DenseMap<SDValue, unsigned> ValueCounts; 4611 SDValue Value; 4612 for (unsigned i = 0; i < NumElts; ++i) { 4613 SDValue V = Op.getOperand(i); 4614 if (V.getOpcode() == ISD::UNDEF) 4615 continue; 4616 if (i > 0) 4617 isOnlyLowElement = false; 4618 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 4619 isConstant = false; 4620 4621 ValueCounts.insert(std::make_pair(V, 0)); 4622 unsigned &Count = ValueCounts[V]; 4623 4624 // Is this value dominant? (takes up more than half of the lanes) 4625 if (++Count > (NumElts / 2)) { 4626 hasDominantValue = true; 4627 Value = V; 4628 } 4629 } 4630 if (ValueCounts.size() != 1) 4631 usesOnlyOneValue = false; 4632 if (!Value.getNode() && ValueCounts.size() > 0) 4633 Value = ValueCounts.begin()->first; 4634 4635 if (ValueCounts.size() == 0) 4636 return DAG.getUNDEF(VT); 4637 4638 if (isOnlyLowElement) 4639 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); 4640 4641 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 4642 4643 // Use VDUP for non-constant splats. For f32 constant splats, reduce to 4644 // i32 and try again. 4645 if (hasDominantValue && EltSize <= 32) { 4646 if (!isConstant) { 4647 SDValue N; 4648 4649 // If we are VDUPing a value that comes directly from a vector, that will 4650 // cause an unnecessary move to and from a GPR, where instead we could 4651 // just use VDUPLANE. We can only do this if the lane being extracted 4652 // is at a constant index, as the VDUP from lane instructions only have 4653 // constant-index forms. 4654 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4655 isa<ConstantSDNode>(Value->getOperand(1))) { 4656 // We need to create a new undef vector to use for the VDUPLANE if the 4657 // size of the vector from which we get the value is different than the 4658 // size of the vector that we need to create. We will insert the element 4659 // such that the register coalescer will remove unnecessary copies. 4660 if (VT != Value->getOperand(0).getValueType()) { 4661 ConstantSDNode *constIndex; 4662 constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)); 4663 assert(constIndex && "The index is not a constant!"); 4664 unsigned index = constIndex->getAPIntValue().getLimitedValue() % 4665 VT.getVectorNumElements(); 4666 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, 4667 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT), 4668 Value, DAG.getConstant(index, MVT::i32)), 4669 DAG.getConstant(index, MVT::i32)); 4670 } else 4671 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, 4672 Value->getOperand(0), Value->getOperand(1)); 4673 } else 4674 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value); 4675 4676 if (!usesOnlyOneValue) { 4677 // The dominant value was splatted as 'N', but we now have to insert 4678 // all differing elements. 4679 for (unsigned I = 0; I < NumElts; ++I) { 4680 if (Op.getOperand(I) == Value) 4681 continue; 4682 SmallVector<SDValue, 3> Ops; 4683 Ops.push_back(N); 4684 Ops.push_back(Op.getOperand(I)); 4685 Ops.push_back(DAG.getConstant(I, MVT::i32)); 4686 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3); 4687 } 4688 } 4689 return N; 4690 } 4691 if (VT.getVectorElementType().isFloatingPoint()) { 4692 SmallVector<SDValue, 8> Ops; 4693 for (unsigned i = 0; i < NumElts; ++i) 4694 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4695 Op.getOperand(i))); 4696 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); 4697 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts); 4698 Val = LowerBUILD_VECTOR(Val, DAG, ST); 4699 if (Val.getNode()) 4700 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 4701 } 4702 if (usesOnlyOneValue) { 4703 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl); 4704 if (isConstant && Val.getNode()) 4705 return DAG.getNode(ARMISD::VDUP, dl, VT, Val); 4706 } 4707 } 4708 4709 // If all elements are constants and the case above didn't get hit, fall back 4710 // to the default expansion, which will generate a load from the constant 4711 // pool. 4712 if (isConstant) 4713 return SDValue(); 4714 4715 // Empirical tests suggest this is rarely worth it for vectors of length <= 2. 4716 if (NumElts >= 4) { 4717 SDValue shuffle = ReconstructShuffle(Op, DAG); 4718 if (shuffle != SDValue()) 4719 return shuffle; 4720 } 4721 4722 // Vectors with 32- or 64-bit elements can be built by directly assigning 4723 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands 4724 // will be legalized. 4725 if (EltSize >= 32) { 4726 // Do the expansion with floating-point types, since that is what the VFP 4727 // registers are defined to use, and since i64 is not legal. 4728 EVT EltVT = EVT::getFloatingPointVT(EltSize); 4729 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); 4730 SmallVector<SDValue, 8> Ops; 4731 for (unsigned i = 0; i < NumElts; ++i) 4732 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i))); 4733 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts); 4734 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 4735 } 4736 4737 return SDValue(); 4738} 4739 4740// Gather data to see if the operation can be modelled as a 4741// shuffle in combination with VEXTs. 4742SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op, 4743 SelectionDAG &DAG) const { 4744 SDLoc dl(Op); 4745 EVT VT = Op.getValueType(); 4746 unsigned NumElts = VT.getVectorNumElements(); 4747 4748 SmallVector<SDValue, 2> SourceVecs; 4749 SmallVector<unsigned, 2> MinElts; 4750 SmallVector<unsigned, 2> MaxElts; 4751 4752 for (unsigned i = 0; i < NumElts; ++i) { 4753 SDValue V = Op.getOperand(i); 4754 if (V.getOpcode() == ISD::UNDEF) 4755 continue; 4756 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { 4757 // A shuffle can only come from building a vector from various 4758 // elements of other vectors. 4759 return SDValue(); 4760 } else if (V.getOperand(0).getValueType().getVectorElementType() != 4761 VT.getVectorElementType()) { 4762 // This code doesn't know how to handle shuffles where the vector 4763 // element types do not match (this happens because type legalization 4764 // promotes the return type of EXTRACT_VECTOR_ELT). 4765 // FIXME: It might be appropriate to extend this code to handle 4766 // mismatched types. 4767 return SDValue(); 4768 } 4769 4770 // Record this extraction against the appropriate vector if possible... 4771 SDValue SourceVec = V.getOperand(0); 4772 // If the element number isn't a constant, we can't effectively 4773 // analyze what's going on. 4774 if (!isa<ConstantSDNode>(V.getOperand(1))) 4775 return SDValue(); 4776 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); 4777 bool FoundSource = false; 4778 for (unsigned j = 0; j < SourceVecs.size(); ++j) { 4779 if (SourceVecs[j] == SourceVec) { 4780 if (MinElts[j] > EltNo) 4781 MinElts[j] = EltNo; 4782 if (MaxElts[j] < EltNo) 4783 MaxElts[j] = EltNo; 4784 FoundSource = true; 4785 break; 4786 } 4787 } 4788 4789 // Or record a new source if not... 4790 if (!FoundSource) { 4791 SourceVecs.push_back(SourceVec); 4792 MinElts.push_back(EltNo); 4793 MaxElts.push_back(EltNo); 4794 } 4795 } 4796 4797 // Currently only do something sane when at most two source vectors 4798 // involved. 4799 if (SourceVecs.size() > 2) 4800 return SDValue(); 4801 4802 SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) }; 4803 int VEXTOffsets[2] = {0, 0}; 4804 4805 // This loop extracts the usage patterns of the source vectors 4806 // and prepares appropriate SDValues for a shuffle if possible. 4807 for (unsigned i = 0; i < SourceVecs.size(); ++i) { 4808 if (SourceVecs[i].getValueType() == VT) { 4809 // No VEXT necessary 4810 ShuffleSrcs[i] = SourceVecs[i]; 4811 VEXTOffsets[i] = 0; 4812 continue; 4813 } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) { 4814 // It probably isn't worth padding out a smaller vector just to 4815 // break it down again in a shuffle. 4816 return SDValue(); 4817 } 4818 4819 // Since only 64-bit and 128-bit vectors are legal on ARM and 4820 // we've eliminated the other cases... 4821 assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts && 4822 "unexpected vector sizes in ReconstructShuffle"); 4823 4824 if (MaxElts[i] - MinElts[i] >= NumElts) { 4825 // Span too large for a VEXT to cope 4826 return SDValue(); 4827 } 4828 4829 if (MinElts[i] >= NumElts) { 4830 // The extraction can just take the second half 4831 VEXTOffsets[i] = NumElts; 4832 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 4833 SourceVecs[i], 4834 DAG.getIntPtrConstant(NumElts)); 4835 } else if (MaxElts[i] < NumElts) { 4836 // The extraction can just take the first half 4837 VEXTOffsets[i] = 0; 4838 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 4839 SourceVecs[i], 4840 DAG.getIntPtrConstant(0)); 4841 } else { 4842 // An actual VEXT is needed 4843 VEXTOffsets[i] = MinElts[i]; 4844 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 4845 SourceVecs[i], 4846 DAG.getIntPtrConstant(0)); 4847 SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 4848 SourceVecs[i], 4849 DAG.getIntPtrConstant(NumElts)); 4850 ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2, 4851 DAG.getConstant(VEXTOffsets[i], MVT::i32)); 4852 } 4853 } 4854 4855 SmallVector<int, 8> Mask; 4856 4857 for (unsigned i = 0; i < NumElts; ++i) { 4858 SDValue Entry = Op.getOperand(i); 4859 if (Entry.getOpcode() == ISD::UNDEF) { 4860 Mask.push_back(-1); 4861 continue; 4862 } 4863 4864 SDValue ExtractVec = Entry.getOperand(0); 4865 int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i) 4866 .getOperand(1))->getSExtValue(); 4867 if (ExtractVec == SourceVecs[0]) { 4868 Mask.push_back(ExtractElt - VEXTOffsets[0]); 4869 } else { 4870 Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]); 4871 } 4872 } 4873 4874 // Final check before we try to produce nonsense... 4875 if (isShuffleMaskLegal(Mask, VT)) 4876 return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1], 4877 &Mask[0]); 4878 4879 return SDValue(); 4880} 4881 4882/// isShuffleMaskLegal - Targets can use this to indicate that they only 4883/// support *some* VECTOR_SHUFFLE operations, those with specific masks. 4884/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values 4885/// are assumed to be legal. 4886bool 4887ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, 4888 EVT VT) const { 4889 if (VT.getVectorNumElements() == 4 && 4890 (VT.is128BitVector() || VT.is64BitVector())) { 4891 unsigned PFIndexes[4]; 4892 for (unsigned i = 0; i != 4; ++i) { 4893 if (M[i] < 0) 4894 PFIndexes[i] = 8; 4895 else 4896 PFIndexes[i] = M[i]; 4897 } 4898 4899 // Compute the index in the perfect shuffle table. 4900 unsigned PFTableIndex = 4901 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 4902 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 4903 unsigned Cost = (PFEntry >> 30); 4904 4905 if (Cost <= 4) 4906 return true; 4907 } 4908 4909 bool ReverseVEXT; 4910 unsigned Imm, WhichResult; 4911 4912 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 4913 return (EltSize >= 32 || 4914 ShuffleVectorSDNode::isSplatMask(&M[0], VT) || 4915 isVREVMask(M, VT, 64) || 4916 isVREVMask(M, VT, 32) || 4917 isVREVMask(M, VT, 16) || 4918 isVEXTMask(M, VT, ReverseVEXT, Imm) || 4919 isVTBLMask(M, VT) || 4920 isVTRNMask(M, VT, WhichResult) || 4921 isVUZPMask(M, VT, WhichResult) || 4922 isVZIPMask(M, VT, WhichResult) || 4923 isVTRN_v_undef_Mask(M, VT, WhichResult) || 4924 isVUZP_v_undef_Mask(M, VT, WhichResult) || 4925 isVZIP_v_undef_Mask(M, VT, WhichResult) || 4926 ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT))); 4927} 4928 4929/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 4930/// the specified operations to build the shuffle. 4931static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 4932 SDValue RHS, SelectionDAG &DAG, 4933 SDLoc dl) { 4934 unsigned OpNum = (PFEntry >> 26) & 0x0F; 4935 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 4936 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 4937 4938 enum { 4939 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 4940 OP_VREV, 4941 OP_VDUP0, 4942 OP_VDUP1, 4943 OP_VDUP2, 4944 OP_VDUP3, 4945 OP_VEXT1, 4946 OP_VEXT2, 4947 OP_VEXT3, 4948 OP_VUZPL, // VUZP, left result 4949 OP_VUZPR, // VUZP, right result 4950 OP_VZIPL, // VZIP, left result 4951 OP_VZIPR, // VZIP, right result 4952 OP_VTRNL, // VTRN, left result 4953 OP_VTRNR // VTRN, right result 4954 }; 4955 4956 if (OpNum == OP_COPY) { 4957 if (LHSID == (1*9+2)*9+3) return LHS; 4958 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 4959 return RHS; 4960 } 4961 4962 SDValue OpLHS, OpRHS; 4963 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 4964 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 4965 EVT VT = OpLHS.getValueType(); 4966 4967 switch (OpNum) { 4968 default: llvm_unreachable("Unknown shuffle opcode!"); 4969 case OP_VREV: 4970 // VREV divides the vector in half and swaps within the half. 4971 if (VT.getVectorElementType() == MVT::i32 || 4972 VT.getVectorElementType() == MVT::f32) 4973 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); 4974 // vrev <4 x i16> -> VREV32 4975 if (VT.getVectorElementType() == MVT::i16) 4976 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS); 4977 // vrev <4 x i8> -> VREV16 4978 assert(VT.getVectorElementType() == MVT::i8); 4979 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS); 4980 case OP_VDUP0: 4981 case OP_VDUP1: 4982 case OP_VDUP2: 4983 case OP_VDUP3: 4984 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, 4985 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32)); 4986 case OP_VEXT1: 4987 case OP_VEXT2: 4988 case OP_VEXT3: 4989 return DAG.getNode(ARMISD::VEXT, dl, VT, 4990 OpLHS, OpRHS, 4991 DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32)); 4992 case OP_VUZPL: 4993 case OP_VUZPR: 4994 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), 4995 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); 4996 case OP_VZIPL: 4997 case OP_VZIPR: 4998 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), 4999 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); 5000 case OP_VTRNL: 5001 case OP_VTRNR: 5002 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), 5003 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); 5004 } 5005} 5006 5007static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, 5008 ArrayRef<int> ShuffleMask, 5009 SelectionDAG &DAG) { 5010 // Check to see if we can use the VTBL instruction. 5011 SDValue V1 = Op.getOperand(0); 5012 SDValue V2 = Op.getOperand(1); 5013 SDLoc DL(Op); 5014 5015 SmallVector<SDValue, 8> VTBLMask; 5016 for (ArrayRef<int>::iterator 5017 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I) 5018 VTBLMask.push_back(DAG.getConstant(*I, MVT::i32)); 5019 5020 if (V2.getNode()->getOpcode() == ISD::UNDEF) 5021 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1, 5022 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, 5023 &VTBLMask[0], 8)); 5024 5025 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2, 5026 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, 5027 &VTBLMask[0], 8)); 5028} 5029 5030static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op, 5031 SelectionDAG &DAG) { 5032 SDLoc DL(Op); 5033 SDValue OpLHS = Op.getOperand(0); 5034 EVT VT = OpLHS.getValueType(); 5035 5036 assert((VT == MVT::v8i16 || VT == MVT::v16i8) && 5037 "Expect an v8i16/v16i8 type"); 5038 OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS); 5039 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now, 5040 // extract the first 8 bytes into the top double word and the last 8 bytes 5041 // into the bottom double word. The v8i16 case is similar. 5042 unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4; 5043 return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS, 5044 DAG.getConstant(ExtractNum, MVT::i32)); 5045} 5046 5047static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { 5048 SDValue V1 = Op.getOperand(0); 5049 SDValue V2 = Op.getOperand(1); 5050 SDLoc dl(Op); 5051 EVT VT = Op.getValueType(); 5052 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 5053 5054 // Convert shuffles that are directly supported on NEON to target-specific 5055 // DAG nodes, instead of keeping them as shuffles and matching them again 5056 // during code selection. This is more efficient and avoids the possibility 5057 // of inconsistencies between legalization and selection. 5058 // FIXME: floating-point vectors should be canonicalized to integer vectors 5059 // of the same time so that they get CSEd properly. 5060 ArrayRef<int> ShuffleMask = SVN->getMask(); 5061 5062 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 5063 if (EltSize <= 32) { 5064 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) { 5065 int Lane = SVN->getSplatIndex(); 5066 // If this is undef splat, generate it via "just" vdup, if possible. 5067 if (Lane == -1) Lane = 0; 5068 5069 // Test if V1 is a SCALAR_TO_VECTOR. 5070 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { 5071 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); 5072 } 5073 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR 5074 // (and probably will turn into a SCALAR_TO_VECTOR once legalization 5075 // reaches it). 5076 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && 5077 !isa<ConstantSDNode>(V1.getOperand(0))) { 5078 bool IsScalarToVector = true; 5079 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) 5080 if (V1.getOperand(i).getOpcode() != ISD::UNDEF) { 5081 IsScalarToVector = false; 5082 break; 5083 } 5084 if (IsScalarToVector) 5085 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); 5086 } 5087 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, 5088 DAG.getConstant(Lane, MVT::i32)); 5089 } 5090 5091 bool ReverseVEXT; 5092 unsigned Imm; 5093 if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { 5094 if (ReverseVEXT) 5095 std::swap(V1, V2); 5096 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, 5097 DAG.getConstant(Imm, MVT::i32)); 5098 } 5099 5100 if (isVREVMask(ShuffleMask, VT, 64)) 5101 return DAG.getNode(ARMISD::VREV64, dl, VT, V1); 5102 if (isVREVMask(ShuffleMask, VT, 32)) 5103 return DAG.getNode(ARMISD::VREV32, dl, VT, V1); 5104 if (isVREVMask(ShuffleMask, VT, 16)) 5105 return DAG.getNode(ARMISD::VREV16, dl, VT, V1); 5106 5107 if (V2->getOpcode() == ISD::UNDEF && 5108 isSingletonVEXTMask(ShuffleMask, VT, Imm)) { 5109 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1, 5110 DAG.getConstant(Imm, MVT::i32)); 5111 } 5112 5113 // Check for Neon shuffles that modify both input vectors in place. 5114 // If both results are used, i.e., if there are two shuffles with the same 5115 // source operands and with masks corresponding to both results of one of 5116 // these operations, DAG memoization will ensure that a single node is 5117 // used for both shuffles. 5118 unsigned WhichResult; 5119 if (isVTRNMask(ShuffleMask, VT, WhichResult)) 5120 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), 5121 V1, V2).getValue(WhichResult); 5122 if (isVUZPMask(ShuffleMask, VT, WhichResult)) 5123 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), 5124 V1, V2).getValue(WhichResult); 5125 if (isVZIPMask(ShuffleMask, VT, WhichResult)) 5126 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), 5127 V1, V2).getValue(WhichResult); 5128 5129 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) 5130 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), 5131 V1, V1).getValue(WhichResult); 5132 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) 5133 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), 5134 V1, V1).getValue(WhichResult); 5135 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) 5136 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), 5137 V1, V1).getValue(WhichResult); 5138 } 5139 5140 // If the shuffle is not directly supported and it has 4 elements, use 5141 // the PerfectShuffle-generated table to synthesize it from other shuffles. 5142 unsigned NumElts = VT.getVectorNumElements(); 5143 if (NumElts == 4) { 5144 unsigned PFIndexes[4]; 5145 for (unsigned i = 0; i != 4; ++i) { 5146 if (ShuffleMask[i] < 0) 5147 PFIndexes[i] = 8; 5148 else 5149 PFIndexes[i] = ShuffleMask[i]; 5150 } 5151 5152 // Compute the index in the perfect shuffle table. 5153 unsigned PFTableIndex = 5154 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 5155 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 5156 unsigned Cost = (PFEntry >> 30); 5157 5158 if (Cost <= 4) 5159 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 5160 } 5161 5162 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs. 5163 if (EltSize >= 32) { 5164 // Do the expansion with floating-point types, since that is what the VFP 5165 // registers are defined to use, and since i64 is not legal. 5166 EVT EltVT = EVT::getFloatingPointVT(EltSize); 5167 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); 5168 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1); 5169 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2); 5170 SmallVector<SDValue, 8> Ops; 5171 for (unsigned i = 0; i < NumElts; ++i) { 5172 if (ShuffleMask[i] < 0) 5173 Ops.push_back(DAG.getUNDEF(EltVT)); 5174 else 5175 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 5176 ShuffleMask[i] < (int)NumElts ? V1 : V2, 5177 DAG.getConstant(ShuffleMask[i] & (NumElts-1), 5178 MVT::i32))); 5179 } 5180 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts); 5181 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 5182 } 5183 5184 if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT)) 5185 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG); 5186 5187 if (VT == MVT::v8i8) { 5188 SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG); 5189 if (NewOp.getNode()) 5190 return NewOp; 5191 } 5192 5193 return SDValue(); 5194} 5195 5196static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { 5197 // INSERT_VECTOR_ELT is legal only for immediate indexes. 5198 SDValue Lane = Op.getOperand(2); 5199 if (!isa<ConstantSDNode>(Lane)) 5200 return SDValue(); 5201 5202 return Op; 5203} 5204 5205static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { 5206 // EXTRACT_VECTOR_ELT is legal only for immediate indexes. 5207 SDValue Lane = Op.getOperand(1); 5208 if (!isa<ConstantSDNode>(Lane)) 5209 return SDValue(); 5210 5211 SDValue Vec = Op.getOperand(0); 5212 if (Op.getValueType() == MVT::i32 && 5213 Vec.getValueType().getVectorElementType().getSizeInBits() < 32) { 5214 SDLoc dl(Op); 5215 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); 5216 } 5217 5218 return Op; 5219} 5220 5221static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { 5222 // The only time a CONCAT_VECTORS operation can have legal types is when 5223 // two 64-bit vectors are concatenated to a 128-bit vector. 5224 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && 5225 "unexpected CONCAT_VECTORS"); 5226 SDLoc dl(Op); 5227 SDValue Val = DAG.getUNDEF(MVT::v2f64); 5228 SDValue Op0 = Op.getOperand(0); 5229 SDValue Op1 = Op.getOperand(1); 5230 if (Op0.getOpcode() != ISD::UNDEF) 5231 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, 5232 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0), 5233 DAG.getIntPtrConstant(0)); 5234 if (Op1.getOpcode() != ISD::UNDEF) 5235 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, 5236 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1), 5237 DAG.getIntPtrConstant(1)); 5238 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val); 5239} 5240 5241/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each 5242/// element has been zero/sign-extended, depending on the isSigned parameter, 5243/// from an integer type half its size. 5244static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, 5245 bool isSigned) { 5246 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32. 5247 EVT VT = N->getValueType(0); 5248 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) { 5249 SDNode *BVN = N->getOperand(0).getNode(); 5250 if (BVN->getValueType(0) != MVT::v4i32 || 5251 BVN->getOpcode() != ISD::BUILD_VECTOR) 5252 return false; 5253 unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0; 5254 unsigned HiElt = 1 - LoElt; 5255 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt)); 5256 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt)); 5257 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2)); 5258 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2)); 5259 if (!Lo0 || !Hi0 || !Lo1 || !Hi1) 5260 return false; 5261 if (isSigned) { 5262 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 && 5263 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32) 5264 return true; 5265 } else { 5266 if (Hi0->isNullValue() && Hi1->isNullValue()) 5267 return true; 5268 } 5269 return false; 5270 } 5271 5272 if (N->getOpcode() != ISD::BUILD_VECTOR) 5273 return false; 5274 5275 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 5276 SDNode *Elt = N->getOperand(i).getNode(); 5277 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { 5278 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 5279 unsigned HalfSize = EltSize / 2; 5280 if (isSigned) { 5281 if (!isIntN(HalfSize, C->getSExtValue())) 5282 return false; 5283 } else { 5284 if (!isUIntN(HalfSize, C->getZExtValue())) 5285 return false; 5286 } 5287 continue; 5288 } 5289 return false; 5290 } 5291 5292 return true; 5293} 5294 5295/// isSignExtended - Check if a node is a vector value that is sign-extended 5296/// or a constant BUILD_VECTOR with sign-extended elements. 5297static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { 5298 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N)) 5299 return true; 5300 if (isExtendedBUILD_VECTOR(N, DAG, true)) 5301 return true; 5302 return false; 5303} 5304 5305/// isZeroExtended - Check if a node is a vector value that is zero-extended 5306/// or a constant BUILD_VECTOR with zero-extended elements. 5307static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { 5308 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N)) 5309 return true; 5310 if (isExtendedBUILD_VECTOR(N, DAG, false)) 5311 return true; 5312 return false; 5313} 5314 5315static EVT getExtensionTo64Bits(const EVT &OrigVT) { 5316 if (OrigVT.getSizeInBits() >= 64) 5317 return OrigVT; 5318 5319 assert(OrigVT.isSimple() && "Expecting a simple value type"); 5320 5321 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; 5322 switch (OrigSimpleTy) { 5323 default: llvm_unreachable("Unexpected Vector Type"); 5324 case MVT::v2i8: 5325 case MVT::v2i16: 5326 return MVT::v2i32; 5327 case MVT::v4i8: 5328 return MVT::v4i16; 5329 } 5330} 5331 5332/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total 5333/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL. 5334/// We insert the required extension here to get the vector to fill a D register. 5335static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG, 5336 const EVT &OrigTy, 5337 const EVT &ExtTy, 5338 unsigned ExtOpcode) { 5339 // The vector originally had a size of OrigTy. It was then extended to ExtTy. 5340 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than 5341 // 64-bits we need to insert a new extension so that it will be 64-bits. 5342 assert(ExtTy.is128BitVector() && "Unexpected extension size"); 5343 if (OrigTy.getSizeInBits() >= 64) 5344 return N; 5345 5346 // Must extend size to at least 64 bits to be used as an operand for VMULL. 5347 EVT NewVT = getExtensionTo64Bits(OrigTy); 5348 5349 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); 5350} 5351 5352/// SkipLoadExtensionForVMULL - return a load of the original vector size that 5353/// does not do any sign/zero extension. If the original vector is less 5354/// than 64 bits, an appropriate extension will be added after the load to 5355/// reach a total size of 64 bits. We have to add the extension separately 5356/// because ARM does not have a sign/zero extending load for vectors. 5357static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) { 5358 EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT()); 5359 5360 // The load already has the right type. 5361 if (ExtendedTy == LD->getMemoryVT()) 5362 return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(), 5363 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(), 5364 LD->isNonTemporal(), LD->isInvariant(), 5365 LD->getAlignment()); 5366 5367 // We need to create a zextload/sextload. We cannot just create a load 5368 // followed by a zext/zext node because LowerMUL is also run during normal 5369 // operation legalization where we can't create illegal types. 