ARMISelLowering.cpp revision 62204220e1dc2dc21256adf765728ae257b33eac
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARMISelLowering.h"
17#include "ARM.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "MCTargetDesc/ARMAddressingModes.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/IntrinsicLowering.h"
30#include "llvm/CodeGen/MachineBasicBlock.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/GlobalValue.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/Type.h"
45#include "llvm/MC/MCSectionMachO.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/MathExtras.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetOptions.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
55STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
56
57// This option should go away when tail calls fully work.
58static cl::opt<bool>
59EnableARMTailCalls("arm-tail-calls", cl::Hidden,
60  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
61  cl::init(false));
62
63cl::opt<bool>
64EnableARMLongCalls("arm-long-calls", cl::Hidden,
65  cl::desc("Generate calls via indirect call instructions"),
66  cl::init(false));
67
68static cl::opt<bool>
69ARMInterworking("arm-interworking", cl::Hidden,
70  cl::desc("Enable / disable ARM interworking (for debugging only)"),
71  cl::init(true));
72
73namespace {
74  class ARMCCState : public CCState {
75  public:
76    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
77               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
78               LLVMContext &C, ParmContext PC)
79        : CCState(CC, isVarArg, MF, TM, locs, C) {
80      assert(((PC == Call) || (PC == Prologue)) &&
81             "ARMCCState users must specify whether their context is call"
82             "or prologue generation.");
83      CallOrPrologue = PC;
84    }
85  };
86}
87
88// The APCS parameter registers.
89static const uint16_t GPRArgRegs[] = {
90  ARM::R0, ARM::R1, ARM::R2, ARM::R3
91};
92
93void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
94                                       MVT PromotedBitwiseVT) {
95  if (VT != PromotedLdStVT) {
96    setOperationAction(ISD::LOAD, VT, Promote);
97    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
98
99    setOperationAction(ISD::STORE, VT, Promote);
100    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
101  }
102
103  MVT ElemTy = VT.getVectorElementType();
104  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
105    setOperationAction(ISD::SETCC, VT, Custom);
106  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
107  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
108  if (ElemTy == MVT::i32) {
109    setOperationAction(ISD::SINT_TO_FP, VT, Custom);
110    setOperationAction(ISD::UINT_TO_FP, VT, Custom);
111    setOperationAction(ISD::FP_TO_SINT, VT, Custom);
112    setOperationAction(ISD::FP_TO_UINT, VT, Custom);
113  } else {
114    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
115    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
116    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
117    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
118  }
119  setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
120  setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
121  setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
122  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
123  setOperationAction(ISD::SELECT,            VT, Expand);
124  setOperationAction(ISD::SELECT_CC,         VT, Expand);
125  setOperationAction(ISD::VSELECT,           VT, Expand);
126  setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
127  if (VT.isInteger()) {
128    setOperationAction(ISD::SHL, VT, Custom);
129    setOperationAction(ISD::SRA, VT, Custom);
130    setOperationAction(ISD::SRL, VT, Custom);
131  }
132
133  // Promote all bit-wise operations.
134  if (VT.isInteger() && VT != PromotedBitwiseVT) {
135    setOperationAction(ISD::AND, VT, Promote);
136    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
137    setOperationAction(ISD::OR,  VT, Promote);
138    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
139    setOperationAction(ISD::XOR, VT, Promote);
140    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
141  }
142
143  // Neon does not support vector divide/remainder operations.
144  setOperationAction(ISD::SDIV, VT, Expand);
145  setOperationAction(ISD::UDIV, VT, Expand);
146  setOperationAction(ISD::FDIV, VT, Expand);
147  setOperationAction(ISD::SREM, VT, Expand);
148  setOperationAction(ISD::UREM, VT, Expand);
149  setOperationAction(ISD::FREM, VT, Expand);
150}
151
152void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
153  addRegisterClass(VT, &ARM::DPRRegClass);
154  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
155}
156
157void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
158  addRegisterClass(VT, &ARM::QPRRegClass);
159  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
160}
161
162static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
163  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
164    return new TargetLoweringObjectFileMachO();
165
166  return new ARMElfTargetObjectFile();
167}
168
169ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
170    : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<ARMSubtarget>();
172  RegInfo = TM.getRegisterInfo();
173  Itins = TM.getInstrItineraryData();
174
175  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
176
177  if (Subtarget->isTargetDarwin()) {
178    // Uses VFP for Thumb libfuncs if available.
179    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
180      // Single-precision floating-point arithmetic.
181      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
182      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
183      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
184      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
185
186      // Double-precision floating-point arithmetic.
187      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
188      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
189      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
190      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
191
192      // Single-precision comparisons.
193      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
194      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
195      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
196      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
197      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
198      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
199      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
200      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
201
202      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
209      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
210
211      // Double-precision comparisons.
212      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
213      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
214      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
215      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
216      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
217      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
218      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
219      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
220
221      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
222      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
223      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
224      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
225      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
226      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
227      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
228      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
229
230      // Floating-point to integer conversions.
231      // i64 conversions are done via library routines even when generating VFP
232      // instructions, so use the same ones.
233      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
234      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
235      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
236      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
237
238      // Conversions between floating types.
239      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
240      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
241
242      // Integer to floating-point conversions.
243      // i64 conversions are done via library routines even when generating VFP
244      // instructions, so use the same ones.
245      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
246      // e.g., __floatunsidf vs. __floatunssidfvfp.
247      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
248      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
249      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
250      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
251    }
252  }
253
254  // These libcalls are not available in 32-bit.
255  setLibcallName(RTLIB::SHL_I128, 0);
256  setLibcallName(RTLIB::SRL_I128, 0);
257  setLibcallName(RTLIB::SRA_I128, 0);
258
259  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
260    // Double-precision floating-point arithmetic helper functions
261    // RTABI chapter 4.1.2, Table 2
262    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
263    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
264    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
265    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
266    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
267    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
268    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
269    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
270
271    // Double-precision floating-point comparison helper functions
272    // RTABI chapter 4.1.2, Table 3
273    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
274    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
275    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
276    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
277    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
278    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
279    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
280    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
281    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
282    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
283    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
284    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
285    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
286    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
287    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
288    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
289    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
290    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
291    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
292    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
293    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
297
298    // Single-precision floating-point arithmetic helper functions
299    // RTABI chapter 4.1.2, Table 4
300    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
301    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
302    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
303    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
304    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
305    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
306    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
307    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
308
309    // Single-precision floating-point comparison helper functions
310    // RTABI chapter 4.1.2, Table 5
311    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
312    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
313    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
314    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
315    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
316    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
317    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
318    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
319    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
320    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
321    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
322    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
323    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
324    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
325    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
326    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
327    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
335
336    // Floating-point to integer conversions.
337    // RTABI chapter 4.1.2, Table 6
338    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
339    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
340    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
341    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
342    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
343    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
344    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
345    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
346    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
347    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
348    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
349    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
350    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
354
355    // Conversions between floating types.
356    // RTABI chapter 4.1.2, Table 7
357    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
358    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
359    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
361
362    // Integer to floating-point conversions.
363    // RTABI chapter 4.1.2, Table 8
364    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
365    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
366    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
367    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
368    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
369    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
370    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
371    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
372    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
373    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
374    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
376    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
380
381    // Long long helper functions
382    // RTABI chapter 4.2, Table 9
383    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
384    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
385    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
386    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
387    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
388    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
389    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
391    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
392    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
393
394    // Integer division functions
395    // RTABI chapter 4.3.1
396    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
397    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
398    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
399    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
400    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
401    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
402    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
403    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
404    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
405    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
406    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
407    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
408    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
409    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
410    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
412
413    // Memory operations
414    // RTABI chapter 4.3.4
415    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
416    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
417    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
418    setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
419    setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
420    setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
421  }
422
423  // Use divmod compiler-rt calls for iOS 5.0 and later.
424  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
425      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
426    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
427    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
428  }
429
430  if (Subtarget->isThumb1Only())
431    addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
432  else
433    addRegisterClass(MVT::i32, &ARM::GPRRegClass);
434  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
435      !Subtarget->isThumb1Only()) {
436    addRegisterClass(MVT::f32, &ARM::SPRRegClass);
437    if (!Subtarget->isFPOnlySP())
438      addRegisterClass(MVT::f64, &ARM::DPRRegClass);
439
440    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
441  }
442
443  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
444       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
445    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
446         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
447      setTruncStoreAction((MVT::SimpleValueType)VT,
448                          (MVT::SimpleValueType)InnerVT, Expand);
449    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
450    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
451    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
452  }
453
454  setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
455
456  if (Subtarget->hasNEON()) {
457    addDRTypeForNEON(MVT::v2f32);
458    addDRTypeForNEON(MVT::v8i8);
459    addDRTypeForNEON(MVT::v4i16);
460    addDRTypeForNEON(MVT::v2i32);
461    addDRTypeForNEON(MVT::v1i64);
462
463    addQRTypeForNEON(MVT::v4f32);
464    addQRTypeForNEON(MVT::v2f64);
465    addQRTypeForNEON(MVT::v16i8);
466    addQRTypeForNEON(MVT::v8i16);
467    addQRTypeForNEON(MVT::v4i32);
468    addQRTypeForNEON(MVT::v2i64);
469
470    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
471    // neither Neon nor VFP support any arithmetic operations on it.
472    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
473    // supported for v4f32.
474    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
475    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
476    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
477    // FIXME: Code duplication: FDIV and FREM are expanded always, see
478    // ARMTargetLowering::addTypeForNEON method for details.
479    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
480    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
481    // FIXME: Create unittest.
482    // In another words, find a way when "copysign" appears in DAG with vector
483    // operands.
484    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
485    // FIXME: Code duplication: SETCC has custom operation action, see
486    // ARMTargetLowering::addTypeForNEON method for details.
487    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
488    // FIXME: Create unittest for FNEG and for FABS.
489    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
490    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
491    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
492    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
493    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
494    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
495    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
496    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
497    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
498    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
499    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
500    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
501    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
502    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
503    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
504    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
505    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
506    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
507    setOperationAction(ISD::FMA, MVT::v2f64, Expand);
508
509    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
510    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
511    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
512    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
513    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
514    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
515    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
516    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
517    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
518    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
519    setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
520    setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
521    setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
522    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
523    setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
524
525    // Mark v2f32 intrinsics.
526    setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
527    setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
528    setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
529    setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
530    setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
531    setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
532    setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
533    setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
534    setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
535    setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
536    setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
537    setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
538    setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
539    setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
540    setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
541
542    // Neon does not support some operations on v1i64 and v2i64 types.
543    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
544    // Custom handling for some quad-vector types to detect VMULL.
545    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
546    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
547    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
548    // Custom handling for some vector types to avoid expensive expansions
549    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
550    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
551    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
552    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
553    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
554    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
555    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
556    // a destination type that is wider than the source, and nor does
557    // it have a FP_TO_[SU]INT instruction with a narrower destination than
558    // source.
559    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
560    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
561    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
562    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
563
564    setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
565    setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
566
567    // Custom expand long extensions to vectors.
568    setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32,  Custom);
569    setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32,  Custom);
570    setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64,  Custom);
571    setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64,  Custom);
572    setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
573    setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
574    setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64,  Custom);
575    setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64,  Custom);
576
577    // NEON does not have single instruction CTPOP for vectors with element
578    // types wider than 8-bits.  However, custom lowering can leverage the
579    // v8i8/v16i8 vcnt instruction.
580    setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
581    setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
582    setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
583    setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
584
585    // NEON only has FMA instructions as of VFP4.
586    if (!Subtarget->hasVFP4()) {
587      setOperationAction(ISD::FMA, MVT::v2f32, Expand);
588      setOperationAction(ISD::FMA, MVT::v4f32, Expand);
589    }
590
591    setTargetDAGCombine(ISD::INTRINSIC_VOID);
592    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
593    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
594    setTargetDAGCombine(ISD::SHL);
595    setTargetDAGCombine(ISD::SRL);
596    setTargetDAGCombine(ISD::SRA);
597    setTargetDAGCombine(ISD::SIGN_EXTEND);
598    setTargetDAGCombine(ISD::ZERO_EXTEND);
599    setTargetDAGCombine(ISD::ANY_EXTEND);
600    setTargetDAGCombine(ISD::SELECT_CC);
601    setTargetDAGCombine(ISD::BUILD_VECTOR);
602    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
603    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
604    setTargetDAGCombine(ISD::STORE);
605    setTargetDAGCombine(ISD::FP_TO_SINT);
606    setTargetDAGCombine(ISD::FP_TO_UINT);
607    setTargetDAGCombine(ISD::FDIV);
608
609    // It is legal to extload from v4i8 to v4i16 or v4i32.
610    MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
611                  MVT::v4i16, MVT::v2i16,
612                  MVT::v2i32};
613    for (unsigned i = 0; i < 6; ++i) {
614      setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
615      setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
616      setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
617    }
618  }
619
620  // ARM and Thumb2 support UMLAL/SMLAL.
621  if (!Subtarget->isThumb1Only())
622    setTargetDAGCombine(ISD::ADDC);
623
624
625  computeRegisterProperties();
626
627  // ARM does not have f32 extending load.
628  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
629
630  // ARM does not have i1 sign extending load.
631  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
632
633  // ARM supports all 4 flavors of integer indexed load / store.
634  if (!Subtarget->isThumb1Only()) {
635    for (unsigned im = (unsigned)ISD::PRE_INC;
636         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
637      setIndexedLoadAction(im,  MVT::i1,  Legal);
638      setIndexedLoadAction(im,  MVT::i8,  Legal);
639      setIndexedLoadAction(im,  MVT::i16, Legal);
640      setIndexedLoadAction(im,  MVT::i32, Legal);
641      setIndexedStoreAction(im, MVT::i1,  Legal);
642      setIndexedStoreAction(im, MVT::i8,  Legal);
643      setIndexedStoreAction(im, MVT::i16, Legal);
644      setIndexedStoreAction(im, MVT::i32, Legal);
645    }
646  }
647
648  // i64 operation support.
649  setOperationAction(ISD::MUL,     MVT::i64, Expand);
650  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
651  if (Subtarget->isThumb1Only()) {
652    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
653    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
654  }
655  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
656      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
657    setOperationAction(ISD::MULHS, MVT::i32, Expand);
658
659  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
660  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
661  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
662  setOperationAction(ISD::SRL,       MVT::i64, Custom);
663  setOperationAction(ISD::SRA,       MVT::i64, Custom);
664
665  if (!Subtarget->isThumb1Only()) {
666    // FIXME: We should do this for Thumb1 as well.
667    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
668    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
669    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
670    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
671  }
672
673  // ARM does not have ROTL.
674  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
675  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
676  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
677  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
678    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
679
680  // These just redirect to CTTZ and CTLZ on ARM.
681  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
682  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
683
684  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
685
686  // Only ARMv6 has BSWAP.
687  if (!Subtarget->hasV6Ops())
688    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
689
690  if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
691      !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
692    // These are expanded into libcalls if the cpu doesn't have HW divider.
693    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
694    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
695  }
696  setOperationAction(ISD::SREM,  MVT::i32, Expand);
697  setOperationAction(ISD::UREM,  MVT::i32, Expand);
698  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
699  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
700
701  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
702  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
703  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
704  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
705  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
706
707  setOperationAction(ISD::TRAP, MVT::Other, Legal);
708
709  // Use the default implementation.
710  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
711  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
712  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
713  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
714  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
715  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
716
717  if (!Subtarget->isTargetDarwin()) {
718    // Non-Darwin platforms may return values in these registers via the
719    // personality function.
720    setExceptionPointerRegister(ARM::R0);
721    setExceptionSelectorRegister(ARM::R1);
722  }
723
724  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
725  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
726  // the default expansion.
727  // FIXME: This should be checking for v6k, not just v6.
728  if (Subtarget->hasDataBarrier() ||
729      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
730    // membarrier needs custom lowering; the rest are legal and handled
731    // normally.
732    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
733    // Custom lowering for 64-bit ops
734    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
735    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
736    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
737    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
738    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
739    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Custom);
740    setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i64, Custom);
741    setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i64, Custom);
742    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
743    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
744    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
745    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
746    setInsertFencesForAtomic(true);
747  } else {
748    // Set them all for expansion, which will force libcalls.
749    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
750    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
751    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
752    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
753    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
754    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
755    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
756    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
757    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
758    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
759    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
760    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
761    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
762    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
763    // Unordered/Monotonic case.
764    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
765    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
766  }
767
768  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
769
770  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
771  if (!Subtarget->hasV6Ops()) {
772    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
773    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
774  }
775  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
776
777  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
778      !Subtarget->isThumb1Only()) {
779    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
780    // iff target supports vfp2.
781    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
782    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
783  }
784
785  // We want to custom lower some of our intrinsics.
786  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
787  if (Subtarget->isTargetDarwin()) {
788    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
789    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
790    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
791  }
792
793  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
794  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
795  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
796  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
797  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
798  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
799  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
800  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
801  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
802
803  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
804  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
805  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
806  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
807  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
808
809  // We don't support sin/cos/fmod/copysign/pow
810  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
811  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
812  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
813  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
814  setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
815  setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
816  setOperationAction(ISD::FREM,      MVT::f64, Expand);
817  setOperationAction(ISD::FREM,      MVT::f32, Expand);
818  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
819      !Subtarget->isThumb1Only()) {
820    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
821    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
822  }
823  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
824  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
825
826  if (!Subtarget->hasVFP4()) {
827    setOperationAction(ISD::FMA, MVT::f64, Expand);
828    setOperationAction(ISD::FMA, MVT::f32, Expand);
829  }
830
831  // Various VFP goodness
832  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
833    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
834    if (Subtarget->hasVFP2()) {
835      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
836      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
837      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
838      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
839    }
840    // Special handling for half-precision FP.
841    if (!Subtarget->hasFP16()) {
842      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
843      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
844    }
845  }
846
847  // We have target-specific dag combine patterns for the following nodes:
848  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
849  setTargetDAGCombine(ISD::ADD);
850  setTargetDAGCombine(ISD::SUB);
851  setTargetDAGCombine(ISD::MUL);
852  setTargetDAGCombine(ISD::AND);
853  setTargetDAGCombine(ISD::OR);
854  setTargetDAGCombine(ISD::XOR);
855
856  if (Subtarget->hasV6Ops())
857    setTargetDAGCombine(ISD::SRL);
858
859  setStackPointerRegisterToSaveRestore(ARM::SP);
860
861  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
862      !Subtarget->hasVFP2())
863    setSchedulingPreference(Sched::RegPressure);
864  else
865    setSchedulingPreference(Sched::Hybrid);
866
867  //// temporary - rewrite interface to use type
868  MaxStoresPerMemset = 8;
869  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
870  MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
871  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
872  MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
873  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
874
875  // On ARM arguments smaller than 4 bytes are extended, so all arguments
876  // are at least 4 bytes aligned.
877  setMinStackArgumentAlignment(4);
878
879  // Prefer likely predicted branches to selects on out-of-order cores.
880  PredictableSelectIsExpensive = Subtarget->isLikeA9();
881
882  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
883}
884
885// FIXME: It might make sense to define the representative register class as the
886// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
887// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
888// SPR's representative would be DPR_VFP2. This should work well if register
889// pressure tracking were modified such that a register use would increment the
890// pressure of the register class's representative and all of it's super
891// classes' representatives transitively. We have not implemented this because
892// of the difficulty prior to coalescing of modeling operand register classes
893// due to the common occurrence of cross class copies and subregister insertions
894// and extractions.
895std::pair<const TargetRegisterClass*, uint8_t>
896ARMTargetLowering::findRepresentativeClass(MVT VT) const{
897  const TargetRegisterClass *RRC = 0;
898  uint8_t Cost = 1;
899  switch (VT.SimpleTy) {
900  default:
901    return TargetLowering::findRepresentativeClass(VT);
902  // Use DPR as representative register class for all floating point
903  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
904  // the cost is 1 for both f32 and f64.
905  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
906  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
907    RRC = &ARM::DPRRegClass;
908    // When NEON is used for SP, only half of the register file is available
909    // because operations that define both SP and DP results will be constrained
910    // to the VFP2 class (D0-D15). We currently model this constraint prior to
911    // coalescing by double-counting the SP regs. See the FIXME above.
912    if (Subtarget->useNEONForSinglePrecisionFP())
913      Cost = 2;
914    break;
915  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
916  case MVT::v4f32: case MVT::v2f64:
917    RRC = &ARM::DPRRegClass;
918    Cost = 2;
919    break;
920  case MVT::v4i64:
921    RRC = &ARM::DPRRegClass;
922    Cost = 4;
923    break;
924  case MVT::v8i64:
925    RRC = &ARM::DPRRegClass;
926    Cost = 8;
927    break;
928  }
929  return std::make_pair(RRC, Cost);
930}
931
932const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
933  switch (Opcode) {
934  default: return 0;
935  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
936  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
937  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
938  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
939  case ARMISD::CALL:          return "ARMISD::CALL";
940  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
941  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
942  case ARMISD::tCALL:         return "ARMISD::tCALL";
943  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
944  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
945  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
946  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
947  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
948  case ARMISD::CMP:           return "ARMISD::CMP";
949  case ARMISD::CMN:           return "ARMISD::CMN";
950  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
951  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
952  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
953  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
954  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
955
956  case ARMISD::CMOV:          return "ARMISD::CMOV";
957
958  case ARMISD::RBIT:          return "ARMISD::RBIT";
959
960  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
961  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
962  case ARMISD::SITOF:         return "ARMISD::SITOF";
963  case ARMISD::UITOF:         return "ARMISD::UITOF";
964
965  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
966  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
967  case ARMISD::RRX:           return "ARMISD::RRX";
968
969  case ARMISD::ADDC:          return "ARMISD::ADDC";
970  case ARMISD::ADDE:          return "ARMISD::ADDE";
971  case ARMISD::SUBC:          return "ARMISD::SUBC";
972  case ARMISD::SUBE:          return "ARMISD::SUBE";
973
974  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
975  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
976
977  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
978  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
979
980  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
981
982  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
983
984  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
985
986  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
987  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
988
989  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
990
991  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
992  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
993  case ARMISD::VCGE:          return "ARMISD::VCGE";
994  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
995  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
996  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
997  case ARMISD::VCGT:          return "ARMISD::VCGT";
998  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
999  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1000  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1001  case ARMISD::VTST:          return "ARMISD::VTST";
1002
1003  case ARMISD::VSHL:          return "ARMISD::VSHL";
1004  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1005  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1006  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
1007  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
1008  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
1009  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
1010  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1011  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1012  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1013  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1014  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1015  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1016  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1017  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1018  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1019  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1020  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1021  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1022  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1023  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1024  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1025  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1026  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1027  case ARMISD::VDUP:          return "ARMISD::VDUP";
1028  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1029  case ARMISD::VEXT:          return "ARMISD::VEXT";
1030  case ARMISD::VREV64:        return "ARMISD::VREV64";
1031  case ARMISD::VREV32:        return "ARMISD::VREV32";
1032  case ARMISD::VREV16:        return "ARMISD::VREV16";
1033  case ARMISD::VZIP:          return "ARMISD::VZIP";
1034  case ARMISD::VUZP:          return "ARMISD::VUZP";
1035  case ARMISD::VTRN:          return "ARMISD::VTRN";
1036  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1037  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1038  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1039  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1040  case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1041  case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1042  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1043  case ARMISD::FMAX:          return "ARMISD::FMAX";
1044  case ARMISD::FMIN:          return "ARMISD::FMIN";
1045  case ARMISD::BFI:           return "ARMISD::BFI";
1046  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1047  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1048  case ARMISD::VBSL:          return "ARMISD::VBSL";
1049  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1050  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1051  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1052  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1053  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1054  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1055  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1056  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1057  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1058  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1059  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1060  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1061  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1062  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1063  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1064  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1065  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1066  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1067  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1068  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1069  }
1070}
1071
1072EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1073  if (!VT.isVector()) return getPointerTy();
1074  return VT.changeVectorElementTypeToInteger();
1075}
1076
1077/// getRegClassFor - Return the register class that should be used for the
1078/// specified value type.