5370 return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy, 5371 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), 5372 LD->getMemoryVT(), LD->isVolatile(), 5373 LD->isNonTemporal(), LD->getAlignment()); 5374} 5375 5376/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND, 5377/// extending load, or BUILD_VECTOR with extended elements, return the 5378/// unextended value. The unextended vector should be 64 bits so that it can 5379/// be used as an operand to a VMULL instruction. If the original vector size 5380/// before extension is less than 64 bits we add a an extension to resize 5381/// the vector to 64 bits. 5382static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) { 5383 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) 5384 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG, 5385 N->getOperand(0)->getValueType(0), 5386 N->getValueType(0), 5387 N->getOpcode()); 5388 5389 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) 5390 return SkipLoadExtensionForVMULL(LD, DAG); 5391 5392 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will 5393 // have been legalized as a BITCAST from v4i32. 5394 if (N->getOpcode() == ISD::BITCAST) { 5395 SDNode *BVN = N->getOperand(0).getNode(); 5396 assert(BVN->getOpcode() == ISD::BUILD_VECTOR && 5397 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"); 5398 unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0; 5399 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32, 5400 BVN->getOperand(LowElt), BVN->getOperand(LowElt+2)); 5401 } 5402 // Construct a new BUILD_VECTOR with elements truncated to half the size. 5403 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); 5404 EVT VT = N->getValueType(0); 5405 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2; 5406 unsigned NumElts = VT.getVectorNumElements(); 5407 MVT TruncVT = MVT::getIntegerVT(EltSize); 5408 SmallVector<SDValue, 8> Ops; 5409 for (unsigned i = 0; i != NumElts; ++i) { 5410 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); 5411 const APInt &CInt = C->getAPIntValue(); 5412 // Element types smaller than 32 bits are not legal, so use i32 elements. 5413 // The values are implicitly truncated so sext vs. zext doesn't matter. 5414 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32)); 5415 } 5416 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), 5417 MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts); 5418} 5419 5420static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { 5421 unsigned Opcode = N->getOpcode(); 5422 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 5423 SDNode *N0 = N->getOperand(0).getNode(); 5424 SDNode *N1 = N->getOperand(1).getNode(); 5425 return N0->hasOneUse() && N1->hasOneUse() && 5426 isSignExtended(N0, DAG) && isSignExtended(N1, DAG); 5427 } 5428 return false; 5429} 5430 5431static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { 5432 unsigned Opcode = N->getOpcode(); 5433 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 5434 SDNode *N0 = N->getOperand(0).getNode(); 5435 SDNode *N1 = N->getOperand(1).getNode(); 5436 return N0->hasOneUse() && N1->hasOneUse() && 5437 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); 5438 } 5439 return false; 5440} 5441 5442static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { 5443 // Multiplications are only custom-lowered for 128-bit vectors so that 5444 // VMULL can be detected. Otherwise v2i64 multiplications are not legal. 5445 EVT VT = Op.getValueType(); 5446 assert(VT.is128BitVector() && VT.isInteger() && 5447 "unexpected type for custom-lowering ISD::MUL"); 5448 SDNode *N0 = Op.getOperand(0).getNode(); 5449 SDNode *N1 = Op.getOperand(1).getNode(); 5450 unsigned NewOpc = 0; 5451 bool isMLA = false; 5452 bool isN0SExt = isSignExtended(N0, DAG); 5453 bool isN1SExt = isSignExtended(N1, DAG); 5454 if (isN0SExt && isN1SExt) 5455 NewOpc = ARMISD::VMULLs; 5456 else { 5457 bool isN0ZExt = isZeroExtended(N0, DAG); 5458 bool isN1ZExt = isZeroExtended(N1, DAG); 5459 if (isN0ZExt && isN1ZExt) 5460 NewOpc = ARMISD::VMULLu; 5461 else if (isN1SExt || isN1ZExt) { 5462 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these 5463 // into (s/zext A * s/zext C) + (s/zext B * s/zext C) 5464 if (isN1SExt && isAddSubSExt(N0, DAG)) { 5465 NewOpc = ARMISD::VMULLs; 5466 isMLA = true; 5467 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { 5468 NewOpc = ARMISD::VMULLu; 5469 isMLA = true; 5470 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { 5471 std::swap(N0, N1); 5472 NewOpc = ARMISD::VMULLu; 5473 isMLA = true; 5474 } 5475 } 5476 5477 if (!NewOpc) { 5478 if (VT == MVT::v2i64) 5479 // Fall through to expand this. It is not legal. 5480 return SDValue(); 5481 else 5482 // Other vector multiplications are legal. 5483 return Op; 5484 } 5485 } 5486 5487 // Legalize to a VMULL instruction. 5488 SDLoc DL(Op); 5489 SDValue Op0; 5490 SDValue Op1 = SkipExtensionForVMULL(N1, DAG); 5491 if (!isMLA) { 5492 Op0 = SkipExtensionForVMULL(N0, DAG); 5493 assert(Op0.getValueType().is64BitVector() && 5494 Op1.getValueType().is64BitVector() && 5495 "unexpected types for extended operands to VMULL"); 5496 return DAG.getNode(NewOpc, DL, VT, Op0, Op1); 5497 } 5498 5499 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during 5500 // isel lowering to take advantage of no-stall back to back vmul + vmla. 5501 // vmull q0, d4, d6 5502 // vmlal q0, d5, d6 5503 // is faster than 5504 // vaddl q0, d4, d5 5505 // vmovl q1, d6 5506 // vmul q0, q0, q1 5507 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG); 5508 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG); 5509 EVT Op1VT = Op1.getValueType(); 5510 return DAG.getNode(N0->getOpcode(), DL, VT, 5511 DAG.getNode(NewOpc, DL, VT, 5512 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), 5513 DAG.getNode(NewOpc, DL, VT, 5514 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); 5515} 5516 5517static SDValue 5518LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) { 5519 // Convert to float 5520 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo)); 5521 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo)); 5522 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X); 5523 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y); 5524 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X); 5525 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y); 5526 // Get reciprocal estimate. 5527 // float4 recip = vrecpeq_f32(yf); 5528 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 5529 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y); 5530 // Because char has a smaller range than uchar, we can actually get away 5531 // without any newton steps. This requires that we use a weird bias 5532 // of 0xb000, however (again, this has been exhaustively tested). 5533 // float4 result = as_float4(as_int4(xf*recip) + 0xb000); 5534 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y); 5535 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X); 5536 Y = DAG.getConstant(0xb000, MVT::i32); 5537 Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y); 5538 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y); 5539 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X); 5540 // Convert back to short. 5541 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X); 5542 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X); 5543 return X; 5544} 5545 5546static SDValue 5547LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) { 5548 SDValue N2; 5549 // Convert to float. 5550 // float4 yf = vcvt_f32_s32(vmovl_s16(y)); 5551 // float4 xf = vcvt_f32_s32(vmovl_s16(x)); 5552 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0); 5553 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1); 5554 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); 5555 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); 5556 5557 // Use reciprocal estimate and one refinement step. 5558 // float4 recip = vrecpeq_f32(yf); 5559 // recip *= vrecpsq_f32(yf, recip); 5560 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 5561 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1); 5562 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 5563 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), 5564 N1, N2); 5565 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 5566 // Because short has a smaller range than ushort, we can actually get away 5567 // with only a single newton step. This requires that we use a weird bias 5568 // of 89, however (again, this has been exhaustively tested). 5569 // float4 result = as_float4(as_int4(xf*recip) + 0x89); 5570 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); 5571 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); 5572 N1 = DAG.getConstant(0x89, MVT::i32); 5573 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); 5574 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); 5575 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); 5576 // Convert back to integer and return. 5577 // return vmovn_s32(vcvt_s32_f32(result)); 5578 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); 5579 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); 5580 return N0; 5581} 5582 5583static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) { 5584 EVT VT = Op.getValueType(); 5585 assert((VT == MVT::v4i16 || VT == MVT::v8i8) && 5586 "unexpected type for custom-lowering ISD::SDIV"); 5587 5588 SDLoc dl(Op); 5589 SDValue N0 = Op.getOperand(0); 5590 SDValue N1 = Op.getOperand(1); 5591 SDValue N2, N3; 5592 5593 if (VT == MVT::v8i8) { 5594 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0); 5595 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1); 5596 5597 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 5598 DAG.getIntPtrConstant(4)); 5599 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 5600 DAG.getIntPtrConstant(4)); 5601 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 5602 DAG.getIntPtrConstant(0)); 5603 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 5604 DAG.getIntPtrConstant(0)); 5605 5606 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16 5607 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16 5608 5609 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); 5610 N0 = LowerCONCAT_VECTORS(N0, DAG); 5611 5612 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0); 5613 return N0; 5614 } 5615 return LowerSDIV_v4i16(N0, N1, dl, DAG); 5616} 5617 5618static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) { 5619 EVT VT = Op.getValueType(); 5620 assert((VT == MVT::v4i16 || VT == MVT::v8i8) && 5621 "unexpected type for custom-lowering ISD::UDIV"); 5622 5623 SDLoc dl(Op); 5624 SDValue N0 = Op.getOperand(0); 5625 SDValue N1 = Op.getOperand(1); 5626 SDValue N2, N3; 5627 5628 if (VT == MVT::v8i8) { 5629 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0); 5630 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1); 5631 5632 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 5633 DAG.getIntPtrConstant(4)); 5634 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 5635 DAG.getIntPtrConstant(4)); 5636 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 5637 DAG.getIntPtrConstant(0)); 5638 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 5639 DAG.getIntPtrConstant(0)); 5640 5641 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16 5642 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16 5643 5644 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); 5645 N0 = LowerCONCAT_VECTORS(N0, DAG); 5646 5647 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8, 5648 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32), 5649 N0); 5650 return N0; 5651 } 5652 5653 // v4i16 sdiv ... Convert to float. 5654 // float4 yf = vcvt_f32_s32(vmovl_u16(y)); 5655 // float4 xf = vcvt_f32_s32(vmovl_u16(x)); 5656 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0); 5657 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1); 5658 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); 5659 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); 5660 5661 // Use reciprocal estimate and two refinement steps. 5662 // float4 recip = vrecpeq_f32(yf); 5663 // recip *= vrecpsq_f32(yf, recip); 5664 // recip *= vrecpsq_f32(yf, recip); 5665 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 5666 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1); 5667 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 5668 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), 5669 BN1, N2); 5670 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 5671 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 5672 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), 5673 BN1, N2); 5674 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 5675 // Simply multiplying by the reciprocal estimate can leave us a few ulps 5676 // too low, so we add 2 ulps (exhaustive testing shows that this is enough, 5677 // and that it will never cause us to return an answer too large). 5678 // float4 result = as_float4(as_int4(xf*recip) + 2); 5679 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); 5680 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); 5681 N1 = DAG.getConstant(2, MVT::i32); 5682 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); 5683 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); 5684 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); 5685 // Convert back to integer and return. 5686 // return vmovn_u32(vcvt_s32_f32(result)); 5687 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); 5688 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); 5689 return N0; 5690} 5691 5692static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 5693 EVT VT = Op.getNode()->getValueType(0); 5694 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 5695 5696 unsigned Opc; 5697 bool ExtraOp = false; 5698 switch (Op.getOpcode()) { 5699 default: llvm_unreachable("Invalid code"); 5700 case ISD::ADDC: Opc = ARMISD::ADDC; break; 5701 case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break; 5702 case ISD::SUBC: Opc = ARMISD::SUBC; break; 5703 case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break; 5704 } 5705 5706 if (!ExtraOp) 5707 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), 5708 Op.getOperand(1)); 5709 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), 5710 Op.getOperand(1), Op.getOperand(2)); 5711} 5712 5713static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) { 5714 // Monotonic load/store is legal for all targets 5715 if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic) 5716 return Op; 5717 5718 // Aquire/Release load/store is not legal for targets without a 5719 // dmb or equivalent available. 5720 return SDValue(); 5721} 5722 5723static void 5724ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results, 5725 SelectionDAG &DAG, unsigned NewOp) { 5726 SDLoc dl(Node); 5727 assert (Node->getValueType(0) == MVT::i64 && 5728 "Only know how to expand i64 atomics"); 5729 5730 SmallVector<SDValue, 6> Ops; 5731 Ops.push_back(Node->getOperand(0)); // Chain 5732 Ops.push_back(Node->getOperand(1)); // Ptr 5733 // Low part of Val1 5734 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 5735 Node->getOperand(2), DAG.getIntPtrConstant(0))); 5736 // High part of Val1 5737 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 5738 Node->getOperand(2), DAG.getIntPtrConstant(1))); 5739 if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) { 5740 // High part of Val1 5741 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 5742 Node->getOperand(3), DAG.getIntPtrConstant(0))); 5743 // High part of Val2 5744 Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 5745 Node->getOperand(3), DAG.getIntPtrConstant(1))); 5746 } 5747 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 5748 SDValue Result = 5749 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64, 5750 cast<MemSDNode>(Node)->getMemOperand()); 5751 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) }; 5752 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); 5753 Results.push_back(Result.getValue(2)); 5754} 5755 5756static void ReplaceREADCYCLECOUNTER(SDNode *N, 5757 SmallVectorImpl<SDValue> &Results, 5758 SelectionDAG &DAG, 5759 const ARMSubtarget *Subtarget) { 5760 SDLoc DL(N); 5761 SDValue Cycles32, OutChain; 5762 5763 if (Subtarget->hasPerfMon()) { 5764 // Under Power Management extensions, the cycle-count is: 5765 // mrc p15, #0, <Rt>, c9, c13, #0 5766 SDValue Ops[] = { N->getOperand(0), // Chain 5767 DAG.getConstant(Intrinsic::arm_mrc, MVT::i32), 5768 DAG.getConstant(15, MVT::i32), 5769 DAG.getConstant(0, MVT::i32), 5770 DAG.getConstant(9, MVT::i32), 5771 DAG.getConstant(13, MVT::i32), 5772 DAG.getConstant(0, MVT::i32) 5773 }; 5774 5775 Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, 5776 DAG.getVTList(MVT::i32, MVT::Other), &Ops[0], 5777 array_lengthof(Ops)); 5778 OutChain = Cycles32.getValue(1); 5779 } else { 5780 // Intrinsic is defined to return 0 on unsupported platforms. Technically 5781 // there are older ARM CPUs that have implementation-specific ways of 5782 // obtaining this information (FIXME!). 5783 Cycles32 = DAG.getConstant(0, MVT::i32); 5784 OutChain = DAG.getEntryNode(); 5785 } 5786 5787 5788 SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, 5789 Cycles32, DAG.getConstant(0, MVT::i32)); 5790 Results.push_back(Cycles64); 5791 Results.push_back(OutChain); 5792} 5793 5794SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5795 switch (Op.getOpcode()) { 5796 default: llvm_unreachable("Don't know how to custom lower this!"); 5797 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 5798 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 5799 case ISD::GlobalAddress: 5800 return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) : 5801 LowerGlobalAddressELF(Op, DAG); 5802 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 5803 case ISD::SELECT: return LowerSELECT(Op, DAG); 5804 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 5805 case ISD::BR_CC: return LowerBR_CC(Op, DAG); 5806 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 5807 case ISD::VASTART: return LowerVASTART(Op, DAG); 5808 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget); 5809 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget); 5810 case ISD::SINT_TO_FP: 5811 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 5812 case ISD::FP_TO_SINT: 5813 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); 5814 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); 5815 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 5816 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 5817 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); 5818 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG); 5819 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG); 5820 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, 5821 Subtarget); 5822 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG); 5823 case ISD::SHL: 5824 case ISD::SRL: 5825 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); 5826 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); 5827 case ISD::SRL_PARTS: 5828 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); 5829 case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget); 5830 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget); 5831 case ISD::SETCC: return LowerVSETCC(Op, DAG); 5832 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget); 5833 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget); 5834 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 5835 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 5836 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 5837 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 5838 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 5839 case ISD::MUL: return LowerMUL(Op, DAG); 5840 case ISD::SDIV: return LowerSDIV(Op, DAG); 5841 case ISD::UDIV: return LowerUDIV(Op, DAG); 5842 case ISD::ADDC: 5843 case ISD::ADDE: 5844 case ISD::SUBC: 5845 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 5846 case ISD::ATOMIC_LOAD: 5847 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG); 5848 } 5849} 5850 5851/// ReplaceNodeResults - Replace the results of node with an illegal result 5852/// type with new values built out of custom code. 5853void ARMTargetLowering::ReplaceNodeResults(SDNode *N, 5854 SmallVectorImpl<SDValue>&Results, 5855 SelectionDAG &DAG) const { 5856 SDValue Res; 5857 switch (N->getOpcode()) { 5858 default: 5859 llvm_unreachable("Don't know how to custom expand this!"); 5860 case ISD::BITCAST: 5861 Res = ExpandBITCAST(N, DAG); 5862 break; 5863 case ISD::SIGN_EXTEND: 5864 case ISD::ZERO_EXTEND: 5865 Res = ExpandVectorExtension(N, DAG); 5866 break; 5867 case ISD::SRL: 5868 case ISD::SRA: 5869 Res = Expand64BitShift(N, DAG, Subtarget); 5870 break; 5871 case ISD::READCYCLECOUNTER: 5872 ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget); 5873 return; 5874 case ISD::ATOMIC_LOAD_ADD: 5875 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG); 5876 return; 5877 case ISD::ATOMIC_LOAD_AND: 5878 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG); 5879 return; 5880 case ISD::ATOMIC_LOAD_NAND: 5881 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG); 5882 return; 5883 case ISD::ATOMIC_LOAD_OR: 5884 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG); 5885 return; 5886 case ISD::ATOMIC_LOAD_SUB: 5887 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG); 5888 return; 5889 case ISD::ATOMIC_LOAD_XOR: 5890 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG); 5891 return; 5892 case ISD::ATOMIC_SWAP: 5893 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG); 5894 return; 5895 case ISD::ATOMIC_CMP_SWAP: 5896 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG); 5897 return; 5898 case ISD::ATOMIC_LOAD_MIN: 5899 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMIN64_DAG); 5900 return; 5901 case ISD::ATOMIC_LOAD_UMIN: 5902 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMIN64_DAG); 5903 return; 5904 case ISD::ATOMIC_LOAD_MAX: 5905 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMAX64_DAG); 5906 return; 5907 case ISD::ATOMIC_LOAD_UMAX: 5908 ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMAX64_DAG); 5909 return; 5910 } 5911 if (Res.getNode()) 5912 Results.push_back(Res); 5913} 5914 5915//===----------------------------------------------------------------------===// 5916// ARM Scheduler Hooks 5917//===----------------------------------------------------------------------===// 5918 5919MachineBasicBlock * 5920ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI, 5921 MachineBasicBlock *BB, 5922 unsigned Size) const { 5923 unsigned dest = MI->getOperand(0).getReg(); 5924 unsigned ptr = MI->getOperand(1).getReg(); 5925 unsigned oldval = MI->getOperand(2).getReg(); 5926 unsigned newval = MI->getOperand(3).getReg(); 5927 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5928 DebugLoc dl = MI->getDebugLoc(); 5929 bool isThumb2 = Subtarget->isThumb2(); 5930 5931 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 5932 unsigned scratch = MRI.createVirtualRegister(isThumb2 ? 5933 (const TargetRegisterClass*)&ARM::rGPRRegClass : 5934 (const TargetRegisterClass*)&ARM::GPRRegClass); 5935 5936 if (isThumb2) { 5937 MRI.constrainRegClass(dest, &ARM::rGPRRegClass); 5938 MRI.constrainRegClass(oldval, &ARM::rGPRRegClass); 5939 MRI.constrainRegClass(newval, &ARM::rGPRRegClass); 5940 } 5941 5942 unsigned ldrOpc, strOpc; 5943 switch (Size) { 5944 default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); 5945 case 1: 5946 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; 5947 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; 5948 break; 5949 case 2: 5950 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; 5951 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; 5952 break; 5953 case 4: 5954 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; 5955 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; 5956 break; 5957 } 5958 5959 MachineFunction *MF = BB->getParent(); 5960 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 5961 MachineFunction::iterator It = BB; 5962 ++It; // insert the new blocks after the current block 5963 5964 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); 5965 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); 5966 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 5967 MF->insert(It, loop1MBB); 5968 MF->insert(It, loop2MBB); 5969 MF->insert(It, exitMBB); 5970 5971 // Transfer the remainder of BB and its successor edges to exitMBB. 5972 exitMBB->splice(exitMBB->begin(), BB, 5973 llvm::next(MachineBasicBlock::iterator(MI)), 5974 BB->end()); 5975 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 5976 5977 // thisMBB: 5978 // ... 5979 // fallthrough --> loop1MBB 5980 BB->addSuccessor(loop1MBB); 5981 5982 // loop1MBB: 5983 // ldrex dest, [ptr] 5984 // cmp dest, oldval 5985 // bne exitMBB 5986 BB = loop1MBB; 5987 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); 5988 if (ldrOpc == ARM::t2LDREX) 5989 MIB.addImm(0); 5990 AddDefaultPred(MIB); 5991 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 5992 .addReg(dest).addReg(oldval)); 5993 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 5994 .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 5995 BB->addSuccessor(loop2MBB); 5996 BB->addSuccessor(exitMBB); 5997 5998 // loop2MBB: 5999 // strex scratch, newval, [ptr] 6000 // cmp scratch, #0 6001 // bne loop1MBB 6002 BB = loop2MBB; 6003 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr); 6004 if (strOpc == ARM::t2STREX) 6005 MIB.addImm(0); 6006 AddDefaultPred(MIB); 6007 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 6008 .addReg(scratch).addImm(0)); 6009 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 6010 .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 6011 BB->addSuccessor(loop1MBB); 6012 BB->addSuccessor(exitMBB); 6013 6014 // exitMBB: 6015 // ... 6016 BB = exitMBB; 6017 6018 MI->eraseFromParent(); // The instruction is gone now. 6019 6020 return BB; 6021} 6022 6023MachineBasicBlock * 6024ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, 6025 unsigned Size, unsigned BinOpcode) const { 6026 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. 6027 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6028 6029 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6030 MachineFunction *MF = BB->getParent(); 6031 MachineFunction::iterator It = BB; 6032 ++It; 6033 6034 unsigned dest = MI->getOperand(0).getReg(); 6035 unsigned ptr = MI->getOperand(1).getReg(); 6036 unsigned incr = MI->getOperand(2).getReg(); 6037 DebugLoc dl = MI->getDebugLoc(); 6038 bool isThumb2 = Subtarget->isThumb2(); 6039 6040 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 6041 if (isThumb2) { 6042 MRI.constrainRegClass(dest, &ARM::rGPRRegClass); 6043 MRI.constrainRegClass(ptr, &ARM::rGPRRegClass); 6044 } 6045 6046 unsigned ldrOpc, strOpc; 6047 switch (Size) { 6048 default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); 6049 case 1: 6050 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; 6051 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; 6052 break; 6053 case 2: 6054 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; 6055 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; 6056 break; 6057 case 4: 6058 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; 6059 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; 6060 break; 6061 } 6062 6063 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 6064 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 6065 MF->insert(It, loopMBB); 6066 MF->insert(It, exitMBB); 6067 6068 // Transfer the remainder of BB and its successor edges to exitMBB. 6069 exitMBB->splice(exitMBB->begin(), BB, 6070 llvm::next(MachineBasicBlock::iterator(MI)), 6071 BB->end()); 6072 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 6073 6074 const TargetRegisterClass *TRC = isThumb2 ? 6075 (const TargetRegisterClass*)&ARM::rGPRRegClass : 6076 (const TargetRegisterClass*)&ARM::GPRRegClass; 6077 unsigned scratch = MRI.createVirtualRegister(TRC); 6078 unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC); 6079 6080 // thisMBB: 6081 // ... 6082 // fallthrough --> loopMBB 6083 BB->addSuccessor(loopMBB); 6084 6085 // loopMBB: 6086 // ldrex dest, ptr 6087 // <binop> scratch2, dest, incr 6088 // strex scratch, scratch2, ptr 6089 // cmp scratch, #0 6090 // bne- loopMBB 6091 // fallthrough --> exitMBB 6092 BB = loopMBB; 6093 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); 6094 if (ldrOpc == ARM::t2LDREX) 6095 MIB.addImm(0); 6096 AddDefaultPred(MIB); 6097 if (BinOpcode) { 6098 // operand order needs to go the other way for NAND 6099 if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr) 6100 AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). 6101 addReg(incr).addReg(dest)).addReg(0); 6102 else 6103 AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). 6104 addReg(dest).addReg(incr)).addReg(0); 6105 } 6106 6107 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr); 6108 if (strOpc == ARM::t2STREX) 6109 MIB.addImm(0); 6110 AddDefaultPred(MIB); 6111 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 6112 .addReg(scratch).addImm(0)); 6113 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 6114 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 6115 6116 BB->addSuccessor(loopMBB); 6117 BB->addSuccessor(exitMBB); 6118 6119 // exitMBB: 6120 // ... 6121 BB = exitMBB; 6122 6123 MI->eraseFromParent(); // The instruction is gone now. 6124 6125 return BB; 6126} 6127 6128MachineBasicBlock * 6129ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI, 6130 MachineBasicBlock *BB, 6131 unsigned Size, 6132 bool signExtend, 6133 ARMCC::CondCodes Cond) const { 6134 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6135 6136 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6137 MachineFunction *MF = BB->getParent(); 6138 MachineFunction::iterator It = BB; 6139 ++It; 6140 6141 unsigned dest = MI->getOperand(0).getReg(); 6142 unsigned ptr = MI->getOperand(1).getReg(); 6143 unsigned incr = MI->getOperand(2).getReg(); 6144 unsigned oldval = dest; 6145 DebugLoc dl = MI->getDebugLoc(); 6146 bool isThumb2 = Subtarget->isThumb2(); 6147 6148 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 6149 if (isThumb2) { 6150 MRI.constrainRegClass(dest, &ARM::rGPRRegClass); 6151 MRI.constrainRegClass(ptr, &ARM::rGPRRegClass); 6152 } 6153 6154 unsigned ldrOpc, strOpc, extendOpc; 6155 switch (Size) { 6156 default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); 6157 case 1: 6158 ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; 6159 strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; 6160 extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB; 6161 break; 6162 case 2: 6163 ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; 6164 strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; 6165 extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH; 6166 break; 6167 case 4: 6168 ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; 6169 strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; 6170 extendOpc = 0; 6171 break; 6172 } 6173 6174 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 6175 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 6176 MF->insert(It, loopMBB); 6177 MF->insert(It, exitMBB); 6178 6179 // Transfer the remainder of BB and its successor edges to exitMBB. 6180 exitMBB->splice(exitMBB->begin(), BB, 6181 llvm::next(MachineBasicBlock::iterator(MI)), 6182 BB->end()); 6183 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 6184 6185 const TargetRegisterClass *TRC = isThumb2 ? 6186 (const TargetRegisterClass*)&ARM::rGPRRegClass : 6187 (const TargetRegisterClass*)&ARM::GPRRegClass; 6188 unsigned scratch = MRI.createVirtualRegister(TRC); 6189 unsigned scratch2 = MRI.createVirtualRegister(TRC); 6190 6191 // thisMBB: 6192 // ... 6193 // fallthrough --> loopMBB 6194 BB->addSuccessor(loopMBB); 6195 6196 // loopMBB: 6197 // ldrex dest, ptr 6198 // (sign extend dest, if required) 6199 // cmp dest, incr 6200 // cmov.cond scratch2, incr, dest 6201 // strex scratch, scratch2, ptr 6202 // cmp scratch, #0 6203 // bne- loopMBB 6204 // fallthrough --> exitMBB 6205 BB = loopMBB; 6206 MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr); 6207 if (ldrOpc == ARM::t2LDREX) 6208 MIB.addImm(0); 6209 AddDefaultPred(MIB); 6210 6211 // Sign extend the value, if necessary. 6212 if (signExtend && extendOpc) { 6213 oldval = MRI.createVirtualRegister(&ARM::GPRRegClass); 6214 AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval) 6215 .addReg(dest) 6216 .addImm(0)); 6217 } 6218 6219 // Build compare and cmov instructions. 6220 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 6221 .addReg(oldval).addReg(incr)); 6222 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2) 6223 .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR); 6224 6225 MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr); 6226 if (strOpc == ARM::t2STREX) 6227 MIB.addImm(0); 6228 AddDefaultPred(MIB); 6229 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 6230 .addReg(scratch).addImm(0)); 6231 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 6232 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 6233 6234 BB->addSuccessor(loopMBB); 6235 BB->addSuccessor(exitMBB); 6236 6237 // exitMBB: 6238 // ... 6239 BB = exitMBB; 6240 6241 MI->eraseFromParent(); // The instruction is gone now. 6242 6243 return BB; 6244} 6245 6246MachineBasicBlock * 6247ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB, 6248 unsigned Op1, unsigned Op2, 6249 bool NeedsCarry, bool IsCmpxchg, 6250 bool IsMinMax, ARMCC::CondCodes CC) const { 6251 // This also handles ATOMIC_SWAP, indicated by Op1==0. 6252 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6253 6254 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6255 MachineFunction *MF = BB->getParent(); 6256 MachineFunction::iterator It = BB; 6257 ++It; 6258 6259 unsigned destlo = MI->getOperand(0).getReg(); 6260 unsigned desthi = MI->getOperand(1).getReg(); 6261 unsigned ptr = MI->getOperand(2).getReg(); 6262 unsigned vallo = MI->getOperand(3).getReg(); 6263 unsigned valhi = MI->getOperand(4).getReg(); 6264 DebugLoc dl = MI->getDebugLoc(); 6265 bool isThumb2 = Subtarget->isThumb2(); 6266 6267 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 6268 if (isThumb2) { 6269 MRI.constrainRegClass(destlo, &ARM::rGPRRegClass); 6270 MRI.constrainRegClass(desthi, &ARM::rGPRRegClass); 6271 MRI.constrainRegClass(ptr, &ARM::rGPRRegClass); 6272 } 6273 6274 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 6275 MachineBasicBlock *contBB = 0, *cont2BB = 0; 6276 if (IsCmpxchg || IsMinMax) 6277 contBB = MF->CreateMachineBasicBlock(LLVM_BB); 6278 if (IsCmpxchg) 6279 cont2BB = MF->CreateMachineBasicBlock(LLVM_BB); 6280 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 6281 6282 MF->insert(It, loopMBB); 6283 if (IsCmpxchg || IsMinMax) MF->insert(It, contBB); 6284 if (IsCmpxchg) MF->insert(It, cont2BB); 6285 MF->insert(It, exitMBB); 6286 6287 // Transfer the remainder of BB and its successor edges to exitMBB. 6288 exitMBB->splice(exitMBB->begin(), BB, 6289 llvm::next(MachineBasicBlock::iterator(MI)), 6290 BB->end()); 6291 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 6292 6293 const TargetRegisterClass *TRC = isThumb2 ? 6294 (const TargetRegisterClass*)&ARM::tGPRRegClass : 6295 (const TargetRegisterClass*)&ARM::GPRRegClass; 6296 unsigned storesuccess = MRI.createVirtualRegister(TRC); 6297 6298 // thisMBB: 6299 // ... 6300 // fallthrough --> loopMBB 6301 BB->addSuccessor(loopMBB); 6302 6303 // loopMBB: 6304 // ldrexd r2, r3, ptr 6305 // <binopa> r0, r2, incr 6306 // <binopb> r1, r3, incr 6307 // strexd storesuccess, r0, r1, ptr 6308 // cmp storesuccess, #0 6309 // bne- loopMBB 6310 // fallthrough --> exitMBB 6311 BB = loopMBB; 6312 6313 // Load 6314 if (isThumb2) { 6315 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2LDREXD)) 6316 .addReg(destlo, RegState::Define) 6317 .addReg(desthi, RegState::Define) 6318 .addReg(ptr)); 6319 } else { 6320 unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass); 6321 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDREXD)) 6322 .addReg(GPRPair0, RegState::Define).addReg(ptr)); 6323 // Copy r2/r3 into dest. (This copy will normally be coalesced.) 6324 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo) 6325 .addReg(GPRPair0, 0, ARM::gsub_0); 6326 BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi) 6327 .addReg(GPRPair0, 0, ARM::gsub_1); 6328 } 6329 6330 unsigned StoreLo, StoreHi; 6331 if (IsCmpxchg) { 6332 // Add early exit 6333 for (unsigned i = 0; i < 2; i++) { 6334 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : 6335 ARM::CMPrr)) 6336 .addReg(i == 0 ? destlo : desthi) 6337 .addReg(i == 0 ? vallo : valhi)); 6338 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 6339 .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 6340 BB->addSuccessor(exitMBB); 6341 BB->addSuccessor(i == 0 ? contBB : cont2BB); 6342 BB = (i == 0 ? contBB : cont2BB); 6343 } 6344 6345 // Copy to physregs for strexd 6346 StoreLo = MI->getOperand(5).getReg(); 6347 StoreHi = MI->getOperand(6).getReg(); 6348 } else if (Op1) { 6349 // Perform binary operation 6350 unsigned tmpRegLo = MRI.createVirtualRegister(TRC); 6351 AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), tmpRegLo) 6352 .addReg(destlo).addReg(vallo)) 6353 .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry)); 6354 unsigned tmpRegHi = MRI.createVirtualRegister(TRC); 6355 AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), tmpRegHi) 6356 .addReg(desthi).addReg(valhi)) 6357 .addReg(IsMinMax ? ARM::CPSR : 0, getDefRegState(IsMinMax)); 6358 6359 StoreLo = tmpRegLo; 6360 StoreHi = tmpRegHi; 6361 } else { 6362 // Copy to physregs for strexd 6363 StoreLo = vallo; 6364 StoreHi = valhi; 6365 } 6366 if (IsMinMax) { 6367 // Compare and branch to exit block. 6368 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 6369 .addMBB(exitMBB).addImm(CC).addReg(ARM::CPSR); 6370 BB->addSuccessor(exitMBB); 6371 BB->addSuccessor(contBB); 6372 BB = contBB; 6373 StoreLo = vallo; 6374 StoreHi = valhi; 6375 } 6376 6377 // Store 6378 if (isThumb2) { 6379 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2STREXD), storesuccess) 6380 .addReg(StoreLo).addReg(StoreHi).addReg(ptr)); 6381 } else { 6382 // Marshal a pair... 6383 unsigned StorePair = MRI.createVirtualRegister(&ARM::GPRPairRegClass); 6384 unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass); 6385 unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass); 6386 BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair); 6387 BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1) 6388 .addReg(UndefPair) 6389 .addReg(StoreLo) 6390 .addImm(ARM::gsub_0); 6391 BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), StorePair) 6392 .addReg(r1) 6393 .addReg(StoreHi) 6394 .addImm(ARM::gsub_1); 6395 6396 // ...and store it 6397 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::STREXD), storesuccess) 6398 .addReg(StorePair).addReg(ptr)); 6399 } 6400 // Cmp+jump 6401 AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 6402 .addReg(storesuccess).addImm(0)); 6403 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 6404 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 6405 6406 BB->addSuccessor(loopMBB); 6407 BB->addSuccessor(exitMBB); 6408 6409 // exitMBB: 6410 // ... 6411 BB = exitMBB; 6412 6413 MI->eraseFromParent(); // The instruction is gone now. 6414 6415 return BB; 6416} 6417 6418/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and 6419/// registers the function context. 6420void ARMTargetLowering:: 6421SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB, 6422 MachineBasicBlock *DispatchBB, int FI) const { 6423 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6424 DebugLoc dl = MI->getDebugLoc(); 6425 MachineFunction *MF = MBB->getParent(); 6426 MachineRegisterInfo *MRI = &MF->getRegInfo(); 6427 MachineConstantPool *MCP = MF->getConstantPool(); 6428 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>(); 6429 const Function *F = MF->getFunction(); 6430 6431 bool isThumb = Subtarget->isThumb(); 6432 bool isThumb2 = Subtarget->isThumb2(); 6433 6434 unsigned PCLabelId = AFI->createPICLabelUId(); 6435 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8; 6436 ARMConstantPoolValue *CPV = 6437 ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj); 6438 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4); 6439 6440 const TargetRegisterClass *TRC = isThumb ? 6441 (const TargetRegisterClass*)&ARM::tGPRRegClass : 6442 (const TargetRegisterClass*)&ARM::GPRRegClass; 6443 6444 // Grab constant pool and fixed stack memory operands. 6445 MachineMemOperand *CPMMO = 6446 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(), 6447 MachineMemOperand::MOLoad, 4, 4); 6448 6449 MachineMemOperand *FIMMOSt = 6450 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 6451 MachineMemOperand::MOStore, 4, 4); 6452 6453 // Load the address of the dispatch MBB into the jump buffer. 6454 if (isThumb2) { 6455 // Incoming value: jbuf 6456 // ldr.n r5, LCPI1_1 6457 // orr r5, r5, #1 6458 // add r5, pc 6459 // str r5, [$jbuf, #+4] ; &jbuf[1] 6460 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6461 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1) 6462 .addConstantPoolIndex(CPI) 6463 .addMemOperand(CPMMO)); 6464 // Set the low bit because of thumb mode. 6465 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 6466 AddDefaultCC( 6467 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2) 6468 .addReg(NewVReg1, RegState::Kill) 6469 .addImm(0x01))); 6470 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 6471 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3) 6472 .addReg(NewVReg2, RegState::Kill) 6473 .addImm(PCLabelId); 6474 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12)) 6475 .addReg(NewVReg3, RegState::Kill) 6476 .addFrameIndex(FI) 6477 .addImm(36) // &jbuf[1] :: pc 6478 .addMemOperand(FIMMOSt)); 6479 } else if (isThumb) { 6480 // Incoming value: jbuf 6481 // ldr.n r1, LCPI1_4 6482 // add r1, pc 6483 // mov r2, #1 6484 // orrs r1, r2 6485 // add r2, $jbuf, #+4 ; &jbuf[1] 6486 // str r1, [r2] 6487 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6488 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1) 6489 .addConstantPoolIndex(CPI) 6490 .addMemOperand(CPMMO)); 6491 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 6492 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2) 6493 .addReg(NewVReg1, RegState::Kill) 6494 .addImm(PCLabelId); 6495 // Set the low bit because of thumb mode. 6496 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 6497 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3) 6498 .addReg(ARM::CPSR, RegState::Define) 6499 .addImm(1)); 6500 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 6501 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4) 6502 .addReg(ARM::CPSR, RegState::Define) 6503 .addReg(NewVReg2, RegState::Kill) 6504 .addReg(NewVReg3, RegState::Kill)); 6505 unsigned NewVReg5 = MRI->createVirtualRegister(TRC); 6506 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5) 6507 .addFrameIndex(FI) 6508 .addImm(36)); // &jbuf[1] :: pc 6509 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi)) 6510 .addReg(NewVReg4, RegState::Kill) 6511 .addReg(NewVReg5, RegState::Kill) 6512 .addImm(0) 6513 .addMemOperand(FIMMOSt)); 6514 } else { 6515 // Incoming value: jbuf 6516 // ldr r1, LCPI1_1 6517 // add r1, pc, r1 6518 // str r1, [$jbuf, #+4] ; &jbuf[1] 6519 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6520 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1) 6521 .addConstantPoolIndex(CPI) 6522 .addImm(0) 6523 .addMemOperand(CPMMO)); 6524 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 6525 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2) 6526 .addReg(NewVReg1, RegState::Kill) 6527 .addImm(PCLabelId)); 6528 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12)) 6529 .addReg(NewVReg2, RegState::Kill) 6530 .addFrameIndex(FI) 6531 .addImm(36) // &jbuf[1] :: pc 6532 .addMemOperand(FIMMOSt)); 6533 } 6534} 6535 6536MachineBasicBlock *ARMTargetLowering:: 6537EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const { 6538 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6539 DebugLoc dl = MI->getDebugLoc(); 6540 MachineFunction *MF = MBB->getParent(); 6541 MachineRegisterInfo *MRI = &MF->getRegInfo(); 6542 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>(); 6543 MachineFrameInfo *MFI = MF->getFrameInfo(); 6544 int FI = MFI->getFunctionContextIndex(); 6545 6546 const TargetRegisterClass *TRC = Subtarget->isThumb() ? 6547 (const TargetRegisterClass*)&ARM::tGPRRegClass : 6548 (const TargetRegisterClass*)&ARM::GPRnopcRegClass; 6549 6550 // Get a mapping of the call site numbers to all of the landing pads they're 6551 // associated with. 6552 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad; 6553 unsigned MaxCSNum = 0; 6554 MachineModuleInfo &MMI = MF->getMMI(); 6555 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; 6556 ++BB) { 6557 if (!BB->isLandingPad()) continue; 6558 6559 // FIXME: We should assert that the EH_LABEL is the first MI in the landing 6560 // pad. 6561 for (MachineBasicBlock::iterator 6562 II = BB->begin(), IE = BB->end(); II != IE; ++II) { 6563 if (!II->isEHLabel()) continue; 6564 6565 MCSymbol *Sym = II->getOperand(0).getMCSymbol(); 6566 if (!MMI.hasCallSiteLandingPad(Sym)) continue; 6567 6568 SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym); 6569 for (SmallVectorImpl<unsigned>::iterator 6570 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end(); 6571 CSI != CSE; ++CSI) { 6572 CallSiteNumToLPad[*CSI].push_back(BB); 6573 MaxCSNum = std::max(MaxCSNum, *CSI); 6574 } 6575 break; 6576 } 6577 } 6578 6579 // Get an ordered list of the machine basic blocks for the jump table. 6580 std::vector<MachineBasicBlock*> LPadList; 6581 SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs; 6582 LPadList.reserve(CallSiteNumToLPad.size()); 6583 for (unsigned I = 1; I <= MaxCSNum; ++I) { 6584 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I]; 6585 for (SmallVectorImpl<MachineBasicBlock*>::iterator 6586 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) { 6587 LPadList.push_back(*II); 6588 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end()); 6589 } 6590 } 6591 6592 assert(!LPadList.empty() && 6593 "No landing pad destinations for the dispatch jump table!"); 6594 6595 // Create the jump table and associated information. 6596 MachineJumpTableInfo *JTI = 6597 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline); 6598 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 6599 unsigned UId = AFI->createJumpTableUId(); 6600 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 6601 6602 // Create the MBBs for the dispatch code. 6603 6604 // Shove the dispatch's address into the return slot in the function context. 6605 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 6606 DispatchBB->setIsLandingPad(); 6607 6608 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 6609 unsigned trap_opcode; 6610 if (Subtarget->isThumb()) 6611 trap_opcode = ARM::tTRAP; 6612 else 6613 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; 6614 6615 BuildMI(TrapBB, dl, TII->get(trap_opcode)); 6616 DispatchBB->addSuccessor(TrapBB); 6617 6618 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 6619 DispatchBB->addSuccessor(DispContBB); 6620 6621 // Insert and MBBs. 6622 MF->insert(MF->end(), DispatchBB); 6623 MF->insert(MF->end(), DispContBB); 6624 MF->insert(MF->end(), TrapBB); 6625 6626 // Insert code into the entry block that creates and registers the function 6627 // context. 6628 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI); 6629 6630 MachineMemOperand *FIMMOLd = 6631 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 6632 MachineMemOperand::MOLoad | 6633 MachineMemOperand::MOVolatile, 4, 4); 6634 6635 MachineInstrBuilder MIB; 6636 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup)); 6637 6638 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII); 6639 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo(); 6640 6641 // Add a register mask with no preserved registers. This results in all 6642 // registers being marked as clobbered. 6643 MIB.addRegMask(RI.getNoPreservedMask()); 6644 6645 unsigned NumLPads = LPadList.size(); 6646 if (Subtarget->isThumb2()) { 6647 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6648 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1) 6649 .addFrameIndex(FI) 6650 .addImm(4) 6651 .addMemOperand(FIMMOLd)); 6652 6653 if (NumLPads < 256) { 6654 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri)) 6655 .addReg(NewVReg1) 6656 .addImm(LPadList.size())); 6657 } else { 6658 unsigned VReg1 = MRI->createVirtualRegister(TRC); 6659 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1) 6660 .addImm(NumLPads & 0xFFFF)); 6661 6662 unsigned VReg2 = VReg1; 6663 if ((NumLPads & 0xFFFF0000) != 0) { 6664 VReg2 = MRI->createVirtualRegister(TRC); 6665 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2) 6666 .addReg(VReg1) 6667 .addImm(NumLPads >> 16)); 6668 } 6669 6670 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr)) 6671 .addReg(NewVReg1) 6672 .addReg(VReg2)); 6673 } 6674 6675 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc)) 6676 .addMBB(TrapBB) 6677 .addImm(ARMCC::HI) 6678 .addReg(ARM::CPSR); 6679 6680 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 6681 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3) 6682 .addJumpTableIndex(MJTI) 6683 .addImm(UId)); 6684 6685 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 6686 AddDefaultCC( 6687 AddDefaultPred( 6688 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4) 6689 .addReg(NewVReg3, RegState::Kill) 6690 .addReg(NewVReg1) 6691 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); 6692 6693 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT)) 6694 .addReg(NewVReg4, RegState::Kill) 6695 .addReg(NewVReg1) 6696 .addJumpTableIndex(MJTI) 6697 .addImm(UId); 6698 } else if (Subtarget->isThumb()) { 6699 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6700 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1) 6701 .addFrameIndex(FI) 6702 .addImm(1) 6703 .addMemOperand(FIMMOLd)); 6704 6705 if (NumLPads < 256) { 6706 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8)) 6707 .addReg(NewVReg1) 6708 .addImm(NumLPads)); 6709 } else { 6710 MachineConstantPool *ConstantPool = MF->getConstantPool(); 6711 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); 6712 const Constant *C = ConstantInt::get(Int32Ty, NumLPads); 6713 6714 // MachineConstantPool wants an explicit alignment. 6715 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); 6716 if (Align == 0) 6717 Align = getDataLayout()->getTypeAllocSize(C->getType()); 6718 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); 6719 6720 unsigned VReg1 = MRI->createVirtualRegister(TRC); 6721 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci)) 6722 .addReg(VReg1, RegState::Define) 6723 .addConstantPoolIndex(Idx)); 6724 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr)) 6725 .addReg(NewVReg1) 6726 .addReg(VReg1)); 6727 } 6728 6729 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc)) 6730 .addMBB(TrapBB) 6731 .addImm(ARMCC::HI) 6732 .addReg(ARM::CPSR); 6733 6734 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 6735 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2) 6736 .addReg(ARM::CPSR, RegState::Define) 6737 .addReg(NewVReg1) 6738 .addImm(2)); 6739 6740 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 6741 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3) 6742 .addJumpTableIndex(MJTI) 6743 .addImm(UId)); 6744 6745 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 6746 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4) 6747 .addReg(ARM::CPSR, RegState::Define) 6748 .addReg(NewVReg2, RegState::Kill) 6749 .addReg(NewVReg3)); 6750 6751 MachineMemOperand *JTMMOLd = 6752 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(), 6753 MachineMemOperand::MOLoad, 4, 4); 6754 6755 unsigned NewVReg5 = MRI->createVirtualRegister(TRC); 6756 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5) 6757 .addReg(NewVReg4, RegState::Kill) 6758 .addImm(0) 6759 .addMemOperand(JTMMOLd)); 6760 6761 unsigned NewVReg6 = NewVReg5; 6762 if (RelocM == Reloc::PIC_) { 6763 NewVReg6 = MRI->createVirtualRegister(TRC); 6764 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6) 6765 .addReg(ARM::CPSR, RegState::Define) 6766 .addReg(NewVReg5, RegState::Kill) 6767 .addReg(NewVReg3)); 6768 } 6769 6770 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr)) 6771 .addReg(NewVReg6, RegState::Kill) 6772 .addJumpTableIndex(MJTI) 6773 .addImm(UId); 6774 } else { 6775 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6776 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1) 6777 .addFrameIndex(FI) 6778 .addImm(4) 6779 .addMemOperand(FIMMOLd)); 6780 6781 if (NumLPads < 256) { 6782 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri)) 6783 .addReg(NewVReg1) 6784 .addImm(NumLPads)); 6785 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) { 6786 unsigned VReg1 = MRI->createVirtualRegister(TRC); 6787 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1) 6788 .addImm(NumLPads & 0xFFFF)); 6789 6790 unsigned VReg2 = VReg1; 6791 if ((NumLPads & 0xFFFF0000) != 0) { 6792 VReg2 = MRI->createVirtualRegister(TRC); 6793 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2) 6794 .addReg(VReg1) 6795 .addImm(NumLPads >> 16)); 6796 } 6797 6798 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) 6799 .addReg(NewVReg1) 6800 .addReg(VReg2)); 6801 } else { 6802 MachineConstantPool *ConstantPool = MF->getConstantPool(); 6803 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); 6804 const Constant *C = ConstantInt::get(Int32Ty, NumLPads); 6805 6806 // MachineConstantPool wants an explicit alignment. 6807 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); 6808 if (Align == 0) 6809 Align = getDataLayout()->getTypeAllocSize(C->getType()); 6810 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); 6811 6812 unsigned VReg1 = MRI->createVirtualRegister(TRC); 6813 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp)) 6814 .addReg(VReg1, RegState::Define) 6815 .addConstantPoolIndex(Idx) 6816 .addImm(0)); 6817 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) 6818 .addReg(NewVReg1) 6819 .addReg(VReg1, RegState::Kill)); 6820 } 6821 6822 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc)) 6823 .addMBB(TrapBB) 6824 .addImm(ARMCC::HI) 6825 .addReg(ARM::CPSR); 6826 6827 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 6828 AddDefaultCC( 6829 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3) 6830 .addReg(NewVReg1) 6831 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); 6832 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 6833 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4) 6834 .addJumpTableIndex(MJTI) 6835 .addImm(UId)); 6836 6837 MachineMemOperand *JTMMOLd = 6838 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(), 6839 MachineMemOperand::MOLoad, 4, 4); 6840 unsigned NewVReg5 = MRI->createVirtualRegister(TRC); 6841 AddDefaultPred( 6842 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5) 6843 .addReg(NewVReg3, RegState::Kill) 6844 .addReg(NewVReg4) 6845 .addImm(0) 6846 .addMemOperand(JTMMOLd)); 6847 6848 if (RelocM == Reloc::PIC_) { 6849 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd)) 6850 .addReg(NewVReg5, RegState::Kill) 6851 .addReg(NewVReg4) 6852 .addJumpTableIndex(MJTI) 6853 .addImm(UId); 6854 } else { 6855 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr)) 6856 .addReg(NewVReg5, RegState::Kill) 6857 .addJumpTableIndex(MJTI) 6858 .addImm(UId); 6859 } 6860 } 6861 6862 // Add the jump table entries as successors to the MBB. 6863 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs; 6864 for (std::vector<MachineBasicBlock*>::iterator 6865 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) { 6866 MachineBasicBlock *CurMBB = *I; 6867 if (SeenMBBs.insert(CurMBB)) 6868 DispContBB->addSuccessor(CurMBB); 6869 } 6870 6871 // N.B. the order the invoke BBs are processed in doesn't matter here. 6872 const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF); 6873 SmallVector<MachineBasicBlock*, 64> MBBLPads; 6874 for (SmallPtrSet<MachineBasicBlock*, 64>::iterator 6875 I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) { 6876 MachineBasicBlock *BB = *I; 6877 6878 // Remove the landing pad successor from the invoke block and replace it 6879 // with the new dispatch block. 