1079const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1080  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1081  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1082  // load / store 4 to 8 consecutive D registers.
1083  if (Subtarget->hasNEON()) {
1084    if (VT == MVT::v4i64)
1085      return &ARM::QQPRRegClass;
1086    if (VT == MVT::v8i64)
1087      return &ARM::QQQQPRRegClass;
1088  }
1089  return TargetLowering::getRegClassFor(VT);
1090}
1091
1092// Create a fast isel object.
1093FastISel *
1094ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1095                                  const TargetLibraryInfo *libInfo) const {
1096  return ARM::createFastISel(funcInfo, libInfo);
1097}
1098
1099/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1100/// be used for loads / stores from the global.
1101unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1102  return (Subtarget->isThumb1Only() ? 127 : 4095);
1103}
1104
1105Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1106  unsigned NumVals = N->getNumValues();
1107  if (!NumVals)
1108    return Sched::RegPressure;
1109
1110  for (unsigned i = 0; i != NumVals; ++i) {
1111    EVT VT = N->getValueType(i);
1112    if (VT == MVT::Glue || VT == MVT::Other)
1113      continue;
1114    if (VT.isFloatingPoint() || VT.isVector())
1115      return Sched::ILP;
1116  }
1117
1118  if (!N->isMachineOpcode())
1119    return Sched::RegPressure;
1120
1121  // Load are scheduled for latency even if there instruction itinerary
1122  // is not available.
1123  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1124  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1125
1126  if (MCID.getNumDefs() == 0)
1127    return Sched::RegPressure;
1128  if (!Itins->isEmpty() &&
1129      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1130    return Sched::ILP;
1131
1132  return Sched::RegPressure;
1133}
1134
1135//===----------------------------------------------------------------------===//
1136// Lowering Code
1137//===----------------------------------------------------------------------===//
1138
1139/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1140static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1141  switch (CC) {
1142  default: llvm_unreachable("Unknown condition code!");
1143  case ISD::SETNE:  return ARMCC::NE;
1144  case ISD::SETEQ:  return ARMCC::EQ;
1145  case ISD::SETGT:  return ARMCC::GT;
1146  case ISD::SETGE:  return ARMCC::GE;
1147  case ISD::SETLT:  return ARMCC::LT;
1148  case ISD::SETLE:  return ARMCC::LE;
1149  case ISD::SETUGT: return ARMCC::HI;
1150  case ISD::SETUGE: return ARMCC::HS;
1151  case ISD::SETULT: return ARMCC::LO;
1152  case ISD::SETULE: return ARMCC::LS;
1153  }
1154}
1155
1156/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1157static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1158                        ARMCC::CondCodes &CondCode2) {
1159  CondCode2 = ARMCC::AL;
1160  switch (CC) {
1161  default: llvm_unreachable("Unknown FP condition!");
1162  case ISD::SETEQ:
1163  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1164  case ISD::SETGT:
1165  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1166  case ISD::SETGE:
1167  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1168  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1169  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1170  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1171  case ISD::SETO:   CondCode = ARMCC::VC; break;
1172  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1173  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1174  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1175  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1176  case ISD::SETLT:
1177  case ISD::SETULT: CondCode = ARMCC::LT; break;
1178  case ISD::SETLE:
1179  case ISD::SETULE: CondCode = ARMCC::LE; break;
1180  case ISD::SETNE:
1181  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1182  }
1183}
1184
1185//===----------------------------------------------------------------------===//
1186//                      Calling Convention Implementation
1187//===----------------------------------------------------------------------===//
1188
1189#include "ARMGenCallingConv.inc"
1190
1191/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1192/// given CallingConvention value.
1193CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1194                                                 bool Return,
1195                                                 bool isVarArg) const {
1196  switch (CC) {
1197  default:
1198    llvm_unreachable("Unsupported calling convention");
1199  case CallingConv::Fast:
1200    if (Subtarget->hasVFP2() && !isVarArg) {
1201      if (!Subtarget->isAAPCS_ABI())
1202        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1203      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1204      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1205    }
1206    // Fallthrough
1207  case CallingConv::C: {
1208    // Use target triple & subtarget features to do actual dispatch.
1209    if (!Subtarget->isAAPCS_ABI())
1210      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1211    else if (Subtarget->hasVFP2() &&
1212             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1213             !isVarArg)
1214      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1215    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1216  }
1217  case CallingConv::ARM_AAPCS_VFP:
1218    if (!isVarArg)
1219      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1220    // Fallthrough
1221  case CallingConv::ARM_AAPCS:
1222    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1223  case CallingConv::ARM_APCS:
1224    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1225  case CallingConv::GHC:
1226    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1227  }
1228}
1229
1230/// LowerCallResult - Lower the result values of a call into the
1231/// appropriate copies out of appropriate physical registers.
1232SDValue
1233ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1234                                   CallingConv::ID CallConv, bool isVarArg,
1235                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1236                                   SDLoc dl, SelectionDAG &DAG,
1237                                   SmallVectorImpl<SDValue> &InVals,
1238                                   bool isThisReturn, SDValue ThisVal) const {
1239
1240  // Assign locations to each value returned by this call.
1241  SmallVector<CCValAssign, 16> RVLocs;
1242  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1243                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1244  CCInfo.AnalyzeCallResult(Ins,
1245                           CCAssignFnForNode(CallConv, /* Return*/ true,
1246                                             isVarArg));
1247
1248  // Copy all of the result registers out of their specified physreg.
1249  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1250    CCValAssign VA = RVLocs[i];
1251
1252    // Pass 'this' value directly from the argument to return value, to avoid
1253    // reg unit interference
1254    if (i == 0 && isThisReturn) {
1255      assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1256             "unexpected return calling convention register assignment");
1257      InVals.push_back(ThisVal);
1258      continue;
1259    }
1260
1261    SDValue Val;
1262    if (VA.needsCustom()) {
1263      // Handle f64 or half of a v2f64.
1264      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1265                                      InFlag);
1266      Chain = Lo.getValue(1);
1267      InFlag = Lo.getValue(2);
1268      VA = RVLocs[++i]; // skip ahead to next loc
1269      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1270                                      InFlag);
1271      Chain = Hi.getValue(1);
1272      InFlag = Hi.getValue(2);
1273      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1274
1275      if (VA.getLocVT() == MVT::v2f64) {
1276        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1277        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1278                          DAG.getConstant(0, MVT::i32));
1279
1280        VA = RVLocs[++i]; // skip ahead to next loc
1281        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1282        Chain = Lo.getValue(1);
1283        InFlag = Lo.getValue(2);
1284        VA = RVLocs[++i]; // skip ahead to next loc
1285        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1286        Chain = Hi.getValue(1);
1287        InFlag = Hi.getValue(2);
1288        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1289        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1290                          DAG.getConstant(1, MVT::i32));
1291      }
1292    } else {
1293      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1294                               InFlag);
1295      Chain = Val.getValue(1);
1296      InFlag = Val.getValue(2);
1297    }
1298
1299    switch (VA.getLocInfo()) {
1300    default: llvm_unreachable("Unknown loc info!");
1301    case CCValAssign::Full: break;
1302    case CCValAssign::BCvt:
1303      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1304      break;
1305    }
1306
1307    InVals.push_back(Val);
1308  }
1309
1310  return Chain;
1311}
1312
1313/// LowerMemOpCallTo - Store the argument to the stack.
1314SDValue
1315ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1316                                    SDValue StackPtr, SDValue Arg,
1317                                    SDLoc dl, SelectionDAG &DAG,
1318                                    const CCValAssign &VA,
1319                                    ISD::ArgFlagsTy Flags) const {
1320  unsigned LocMemOffset = VA.getLocMemOffset();
1321  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1322  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1323  return DAG.getStore(Chain, dl, Arg, PtrOff,
1324                      MachinePointerInfo::getStack(LocMemOffset),
1325                      false, false, 0);
1326}
1327
1328void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
1329                                         SDValue Chain, SDValue &Arg,
1330                                         RegsToPassVector &RegsToPass,
1331                                         CCValAssign &VA, CCValAssign &NextVA,
1332                                         SDValue &StackPtr,
1333                                         SmallVector<SDValue, 8> &MemOpChains,
1334                                         ISD::ArgFlagsTy Flags) const {
1335
1336  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1337                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1338  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1339
1340  if (NextVA.isRegLoc())
1341    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1342  else {
1343    assert(NextVA.isMemLoc());
1344    if (StackPtr.getNode() == 0)
1345      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1346
1347    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1348                                           dl, DAG, NextVA,
1349                                           Flags));
1350  }
1351}
1352
1353/// LowerCall - Lowering a call into a callseq_start <-
1354/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1355/// nodes.
1356SDValue
1357ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1358                             SmallVectorImpl<SDValue> &InVals) const {
1359  SelectionDAG &DAG                     = CLI.DAG;
1360  SDLoc &dl                          = CLI.DL;
1361  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
1362  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
1363  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
1364  SDValue Chain                         = CLI.Chain;
1365  SDValue Callee                        = CLI.Callee;
1366  bool &isTailCall                      = CLI.IsTailCall;
1367  CallingConv::ID CallConv              = CLI.CallConv;
1368  bool doesNotRet                       = CLI.DoesNotReturn;
1369  bool isVarArg                         = CLI.IsVarArg;
1370
1371  MachineFunction &MF = DAG.getMachineFunction();
1372  bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1373  bool isThisReturn   = false;
1374  bool isSibCall      = false;
1375  // Disable tail calls if they're not supported.
1376  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1377    isTailCall = false;
1378  if (isTailCall) {
1379    // Check if it's really possible to do a tail call.
1380    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1381                    isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
1382                                                   Outs, OutVals, Ins, DAG);
1383    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1384    // detected sibcalls.
1385    if (isTailCall) {
1386      ++NumTailCalls;
1387      isSibCall = true;
1388    }
1389  }
1390
1391  // Analyze operands of the call, assigning locations to each operand.
1392  SmallVector<CCValAssign, 16> ArgLocs;
1393  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1394                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1395  CCInfo.AnalyzeCallOperands(Outs,
1396                             CCAssignFnForNode(CallConv, /* Return*/ false,
1397                                               isVarArg));
1398
1399  // Get a count of how many bytes are to be pushed on the stack.
1400  unsigned NumBytes = CCInfo.getNextStackOffset();
1401
1402  // For tail calls, memory operands are available in our caller's stack.
1403  if (isSibCall)
1404    NumBytes = 0;
1405
1406  // Adjust the stack pointer for the new arguments...
1407  // These operations are automatically eliminated by the prolog/epilog pass
1408  if (!isSibCall)
1409    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1410                                 dl);
1411
1412  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1413
1414  RegsToPassVector RegsToPass;
1415  SmallVector<SDValue, 8> MemOpChains;
1416
1417  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1418  // of tail call optimization, arguments are handled later.
1419  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1420       i != e;
1421       ++i, ++realArgIdx) {
1422    CCValAssign &VA = ArgLocs[i];
1423    SDValue Arg = OutVals[realArgIdx];
1424    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1425    bool isByVal = Flags.isByVal();
1426
1427    // Promote the value if needed.
1428    switch (VA.getLocInfo()) {
1429    default: llvm_unreachable("Unknown loc info!");
1430    case CCValAssign::Full: break;
1431    case CCValAssign::SExt:
1432      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1433      break;
1434    case CCValAssign::ZExt:
1435      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1436      break;
1437    case CCValAssign::AExt:
1438      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1439      break;
1440    case CCValAssign::BCvt:
1441      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1442      break;
1443    }
1444
1445    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1446    if (VA.needsCustom()) {
1447      if (VA.getLocVT() == MVT::v2f64) {
1448        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1449                                  DAG.getConstant(0, MVT::i32));
1450        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1451                                  DAG.getConstant(1, MVT::i32));
1452
1453        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1454                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1455
1456        VA = ArgLocs[++i]; // skip ahead to next loc
1457        if (VA.isRegLoc()) {
1458          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1459                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1460        } else {
1461          assert(VA.isMemLoc());
1462
1463          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1464                                                 dl, DAG, VA, Flags));
1465        }
1466      } else {
1467        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1468                         StackPtr, MemOpChains, Flags);
1469      }
1470    } else if (VA.isRegLoc()) {
1471      if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
1472        assert(VA.getLocVT() == MVT::i32 &&
1473               "unexpected calling convention register assignment");
1474        assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1475               "unexpected use of 'returned'");
1476        isThisReturn = true;
1477      }
1478      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1479    } else if (isByVal) {
1480      assert(VA.isMemLoc());
1481      unsigned offset = 0;
1482
1483      // True if this byval aggregate will be split between registers
1484      // and memory.
1485      unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1486      unsigned CurByValIdx = CCInfo.getInRegsParamsProceed();
1487
1488      if (CurByValIdx < ByValArgsCount) {
1489
1490        unsigned RegBegin, RegEnd;
1491        CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1492
1493        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1494        unsigned int i, j;
1495        for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1496          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1497          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1498          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1499                                     MachinePointerInfo(),
1500                                     false, false, false, 0);
1501          MemOpChains.push_back(Load.getValue(1));
1502          RegsToPass.push_back(std::make_pair(j, Load));
1503        }
1504
1505        // If parameter size outsides register area, "offset" value
1506        // helps us to calculate stack slot for remained part properly.
1507        offset = RegEnd - RegBegin;
1508
1509        CCInfo.nextInRegsParam();
1510      }
1511
1512      if (Flags.getByValSize() > 4*offset) {
1513        unsigned LocMemOffset = VA.getLocMemOffset();
1514        SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1515        SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1516                                  StkPtrOff);
1517        SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1518        SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1519        SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1520                                           MVT::i32);
1521        SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1522
1523        SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1524        SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1525        MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1526                                          Ops, array_lengthof(Ops)));
1527      }
1528    } else if (!isSibCall) {
1529      assert(VA.isMemLoc());
1530
1531      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1532                                             dl, DAG, VA, Flags));
1533    }
1534  }
1535
1536  if (!MemOpChains.empty())
1537    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1538                        &MemOpChains[0], MemOpChains.size());
1539
1540  // Build a sequence of copy-to-reg nodes chained together with token chain
1541  // and flag operands which copy the outgoing args into the appropriate regs.
1542  SDValue InFlag;
1543  // Tail call byval lowering might overwrite argument registers so in case of
1544  // tail call optimization the copies to registers are lowered later.
1545  if (!isTailCall)
1546    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1547      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1548                               RegsToPass[i].second, InFlag);
1549      InFlag = Chain.getValue(1);
1550    }
1551
1552  // For tail calls lower the arguments to the 'real' stack slot.
1553  if (isTailCall) {
1554    // Force all the incoming stack arguments to be loaded from the stack
1555    // before any new outgoing arguments are stored to the stack, because the
1556    // outgoing stack slots may alias the incoming argument stack slots, and
1557    // the alias isn't otherwise explicit. This is slightly more conservative
1558    // than necessary, because it means that each store effectively depends
1559    // on every argument instead of just those arguments it would clobber.
1560
1561    // Do not flag preceding copytoreg stuff together with the following stuff.
1562    InFlag = SDValue();
1563    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1564      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1565                               RegsToPass[i].second, InFlag);
1566      InFlag = Chain.getValue(1);
1567    }
1568    InFlag = SDValue();
1569  }
1570
1571  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1572  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1573  // node so that legalize doesn't hack it.
1574  bool isDirect = false;
1575  bool isARMFunc = false;
1576  bool isLocalARMFunc = false;
1577  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1578
1579  if (EnableARMLongCalls) {
1580    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1581            && "long-calls with non-static relocation model!");
1582    // Handle a global address or an external symbol. If it's not one of
1583    // those, the target's already in a register, so we don't need to do
1584    // anything extra.
1585    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1586      const GlobalValue *GV = G->getGlobal();
1587      // Create a constant pool entry for the callee address
1588      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1589      ARMConstantPoolValue *CPV =
1590        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1591
1592      // Get the address of the callee into a register
1593      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1594      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1595      Callee = DAG.getLoad(getPointerTy(), dl,
1596                           DAG.getEntryNode(), CPAddr,
1597                           MachinePointerInfo::getConstantPool(),
1598                           false, false, false, 0);
1599    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1600      const char *Sym = S->getSymbol();
1601
1602      // Create a constant pool entry for the callee address
1603      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1604      ARMConstantPoolValue *CPV =
1605        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1606                                      ARMPCLabelIndex, 0);
1607      // Get the address of the callee into a register
1608      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1609      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1610      Callee = DAG.getLoad(getPointerTy(), dl,
1611                           DAG.getEntryNode(), CPAddr,
1612                           MachinePointerInfo::getConstantPool(),
1613                           false, false, false, 0);
1614    }
1615  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1616    const GlobalValue *GV = G->getGlobal();
1617    isDirect = true;
1618    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1619    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1620                   getTargetMachine().getRelocationModel() != Reloc::Static;
1621    isARMFunc = !Subtarget->isThumb() || isStub;
1622    // ARM call to a local ARM function is predicable.
1623    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1624    // tBX takes a register source operand.
1625    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1626      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1627      ARMConstantPoolValue *CPV =
1628        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1629      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1630      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1631      Callee = DAG.getLoad(getPointerTy(), dl,
1632                           DAG.getEntryNode(), CPAddr,
1633                           MachinePointerInfo::getConstantPool(),
1634                           false, false, false, 0);
1635      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1636      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1637                           getPointerTy(), Callee, PICLabel);
1638    } else {
1639      // On ELF targets for PIC code, direct calls should go through the PLT
1640      unsigned OpFlags = 0;
1641      if (Subtarget->isTargetELF() &&
1642          getTargetMachine().getRelocationModel() == Reloc::PIC_)
1643        OpFlags = ARMII::MO_PLT;
1644      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1645    }
1646  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1647    isDirect = true;
1648    bool isStub = Subtarget->isTargetDarwin() &&
1649                  getTargetMachine().getRelocationModel() != Reloc::Static;
1650    isARMFunc = !Subtarget->isThumb() || isStub;
1651    // tBX takes a register source operand.
1652    const char *Sym = S->getSymbol();
1653    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1654      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1655      ARMConstantPoolValue *CPV =
1656        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1657                                      ARMPCLabelIndex, 4);
1658      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1659      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1660      Callee = DAG.getLoad(getPointerTy(), dl,
1661                           DAG.getEntryNode(), CPAddr,
1662                           MachinePointerInfo::getConstantPool(),
1663                           false, false, false, 0);
1664      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1665      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1666                           getPointerTy(), Callee, PICLabel);
1667    } else {
1668      unsigned OpFlags = 0;
1669      // On ELF targets for PIC code, direct calls should go through the PLT
1670      if (Subtarget->isTargetELF() &&
1671                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1672        OpFlags = ARMII::MO_PLT;
1673      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1674    }
1675  }
1676
1677  // FIXME: handle tail calls differently.
1678  unsigned CallOpc;
1679  bool HasMinSizeAttr = MF.getFunction()->getAttributes().
1680    hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
1681  if (Subtarget->isThumb()) {
1682    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1683      CallOpc = ARMISD::CALL_NOLINK;
1684    else
1685      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1686  } else {
1687    if (!isDirect && !Subtarget->hasV5TOps())
1688      CallOpc = ARMISD::CALL_NOLINK;
1689    else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
1690               // Emit regular call when code size is the priority
1691               !HasMinSizeAttr)
1692      // "mov lr, pc; b _foo" to avoid confusing the RSP
1693      CallOpc = ARMISD::CALL_NOLINK;
1694    else
1695      CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1696  }
1697
1698  std::vector<SDValue> Ops;
1699  Ops.push_back(Chain);
1700  Ops.push_back(Callee);
1701
1702  // Add argument registers to the end of the list so that they are known live
1703  // into the call.
1704  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1705    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1706                                  RegsToPass[i].second.getValueType()));
1707
1708  // Add a register mask operand representing the call-preserved registers.
1709  const uint32_t *Mask;
1710  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1711  const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo*>(TRI);
1712  if (isThisReturn) {
1713    // For 'this' returns, use the R0-preserving mask if applicable
1714    Mask = ARI->getThisReturnPreservedMask(CallConv);
1715    if (!Mask) {
1716      // Set isThisReturn to false if the calling convention is not one that
1717      // allows 'returned' to be modeled in this way, so LowerCallResult does
1718      // not try to pass 'this' straight through
1719      isThisReturn = false;
1720      Mask = ARI->getCallPreservedMask(CallConv);
1721    }
1722  } else
1723    Mask = ARI->getCallPreservedMask(CallConv);
1724
1725  assert(Mask && "Missing call preserved mask for calling convention");
1726  Ops.push_back(DAG.getRegisterMask(Mask));
1727
1728  if (InFlag.getNode())
1729    Ops.push_back(InFlag);
1730
1731  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1732  if (isTailCall)
1733    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1734
1735  // Returns a chain and a flag for retval copy to use.
1736  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1737  InFlag = Chain.getValue(1);
1738
1739  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1740                             DAG.getIntPtrConstant(0, true), InFlag, dl);
1741  if (!Ins.empty())
1742    InFlag = Chain.getValue(1);
1743
1744  // Handle result values, copying them out of physregs into vregs that we
1745  // return.
1746  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
1747                         InVals, isThisReturn,
1748                         isThisReturn ? OutVals[0] : SDValue());
1749}
1750
1751/// HandleByVal - Every parameter *after* a byval parameter is passed
1752/// on the stack.  Remember the next parameter register to allocate,
1753/// and then confiscate the rest of the parameter registers to insure
1754/// this.
1755void
1756ARMTargetLowering::HandleByVal(
1757    CCState *State, unsigned &size, unsigned Align) const {
1758  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1759  assert((State->getCallOrPrologue() == Prologue ||
1760          State->getCallOrPrologue() == Call) &&
1761         "unhandled ParmContext");
1762
1763  // For in-prologue parameters handling, we also introduce stack offset
1764  // for byval registers: see CallingConvLower.cpp, CCState::HandleByVal.
1765  // This behaviour outsides AAPCS rules (5.5 Parameters Passing) of how
1766  // NSAA should be evaluted (NSAA means "next stacked argument address").
1767  // So: NextStackOffset = NSAAOffset + SizeOfByValParamsStoredInRegs.
1768  // Then: NSAAOffset = NextStackOffset - SizeOfByValParamsStoredInRegs.
1769  unsigned NSAAOffset = State->getNextStackOffset();
1770  if (State->getCallOrPrologue() != Call) {
1771    for (unsigned i = 0, e = State->getInRegsParamsCount(); i != e; ++i) {
1772      unsigned RB, RE;
1773      State->getInRegsParamInfo(i, RB, RE);
1774      assert(NSAAOffset >= (RE-RB)*4 &&
1775             "Stack offset for byval regs doesn't introduced anymore?");
1776      NSAAOffset -= (RE-RB)*4;
1777    }
1778  }
1779  if ((ARM::R0 <= reg) && (reg <= ARM::R3)) {
1780    if (Subtarget->isAAPCS_ABI() && Align > 4) {
1781      unsigned AlignInRegs = Align / 4;
1782      unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
1783      for (unsigned i = 0; i < Waste; ++i)
1784        reg = State->AllocateReg(GPRArgRegs, 4);
1785    }
1786    if (reg != 0) {
1787      unsigned excess = 4 * (ARM::R4 - reg);
1788
1789      // Special case when NSAA != SP and parameter size greater than size of
1790      // all remained GPR regs. In that case we can't split parameter, we must
1791      // send it to stack. We also must set NCRN to R4, so waste all
1792      // remained registers.
1793      if (Subtarget->isAAPCS_ABI() && NSAAOffset != 0 && size > excess) {
1794        while (State->AllocateReg(GPRArgRegs, 4))
1795          ;
1796        return;
1797      }
1798
1799      // First register for byval parameter is the first register that wasn't
1800      // allocated before this method call, so it would be "reg".
1801      // If parameter is small enough to be saved in range [reg, r4), then
1802      // the end (first after last) register would be reg + param-size-in-regs,
1803      // else parameter would be splitted between registers and stack,
1804      // end register would be r4 in this case.
1805      unsigned ByValRegBegin = reg;
1806      unsigned ByValRegEnd = (size < excess) ? reg + size/4 : (unsigned)ARM::R4;
1807      State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
1808      // Note, first register is allocated in the beginning of function already,
1809      // allocate remained amount of registers we need.
1810      for (unsigned i = reg+1; i != ByValRegEnd; ++i)
1811        State->AllocateReg(GPRArgRegs, 4);
1812      // At a call site, a byval parameter that is split between
1813      // registers and memory needs its size truncated here.  In a
1814      // function prologue, such byval parameters are reassembled in
1815      // memory, and are not truncated.
1816      if (State->getCallOrPrologue() == Call) {
1817        // Make remained size equal to 0 in case, when
1818        // the whole structure may be stored into registers.
1819        if (size < excess)
1820          size = 0;
1821        else
1822          size -= excess;
1823      }
1824    }
1825  }
1826}
1827
1828/// MatchingStackOffset - Return true if the given stack call argument is
1829/// already available in the same position (relatively) of the caller's
1830/// incoming argument stack.
1831static
1832bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1833                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1834                         const TargetInstrInfo *TII) {
1835  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1836  int FI = INT_MAX;
1837  if (Arg.getOpcode() == ISD::CopyFromReg) {
1838    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1839    if (!TargetRegisterInfo::isVirtualRegister(VR))
1840      return false;
1841    MachineInstr *Def = MRI->getVRegDef(VR);
1842    if (!Def)
1843      return false;
1844    if (!Flags.isByVal()) {
1845      if (!TII->isLoadFromStackSlot(Def, FI))
1846        return false;
1847    } else {
1848      return false;
1849    }
1850  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1851    if (Flags.isByVal())
1852      // ByVal argument is passed in as a pointer but it's now being
1853      // dereferenced. e.g.
1854      // define @foo(%struct.X* %A) {
1855      //   tail call @bar(%struct.X* byval %A)
1856      // }
1857      return false;
1858    SDValue Ptr = Ld->getBasePtr();
1859    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1860    if (!FINode)
1861      return false;
1862    FI = FINode->getIndex();
1863  } else
1864    return false;
1865
1866  assert(FI != INT_MAX);
1867  if (!MFI->isFixedObjectIndex(FI))
1868    return false;
1869  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1870}
1871
1872/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1873/// for tail call optimization. Targets which want to do tail call
1874/// optimization should implement this function.
1875bool
1876ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1877                                                     CallingConv::ID CalleeCC,
1878                                                     bool isVarArg,
1879                                                     bool isCalleeStructRet,
1880                                                     bool isCallerStructRet,
1881                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1882                                    const SmallVectorImpl<SDValue> &OutVals,
1883                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1884                                                     SelectionDAG& DAG) const {
1885  const Function *CallerF = DAG.getMachineFunction().getFunction();
1886  CallingConv::ID CallerCC = CallerF->getCallingConv();
1887  bool CCMatch = CallerCC == CalleeCC;
1888
1889  // Look for obvious safe cases to perform tail call optimization that do not
1890  // require ABI changes. This is what gcc calls sibcall.
1891
1892  // Do not sibcall optimize vararg calls unless the call site is not passing
1893  // any arguments.
1894  if (isVarArg && !Outs.empty())
1895    return false;
1896
1897  // Also avoid sibcall optimization if either caller or callee uses struct
1898  // return semantics.
1899  if (isCalleeStructRet || isCallerStructRet)
1900    return false;
1901
1902  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1903  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1904  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1905  // support in the assembler and linker to be used. This would need to be
1906  // fixed to fully support tail calls in Thumb1.
1907  //
1908  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1909  // LR.  This means if we need to reload LR, it takes an extra instructions,
1910  // which outweighs the value of the tail call; but here we don't know yet
1911  // whether LR is going to be used.  Probably the right approach is to
1912  // generate the tail call here and turn it back into CALL/RET in
1913  // emitEpilogue if LR is used.
1914
1915  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1916  // but we need to make sure there are enough registers; the only valid
1917  // registers are the 4 used for parameters.  We don't currently do this
1918  // case.
1919  if (Subtarget->isThumb1Only())
1920    return false;
1921
1922  // If the calling conventions do not match, then we'd better make sure the
1923  // results are returned in the same way as what the caller expects.
1924  if (!CCMatch) {
1925    SmallVector<CCValAssign, 16> RVLocs1;
1926    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1927                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1928    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1929
1930    SmallVector<CCValAssign, 16> RVLocs2;
1931    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1932                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1933    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1934
1935    if (RVLocs1.size() != RVLocs2.size())
1936      return false;
1937    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1938      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1939        return false;
1940      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1941        return false;
1942      if (RVLocs1[i].isRegLoc()) {
1943        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1944          return false;
1945      } else {
1946        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1947          return false;
1948      }
1949    }
1950  }
1951
1952  // If Caller's vararg or byval argument has been split between registers and
1953  // stack, do not perform tail call, since part of the argument is in caller's
1954  // local frame.
1955  const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
1956                                      getInfo<ARMFunctionInfo>();
1957  if (AFI_Caller->getArgRegsSaveSize())
1958    return false;
1959
1960  // If the callee takes no arguments then go on to check the results of the
1961  // call.
1962  if (!Outs.empty()) {
1963    // Check if stack adjustment is needed. For now, do not do this if any
1964    // argument is passed on the stack.
1965    SmallVector<CCValAssign, 16> ArgLocs;
1966    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1967                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1968    CCInfo.AnalyzeCallOperands(Outs,
1969                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1970    if (CCInfo.getNextStackOffset()) {
1971      MachineFunction &MF = DAG.getMachineFunction();
1972
1973      // Check if the arguments are already laid out in the right way as
1974      // the caller's fixed stack objects.
1975      MachineFrameInfo *MFI = MF.getFrameInfo();
1976      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1977      const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1978      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1979           i != e;
1980           ++i, ++realArgIdx) {
1981        CCValAssign &VA = ArgLocs[i];
1982        EVT RegVT = VA.getLocVT();
1983        SDValue Arg = OutVals[realArgIdx];
1984        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1985        if (VA.getLocInfo() == CCValAssign::Indirect)
1986          return false;
1987        if (VA.needsCustom()) {
1988          // f64 and vector types are split into multiple registers or
1989          // register/stack-slot combinations.  The types will not match
1990          // the registers; give up on memory f64 refs until we figure
1991          // out what to do about this.
1992          if (!VA.isRegLoc())
1993            return false;
1994          if (!ArgLocs[++i].isRegLoc())
1995            return false;
1996          if (RegVT == MVT::v2f64) {
1997            if (!ArgLocs[++i].isRegLoc())
1998              return false;
1999            if (!ArgLocs[++i].isRegLoc())
2000              return false;
2001          }
2002        } else if (!VA.isRegLoc()) {
2003          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2004                                   MFI, MRI, TII))
2005            return false;
2006        }
2007      }
2008    }
2009  }
2010
2011  return true;
2012}
2013
2014bool
2015ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2016                                  MachineFunction &MF, bool isVarArg,
2017                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2018                                  LLVMContext &Context) const {
2019  SmallVector<CCValAssign, 16> RVLocs;
2020  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
2021  return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
2022                                                    isVarArg));
2023}
2024
2025SDValue
2026ARMTargetLowering::LowerReturn(SDValue Chain,
2027                               CallingConv::ID CallConv, bool isVarArg,
2028                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2029                               const SmallVectorImpl<SDValue> &OutVals,
2030                               SDLoc dl, SelectionDAG &DAG) const {
2031
2032  // CCValAssign - represent the assignment of the return value to a location.
2033  SmallVector<CCValAssign, 16> RVLocs;
2034
2035  // CCState - Info about the registers and stack slots.
2036  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2037                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
2038
2039  // Analyze outgoing return values.
2040  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
2041                                               isVarArg));
2042
2043  SDValue Flag;
2044  SmallVector<SDValue, 4> RetOps;
2045  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2046
2047  // Copy the result values into the output registers.
2048  for (unsigned i = 0, realRVLocIdx = 0;
2049       i != RVLocs.size();
2050       ++i, ++realRVLocIdx) {
2051    CCValAssign &VA = RVLocs[i];
2052    assert(VA.isRegLoc() && "Can only return in registers!");
2053
2054    SDValue Arg = OutVals[realRVLocIdx];
2055
2056    switch (VA.getLocInfo()) {
2057    default: llvm_unreachable("Unknown loc info!");
2058    case CCValAssign::Full: break;
2059    case CCValAssign::BCvt:
2060      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2061      break;
2062    }
2063
2064    if (VA.needsCustom()) {
2065      if (VA.getLocVT() == MVT::v2f64) {
2066        // Extract the first half and return it in two registers.
2067        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2068                                   DAG.getConstant(0, MVT::i32));
2069        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2070                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
2071
2072        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
2073        Flag = Chain.getValue(1);
2074        RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2075        VA = RVLocs[++i]; // skip ahead to next loc
2076        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2077                                 HalfGPRs.getValue(1), Flag);
2078        Flag = Chain.getValue(1);
2079        RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2080        VA = RVLocs[++i]; // skip ahead to next loc
2081
2082        // Extract the 2nd half and fall through to handle it as an f64 value.
2083        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2084                          DAG.getConstant(1, MVT::i32));
2085      }
2086      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2087      // available.
2088      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2089                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
2090      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
2091      Flag = Chain.getValue(1);
2092      RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2093      VA = RVLocs[++i]; // skip ahead to next loc
2094      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
2095                               Flag);
2096    } else
2097      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2098
2099    // Guarantee that all emitted copies are
2100    // stuck together, avoiding something bad.
2101    Flag = Chain.getValue(1);
2102    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2103  }
2104
2105  // Update chain and glue.
2106  RetOps[0] = Chain;
2107  if (Flag.getNode())
2108    RetOps.push_back(Flag);
2109
2110  return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other,
2111                     RetOps.data(), RetOps.size());
2112}
2113
2114bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2115  if (N->getNumValues() != 1)
2116    return false;
2117  if (!N->hasNUsesOfValue(1, 0))
2118    return false;
2119
2120  SDValue TCChain = Chain;
2121  SDNode *Copy = *N->use_begin();
2122  if (Copy->getOpcode() == ISD::CopyToReg) {
2123    // If the copy has a glue operand, we conservatively assume it isn't safe to
2124    // perform a tail call.
2125    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2126      return false;
2127    TCChain = Copy->getOperand(0);
2128  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2129    SDNode *VMov = Copy;
2130    // f64 returned in a pair of GPRs.
2131    SmallPtrSet<SDNode*, 2> Copies;
2132    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2133         UI != UE; ++UI) {
2134      if (UI->getOpcode() != ISD::CopyToReg)
2135        return false;
2136      Copies.insert(*UI);
2137    }
2138    if (Copies.size() > 2)
2139      return false;
2140
2141    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2142         UI != UE; ++UI) {
2143      SDValue UseChain = UI->getOperand(0);
2144      if (Copies.count(UseChain.getNode()))
2145        // Second CopyToReg
2146        Copy = *UI;
2147      else
2148        // First CopyToReg
2149        TCChain = UseChain;
2150    }
2151  } else if (Copy->getOpcode() == ISD::BITCAST) {
2152    // f32 returned in a single GPR.
2153    if (!Copy->hasOneUse())
2154      return false;
2155    Copy = *Copy->use_begin();
2156    if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2157      return false;
2158    TCChain = Copy->getOperand(0);
2159  } else {
2160    return false;
2161  }
2162
2163  bool HasRet = false;
2164  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2165       UI != UE; ++UI) {
2166    if (UI->getOpcode() != ARMISD::RET_FLAG)
2167      return false;
2168    HasRet = true;
2169  }
2170
2171  if (!HasRet)
2172    return false;
2173
2174  Chain = TCChain;
2175  return true;
2176}
2177
2178bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2179  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2180    return false;
2181
2182  if (!CI->isTailCall())
2183    return false;
2184
2185  return !Subtarget->isThumb1Only();
2186}
2187
2188// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2189// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2190// one of the above mentioned nodes. It has to be wrapped because otherwise
2191// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2192// be used to form addressing mode. These wrapped nodes will be selected
2193// into MOVi.
2194static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2195  EVT PtrVT = Op.getValueType();
2196  // FIXME there is no actual debug info here
2197  SDLoc dl(Op);
2198  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2199  SDValue Res;
2200  if (CP->isMachineConstantPoolEntry())
2201    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2202                                    CP->getAlignment());
2203  else
2204    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2205                                    CP->getAlignment());
2206  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2207}
2208
2209unsigned ARMTargetLowering::getJumpTableEncoding() const {
2210  return MachineJumpTableInfo::EK_Inline;
2211}
2212
2213SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2214                                             SelectionDAG &DAG) const {
2215  MachineFunction &MF = DAG.getMachineFunction();
2216  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2217  unsigned ARMPCLabelIndex = 0;
2218  SDLoc DL(Op);
2219  EVT PtrVT = getPointerTy();
2220  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2221  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2222  SDValue CPAddr;
2223  if (RelocM == Reloc::Static) {
2224    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2225  } else {
2226    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2227    ARMPCLabelIndex = AFI->createPICLabelUId();
2228    ARMConstantPoolValue *CPV =
2229      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2230                                      ARMCP::CPBlockAddress, PCAdj);
2231    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2232  }
2233  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2234  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2235                               MachinePointerInfo::getConstantPool(),
2236                               false, false, false, 0);
2237  if (RelocM == Reloc::Static)
2238    return Result;
2239  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2240  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2241}
2242
2243// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2244SDValue
2245ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2246                                                 SelectionDAG &DAG) const {
2247  SDLoc dl(GA);
2248  EVT PtrVT = getPointerTy();
2249  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2250  MachineFunction &MF = DAG.getMachineFunction();
2251  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2252  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2253  ARMConstantPoolValue *CPV =
2254    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2255                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2256  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2257  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2258  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2259                         MachinePointerInfo::getConstantPool(),
2260                         false, false, false, 0);
2261  SDValue Chain = Argument.getValue(1);
2262
2263  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2264  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2265
2266  // call __tls_get_addr.
2267  ArgListTy Args;
2268  ArgListEntry Entry;
2269  Entry.Node = Argument;
2270  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2271  Args.push_back(Entry);
2272  // FIXME: is there useful debug info available here?
2273  TargetLowering::CallLoweringInfo CLI(Chain,
2274                (Type *) Type::getInt32Ty(*DAG.getContext()),
2275                false, false, false, false,
2276                0, CallingConv::C, /*isTailCall=*/false,
2277                /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2278                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2279  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2280  return CallResult.first;
2281}
2282
2283// Lower ISD::GlobalTLSAddress using the "initial exec" or
2284// "local exec" model.
2285SDValue
2286ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2287                                        SelectionDAG &DAG,
2288                                        TLSModel::Model model) const {
2289  const GlobalValue *GV = GA->getGlobal();
2290  SDLoc dl(GA);
2291  SDValue Offset;
2292  SDValue Chain = DAG.getEntryNode();
2293  EVT PtrVT = getPointerTy();
2294  // Get the Thread Pointer
2295  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2296
2297  if (model == TLSModel::InitialExec) {
2298    MachineFunction &MF = DAG.getMachineFunction();
2299    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2300    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2301    // Initial exec model.
2302    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2303    ARMConstantPoolValue *CPV =
2304      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2305                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2306                                      true);
2307    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2308    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2309    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2310                         MachinePointerInfo::getConstantPool(),
2311                         false, false, false, 0);
2312    Chain = Offset.getValue(1);
2313
2314    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2315    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2316
2317    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2318                         MachinePointerInfo::getConstantPool(),
2319                         false, false, false, 0);
2320  } else {
2321    // local exec model
2322    assert(model == TLSModel::LocalExec);
2323    ARMConstantPoolValue *CPV =
2324      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2325    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2326    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2327    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2328                         MachinePointerInfo::getConstantPool(),
2329                         false, false, false, 0);
2330  }
2331
2332  // The address of the thread local variable is the add of the thread
2333  // pointer with the offset of the variable.
2334  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2335}
2336
2337SDValue
2338ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2339  // TODO: implement the "local dynamic" model
2340  assert(Subtarget->isTargetELF() &&
2341         "TLS not implemented for non-ELF targets");
2342  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2343
2344  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2345
2346  switch (model) {
2347    case TLSModel::GeneralDynamic:
2348    case TLSModel::LocalDynamic:
2349      return LowerToTLSGeneralDynamicModel(GA, DAG);
2350    case TLSModel::InitialExec:
2351    case TLSModel::LocalExec:
2352      return LowerToTLSExecModels(GA, DAG, model);
2353  }
2354  llvm_unreachable("bogus TLS model");
2355}
2356
2357SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2358                                                 SelectionDAG &DAG) const {
2359  EVT PtrVT = getPointerTy();
2360  SDLoc dl(Op);
2361  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2362  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2363    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2364    ARMConstantPoolValue *CPV =
2365      ARMConstantPoolConstant::Create(GV,
2366                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2367    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2368    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2369    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2370                                 CPAddr,
2371                                 MachinePointerInfo::getConstantPool(),
2372                                 false, false, false, 0);
2373    SDValue Chain = Result.getValue(1);
2374    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2375    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2376    if (!UseGOTOFF)
2377      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2378                           MachinePointerInfo::getGOT(),
2379                           false, false, false, 0);
2380    return Result;
2381  }
2382
2383  // If we have T2 ops, we can materialize the address directly via movt/movw
2384  // pair. This is always cheaper.
2385  if (Subtarget->useMovt()) {
2386    ++NumMovwMovt;
2387    // FIXME: Once remat is capable of dealing with instructions with register
2388    // operands, expand this into two nodes.
2389    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2390                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2391  } else {
2392    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2393    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2394    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2395                       MachinePointerInfo::getConstantPool(),
2396                       false, false, false, 0);
2397  }
2398}
2399
2400SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2401                                                    SelectionDAG &DAG) const {
2402  EVT PtrVT = getPointerTy();
2403  SDLoc dl(Op);
2404  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2405  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2406
2407  // FIXME: Enable this for static codegen when tool issues are fixed.  Also
2408  // update ARMFastISel::ARMMaterializeGV.
2409  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2410    ++NumMovwMovt;
2411    // FIXME: Once remat is capable of dealing with instructions with register
2412    // operands, expand this into two nodes.
2413    if (RelocM == Reloc::Static)
2414      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2415                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2416
2417    unsigned Wrapper = (RelocM == Reloc::PIC_)
2418      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2419    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2420                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2421    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2422      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2423                           MachinePointerInfo::getGOT(),
2424                           false, false, false, 0);
2425    return Result;
2426  }
2427
2428  unsigned ARMPCLabelIndex = 0;
2429  SDValue CPAddr;
2430  if (RelocM == Reloc::Static) {
2431    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2432  } else {
2433    ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2434    ARMPCLabelIndex = AFI->createPICLabelUId();
2435    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2436    ARMConstantPoolValue *CPV =
2437      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2438                                      PCAdj);
2439    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2440  }
2441  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2442
2443  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2444                               MachinePointerInfo::getConstantPool(),
2445                               false, false, false, 0);
2446  SDValue Chain = Result.getValue(1);
2447
2448  if (RelocM == Reloc::PIC_) {
2449    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2450    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2451  }
2452
2453  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2454    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2455                         false, false, false, 0);
2456
2457  return Result;
2458}
2459
2460SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2461                                                    SelectionDAG &DAG) const {
2462  assert(Subtarget->isTargetELF() &&
2463         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2464  MachineFunction &MF = DAG.getMachineFunction();
2465  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2466  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2467  EVT PtrVT = getPointerTy();
2468  SDLoc dl(Op);
2469  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2470  ARMConstantPoolValue *CPV =
2471    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2472                                  ARMPCLabelIndex, PCAdj);
2473  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2474  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2475  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2476                               MachinePointerInfo::getConstantPool(),
2477                               false, false, false, 0);
2478  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2479  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2480}
2481
2482SDValue
2483ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2484  SDLoc dl(Op);
2485  SDValue Val = DAG.getConstant(0, MVT::i32);
2486  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2487                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2488                     Op.getOperand(1), Val);
2489}
2490
2491SDValue
2492ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2493  SDLoc dl(Op);
2494  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2495                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2496}
2497
2498SDValue
2499ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2500                                          const ARMSubtarget *Subtarget) const {
2501  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2502  SDLoc dl(Op);
2503  switch (IntNo) {
2504  default: return SDValue();    // Don't custom lower most intrinsics.
2505  case Intrinsic::arm_thread_pointer: {
2506    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2507    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2508  }
2509  case Intrinsic::eh_sjlj_lsda: {
2510    MachineFunction &MF = DAG.getMachineFunction();
2511    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2512    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2513    EVT PtrVT = getPointerTy();
2514    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2515    SDValue CPAddr;
2516    unsigned PCAdj = (RelocM != Reloc::PIC_)
2517      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2518    ARMConstantPoolValue *CPV =
2519      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2520                                      ARMCP::CPLSDA, PCAdj);
2521    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2522    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2523    SDValue Result =
2524      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2525                  MachinePointerInfo::getConstantPool(),
2526                  false, false, false, 0);
2527
2528    if (RelocM == Reloc::PIC_) {
2529      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2530      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2531    }
2532    return Result;
2533  }
2534  case Intrinsic::arm_neon_vmulls:
2535  case Intrinsic::arm_neon_vmullu: {
2536    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2537      ? ARMISD::VMULLs : ARMISD::VMULLu;
2538    return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2539                       Op.getOperand(1), Op.getOperand(2));
2540  }
2541  }
2542}
2543
2544static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2545                                 const ARMSubtarget *Subtarget) {
2546  // FIXME: handle "fence singlethread" more efficiently.
2547  SDLoc dl(Op);
2548  if (!Subtarget->hasDataBarrier()) {
2549    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2550    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2551    // here.
2552    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2553           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2554    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2555                       DAG.getConstant(0, MVT::i32));
2556  }
2557
2558  ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
2559  AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
2560  unsigned Domain = ARM_MB::ISH;
2561  if (Subtarget->isSwift() && Ord == Release) {
2562    // Swift happens to implement ISHST barriers in a way that's compatible with
2563    // Release semantics but weaker than ISH so we'd be fools not to use
2564    // it. Beware: other processors probably don't!
2565    Domain = ARM_MB::ISHST;
2566  }
2567
2568  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2569                     DAG.getConstant(Domain, MVT::i32));
2570}
2571
2572static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2573                             const ARMSubtarget *Subtarget) {
2574  // ARM pre v5TE and Thumb1 does not have preload instructions.
2575  if (!(Subtarget->isThumb2() ||
2576        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2577    // Just preserve the chain.
2578    return Op.getOperand(0);
2579
2580  SDLoc dl(Op);
2581  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2582  if (!isRead &&
2583      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2584    // ARMv7 with MP extension has PLDW.
2585    return Op.getOperand(0);
2586
2587  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2588  if (Subtarget->isThumb()) {
2589    // Invert the bits.
2590    isRead = ~isRead & 1;
2591    isData = ~isData & 1;
2592  }
2593
2594  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2595                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2596                     DAG.getConstant(isData, MVT::i32));
2597}
2598
2599static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2600  MachineFunction &MF = DAG.getMachineFunction();
2601  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2602
2603  // vastart just stores the address of the VarArgsFrameIndex slot into the
2604  // memory location argument.
2605  SDLoc dl(Op);
2606  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2607  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2608  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2609  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2610                      MachinePointerInfo(SV), false, false, 0);
2611}
2612
2613SDValue
2614ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2615                                        SDValue &Root, SelectionDAG &DAG,
2616                                        SDLoc dl) const {
2617  MachineFunction &MF = DAG.getMachineFunction();
2618  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2619
2620  const TargetRegisterClass *RC;
2621  if (AFI->isThumb1OnlyFunction())
2622    RC = &ARM::tGPRRegClass;
2623  else
2624    RC = &ARM::GPRRegClass;
2625
2626  // Transform the arguments stored in physical registers into virtual ones.