6880 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(), 6881 BB->succ_end()); 6882 while (!Successors.empty()) { 6883 MachineBasicBlock *SMBB = Successors.pop_back_val(); 6884 if (SMBB->isLandingPad()) { 6885 BB->removeSuccessor(SMBB); 6886 MBBLPads.push_back(SMBB); 6887 } 6888 } 6889 6890 BB->addSuccessor(DispatchBB); 6891 6892 // Find the invoke call and mark all of the callee-saved registers as 6893 // 'implicit defined' so that they're spilled. This prevents code from 6894 // moving instructions to before the EH block, where they will never be 6895 // executed. 6896 for (MachineBasicBlock::reverse_iterator 6897 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) { 6898 if (!II->isCall()) continue; 6899 6900 DenseMap<unsigned, bool> DefRegs; 6901 for (MachineInstr::mop_iterator 6902 OI = II->operands_begin(), OE = II->operands_end(); 6903 OI != OE; ++OI) { 6904 if (!OI->isReg()) continue; 6905 DefRegs[OI->getReg()] = true; 6906 } 6907 6908 MachineInstrBuilder MIB(*MF, &*II); 6909 6910 for (unsigned i = 0; SavedRegs[i] != 0; ++i) { 6911 unsigned Reg = SavedRegs[i]; 6912 if (Subtarget->isThumb2() && 6913 !ARM::tGPRRegClass.contains(Reg) && 6914 !ARM::hGPRRegClass.contains(Reg)) 6915 continue; 6916 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg)) 6917 continue; 6918 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg)) 6919 continue; 6920 if (!DefRegs[Reg]) 6921 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 6922 } 6923 6924 break; 6925 } 6926 } 6927 6928 // Mark all former landing pads as non-landing pads. The dispatch is the only 6929 // landing pad now. 6930 for (SmallVectorImpl<MachineBasicBlock*>::iterator 6931 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I) 6932 (*I)->setIsLandingPad(false); 6933 6934 // The instruction is gone now. 6935 MI->eraseFromParent(); 6936 6937 return MBB; 6938} 6939 6940static 6941MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) { 6942 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 6943 E = MBB->succ_end(); I != E; ++I) 6944 if (*I != Succ) 6945 return *I; 6946 llvm_unreachable("Expecting a BB with two successors!"); 6947} 6948 6949MachineBasicBlock *ARMTargetLowering:: 6950EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const { 6951 // This pseudo instruction has 3 operands: dst, src, size 6952 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold(). 6953 // Otherwise, we will generate unrolled scalar copies. 6954 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6955 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6956 MachineFunction::iterator It = BB; 6957 ++It; 6958 6959 unsigned dest = MI->getOperand(0).getReg(); 6960 unsigned src = MI->getOperand(1).getReg(); 6961 unsigned SizeVal = MI->getOperand(2).getImm(); 6962 unsigned Align = MI->getOperand(3).getImm(); 6963 DebugLoc dl = MI->getDebugLoc(); 6964 6965 bool isThumb2 = Subtarget->isThumb2(); 6966 MachineFunction *MF = BB->getParent(); 6967 MachineRegisterInfo &MRI = MF->getRegInfo(); 6968 unsigned ldrOpc, strOpc, UnitSize = 0; 6969 6970 const TargetRegisterClass *TRC = isThumb2 ? 6971 (const TargetRegisterClass*)&ARM::tGPRRegClass : 6972 (const TargetRegisterClass*)&ARM::GPRRegClass; 6973 const TargetRegisterClass *TRC_Vec = 0; 6974 6975 if (Align & 1) { 6976 ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM; 6977 strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM; 6978 UnitSize = 1; 6979 } else if (Align & 2) { 6980 ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST; 6981 strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST; 6982 UnitSize = 2; 6983 } else { 6984 // Check whether we can use NEON instructions. 6985 if (!MF->getFunction()->getAttributes(). 6986 hasAttribute(AttributeSet::FunctionIndex, 6987 Attribute::NoImplicitFloat) && 6988 Subtarget->hasNEON()) { 6989 if ((Align % 16 == 0) && SizeVal >= 16) { 6990 ldrOpc = ARM::VLD1q32wb_fixed; 6991 strOpc = ARM::VST1q32wb_fixed; 6992 UnitSize = 16; 6993 TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass; 6994 } 6995 else if ((Align % 8 == 0) && SizeVal >= 8) { 6996 ldrOpc = ARM::VLD1d32wb_fixed; 6997 strOpc = ARM::VST1d32wb_fixed; 6998 UnitSize = 8; 6999 TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass; 7000 } 7001 } 7002 // Can't use NEON instructions. 7003 if (UnitSize == 0) { 7004 ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 7005 strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM; 7006 UnitSize = 4; 7007 } 7008 } 7009 7010 unsigned BytesLeft = SizeVal % UnitSize; 7011 unsigned LoopSize = SizeVal - BytesLeft; 7012 7013 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) { 7014 // Use LDR and STR to copy. 7015 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize) 7016 // [destOut] = STR_POST(scratch, destIn, UnitSize) 7017 unsigned srcIn = src; 7018 unsigned destIn = dest; 7019 for (unsigned i = 0; i < LoopSize; i+=UnitSize) { 7020 unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC); 7021 unsigned srcOut = MRI.createVirtualRegister(TRC); 7022 unsigned destOut = MRI.createVirtualRegister(TRC); 7023 if (UnitSize >= 8) { 7024 AddDefaultPred(BuildMI(*BB, MI, dl, 7025 TII->get(ldrOpc), scratch) 7026 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0)); 7027 7028 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) 7029 .addReg(destIn).addImm(0).addReg(scratch)); 7030 } else if (isThumb2) { 7031 AddDefaultPred(BuildMI(*BB, MI, dl, 7032 TII->get(ldrOpc), scratch) 7033 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize)); 7034 7035 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) 7036 .addReg(scratch).addReg(destIn) 7037 .addImm(UnitSize)); 7038 } else { 7039 AddDefaultPred(BuildMI(*BB, MI, dl, 7040 TII->get(ldrOpc), scratch) 7041 .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0) 7042 .addImm(UnitSize)); 7043 7044 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) 7045 .addReg(scratch).addReg(destIn) 7046 .addReg(0).addImm(UnitSize)); 7047 } 7048 srcIn = srcOut; 7049 destIn = destOut; 7050 } 7051 7052 // Handle the leftover bytes with LDRB and STRB. 7053 // [scratch, srcOut] = LDRB_POST(srcIn, 1) 7054 // [destOut] = STRB_POST(scratch, destIn, 1) 7055 ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM; 7056 strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM; 7057 for (unsigned i = 0; i < BytesLeft; i++) { 7058 unsigned scratch = MRI.createVirtualRegister(TRC); 7059 unsigned srcOut = MRI.createVirtualRegister(TRC); 7060 unsigned destOut = MRI.createVirtualRegister(TRC); 7061 if (isThumb2) { 7062 AddDefaultPred(BuildMI(*BB, MI, dl, 7063 TII->get(ldrOpc),scratch) 7064 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1)); 7065 7066 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) 7067 .addReg(scratch).addReg(destIn) 7068 .addReg(0).addImm(1)); 7069 } else { 7070 AddDefaultPred(BuildMI(*BB, MI, dl, 7071 TII->get(ldrOpc),scratch) 7072 .addReg(srcOut, RegState::Define).addReg(srcIn) 7073 .addReg(0).addImm(1)); 7074 7075 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut) 7076 .addReg(scratch).addReg(destIn) 7077 .addReg(0).addImm(1)); 7078 } 7079 srcIn = srcOut; 7080 destIn = destOut; 7081 } 7082 MI->eraseFromParent(); // The instruction is gone now. 7083 return BB; 7084 } 7085 7086 // Expand the pseudo op to a loop. 7087 // thisMBB: 7088 // ... 7089 // movw varEnd, # --> with thumb2 7090 // movt varEnd, # 7091 // ldrcp varEnd, idx --> without thumb2 7092 // fallthrough --> loopMBB 7093 // loopMBB: 7094 // PHI varPhi, varEnd, varLoop 7095 // PHI srcPhi, src, srcLoop 7096 // PHI destPhi, dst, destLoop 7097 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) 7098 // [destLoop] = STR_POST(scratch, destPhi, UnitSize) 7099 // subs varLoop, varPhi, #UnitSize 7100 // bne loopMBB 7101 // fallthrough --> exitMBB 7102 // exitMBB: 7103 // epilogue to handle left-over bytes 7104 // [scratch, srcOut] = LDRB_POST(srcLoop, 1) 7105 // [destOut] = STRB_POST(scratch, destLoop, 1) 7106 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 7107 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 7108 MF->insert(It, loopMBB); 7109 MF->insert(It, exitMBB); 7110 7111 // Transfer the remainder of BB and its successor edges to exitMBB. 7112 exitMBB->splice(exitMBB->begin(), BB, 7113 llvm::next(MachineBasicBlock::iterator(MI)), 7114 BB->end()); 7115 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 7116 7117 // Load an immediate to varEnd. 7118 unsigned varEnd = MRI.createVirtualRegister(TRC); 7119 if (isThumb2) { 7120 unsigned VReg1 = varEnd; 7121 if ((LoopSize & 0xFFFF0000) != 0) 7122 VReg1 = MRI.createVirtualRegister(TRC); 7123 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1) 7124 .addImm(LoopSize & 0xFFFF)); 7125 7126 if ((LoopSize & 0xFFFF0000) != 0) 7127 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd) 7128 .addReg(VReg1) 7129 .addImm(LoopSize >> 16)); 7130 } else { 7131 MachineConstantPool *ConstantPool = MF->getConstantPool(); 7132 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); 7133 const Constant *C = ConstantInt::get(Int32Ty, LoopSize); 7134 7135 // MachineConstantPool wants an explicit alignment. 7136 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); 7137 if (Align == 0) 7138 Align = getDataLayout()->getTypeAllocSize(C->getType()); 7139 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); 7140 7141 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp)) 7142 .addReg(varEnd, RegState::Define) 7143 .addConstantPoolIndex(Idx) 7144 .addImm(0)); 7145 } 7146 BB->addSuccessor(loopMBB); 7147 7148 // Generate the loop body: 7149 // varPhi = PHI(varLoop, varEnd) 7150 // srcPhi = PHI(srcLoop, src) 7151 // destPhi = PHI(destLoop, dst) 7152 MachineBasicBlock *entryBB = BB; 7153 BB = loopMBB; 7154 unsigned varLoop = MRI.createVirtualRegister(TRC); 7155 unsigned varPhi = MRI.createVirtualRegister(TRC); 7156 unsigned srcLoop = MRI.createVirtualRegister(TRC); 7157 unsigned srcPhi = MRI.createVirtualRegister(TRC); 7158 unsigned destLoop = MRI.createVirtualRegister(TRC); 7159 unsigned destPhi = MRI.createVirtualRegister(TRC); 7160 7161 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi) 7162 .addReg(varLoop).addMBB(loopMBB) 7163 .addReg(varEnd).addMBB(entryBB); 7164 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi) 7165 .addReg(srcLoop).addMBB(loopMBB) 7166 .addReg(src).addMBB(entryBB); 7167 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi) 7168 .addReg(destLoop).addMBB(loopMBB) 7169 .addReg(dest).addMBB(entryBB); 7170 7171 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) 7172 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz) 7173 unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC); 7174 if (UnitSize >= 8) { 7175 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch) 7176 .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0)); 7177 7178 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop) 7179 .addReg(destPhi).addImm(0).addReg(scratch)); 7180 } else if (isThumb2) { 7181 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch) 7182 .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize)); 7183 7184 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop) 7185 .addReg(scratch).addReg(destPhi) 7186 .addImm(UnitSize)); 7187 } else { 7188 AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch) 7189 .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0) 7190 .addImm(UnitSize)); 7191 7192 AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop) 7193 .addReg(scratch).addReg(destPhi) 7194 .addReg(0).addImm(UnitSize)); 7195 } 7196 7197 // Decrement loop variable by UnitSize. 7198 MachineInstrBuilder MIB = BuildMI(BB, dl, 7199 TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop); 7200 AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize))); 7201 MIB->getOperand(5).setReg(ARM::CPSR); 7202 MIB->getOperand(5).setIsDef(true); 7203 7204 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 7205 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 7206 7207 // loopMBB can loop back to loopMBB or fall through to exitMBB. 7208 BB->addSuccessor(loopMBB); 7209 BB->addSuccessor(exitMBB); 7210 7211 // Add epilogue to handle BytesLeft. 7212 BB = exitMBB; 7213 MachineInstr *StartOfExit = exitMBB->begin(); 7214 ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM; 7215 strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM; 7216 7217 // [scratch, srcOut] = LDRB_POST(srcLoop, 1) 7218 // [destOut] = STRB_POST(scratch, destLoop, 1) 7219 unsigned srcIn = srcLoop; 7220 unsigned destIn = destLoop; 7221 for (unsigned i = 0; i < BytesLeft; i++) { 7222 unsigned scratch = MRI.createVirtualRegister(TRC); 7223 unsigned srcOut = MRI.createVirtualRegister(TRC); 7224 unsigned destOut = MRI.createVirtualRegister(TRC); 7225 if (isThumb2) { 7226 AddDefaultPred(BuildMI(*BB, StartOfExit, dl, 7227 TII->get(ldrOpc),scratch) 7228 .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1)); 7229 7230 AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut) 7231 .addReg(scratch).addReg(destIn) 7232 .addImm(1)); 7233 } else { 7234 AddDefaultPred(BuildMI(*BB, StartOfExit, dl, 7235 TII->get(ldrOpc),scratch) 7236 .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1)); 7237 7238 AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut) 7239 .addReg(scratch).addReg(destIn) 7240 .addReg(0).addImm(1)); 7241 } 7242 srcIn = srcOut; 7243 destIn = destOut; 7244 } 7245 7246 MI->eraseFromParent(); // The instruction is gone now. 7247 return BB; 7248} 7249 7250MachineBasicBlock * 7251ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 7252 MachineBasicBlock *BB) const { 7253 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 7254 DebugLoc dl = MI->getDebugLoc(); 7255 bool isThumb2 = Subtarget->isThumb2(); 7256 switch (MI->getOpcode()) { 7257 default: { 7258 MI->dump(); 7259 llvm_unreachable("Unexpected instr type to insert"); 7260 } 7261 // The Thumb2 pre-indexed stores have the same MI operands, they just 7262 // define them differently in the .td files from the isel patterns, so 7263 // they need pseudos. 7264 case ARM::t2STR_preidx: 7265 MI->setDesc(TII->get(ARM::t2STR_PRE)); 7266 return BB; 7267 case ARM::t2STRB_preidx: 7268 MI->setDesc(TII->get(ARM::t2STRB_PRE)); 7269 return BB; 7270 case ARM::t2STRH_preidx: 7271 MI->setDesc(TII->get(ARM::t2STRH_PRE)); 7272 return BB; 7273 7274 case ARM::STRi_preidx: 7275 case ARM::STRBi_preidx: { 7276 unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ? 7277 ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM; 7278 // Decode the offset. 7279 unsigned Offset = MI->getOperand(4).getImm(); 7280 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub; 7281 Offset = ARM_AM::getAM2Offset(Offset); 7282 if (isSub) 7283 Offset = -Offset; 7284 7285 MachineMemOperand *MMO = *MI->memoperands_begin(); 7286 BuildMI(*BB, MI, dl, TII->get(NewOpc)) 7287 .addOperand(MI->getOperand(0)) // Rn_wb 7288 .addOperand(MI->getOperand(1)) // Rt 7289 .addOperand(MI->getOperand(2)) // Rn 7290 .addImm(Offset) // offset (skip GPR==zero_reg) 7291 .addOperand(MI->getOperand(5)) // pred 7292 .addOperand(MI->getOperand(6)) 7293 .addMemOperand(MMO); 7294 MI->eraseFromParent(); 7295 return BB; 7296 } 7297 case ARM::STRr_preidx: 7298 case ARM::STRBr_preidx: 7299 case ARM::STRH_preidx: { 7300 unsigned NewOpc; 7301 switch (MI->getOpcode()) { 7302 default: llvm_unreachable("unexpected opcode!"); 7303 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break; 7304 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break; 7305 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break; 7306 } 7307 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc)); 7308 for (unsigned i = 0; i < MI->getNumOperands(); ++i) 7309 MIB.addOperand(MI->getOperand(i)); 7310 MI->eraseFromParent(); 7311 return BB; 7312 } 7313 case ARM::ATOMIC_LOAD_ADD_I8: 7314 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); 7315 case ARM::ATOMIC_LOAD_ADD_I16: 7316 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); 7317 case ARM::ATOMIC_LOAD_ADD_I32: 7318 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); 7319 7320 case ARM::ATOMIC_LOAD_AND_I8: 7321 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); 7322 case ARM::ATOMIC_LOAD_AND_I16: 7323 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); 7324 case ARM::ATOMIC_LOAD_AND_I32: 7325 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); 7326 7327 case ARM::ATOMIC_LOAD_OR_I8: 7328 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); 7329 case ARM::ATOMIC_LOAD_OR_I16: 7330 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); 7331 case ARM::ATOMIC_LOAD_OR_I32: 7332 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); 7333 7334 case ARM::ATOMIC_LOAD_XOR_I8: 7335 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr); 7336 case ARM::ATOMIC_LOAD_XOR_I16: 7337 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr); 7338 case ARM::ATOMIC_LOAD_XOR_I32: 7339 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr); 7340 7341 case ARM::ATOMIC_LOAD_NAND_I8: 7342 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr); 7343 case ARM::ATOMIC_LOAD_NAND_I16: 7344 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr); 7345 case ARM::ATOMIC_LOAD_NAND_I32: 7346 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr); 7347 7348 case ARM::ATOMIC_LOAD_SUB_I8: 7349 return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); 7350 case ARM::ATOMIC_LOAD_SUB_I16: 7351 return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); 7352 case ARM::ATOMIC_LOAD_SUB_I32: 7353 return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); 7354 7355 case ARM::ATOMIC_LOAD_MIN_I8: 7356 return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT); 7357 case ARM::ATOMIC_LOAD_MIN_I16: 7358 return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT); 7359 case ARM::ATOMIC_LOAD_MIN_I32: 7360 return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT); 7361 7362 case ARM::ATOMIC_LOAD_MAX_I8: 7363 return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT); 7364 case ARM::ATOMIC_LOAD_MAX_I16: 7365 return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT); 7366 case ARM::ATOMIC_LOAD_MAX_I32: 7367 return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT); 7368 7369 case ARM::ATOMIC_LOAD_UMIN_I8: 7370 return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO); 7371 case ARM::ATOMIC_LOAD_UMIN_I16: 7372 return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO); 7373 case ARM::ATOMIC_LOAD_UMIN_I32: 7374 return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO); 7375 7376 case ARM::ATOMIC_LOAD_UMAX_I8: 7377 return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI); 7378 case ARM::ATOMIC_LOAD_UMAX_I16: 7379 return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI); 7380 case ARM::ATOMIC_LOAD_UMAX_I32: 7381 return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI); 7382 7383 case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0); 7384 case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0); 7385 case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0); 7386 7387 case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1); 7388 case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2); 7389 case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4); 7390 7391 7392 case ARM::ATOMADD6432: 7393 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr, 7394 isThumb2 ? ARM::t2ADCrr : ARM::ADCrr, 7395 /*NeedsCarry*/ true); 7396 case ARM::ATOMSUB6432: 7397 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, 7398 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, 7399 /*NeedsCarry*/ true); 7400 case ARM::ATOMOR6432: 7401 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr, 7402 isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); 7403 case ARM::ATOMXOR6432: 7404 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr, 7405 isThumb2 ? ARM::t2EORrr : ARM::EORrr); 7406 case ARM::ATOMAND6432: 7407 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr, 7408 isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); 7409 case ARM::ATOMSWAP6432: 7410 return EmitAtomicBinary64(MI, BB, 0, 0, false); 7411 case ARM::ATOMCMPXCHG6432: 7412 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, 7413 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, 7414 /*NeedsCarry*/ false, /*IsCmpxchg*/true); 7415 case ARM::ATOMMIN6432: 7416 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, 7417 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, 7418 /*NeedsCarry*/ true, /*IsCmpxchg*/false, 7419 /*IsMinMax*/ true, ARMCC::LT); 7420 case ARM::ATOMMAX6432: 7421 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, 7422 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, 7423 /*NeedsCarry*/ true, /*IsCmpxchg*/false, 7424 /*IsMinMax*/ true, ARMCC::GE); 7425 case ARM::ATOMUMIN6432: 7426 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, 7427 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, 7428 /*NeedsCarry*/ true, /*IsCmpxchg*/false, 7429 /*IsMinMax*/ true, ARMCC::LO); 7430 case ARM::ATOMUMAX6432: 7431 return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr, 7432 isThumb2 ? ARM::t2SBCrr : ARM::SBCrr, 7433 /*NeedsCarry*/ true, /*IsCmpxchg*/false, 7434 /*IsMinMax*/ true, ARMCC::HS); 7435 7436 case ARM::tMOVCCr_pseudo: { 7437 // To "insert" a SELECT_CC instruction, we actually have to insert the 7438 // diamond control-flow pattern. The incoming instruction knows the 7439 // destination vreg to set, the condition code register to branch on, the 7440 // true/false values to select between, and a branch opcode to use. 7441 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7442 MachineFunction::iterator It = BB; 7443 ++It; 7444 7445 // thisMBB: 7446 // ... 7447 // TrueVal = ... 7448 // cmpTY ccX, r1, r2 7449 // bCC copy1MBB 7450 // fallthrough --> copy0MBB 7451 MachineBasicBlock *thisMBB = BB; 7452 MachineFunction *F = BB->getParent(); 7453 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 7454 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 7455 F->insert(It, copy0MBB); 7456 F->insert(It, sinkMBB); 7457 7458 // Transfer the remainder of BB and its successor edges to sinkMBB. 7459 sinkMBB->splice(sinkMBB->begin(), BB, 7460 llvm::next(MachineBasicBlock::iterator(MI)), 7461 BB->end()); 7462 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 7463 7464 BB->addSuccessor(copy0MBB); 7465 BB->addSuccessor(sinkMBB); 7466 7467 BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB) 7468 .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); 7469 7470 // copy0MBB: 7471 // %FalseValue = ... 7472 // # fallthrough to sinkMBB 7473 BB = copy0MBB; 7474 7475 // Update machine-CFG edges 7476 BB->addSuccessor(sinkMBB); 7477 7478 // sinkMBB: 7479 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 7480 // ... 7481 BB = sinkMBB; 7482 BuildMI(*BB, BB->begin(), dl, 7483 TII->get(ARM::PHI), MI->getOperand(0).getReg()) 7484 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) 7485 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 7486 7487 MI->eraseFromParent(); // The pseudo instruction is gone now. 7488 return BB; 7489 } 7490 7491 case ARM::BCCi64: 7492 case ARM::BCCZi64: { 7493 // If there is an unconditional branch to the other successor, remove it. 7494 BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); 7495 7496 // Compare both parts that make up the double comparison separately for 7497 // equality. 7498 bool RHSisZero = MI->getOpcode() == ARM::BCCZi64; 7499 7500 unsigned LHS1 = MI->getOperand(1).getReg(); 7501 unsigned LHS2 = MI->getOperand(2).getReg(); 7502 if (RHSisZero) { 7503 AddDefaultPred(BuildMI(BB, dl, 7504 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 7505 .addReg(LHS1).addImm(0)); 7506 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 7507 .addReg(LHS2).addImm(0) 7508 .addImm(ARMCC::EQ).addReg(ARM::CPSR); 7509 } else { 7510 unsigned RHS1 = MI->getOperand(3).getReg(); 7511 unsigned RHS2 = MI->getOperand(4).getReg(); 7512 AddDefaultPred(BuildMI(BB, dl, 7513 TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 7514 .addReg(LHS1).addReg(RHS1)); 7515 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 7516 .addReg(LHS2).addReg(RHS2) 7517 .addImm(ARMCC::EQ).addReg(ARM::CPSR); 7518 } 7519 7520 MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB(); 7521 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB); 7522 if (MI->getOperand(0).getImm() == ARMCC::NE) 7523 std::swap(destMBB, exitMBB); 7524 7525 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 7526 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR); 7527 if (isThumb2) 7528 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB)); 7529 else 7530 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB); 7531 7532 MI->eraseFromParent(); // The pseudo instruction is gone now. 7533 return BB; 7534 } 7535 7536 case ARM::Int_eh_sjlj_setjmp: 7537 case ARM::Int_eh_sjlj_setjmp_nofp: 7538 case ARM::tInt_eh_sjlj_setjmp: 7539 case ARM::t2Int_eh_sjlj_setjmp: 7540 case ARM::t2Int_eh_sjlj_setjmp_nofp: 7541 EmitSjLjDispatchBlock(MI, BB); 7542 return BB; 7543 7544 case ARM::ABS: 7545 case ARM::t2ABS: { 7546 // To insert an ABS instruction, we have to insert the 7547 // diamond control-flow pattern. The incoming instruction knows the 7548 // source vreg to test against 0, the destination vreg to set, 7549 // the condition code register to branch on, the 7550 // true/false values to select between, and a branch opcode to use. 7551 // It transforms 7552 // V1 = ABS V0 7553 // into 7554 // V2 = MOVS V0 7555 // BCC (branch to SinkBB if V0 >= 0) 7556 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0) 7557 // SinkBB: V1 = PHI(V2, V3) 7558 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7559 MachineFunction::iterator BBI = BB; 7560 ++BBI; 7561 MachineFunction *Fn = BB->getParent(); 7562 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB); 7563 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB); 7564 Fn->insert(BBI, RSBBB); 7565 Fn->insert(BBI, SinkBB); 7566 7567 unsigned int ABSSrcReg = MI->getOperand(1).getReg(); 7568 unsigned int ABSDstReg = MI->getOperand(0).getReg(); 7569 bool isThumb2 = Subtarget->isThumb2(); 7570 MachineRegisterInfo &MRI = Fn->getRegInfo(); 7571 // In Thumb mode S must not be specified if source register is the SP or 7572 // PC and if destination register is the SP, so restrict register class 7573 unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ? 7574 (const TargetRegisterClass*)&ARM::rGPRRegClass : 7575 (const TargetRegisterClass*)&ARM::GPRRegClass); 7576 7577 // Transfer the remainder of BB and its successor edges to sinkMBB. 7578 SinkBB->splice(SinkBB->begin(), BB, 7579 llvm::next(MachineBasicBlock::iterator(MI)), 7580 BB->end()); 7581 SinkBB->transferSuccessorsAndUpdatePHIs(BB); 7582 7583 BB->addSuccessor(RSBBB); 7584 BB->addSuccessor(SinkBB); 7585 7586 // fall through to SinkMBB 7587 RSBBB->addSuccessor(SinkBB); 7588 7589 // insert a cmp at the end of BB 7590 AddDefaultPred(BuildMI(BB, dl, 7591 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 7592 .addReg(ABSSrcReg).addImm(0)); 7593 7594 // insert a bcc with opposite CC to ARMCC::MI at the end of BB 7595 BuildMI(BB, dl, 7596 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB) 7597 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR); 7598 7599 // insert rsbri in RSBBB 7600 // Note: BCC and rsbri will be converted into predicated rsbmi 7601 // by if-conversion pass 7602 BuildMI(*RSBBB, RSBBB->begin(), dl, 7603 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg) 7604 .addReg(ABSSrcReg, RegState::Kill) 7605 .