2627  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2628  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2629
2630  SDValue ArgValue2;
2631  if (NextVA.isMemLoc()) {
2632    MachineFrameInfo *MFI = MF.getFrameInfo();
2633    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2634
2635    // Create load node to retrieve arguments from the stack.
2636    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2637    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2638                            MachinePointerInfo::getFixedStack(FI),
2639                            false, false, false, 0);
2640  } else {
2641    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2642    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2643  }
2644
2645  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2646}
2647
2648void
2649ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2650                                  unsigned InRegsParamRecordIdx,
2651                                  unsigned ArgSize,
2652                                  unsigned &ArgRegsSize,
2653                                  unsigned &ArgRegsSaveSize)
2654  const {
2655  unsigned NumGPRs;
2656  if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
2657    unsigned RBegin, REnd;
2658    CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
2659    NumGPRs = REnd - RBegin;
2660  } else {
2661    unsigned int firstUnalloced;
2662    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2663                                                sizeof(GPRArgRegs) /
2664                                                sizeof(GPRArgRegs[0]));
2665    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2666  }
2667
2668  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2669  ArgRegsSize = NumGPRs * 4;
2670
2671  // If parameter is split between stack and GPRs...
2672  if (NumGPRs && Align == 8 &&
2673      (ArgRegsSize < ArgSize ||
2674        InRegsParamRecordIdx >= CCInfo.getInRegsParamsCount())) {
2675    // Add padding for part of param recovered from GPRs, so
2676    // its last byte must be at address K*8 - 1.
2677    // We need to do it, since remained (stack) part of parameter has
2678    // stack alignment, and we need to "attach" "GPRs head" without gaps
2679    // to it:
2680    // Stack:
2681    // |---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
2682    // [ [padding] [GPRs head] ] [        Tail passed via stack       ....
2683    //
2684    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2685    unsigned Padding =
2686        ((ArgRegsSize + AFI->getArgRegsSaveSize() + Align - 1) & ~(Align-1)) -
2687        (ArgRegsSize + AFI->getArgRegsSaveSize());
2688    ArgRegsSaveSize = ArgRegsSize + Padding;
2689  } else
2690    // We don't need to extend regs save size for byval parameters if they
2691    // are passed via GPRs only.
2692    ArgRegsSaveSize = ArgRegsSize;
2693}
2694
2695// The remaining GPRs hold either the beginning of variable-argument
2696// data, or the beginning of an aggregate passed by value (usually
2697// byval).  Either way, we allocate stack slots adjacent to the data
2698// provided by our caller, and store the unallocated registers there.
2699// If this is a variadic function, the va_list pointer will begin with
2700// these values; otherwise, this reassembles a (byval) structure that
2701// was split between registers and memory.
2702// Return: The frame index registers were stored into.
2703int
2704ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
2705                                  SDLoc dl, SDValue &Chain,
2706                                  const Value *OrigArg,
2707                                  unsigned InRegsParamRecordIdx,
2708                                  unsigned OffsetFromOrigArg,
2709                                  unsigned ArgOffset,
2710                                  unsigned ArgSize,
2711                                  bool ForceMutable) const {
2712
2713  // Currently, two use-cases possible:
2714  // Case #1. Non var-args function, and we meet first byval parameter.
2715  //          Setup first unallocated register as first byval register;
2716  //          eat all remained registers
2717  //          (these two actions are performed by HandleByVal method).
2718  //          Then, here, we initialize stack frame with
2719  //          "store-reg" instructions.
2720  // Case #2. Var-args function, that doesn't contain byval parameters.
2721  //          The same: eat all remained unallocated registers,
2722  //          initialize stack frame.
2723
2724  MachineFunction &MF = DAG.getMachineFunction();
2725  MachineFrameInfo *MFI = MF.getFrameInfo();
2726  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2727  unsigned firstRegToSaveIndex, lastRegToSaveIndex;
2728  unsigned RBegin, REnd;
2729  if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
2730    CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
2731    firstRegToSaveIndex = RBegin - ARM::R0;
2732    lastRegToSaveIndex = REnd - ARM::R0;
2733  } else {
2734    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2735      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2736    lastRegToSaveIndex = 4;
2737  }
2738
2739  unsigned ArgRegsSize, ArgRegsSaveSize;
2740  computeRegArea(CCInfo, MF, InRegsParamRecordIdx, ArgSize,
2741                 ArgRegsSize, ArgRegsSaveSize);
2742
2743  // Store any by-val regs to their spots on the stack so that they may be
2744  // loaded by deferencing the result of formal parameter pointer or va_next.
2745  // Note: once stack area for byval/varargs registers
2746  // was initialized, it can't be initialized again.
2747  if (ArgRegsSaveSize) {
2748
2749    unsigned Padding = ArgRegsSaveSize - ArgRegsSize;
2750
2751    if (Padding) {
2752      assert(AFI->getStoredByValParamsPadding() == 0 &&
2753             "The only parameter may be padded.");
2754      AFI->setStoredByValParamsPadding(Padding);
2755    }
2756
2757    int FrameIndex = MFI->CreateFixedObject(
2758                      ArgRegsSaveSize,
2759                      Padding + ArgOffset,
2760                      false);
2761    SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy());
2762
2763    SmallVector<SDValue, 4> MemOps;
2764    for (unsigned i = 0; firstRegToSaveIndex < lastRegToSaveIndex;
2765         ++firstRegToSaveIndex, ++i) {
2766      const TargetRegisterClass *RC;
2767      if (AFI->isThumb1OnlyFunction())
2768        RC = &ARM::tGPRRegClass;
2769      else
2770        RC = &ARM::GPRRegClass;
2771
2772      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2773      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2774      SDValue Store =
2775        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2776                     MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
2777                     false, false, 0);
2778      MemOps.push_back(Store);
2779      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2780                        DAG.getConstant(4, getPointerTy()));
2781    }
2782
2783    AFI->setArgRegsSaveSize(ArgRegsSaveSize + AFI->getArgRegsSaveSize());
2784
2785    if (!MemOps.empty())
2786      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2787                          &MemOps[0], MemOps.size());
2788    return FrameIndex;
2789  } else
2790    // This will point to the next argument passed via stack.
2791    return MFI->CreateFixedObject(
2792        4, AFI->getStoredByValParamsPadding() + ArgOffset, !ForceMutable);
2793}
2794
2795// Setup stack frame, the va_list pointer will start from.
2796void
2797ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2798                                        SDLoc dl, SDValue &Chain,
2799                                        unsigned ArgOffset,
2800                                        bool ForceMutable) const {
2801  MachineFunction &MF = DAG.getMachineFunction();
2802  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2803
2804  // Try to store any remaining integer argument regs
2805  // to their spots on the stack so that they may be loaded by deferencing
2806  // the result of va_next.
2807  // If there is no regs to be stored, just point address after last
2808  // argument passed via stack.
2809  int FrameIndex =
2810    StoreByValRegs(CCInfo, DAG, dl, Chain, 0, CCInfo.getInRegsParamsCount(),
2811                   0, ArgOffset, 0, ForceMutable);
2812
2813  AFI->setVarArgsFrameIndex(FrameIndex);
2814}
2815
2816SDValue
2817ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2818                                        CallingConv::ID CallConv, bool isVarArg,
2819                                        const SmallVectorImpl<ISD::InputArg>
2820                                          &Ins,
2821                                        SDLoc dl, SelectionDAG &DAG,
2822                                        SmallVectorImpl<SDValue> &InVals)
2823                                          const {
2824  MachineFunction &MF = DAG.getMachineFunction();
2825  MachineFrameInfo *MFI = MF.getFrameInfo();
2826
2827  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2828
2829  // Assign locations to all of the incoming arguments.
2830  SmallVector<CCValAssign, 16> ArgLocs;
2831  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2832                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2833  CCInfo.AnalyzeFormalArguments(Ins,
2834                                CCAssignFnForNode(CallConv, /* Return*/ false,
2835                                                  isVarArg));
2836
2837  SmallVector<SDValue, 16> ArgValues;
2838  int lastInsIndex = -1;
2839  SDValue ArgValue;
2840  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2841  unsigned CurArgIdx = 0;
2842
2843  // Initially ArgRegsSaveSize is zero.
2844  // Then we increase this value each time we meet byval parameter.
2845  // We also increase this value in case of varargs function.
2846  AFI->setArgRegsSaveSize(0);
2847
2848  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2849    CCValAssign &VA = ArgLocs[i];
2850    std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
2851    CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
2852    // Arguments stored in registers.
2853    if (VA.isRegLoc()) {
2854      EVT RegVT = VA.getLocVT();
2855
2856      if (VA.needsCustom()) {
2857        // f64 and vector types are split up into multiple registers or
2858        // combinations of registers and stack slots.
2859        if (VA.getLocVT() == MVT::v2f64) {
2860          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2861                                                   Chain, DAG, dl);
2862          VA = ArgLocs[++i]; // skip ahead to next loc
2863          SDValue ArgValue2;
2864          if (VA.isMemLoc()) {
2865            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2866            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2867            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2868                                    MachinePointerInfo::getFixedStack(FI),
2869                                    false, false, false, 0);
2870          } else {
2871            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2872                                             Chain, DAG, dl);
2873          }
2874          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2875          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2876                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2877          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2878                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2879        } else
2880          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2881
2882      } else {
2883        const TargetRegisterClass *RC;
2884
2885        if (RegVT == MVT::f32)
2886          RC = &ARM::SPRRegClass;
2887        else if (RegVT == MVT::f64)
2888          RC = &ARM::DPRRegClass;
2889        else if (RegVT == MVT::v2f64)
2890          RC = &ARM::QPRRegClass;
2891        else if (RegVT == MVT::i32)
2892          RC = AFI->isThumb1OnlyFunction() ?
2893            (const TargetRegisterClass*)&ARM::tGPRRegClass :
2894            (const TargetRegisterClass*)&ARM::GPRRegClass;
2895        else
2896          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2897
2898        // Transform the arguments in physical registers into virtual ones.
2899        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2900        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2901      }
2902
2903      // If this is an 8 or 16-bit value, it is really passed promoted
2904      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2905      // truncate to the right size.
2906      switch (VA.getLocInfo()) {
2907      default: llvm_unreachable("Unknown loc info!");
2908      case CCValAssign::Full: break;
2909      case CCValAssign::BCvt:
2910        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2911        break;
2912      case CCValAssign::SExt:
2913        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2914                               DAG.getValueType(VA.getValVT()));
2915        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2916        break;
2917      case CCValAssign::ZExt:
2918        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2919                               DAG.getValueType(VA.getValVT()));
2920        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2921        break;
2922      }
2923
2924      InVals.push_back(ArgValue);
2925
2926    } else { // VA.isRegLoc()
2927
2928      // sanity check
2929      assert(VA.isMemLoc());
2930      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2931
2932      int index = ArgLocs[i].getValNo();
2933
2934      // Some Ins[] entries become multiple ArgLoc[] entries.
2935      // Process them only once.
2936      if (index != lastInsIndex)
2937        {
2938          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2939          // FIXME: For now, all byval parameter objects are marked mutable.
2940          // This can be changed with more analysis.
2941          // In case of tail call optimization mark all arguments mutable.
2942          // Since they could be overwritten by lowering of arguments in case of
2943          // a tail call.
2944          if (Flags.isByVal()) {
2945            unsigned CurByValIndex = CCInfo.getInRegsParamsProceed();
2946            int FrameIndex = StoreByValRegs(
2947                CCInfo, DAG, dl, Chain, CurOrigArg,
2948                CurByValIndex,
2949                Ins[VA.getValNo()].PartOffset,
2950                VA.getLocMemOffset(),
2951                Flags.getByValSize(),
2952                true /*force mutable frames*/);
2953            InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy()));
2954            CCInfo.nextInRegsParam();
2955          } else {
2956            unsigned FIOffset = VA.getLocMemOffset() +
2957                                AFI->getStoredByValParamsPadding();
2958            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2959                                            FIOffset, true);
2960
2961            // Create load nodes to retrieve arguments from the stack.
2962            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2963            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2964                                         MachinePointerInfo::getFixedStack(FI),
2965                                         false, false, false, 0));
2966          }
2967          lastInsIndex = index;
2968        }
2969    }
2970  }
2971
2972  // varargs
2973  if (isVarArg)
2974    VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
2975                         CCInfo.getNextStackOffset());
2976
2977  return Chain;
2978}
2979
2980/// isFloatingPointZero - Return true if this is +0.0.
2981static bool isFloatingPointZero(SDValue Op) {
2982  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2983    return CFP->getValueAPF().isPosZero();
2984  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2985    // Maybe this has already been legalized into the constant pool?
2986    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2987      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2988      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2989        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2990          return CFP->getValueAPF().isPosZero();
2991    }
2992  }
2993  return false;
2994}
2995
2996/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2997/// the given operands.
2998SDValue
2999ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3000                             SDValue &ARMcc, SelectionDAG &DAG,
3001                             SDLoc dl) const {
3002  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3003    unsigned C = RHSC->getZExtValue();
3004    if (!isLegalICmpImmediate(C)) {
3005      // Constant does not fit, try adjusting it by one?
3006      switch (CC) {
3007      default: break;
3008      case ISD::SETLT:
3009      case ISD::SETGE:
3010        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3011          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3012          RHS = DAG.getConstant(C-1, MVT::i32);
3013        }
3014        break;
3015      case ISD::SETULT:
3016      case ISD::SETUGE:
3017        if (C != 0 && isLegalICmpImmediate(C-1)) {
3018          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3019          RHS = DAG.getConstant(C-1, MVT::i32);
3020        }
3021        break;
3022      case ISD::SETLE:
3023      case ISD::SETGT:
3024        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3025          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3026          RHS = DAG.getConstant(C+1, MVT::i32);
3027        }
3028        break;
3029      case ISD::SETULE:
3030      case ISD::SETUGT:
3031        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3032          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3033          RHS = DAG.getConstant(C+1, MVT::i32);
3034        }
3035        break;
3036      }
3037    }
3038  }
3039
3040  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3041  ARMISD::NodeType CompareType;
3042  switch (CondCode) {
3043  default:
3044    CompareType = ARMISD::CMP;
3045    break;
3046  case ARMCC::EQ:
3047  case ARMCC::NE:
3048    // Uses only Z Flag
3049    CompareType = ARMISD::CMPZ;
3050    break;
3051  }
3052  ARMcc = DAG.getConstant(CondCode, MVT::i32);
3053  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3054}
3055
3056/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3057SDValue
3058ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
3059                             SDLoc dl) const {
3060  SDValue Cmp;
3061  if (!isFloatingPointZero(RHS))
3062    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
3063  else
3064    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
3065  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3066}
3067
3068/// duplicateCmp - Glue values can have only one use, so this function
3069/// duplicates a comparison node.
3070SDValue
3071ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3072  unsigned Opc = Cmp.getOpcode();
3073  SDLoc DL(Cmp);
3074  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3075    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3076
3077  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3078  Cmp = Cmp.getOperand(0);
3079  Opc = Cmp.getOpcode();
3080  if (Opc == ARMISD::CMPFP)
3081    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3082  else {
3083    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3084    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
3085  }
3086  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3087}
3088
3089SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3090  SDValue Cond = Op.getOperand(0);
3091  SDValue SelectTrue = Op.getOperand(1);
3092  SDValue SelectFalse = Op.getOperand(2);
3093  SDLoc dl(Op);
3094
3095  // Convert:
3096  //
3097  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
3098  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
3099  //
3100  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
3101    const ConstantSDNode *CMOVTrue =
3102      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
3103    const ConstantSDNode *CMOVFalse =
3104      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3105
3106    if (CMOVTrue && CMOVFalse) {
3107      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
3108      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
3109
3110      SDValue True;
3111      SDValue False;
3112      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
3113        True = SelectTrue;
3114        False = SelectFalse;
3115      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
3116        True = SelectFalse;
3117        False = SelectTrue;
3118      }
3119
3120      if (True.getNode() && False.getNode()) {
3121        EVT VT = Op.getValueType();
3122        SDValue ARMcc = Cond.getOperand(2);
3123        SDValue CCR = Cond.getOperand(3);
3124        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
3125        assert(True.getValueType() == VT);
3126        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
3127      }
3128    }
3129  }
3130
3131  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
3132  // undefined bits before doing a full-word comparison with zero.
3133  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
3134                     DAG.getConstant(1, Cond.getValueType()));
3135
3136  return DAG.getSelectCC(dl, Cond,
3137                         DAG.getConstant(0, Cond.getValueType()),
3138                         SelectTrue, SelectFalse, ISD::SETNE);
3139}
3140
3141SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3142  EVT VT = Op.getValueType();
3143  SDValue LHS = Op.getOperand(0);
3144  SDValue RHS = Op.getOperand(1);
3145  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3146  SDValue TrueVal = Op.getOperand(2);
3147  SDValue FalseVal = Op.getOperand(3);
3148  SDLoc dl(Op);
3149
3150  if (LHS.getValueType() == MVT::i32) {
3151    SDValue ARMcc;
3152    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3153    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3154    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
3155  }
3156
3157  ARMCC::CondCodes CondCode, CondCode2;
3158  FPCCToARMCC(CC, CondCode, CondCode2);
3159
3160  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3161  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3162  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3163  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
3164                               ARMcc, CCR, Cmp);
3165  if (CondCode2 != ARMCC::AL) {
3166    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
3167    // FIXME: Needs another CMP because flag can have but one use.
3168    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
3169    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
3170                         Result, TrueVal, ARMcc2, CCR, Cmp2);
3171  }
3172  return Result;
3173}
3174
3175/// canChangeToInt - Given the fp compare operand, return true if it is suitable
3176/// to morph to an integer compare sequence.
3177static bool canChangeToInt(SDValue Op, bool &SeenZero,
3178                           const ARMSubtarget *Subtarget) {
3179  SDNode *N = Op.getNode();
3180  if (!N->hasOneUse())
3181    // Otherwise it requires moving the value from fp to integer registers.
3182    return false;
3183  if (!N->getNumValues())
3184    return false;
3185  EVT VT = Op.getValueType();
3186  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3187    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3188    // vmrs are very slow, e.g. cortex-a8.
3189    return false;
3190
3191  if (isFloatingPointZero(Op)) {
3192    SeenZero = true;
3193    return true;
3194  }
3195  return ISD::isNormalLoad(N);
3196}
3197
3198static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
3199  if (isFloatingPointZero(Op))
3200    return DAG.getConstant(0, MVT::i32);
3201
3202  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3203    return DAG.getLoad(MVT::i32, SDLoc(Op),
3204                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3205                       Ld->isVolatile(), Ld->isNonTemporal(),
3206                       Ld->isInvariant(), Ld->getAlignment());
3207
3208  llvm_unreachable("Unknown VFP cmp argument!");
3209}
3210
3211static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3212                           SDValue &RetVal1, SDValue &RetVal2) {
3213  if (isFloatingPointZero(Op)) {
3214    RetVal1 = DAG.getConstant(0, MVT::i32);
3215    RetVal2 = DAG.getConstant(0, MVT::i32);
3216    return;
3217  }
3218
3219  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3220    SDValue Ptr = Ld->getBasePtr();
3221    RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op),
3222                          Ld->getChain(), Ptr,
3223                          Ld->getPointerInfo(),
3224                          Ld->isVolatile(), Ld->isNonTemporal(),
3225                          Ld->isInvariant(), Ld->getAlignment());
3226
3227    EVT PtrType = Ptr.getValueType();
3228    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3229    SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op),
3230                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
3231    RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op),
3232                          Ld->getChain(), NewPtr,
3233                          Ld->getPointerInfo().getWithOffset(4),
3234                          Ld->isVolatile(), Ld->isNonTemporal(),
3235                          Ld->isInvariant(), NewAlign);
3236    return;
3237  }
3238
3239  llvm_unreachable("Unknown VFP cmp argument!");
3240}
3241
3242/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3243/// f32 and even f64 comparisons to integer ones.
3244SDValue
3245ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3246  SDValue Chain = Op.getOperand(0);
3247  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3248  SDValue LHS = Op.getOperand(2);
3249  SDValue RHS = Op.getOperand(3);
3250  SDValue Dest = Op.getOperand(4);
3251  SDLoc dl(Op);
3252
3253  bool LHSSeenZero = false;
3254  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3255  bool RHSSeenZero = false;
3256  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3257  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3258    // If unsafe fp math optimization is enabled and there are no other uses of
3259    // the CMP operands, and the condition code is EQ or NE, we can optimize it
3260    // to an integer comparison.
3261    if (CC == ISD::SETOEQ)
3262      CC = ISD::SETEQ;
3263    else if (CC == ISD::SETUNE)
3264      CC = ISD::SETNE;
3265
3266    SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3267    SDValue ARMcc;
3268    if (LHS.getValueType() == MVT::f32) {
3269      LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3270                        bitcastf32Toi32(LHS, DAG), Mask);
3271      RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3272                        bitcastf32Toi32(RHS, DAG), Mask);
3273      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3274      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3275      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3276                         Chain, Dest, ARMcc, CCR, Cmp);
3277    }
3278
3279    SDValue LHS1, LHS2;
3280    SDValue RHS1, RHS2;
3281    expandf64Toi32(LHS, DAG, LHS1, LHS2);
3282    expandf64Toi32(RHS, DAG, RHS1, RHS2);
3283    LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3284    RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3285    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3286    ARMcc = DAG.getConstant(CondCode, MVT::i32);
3287    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3288    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3289    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3290  }
3291
3292  return SDValue();
3293}
3294
3295SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3296  SDValue Chain = Op.getOperand(0);
3297  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3298  SDValue LHS = Op.getOperand(2);
3299  SDValue RHS = Op.getOperand(3);
3300  SDValue Dest = Op.getOperand(4);
3301  SDLoc dl(Op);
3302
3303  if (LHS.getValueType() == MVT::i32) {
3304    SDValue ARMcc;
3305    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3306    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3307    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3308                       Chain, Dest, ARMcc, CCR, Cmp);
3309  }
3310
3311  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3312
3313  if (getTargetMachine().Options.UnsafeFPMath &&
3314      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3315       CC == ISD::SETNE || CC == ISD::SETUNE)) {
3316    SDValue Result = OptimizeVFPBrcond(Op, DAG);
3317    if (Result.getNode())
3318      return Result;
3319  }
3320
3321  ARMCC::CondCodes CondCode, CondCode2;
3322  FPCCToARMCC(CC, CondCode, CondCode2);
3323
3324  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3325  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3326  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3327  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3328  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3329  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3330  if (CondCode2 != ARMCC::AL) {
3331    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3332    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3333    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3334  }
3335  return Res;
3336}
3337
3338SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3339  SDValue Chain = Op.getOperand(0);
3340  SDValue Table = Op.getOperand(1);
3341  SDValue Index = Op.getOperand(2);
3342  SDLoc dl(Op);
3343
3344  EVT PTy = getPointerTy();
3345  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3346  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3347  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3348  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3349  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3350  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3351  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3352  if (Subtarget->isThumb2()) {
3353    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3354    // which does another jump to the destination. This also makes it easier
3355    // to translate it to TBB / TBH later.
3356    // FIXME: This might not work if the function is extremely large.