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0); 7606 7607 // insert PHI in SinkBB, 7608 // reuse ABSDstReg to not change uses of ABS instruction 7609 BuildMI(*SinkBB, SinkBB->begin(), dl, 7610 TII->get(ARM::PHI), ABSDstReg) 7611 .addReg(NewRsbDstReg).addMBB(RSBBB) 7612 .addReg(ABSSrcReg).addMBB(BB); 7613 7614 // remove ABS instruction 7615 MI->eraseFromParent(); 7616 7617 // return last added BB 7618 return SinkBB; 7619 } 7620 case ARM::COPY_STRUCT_BYVAL_I32: 7621 ++NumLoopByVals; 7622 return EmitStructByval(MI, BB); 7623 } 7624} 7625 7626void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, 7627 SDNode *Node) const { 7628 if (!MI->hasPostISelHook()) { 7629 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 7630 "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'"); 7631 return; 7632 } 7633 7634 const MCInstrDesc *MCID = &MI->getDesc(); 7635 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB, 7636 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional 7637 // operand is still set to noreg. If needed, set the optional operand's 7638 // register to CPSR, and remove the redundant implicit def. 7639 // 7640 // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>). 7641 7642 // Rename pseudo opcodes. 7643 unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode()); 7644 if (NewOpc) { 7645 const ARMBaseInstrInfo *TII = 7646 static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo()); 7647 MCID = &TII->get(NewOpc); 7648 7649 assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 && 7650 "converted opcode should be the same except for cc_out"); 7651 7652 MI->setDesc(*MCID); 7653 7654 // Add the optional cc_out operand 7655 MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true)); 7656 } 7657 unsigned ccOutIdx = MCID->getNumOperands() - 1; 7658 7659 // Any ARM instruction that sets the 's' bit should specify an optional 7660 // "cc_out" operand in the last operand position. 7661 if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) { 7662 assert(!NewOpc && "Optional cc_out operand required"); 7663 return; 7664 } 7665 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it 7666 // since we already have an optional CPSR def. 7667 bool definesCPSR = false; 7668 bool deadCPSR = false; 7669 for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands(); 7670 i != e; ++i) { 7671 const MachineOperand &MO = MI->getOperand(i); 7672 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) { 7673 definesCPSR = true; 7674 if (MO.isDead()) 7675 deadCPSR = true; 7676 MI->RemoveOperand(i); 7677 break; 7678 } 7679 } 7680 if (!definesCPSR) { 7681 assert(!NewOpc && "Optional cc_out operand required"); 7682 return; 7683 } 7684 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag"); 7685 if (deadCPSR) { 7686 assert(!MI->getOperand(ccOutIdx).getReg() && 7687 "expect uninitialized optional cc_out operand"); 7688 return; 7689 } 7690 7691 // If this instruction was defined with an optional CPSR def and its dag node 7692 // had a live implicit CPSR def, then activate the optional CPSR def. 7693 MachineOperand &MO = MI->getOperand(ccOutIdx); 7694 MO.setReg(ARM::CPSR); 7695 MO.setIsDef(true); 7696} 7697 7698//===----------------------------------------------------------------------===// 7699// ARM Optimization Hooks 7700//===----------------------------------------------------------------------===// 7701 7702// Helper function that checks if N is a null or all ones constant. 7703static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { 7704 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 7705 if (!C) 7706 return false; 7707 return AllOnes ? C->isAllOnesValue() : C->isNullValue(); 7708} 7709 7710// Return true if N is conditionally 0 or all ones. 7711// Detects these expressions where cc is an i1 value: 7712// 7713// (select cc 0, y) [AllOnes=0] 7714// (select cc y, 0) [AllOnes=0] 7715// (zext cc) [AllOnes=0] 7716// (sext cc) [AllOnes=0/1] 7717// (select cc -1, y) [AllOnes=1] 7718// (select cc y, -1) [AllOnes=1] 7719// 7720// Invert is set when N is the null/all ones constant when CC is false. 7721// OtherOp is set to the alternative value of N. 7722static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, 7723 SDValue &CC, bool &Invert, 7724 SDValue &OtherOp, 7725 SelectionDAG &DAG) { 7726 switch (N->getOpcode()) { 7727 default: return false; 7728 case ISD::SELECT: { 7729 CC = N->getOperand(0); 7730 SDValue N1 = N->getOperand(1); 7731 SDValue N2 = N->getOperand(2); 7732 if (isZeroOrAllOnes(N1, AllOnes)) { 7733 Invert = false; 7734 OtherOp = N2; 7735 return true; 7736 } 7737 if (isZeroOrAllOnes(N2, AllOnes)) { 7738 Invert = true; 7739 OtherOp = N1; 7740 return true; 7741 } 7742 return false; 7743 } 7744 case ISD::ZERO_EXTEND: 7745 // (zext cc) can never be the all ones value. 7746 if (AllOnes) 7747 return false; 7748 // Fall through. 7749 case ISD::SIGN_EXTEND: { 7750 EVT VT = N->getValueType(0); 7751 CC = N->getOperand(0); 7752 if (CC.getValueType() != MVT::i1) 7753 return false; 7754 Invert = !AllOnes; 7755 if (AllOnes) 7756 // When looking for an AllOnes constant, N is an sext, and the 'other' 7757 // value is 0. 7758 OtherOp = DAG.getConstant(0, VT); 7759 else if (N->getOpcode() == ISD::ZERO_EXTEND) 7760 // When looking for a 0 constant, N can be zext or sext. 7761 OtherOp = DAG.getConstant(1, VT); 7762 else 7763 OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT); 7764 return true; 7765 } 7766 } 7767} 7768 7769// Combine a constant select operand into its use: 7770// 7771// (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 7772// (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 7773// (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] 7774// (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 7775// (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 7776// 7777// The transform is rejected if the select doesn't have a constant operand that 7778// is null, or all ones when AllOnes is set. 7779// 7780// Also recognize sext/zext from i1: 7781// 7782// (add (zext cc), x) -> (select cc (add x, 1), x) 7783// (add (sext cc), x) -> (select cc (add x, -1), x) 7784// 7785// These transformations eventually create predicated instructions. 7786// 7787// @param N The node to transform. 7788// @param Slct The N operand that is a select. 7789// @param OtherOp The other N operand (x above). 7790// @param DCI Context. 7791// @param AllOnes Require the select constant to be all ones instead of null. 7792// @returns The new node, or SDValue() on failure. 7793static 7794SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7795 TargetLowering::DAGCombinerInfo &DCI, 7796 bool AllOnes = false) { 7797 SelectionDAG &DAG = DCI.DAG; 7798 EVT VT = N->getValueType(0); 7799 SDValue NonConstantVal; 7800 SDValue CCOp; 7801 bool SwapSelectOps; 7802 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, 7803 NonConstantVal, DAG)) 7804 return SDValue(); 7805 7806 // Slct is now know to be the desired identity constant when CC is true. 7807 SDValue TrueVal = OtherOp; 7808 SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 7809 OtherOp, NonConstantVal); 7810 // Unless SwapSelectOps says CC should be false. 7811 if (SwapSelectOps) 7812 std::swap(TrueVal, FalseVal); 7813 7814 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7815 CCOp, TrueVal, FalseVal); 7816} 7817 7818// Attempt combineSelectAndUse on each operand of a commutative operator N. 7819static 7820SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes, 7821 TargetLowering::DAGCombinerInfo &DCI) { 7822 SDValue N0 = N->getOperand(0); 7823 SDValue N1 = N->getOperand(1); 7824 if (N0.getNode()->hasOneUse()) { 7825 SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes); 7826 if (Result.getNode()) 7827 return Result; 7828 } 7829 if (N1.getNode()->hasOneUse()) { 7830 SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes); 7831 if (Result.getNode()) 7832 return Result; 7833 } 7834 return SDValue(); 7835} 7836 7837// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction 7838// (only after legalization). 7839static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1, 7840 TargetLowering::DAGCombinerInfo &DCI, 7841 const ARMSubtarget *Subtarget) { 7842 7843 // Only perform optimization if after legalize, and if NEON is available. We 7844 // also expected both operands to be BUILD_VECTORs. 7845 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON() 7846 || N0.getOpcode() != ISD::BUILD_VECTOR 7847 || N1.getOpcode() != ISD::BUILD_VECTOR) 7848 return SDValue(); 7849 7850 // Check output type since VPADDL operand elements can only be 8, 16, or 32. 7851 EVT VT = N->getValueType(0); 7852 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64) 7853 return SDValue(); 7854 7855 // Check that the vector operands are of the right form. 7856 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR 7857 // operands, where N is the size of the formed vector. 7858 // Each EXTRACT_VECTOR should have the same input vector and odd or even 7859 // index such that we have a pair wise add pattern. 7860 7861 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing. 7862 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 7863 return SDValue(); 7864 SDValue Vec = N0->getOperand(0)->getOperand(0); 7865 SDNode *V = Vec.getNode(); 7866 unsigned nextIndex = 0; 7867 7868 // For each operands to the ADD which are BUILD_VECTORs, 7869 // check to see if each of their operands are an EXTRACT_VECTOR with 7870 // the same vector and appropriate index. 7871 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) { 7872 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT 7873 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 7874 7875 SDValue ExtVec0 = N0->getOperand(i); 7876 SDValue ExtVec1 = N1->getOperand(i); 7877 7878 // First operand is the vector, verify its the same. 7879 if (V != ExtVec0->getOperand(0).getNode() || 7880 V != ExtVec1->getOperand(0).getNode()) 7881 return SDValue(); 7882 7883 // Second is the constant, verify its correct. 7884 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1)); 7885 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1)); 7886 7887 // For the constant, we want to see all the even or all the odd. 7888 if (!C0 || !C1 || C0->getZExtValue() != nextIndex 7889 || C1->getZExtValue() != nextIndex+1) 7890 return SDValue(); 7891 7892 // Increment index. 7893 nextIndex+=2; 7894 } else 7895 return SDValue(); 7896 } 7897 7898 // Create VPADDL node. 7899 SelectionDAG &DAG = DCI.DAG; 7900 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7901 7902 // Build operand list. 7903 SmallVector<SDValue, 8> Ops; 7904 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, 7905 TLI.getPointerTy())); 7906 7907 // Input is the vector. 7908 Ops.push_back(Vec); 7909 7910 // Get widened type and narrowed type. 7911 MVT widenType; 7912 unsigned numElem = VT.getVectorNumElements(); 7913 switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { 7914 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break; 7915 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break; 7916 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break; 7917 default: 7918 llvm_unreachable("Invalid vector element type for padd optimization."); 7919 } 7920 7921 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), 7922 widenType, &Ops[0], Ops.size()); 7923 return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, tmp); 7924} 7925 7926static SDValue findMUL_LOHI(SDValue V) { 7927 if (V->getOpcode() == ISD::UMUL_LOHI || 7928 V->getOpcode() == ISD::SMUL_LOHI) 7929 return V; 7930 return SDValue(); 7931} 7932 7933static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode, 7934 TargetLowering::DAGCombinerInfo &DCI, 7935 const ARMSubtarget *Subtarget) { 7936 7937 if (Subtarget->isThumb1Only()) return SDValue(); 7938 7939 // Only perform the checks after legalize when the pattern is available. 7940 if (DCI.isBeforeLegalize()) return SDValue(); 7941 7942 // Look for multiply add opportunities. 7943 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where 7944 // each add nodes consumes a value from ISD::UMUL_LOHI and there is 7945 // a glue link from the first add to the second add. 7946 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by 7947 // a S/UMLAL instruction. 7948 // loAdd UMUL_LOHI 7949 // \ / :lo \ :hi 7950 // \ / \ [no multiline comment] 7951 // ADDC | hiAdd 7952 // \ :glue / / 7953 // \ / / 7954 // ADDE 7955 // 7956 assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC"); 7957 SDValue AddcOp0 = AddcNode->getOperand(0); 7958 SDValue AddcOp1 = AddcNode->getOperand(1); 7959 7960 // Check if the two operands are from the same mul_lohi node. 7961 if (AddcOp0.getNode() == AddcOp1.getNode()) 7962 return SDValue(); 7963 7964 assert(AddcNode->getNumValues() == 2 && 7965 AddcNode->getValueType(0) == MVT::i32 && 7966 "Expect ADDC with two result values. First: i32"); 7967 7968 // Check that we have a glued ADDC node. 7969 if (AddcNode->getValueType(1) != MVT::Glue) 7970 return SDValue(); 7971 7972 // Check that the ADDC adds the low result of the S/UMUL_LOHI. 7973 if (AddcOp0->getOpcode() != ISD::UMUL_LOHI && 7974 AddcOp0->getOpcode() != ISD::SMUL_LOHI && 7975 AddcOp1->getOpcode() != ISD::UMUL_LOHI && 7976 AddcOp1->getOpcode() != ISD::SMUL_LOHI) 7977 return SDValue(); 7978 7979 // Look for the glued ADDE. 7980 SDNode* AddeNode = AddcNode->getGluedUser(); 7981 if (AddeNode == NULL) 7982 return SDValue(); 7983 7984 // Make sure it is really an ADDE. 7985 if (AddeNode->getOpcode() != ISD::ADDE) 7986 return SDValue(); 7987 7988 assert(AddeNode->getNumOperands() == 3 && 7989 AddeNode->getOperand(2).getValueType() == MVT::Glue && 7990 "ADDE node has the wrong inputs"); 7991 7992 // Check for the triangle shape. 7993 SDValue AddeOp0 = AddeNode->getOperand(0); 7994 SDValue AddeOp1 = AddeNode->getOperand(1); 7995 7996 // Make sure that the ADDE operands are not coming from the same node. 7997 if (AddeOp0.getNode() == AddeOp1.getNode()) 7998 return SDValue(); 7999 8000 // Find the MUL_LOHI node walking up ADDE's operands. 8001 bool IsLeftOperandMUL = false; 8002 SDValue MULOp = findMUL_LOHI(AddeOp0); 8003 if (MULOp == SDValue()) 8004 MULOp = findMUL_LOHI(AddeOp1); 8005 else 8006 IsLeftOperandMUL = true; 8007 if (MULOp == SDValue()) 8008 return SDValue(); 8009 8010 // Figure out the right opcode. 8011 unsigned Opc = MULOp->getOpcode(); 8012 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL; 8013 8014 // Figure out the high and low input values to the MLAL node. 8015 SDValue* HiMul = &MULOp; 8016 SDValue* HiAdd = NULL; 8017 SDValue* LoMul = NULL; 8018 SDValue* LowAdd = NULL; 8019 8020 if (IsLeftOperandMUL) 8021 HiAdd = &AddeOp1; 8022 else 8023 HiAdd = &AddeOp0; 8024 8025 8026 if (AddcOp0->getOpcode() == Opc) { 8027 LoMul = &AddcOp0; 8028 LowAdd = &AddcOp1; 8029 } 8030 if (AddcOp1->getOpcode() == Opc) { 8031 LoMul = &AddcOp1; 8032 LowAdd = &AddcOp0; 8033 } 8034 8035 if (LoMul == NULL) 8036 return SDValue(); 8037 8038 if (LoMul->getNode() != HiMul->getNode()) 8039 return SDValue(); 8040 8041 // Create the merged node. 8042 SelectionDAG &DAG = DCI.DAG; 8043 8044 // Build operand list. 8045 SmallVector<SDValue, 8> Ops; 8046 Ops.push_back(LoMul->getOperand(0)); 8047 Ops.push_back(LoMul->getOperand(1)); 8048 Ops.push_back(*LowAdd); 8049 Ops.push_back(*HiAdd); 8050 8051 SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcNode), 8052 DAG.getVTList(MVT::i32, MVT::i32), 8053 &Ops[0], Ops.size()); 8054 8055 // Replace the ADDs' nodes uses by the MLA node's values. 8056 SDValue HiMLALResult(MLALNode.getNode(), 1); 8057 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult); 8058 8059 SDValue LoMLALResult(MLALNode.getNode(), 0); 8060 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult); 8061 8062 // Return original node to notify the driver to stop replacing. 8063 SDValue resNode(AddcNode, 0); 8064 return resNode; 8065} 8066 8067/// PerformADDCCombine - Target-specific dag combine transform from 8068/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL. 8069static SDValue PerformADDCCombine(SDNode *N, 8070 TargetLowering::DAGCombinerInfo &DCI, 8071 const ARMSubtarget *Subtarget) { 8072 8073 return AddCombineTo64bitMLAL(N, DCI, Subtarget); 8074 8075} 8076 8077/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with 8078/// operands N0 and N1. This is a helper for PerformADDCombine that is 8079/// called with the default operands, and if that fails, with commuted 8080/// operands. 8081static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, 8082 TargetLowering::DAGCombinerInfo &DCI, 8083 const ARMSubtarget *Subtarget){ 8084 8085 // Attempt to create vpaddl for this add. 8086 SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget); 8087 if (Result.getNode()) 8088 return Result; 8089 8090 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 8091 if (N0.getNode()->hasOneUse()) { 8092 SDValue Result = combineSelectAndUse(N, N0, N1, DCI); 8093 if (Result.getNode()) return Result; 8094 } 8095 return SDValue(); 8096} 8097 8098/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. 8099/// 8100static SDValue PerformADDCombine(SDNode *N, 8101 TargetLowering::DAGCombinerInfo &DCI, 8102 const ARMSubtarget *Subtarget) { 8103 SDValue N0 = N->getOperand(0); 8104 SDValue N1 = N->getOperand(1); 8105 8106 // First try with the default operand order. 8107 SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget); 8108 if (Result.getNode()) 8109 return Result; 8110 8111 // If that didn't work, try again with the operands commuted. 8112 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget); 8113} 8114 8115/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. 8116/// 8117static SDValue PerformSUBCombine(SDNode *N, 8118 TargetLowering::DAGCombinerInfo &DCI) { 8119 SDValue N0 = N->getOperand(0); 8120 SDValue N1 = N->getOperand(1); 8121 8122 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 8123 if (N1.getNode()->hasOneUse()) { 8124 SDValue Result = combineSelectAndUse(N, N1, N0, DCI); 8125 if (Result.getNode()) return Result; 8126 } 8127 8128 return SDValue(); 8129} 8130 8131/// PerformVMULCombine 8132/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the 8133/// special multiplier accumulator forwarding. 8134/// vmul d3, d0, d2 8135/// vmla d3, d1, d2 8136/// is faster than 8137/// vadd d3, d0, d1 8138/// vmul d3, d3, d2 8139static SDValue PerformVMULCombine(SDNode *N, 8140 TargetLowering::DAGCombinerInfo &DCI, 8141 const ARMSubtarget *Subtarget) { 8142 if (!Subtarget->hasVMLxForwarding()) 8143 return SDValue(); 8144 8145 SelectionDAG &DAG = DCI.DAG; 8146 SDValue N0 = N->getOperand(0); 8147 SDValue N1 = N->getOperand(1); 8148 unsigned Opcode = N0.getOpcode(); 8149 if (Opcode != ISD::ADD && Opcode != ISD::SUB && 8150 Opcode != ISD::FADD && Opcode != ISD::FSUB) { 8151 Opcode = N1.getOpcode(); 8152 if (Opcode != ISD::ADD && Opcode != ISD::SUB && 8153 Opcode != ISD::FADD && Opcode != ISD::FSUB) 8154 return SDValue(); 8155 std::swap(N0, N1); 8156 } 8157 8158 EVT VT = N->getValueType(0); 8159 SDLoc DL(N); 8160 SDValue N00 = N0->getOperand(0); 8161 SDValue N01 = N0->getOperand(1); 8162 return DAG.getNode(Opcode, DL, VT, 8163 DAG.getNode(ISD::MUL, DL, VT, N00, N1), 8164 DAG.getNode(ISD::MUL, DL, VT, N01, N1)); 8165} 8166 8167static SDValue PerformMULCombine(SDNode *N, 8168 TargetLowering::DAGCombinerInfo &DCI, 8169 const ARMSubtarget *Subtarget) { 8170 SelectionDAG &DAG = DCI.DAG; 8171 8172 if (Subtarget->isThumb1Only()) 8173 return SDValue(); 8174 8175 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 8176 return SDValue(); 8177 8178 EVT VT = N->getValueType(0); 8179 if (VT.is64BitVector() || VT.is128BitVector()) 8180 return PerformVMULCombine(N, DCI, Subtarget); 8181 if (VT != MVT::i32) 8182 return SDValue(); 8183 8184 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8185 if (!C) 8186 return SDValue(); 8187 8188 int64_t MulAmt = C->getSExtValue(); 8189 unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt); 8190 8191 ShiftAmt = ShiftAmt & (32 - 1); 8192 SDValue V = N->getOperand(0); 8193 SDLoc DL(N); 8194 8195 SDValue Res; 8196 MulAmt >>= ShiftAmt; 8197 8198 if (MulAmt >= 0) { 8199 if (isPowerOf2_32(MulAmt - 1)) { 8200 // (mul x, 2^N + 1) => (add (shl x, N), x) 8201 Res = DAG.getNode(ISD::ADD, DL, VT, 8202 V, 8203 DAG.getNode(ISD::SHL, DL, VT, 8204 V, 8205 DAG.getConstant(Log2_32(MulAmt - 1), 8206 MVT::i32))); 8207 } else if (isPowerOf2_32(MulAmt + 1)) { 8208 // (mul x, 2^N - 1) => (sub (shl x, N), x) 8209 Res = DAG.getNode(ISD::SUB, DL, VT, 8210 DAG.getNode(ISD::SHL, DL, VT, 8211 V, 8212 DAG.getConstant(Log2_32(MulAmt + 1), 8213 MVT::i32)), 8214 V); 8215 } else 8216 return SDValue(); 8217 } else { 8218 uint64_t MulAmtAbs = -MulAmt; 8219 if (isPowerOf2_32(MulAmtAbs + 1)) { 8220 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 8221 Res = DAG.getNode(ISD::SUB, DL, VT, 8222 V, 8223 DAG.getNode(ISD::SHL, DL, VT, 8224 V, 8225 DAG.getConstant(Log2_32(MulAmtAbs + 1), 8226 MVT::i32))); 8227 } else if (isPowerOf2_32(MulAmtAbs - 1)) { 8228 // (mul x, -(2^N + 1)) => - (add (shl x, N), x) 8229 Res = DAG.getNode(ISD::ADD, DL, VT, 8230 V, 8231 DAG.getNode(ISD::SHL, DL, VT, 8232 V, 8233 DAG.getConstant(Log2_32(MulAmtAbs-1), 8234 MVT::i32))); 8235 Res = DAG.getNode(ISD::SUB, DL, VT, 8236 DAG.getConstant(0, MVT::i32),Res); 8237 8238 } else 8239 return SDValue(); 8240 } 8241 8242 if (ShiftAmt != 0) 8243 Res = DAG.getNode(ISD::SHL, DL, VT, 8244 Res, DAG.getConstant(ShiftAmt, MVT::i32)); 8245 8246 // Do not add new nodes to DAG combiner worklist. 8247 DCI.CombineTo(N, Res, false); 8248 return SDValue(); 8249} 8250 8251static SDValue PerformANDCombine(SDNode *N, 8252 TargetLowering::DAGCombinerInfo &DCI, 8253 const ARMSubtarget *Subtarget) { 8254 8255 // Attempt to use immediate-form VBIC 8256 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 8257 SDLoc dl(N); 8258 EVT VT = N->getValueType(0); 8259 SelectionDAG &DAG = DCI.DAG; 8260 8261 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 8262 return SDValue(); 8263 8264 APInt SplatBits, SplatUndef; 8265 unsigned SplatBitSize; 8266 bool HasAnyUndefs; 8267 if (BVN && 8268 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 8269 if (SplatBitSize <= 64) { 8270 EVT VbicVT; 8271 SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(), 8272 SplatUndef.getZExtValue(), SplatBitSize, 8273 DAG, VbicVT, VT.is128BitVector(), 8274 OtherModImm); 8275 if (Val.getNode()) { 8276 SDValue Input = 8277 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0)); 8278 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val); 8279 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic); 8280 } 8281 } 8282 } 8283 8284 if (!Subtarget->isThumb1Only()) { 8285 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) 8286 SDValue Result = combineSelectAndUseCommutative(N, true, DCI); 8287 if (Result.getNode()) 8288 return Result; 8289 } 8290 8291 return SDValue(); 8292} 8293 8294/// PerformORCombine - Target-specific dag combine xforms for ISD::OR 8295static SDValue PerformORCombine(SDNode *N, 8296 TargetLowering::DAGCombinerInfo &DCI, 8297 const ARMSubtarget *Subtarget) { 8298 // Attempt to use immediate-form VORR 8299 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 8300 SDLoc dl(N); 8301 EVT VT = N->getValueType(0); 8302 SelectionDAG &DAG = DCI.DAG; 8303 8304 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 8305 return SDValue(); 8306 8307 APInt SplatBits, SplatUndef; 8308 unsigned SplatBitSize; 8309 bool HasAnyUndefs; 8310 if (BVN && Subtarget->hasNEON() && 8311 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 8312 if (SplatBitSize <= 64) { 8313 EVT VorrVT; 8314 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), 8315 SplatUndef.getZExtValue(), SplatBitSize, 8316 DAG, VorrVT, VT.is128BitVector(), 8317 OtherModImm); 8318 if (Val.getNode()) { 8319 SDValue Input = 8320 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0)); 8321 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val); 8322 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr); 8323 } 8324 } 8325 } 8326 8327 if (!Subtarget->isThumb1Only()) { 8328 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 8329 SDValue Result = combineSelectAndUseCommutative(N, false, DCI); 8330 if (Result.getNode()) 8331 return Result; 8332 } 8333 8334 // The code below optimizes (or (and X, Y), Z). 8335 // The AND operand needs to have a single user to make these optimizations 8336 // profitable. 8337 SDValue N0 = N->getOperand(0); 8338 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 8339 return SDValue(); 8340 SDValue N1 = N->getOperand(1); 8341 8342 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. 8343 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() && 8344 DAG.getTargetLoweringInfo().isTypeLegal(VT)) { 8345 APInt SplatUndef; 8346 unsigned SplatBitSize; 8347 bool HasAnyUndefs; 8348 8349 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1)); 8350 APInt SplatBits0; 8351 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, 8352 HasAnyUndefs) && !HasAnyUndefs) { 8353 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1)); 8354 APInt SplatBits1; 8355 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, 8356 HasAnyUndefs) && !HasAnyUndefs && 8357 SplatBits0 == ~SplatBits1) { 8358 // Canonicalize the vector type to make instruction selection simpler. 8359 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; 8360 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT, 8361 N0->getOperand(1), N0->getOperand(0), 8362 N1->getOperand(0)); 8363 return DAG.getNode(ISD::BITCAST, dl, VT, Result); 8364 } 8365 } 8366 } 8367 8368 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when 8369 // reasonable. 8370 8371 // BFI is only available on V6T2+ 8372 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops()) 8373 return SDValue(); 8374 8375 SDLoc DL(N); 8376 // 1) or (and A, mask), val => ARMbfi A, val, mask 8377 // iff (val & mask) == val 8378 // 8379 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask 8380 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2) 8381 // && mask == ~mask2 8382 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2) 8383 // && ~mask == mask2 8384 // (i.e., copy a bitfield value into another bitfield of the same width) 8385 8386 if (VT != MVT::i32) 8387 return SDValue(); 8388 8389 SDValue N00 = N0.getOperand(0); 8390 8391 // The value and the mask need to be constants so we can verify this is 8392 // actually a bitfield set. If the mask is 0xffff, we can do better 8393 // via a movt instruction, so don't use BFI in that case. 8394 SDValue MaskOp = N0.getOperand(1); 8395 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp); 8396 if (!MaskC) 8397 return SDValue(); 8398 unsigned Mask = MaskC->getZExtValue(); 8399 if (Mask == 0xffff) 8400 return SDValue(); 8401 SDValue Res; 8402 // Case (1): or (and A, mask), val => ARMbfi A, val, mask 8403 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 8404 if (N1C) { 8405 unsigned Val = N1C->getZExtValue(); 8406 if ((Val & ~Mask) != Val) 8407 return SDValue(); 8408 8409 if (ARM::isBitFieldInvertedMask(Mask)) { 8410 Val >>= countTrailingZeros(~Mask); 8411 8412 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, 8413 DAG.getConstant(Val, MVT::i32), 8414 DAG.getConstant(Mask, MVT::i32)); 8415 8416 // Do not add new nodes to DAG combiner worklist. 8417 DCI.CombineTo(N, Res, false); 8418 return SDValue(); 8419 } 8420 } else if (N1.getOpcode() == ISD::AND) { 8421 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask 8422 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 8423 if (!N11C) 8424 return SDValue(); 8425 unsigned Mask2 = N11C->getZExtValue(); 8426 8427 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern 8428 // as is to match. 8429 if (ARM::isBitFieldInvertedMask(Mask) && 8430 (Mask == ~Mask2)) { 8431 // The pack halfword instruction works better for masks that fit it, 8432 // so use that when it's available. 8433 if (Subtarget->hasT2ExtractPack() && 8434 (Mask == 0xffff || Mask == 0xffff0000)) 8435 return SDValue(); 8436 // 2a 8437 unsigned amt = countTrailingZeros(Mask2); 8438 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0), 8439 DAG.getConstant(amt, MVT::i32)); 8440 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res, 8441 DAG.getConstant(Mask, MVT::i32)); 8442 // Do not add new nodes to DAG combiner worklist. 