3357    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3358                       Addr, Op.getOperand(2), JTI, UId);
3359  }
3360  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3361    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3362                       MachinePointerInfo::getJumpTable(),
3363                       false, false, false, 0);
3364    Chain = Addr.getValue(1);
3365    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3366    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3367  } else {
3368    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3369                       MachinePointerInfo::getJumpTable(),
3370                       false, false, false, 0);
3371    Chain = Addr.getValue(1);
3372    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3373  }
3374}
3375
3376static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3377  EVT VT = Op.getValueType();
3378  SDLoc dl(Op);
3379
3380  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3381    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3382      return Op;
3383    return DAG.UnrollVectorOp(Op.getNode());
3384  }
3385
3386  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3387         "Invalid type for custom lowering!");
3388  if (VT != MVT::v4i16)
3389    return DAG.UnrollVectorOp(Op.getNode());
3390
3391  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3392  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3393}
3394
3395static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3396  EVT VT = Op.getValueType();
3397  if (VT.isVector())
3398    return LowerVectorFP_TO_INT(Op, DAG);
3399
3400  SDLoc dl(Op);
3401  unsigned Opc;
3402
3403  switch (Op.getOpcode()) {
3404  default: llvm_unreachable("Invalid opcode!");
3405  case ISD::FP_TO_SINT:
3406    Opc = ARMISD::FTOSI;
3407    break;
3408  case ISD::FP_TO_UINT:
3409    Opc = ARMISD::FTOUI;
3410    break;
3411  }
3412  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3413  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3414}
3415
3416static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3417  EVT VT = Op.getValueType();
3418  SDLoc dl(Op);
3419
3420  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3421    if (VT.getVectorElementType() == MVT::f32)
3422      return Op;
3423    return DAG.UnrollVectorOp(Op.getNode());
3424  }
3425
3426  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3427         "Invalid type for custom lowering!");
3428  if (VT != MVT::v4f32)
3429    return DAG.UnrollVectorOp(Op.getNode());
3430
3431  unsigned CastOpc;
3432  unsigned Opc;
3433  switch (Op.getOpcode()) {
3434  default: llvm_unreachable("Invalid opcode!");
3435  case ISD::SINT_TO_FP:
3436    CastOpc = ISD::SIGN_EXTEND;
3437    Opc = ISD::SINT_TO_FP;
3438    break;
3439  case ISD::UINT_TO_FP:
3440    CastOpc = ISD::ZERO_EXTEND;
3441    Opc = ISD::UINT_TO_FP;
3442    break;
3443  }
3444
3445  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3446  return DAG.getNode(Opc, dl, VT, Op);
3447}
3448
3449static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3450  EVT VT = Op.getValueType();
3451  if (VT.isVector())
3452    return LowerVectorINT_TO_FP(Op, DAG);
3453
3454  SDLoc dl(Op);
3455  unsigned Opc;
3456
3457  switch (Op.getOpcode()) {
3458  default: llvm_unreachable("Invalid opcode!");
3459  case ISD::SINT_TO_FP:
3460    Opc = ARMISD::SITOF;
3461    break;
3462  case ISD::UINT_TO_FP:
3463    Opc = ARMISD::UITOF;
3464    break;
3465  }
3466
3467  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3468  return DAG.getNode(Opc, dl, VT, Op);
3469}
3470
3471SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3472  // Implement fcopysign with a fabs and a conditional fneg.
3473  SDValue Tmp0 = Op.getOperand(0);
3474  SDValue Tmp1 = Op.getOperand(1);
3475  SDLoc dl(Op);
3476  EVT VT = Op.getValueType();
3477  EVT SrcVT = Tmp1.getValueType();
3478  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3479    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3480  bool UseNEON = !InGPR && Subtarget->hasNEON();
3481
3482  if (UseNEON) {
3483    // Use VBSL to copy the sign bit.
3484    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3485    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3486                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3487    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3488    if (VT == MVT::f64)
3489      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3490                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3491                         DAG.getConstant(32, MVT::i32));
3492    else /*if (VT == MVT::f32)*/
3493      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3494    if (SrcVT == MVT::f32) {
3495      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3496      if (VT == MVT::f64)
3497        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3498                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3499                           DAG.getConstant(32, MVT::i32));
3500    } else if (VT == MVT::f32)
3501      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3502                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3503                         DAG.getConstant(32, MVT::i32));
3504    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3505    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3506
3507    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3508                                            MVT::i32);
3509    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3510    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3511                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3512
3513    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3514                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3515                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3516    if (VT == MVT::f32) {
3517      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3518      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3519                        DAG.getConstant(0, MVT::i32));
3520    } else {
3521      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3522    }
3523
3524    return Res;
3525  }
3526
3527  // Bitcast operand 1 to i32.
3528  if (SrcVT == MVT::f64)
3529    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3530                       &Tmp1, 1).getValue(1);
3531  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3532
3533  // Or in the signbit with integer operations.
3534  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3535  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3536  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3537  if (VT == MVT::f32) {
3538    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3539                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3540    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3541                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3542  }
3543
3544  // f64: Or the high part with signbit and then combine two parts.
3545  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3546                     &Tmp0, 1);
3547  SDValue Lo = Tmp0.getValue(0);
3548  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3549  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3550  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3551}
3552
3553SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3554  MachineFunction &MF = DAG.getMachineFunction();
3555  MachineFrameInfo *MFI = MF.getFrameInfo();
3556  MFI->setReturnAddressIsTaken(true);
3557
3558  EVT VT = Op.getValueType();
3559  SDLoc dl(Op);
3560  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3561  if (Depth) {
3562    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3563    SDValue Offset = DAG.getConstant(4, MVT::i32);
3564    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3565                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3566                       MachinePointerInfo(), false, false, false, 0);
3567  }
3568
3569  // Return LR, which contains the return address. Mark it an implicit live-in.
3570  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3571  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3572}
3573
3574SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3575  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3576  MFI->setFrameAddressIsTaken(true);
3577
3578  EVT VT = Op.getValueType();
3579  SDLoc dl(Op);  // FIXME probably not meaningful
3580  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3581  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3582    ? ARM::R7 : ARM::R11;
3583  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3584  while (Depth--)
3585    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3586                            MachinePointerInfo(),
3587                            false, false, false, 0);
3588  return FrameAddr;
3589}
3590
3591/// Custom Expand long vector extensions, where size(DestVec) > 2*size(SrcVec),
3592/// and size(DestVec) > 128-bits.
3593/// This is achieved by doing the one extension from the SrcVec, splitting the
3594/// result, extending these parts, and then concatenating these into the
3595/// destination.
3596static SDValue ExpandVectorExtension(SDNode *N, SelectionDAG &DAG) {
3597  SDValue Op = N->getOperand(0);
3598  EVT SrcVT = Op.getValueType();
3599  EVT DestVT = N->getValueType(0);
3600
3601  assert(DestVT.getSizeInBits() > 128 &&
3602         "Custom sext/zext expansion needs >128-bit vector.");
3603  // If this is a normal length extension, use the default expansion.
3604  if (SrcVT.getSizeInBits()*4 != DestVT.getSizeInBits() &&
3605      SrcVT.getSizeInBits()*8 != DestVT.getSizeInBits())
3606    return SDValue();
3607
3608  SDLoc dl(N);
3609  unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
3610  unsigned DestEltSize = DestVT.getVectorElementType().getSizeInBits();
3611  unsigned NumElts = SrcVT.getVectorNumElements();
3612  LLVMContext &Ctx = *DAG.getContext();
3613  SDValue Mid, SplitLo, SplitHi, ExtLo, ExtHi;
3614
3615  EVT MidVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2),
3616                               NumElts);
3617  EVT SplitVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2),
3618                                 NumElts/2);
3619  EVT ExtVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, DestEltSize),
3620                               NumElts/2);
3621
3622  Mid = DAG.getNode(N->getOpcode(), dl, MidVT, Op);
3623  SplitLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid,
3624                        DAG.getIntPtrConstant(0));
3625  SplitHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid,
3626                        DAG.getIntPtrConstant(NumElts/2));
3627  ExtLo = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitLo);
3628  ExtHi = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitHi);
3629  return DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, ExtLo, ExtHi);
3630}
3631
3632/// ExpandBITCAST - If the target supports VFP, this function is called to
3633/// expand a bit convert where either the source or destination type is i64 to
3634/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3635/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3636/// vectors), since the legalizer won't know what to do with that.
3637static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3638  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3639  SDLoc dl(N);
3640  SDValue Op = N->getOperand(0);
3641
3642  // This function is only supposed to be called for i64 types, either as the
3643  // source or destination of the bit convert.
3644  EVT SrcVT = Op.getValueType();
3645  EVT DstVT = N->getValueType(0);
3646  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3647         "ExpandBITCAST called for non-i64 type");
3648
3649  // Turn i64->f64 into VMOVDRR.
3650  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3651    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3652                             DAG.getConstant(0, MVT::i32));
3653    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3654                             DAG.getConstant(1, MVT::i32));
3655    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3656                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3657  }
3658
3659  // Turn f64->i64 into VMOVRRD.
3660  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3661    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3662                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3663    // Merge the pieces into a single i64 value.
3664    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3665  }
3666
3667  return SDValue();
3668}
3669
3670/// getZeroVector - Returns a vector of specified type with all zero elements.
3671/// Zero vectors are used to represent vector negation and in those cases
3672/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3673/// not support i64 elements, so sometimes the zero vectors will need to be
3674/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3675/// zero vector.
3676static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
3677  assert(VT.isVector() && "Expected a vector type");
3678  // The canonical modified immediate encoding of a zero vector is....0!
3679  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3680  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3681  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3682  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3683}
3684
3685/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3686/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3687SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3688                                                SelectionDAG &DAG) const {
3689  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3690  EVT VT = Op.getValueType();
3691  unsigned VTBits = VT.getSizeInBits();
3692  SDLoc dl(Op);
3693  SDValue ShOpLo = Op.getOperand(0);
3694  SDValue ShOpHi = Op.getOperand(1);
3695  SDValue ShAmt  = Op.getOperand(2);
3696  SDValue ARMcc;
3697  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3698
3699  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3700
3701  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3702                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3703  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3704  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3705                                   DAG.getConstant(VTBits, MVT::i32));
3706  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3707  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3708  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3709
3710  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3711  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3712                          ARMcc, DAG, dl);
3713  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3714  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3715                           CCR, Cmp);
3716
3717  SDValue Ops[2] = { Lo, Hi };
3718  return DAG.getMergeValues(Ops, 2, dl);
3719}
3720
3721/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3722/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3723SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3724                                               SelectionDAG &DAG) const {
3725  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3726  EVT VT = Op.getValueType();
3727  unsigned VTBits = VT.getSizeInBits();
3728  SDLoc dl(Op);
3729  SDValue ShOpLo = Op.getOperand(0);
3730  SDValue ShOpHi = Op.getOperand(1);
3731  SDValue ShAmt  = Op.getOperand(2);
3732  SDValue ARMcc;
3733
3734  assert(Op.getOpcode() == ISD::SHL_PARTS);
3735  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3736                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3737  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3738  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3739                                   DAG.getConstant(VTBits, MVT::i32));
3740  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3741  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3742
3743  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3744  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3745  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3746                          ARMcc, DAG, dl);
3747  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3748  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3749                           CCR, Cmp);
3750
3751  SDValue Ops[2] = { Lo, Hi };
3752  return DAG.getMergeValues(Ops, 2, dl);
3753}
3754
3755SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3756                                            SelectionDAG &DAG) const {
3757  // The rounding mode is in bits 23:22 of the FPSCR.
3758  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3759  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3760  // so that the shift + and get folded into a bitfield extract.
3761  SDLoc dl(Op);
3762  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3763                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3764                                              MVT::i32));
3765  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3766                                  DAG.getConstant(1U << 22, MVT::i32));
3767  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3768                              DAG.getConstant(22, MVT::i32));
3769  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3770                     DAG.getConstant(3, MVT::i32));
3771}
3772
3773static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3774                         const ARMSubtarget *ST) {
3775  EVT VT = N->getValueType(0);
3776  SDLoc dl(N);
3777
3778  if (!ST->hasV6T2Ops())
3779    return SDValue();
3780
3781  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3782  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3783}
3784
3785/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
3786/// for each 16-bit element from operand, repeated.  The basic idea is to
3787/// leverage vcnt to get the 8-bit counts, gather and add the results.
3788///
3789/// Trace for v4i16:
3790/// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
3791/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
3792/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
3793/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
3794///            [b0 b1 b2 b3 b4 b5 b6 b7]
3795///           +[b1 b0 b3 b2 b5 b4 b7 b6]
3796/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
3797/// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
3798static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
3799  EVT VT = N->getValueType(0);
3800  SDLoc DL(N);
3801
3802  EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
3803  SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
3804  SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
3805  SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
3806  SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
3807  return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
3808}
3809
3810/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
3811/// bit-count for each 16-bit element from the operand.  We need slightly
3812/// different sequencing for v4i16 and v8i16 to stay within NEON's available
3813/// 64/128-bit registers.
3814///
3815/// Trace for v4i16:
3816/// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
3817/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
3818/// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
3819/// v4i16:Extracted = [k0    k1    k2    k3    ]
3820static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
3821  EVT VT = N->getValueType(0);
3822  SDLoc DL(N);
3823
3824  SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
3825  if (VT.is64BitVector()) {
3826    SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
3827    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
3828                       DAG.getIntPtrConstant(0));
3829  } else {
3830    SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
3831                                    BitCounts, DAG.getIntPtrConstant(0));
3832    return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
3833  }
3834}
3835
3836/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
3837/// bit-count for each 32-bit element from the operand.  The idea here is
3838/// to split the vector into 16-bit elements, leverage the 16-bit count
3839/// routine, and then combine the results.
3840///
3841/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
3842/// input    = [v0    v1    ] (vi: 32-bit elements)
3843/// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
3844/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
3845/// vrev: N0 = [k1 k0 k3 k2 ]
3846///            [k0 k1 k2 k3 ]
3847///       N1 =+[k1 k0 k3 k2 ]
3848///            [k0 k2 k1 k3 ]
3849///       N2 =+[k1 k3 k0 k2 ]
3850///            [k0    k2    k1    k3    ]
3851/// Extended =+[k1    k3    k0    k2    ]
3852///            [k0    k2    ]
3853/// Extracted=+[k1    k3    ]
3854///
3855static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
3856  EVT VT = N->getValueType(0);
3857  SDLoc DL(N);
3858
3859  EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
3860
3861  SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
3862  SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
3863  SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
3864  SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
3865  SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
3866
3867  if (VT.is64BitVector()) {
3868    SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
3869    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
3870                       DAG.getIntPtrConstant(0));
3871  } else {
3872    SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
3873                                    DAG.getIntPtrConstant(0));
3874    return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
3875  }
3876}
3877
3878static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
3879                          const ARMSubtarget *ST) {
3880  EVT VT = N->getValueType(0);
3881
3882  assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
3883  assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
3884          VT == MVT::v4i16 || VT == MVT::v8i16) &&
3885         "Unexpected type for custom ctpop lowering");
3886
3887  if (VT.getVectorElementType() == MVT::i32)
3888    return lowerCTPOP32BitElements(N, DAG);
3889  else
3890    return lowerCTPOP16BitElements(N, DAG);
3891}
3892
3893static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3894                          const ARMSubtarget *ST) {
3895  EVT VT = N->getValueType(0);
3896  SDLoc dl(N);
3897
3898  if (!VT.isVector())
3899    return SDValue();
3900
3901  // Lower vector shifts on NEON to use VSHL.
3902  assert(ST->hasNEON() && "unexpected vector shift");
3903
3904  // Left shifts translate directly to the vshiftu intrinsic.
3905  if (N->getOpcode() == ISD::SHL)
3906    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3907                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3908                       N->getOperand(0), N->getOperand(1));
3909
3910  assert((N->getOpcode() == ISD::SRA ||
3911          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3912
3913  // NEON uses the same intrinsics for both left and right shifts.  For
3914  // right shifts, the shift amounts are negative, so negate the vector of
3915  // shift amounts.
3916  EVT ShiftVT = N->getOperand(1).getValueType();
3917  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3918                                     getZeroVector(ShiftVT, DAG, dl),
3919                                     N->getOperand(1));
3920  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3921                             Intrinsic::arm_neon_vshifts :
3922                             Intrinsic::arm_neon_vshiftu);
3923  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3924                     DAG.getConstant(vshiftInt, MVT::i32),
3925                     N->getOperand(0), NegatedCount);
3926}
3927
3928static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3929                                const ARMSubtarget *ST) {
3930  EVT VT = N->getValueType(0);
3931  SDLoc dl(N);
3932
3933  // We can get here for a node like i32 = ISD::SHL i32, i64
3934  if (VT != MVT::i64)
3935    return SDValue();
3936
3937  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3938         "Unknown shift to lower!");
3939
3940  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3941  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3942      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3943    return SDValue();
3944
3945  // If we are in thumb mode, we don't have RRX.
3946  if (ST->isThumb1Only()) return SDValue();
3947
3948  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3949  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3950                           DAG.getConstant(0, MVT::i32));
3951  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3952                           DAG.getConstant(1, MVT::i32));
3953
3954  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3955  // captures the result into a carry flag.
3956  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3957  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3958
3959  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3960  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3961
3962  // Merge the pieces into a single i64 value.
3963 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3964}
3965
3966static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3967  SDValue TmpOp0, TmpOp1;
3968  bool Invert = false;
3969  bool Swap = false;
3970  unsigned Opc = 0;
3971
3972  SDValue Op0 = Op.getOperand(0);
3973  SDValue Op1 = Op.getOperand(1);
3974  SDValue CC = Op.getOperand(2);
3975  EVT VT = Op.getValueType();
3976  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3977  SDLoc dl(Op);
3978
3979  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3980    switch (SetCCOpcode) {
3981    default: llvm_unreachable("Illegal FP comparison");
3982    case ISD::SETUNE:
3983    case ISD::SETNE:  Invert = true; // Fallthrough
3984    case ISD::SETOEQ:
3985    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3986    case ISD::SETOLT:
3987    case ISD::SETLT: Swap = true; // Fallthrough
3988    case ISD::SETOGT:
3989    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3990    case ISD::SETOLE:
3991    case ISD::SETLE:  Swap = true; // Fallthrough
3992    case ISD::SETOGE:
3993    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3994    case ISD::SETUGE: Swap = true; // Fallthrough
3995    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3996    case ISD::SETUGT: Swap = true; // Fallthrough
3997    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3998    case ISD::SETUEQ: Invert = true; // Fallthrough
3999    case ISD::SETONE:
4000      // Expand this to (OLT | OGT).
4001      TmpOp0 = Op0;
4002      TmpOp1 = Op1;
4003      Opc = ISD::OR;
4004      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
4005      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
4006      break;
4007    case ISD::SETUO: Invert = true; // Fallthrough
4008    case ISD::SETO:
4009      // Expand this to (OLT | OGE).
4010      TmpOp0 = Op0;
4011      TmpOp1 = Op1;
4012      Opc = ISD::OR;
4013      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
4014      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
4015      break;
4016    }
4017  } else {
4018    // Integer comparisons.
4019    switch (SetCCOpcode) {
4020    default: llvm_unreachable("Illegal integer comparison");
4021    case ISD::SETNE:  Invert = true;
4022    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4023    case ISD::SETLT:  Swap = true;
4024    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4025    case ISD::SETLE:  Swap = true;
4026    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
4027    case ISD::SETULT: Swap = true;
4028    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
4029    case ISD::SETULE: Swap = true;
4030    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
4031    }
4032
4033    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
4034    if (Opc == ARMISD::VCEQ) {
4035
4036      SDValue AndOp;
4037      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4038        AndOp = Op0;
4039      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
4040        AndOp = Op1;
4041
4042      // Ignore bitconvert.
4043      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
4044        AndOp = AndOp.getOperand(0);
4045
4046      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
4047        Opc = ARMISD::VTST;
4048        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
4049        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
4050        Invert = !Invert;
4051      }
4052    }
4053  }
4054
4055  if (Swap)
4056    std::swap(Op0, Op1);
4057
4058  // If one of the operands is a constant vector zero, attempt to fold the
4059  // comparison to a specialized compare-against-zero form.
4060  SDValue SingleOp;
4061  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4062    SingleOp = Op0;
4063  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
4064    if (Opc == ARMISD::VCGE)
4065      Opc = ARMISD::VCLEZ;
4066    else if (Opc == ARMISD::VCGT)
4067      Opc = ARMISD::VCLTZ;
4068    SingleOp = Op1;
4069  }
4070
4071  SDValue Result;
4072  if (SingleOp.getNode()) {
4073    switch (Opc) {
4074    case ARMISD::VCEQ:
4075      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
4076    case ARMISD::VCGE:
4077      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
4078    case ARMISD::VCLEZ:
4079      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
4080    case ARMISD::VCGT:
4081      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
4082    case ARMISD::VCLTZ:
4083      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
4084    default:
4085      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
4086    }
4087  } else {
4088     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
4089  }
4090
4091  if (Invert)
4092    Result = DAG.getNOT(dl, Result, VT);
4093
4094  return Result;
4095}
4096
4097/// isNEONModifiedImm - Check if the specified splat value corresponds to a
4098/// valid vector constant for a NEON instruction with a "modified immediate"
4099/// operand (e.g., VMOV).  If so, return the encoded value.
4100static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
4101                                 unsigned SplatBitSize, SelectionDAG &DAG,
4102                                 EVT &VT, bool is128Bits, NEONModImmType type) {
4103  unsigned OpCmode, Imm;
4104
4105  // SplatBitSize is set to the smallest size that splats the vector, so a
4106  // zero vector will always have SplatBitSize == 8.  However, NEON modified
4107  // immediate instructions others than VMOV do not support the 8-bit encoding
4108  // of a zero vector, and the default encoding of zero is supposed to be the
4109  // 32-bit version.
4110  if (SplatBits == 0)
4111    SplatBitSize = 32;
4112
4113  switch (SplatBitSize) {
4114  case 8:
4115    if (type != VMOVModImm)
4116      return SDValue();
4117    // Any 1-byte value is OK.  Op=0, Cmode=1110.
4118    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
4119    OpCmode = 0xe;
4120    Imm = SplatBits;
4121    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
4122    break;
4123
4124  case 16:
4125    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
4126    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
4127    if ((SplatBits & ~0xff) == 0) {
4128      // Value = 0x00nn: Op=x, Cmode=100x.
4129      OpCmode = 0x8;
4130      Imm = SplatBits;
4131      break;
4132    }
4133    if ((SplatBits & ~0xff00) == 0) {
4134      // Value = 0xnn00: Op=x, Cmode=101x.
4135      OpCmode = 0xa;
4136      Imm = SplatBits >> 8;
4137      break;
4138    }
4139    return SDValue();
4140
4141  case 32:
4142    // NEON's 32-bit VMOV supports splat values where:
4143    // * only one byte is nonzero, or
4144    // * the least significant byte is 0xff and the second byte is nonzero, or
4145    // * the least significant 2 bytes are 0xff and the third is nonzero.
4146    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
4147    if ((SplatBits & ~0xff) == 0) {
4148      // Value = 0x000000nn: Op=x, Cmode=000x.
4149      OpCmode = 0;
4150      Imm = SplatBits;
4151      break;
4152    }
4153    if ((SplatBits & ~0xff00) == 0) {
4154      // Value = 0x0000nn00: Op=x, Cmode=001x.
4155      OpCmode = 0x2;
4156      Imm = SplatBits >> 8;
4157      break;
4158    }
4159    if ((SplatBits & ~0xff0000) == 0) {
4160      // Value = 0x00nn0000: Op=x, Cmode=010x.
4161      OpCmode = 0x4;
4162      Imm = SplatBits >> 16;
4163      break;
4164    }
4165    if ((SplatBits & ~0xff000000) == 0) {
4166      // Value = 0xnn000000: Op=x, Cmode=011x.
4167      OpCmode = 0x6;
4168      Imm = SplatBits >> 24;
4169      break;
4170    }
4171
4172    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
4173    if (type == OtherModImm) return SDValue();
4174
4175    if ((SplatBits & ~0xffff) == 0 &&
4176        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
4177      // Value = 0x0000nnff: Op=x, Cmode=1100.
4178      OpCmode = 0xc;
4179      Imm = SplatBits >> 8;
4180      SplatBits |= 0xff;
4181      break;
4182    }
4183
4184    if ((SplatBits & ~0xffffff) == 0 &&
4185        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
4186      // Value = 0x00nnffff: Op=x, Cmode=1101.
4187      OpCmode = 0xd;
4188      Imm = SplatBits >> 16;
4189      SplatBits |= 0xffff;
4190      break;
4191    }
4192
4193    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
4194    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
4195    // VMOV.I32.  A (very) minor optimization would be to replicate the value
4196    // and fall through here to test for a valid 64-bit splat.  But, then the
4197    // caller would also need to check and handle the change in size.
4198    return SDValue();
4199
4200  case 64: {
4201    if (type != VMOVModImm)
4202      return SDValue();
4203    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
4204    uint64_t BitMask = 0xff;
4205    uint64_t Val = 0;
4206    unsigned ImmMask = 1;
4207    Imm = 0;
4208    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
4209      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
4210        Val |= BitMask;
4211        Imm |= ImmMask;
4212      } else if ((SplatBits & BitMask) != 0) {
4213        return SDValue();
4214      }
4215      BitMask <<= 8;
4216      ImmMask <<= 1;
4217    }
4218    // Op=1, Cmode=1110.
4219    OpCmode = 0x1e;
4220    SplatBits = Val;
4221    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
4222    break;
4223  }
4224
4225  default:
4226    llvm_unreachable("unexpected size for isNEONModifiedImm");
4227  }
4228
4229  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
4230  return DAG.getTargetConstant(EncodedVal, MVT::i32);
4231}
4232
4233SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
4234                                           const ARMSubtarget *ST) const {
4235  if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
4236    return SDValue();
4237
4238  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
4239  assert(Op.getValueType() == MVT::f32 &&
4240         "ConstantFP custom lowering should only occur for f32.");
4241
4242  // Try splatting with a VMOV.f32...
4243  APFloat FPVal = CFP->getValueAPF();
4244  int ImmVal = ARM_AM::getFP32Imm(FPVal);
4245  if (ImmVal != -1) {
4246    SDLoc DL(Op);
4247    SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
4248    SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
4249                                      NewVal);
4250    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
4251                       DAG.getConstant(0, MVT::i32));
4252  }
4253
4254  // If that fails, try a VMOV.i32
4255  EVT VMovVT;
4256  unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
4257  SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
4258                                     VMOVModImm);
4259  if (NewVal != SDValue()) {
4260    SDLoc DL(Op);
4261    SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
4262                                      NewVal);
4263    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4264                                       VecConstant);
4265    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4266                       DAG.getConstant(0, MVT::i32));
4267  }
4268
4269  // Finally, try a VMVN.i32
4270  NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
4271                             VMVNModImm);
4272  if (NewVal != SDValue()) {
4273    SDLoc DL(Op);
4274    SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
4275    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4276                                       VecConstant);
4277    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4278                       DAG.getConstant(0, MVT::i32));
4279  }
4280
4281  return SDValue();
4282}
4283
4284// check if an VEXT instruction can handle the shuffle mask when the
4285// vector sources of the shuffle are the same.
4286static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4287  unsigned NumElts = VT.getVectorNumElements();
4288
4289  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4290  if (M[0] < 0)
4291    return false;
4292
4293  Imm = M[0];
4294
4295  // If this is a VEXT shuffle, the immediate value is the index of the first
4296  // element.  The other shuffle indices must be the successive elements after
4297  // the first one.
4298  unsigned ExpectedElt = Imm;
4299  for (unsigned i = 1; i < NumElts; ++i) {
4300    // Increment the expected index.  If it wraps around, just follow it
4301    // back to index zero and keep going.
4302    ++ExpectedElt;
4303    if (ExpectedElt == NumElts)
4304      ExpectedElt = 0;
4305
4306    if (M[i] < 0) continue; // ignore UNDEF indices
4307    if (ExpectedElt != static_cast<unsigned>(M[i]))
4308      return false;
4309  }
4310
4311  return true;
4312}
4313
4314
4315static bool isVEXTMask(ArrayRef<int> M, EVT VT,
4316                       bool &ReverseVEXT, unsigned &Imm) {
4317  unsigned NumElts = VT.getVectorNumElements();
4318  ReverseVEXT = false;
4319
4320  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4321  if (M[0] < 0)
4322    return false;
4323
4324  Imm = M[0];
4325
4326  // If this is a VEXT shuffle, the immediate value is the index of the first
4327  // element.  The other shuffle indices must be the successive elements after
4328  // the first one.
4329  unsigned ExpectedElt = Imm;
4330  for (unsigned i = 1; i < NumElts; ++i) {
4331    // Increment the expected index.  If it wraps around, it may still be
4332    // a VEXT but the source vectors must be swapped.
4333    ExpectedElt += 1;
4334    if (ExpectedElt == NumElts * 2) {
4335      ExpectedElt = 0;
4336      ReverseVEXT = true;
4337    }
4338
4339    if (M[i] < 0) continue; // ignore UNDEF indices
4340    if (ExpectedElt != static_cast<unsigned>(M[i]))
4341      return false;
4342  }
4343
4344  // Adjust the index value if the source operands will be swapped.
4345  if (ReverseVEXT)
4346    Imm -= NumElts;
4347
4348  return true;
4349}
4350
4351/// isVREVMask - Check if a vector shuffle corresponds to a VREV
4352/// instruction with the specified blocksize.  (The order of the elements
4353/// within each block of the vector is reversed.)
4354static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4355  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
4356         "Only possible block sizes for VREV are: 16, 32, 64");
4357
4358  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4359  if (EltSz == 64)
4360    return false;
4361
4362  unsigned NumElts = VT.getVectorNumElements();
4363  unsigned BlockElts = M[0] + 1;
4364  // If the first shuffle index is UNDEF, be optimistic.
4365  if (M[0] < 0)
4366    BlockElts = BlockSize / EltSz;
4367
4368  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4369    return false;
4370
4371  for (unsigned i = 0; i < NumElts; ++i) {
4372    if (M[i] < 0) continue; // ignore UNDEF indices
4373    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
4374      return false;
4375  }
4376
4377  return true;
4378}
4379
4380static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
4381  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
4382  // range, then 0 is placed into the resulting vector. So pretty much any mask
4383  // of 8 elements can work here.
4384  return VT == MVT::v8i8 && M.size() == 8;
4385}
4386
4387static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4388  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4389  if (EltSz == 64)
4390    return false;
4391
4392  unsigned NumElts = VT.getVectorNumElements();
4393  WhichResult = (M[0] == 0 ? 0 : 1);
4394  for (unsigned i = 0; i < NumElts; i += 2) {
4395    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4396        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
4397      return false;
4398  }
4399  return true;
4400}
4401
4402/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
4403/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4404/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4405static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4406  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4407  if (EltSz == 64)
4408    return false;
4409
4410  unsigned NumElts = VT.getVectorNumElements();
4411  WhichResult = (M[0] == 0 ? 0 : 1);
4412  for (unsigned i = 0; i < NumElts; i += 2) {
4413    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4414        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
4415      return false;
4416  }
4417  return true;
4418}
4419
4420static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4421  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4422  if (EltSz == 64)
4423    return false;
4424
4425  unsigned NumElts = VT.getVectorNumElements();
4426  WhichResult = (M[0] == 0 ? 0 : 1);
4427  for (unsigned i = 0; i != NumElts; ++i) {
4428    if (M[i] < 0) continue; // ignore UNDEF indices
4429    if ((unsigned) M[i] != 2 * i + WhichResult)
4430      return false;
4431  }
4432
4433  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4434  if (VT.is64BitVector() && EltSz == 32)
4435    return false;
4436
4437  return true;
4438}
4439
4440/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4441/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4442/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4443static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4444  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4445  if (EltSz == 64)
4446    return false;
4447
4448  unsigned Half = VT.getVectorNumElements() / 2;
4449  WhichResult = (M[0] == 0 ? 0 : 1);
4450  for (unsigned j = 0; j != 2; ++j) {
4451    unsigned Idx = WhichResult;
4452    for (unsigned i = 0; i != Half; ++i) {
4453      int MIdx = M[i + j * Half];
4454      if (MIdx >= 0 && (unsigned) MIdx != Idx)
4455        return false;
4456      Idx += 2;
4457    }
4458  }
4459
4460  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4461  if (VT.is64BitVector() && EltSz == 32)
4462    return false;
4463
4464  return true;
4465}
4466
4467static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4468  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4469  if (EltSz == 64)
4470    return false;
4471
4472  unsigned NumElts = VT.getVectorNumElements();
4473  WhichResult = (M[0] == 0 ? 0 : 1);
4474  unsigned Idx = WhichResult * NumElts / 2;
4475  for (unsigned i = 0; i != NumElts; i += 2) {
4476    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4477        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4478      return false;
4479    Idx += 1;
4480  }
4481
4482  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4483  if (VT.is64BitVector() && EltSz == 32)
4484    return false;
4485
4486  return true;
4487}
4488
4489/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4490/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4491/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4492static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4493  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4494  if (EltSz == 64)
4495    return false;
4496
4497  unsigned NumElts = VT.getVectorNumElements();
4498  WhichResult = (M[0] == 0 ? 0 : 1);
4499  unsigned Idx = WhichResult * NumElts / 2;
4500  for (unsigned i = 0; i != NumElts; i += 2) {
4501    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4502        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4503      return false;
4504    Idx += 1;
4505  }
4506
4507  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4508  if (VT.is64BitVector() && EltSz == 32)
4509    return false;
4510
4511  return true;
4512}
4513
4514/// \return true if this is a reverse operation on an vector.
4515static bool isReverseMask(ArrayRef<int> M, EVT VT) {
4516  unsigned NumElts = VT.getVectorNumElements();
4517  // Make sure the mask has the right size.
4518  if (NumElts != M.size())
4519      return false;
4520
4521  // Look for <15, ..., 3, -1, 1, 0>.
4522  for (unsigned i = 0; i != NumElts; ++i)
4523    if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
4524      return false;
4525
4526  return true;
4527}
4528
4529// If N is an integer constant that can be moved into a register in one
4530// instruction, return an SDValue of such a constant (will become a MOV
4531// instruction).  Otherwise return null.
4532static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4533                                     const ARMSubtarget *ST, SDLoc dl) {
4534  uint64_t Val;
4535  if (!isa<ConstantSDNode>(N))
4536    return SDValue();
4537  Val = cast<ConstantSDNode>(N)->getZExtValue();
4538
4539  if (ST->isThumb1Only()) {
4540    if (Val <= 255 || ~Val <= 255)
4541      return DAG.getConstant(Val, MVT::i32);
4542  } else {
4543    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4544      return DAG.getConstant(Val, MVT::i32);
4545  }
4546  return SDValue();
4547}
4548
4549// If this is a case we can't handle, return null and let the default
4550// expansion code take care of it.
4551SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4552                                             const ARMSubtarget *ST) const {
4553  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4554  SDLoc dl(Op);
4555  EVT VT = Op.getValueType();
4556
4557  APInt SplatBits, SplatUndef;
4558  unsigned SplatBitSize;
4559  bool HasAnyUndefs;
4560  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4561    if (SplatBitSize <= 64) {
4562      // Check if an immediate VMOV works.
4563      EVT VmovVT;
4564      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4565                                      SplatUndef.getZExtValue(), SplatBitSize,
4566                                      DAG, VmovVT, VT.is128BitVector(),
4567                                      VMOVModImm);
4568      if (Val.getNode()) {
4569        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4570        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4571      }
4572
4573      // Try an immediate VMVN.
4574      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4575      Val = isNEONModifiedImm(NegatedImm,
4576                                      SplatUndef.getZExtValue(), SplatBitSize,
4577                                      DAG, VmovVT, VT.is128BitVector(),
4578                                      VMVNModImm);
4579      if (Val.getNode()) {
4580        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4581        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4582      }
4583
4584      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4585      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4586        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4587        if (ImmVal != -1) {
4588          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4589          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4590        }
4591      }
4592    }
4593  }
4594
4595  // Scan through the operands to see if only one value is used.
4596  //
4597  // As an optimisation, even if more than one value is used it may be more
4598  // profitable to splat with one value then change some lanes.
4599  //
4600  // Heuristically we decide to do this if the vector has a "dominant" value,
4601  // defined as splatted to more than half of the lanes.
4602  unsigned NumElts = VT.getVectorNumElements();
4603  bool isOnlyLowElement = true;
4604  bool usesOnlyOneValue = true;
4605  bool hasDominantValue = false;
4606  bool isConstant = true;
4607
4608  // Map of the number of times a particular SDValue appears in the
4609  // element list.
4610  DenseMap<SDValue, unsigned> ValueCounts;
4611  SDValue Value;
4612  for (unsigned i = 0; i < NumElts; ++i) {
4613    SDValue V = Op.getOperand(i);
4614    if (V.getOpcode() == ISD::UNDEF)
4615      continue;
4616    if (i > 0)
4617      isOnlyLowElement = false;
4618    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4619      isConstant = false;
4620
4621    ValueCounts.insert(std::make_pair(V, 0));
4622    unsigned &Count = ValueCounts[V];
4623
4624    // Is this value dominant? (takes up more than half of the lanes)
4625    if (++Count > (NumElts / 2)) {
4626      hasDominantValue = true;
4627      Value = V;
4628    }
4629  }
4630  if (ValueCounts.size() != 1)
4631    usesOnlyOneValue = false;
4632  if (!Value.getNode() && ValueCounts.size() > 0)
4633    Value = ValueCounts.begin()->first;
4634
4635  if (ValueCounts.size() == 0)
4636    return DAG.getUNDEF(VT);
4637
4638  if (isOnlyLowElement)
4639    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4640
4641  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4642
4643  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4644  // i32 and try again.
4645  if (hasDominantValue && EltSize <= 32) {
4646    if (!isConstant) {
4647      SDValue N;
4648
4649      // If we are VDUPing a value that comes directly from a vector, that will
4650      // cause an unnecessary move to and from a GPR, where instead we could
4651      // just use VDUPLANE. We can only do this if the lane being extracted
4652      // is at a constant index, as the VDUP from lane instructions only have
4653      // constant-index forms.
4654      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4655          isa<ConstantSDNode>(Value->getOperand(1))) {
4656        // We need to create a new undef vector to use for the VDUPLANE if the
4657        // size of the vector from which we get the value is different than the
4658        // size of the vector that we need to create. We will insert the element
4659        // such that the register coalescer will remove unnecessary copies.
4660        if (VT != Value->getOperand(0).getValueType()) {
4661          ConstantSDNode *constIndex;
4662          constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
4663          assert(constIndex && "The index is not a constant!");
4664          unsigned index = constIndex->getAPIntValue().getLimitedValue() %
4665                             VT.getVectorNumElements();
4666          N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4667                 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
4668                        Value, DAG.getConstant(index, MVT::i32)),
4669                           DAG.getConstant(index, MVT::i32));
4670        } else
4671          N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4672                        Value->getOperand(0), Value->getOperand(1));
4673      } else
4674        N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4675
4676      if (!usesOnlyOneValue) {
4677        // The dominant value was splatted as 'N', but we now have to insert
4678        // all differing elements.
4679        for (unsigned I = 0; I < NumElts; ++I) {
4680          if (Op.getOperand(I) == Value)
4681            continue;
4682          SmallVector<SDValue, 3> Ops;
4683          Ops.push_back(N);
4684          Ops.push_back(Op.getOperand(I));
4685          Ops.push_back(DAG.getConstant(I, MVT::i32));
4686          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
4687        }
4688      }
4689      return N;
4690    }
4691    if (VT.getVectorElementType().isFloatingPoint()) {
4692      SmallVector<SDValue, 8> Ops;
4693      for (unsigned i = 0; i < NumElts; ++i)
4694        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4695                                  Op.getOperand(i)));
4696      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4697      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4698      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4699      if (Val.getNode())
4700        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4701    }
4702    if (usesOnlyOneValue) {
4703      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4704      if (isConstant && Val.getNode())
4705        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4706    }
4707  }
4708
4709  // If all elements are constants and the case above didn't get hit, fall back
4710  // to the default expansion, which will generate a load from the constant
4711  // pool.
4712  if (isConstant)
4713    return SDValue();
4714
4715  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4716  if (NumElts >= 4) {
4717    SDValue shuffle = ReconstructShuffle(Op, DAG);
4718    if (shuffle != SDValue())
4719      return shuffle;
4720  }
4721
4722  // Vectors with 32- or 64-bit elements can be built by directly assigning
4723  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4724  // will be legalized.
4725  if (EltSize >= 32) {
4726    // Do the expansion with floating-point types, since that is what the VFP
4727    // registers are defined to use, and since i64 is not legal.
4728    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4729    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4730    SmallVector<SDValue, 8> Ops;
4731    for (unsigned i = 0; i < NumElts; ++i)
4732      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4733    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4734    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4735  }
4736
4737  return SDValue();
4738}
4739
4740// Gather data to see if the operation can be modelled as a
4741// shuffle in combination with VEXTs.
4742SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4743                                              SelectionDAG &DAG) const {
4744  SDLoc dl(Op);
4745  EVT VT = Op.getValueType();
4746  unsigned NumElts = VT.getVectorNumElements();
4747
4748  SmallVector<SDValue, 2> SourceVecs;
4749  SmallVector<unsigned, 2> MinElts;
4750  SmallVector<unsigned, 2> MaxElts;
4751
4752  for (unsigned i = 0; i < NumElts; ++i) {
4753    SDValue V = Op.getOperand(i);
4754    if (V.getOpcode() == ISD::UNDEF)
4755      continue;
4756    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4757      // A shuffle can only come from building a vector from various
4758      // elements of other vectors.
4759      return SDValue();
4760    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4761               VT.getVectorElementType()) {
4762      // This code doesn't know how to handle shuffles where the vector
4763      // element types do not match (this happens because type legalization
4764      // promotes the return type of EXTRACT_VECTOR_ELT).
4765      // FIXME: It might be appropriate to extend this code to handle
4766      // mismatched types.
4767      return SDValue();
4768    }
4769
4770    // Record this extraction against the appropriate vector if possible...
4771    SDValue SourceVec = V.getOperand(0);
4772    // If the element number isn't a constant, we can't effectively
4773    // analyze what's going on.
4774    if (!isa<ConstantSDNode>(V.getOperand(1)))
4775      return SDValue();
4776    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4777    bool FoundSource = false;
4778    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4779      if (SourceVecs[j] == SourceVec) {
4780        if (MinElts[j] > EltNo)
4781          MinElts[j] = EltNo;
4782        if (MaxElts[j] < EltNo)
4783          MaxElts[j] = EltNo;
4784        FoundSource = true;
4785        break;
4786      }
4787    }
4788
4789    // Or record a new source if not...
4790    if (!FoundSource) {
4791      SourceVecs.push_back(SourceVec);
4792      MinElts.push_back(EltNo);
4793      MaxElts.push_back(EltNo);
4794    }
4795  }
4796
4797  // Currently only do something sane when at most two source vectors
4798  // involved.
4799  if (SourceVecs.size() > 2)
4800    return SDValue();
4801
4802  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4803  int VEXTOffsets[2] = {0, 0};
4804
4805  // This loop extracts the usage patterns of the source vectors
4806  // and prepares appropriate SDValues for a shuffle if possible.
4807  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4808    if (SourceVecs[i].getValueType() == VT) {
4809      // No VEXT necessary
4810      ShuffleSrcs[i] = SourceVecs[i];
4811      VEXTOffsets[i] = 0;
4812      continue;
4813    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4814      // It probably isn't worth padding out a smaller vector just to
4815      // break it down again in a shuffle.
4816      return SDValue();
4817    }
4818
4819    // Since only 64-bit and 128-bit vectors are legal on ARM and
4820    // we've eliminated the other cases...
4821    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4822           "unexpected vector sizes in ReconstructShuffle");
4823
4824    if (MaxElts[i] - MinElts[i] >= NumElts) {
4825      // Span too large for a VEXT to cope
4826      return SDValue();
4827    }
4828
4829    if (MinElts[i] >= NumElts) {
4830      // The extraction can just take the second half
4831      VEXTOffsets[i] = NumElts;
4832      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4833                                   SourceVecs[i],
4834                                   DAG.getIntPtrConstant(NumElts));
4835    } else if (MaxElts[i] < NumElts) {
4836      // The extraction can just take the first half
4837      VEXTOffsets[i] = 0;
4838      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4839                                   SourceVecs[i],
4840                                   DAG.getIntPtrConstant(0));
4841    } else {
4842      // An actual VEXT is needed
4843      VEXTOffsets[i] = MinElts[i];
4844      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4845                                     SourceVecs[i],
4846                                     DAG.getIntPtrConstant(0));
4847      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4848                                     SourceVecs[i],
4849                                     DAG.getIntPtrConstant(NumElts));
4850      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4851                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4852    }
4853  }
4854
4855  SmallVector<int, 8> Mask;
4856
4857  for (unsigned i = 0; i < NumElts; ++i) {
4858    SDValue Entry = Op.getOperand(i);
4859    if (Entry.getOpcode() == ISD::UNDEF) {
4860      Mask.push_back(-1);
4861      continue;
4862    }
4863
4864    SDValue ExtractVec = Entry.getOperand(0);
4865    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4866                                          .getOperand(1))->getSExtValue();
4867    if (ExtractVec == SourceVecs[0]) {
4868      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4869    } else {
4870      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4871    }
4872  }
4873
4874  // Final check before we try to produce nonsense...
4875  if (isShuffleMaskLegal(Mask, VT))
4876    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4877                                &Mask[0]);
4878
4879  return SDValue();
4880}
4881
4882/// isShuffleMaskLegal - Targets can use this to indicate that they only
4883/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4884/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4885/// are assumed to be legal.
4886bool
4887ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4888                                      EVT VT) const {
4889  if (VT.getVectorNumElements() == 4 &&
4890      (VT.is128BitVector() || VT.is64BitVector())) {
4891    unsigned PFIndexes[4];
4892    for (unsigned i = 0; i != 4; ++i) {
4893      if (M[i] < 0)
4894        PFIndexes[i] = 8;
4895      else
4896        PFIndexes[i] = M[i];
4897    }
4898
4899    // Compute the index in the perfect shuffle table.
4900    unsigned PFTableIndex =
4901      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4902    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4903    unsigned Cost = (PFEntry >> 30);
4904
4905    if (Cost <= 4)
4906      return true;
4907  }
4908
4909  bool ReverseVEXT;
4910  unsigned Imm, WhichResult;
4911
4912  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4913  return (EltSize >= 32 ||
4914          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4915          isVREVMask(M, VT, 64) ||
4916          isVREVMask(M, VT, 32) ||
4917          isVREVMask(M, VT, 16) ||
4918          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4919          isVTBLMask(M, VT) ||
4920          isVTRNMask(M, VT, WhichResult) ||
4921          isVUZPMask(M, VT, WhichResult) ||
4922          isVZIPMask(M, VT, WhichResult) ||
4923          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4924          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4925          isVZIP_v_undef_Mask(M, VT, WhichResult) ||
4926          ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
4927}
4928
4929/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4930/// the specified operations to build the shuffle.
4931static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4932                                      SDValue RHS, SelectionDAG &DAG,
4933                                      SDLoc dl) {
4934  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4935  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4936  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4937
4938  enum {
4939    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4940    OP_VREV,
4941    OP_VDUP0,
4942    OP_VDUP1,
4943    OP_VDUP2,
4944    OP_VDUP3,
4945    OP_VEXT1,
4946    OP_VEXT2,
4947    OP_VEXT3,
4948    OP_VUZPL, // VUZP, left result
4949    OP_VUZPR, // VUZP, right result
4950    OP_VZIPL, // VZIP, left result
4951    OP_VZIPR, // VZIP, right result
4952    OP_VTRNL, // VTRN, left result
4953    OP_VTRNR  // VTRN, right result
4954  };
4955
4956  if (OpNum == OP_COPY) {
4957    if (LHSID == (1*9+2)*9+3) return LHS;
4958    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4959    return RHS;
4960  }
4961
4962  SDValue OpLHS, OpRHS;
4963  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4964  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4965  EVT VT = OpLHS.getValueType();
4966
4967  switch (OpNum) {
4968  default: llvm_unreachable("Unknown shuffle opcode!");
4969  case OP_VREV:
4970    // VREV divides the vector in half and swaps within the half.