8443 DCI.CombineTo(N, Res, false); 8444 return SDValue(); 8445 } else if (ARM::isBitFieldInvertedMask(~Mask) && 8446 (~Mask == Mask2)) { 8447 // The pack halfword instruction works better for masks that fit it, 8448 // so use that when it's available. 8449 if (Subtarget->hasT2ExtractPack() && 8450 (Mask2 == 0xffff || Mask2 == 0xffff0000)) 8451 return SDValue(); 8452 // 2b 8453 unsigned lsb = countTrailingZeros(Mask); 8454 Res = DAG.getNode(ISD::SRL, DL, VT, N00, 8455 DAG.getConstant(lsb, MVT::i32)); 8456 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res, 8457 DAG.getConstant(Mask2, MVT::i32)); 8458 // Do not add new nodes to DAG combiner worklist. 8459 DCI.CombineTo(N, Res, false); 8460 return SDValue(); 8461 } 8462 } 8463 8464 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) && 8465 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) && 8466 ARM::isBitFieldInvertedMask(~Mask)) { 8467 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask 8468 // where lsb(mask) == #shamt and masked bits of B are known zero. 8469 SDValue ShAmt = N00.getOperand(1); 8470 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 8471 unsigned LSB = countTrailingZeros(Mask); 8472 if (ShAmtC != LSB) 8473 return SDValue(); 8474 8475 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0), 8476 DAG.getConstant(~Mask, MVT::i32)); 8477 8478 // Do not add new nodes to DAG combiner worklist. 8479 DCI.CombineTo(N, Res, false); 8480 } 8481 8482 return SDValue(); 8483} 8484 8485static SDValue PerformXORCombine(SDNode *N, 8486 TargetLowering::DAGCombinerInfo &DCI, 8487 const ARMSubtarget *Subtarget) { 8488 EVT VT = N->getValueType(0); 8489 SelectionDAG &DAG = DCI.DAG; 8490 8491 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 8492 return SDValue(); 8493 8494 if (!Subtarget->isThumb1Only()) { 8495 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 8496 SDValue Result = combineSelectAndUseCommutative(N, false, DCI); 8497 if (Result.getNode()) 8498 return Result; 8499 } 8500 8501 return SDValue(); 8502} 8503 8504/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff 8505/// the bits being cleared by the AND are not demanded by the BFI. 8506static SDValue PerformBFICombine(SDNode *N, 8507 TargetLowering::DAGCombinerInfo &DCI) { 8508 SDValue N1 = N->getOperand(1); 8509 if (N1.getOpcode() == ISD::AND) { 8510 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 8511 if (!N11C) 8512 return SDValue(); 8513 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); 8514 unsigned LSB = countTrailingZeros(~InvMask); 8515 unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB; 8516 unsigned Mask = (1 << Width)-1; 8517 unsigned Mask2 = N11C->getZExtValue(); 8518 if ((Mask & (~Mask2)) == 0) 8519 return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0), 8520 N->getOperand(0), N1.getOperand(0), 8521 N->getOperand(2)); 8522 } 8523 return SDValue(); 8524} 8525 8526/// PerformVMOVRRDCombine - Target-specific dag combine xforms for 8527/// ARMISD::VMOVRRD. 8528static SDValue PerformVMOVRRDCombine(SDNode *N, 8529 TargetLowering::DAGCombinerInfo &DCI) { 8530 // vmovrrd(vmovdrr x, y) -> x,y 8531 SDValue InDouble = N->getOperand(0); 8532 if (InDouble.getOpcode() == ARMISD::VMOVDRR) 8533 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); 8534 8535 // vmovrrd(load f64) -> (load i32), (load i32) 8536 SDNode *InNode = InDouble.getNode(); 8537 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() && 8538 InNode->getValueType(0) == MVT::f64 && 8539 InNode->getOperand(1).getOpcode() == ISD::FrameIndex && 8540 !cast<LoadSDNode>(InNode)->isVolatile()) { 8541 // TODO: Should this be done for non-FrameIndex operands? 8542 LoadSDNode *LD = cast<LoadSDNode>(InNode); 8543 8544 SelectionDAG &DAG = DCI.DAG; 8545 SDLoc DL(LD); 8546 SDValue BasePtr = LD->getBasePtr(); 8547 SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, 8548 LD->getPointerInfo(), LD->isVolatile(), 8549 LD->isNonTemporal(), LD->isInvariant(), 8550 LD->getAlignment()); 8551 8552 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 8553 DAG.getConstant(4, MVT::i32)); 8554 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, 8555 LD->getPointerInfo(), LD->isVolatile(), 8556 LD->isNonTemporal(), LD->isInvariant(), 8557 std::min(4U, LD->getAlignment() / 2)); 8558 8559 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1)); 8560 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2); 8561 DCI.RemoveFromWorklist(LD); 8562 DAG.DeleteNode(LD); 8563 return Result; 8564 } 8565 8566 return SDValue(); 8567} 8568 8569/// PerformVMOVDRRCombine - Target-specific dag combine xforms for 8570/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands. 8571static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) { 8572 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X) 8573 SDValue Op0 = N->getOperand(0); 8574 SDValue Op1 = N->getOperand(1); 8575 if (Op0.getOpcode() == ISD::BITCAST) 8576 Op0 = Op0.getOperand(0); 8577 if (Op1.getOpcode() == ISD::BITCAST) 8578 Op1 = Op1.getOperand(0); 8579 if (Op0.getOpcode() == ARMISD::VMOVRRD && 8580 Op0.getNode() == Op1.getNode() && 8581 Op0.getResNo() == 0 && Op1.getResNo() == 1) 8582 return DAG.getNode(ISD::BITCAST, SDLoc(N), 8583 N->getValueType(0), Op0.getOperand(0)); 8584 return SDValue(); 8585} 8586 8587/// PerformSTORECombine - Target-specific dag combine xforms for 8588/// ISD::STORE. 8589static SDValue PerformSTORECombine(SDNode *N, 8590 TargetLowering::DAGCombinerInfo &DCI) { 8591 StoreSDNode *St = cast<StoreSDNode>(N); 8592 if (St->isVolatile()) 8593 return SDValue(); 8594 8595 // Optimize trunc store (of multiple scalars) to shuffle and store. First, 8596 // pack all of the elements in one place. Next, store to memory in fewer 8597 // chunks. 8598 SDValue StVal = St->getValue(); 8599 EVT VT = StVal.getValueType(); 8600 if (St->isTruncatingStore() && VT.isVector()) { 8601 SelectionDAG &DAG = DCI.DAG; 8602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8603 EVT StVT = St->getMemoryVT(); 8604 unsigned NumElems = VT.getVectorNumElements(); 8605 assert(StVT != VT && "Cannot truncate to the same type"); 8606 unsigned FromEltSz = VT.getVectorElementType().getSizeInBits(); 8607 unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits(); 8608 8609 // From, To sizes and ElemCount must be pow of two 8610 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue(); 8611 8612 // We are going to use the original vector elt for storing. 8613 // Accumulated smaller vector elements must be a multiple of the store size. 8614 if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue(); 8615 8616 unsigned SizeRatio = FromEltSz / ToEltSz; 8617 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits()); 8618 8619 // Create a type on which we perform the shuffle. 8620 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), 8621 NumElems*SizeRatio); 8622 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); 8623 8624 SDLoc DL(St); 8625 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal); 8626 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); 8627 for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio; 8628 8629 // Can't shuffle using an illegal type. 8630 if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); 8631 8632 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec, 8633 DAG.getUNDEF(WideVec.getValueType()), 8634 ShuffleVec.data()); 8635 // At this point all of the data is stored at the bottom of the 8636 // register. We now need to save it to mem. 8637 8638 // Find the largest store unit 8639 MVT StoreType = MVT::i8; 8640 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; 8641 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { 8642 MVT Tp = (MVT::SimpleValueType)tp; 8643 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz) 8644 StoreType = Tp; 8645 } 8646 // Didn't find a legal store type. 8647 if (!TLI.isTypeLegal(StoreType)) 8648 return SDValue(); 8649 8650 // Bitcast the original vector into a vector of store-size units 8651 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), 8652 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits()); 8653 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); 8654 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff); 8655 SmallVector<SDValue, 8> Chains; 8656 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8, 8657 TLI.getPointerTy()); 8658 SDValue BasePtr = St->getBasePtr(); 8659 8660 // Perform one or more big stores into memory. 8661 unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits(); 8662 for (unsigned I = 0; I < E; I++) { 8663 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 8664 StoreType, ShuffWide, 8665 DAG.getIntPtrConstant(I)); 8666 SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr, 8667 St->getPointerInfo(), St->isVolatile(), 8668 St->isNonTemporal(), St->getAlignment()); 8669 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 8670 Increment); 8671 Chains.push_back(Ch); 8672 } 8673 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0], 8674 Chains.size()); 8675 } 8676 8677 if (!ISD::isNormalStore(St)) 8678 return SDValue(); 8679 8680 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and 8681 // ARM stores of arguments in the same cache line. 8682 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR && 8683 StVal.getNode()->hasOneUse()) { 8684 SelectionDAG &DAG = DCI.DAG; 8685 SDLoc DL(St); 8686 SDValue BasePtr = St->getBasePtr(); 8687 SDValue NewST1 = DAG.getStore(St->getChain(), DL, 8688 StVal.getNode()->getOperand(0), BasePtr, 8689 St->getPointerInfo(), St->isVolatile(), 8690 St->isNonTemporal(), St->getAlignment()); 8691 8692 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 8693 DAG.getConstant(4, MVT::i32)); 8694 return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1), 8695 OffsetPtr, St->getPointerInfo(), St->isVolatile(), 8696 St->isNonTemporal(), 8697 std::min(4U, St->getAlignment() / 2)); 8698 } 8699 8700 if (StVal.getValueType() != MVT::i64 || 8701 StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 8702 return SDValue(); 8703 8704 // Bitcast an i64 store extracted from a vector to f64. 8705 // Otherwise, the i64 value will be legalized to a pair of i32 values. 8706 SelectionDAG &DAG = DCI.DAG; 8707 SDLoc dl(StVal); 8708 SDValue IntVec = StVal.getOperand(0); 8709 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, 8710 IntVec.getValueType().getVectorNumElements()); 8711 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec); 8712 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, 8713 Vec, StVal.getOperand(1)); 8714 dl = SDLoc(N); 8715 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt); 8716 // Make the DAGCombiner fold the bitcasts. 8717 DCI.AddToWorklist(Vec.getNode()); 8718 DCI.AddToWorklist(ExtElt.getNode()); 8719 DCI.AddToWorklist(V.getNode()); 8720 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(), 8721 St->getPointerInfo(), St->isVolatile(), 8722 St->isNonTemporal(), St->getAlignment(), 8723 St->getTBAAInfo()); 8724} 8725 8726/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node 8727/// are normal, non-volatile loads. If so, it is profitable to bitcast an 8728/// i64 vector to have f64 elements, since the value can then be loaded 8729/// directly into a VFP register. 8730static bool hasNormalLoadOperand(SDNode *N) { 8731 unsigned NumElts = N->getValueType(0).getVectorNumElements(); 8732 for (unsigned i = 0; i < NumElts; ++i) { 8733 SDNode *Elt = N->getOperand(i).getNode(); 8734 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile()) 8735 return true; 8736 } 8737 return false; 8738} 8739 8740/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for 8741/// ISD::BUILD_VECTOR. 8742static SDValue PerformBUILD_VECTORCombine(SDNode *N, 8743 TargetLowering::DAGCombinerInfo &DCI){ 8744 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X): 8745 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value 8746 // into a pair of GPRs, which is fine when the value is used as a scalar, 8747 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD. 8748 SelectionDAG &DAG = DCI.DAG; 8749 if (N->getNumOperands() == 2) { 8750 SDValue RV = PerformVMOVDRRCombine(N, DAG); 8751 if (RV.getNode()) 8752 return RV; 8753 } 8754 8755 // Load i64 elements as f64 values so that type legalization does not split 8756 // them up into i32 values. 8757 EVT VT = N->getValueType(0); 8758 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N)) 8759 return SDValue(); 8760 SDLoc dl(N); 8761 SmallVector<SDValue, 8> Ops; 8762 unsigned NumElts = VT.getVectorNumElements(); 8763 for (unsigned i = 0; i < NumElts; ++i) { 8764 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i)); 8765 Ops.push_back(V); 8766 // Make the DAGCombiner fold the bitcast. 8767 DCI.AddToWorklist(V.getNode()); 8768 } 8769 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts); 8770 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts); 8771 return DAG.getNode(ISD::BITCAST, dl, VT, BV); 8772} 8773 8774/// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR. 8775static SDValue 8776PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 8777 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR. 8778 // At that time, we may have inserted bitcasts from integer to float. 8779 // If these bitcasts have survived DAGCombine, change the lowering of this 8780 // BUILD_VECTOR in something more vector friendly, i.e., that does not 8781 // force to use floating point types. 8782 8783 // Make sure we can change the type of the vector. 8784 // This is possible iff: 8785 // 1. The vector is only used in a bitcast to a integer type. I.e., 8786 // 1.1. Vector is used only once. 8787 // 1.2. Use is a bit convert to an integer type. 8788 // 2. The size of its operands are 32-bits (64-bits are not legal). 8789 EVT VT = N->getValueType(0); 8790 EVT EltVT = VT.getVectorElementType(); 8791 8792 // Check 1.1. and 2. 8793 if (EltVT.getSizeInBits() != 32 || !N->hasOneUse()) 8794 return SDValue(); 8795 8796 // By construction, the input type must be float. 8797 assert(EltVT == MVT::f32 && "Unexpected type!"); 8798 8799 // Check 1.2. 8800 SDNode *Use = *N->use_begin(); 8801 if (Use->getOpcode() != ISD::BITCAST || 8802 Use->getValueType(0).isFloatingPoint()) 8803 return SDValue(); 8804 8805 // Check profitability. 8806 // Model is, if more than half of the relevant operands are bitcast from 8807 // i32, turn the build_vector into a sequence of insert_vector_elt. 8808 // Relevant operands are everything that is not statically 8809 // (i.e., at compile time) bitcasted. 8810 unsigned NumOfBitCastedElts = 0; 8811 unsigned NumElts = VT.getVectorNumElements(); 8812 unsigned NumOfRelevantElts = NumElts; 8813 for (unsigned Idx = 0; Idx < NumElts; ++Idx) { 8814 SDValue Elt = N->getOperand(Idx); 8815 if (Elt->getOpcode() == ISD::BITCAST) { 8816 // Assume only bit cast to i32 will go away. 8817 if (Elt->getOperand(0).getValueType() == MVT::i32) 8818 ++NumOfBitCastedElts; 8819 } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt)) 8820 // Constants are statically casted, thus do not count them as 8821 // relevant operands. 8822 --NumOfRelevantElts; 8823 } 8824 8825 // Check if more than half of the elements require a non-free bitcast. 8826 if (NumOfBitCastedElts <= NumOfRelevantElts / 2) 8827 return SDValue(); 8828 8829 SelectionDAG &DAG = DCI.DAG; 8830 // Create the new vector type. 8831 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); 8832 // Check if the type is legal. 8833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8834 if (!TLI.isTypeLegal(VecVT)) 8835 return SDValue(); 8836 8837 // Combine: 8838 // ARMISD::BUILD_VECTOR E1, E2, ..., EN. 8839 // => BITCAST INSERT_VECTOR_ELT 8840 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1), 8841 // (BITCAST EN), N. 8842 SDValue Vec = DAG.getUNDEF(VecVT); 8843 SDLoc dl(N); 8844 for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) { 8845 SDValue V = N->getOperand(Idx); 8846 if (V.getOpcode() == ISD::UNDEF) 8847 continue; 8848 if (V.getOpcode() == ISD::BITCAST && 8849 V->getOperand(0).getValueType() == MVT::i32) 8850 // Fold obvious case. 8851 V = V.getOperand(0); 8852 else { 8853 V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V); 8854 // Make the DAGCombiner fold the bitcasts. 8855 DCI.AddToWorklist(V.getNode()); 8856 } 8857 SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32); 8858 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx); 8859 } 8860 Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec); 8861 // Make the DAGCombiner fold the bitcasts. 8862 DCI.AddToWorklist(Vec.getNode()); 8863 return Vec; 8864} 8865 8866/// PerformInsertEltCombine - Target-specific dag combine xforms for 8867/// ISD::INSERT_VECTOR_ELT. 8868static SDValue PerformInsertEltCombine(SDNode *N, 8869 TargetLowering::DAGCombinerInfo &DCI) { 8870 // Bitcast an i64 load inserted into a vector to f64. 8871 // Otherwise, the i64 value will be legalized to a pair of i32 values. 8872 EVT VT = N->getValueType(0); 8873 SDNode *Elt = N->getOperand(1).getNode(); 8874 if (VT.getVectorElementType() != MVT::i64 || 8875 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile()) 8876 return SDValue(); 8877 8878 SelectionDAG &DAG = DCI.DAG; 8879 SDLoc dl(N); 8880 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, 8881 VT.getVectorNumElements()); 8882 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0)); 8883 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1)); 8884 // Make the DAGCombiner fold the bitcasts. 8885 DCI.AddToWorklist(Vec.getNode()); 8886 DCI.AddToWorklist(V.getNode()); 8887 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT, 8888 Vec, V, N->getOperand(2)); 8889 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt); 8890} 8891 8892/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for 8893/// ISD::VECTOR_SHUFFLE. 8894static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) { 8895 // The LLVM shufflevector instruction does not require the shuffle mask 8896 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does 8897 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the 8898 // operands do not match the mask length, they are extended by concatenating 8899 // them with undef vectors. That is probably the right thing for other 8900 // targets, but for NEON it is better to concatenate two double-register 8901 // size vector operands into a single quad-register size vector. Do that 8902 // transformation here: 8903 // shuffle(concat(v1, undef), concat(v2, undef)) -> 8904 // shuffle(concat(v1, v2), undef) 8905 SDValue Op0 = N->getOperand(0); 8906 SDValue Op1 = N->getOperand(1); 8907 if (Op0.getOpcode() != ISD::CONCAT_VECTORS || 8908 Op1.getOpcode() != ISD::CONCAT_VECTORS || 8909 Op0.getNumOperands() != 2 || 8910 Op1.getNumOperands() != 2) 8911 return SDValue(); 8912 SDValue Concat0Op1 = Op0.getOperand(1); 8913 SDValue Concat1Op1 = Op1.getOperand(1); 8914 if (Concat0Op1.getOpcode() != ISD::UNDEF || 8915 Concat1Op1.getOpcode() != ISD::UNDEF) 8916 return SDValue(); 8917 // Skip the transformation if any of the types are illegal. 8918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8919 EVT VT = N->getValueType(0); 8920 if (!TLI.isTypeLegal(VT) || 8921 !TLI.isTypeLegal(Concat0Op1.getValueType()) || 8922 !TLI.isTypeLegal(Concat1Op1.getValueType())) 8923 return SDValue(); 8924 8925 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 8926 Op0.getOperand(0), Op1.getOperand(0)); 8927 // Translate the shuffle mask. 8928 SmallVector<int, 16> NewMask; 8929 unsigned NumElts = VT.getVectorNumElements(); 8930 unsigned HalfElts = NumElts/2; 8931 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 8932 for (unsigned n = 0; n < NumElts; ++n) { 8933 int MaskElt = SVN->getMaskElt(n); 8934 int NewElt = -1; 8935 if (MaskElt < (int)HalfElts) 8936 NewElt = MaskElt; 8937 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts)) 8938 NewElt = HalfElts + MaskElt - NumElts; 8939 NewMask.push_back(NewElt); 8940 } 8941 return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat, 8942 DAG.getUNDEF(VT), NewMask.data()); 8943} 8944 8945/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and 8946/// NEON load/store intrinsics to merge base address updates. 8947static SDValue CombineBaseUpdate(SDNode *N, 8948 TargetLowering::DAGCombinerInfo &DCI) { 8949 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 8950 return SDValue(); 8951 8952 SelectionDAG &DAG = DCI.DAG; 8953 bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || 8954 N->getOpcode() == ISD::INTRINSIC_W_CHAIN); 8955 unsigned AddrOpIdx = (isIntrinsic ? 2 : 1); 8956 SDValue Addr = N->getOperand(AddrOpIdx); 8957 8958 // Search for a use of the address operand that is an increment. 8959 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), 8960 UE = Addr.getNode()->use_end(); UI != UE; ++UI) { 8961 SDNode *User = *UI; 8962 if (User->getOpcode() != ISD::ADD || 8963 UI.getUse().getResNo() != Addr.getResNo()) 8964 continue; 8965 8966 // Check that the add is independent of the load/store. Otherwise, folding 8967 // it would create a cycle. 8968 if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) 8969 continue; 8970 8971 // Find the new opcode for the updating load/store. 8972 bool isLoad = true; 8973 bool isLaneOp = false; 8974 unsigned NewOpc = 0; 8975 unsigned NumVecs = 0; 8976 if (isIntrinsic) { 8977 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 8978 switch (IntNo) { 8979 default: llvm_unreachable("unexpected intrinsic for Neon base update"); 8980 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD; 8981 NumVecs = 1; break; 8982 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD; 8983 NumVecs = 2; break; 8984 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD; 8985 NumVecs = 3; break; 8986 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD; 8987 NumVecs = 4; break; 8988 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD; 8989 NumVecs = 2; isLaneOp = true; break; 8990 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD; 8991 NumVecs = 3; isLaneOp = true; break; 8992 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD; 8993 NumVecs = 4; isLaneOp = true; break; 8994 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD; 8995 NumVecs = 1; isLoad = false; break; 8996 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD; 8997 NumVecs = 2; isLoad = false; break; 8998 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD; 8999 NumVecs = 3; isLoad = false; break; 9000 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD; 9001 NumVecs = 4; isLoad = false; break; 9002 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD; 9003 NumVecs = 2; isLoad = false; isLaneOp = true; break; 9004 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD; 9005 NumVecs = 3; isLoad = false; isLaneOp = true; break; 9006 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD; 9007 NumVecs = 4; isLoad = false; isLaneOp = true; break; 9008 } 9009 } else { 9010 isLaneOp = true; 9011 switch (N->getOpcode()) { 9012 default: llvm_unreachable("unexpected opcode for Neon base update"); 9013 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break; 9014 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break; 9015 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break; 9016 } 9017 } 9018 9019 // Find the size of memory referenced by the load/store. 9020 EVT VecTy; 9021 if (isLoad) 9022 VecTy = N->getValueType(0); 9023 else 9024 VecTy = N->getOperand(AddrOpIdx+1).getValueType(); 9025 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; 9026 if (isLaneOp) 9027 NumBytes /= VecTy.getVectorNumElements(); 9028 9029 // If the increment is a constant, it must match the memory ref size. 9030 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 9031 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 9032 uint64_t IncVal = CInc->getZExtValue(); 9033 if (IncVal != NumBytes) 9034 continue; 9035 } else if (NumBytes >= 3 * 16) { 9036 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two 9037 // separate instructions that make it harder to use a non-constant update. 9038 continue; 9039 } 9040 9041 // Create the new updating load/store node. 9042 EVT Tys[6]; 9043 unsigned NumResultVecs = (isLoad ? NumVecs : 0); 9044 unsigned n; 9045 for (n = 0; n < NumResultVecs; ++n) 9046 Tys[n] = VecTy; 9047 Tys[n++] = MVT::i32; 9048 Tys[n] = MVT::Other; 9049 SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2); 9050 SmallVector<SDValue, 8> Ops; 9051 Ops.push_back(N->getOperand(0)); // incoming chain 9052 Ops.push_back(N->getOperand(AddrOpIdx)); 9053 Ops.push_back(Inc); 9054 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) { 9055 Ops.push_back(N->getOperand(i)); 9056 } 9057 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); 9058 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, 9059 Ops.data(), Ops.size(), 9060 MemInt->getMemoryVT(), 9061 MemInt->getMemOperand()); 9062 9063 // Update the uses. 9064 std::vector<SDValue> NewResults; 9065 for (unsigned i = 0; i < NumResultVecs; ++i) { 9066 NewResults.push_back(SDValue(UpdN.getNode(), i)); 9067 } 9068 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain 9069 DCI.CombineTo(N, NewResults); 9070 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); 9071 9072 break; 9073 } 9074 return SDValue(); 9075} 9076 9077/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a 9078/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic 9079/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and 9080/// return true. 9081static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 9082 SelectionDAG &DAG = DCI.DAG; 9083 EVT VT = N->getValueType(0); 9084 // vldN-dup instructions only support 64-bit vectors for N > 1. 9085 if (!VT.is64BitVector()) 9086 return false; 9087 9088 // Check if the VDUPLANE operand is a vldN-dup intrinsic. 9089 SDNode *VLD = N->getOperand(0).getNode(); 9090 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) 9091 return false; 9092 unsigned NumVecs = 0; 9093 unsigned NewOpc = 0; 9094 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue(); 9095 if (IntNo == Intrinsic::arm_neon_vld2lane) { 9096 NumVecs = 2; 9097 NewOpc = ARMISD::VLD2DUP; 9098 } else if (IntNo == Intrinsic::arm_neon_vld3lane) { 9099 NumVecs = 3; 9100 NewOpc = ARMISD::VLD3DUP; 9101 } else if (IntNo == Intrinsic::arm_neon_vld4lane) { 9102 NumVecs = 4; 9103 NewOpc = ARMISD::VLD4DUP; 9104 } else { 9105 return false; 9106 } 9107 9108 // First check that all the vldN-lane uses are VDUPLANEs and that the lane 9109 // numbers match the load. 9110 unsigned VLDLaneNo = 9111 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue(); 9112 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); 9113 UI != UE; ++UI) { 9114 // Ignore uses of the chain result. 9115 if (UI.getUse().getResNo() == NumVecs) 9116 continue; 9117 SDNode *User = *UI; 9118 if (User->getOpcode() != ARMISD::VDUPLANE || 9119 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue()) 9120 return false; 9121 } 9122 9123 // Create the vldN-dup node. 9124 EVT Tys[5]; 9125 unsigned n; 9126 for (n = 0; n < NumVecs; ++n) 9127 Tys[n] = VT; 9128 Tys[n] = MVT::Other; 9129 SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1); 9130 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; 9131 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD); 9132 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, 9133 Ops, 2, VLDMemInt->getMemoryVT(), 9134 VLDMemInt->getMemOperand()); 9135 9136 // Update the uses. 9137 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); 9138 UI != UE; ++UI) { 9139 unsigned ResNo = UI.getUse().getResNo(); 9140 // Ignore uses of the chain result. 9141 if (ResNo == NumVecs) 9142 continue; 9143 SDNode *User = *UI; 9144 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); 9145 } 9146 9147 // Now the vldN-lane intrinsic is dead except for its chain result. 9148 // Update uses of the chain. 