4971    if (VT.getVectorElementType() == MVT::i32 ||
4972        VT.getVectorElementType() == MVT::f32)
4973      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4974    // vrev <4 x i16> -> VREV32
4975    if (VT.getVectorElementType() == MVT::i16)
4976      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4977    // vrev <4 x i8> -> VREV16
4978    assert(VT.getVectorElementType() == MVT::i8);
4979    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4980  case OP_VDUP0:
4981  case OP_VDUP1:
4982  case OP_VDUP2:
4983  case OP_VDUP3:
4984    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4985                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4986  case OP_VEXT1:
4987  case OP_VEXT2:
4988  case OP_VEXT3:
4989    return DAG.getNode(ARMISD::VEXT, dl, VT,
4990                       OpLHS, OpRHS,
4991                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4992  case OP_VUZPL:
4993  case OP_VUZPR:
4994    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4995                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4996  case OP_VZIPL:
4997  case OP_VZIPR:
4998    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4999                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
5000  case OP_VTRNL:
5001  case OP_VTRNR:
5002    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5003                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
5004  }
5005}
5006
5007static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
5008                                       ArrayRef<int> ShuffleMask,
5009                                       SelectionDAG &DAG) {
5010  // Check to see if we can use the VTBL instruction.
5011  SDValue V1 = Op.getOperand(0);
5012  SDValue V2 = Op.getOperand(1);
5013  SDLoc DL(Op);
5014
5015  SmallVector<SDValue, 8> VTBLMask;
5016  for (ArrayRef<int>::iterator
5017         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
5018    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
5019
5020  if (V2.getNode()->getOpcode() == ISD::UNDEF)
5021    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
5022                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
5023                                   &VTBLMask[0], 8));
5024
5025  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
5026                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
5027                                 &VTBLMask[0], 8));
5028}
5029
5030static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
5031                                                      SelectionDAG &DAG) {
5032  SDLoc DL(Op);
5033  SDValue OpLHS = Op.getOperand(0);
5034  EVT VT = OpLHS.getValueType();
5035
5036  assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
5037         "Expect an v8i16/v16i8 type");
5038  OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
5039  // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
5040  // extract the first 8 bytes into the top double word and the last 8 bytes
5041  // into the bottom double word. The v8i16 case is similar.
5042  unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
5043  return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
5044                     DAG.getConstant(ExtractNum, MVT::i32));
5045}
5046
5047static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
5048  SDValue V1 = Op.getOperand(0);
5049  SDValue V2 = Op.getOperand(1);
5050  SDLoc dl(Op);
5051  EVT VT = Op.getValueType();
5052  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5053
5054  // Convert shuffles that are directly supported on NEON to target-specific
5055  // DAG nodes, instead of keeping them as shuffles and matching them again
5056  // during code selection.  This is more efficient and avoids the possibility
5057  // of inconsistencies between legalization and selection.
5058  // FIXME: floating-point vectors should be canonicalized to integer vectors
5059  // of the same time so that they get CSEd properly.
5060  ArrayRef<int> ShuffleMask = SVN->getMask();
5061
5062  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5063  if (EltSize <= 32) {
5064    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
5065      int Lane = SVN->getSplatIndex();
5066      // If this is undef splat, generate it via "just" vdup, if possible.
5067      if (Lane == -1) Lane = 0;
5068
5069      // Test if V1 is a SCALAR_TO_VECTOR.
5070      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5071        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5072      }
5073      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
5074      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
5075      // reaches it).
5076      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
5077          !isa<ConstantSDNode>(V1.getOperand(0))) {
5078        bool IsScalarToVector = true;
5079        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
5080          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
5081            IsScalarToVector = false;
5082            break;
5083          }
5084        if (IsScalarToVector)
5085          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5086      }
5087      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
5088                         DAG.getConstant(Lane, MVT::i32));
5089    }
5090
5091    bool ReverseVEXT;
5092    unsigned Imm;
5093    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
5094      if (ReverseVEXT)
5095        std::swap(V1, V2);
5096      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
5097                         DAG.getConstant(Imm, MVT::i32));
5098    }
5099
5100    if (isVREVMask(ShuffleMask, VT, 64))
5101      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
5102    if (isVREVMask(ShuffleMask, VT, 32))
5103      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
5104    if (isVREVMask(ShuffleMask, VT, 16))
5105      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
5106
5107    if (V2->getOpcode() == ISD::UNDEF &&
5108        isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
5109      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
5110                         DAG.getConstant(Imm, MVT::i32));
5111    }
5112
5113    // Check for Neon shuffles that modify both input vectors in place.
5114    // If both results are used, i.e., if there are two shuffles with the same
5115    // source operands and with masks corresponding to both results of one of
5116    // these operations, DAG memoization will ensure that a single node is
5117    // used for both shuffles.
5118    unsigned WhichResult;
5119    if (isVTRNMask(ShuffleMask, VT, WhichResult))
5120      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5121                         V1, V2).getValue(WhichResult);
5122    if (isVUZPMask(ShuffleMask, VT, WhichResult))
5123      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5124                         V1, V2).getValue(WhichResult);
5125    if (isVZIPMask(ShuffleMask, VT, WhichResult))
5126      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5127                         V1, V2).getValue(WhichResult);
5128
5129    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
5130      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5131                         V1, V1).getValue(WhichResult);
5132    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5133      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5134                         V1, V1).getValue(WhichResult);
5135    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5136      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5137                         V1, V1).getValue(WhichResult);
5138  }
5139
5140  // If the shuffle is not directly supported and it has 4 elements, use
5141  // the PerfectShuffle-generated table to synthesize it from other shuffles.
5142  unsigned NumElts = VT.getVectorNumElements();
5143  if (NumElts == 4) {
5144    unsigned PFIndexes[4];
5145    for (unsigned i = 0; i != 4; ++i) {
5146      if (ShuffleMask[i] < 0)
5147        PFIndexes[i] = 8;
5148      else
5149        PFIndexes[i] = ShuffleMask[i];
5150    }
5151
5152    // Compute the index in the perfect shuffle table.
5153    unsigned PFTableIndex =
5154      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5155    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5156    unsigned Cost = (PFEntry >> 30);
5157
5158    if (Cost <= 4)
5159      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5160  }
5161
5162  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
5163  if (EltSize >= 32) {
5164    // Do the expansion with floating-point types, since that is what the VFP
5165    // registers are defined to use, and since i64 is not legal.
5166    EVT EltVT = EVT::getFloatingPointVT(EltSize);
5167    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5168    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
5169    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
5170    SmallVector<SDValue, 8> Ops;
5171    for (unsigned i = 0; i < NumElts; ++i) {
5172      if (ShuffleMask[i] < 0)
5173        Ops.push_back(DAG.getUNDEF(EltVT));
5174      else
5175        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
5176                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
5177                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
5178                                                  MVT::i32)));
5179    }
5180    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
5181    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5182  }
5183
5184  if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
5185    return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
5186
5187  if (VT == MVT::v8i8) {
5188    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
5189    if (NewOp.getNode())
5190      return NewOp;
5191  }
5192
5193  return SDValue();
5194}
5195
5196static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5197  // INSERT_VECTOR_ELT is legal only for immediate indexes.
5198  SDValue Lane = Op.getOperand(2);
5199  if (!isa<ConstantSDNode>(Lane))
5200    return SDValue();
5201
5202  return Op;
5203}
5204
5205static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5206  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
5207  SDValue Lane = Op.getOperand(1);
5208  if (!isa<ConstantSDNode>(Lane))
5209    return SDValue();
5210
5211  SDValue Vec = Op.getOperand(0);
5212  if (Op.getValueType() == MVT::i32 &&
5213      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
5214    SDLoc dl(Op);
5215    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
5216  }
5217
5218  return Op;
5219}
5220
5221static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5222  // The only time a CONCAT_VECTORS operation can have legal types is when
5223  // two 64-bit vectors are concatenated to a 128-bit vector.
5224  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
5225         "unexpected CONCAT_VECTORS");
5226  SDLoc dl(Op);
5227  SDValue Val = DAG.getUNDEF(MVT::v2f64);
5228  SDValue Op0 = Op.getOperand(0);
5229  SDValue Op1 = Op.getOperand(1);
5230  if (Op0.getOpcode() != ISD::UNDEF)
5231    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5232                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
5233                      DAG.getIntPtrConstant(0));
5234  if (Op1.getOpcode() != ISD::UNDEF)
5235    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5236                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
5237                      DAG.getIntPtrConstant(1));
5238  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
5239}
5240
5241/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
5242/// element has been zero/sign-extended, depending on the isSigned parameter,
5243/// from an integer type half its size.
5244static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
5245                                   bool isSigned) {
5246  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
5247  EVT VT = N->getValueType(0);
5248  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
5249    SDNode *BVN = N->getOperand(0).getNode();
5250    if (BVN->getValueType(0) != MVT::v4i32 ||
5251        BVN->getOpcode() != ISD::BUILD_VECTOR)
5252      return false;
5253    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5254    unsigned HiElt = 1 - LoElt;
5255    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
5256    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
5257    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
5258    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
5259    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
5260      return false;
5261    if (isSigned) {
5262      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
5263          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
5264        return true;
5265    } else {
5266      if (Hi0->isNullValue() && Hi1->isNullValue())
5267        return true;
5268    }
5269    return false;
5270  }
5271
5272  if (N->getOpcode() != ISD::BUILD_VECTOR)
5273    return false;
5274
5275  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5276    SDNode *Elt = N->getOperand(i).getNode();
5277    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
5278      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5279      unsigned HalfSize = EltSize / 2;
5280      if (isSigned) {
5281        if (!isIntN(HalfSize, C->getSExtValue()))
5282          return false;
5283      } else {
5284        if (!isUIntN(HalfSize, C->getZExtValue()))
5285          return false;
5286      }
5287      continue;
5288    }
5289    return false;
5290  }
5291
5292  return true;
5293}
5294
5295/// isSignExtended - Check if a node is a vector value that is sign-extended
5296/// or a constant BUILD_VECTOR with sign-extended elements.
5297static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
5298  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
5299    return true;
5300  if (isExtendedBUILD_VECTOR(N, DAG, true))
5301    return true;
5302  return false;
5303}
5304
5305/// isZeroExtended - Check if a node is a vector value that is zero-extended
5306/// or a constant BUILD_VECTOR with zero-extended elements.
5307static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
5308  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
5309    return true;
5310  if (isExtendedBUILD_VECTOR(N, DAG, false))
5311    return true;
5312  return false;
5313}
5314
5315static EVT getExtensionTo64Bits(const EVT &OrigVT) {
5316  if (OrigVT.getSizeInBits() >= 64)
5317    return OrigVT;
5318
5319  assert(OrigVT.isSimple() && "Expecting a simple value type");
5320
5321  MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
5322  switch (OrigSimpleTy) {
5323  default: llvm_unreachable("Unexpected Vector Type");
5324  case MVT::v2i8:
5325  case MVT::v2i16:
5326     return MVT::v2i32;
5327  case MVT::v4i8:
5328    return  MVT::v4i16;
5329  }
5330}
5331
5332/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
5333/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
5334/// We insert the required extension here to get the vector to fill a D register.
5335static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
5336                                            const EVT &OrigTy,
5337                                            const EVT &ExtTy,
5338                                            unsigned ExtOpcode) {
5339  // The vector originally had a size of OrigTy. It was then extended to ExtTy.
5340  // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
5341  // 64-bits we need to insert a new extension so that it will be 64-bits.
5342  assert(ExtTy.is128BitVector() && "Unexpected extension size");
5343  if (OrigTy.getSizeInBits() >= 64)
5344    return N;
5345
5346  // Must extend size to at least 64 bits to be used as an operand for VMULL.
5347  EVT NewVT = getExtensionTo64Bits(OrigTy);
5348
5349  return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
5350}
5351
5352/// SkipLoadExtensionForVMULL - return a load of the original vector size that
5353/// does not do any sign/zero extension. If the original vector is less
5354/// than 64 bits, an appropriate extension will be added after the load to
5355/// reach a total size of 64 bits. We have to add the extension separately
5356/// because ARM does not have a sign/zero extending load for vectors.
5357static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
5358  EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
5359
5360  // The load already has the right type.
5361  if (ExtendedTy == LD->getMemoryVT())
5362    return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
5363                LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
5364                LD->isNonTemporal(), LD->isInvariant(),
5365                LD->getAlignment());
5366
5367  // We need to create a zextload/sextload. We cannot just create a load
5368  // followed by a zext/zext node because LowerMUL is also run during normal
5369  // operation legalization where we can't create illegal types.
5370  return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
5371                        LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
5372                        LD->getMemoryVT(), LD->isVolatile(),
5373                        LD->isNonTemporal(), LD->getAlignment());
5374}
5375
5376/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
5377/// extending load, or BUILD_VECTOR with extended elements, return the
5378/// unextended value. The unextended vector should be 64 bits so that it can
5379/// be used as an operand to a VMULL instruction. If the original vector size
5380/// before extension is less than 64 bits we add a an extension to resize
5381/// the vector to 64 bits.
5382static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
5383  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
5384    return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
5385                                        N->getOperand(0)->getValueType(0),
5386                                        N->getValueType(0),
5387                                        N->getOpcode());
5388
5389  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
5390    return SkipLoadExtensionForVMULL(LD, DAG);
5391
5392  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
5393  // have been legalized as a BITCAST from v4i32.
5394  if (N->getOpcode() == ISD::BITCAST) {
5395    SDNode *BVN = N->getOperand(0).getNode();
5396    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
5397           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
5398    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5399    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
5400                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
5401  }
5402  // Construct a new BUILD_VECTOR with elements truncated to half the size.
5403  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
5404  EVT VT = N->getValueType(0);
5405  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
5406  unsigned NumElts = VT.getVectorNumElements();
5407  MVT TruncVT = MVT::getIntegerVT(EltSize);
5408  SmallVector<SDValue, 8> Ops;
5409  for (unsigned i = 0; i != NumElts; ++i) {
5410    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
5411    const APInt &CInt = C->getAPIntValue();
5412    // Element types smaller than 32 bits are not legal, so use i32 elements.
5413    // The values are implicitly truncated so sext vs. zext doesn't matter.
5414    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
5415  }
5416  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
5417                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
5418}
5419
5420static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
5421  unsigned Opcode = N->getOpcode();
5422  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5423    SDNode *N0 = N->getOperand(0).getNode();
5424    SDNode *N1 = N->getOperand(1).getNode();
5425    return N0->hasOneUse() && N1->hasOneUse() &&
5426      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
5427  }
5428  return false;
5429}
5430
5431static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
5432  unsigned Opcode = N->getOpcode();
5433  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5434    SDNode *N0 = N->getOperand(0).getNode();
5435    SDNode *N1 = N->getOperand(1).getNode();
5436    return N0->hasOneUse() && N1->hasOneUse() &&
5437      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
5438  }
5439  return false;
5440}
5441
5442static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
5443  // Multiplications are only custom-lowered for 128-bit vectors so that
5444  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
5445  EVT VT = Op.getValueType();
5446  assert(VT.is128BitVector() && VT.isInteger() &&
5447         "unexpected type for custom-lowering ISD::MUL");
5448  SDNode *N0 = Op.getOperand(0).getNode();
5449  SDNode *N1 = Op.getOperand(1).getNode();
5450  unsigned NewOpc = 0;
5451  bool isMLA = false;
5452  bool isN0SExt = isSignExtended(N0, DAG);
5453  bool isN1SExt = isSignExtended(N1, DAG);
5454  if (isN0SExt && isN1SExt)
5455    NewOpc = ARMISD::VMULLs;
5456  else {
5457    bool isN0ZExt = isZeroExtended(N0, DAG);
5458    bool isN1ZExt = isZeroExtended(N1, DAG);
5459    if (isN0ZExt && isN1ZExt)
5460      NewOpc = ARMISD::VMULLu;
5461    else if (isN1SExt || isN1ZExt) {
5462      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
5463      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
5464      if (isN1SExt && isAddSubSExt(N0, DAG)) {
5465        NewOpc = ARMISD::VMULLs;
5466        isMLA = true;
5467      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
5468        NewOpc = ARMISD::VMULLu;
5469        isMLA = true;
5470      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
5471        std::swap(N0, N1);
5472        NewOpc = ARMISD::VMULLu;
5473        isMLA = true;
5474      }
5475    }
5476
5477    if (!NewOpc) {
5478      if (VT == MVT::v2i64)
5479        // Fall through to expand this.  It is not legal.
5480        return SDValue();
5481      else
5482        // Other vector multiplications are legal.
5483        return Op;
5484    }
5485  }
5486
5487  // Legalize to a VMULL instruction.
5488  SDLoc DL(Op);
5489  SDValue Op0;
5490  SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
5491  if (!isMLA) {
5492    Op0 = SkipExtensionForVMULL(N0, DAG);
5493    assert(Op0.getValueType().is64BitVector() &&
5494           Op1.getValueType().is64BitVector() &&
5495           "unexpected types for extended operands to VMULL");
5496    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
5497  }
5498
5499  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
5500  // isel lowering to take advantage of no-stall back to back vmul + vmla.
5501  //   vmull q0, d4, d6
5502  //   vmlal q0, d5, d6
5503  // is faster than
5504  //   vaddl q0, d4, d5
5505  //   vmovl q1, d6
5506  //   vmul  q0, q0, q1
5507  SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
5508  SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
5509  EVT Op1VT = Op1.getValueType();
5510  return DAG.getNode(N0->getOpcode(), DL, VT,
5511                     DAG.getNode(NewOpc, DL, VT,
5512                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
5513                     DAG.getNode(NewOpc, DL, VT,
5514                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
5515}
5516
5517static SDValue
5518LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
5519  // Convert to float
5520  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
5521  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
5522  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
5523  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
5524  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
5525  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
5526  // Get reciprocal estimate.
5527  // float4 recip = vrecpeq_f32(yf);
5528  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5529                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
5530  // Because char has a smaller range than uchar, we can actually get away
5531  // without any newton steps.  This requires that we use a weird bias
5532  // of 0xb000, however (again, this has been exhaustively tested).
5533  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
5534  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
5535  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
5536  Y = DAG.getConstant(0xb000, MVT::i32);
5537  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
5538  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
5539  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
5540  // Convert back to short.
5541  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
5542  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
5543  return X;
5544}
5545
5546static SDValue
5547LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
5548  SDValue N2;
5549  // Convert to float.
5550  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
5551  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
5552  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
5553  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
5554  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5555  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5556
5557  // Use reciprocal estimate and one refinement step.
5558  // float4 recip = vrecpeq_f32(yf);
5559  // recip *= vrecpsq_f32(yf, recip);
5560  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5561                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
5562  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5563                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5564                   N1, N2);
5565  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5566  // Because short has a smaller range than ushort, we can actually get away
5567  // with only a single newton step.  This requires that we use a weird bias
5568  // of 89, however (again, this has been exhaustively tested).
5569  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
5570  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5571  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5572  N1 = DAG.getConstant(0x89, MVT::i32);
5573  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5574  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5575  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5576  // Convert back to integer and return.
5577  // return vmovn_s32(vcvt_s32_f32(result));
5578  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5579  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5580  return N0;
5581}
5582
5583static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
5584  EVT VT = Op.getValueType();
5585  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5586         "unexpected type for custom-lowering ISD::SDIV");
5587
5588  SDLoc dl(Op);
5589  SDValue N0 = Op.getOperand(0);
5590  SDValue N1 = Op.getOperand(1);
5591  SDValue N2, N3;
5592
5593  if (VT == MVT::v8i8) {
5594    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
5595    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
5596
5597    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5598                     DAG.getIntPtrConstant(4));
5599    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5600                     DAG.getIntPtrConstant(4));
5601    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5602                     DAG.getIntPtrConstant(0));
5603    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5604                     DAG.getIntPtrConstant(0));
5605
5606    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5607    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5608
5609    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5610    N0 = LowerCONCAT_VECTORS(N0, DAG);
5611
5612    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5613    return N0;
5614  }
5615  return LowerSDIV_v4i16(N0, N1, dl, DAG);
5616}
5617
5618static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
5619  EVT VT = Op.getValueType();
5620  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5621         "unexpected type for custom-lowering ISD::UDIV");
5622
5623  SDLoc dl(Op);
5624  SDValue N0 = Op.getOperand(0);
5625  SDValue N1 = Op.getOperand(1);
5626  SDValue N2, N3;
5627
5628  if (VT == MVT::v8i8) {
5629    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5630    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5631
5632    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5633                     DAG.getIntPtrConstant(4));
5634    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5635                     DAG.getIntPtrConstant(4));
5636    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5637                     DAG.getIntPtrConstant(0));
5638    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5639                     DAG.getIntPtrConstant(0));
5640
5641    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5642    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5643
5644    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5645    N0 = LowerCONCAT_VECTORS(N0, DAG);
5646
5647    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5648                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5649                     N0);
5650    return N0;
5651  }
5652
5653  // v4i16 sdiv ... Convert to float.
5654  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5655  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5656  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5657  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5658  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5659  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5660
5661  // Use reciprocal estimate and two refinement steps.
5662  // float4 recip = vrecpeq_f32(yf);
5663  // recip *= vrecpsq_f32(yf, recip);
5664  // recip *= vrecpsq_f32(yf, recip);
5665  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5666                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5667  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5668                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5669                   BN1, N2);
5670  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5671  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5672                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5673                   BN1, N2);
5674  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5675  // Simply multiplying by the reciprocal estimate can leave us a few ulps
5676  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5677  // and that it will never cause us to return an answer too large).
5678  // float4 result = as_float4(as_int4(xf*recip) + 2);
5679  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5680  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5681  N1 = DAG.getConstant(2, MVT::i32);
5682  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5683  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5684  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5685  // Convert back to integer and return.
5686  // return vmovn_u32(vcvt_s32_f32(result));
5687  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5688  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5689  return N0;
5690}
5691
5692static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
5693  EVT VT = Op.getNode()->getValueType(0);
5694  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5695
5696  unsigned Opc;
5697  bool ExtraOp = false;
5698  switch (Op.getOpcode()) {
5699  default: llvm_unreachable("Invalid code");
5700  case ISD::ADDC: Opc = ARMISD::ADDC; break;
5701  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5702  case ISD::SUBC: Opc = ARMISD::SUBC; break;
5703  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5704  }
5705
5706  if (!ExtraOp)
5707    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
5708                       Op.getOperand(1));
5709  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
5710                     Op.getOperand(1), Op.getOperand(2));
5711}
5712
5713static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5714  // Monotonic load/store is legal for all targets
5715  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5716    return Op;
5717
5718  // Aquire/Release load/store is not legal for targets without a
5719  // dmb or equivalent available.
5720  return SDValue();
5721}
5722
5723static void
5724ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5725                    SelectionDAG &DAG, unsigned NewOp) {
5726  SDLoc dl(Node);
5727  assert (Node->getValueType(0) == MVT::i64 &&
5728          "Only know how to expand i64 atomics");
5729
5730  SmallVector<SDValue, 6> Ops;
5731  Ops.push_back(Node->getOperand(0)); // Chain
5732  Ops.push_back(Node->getOperand(1)); // Ptr
5733  // Low part of Val1
5734  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5735                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
5736  // High part of Val1
5737  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5738                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
5739  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5740    // High part of Val1
5741    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5742                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5743    // High part of Val2
5744    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5745                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5746  }
5747  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5748  SDValue Result =
5749    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5750                            cast<MemSDNode>(Node)->getMemOperand());
5751  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5752  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5753  Results.push_back(Result.getValue(2));
5754}
5755
5756static void ReplaceREADCYCLECOUNTER(SDNode *N,
5757                                    SmallVectorImpl<SDValue> &Results,
5758                                    SelectionDAG &DAG,
5759                                    const ARMSubtarget *Subtarget) {
5760  SDLoc DL(N);
5761  SDValue Cycles32, OutChain;
5762
5763  if (Subtarget->hasPerfMon()) {
5764    // Under Power Management extensions, the cycle-count is:
5765    //    mrc p15, #0, <Rt>, c9, c13, #0
5766    SDValue Ops[] = { N->getOperand(0), // Chain
5767                      DAG.getConstant(Intrinsic::arm_mrc, MVT::i32),
5768                      DAG.getConstant(15, MVT::i32),
5769                      DAG.getConstant(0, MVT::i32),
5770                      DAG.getConstant(9, MVT::i32),
5771                      DAG.getConstant(13, MVT::i32),
5772                      DAG.getConstant(0, MVT::i32)
5773    };
5774
5775    Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
5776                           DAG.getVTList(MVT::i32, MVT::Other), &Ops[0],
5777                           array_lengthof(Ops));
5778    OutChain = Cycles32.getValue(1);
5779  } else {
5780    // Intrinsic is defined to return 0 on unsupported platforms. Technically
5781    // there are older ARM CPUs that have implementation-specific ways of
5782    // obtaining this information (FIXME!).