9149 std::vector<SDValue> VLDDupResults; 9150 for (unsigned n = 0; n < NumVecs; ++n) 9151 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); 9152 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); 9153 DCI.CombineTo(VLD, VLDDupResults); 9154 9155 return true; 9156} 9157 9158/// PerformVDUPLANECombine - Target-specific dag combine xforms for 9159/// ARMISD::VDUPLANE. 9160static SDValue PerformVDUPLANECombine(SDNode *N, 9161 TargetLowering::DAGCombinerInfo &DCI) { 9162 SDValue Op = N->getOperand(0); 9163 9164 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses 9165 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation. 9166 if (CombineVLDDUP(N, DCI)) 9167 return SDValue(N, 0); 9168 9169 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is 9170 // redundant. Ignore bit_converts for now; element sizes are checked below. 9171 while (Op.getOpcode() == ISD::BITCAST) 9172 Op = Op.getOperand(0); 9173 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM) 9174 return SDValue(); 9175 9176 // Make sure the VMOV element size is not bigger than the VDUPLANE elements. 9177 unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits(); 9178 // The canonical VMOV for a zero vector uses a 32-bit element size. 9179 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9180 unsigned EltBits; 9181 if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0) 9182 EltSize = 8; 9183 EVT VT = N->getValueType(0); 9184 if (EltSize > VT.getVectorElementType().getSizeInBits()) 9185 return SDValue(); 9186 9187 return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 9188} 9189 9190// isConstVecPow2 - Return true if each vector element is a power of 2, all 9191// elements are the same constant, C, and Log2(C) ranges from 1 to 32. 9192static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C) 9193{ 9194 integerPart cN; 9195 integerPart c0 = 0; 9196 for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements(); 9197 I != E; I++) { 9198 ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I)); 9199 if (!C) 9200 return false; 9201 9202 bool isExact; 9203 APFloat APF = C->getValueAPF(); 9204 if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact) 9205 != APFloat::opOK || !isExact) 9206 return false; 9207 9208 c0 = (I == 0) ? cN : c0; 9209 if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32) 9210 return false; 9211 } 9212 C = c0; 9213 return true; 9214} 9215 9216/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD) 9217/// can replace combinations of VMUL and VCVT (floating-point to integer) 9218/// when the VMUL has a constant operand that is a power of 2. 9219/// 9220/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): 9221/// vmul.f32 d16, d17, d16 9222/// vcvt.s32.f32 d16, d16 9223/// becomes: 9224/// vcvt.s32.f32 d16, d16, #3 9225static SDValue PerformVCVTCombine(SDNode *N, 9226 TargetLowering::DAGCombinerInfo &DCI, 9227 const ARMSubtarget *Subtarget) { 9228 SelectionDAG &DAG = DCI.DAG; 9229 SDValue Op = N->getOperand(0); 9230 9231 if (!Subtarget->hasNEON() || !Op.getValueType().isVector() || 9232 Op.getOpcode() != ISD::FMUL) 9233 return SDValue(); 9234 9235 uint64_t C; 9236 SDValue N0 = Op->getOperand(0); 9237 SDValue ConstVec = Op->getOperand(1); 9238 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT; 9239 9240 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR || 9241 !isConstVecPow2(ConstVec, isSigned, C)) 9242 return SDValue(); 9243 9244 MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); 9245 MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); 9246 if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) { 9247 // These instructions only exist converting from f32 to i32. We can handle 9248 // smaller integers by generating an extra truncate, but larger ones would 9249 // be lossy. 9250 return SDValue(); 9251 } 9252 9253 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs : 9254 Intrinsic::arm_neon_vcvtfp2fxu; 9255 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 9256 SDValue FixConv = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), 9257 NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, 9258 DAG.getConstant(IntrinsicOpcode, MVT::i32), N0, 9259 DAG.getConstant(Log2_64(C), MVT::i32)); 9260 9261 if (IntTy.getSizeInBits() < FloatTy.getSizeInBits()) 9262 FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv); 9263 9264 return FixConv; 9265} 9266 9267/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD) 9268/// can replace combinations of VCVT (integer to floating-point) and VDIV 9269/// when the VDIV has a constant operand that is a power of 2. 9270/// 9271/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): 9272/// vcvt.f32.s32 d16, d16 9273/// vdiv.f32 d16, d17, d16 9274/// becomes: 9275/// vcvt.f32.s32 d16, d16, #3 9276static SDValue PerformVDIVCombine(SDNode *N, 9277 TargetLowering::DAGCombinerInfo &DCI, 9278 const ARMSubtarget *Subtarget) { 9279 SelectionDAG &DAG = DCI.DAG; 9280 SDValue Op = N->getOperand(0); 9281 unsigned OpOpcode = Op.getNode()->getOpcode(); 9282 9283 if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() || 9284 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP)) 9285 return SDValue(); 9286 9287 uint64_t C; 9288 SDValue ConstVec = N->getOperand(1); 9289 bool isSigned = OpOpcode == ISD::SINT_TO_FP; 9290 9291 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR || 9292 !isConstVecPow2(ConstVec, isSigned, C)) 9293 return SDValue(); 9294 9295 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); 9296 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); 9297 if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) { 9298 // These instructions only exist converting from i32 to f32. We can handle 9299 // smaller integers by generating an extra extend, but larger ones would 9300 // be lossy. 9301 return SDValue(); 9302 } 9303 9304 SDValue ConvInput = Op.getOperand(0); 9305 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 9306 if (IntTy.getSizeInBits() < FloatTy.getSizeInBits()) 9307 ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 9308 SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, 9309 ConvInput); 9310 9311 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp : 9312 Intrinsic::arm_neon_vcvtfxu2fp; 9313 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), 9314 Op.getValueType(), 9315 DAG.getConstant(IntrinsicOpcode, MVT::i32), 9316 ConvInput, DAG.getConstant(Log2_64(C), MVT::i32)); 9317} 9318 9319/// Getvshiftimm - Check if this is a valid build_vector for the immediate 9320/// operand of a vector shift operation, where all the elements of the 9321/// build_vector must have the same constant integer value. 9322static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { 9323 // Ignore bit_converts. 9324 while (Op.getOpcode() == ISD::BITCAST) 9325 Op = Op.getOperand(0); 9326 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9327 APInt SplatBits, SplatUndef; 9328 unsigned SplatBitSize; 9329 bool HasAnyUndefs; 9330 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, 9331 HasAnyUndefs, ElementBits) || 9332 SplatBitSize > ElementBits) 9333 return false; 9334 Cnt = SplatBits.getSExtValue(); 9335 return true; 9336} 9337 9338/// isVShiftLImm - Check if this is a valid build_vector for the immediate 9339/// operand of a vector shift left operation. That value must be in the range: 9340/// 0 <= Value < ElementBits for a left shift; or 9341/// 0 <= Value <= ElementBits for a long left shift. 9342static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { 9343 assert(VT.isVector() && "vector shift count is not a vector type"); 9344 unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); 9345 if (! getVShiftImm(Op, ElementBits, Cnt)) 9346 return false; 9347 return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits); 9348} 9349 9350/// isVShiftRImm - Check if this is a valid build_vector for the immediate 9351/// operand of a vector shift right operation. For a shift opcode, the value 9352/// is positive, but for an intrinsic the value count must be negative. The 9353/// absolute value must be in the range: 9354/// 1 <= |Value| <= ElementBits for a right shift; or 9355/// 1 <= |Value| <= ElementBits/2 for a narrow right shift. 9356static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, 9357 int64_t &Cnt) { 9358 assert(VT.isVector() && "vector shift count is not a vector type"); 9359 unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); 9360 if (! getVShiftImm(Op, ElementBits, Cnt)) 9361 return false; 9362 if (isIntrinsic) 9363 Cnt = -Cnt; 9364 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits)); 9365} 9366 9367/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. 9368static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { 9369 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 9370 switch (IntNo) { 9371 default: 9372 // Don't do anything for most intrinsics. 9373 break; 9374 9375 // Vector shifts: check for immediate versions and lower them. 9376 // Note: This is done during DAG combining instead of DAG legalizing because 9377 // the build_vectors for 64-bit vector element shift counts are generally 9378 // not legal, and it is hard to see their values after they get legalized to 9379 // loads from a constant pool. 9380 case Intrinsic::arm_neon_vshifts: 9381 case Intrinsic::arm_neon_vshiftu: 9382 case Intrinsic::arm_neon_vshiftls: 9383 case Intrinsic::arm_neon_vshiftlu: 9384 case Intrinsic::arm_neon_vshiftn: 9385 case Intrinsic::arm_neon_vrshifts: 9386 case Intrinsic::arm_neon_vrshiftu: 9387 case Intrinsic::arm_neon_vrshiftn: 9388 case Intrinsic::arm_neon_vqshifts: 9389 case Intrinsic::arm_neon_vqshiftu: 9390 case Intrinsic::arm_neon_vqshiftsu: 9391 case Intrinsic::arm_neon_vqshiftns: 9392 case Intrinsic::arm_neon_vqshiftnu: 9393 case Intrinsic::arm_neon_vqshiftnsu: 9394 case Intrinsic::arm_neon_vqrshiftns: 9395 case Intrinsic::arm_neon_vqrshiftnu: 9396 case Intrinsic::arm_neon_vqrshiftnsu: { 9397 EVT VT = N->getOperand(1).getValueType(); 9398 int64_t Cnt; 9399 unsigned VShiftOpc = 0; 9400 9401 switch (IntNo) { 9402 case Intrinsic::arm_neon_vshifts: 9403 case Intrinsic::arm_neon_vshiftu: 9404 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { 9405 VShiftOpc = ARMISD::VSHL; 9406 break; 9407 } 9408 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { 9409 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? 9410 ARMISD::VSHRs : ARMISD::VSHRu); 9411 break; 9412 } 9413 return SDValue(); 9414 9415 case Intrinsic::arm_neon_vshiftls: 9416 case Intrinsic::arm_neon_vshiftlu: 9417 if (isVShiftLImm(N->getOperand(2), VT, true, Cnt)) 9418 break; 9419 llvm_unreachable("invalid shift count for vshll intrinsic"); 9420 9421 case Intrinsic::arm_neon_vrshifts: 9422 case Intrinsic::arm_neon_vrshiftu: 9423 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) 9424 break; 9425 return SDValue(); 9426 9427 case Intrinsic::arm_neon_vqshifts: 9428 case Intrinsic::arm_neon_vqshiftu: 9429 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) 9430 break; 9431 return SDValue(); 9432 9433 case Intrinsic::arm_neon_vqshiftsu: 9434 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) 9435 break; 9436 llvm_unreachable("invalid shift count for vqshlu intrinsic"); 9437 9438 case Intrinsic::arm_neon_vshiftn: 9439 case Intrinsic::arm_neon_vrshiftn: 9440 case Intrinsic::arm_neon_vqshiftns: 9441 case Intrinsic::arm_neon_vqshiftnu: 9442 case Intrinsic::arm_neon_vqshiftnsu: 9443 case Intrinsic::arm_neon_vqrshiftns: 9444 case Intrinsic::arm_neon_vqrshiftnu: 9445 case Intrinsic::arm_neon_vqrshiftnsu: 9446 // Narrowing shifts require an immediate right shift. 9447 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) 9448 break; 9449 llvm_unreachable("invalid shift count for narrowing vector shift " 9450 "intrinsic"); 9451 9452 default: 9453 llvm_unreachable("unhandled vector shift"); 9454 } 9455 9456 switch (IntNo) { 9457 case Intrinsic::arm_neon_vshifts: 9458 case Intrinsic::arm_neon_vshiftu: 9459 // Opcode already set above. 9460 break; 9461 case Intrinsic::arm_neon_vshiftls: 9462 case Intrinsic::arm_neon_vshiftlu: 9463 if (Cnt == VT.getVectorElementType().getSizeInBits()) 9464 VShiftOpc = ARMISD::VSHLLi; 9465 else 9466 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ? 9467 ARMISD::VSHLLs : ARMISD::VSHLLu); 9468 break; 9469 case Intrinsic::arm_neon_vshiftn: 9470 VShiftOpc = ARMISD::VSHRN; break; 9471 case Intrinsic::arm_neon_vrshifts: 9472 VShiftOpc = ARMISD::VRSHRs; break; 9473 case Intrinsic::arm_neon_vrshiftu: 9474 VShiftOpc = ARMISD::VRSHRu; break; 9475 case Intrinsic::arm_neon_vrshiftn: 9476 VShiftOpc = ARMISD::VRSHRN; break; 9477 case Intrinsic::arm_neon_vqshifts: 9478 VShiftOpc = ARMISD::VQSHLs; break; 9479 case Intrinsic::arm_neon_vqshiftu: 9480 VShiftOpc = ARMISD::VQSHLu; break; 9481 case Intrinsic::arm_neon_vqshiftsu: 9482 VShiftOpc = ARMISD::VQSHLsu; break; 9483 case Intrinsic::arm_neon_vqshiftns: 9484 VShiftOpc = ARMISD::VQSHRNs; break; 9485 case Intrinsic::arm_neon_vqshiftnu: 9486 VShiftOpc = ARMISD::VQSHRNu; break; 9487 case Intrinsic::arm_neon_vqshiftnsu: 9488 VShiftOpc = ARMISD::VQSHRNsu; break; 9489 case Intrinsic::arm_neon_vqrshiftns: 9490 VShiftOpc = ARMISD::VQRSHRNs; break; 9491 case Intrinsic::arm_neon_vqrshiftnu: 9492 VShiftOpc = ARMISD::VQRSHRNu; break; 9493 case Intrinsic::arm_neon_vqrshiftnsu: 9494 VShiftOpc = ARMISD::VQRSHRNsu; break; 9495 } 9496 9497 return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0), 9498 N->getOperand(1), DAG.getConstant(Cnt, MVT::i32)); 9499 } 9500 9501 case Intrinsic::arm_neon_vshiftins: { 9502 EVT VT = N->getOperand(1).getValueType(); 9503 int64_t Cnt; 9504 unsigned VShiftOpc = 0; 9505 9506 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) 9507 VShiftOpc = ARMISD::VSLI; 9508 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) 9509 VShiftOpc = ARMISD::VSRI; 9510 else { 9511 llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); 9512 } 9513 9514 return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0), 9515 N->getOperand(1), N->getOperand(2), 9516 DAG.getConstant(Cnt, MVT::i32)); 9517 } 9518 9519 case Intrinsic::arm_neon_vqrshifts: 9520 case Intrinsic::arm_neon_vqrshiftu: 9521 // No immediate versions of these to check for. 9522 break; 9523 } 9524 9525 return SDValue(); 9526} 9527 9528/// PerformShiftCombine - Checks for immediate versions of vector shifts and 9529/// lowers them. As with the vector shift intrinsics, this is done during DAG 9530/// combining instead of DAG legalizing because the build_vectors for 64-bit 9531/// vector element shift counts are generally not legal, and it is hard to see 9532/// their values after they get legalized to loads from a constant pool. 9533static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, 9534 const ARMSubtarget *ST) { 9535 EVT VT = N->getValueType(0); 9536 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) { 9537 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high 9538 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16. 9539 SDValue N1 = N->getOperand(1); 9540 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 9541 SDValue N0 = N->getOperand(0); 9542 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP && 9543 DAG.MaskedValueIsZero(N0.getOperand(0), 9544 APInt::getHighBitsSet(32, 16))) 9545 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1); 9546 } 9547 } 9548 9549 // Nothing to be done for scalar shifts. 9550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9551 if (!VT.isVector() || !TLI.isTypeLegal(VT)) 9552 return SDValue(); 9553 9554 assert(ST->hasNEON() && "unexpected vector shift"); 9555 int64_t Cnt; 9556 9557 switch (N->getOpcode()) { 9558 default: llvm_unreachable("unexpected shift opcode"); 9559 9560 case ISD::SHL: 9561 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) 9562 return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0), 9563 DAG.getConstant(Cnt, MVT::i32)); 9564 break; 9565 9566 case ISD::SRA: 9567 case ISD::SRL: 9568 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { 9569 unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? 9570 ARMISD::VSHRs : ARMISD::VSHRu); 9571 return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0), 9572 DAG.getConstant(Cnt, MVT::i32)); 9573 } 9574 } 9575 return SDValue(); 9576} 9577 9578/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, 9579/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. 9580static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, 9581 const ARMSubtarget *ST) { 9582 SDValue N0 = N->getOperand(0); 9583 9584 // Check for sign- and zero-extensions of vector extract operations of 8- 9585 // and 16-bit vector elements. NEON supports these directly. They are 9586 // handled during DAG combining because type legalization will promote them 9587 // to 32-bit types and it is messy to recognize the operations after that. 9588 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 9589 SDValue Vec = N0.getOperand(0); 9590 SDValue Lane = N0.getOperand(1); 9591 EVT VT = N->getValueType(0); 9592 EVT EltVT = N0.getValueType(); 9593 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9594 9595 if (VT == MVT::i32 && 9596 (EltVT == MVT::i8 || EltVT == MVT::i16) && 9597 TLI.isTypeLegal(Vec.getValueType()) && 9598 isa<ConstantSDNode>(Lane)) { 9599 9600 unsigned Opc = 0; 9601 switch (N->getOpcode()) { 9602 default: llvm_unreachable("unexpected opcode"); 9603 case ISD::SIGN_EXTEND: 9604 Opc = ARMISD::VGETLANEs; 9605 break; 9606 case ISD::ZERO_EXTEND: 9607 case ISD::ANY_EXTEND: 9608 Opc = ARMISD::VGETLANEu; 9609 break; 9610 } 9611 return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane); 9612 } 9613 } 9614 9615 return SDValue(); 9616} 9617 9618/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC 9619/// to match f32 max/min patterns to use NEON vmax/vmin instructions. 9620static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, 9621 const ARMSubtarget *ST) { 9622 // If the target supports NEON, try to use vmax/vmin instructions for f32 9623 // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set, 9624 // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is 9625 // a NaN; only do the transformation when it matches that behavior. 9626 9627 // For now only do this when using NEON for FP operations; if using VFP, it 9628 // is not obvious that the benefit outweighs the cost of switching to the 9629 // NEON pipeline. 9630 if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() || 9631 N->getValueType(0) != MVT::f32) 9632 return SDValue(); 9633 9634 SDValue CondLHS = N->getOperand(0); 9635 SDValue CondRHS = N->getOperand(1); 9636 SDValue LHS = N->getOperand(2); 9637 SDValue RHS = N->getOperand(3); 9638 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 9639 9640 unsigned Opcode = 0; 9641 bool IsReversed; 9642 if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) { 9643 IsReversed = false; // x CC y ? x : y 9644 } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) { 9645 IsReversed = true ; // x CC y ? y : x 9646 } else { 9647 return SDValue(); 9648 } 9649 9650 bool IsUnordered; 9651 switch (CC) { 9652 default: break; 9653 case ISD::SETOLT: 9654 case ISD::SETOLE: 9655 case ISD::SETLT: 9656 case ISD::SETLE: 9657 case ISD::SETULT: 9658 case ISD::SETULE: 9659 // If LHS is NaN, an ordered comparison will be false and the result will 9660 // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS 9661 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. 9662 IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE); 9663 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) 9664 break; 9665 // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin 9666 // will return -0, so vmin can only be used for unsafe math or if one of 9667 // the operands is known to be nonzero. 9668 if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) && 9669 !DAG.getTarget().Options.UnsafeFPMath && 9670 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) 9671 break; 9672 Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN; 9673 break; 9674 9675 case ISD::SETOGT: 9676 case ISD::SETOGE: 9677 case ISD::SETGT: 9678 case ISD::SETGE: 9679 case ISD::SETUGT: 9680 case ISD::SETUGE: 9681 // If LHS is NaN, an ordered comparison will be false and the result will 9682 // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS 9683 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. 9684 IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE); 9685 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) 9686 break; 9687 // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax 9688 // will return +0, so vmax can only be used for unsafe math or if one of 9689 // the operands is known to be nonzero. 9690 if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) && 9691 !DAG.getTarget().Options.UnsafeFPMath && 9692 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) 9693 break; 9694 Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX; 9695 break; 9696 } 9697 9698 if (!Opcode) 9699 return SDValue(); 9700 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS); 9701} 9702 9703/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV. 9704SDValue 9705ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const { 9706 SDValue Cmp = N->getOperand(4); 9707 if (Cmp.getOpcode() != ARMISD::CMPZ) 9708 // Only looking at EQ and NE cases. 9709 return SDValue(); 9710 9711 EVT VT = N->getValueType(0); 9712 SDLoc dl(N); 9713 SDValue LHS = Cmp.getOperand(0); 9714 SDValue RHS = Cmp.getOperand(1); 9715 SDValue FalseVal = N->getOperand(0); 9716 SDValue TrueVal = N->getOperand(1); 9717 SDValue ARMcc = N->getOperand(2); 9718 ARMCC::CondCodes CC = 9719 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue(); 9720 9721 // Simplify 9722 // mov r1, r0 9723 // cmp r1, x 9724 // mov r0, y 9725 // moveq r0, x 9726 // to 9727 // cmp r0, x 9728 // movne r0, y 9729 // 9730 // mov r1, r0 9731 // cmp r1, x 9732 // mov r0, x 9733 // movne r0, y 9734 // to 9735 // cmp r0, x 9736 // movne r0, y 9737 /// FIXME: Turn this into a target neutral optimization? 9738 SDValue Res; 9739 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) { 9740 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc, 9741 N->getOperand(3), Cmp); 9742 } else if (CC == ARMCC::EQ && TrueVal == RHS) { 9743 SDValue ARMcc; 9744 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl); 9745 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc, 9746 N->getOperand(3), NewCmp); 9747 } 9748 9749 if (Res.getNode()) { 9750 APInt KnownZero, KnownOne; 9751 DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne); 9752 // Capture demanded bits information that would be otherwise lost. 9753 if (KnownZero == 0xfffffffe) 9754 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 9755 DAG.getValueType(MVT::i1)); 9756 else if (KnownZero == 0xffffff00) 9757 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 9758 DAG.getValueType(MVT::i8)); 9759 else if (KnownZero == 0xffff0000) 9760 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 9761 DAG.getValueType(MVT::i16)); 9762 } 9763 9764 return Res; 9765} 9766 9767SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, 9768 DAGCombinerInfo &DCI) const { 9769 switch (N->getOpcode()) { 9770 default: break; 9771 case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget); 9772 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget); 9773 case ISD::SUB: return PerformSUBCombine(N, DCI); 9774 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget); 9775 case ISD::OR: return PerformORCombine(N, DCI, Subtarget); 9776 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget); 9777 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget); 9778 case ARMISD::BFI: return PerformBFICombine(N, DCI); 9779 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI); 9780 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG); 9781 case ISD::STORE: return PerformSTORECombine(N, DCI); 9782 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI); 9783 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI); 9784 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG); 9785 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI); 9786 case ISD::FP_TO_SINT: 9787 case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget); 9788 case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget); 9789 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); 9790 case ISD::SHL: 9791 case ISD::SRA: 9792 case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget); 9793 case ISD::SIGN_EXTEND: 9794 case ISD::ZERO_EXTEND: 9795 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); 9796 case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget); 9797 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG); 9798 case ARMISD::VLD2DUP: 9799 case ARMISD::VLD3DUP: 9800 case ARMISD::VLD4DUP: 9801 return CombineBaseUpdate(N, DCI); 9802 case ARMISD::BUILD_VECTOR: 9803 return PerformARMBUILD_VECTORCombine(N, DCI); 9804 case ISD::INTRINSIC_VOID: 9805 case ISD::INTRINSIC_W_CHAIN: 9806 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9807 case Intrinsic::arm_neon_vld1: 9808 case Intrinsic::arm_neon_vld2: 9809 case Intrinsic::arm_neon_vld3: 9810 case Intrinsic::arm_neon_vld4: 9811 case Intrinsic::arm_neon_vld2lane: 9812 case Intrinsic::arm_neon_vld3lane: 9813 case Intrinsic::arm_neon_vld4lane: 9814 case Intrinsic::arm_neon_vst1: 9815 case Intrinsic::arm_neon_vst2: 9816 case Intrinsic::arm_neon_vst3: 9817 case Intrinsic::arm_neon_vst4: 9818 case Intrinsic::arm_neon_vst2lane: 9819 case Intrinsic::arm_neon_vst3lane: 9820 case Intrinsic::arm_neon_vst4lane: 9821 return CombineBaseUpdate(N, DCI); 9822 default: break; 9823 } 9824 break; 9825 } 9826 return SDValue(); 9827} 9828 9829bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc, 9830 EVT VT) const { 9831 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE); 9832} 9833 9834bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const { 9835 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus 9836 bool AllowsUnaligned = Subtarget->allowsUnalignedMem(); 9837 9838 switch (VT.getSimpleVT().SimpleTy) { 9839 default: 9840 return false; 9841 case MVT::i8: 9842 case MVT::i16: 9843 case MVT::i32: { 9844 // Unaligned access can use (for example) LRDB, LRDH, LDR 9845 if (AllowsUnaligned) { 9846 if (Fast) 9847 *Fast = Subtarget->hasV7Ops(); 9848 return true; 9849 } 9850 return false; 9851 } 9852 case MVT::f64: 9853 case MVT::v2f64: { 9854 // For any little-endian targets with neon, we can support unaligned ld/st 9855 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8. 9856 // A big-endian target may also explictly support unaligned accesses 9857 if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) { 9858 if (Fast) 9859 *Fast = true; 9860 return true; 9861 } 9862 return false; 9863 } 9864 } 9865} 9866 9867static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, 9868 unsigned AlignCheck) { 9869 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && 9870 (DstAlign == 0 || DstAlign % AlignCheck == 0)); 9871} 9872 9873EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size, 9874 unsigned DstAlign, unsigned SrcAlign, 9875 bool IsMemset, bool ZeroMemset, 9876 bool MemcpyStrSrc, 9877 MachineFunction &MF) const { 9878 const Function *F = MF.getFunction(); 9879 9880 // See if we can use NEON instructions for this... 9881 if ((!IsMemset || ZeroMemset) && 9882 Subtarget->hasNEON() && 9883 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 9884 Attribute::NoImplicitFloat)) { 9885 bool Fast; 9886 if (Size >= 16 && 9887 (memOpAlign(SrcAlign, DstAlign, 16) || 9888 (allowsUnalignedMemoryAccesses(MVT::v2f64, &Fast) && Fast))) { 9889 return MVT::v2f64; 9890 } else if (Size >= 8 && 9891 (memOpAlign(SrcAlign, DstAlign, 8) || 9892 (allowsUnalignedMemoryAccesses(MVT::f64, &Fast) && Fast))) { 9893 return MVT::f64; 9894 } 9895 } 9896 9897 // Lowering to i32/i16 if the size permits. 9898 if (Size >= 4) 9899 return MVT::i32; 9900 else if (Size >= 2) 9901 return MVT::i16; 9902 9903 // Let the target-independent logic figure it out. 9904 return MVT::Other; 9905} 9906 9907bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 9908 if (Val.getOpcode() != ISD::LOAD) 9909 return false; 9910 9911 EVT VT1 = Val.getValueType(); 9912 if (!VT1.isSimple() || !VT1.isInteger() || 9913 !VT2.isSimple() || !VT2.isInteger()) 9914 return false; 9915 9916 switch (VT1.getSimpleVT().SimpleTy) { 9917 default: break; 9918 case MVT::i1: 9919 case MVT::i8: 9920 case MVT::i16: 9921 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits. 9922 return true; 9923 } 9924 9925 return false; 9926} 9927 9928static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { 9929 if (V < 0) 9930 return false; 9931 9932 unsigned Scale = 1; 9933 switch (VT.getSimpleVT().SimpleTy) { 9934 default: return false; 9935 case MVT::i1: 9936 case MVT::i8: 9937 // Scale == 1; 9938 break; 9939 case MVT::i16: 9940 // Scale == 2; 9941 Scale = 2; 9942 break; 9943 case MVT::i32: 9944 // Scale == 4; 9945 Scale = 4; 9946 break; 9947 } 9948 9949 if ((V & (Scale - 1)) != 0) 9950 return false; 9951 V /= Scale; 9952 return V == (V & ((1LL << 5) - 1)); 9953} 9954 9955static bool isLegalT2AddressImmediate(int64_t V, EVT VT, 9956 const ARMSubtarget *Subtarget) { 9957 bool isNeg = false; 9958 if (V < 0) { 9959 isNeg = true; 9960 V = - V; 9961 } 9962 9963 switch (VT.getSimpleVT().SimpleTy) { 9964 default: return false; 9965 case MVT::i1: 9966 case MVT::i8: 9967 case MVT::i16: 9968 case MVT::i32: 9969 // + imm12 or - imm8 9970 if (isNeg) 9971 return V == (V & ((1LL << 8) - 1)); 9972 return V == (V & ((1LL << 12) - 1)); 9973 case MVT::f32: 9974 case MVT::f64: 9975 // Same as ARM mode. FIXME: NEON? 9976 if (!Subtarget->hasVFP2()) 9977 return false; 9978 if ((V & 3) != 0) 9979 return false; 9980 V >>= 2; 9981 return V == (V & ((1LL << 8) - 1)); 9982 } 9983} 9984 9985/// isLegalAddressImmediate - Return true if the integer value can be used 9986/// as the offset of the target addressing mode for load / store of the 9987/// given type. 9988static bool isLegalAddressImmediate(int64_t V, EVT VT, 9989 const ARMSubtarget *Subtarget) { 9990 if (V == 0) 9991 return true; 9992 9993 if (!VT.isSimple()) 9994 return false; 9995 9996 if (Subtarget->isThumb1Only()) 9997 return isLegalT1AddressImmediate(V, VT); 9998 else if (Subtarget->isThumb2()) 9999 return isLegalT2AddressImmediate(V, VT, Subtarget); 10000 10001 // ARM mode. 10002 if (V < 0) 10003 V = - V; 10004 switch (VT.getSimpleVT().SimpleTy) { 10005 default: return false; 10006 case MVT::i1: 10007 case MVT::i8: 10008 case MVT::i32: 10009 // +- imm12 10010 return V == (V & ((1LL << 12) - 1)); 10011 case MVT::i16: 10012 // +- imm8 10013 return V == (V & ((1LL << 8) - 1)); 10014 case MVT::f32: 10015 case MVT::f64: 10016 if (!Subtarget->hasVFP2()) // FIXME: NEON? 10017 return false; 10018 if ((V & 3) != 0) 10019 return false; 10020 V >>= 2; 10021 return V == (V & ((1LL << 8) - 1)); 10022 } 10023} 10024 10025bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, 10026 EVT VT) const { 10027 int Scale = AM.Scale; 10028 if (Scale < 0) 10029 return false; 10030 10031 switch (VT.getSimpleVT().SimpleTy) { 10032 default: return false; 10033 case MVT::i1: 10034 case MVT::i8: 10035 case MVT::i16: 10036 case MVT::i32: 10037 if (Scale == 1) 10038 return true; 10039 // r + r << imm 10040 Scale = Scale & ~1; 10041 return Scale == 2 || Scale == 4 || Scale == 8; 10042 case MVT::i64: 10043 // r + r 10044 if (((unsigned)AM.HasBaseReg + Scale) <= 2) 10045 return true; 10046 return false; 10047 case MVT::isVoid: 10048 // Note, we allow "void" uses (basically, uses that aren't loads or 10049 // stores), because arm allows folding a scale into many arithmetic 10050 // operations. This should be made more precise and revisited later. 10051 10052 // Allow r << imm, but the imm has to be a multiple of two. 10053 if (Scale & 1) return false; 10054 return isPowerOf2_32(Scale); 10055 } 10056} 10057 10058/// isLegalAddressingMode - Return true if the addressing mode represented 10059/// by AM is legal for this target, for a load/store of the specified type. 10060bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM, 10061 Type *Ty) const { 10062 EVT VT = getValueType(Ty, true); 10063 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) 10064 return false; 10065 10066 // Can never fold addr of global into load/store. 10067 if (AM.BaseGV) 10068 return false; 10069 10070 switch (AM.Scale) { 10071 case 0: // no scale reg, must be "r+i" or "r", or "i". 10072 break; 10073 case 1: 10074 if (Subtarget->isThumb1Only()) 10075 return false; 10076 // FALL THROUGH. 10077 default: 10078 // ARM doesn't support any R+R*scale+imm addr modes. 10079 if (AM.BaseOffs) 10080 return false; 10081 10082 if (!VT.isSimple()) 10083 return false; 10084 10085 if (Subtarget->isThumb2()) 10086 return isLegalT2ScaledAddressingMode(AM, VT); 10087 10088 int Scale = AM.Scale; 10089 switch (VT.getSimpleVT().SimpleTy) { 10090 default: return false; 10091 case MVT::i1: 10092 case MVT::i8: 10093 case MVT::i32: 10094 if (Scale < 0) Scale = -Scale; 10095 if (Scale == 1) 10096 return true; 10097 // r + r << imm 10098 return isPowerOf2_32(Scale & ~1); 10099 case MVT::i16: 10100 case MVT::i64: 10101 // r + r 10102 if (((unsigned)AM.HasBaseReg + Scale) <= 2) 10103 return true; 10104 return false; 10105 10106 case MVT::isVoid: 10107 // Note, we allow "void" uses (basically, uses that aren't loads or 10108 // stores), because arm allows folding a scale into many arithmetic 10109 // operations. This should be made more precise and revisited later. 10110 10111 // Allow r << imm, but the imm has to be a multiple of two. 10112 if (Scale & 1) return false; 10113 return isPowerOf2_32(Scale); 10114 } 10115 } 10116 return true; 10117} 10118 10119/// isLegalICmpImmediate - Return true if the specified immediate is legal 10120/// icmp immediate, that is the target has icmp instructions which can compare 10121/// a register against the immediate without having to materialize the 10122/// immediate into a register. 10123bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 10124 // Thumb2 and ARM modes can use cmn for negative immediates. 10125 if (!Subtarget->isThumb()) 10126 return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1; 10127 if (Subtarget->isThumb2()) 10128 return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1; 10129 // Thumb1 doesn't have cmn, and only 8-bit immediates. 10130 return Imm >= 0 && Imm <= 255; 10131} 10132 10133/// isLegalAddImmediate - Return true if the specified immediate is a legal add 10134/// *or sub* immediate, that is the target has add or sub instructions which can 10135/// add a register with the immediate without having to materialize the 10136/// immediate into a register. 10137bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const { 10138 // Same encoding for add/sub, just flip the sign. 10139 int64_t AbsImm = llvm::abs64(Imm); 10140 if (!Subtarget->isThumb()) 10141 return ARM_AM::getSOImmVal(AbsImm) != -1; 10142 if (Subtarget->isThumb2()) 10143 return ARM_AM::getT2SOImmVal(AbsImm) != -1; 10144 // Thumb1 only has 8-bit unsigned immediate. 10145 return AbsImm >= 0 && AbsImm <= 255; 10146} 10147 10148static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, 10149 bool isSEXTLoad, SDValue &Base, 10150 SDValue &Offset, bool &isInc, 10151 SelectionDAG &DAG) { 10152 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) 10153 return false; 10154 10155 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { 10156 // AddressingMode 3 10157 Base = Ptr->getOperand(0); 10158 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 10159 int RHSC = (int)RHS->getZExtValue(); 10160 if (RHSC < 0 && RHSC > -256) { 10161 assert(Ptr->getOpcode() == ISD::ADD); 10162 isInc = false; 10163 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); 10164 return true; 10165 } 10166 } 10167 isInc = (Ptr->getOpcode() == ISD::ADD); 10168 Offset = Ptr->getOperand(1); 10169 return true; 10170 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { 10171 // AddressingMode 2 10172 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 10173 int RHSC = (int)RHS->getZExtValue(); 10174 if (RHSC < 0 && RHSC > -0x1000) { 10175 assert(Ptr->getOpcode() == ISD::ADD); 10176 isInc = false; 10177 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); 10178 Base = Ptr->getOperand(0); 10179 return true; 10180 } 10181 } 10182 10183 if (Ptr->getOpcode() == ISD::ADD) { 10184 isInc = true; 10185 ARM_AM::ShiftOpc ShOpcVal= 10186 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode()); 10187 if (ShOpcVal != ARM_AM::no_shift) { 10188 Base = Ptr->getOperand(1); 10189 Offset = Ptr->getOperand(0); 10190 } else { 10191 Base = Ptr->getOperand(0); 10192 Offset = Ptr->getOperand(1); 10193 } 10194 return true; 10195 } 10196 10197 isInc = (Ptr->getOpcode() == ISD::ADD); 10198 Base = Ptr->getOperand(0); 10199 Offset = Ptr->getOperand(1); 10200 return true; 10201 } 10202 10203 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. 10204 return false; 10205} 10206 10207static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, 10208 bool isSEXTLoad, SDValue &Base, 10209 SDValue &Offset, bool &isInc, 10210 SelectionDAG &DAG) { 10211 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) 10212 return false; 10213 10214 Base = Ptr->getOperand(0); 10215 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 10216 int RHSC = (int)RHS->getZExtValue(); 10217 if (RHSC < 0 && RHSC > -0x100) { // 8 bits. 10218 assert(Ptr->getOpcode() == ISD::ADD); 10219 isInc = false; 10220 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); 10221 return true; 10222 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. 10223 isInc = Ptr->getOpcode() == ISD::ADD; 10224 Offset = DAG.getConstant(RHSC, RHS->getValueType(0)); 10225 return true; 10226 } 10227 } 10228 10229 return false; 10230} 10231 10232/// getPreIndexedAddressParts - returns true by value, base pointer and 10233/// offset pointer and addressing mode by reference if the node's address 10234/// can be legally represented as pre-indexed load / store address. 10235bool 10236ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 10237 SDValue &Offset, 10238 ISD::MemIndexedMode &AM, 10239 SelectionDAG &DAG) const { 10240 if (Subtarget->isThumb1Only()) 10241 return false; 10242 10243 EVT VT; 10244 SDValue Ptr; 10245 bool isSEXTLoad = false; 10246 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 10247 Ptr = LD->getBasePtr(); 10248 VT = LD->getMemoryVT(); 10249 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 10250 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 10251 Ptr = ST->getBasePtr(); 10252 VT = ST->getMemoryVT(); 10253 } else 10254 return false; 10255 10256 bool isInc; 10257 bool isLegal = false; 10258 if (Subtarget->isThumb2()) 10259 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, 10260 Offset, isInc, DAG); 10261 else 10262 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, 10263 Offset, isInc, DAG); 10264 if (!isLegal) 10265 return false; 10266 10267 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; 10268 return true; 10269} 10270 10271/// getPostIndexedAddressParts - returns true by value, base pointer and 10272/// offset pointer and addressing mode by reference if this node can be 10273/// combined with a load / store to form a post-indexed load / store. 10274bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 10275 SDValue &Base, 10276 SDValue &Offset, 10277 ISD::MemIndexedMode &AM, 10278 SelectionDAG &DAG) const { 10279 if (Subtarget->isThumb1Only()) 10280 return false; 10281 10282 EVT VT; 10283 SDValue Ptr; 10284 bool isSEXTLoad = false; 10285 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 10286 VT = LD->getMemoryVT(); 10287 Ptr = LD->getBasePtr(); 10288 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 10289 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 10290 VT = ST->getMemoryVT(); 10291 Ptr = ST->getBasePtr(); 10292 } else 10293 return false; 10294 10295 bool isInc; 10296 bool isLegal = false; 10297 if (Subtarget->isThumb2()) 10298 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 10299 isInc, DAG); 10300 else 10301 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 10302 isInc, DAG); 10303 if (!isLegal) 10304 return false; 10305 10306 if (Ptr != Base) { 10307 // Swap base ptr and offset to catch more post-index load / store when 10308 // it's legal. In Thumb2 mode, offset must be an immediate. 10309 if (Ptr == Offset && Op->getOpcode() == ISD::ADD && 10310 !Subtarget->isThumb2()) 10311 std::swap(Base, Offset); 10312 10313 // Post-indexed load / store update the base pointer. 10314 if (Ptr != Base) 10315 return false; 10316 } 10317 10318 AM = isInc ? ISD::POST_INC : ISD::POST_DEC; 10319 return true; 10320} 10321 10322void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 10323 APInt &KnownZero, 10324 APInt &KnownOne, 10325 const SelectionDAG &DAG, 10326 unsigned Depth) const { 10327 unsigned BitWidth = KnownOne.getBitWidth(); 10328 KnownZero = KnownOne = APInt(BitWidth, 0); 10329 switch (Op.getOpcode()) { 10330 default: break; 10331 case ARMISD::ADDC: 10332 case ARMISD::ADDE: 10333 case ARMISD::SUBC: 10334 case ARMISD::SUBE: 10335 // These nodes' second result is a boolean 10336 if (Op.getResNo() == 0) 10337 break; 10338 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 10339 break; 10340 case ARMISD::CMOV: { 10341 // Bits are known zero/one if known on the LHS and RHS. 10342 DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 10343 if (KnownZero == 0 && KnownOne == 0) return; 10344 10345 APInt KnownZeroRHS, KnownOneRHS; 10346 DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1); 10347 KnownZero &= KnownZeroRHS; 10348 KnownOne &= KnownOneRHS; 10349 return; 10350 } 10351 } 10352} 10353 10354//===----------------------------------------------------------------------===// 10355// ARM Inline Assembly Support 10356//===----------------------------------------------------------------------===// 10357 10358bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const { 10359 // Looking for "rev" which is V6+. 10360 if (!Subtarget->hasV6Ops()) 10361 return false; 10362 10363 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); 10364 std::string AsmStr = IA->getAsmString(); 10365 SmallVector<StringRef, 4> AsmPieces; 10366 SplitString(AsmStr, AsmPieces, ";\n"); 10367 10368 switch (AsmPieces.size()) { 10369 default: return false; 10370 case 1: 10371 AsmStr = AsmPieces[0]; 10372 AsmPieces.clear(); 10373 SplitString(AsmStr, AsmPieces, " \t,"); 10374 10375 // rev $0, $1 10376 if (AsmPieces.size() == 3 && 10377 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" && 10378 IA->getConstraintString().compare(0, 4, "=l,l") == 0) { 10379 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); 10380 if (Ty && Ty->getBitWidth() == 32) 10381 return IntrinsicLowering::LowerToByteSwap(CI); 10382 } 10383 break; 10384 } 10385 10386 return false; 10387} 10388 10389/// getConstraintType - Given a constraint letter, return the type of 10390/// constraint it is for this target. 10391ARMTargetLowering::ConstraintType 10392ARMTargetLowering::getConstraintType(const std::string &Constraint) const { 10393 if (Constraint.size() == 1) { 10394 switch (Constraint[0]) { 10395 default: break; 10396 case 'l': return C_RegisterClass; 10397 case 'w': return C_RegisterClass; 10398 case 'h': return C_RegisterClass; 10399 case 'x': return C_RegisterClass; 10400 case 't': return C_RegisterClass; 10401 case 'j': return C_Other; // Constant for movw. 10402 // An address with a single base register. Due to the way we 10403 // currently handle addresses it is the same as an 'r' memory constraint. 10404 case 'Q': return C_Memory; 10405 } 10406 } else if (Constraint.size() == 2) { 10407 switch (Constraint[0]) { 10408 default: break; 10409 // All 'U+' constraints are addresses. 10410 case 'U': return C_Memory; 10411 } 10412 } 10413 return TargetLowering::getConstraintType(Constraint); 10414} 10415 10416/// Examine constraint type and operand type and determine a weight value. 10417/// This object must already have been set up with the operand type 10418/// and the current alternative constraint selected. 10419TargetLowering::ConstraintWeight 10420ARMTargetLowering::getSingleConstraintMatchWeight( 10421 AsmOperandInfo &info, const char *constraint) const { 10422 ConstraintWeight weight = CW_Invalid; 10423 Value *CallOperandVal = info.CallOperandVal; 10424 // If we don't have a value, we can't do a match, 10425 // but allow it at the lowest weight. 10426 if (CallOperandVal == NULL) 10427 return CW_Default; 10428 Type *type = CallOperandVal->getType(); 10429 // Look at the constraint type. 10430 switch (*constraint) { 10431 default: 10432 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10433 break; 10434 case 'l': 10435 if (type->isIntegerTy()) { 10436 if (Subtarget->isThumb()) 10437 weight = CW_SpecificReg; 10438 else 10439 weight = CW_Register; 10440 } 10441 break; 10442 case 'w': 10443 if (type->isFloatingPointTy()) 10444 weight = CW_Register; 10445 break; 10446 } 10447 return weight; 10448} 10449 10450typedef std::pair<unsigned, const TargetRegisterClass*> RCPair; 10451RCPair 10452ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 10453 MVT VT) const { 10454 if (Constraint.size() == 1) { 10455 // GCC ARM Constraint Letters 10456 switch (Constraint[0]) { 10457 case 'l': // Low regs or general regs. 10458 if (Subtarget->isThumb()) 10459 return RCPair(0U, &ARM::tGPRRegClass); 10460 return RCPair(0U, &ARM::GPRRegClass); 10461 case 'h': // High regs or no regs. 10462 if (Subtarget->isThumb()) 10463 return RCPair(0U, &ARM::hGPRRegClass); 10464 break; 10465 case 'r': 10466 return RCPair(0U, &ARM::GPRRegClass); 10467 case 'w': 10468 if (VT == MVT::f32) 10469 return RCPair(0U, &ARM::SPRRegClass); 10470 if (VT.getSizeInBits() == 64) 10471 return RCPair(0U, &ARM::DPRRegClass); 10472 if (VT.getSizeInBits() == 128) 10473 return RCPair(0U, &ARM::QPRRegClass); 10474 break; 10475 case 'x': 10476 if (VT == MVT::f32) 10477 return RCPair(0U, &ARM::SPR_8RegClass); 10478 if (VT.getSizeInBits() == 64) 10479 return RCPair(0U, &ARM::DPR_8RegClass); 10480 if (VT.getSizeInBits() == 128) 10481 return RCPair(0U, &ARM::QPR_8RegClass); 10482 break; 10483 case 't': 10484 if (VT == MVT::f32) 10485 return RCPair(0U, &ARM::SPRRegClass); 10486 break; 10487 } 10488 } 10489 if (StringRef("{cc}").equals_lower(Constraint)) 10490 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass); 10491 10492 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 10493} 10494 10495/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 10496/// vector. If it is invalid, don't add anything to Ops. 10497void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 10498 std::string &Constraint, 10499 std::vector<SDValue>&Ops, 10500 SelectionDAG &DAG) const { 10501 SDValue Result(0, 0); 10502 10503 // Currently only support length 1 constraints. 10504 if (Constraint.length() != 1) return; 10505 10506 char ConstraintLetter = Constraint[0]; 10507 switch (ConstraintLetter) { 10508 default: break; 10509 case 'j': 10510 case 'I': case 'J': case 'K': case 'L': 10511 case 'M': case 'N': case 'O': 10512 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 10513 if (!C) 10514 return; 10515 10516 int64_t CVal64 = C->getSExtValue(); 10517 int CVal = (int) CVal64; 10518 // None of these constraints allow values larger than 32 bits. Check 10519 // that the value fits in an int. 10520 if (CVal != CVal64) 10521 return; 10522 10523 switch (ConstraintLetter) { 10524 case 'j': 10525 // Constant suitable for movw, must be between 0 and 10526 // 65535. 10527 if (Subtarget->hasV6T2Ops()) 10528 if (CVal >= 0 && CVal <= 65535) 10529 break; 10530 return; 10531 case 'I': 10532 if (Subtarget->isThumb1Only()) { 10533 // This must be a constant between 0 and 255, for ADD 10534 // immediates. 10535 if (CVal >= 0 && CVal <= 255) 10536 break; 10537 } else if (Subtarget->isThumb2()) { 10538 // A constant that can be used as an immediate value in a 10539 // data-processing instruction. 10540 if (ARM_AM::getT2SOImmVal(CVal) != -1) 10541 break; 10542 } else { 10543 // A constant that can be used as an immediate value in a 10544 // data-processing instruction. 10545 if (ARM_AM::getSOImmVal(CVal) != -1) 10546 break; 10547 } 10548 return; 10549 10550 case 'J': 10551 if (Subtarget->isThumb()) { // FIXME thumb2 10552 // This must be a constant between -255 and -1, for negated ADD 10553 // immediates. This can be used in GCC with an "n" modifier that 10554 // prints the negated value, for use with SUB instructions. It is 10555 // not useful otherwise but is implemented for compatibility. 10556 if (CVal >= -255 && CVal <= -1) 10557 break; 10558 } else { 10559 // This must be a constant between -4095 and 4095. It is not clear 10560 // what this constraint is intended for. Implemented for 10561 // compatibility with GCC. 10562 if (CVal >= -4095 && CVal <= 4095) 10563 break; 10564 } 10565 return; 10566 10567 case 'K': 10568 if (Subtarget->isThumb1Only()) { 10569 // A 32-bit value where only one byte has a nonzero value. Exclude 10570 // zero to match GCC. This constraint is used by GCC internally for 10571 // constants that can be loaded with a move/shift combination. 10572 // It is not useful otherwise but is implemented for compatibility. 10573 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) 10574 break; 10575 } else if (Subtarget->isThumb2()) { 10576 // A constant whose bitwise inverse can be used as an immediate 10577 // value in a data-processing instruction. This can be used in GCC 10578 // with a "B" modifier that prints the inverted value, for use with 10579 // BIC and MVN instructions. It is not useful otherwise but is 10580 // implemented for compatibility. 10581 if (ARM_AM::getT2SOImmVal(~CVal) != -1) 10582 break; 10583 } else { 10584 // A constant whose bitwise inverse can be used as an immediate 10585 // value in a data-processing instruction. This can be used in GCC 10586 // with a "B" modifier that prints the inverted value, for use with 10587 // BIC and MVN instructions. It is not useful otherwise but is 10588 // implemented for compatibility. 10589 if (ARM_AM::getSOImmVal(~CVal) != -1) 10590 break; 10591 } 10592 return; 10593 10594 case 'L': 10595 if (Subtarget->isThumb1Only()) { 10596 // This must be a constant between -7 and 7, 10597 // for 3-operand ADD/SUB immediate instructions. 10598 if (CVal >= -7 && CVal < 7) 10599 break; 10600 } else if (Subtarget->isThumb2()) { 10601 // A constant whose negation can be used as an immediate value in a 10602 // data-processing instruction. This can be used in GCC with an "n" 10603 // modifier that prints the negated value, for use with SUB 10604 // instructions. It is not useful otherwise but is implemented for 10605 // compatibility. 10606 if (ARM_AM::getT2SOImmVal(-CVal) != -1) 10607 break; 10608 } else { 10609 // A constant whose negation can be used as an immediate value in a 10610 // data-processing instruction. This can be used in GCC with an "n" 10611 // modifier that prints the negated value, for use with SUB 10612 // instructions. It is not useful otherwise but is implemented for 10613 // compatibility. 10614 if (ARM_AM::getSOImmVal(-CVal) != -1) 10615 break; 10616 } 10617 return; 10618 10619 case 'M': 10620 if (Subtarget->isThumb()) { // FIXME thumb2 10621 // This must be a multiple of 4 between 0 and 1020, for 10622 // ADD sp + immediate. 10623 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) 10624 break; 10625 } else { 10626 // A power of two or a constant between 0 and 32. This is used in 10627 // GCC for the shift amount on shifted register operands, but it is 10628 // useful in general for any shift amounts. 10629 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) 10630 break; 10631 } 10632 return; 10633 10634 case 'N': 10635 if (Subtarget->isThumb()) { // FIXME thumb2 10636 // This must be a constant between 0 and 31, for shift amounts. 10637 if (CVal >= 0 && CVal <= 31) 10638 break; 10639 } 10640 return; 10641 10642 case 'O': 10643 if (Subtarget->isThumb()) { // FIXME thumb2 10644 // This must be a multiple of 4 between -508 and 508, for 10645 // ADD/SUB sp = sp + immediate. 10646 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) 10647 break; 10648 } 10649 return; 10650 } 10651 Result = DAG.getTargetConstant(CVal, Op.getValueType()); 10652 break; 10653 } 10654 10655 if (Result.getNode()) { 10656 Ops.push_back(Result); 10657 return; 10658 } 10659 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10660} 10661 10662bool 10663ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 10664 // The ARM target isn't yet aware of offsets. 10665 return false; 10666} 10667 10668bool ARM::isBitFieldInvertedMask(unsigned v) { 10669 if (v == 0xffffffff) 10670 return false; 10671 10672 // there can be 1's on either or both "outsides", all the "inside" 10673 // bits must be 0's 10674 unsigned TO = CountTrailingOnes_32(v); 10675 unsigned LO = CountLeadingOnes_32(v); 10676 v = (v >> TO) << TO; 10677 v = (v << LO) >> LO; 10678 return v == 0; 10679} 10680 10681/// isFPImmLegal - Returns true if the target can instruction select the 10682/// specified FP immediate natively. If false, the legalizer will 10683/// materialize the FP immediate as a load from a constant pool. 10684bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 10685 if (!Subtarget->hasVFP3()) 10686 return false; 10687 if (VT == MVT::f32) 10688 return ARM_AM::getFP32Imm(Imm) != -1; 10689 if (VT == MVT::f64) 10690 return ARM_AM::getFP64Imm(Imm) != -1; 10691 return false; 10692} 10693 10694/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as 10695/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment 10696/// specified in the intrinsic calls. 10697bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 10698 const CallInst &I, 10699 unsigned Intrinsic) const { 10700 switch (Intrinsic) { 10701 case Intrinsic::arm_neon_vld1: 10702 case Intrinsic::arm_neon_vld2: 10703 case Intrinsic::arm_neon_vld3: 10704 case Intrinsic::arm_neon_vld4: 10705 case Intrinsic::arm_neon_vld2lane: 10706 case Intrinsic::arm_neon_vld3lane: 10707 case Intrinsic::arm_neon_vld4lane: { 10708 Info.opc = ISD::INTRINSIC_W_CHAIN; 10709 // Conservatively set memVT to the entire set of vectors loaded. 10710 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8; 10711 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 10712 Info.ptrVal = I.getArgOperand(0); 10713 Info.offset = 0; 10714 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); 10715 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); 10716 Info.vol = false; // volatile loads with NEON intrinsics not supported 10717 Info.readMem = true; 10718 Info.writeMem = false; 10719 return true; 10720 } 10721 case Intrinsic::arm_neon_vst1: 10722 case Intrinsic::arm_neon_vst2: 10723 case Intrinsic::arm_neon_vst3: 10724 case Intrinsic::arm_neon_vst4: 10725 case Intrinsic::arm_neon_vst2lane: 10726 case Intrinsic::arm_neon_vst3lane: 10727 case Intrinsic::arm_neon_vst4lane: { 10728 Info.opc = ISD::INTRINSIC_VOID; 10729 // Conservatively set memVT to the entire set of vectors stored. 10730 unsigned NumElts = 0; 10731 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { 10732 Type *ArgTy = I.getArgOperand(ArgI)->getType(); 10733 if (!ArgTy->isVectorTy()) 10734 break; 10735 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8; 10736 } 10737 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 10738 Info.ptrVal = I.getArgOperand(0); 10739 Info.offset = 0; 10740 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); 10741 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); 10742 Info.vol = false; // volatile stores with NEON intrinsics not supported 10743 Info.readMem = false; 10744 Info.writeMem = true; 10745 return true; 10746 } 10747 case Intrinsic::arm_strexd: { 10748 Info.opc = ISD::INTRINSIC_W_CHAIN; 10749 Info.memVT = MVT::i64; 10750 Info.ptrVal = I.getArgOperand(2); 10751 Info.offset = 0; 10752 Info.align = 8; 10753 Info.vol = true; 10754 Info.readMem = false; 10755 Info.writeMem = true; 10756 return true; 10757 } 10758 case Intrinsic::arm_ldrexd: { 10759 Info.opc = ISD::INTRINSIC_W_CHAIN; 10760 Info.memVT = MVT::i64; 10761 Info.ptrVal = I.getArgOperand(0); 10762 Info.offset = 0; 10763 Info.align = 8; 10764 Info.vol = true; 10765 Info.readMem = true; 10766 Info.writeMem = false; 10767 return true; 10768 } 10769 default: 10770 break; 10771 } 10772 10773 return false; 10774} 10775