5783    Cycles32 = DAG.getConstant(0, MVT::i32);
5784    OutChain = DAG.getEntryNode();
5785  }
5786
5787
5788  SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
5789                                 Cycles32, DAG.getConstant(0, MVT::i32));
5790  Results.push_back(Cycles64);
5791  Results.push_back(OutChain);
5792}
5793
5794SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5795  switch (Op.getOpcode()) {
5796  default: llvm_unreachable("Don't know how to custom lower this!");
5797  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5798  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5799  case ISD::GlobalAddress:
5800    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5801      LowerGlobalAddressELF(Op, DAG);
5802  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5803  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5804  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5805  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5806  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5807  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5808  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5809  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5810  case ISD::SINT_TO_FP:
5811  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5812  case ISD::FP_TO_SINT:
5813  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5814  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5815  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5816  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5817  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5818  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5819  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5820  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5821                                                               Subtarget);
5822  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5823  case ISD::SHL:
5824  case ISD::SRL:
5825  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5826  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5827  case ISD::SRL_PARTS:
5828  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5829  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5830  case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
5831  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5832  case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
5833  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5834  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5835  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5836  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5837  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5838  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5839  case ISD::MUL:           return LowerMUL(Op, DAG);
5840  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5841  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5842  case ISD::ADDC:
5843  case ISD::ADDE:
5844  case ISD::SUBC:
5845  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5846  case ISD::ATOMIC_LOAD:
5847  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5848  }
5849}
5850
5851/// ReplaceNodeResults - Replace the results of node with an illegal result
5852/// type with new values built out of custom code.
5853void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5854                                           SmallVectorImpl<SDValue>&Results,
5855                                           SelectionDAG &DAG) const {
5856  SDValue Res;
5857  switch (N->getOpcode()) {
5858  default:
5859    llvm_unreachable("Don't know how to custom expand this!");
5860  case ISD::BITCAST:
5861    Res = ExpandBITCAST(N, DAG);
5862    break;
5863  case ISD::SIGN_EXTEND:
5864  case ISD::ZERO_EXTEND:
5865    Res = ExpandVectorExtension(N, DAG);
5866    break;
5867  case ISD::SRL:
5868  case ISD::SRA:
5869    Res = Expand64BitShift(N, DAG, Subtarget);
5870    break;
5871  case ISD::READCYCLECOUNTER:
5872    ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
5873    return;
5874  case ISD::ATOMIC_LOAD_ADD:
5875    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5876    return;
5877  case ISD::ATOMIC_LOAD_AND:
5878    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5879    return;
5880  case ISD::ATOMIC_LOAD_NAND:
5881    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5882    return;
5883  case ISD::ATOMIC_LOAD_OR:
5884    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5885    return;
5886  case ISD::ATOMIC_LOAD_SUB:
5887    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5888    return;
5889  case ISD::ATOMIC_LOAD_XOR:
5890    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5891    return;
5892  case ISD::ATOMIC_SWAP:
5893    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5894    return;
5895  case ISD::ATOMIC_CMP_SWAP:
5896    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5897    return;
5898  case ISD::ATOMIC_LOAD_MIN:
5899    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMIN64_DAG);
5900    return;
5901  case ISD::ATOMIC_LOAD_UMIN:
5902    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMIN64_DAG);
5903    return;
5904  case ISD::ATOMIC_LOAD_MAX:
5905    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMAX64_DAG);
5906    return;
5907  case ISD::ATOMIC_LOAD_UMAX:
5908    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMAX64_DAG);
5909    return;
5910  }
5911  if (Res.getNode())
5912    Results.push_back(Res);
5913}
5914
5915//===----------------------------------------------------------------------===//
5916//                           ARM Scheduler Hooks
5917//===----------------------------------------------------------------------===//
5918
5919MachineBasicBlock *
5920ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5921                                     MachineBasicBlock *BB,
5922                                     unsigned Size) const {
5923  unsigned dest    = MI->getOperand(0).getReg();
5924  unsigned ptr     = MI->getOperand(1).getReg();
5925  unsigned oldval  = MI->getOperand(2).getReg();
5926  unsigned newval  = MI->getOperand(3).getReg();
5927  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5928  DebugLoc dl = MI->getDebugLoc();
5929  bool isThumb2 = Subtarget->isThumb2();
5930
5931  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5932  unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
5933    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5934    (const TargetRegisterClass*)&ARM::GPRRegClass);
5935
5936  if (isThumb2) {
5937    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5938    MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
5939    MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
5940  }
5941
5942  unsigned ldrOpc, strOpc;
5943  switch (Size) {
5944  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5945  case 1:
5946    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5947    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5948    break;
5949  case 2:
5950    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5951    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5952    break;
5953  case 4:
5954    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5955    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5956    break;
5957  }
5958
5959  MachineFunction *MF = BB->getParent();
5960  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5961  MachineFunction::iterator It = BB;
5962  ++It; // insert the new blocks after the current block
5963
5964  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5965  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5966  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5967  MF->insert(It, loop1MBB);
5968  MF->insert(It, loop2MBB);
5969  MF->insert(It, exitMBB);
5970
5971  // Transfer the remainder of BB and its successor edges to exitMBB.
5972  exitMBB->splice(exitMBB->begin(), BB,
5973                  llvm::next(MachineBasicBlock::iterator(MI)),
5974                  BB->end());
5975  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5976
5977  //  thisMBB:
5978  //   ...
5979  //   fallthrough --> loop1MBB
5980  BB->addSuccessor(loop1MBB);
5981
5982  // loop1MBB:
5983  //   ldrex dest, [ptr]
5984  //   cmp dest, oldval
5985  //   bne exitMBB
5986  BB = loop1MBB;
5987  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5988  if (ldrOpc == ARM::t2LDREX)
5989    MIB.addImm(0);
5990  AddDefaultPred(MIB);
5991  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5992                 .addReg(dest).addReg(oldval));
5993  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5994    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5995  BB->addSuccessor(loop2MBB);
5996  BB->addSuccessor(exitMBB);
5997
5998  // loop2MBB:
5999  //   strex scratch, newval, [ptr]
6000  //   cmp scratch, #0
6001  //   bne loop1MBB
6002  BB = loop2MBB;
6003  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
6004  if (strOpc == ARM::t2STREX)
6005    MIB.addImm(0);
6006  AddDefaultPred(MIB);
6007  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6008                 .addReg(scratch).addImm(0));
6009  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6010    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6011  BB->addSuccessor(loop1MBB);
6012  BB->addSuccessor(exitMBB);
6013
6014  //  exitMBB:
6015  //   ...
6016  BB = exitMBB;
6017
6018  MI->eraseFromParent();   // The instruction is gone now.
6019
6020  return BB;
6021}
6022
6023MachineBasicBlock *
6024ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
6025                                    unsigned Size, unsigned BinOpcode) const {
6026  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
6027  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6028
6029  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6030  MachineFunction *MF = BB->getParent();
6031  MachineFunction::iterator It = BB;
6032  ++It;
6033
6034  unsigned dest = MI->getOperand(0).getReg();
6035  unsigned ptr = MI->getOperand(1).getReg();
6036  unsigned incr = MI->getOperand(2).getReg();
6037  DebugLoc dl = MI->getDebugLoc();
6038  bool isThumb2 = Subtarget->isThumb2();
6039
6040  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6041  if (isThumb2) {
6042    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
6043    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
6044  }
6045
6046  unsigned ldrOpc, strOpc;
6047  switch (Size) {
6048  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
6049  case 1:
6050    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
6051    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
6052    break;
6053  case 2:
6054    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
6055    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
6056    break;
6057  case 4:
6058    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
6059    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
6060    break;
6061  }
6062
6063  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6064  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6065  MF->insert(It, loopMBB);
6066  MF->insert(It, exitMBB);
6067
6068  // Transfer the remainder of BB and its successor edges to exitMBB.
6069  exitMBB->splice(exitMBB->begin(), BB,
6070                  llvm::next(MachineBasicBlock::iterator(MI)),
6071                  BB->end());
6072  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6073
6074  const TargetRegisterClass *TRC = isThumb2 ?
6075    (const TargetRegisterClass*)&ARM::rGPRRegClass :
6076    (const TargetRegisterClass*)&ARM::GPRRegClass;
6077  unsigned scratch = MRI.createVirtualRegister(TRC);
6078  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
6079
6080  //  thisMBB:
6081  //   ...
6082  //   fallthrough --> loopMBB
6083  BB->addSuccessor(loopMBB);
6084
6085  //  loopMBB:
6086  //   ldrex dest, ptr
6087  //   <binop> scratch2, dest, incr
6088  //   strex scratch, scratch2, ptr
6089  //   cmp scratch, #0
6090  //   bne- loopMBB
6091  //   fallthrough --> exitMBB
6092  BB = loopMBB;
6093  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
6094  if (ldrOpc == ARM::t2LDREX)
6095    MIB.addImm(0);
6096  AddDefaultPred(MIB);
6097  if (BinOpcode) {
6098    // operand order needs to go the other way for NAND
6099    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
6100      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
6101                     addReg(incr).addReg(dest)).addReg(0);
6102    else
6103      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
6104                     addReg(dest).addReg(incr)).addReg(0);
6105  }
6106
6107  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
6108  if (strOpc == ARM::t2STREX)
6109    MIB.addImm(0);
6110  AddDefaultPred(MIB);
6111  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6112                 .addReg(scratch).addImm(0));
6113  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6114    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6115
6116  BB->addSuccessor(loopMBB);
6117  BB->addSuccessor(exitMBB);
6118
6119  //  exitMBB:
6120  //   ...
6121  BB = exitMBB;
6122
6123  MI->eraseFromParent();   // The instruction is gone now.
6124
6125  return BB;
6126}
6127
6128MachineBasicBlock *
6129ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
6130                                          MachineBasicBlock *BB,
6131                                          unsigned Size,
6132                                          bool signExtend,
6133                                          ARMCC::CondCodes Cond) const {
6134  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6135
6136  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6137  MachineFunction *MF = BB->getParent();
6138  MachineFunction::iterator It = BB;
6139  ++It;
6140
6141  unsigned dest = MI->getOperand(0).getReg();
6142  unsigned ptr = MI->getOperand(1).getReg();
6143  unsigned incr = MI->getOperand(2).getReg();
6144  unsigned oldval = dest;
6145  DebugLoc dl = MI->getDebugLoc();
6146  bool isThumb2 = Subtarget->isThumb2();
6147
6148  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6149  if (isThumb2) {
6150    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
6151    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
6152  }
6153
6154  unsigned ldrOpc, strOpc, extendOpc;
6155  switch (Size) {
6156  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
6157  case 1:
6158    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
6159    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
6160    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
6161    break;
6162  case 2:
6163    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
6164    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
6165    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
6166    break;
6167  case 4:
6168    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
6169    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
6170    extendOpc = 0;
6171    break;
6172  }
6173
6174  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6175  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6176  MF->insert(It, loopMBB);
6177  MF->insert(It, exitMBB);
6178
6179  // Transfer the remainder of BB and its successor edges to exitMBB.
6180  exitMBB->splice(exitMBB->begin(), BB,
6181                  llvm::next(MachineBasicBlock::iterator(MI)),
6182                  BB->end());
6183  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6184
6185  const TargetRegisterClass *TRC = isThumb2 ?
6186    (const TargetRegisterClass*)&ARM::rGPRRegClass :
6187    (const TargetRegisterClass*)&ARM::GPRRegClass;
6188  unsigned scratch = MRI.createVirtualRegister(TRC);
6189  unsigned scratch2 = MRI.createVirtualRegister(TRC);
6190
6191  //  thisMBB:
6192  //   ...
6193  //   fallthrough --> loopMBB
6194  BB->addSuccessor(loopMBB);
6195
6196  //  loopMBB:
6197  //   ldrex dest, ptr
6198  //   (sign extend dest, if required)
6199  //   cmp dest, incr
6200  //   cmov.cond scratch2, incr, dest
6201  //   strex scratch, scratch2, ptr
6202  //   cmp scratch, #0
6203  //   bne- loopMBB
6204  //   fallthrough --> exitMBB
6205  BB = loopMBB;
6206  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
6207  if (ldrOpc == ARM::t2LDREX)
6208    MIB.addImm(0);
6209  AddDefaultPred(MIB);
6210
6211  // Sign extend the value, if necessary.
6212  if (signExtend && extendOpc) {
6213    oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
6214    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
6215                     .addReg(dest)
6216                     .addImm(0));
6217  }
6218
6219  // Build compare and cmov instructions.
6220  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6221                 .addReg(oldval).addReg(incr));
6222  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
6223         .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR);
6224
6225  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
6226  if (strOpc == ARM::t2STREX)
6227    MIB.addImm(0);
6228  AddDefaultPred(MIB);
6229  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6230                 .addReg(scratch).addImm(0));
6231  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6232    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6233
6234  BB->addSuccessor(loopMBB);
6235  BB->addSuccessor(exitMBB);
6236
6237  //  exitMBB:
6238  //   ...
6239  BB = exitMBB;
6240
6241  MI->eraseFromParent();   // The instruction is gone now.
6242
6243  return BB;
6244}
6245
6246MachineBasicBlock *
6247ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
6248                                      unsigned Op1, unsigned Op2,
6249                                      bool NeedsCarry, bool IsCmpxchg,
6250                                      bool IsMinMax, ARMCC::CondCodes CC) const {
6251  // This also handles ATOMIC_SWAP, indicated by Op1==0.
6252  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6253
6254  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6255  MachineFunction *MF = BB->getParent();
6256  MachineFunction::iterator It = BB;
6257  ++It;
6258
6259  unsigned destlo = MI->getOperand(0).getReg();
6260  unsigned desthi = MI->getOperand(1).getReg();
6261  unsigned ptr = MI->getOperand(2).getReg();
6262  unsigned vallo = MI->getOperand(3).getReg();
6263  unsigned valhi = MI->getOperand(4).getReg();
6264  DebugLoc dl = MI->getDebugLoc();
6265  bool isThumb2 = Subtarget->isThumb2();
6266
6267  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6268  if (isThumb2) {
6269    MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
6270    MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
6271    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
6272  }
6273
6274  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6275  MachineBasicBlock *contBB = 0, *cont2BB = 0;
6276  if (IsCmpxchg || IsMinMax)
6277    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
6278  if (IsCmpxchg)
6279    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
6280  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6281
6282  MF->insert(It, loopMBB);
6283  if (IsCmpxchg || IsMinMax) MF->insert(It, contBB);
6284  if (IsCmpxchg) MF->insert(It, cont2BB);
6285  MF->insert(It, exitMBB);
6286
6287  // Transfer the remainder of BB and its successor edges to exitMBB.
6288  exitMBB->splice(exitMBB->begin(), BB,
6289                  llvm::next(MachineBasicBlock::iterator(MI)),
6290                  BB->end());
6291  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6292
6293  const TargetRegisterClass *TRC = isThumb2 ?
6294    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6295    (const TargetRegisterClass*)&ARM::GPRRegClass;
6296  unsigned storesuccess = MRI.createVirtualRegister(TRC);
6297
6298  //  thisMBB:
6299  //   ...
6300  //   fallthrough --> loopMBB
6301  BB->addSuccessor(loopMBB);
6302
6303  //  loopMBB:
6304  //   ldrexd r2, r3, ptr
6305  //   <binopa> r0, r2, incr
6306  //   <binopb> r1, r3, incr
6307  //   strexd storesuccess, r0, r1, ptr
6308  //   cmp storesuccess, #0
6309  //   bne- loopMBB
6310  //   fallthrough --> exitMBB
6311  BB = loopMBB;
6312
6313  // Load
6314  if (isThumb2) {
6315    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2LDREXD))
6316                   .addReg(destlo, RegState::Define)
6317                   .addReg(desthi, RegState::Define)
6318                   .addReg(ptr));
6319  } else {
6320    unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6321    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDREXD))
6322                   .addReg(GPRPair0, RegState::Define).addReg(ptr));
6323    // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
6324    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo)
6325      .addReg(GPRPair0, 0, ARM::gsub_0);
6326    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi)
6327      .addReg(GPRPair0, 0, ARM::gsub_1);
6328  }
6329
6330  unsigned StoreLo, StoreHi;
6331  if (IsCmpxchg) {
6332    // Add early exit
6333    for (unsigned i = 0; i < 2; i++) {
6334      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
6335                                                         ARM::CMPrr))
6336                     .addReg(i == 0 ? destlo : desthi)
6337                     .addReg(i == 0 ? vallo : valhi));
6338      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6339        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6340      BB->addSuccessor(exitMBB);
6341      BB->addSuccessor(i == 0 ? contBB : cont2BB);
6342      BB = (i == 0 ? contBB : cont2BB);
6343    }
6344
6345    // Copy to physregs for strexd
6346    StoreLo = MI->getOperand(5).getReg();
6347    StoreHi = MI->getOperand(6).getReg();
6348  } else if (Op1) {
6349    // Perform binary operation
6350    unsigned tmpRegLo = MRI.createVirtualRegister(TRC);
6351    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), tmpRegLo)
6352                   .addReg(destlo).addReg(vallo))
6353        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
6354    unsigned tmpRegHi = MRI.createVirtualRegister(TRC);
6355    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), tmpRegHi)
6356                   .addReg(desthi).addReg(valhi))
6357        .addReg(IsMinMax ? ARM::CPSR : 0, getDefRegState(IsMinMax));
6358
6359    StoreLo = tmpRegLo;
6360    StoreHi = tmpRegHi;
6361  } else {
6362    // Copy to physregs for strexd
6363    StoreLo = vallo;
6364    StoreHi = valhi;
6365  }
6366  if (IsMinMax) {
6367    // Compare and branch to exit block.
6368    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6369      .addMBB(exitMBB).addImm(CC).addReg(ARM::CPSR);
6370    BB->addSuccessor(exitMBB);
6371    BB->addSuccessor(contBB);
6372    BB = contBB;
6373    StoreLo = vallo;
6374    StoreHi = valhi;
6375  }
6376
6377  // Store
6378  if (isThumb2) {
6379    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2STREXD), storesuccess)
6380                   .addReg(StoreLo).addReg(StoreHi).addReg(ptr));
6381  } else {
6382    // Marshal a pair...
6383    unsigned StorePair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6384    unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6385    unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6386    BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair);
6387    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
6388      .addReg(UndefPair)
6389      .addReg(StoreLo)
6390      .addImm(ARM::gsub_0);
6391    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), StorePair)
6392      .addReg(r1)
6393      .addReg(StoreHi)
6394      .addImm(ARM::gsub_1);
6395
6396    // ...and store it
6397    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::STREXD), storesuccess)
6398                   .addReg(StorePair).addReg(ptr));
6399  }
6400  // Cmp+jump
6401  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6402                 .addReg(storesuccess).addImm(0));
6403  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6404    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6405
6406  BB->addSuccessor(loopMBB);
6407  BB->addSuccessor(exitMBB);
6408
6409  //  exitMBB:
6410  //   ...
6411  BB = exitMBB;
6412
6413  MI->eraseFromParent();   // The instruction is gone now.
6414
6415  return BB;
6416}
6417
6418/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
6419/// registers the function context.
6420void ARMTargetLowering::
6421SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
6422                       MachineBasicBlock *DispatchBB, int FI) const {
6423  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6424  DebugLoc dl = MI->getDebugLoc();
6425  MachineFunction *MF = MBB->getParent();
6426  MachineRegisterInfo *MRI = &MF->getRegInfo();
6427  MachineConstantPool *MCP = MF->getConstantPool();
6428  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6429  const Function *F = MF->getFunction();
6430
6431  bool isThumb = Subtarget->isThumb();
6432  bool isThumb2 = Subtarget->isThumb2();
6433
6434  unsigned PCLabelId = AFI->createPICLabelUId();
6435  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
6436  ARMConstantPoolValue *CPV =
6437    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
6438  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
6439
6440  const TargetRegisterClass *TRC = isThumb ?
6441    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6442    (const TargetRegisterClass*)&ARM::GPRRegClass;
6443
6444  // Grab constant pool and fixed stack memory operands.
6445  MachineMemOperand *CPMMO =
6446    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
6447                             MachineMemOperand::MOLoad, 4, 4);
6448
6449  MachineMemOperand *FIMMOSt =
6450    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6451                             MachineMemOperand::MOStore, 4, 4);
6452
6453  // Load the address of the dispatch MBB into the jump buffer.
6454  if (isThumb2) {
6455    // Incoming value: jbuf
6456    //   ldr.n  r5, LCPI1_1
6457    //   orr    r5, r5, #1
6458    //   add    r5, pc
6459    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
6460    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6461    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
6462                   .addConstantPoolIndex(CPI)
6463                   .addMemOperand(CPMMO));
6464    // Set the low bit because of thumb mode.
6465    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6466    AddDefaultCC(
6467      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
6468                     .addReg(NewVReg1, RegState::Kill)
6469                     .addImm(0x01)));
6470    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6471    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
6472      .addReg(NewVReg2, RegState::Kill)
6473      .addImm(PCLabelId);
6474    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
6475                   .addReg(NewVReg3, RegState::Kill)
6476                   .addFrameIndex(FI)
6477                   .addImm(36)  // &jbuf[1] :: pc
6478                   .addMemOperand(FIMMOSt));
6479  } else if (isThumb) {
6480    // Incoming value: jbuf
6481    //   ldr.n  r1, LCPI1_4
6482    //   add    r1, pc
6483    //   mov    r2, #1
6484    //   orrs   r1, r2
6485    //   add    r2, $jbuf, #+4 ; &jbuf[1]
6486    //   str    r1, [r2]
6487    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6488    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
6489                   .addConstantPoolIndex(CPI)
6490                   .addMemOperand(CPMMO));
6491    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6492    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
6493      .addReg(NewVReg1, RegState::Kill)
6494      .addImm(PCLabelId);
6495    // Set the low bit because of thumb mode.
6496    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6497    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
6498                   .addReg(ARM::CPSR, RegState::Define)
6499                   .addImm(1));
6500    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6501    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
6502                   .addReg(ARM::CPSR, RegState::Define)
6503                   .addReg(NewVReg2, RegState::Kill)
6504                   .addReg(NewVReg3, RegState::Kill));
6505    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6506    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
6507                   .addFrameIndex(FI)
6508                   .addImm(36)); // &jbuf[1] :: pc
6509    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
6510                   .addReg(NewVReg4, RegState::Kill)
6511                   .addReg(NewVReg5, RegState::Kill)
6512                   .addImm(0)
6513                   .addMemOperand(FIMMOSt));
6514  } else {
6515    // Incoming value: jbuf
6516    //   ldr  r1, LCPI1_1
6517    //   add  r1, pc, r1
6518    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
6519    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6520    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
6521                   .addConstantPoolIndex(CPI)
6522                   .addImm(0)
6523                   .addMemOperand(CPMMO));
6524    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6525    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
6526                   .addReg(NewVReg1, RegState::Kill)
6527                   .addImm(PCLabelId));
6528    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
6529                   .addReg(NewVReg2, RegState::Kill)
6530                   .addFrameIndex(FI)
6531                   .addImm(36)  // &jbuf[1] :: pc
6532                   .addMemOperand(FIMMOSt));
6533  }
6534}
6535
6536MachineBasicBlock *ARMTargetLowering::
6537EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
6538  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6539  DebugLoc dl = MI->getDebugLoc();
6540  MachineFunction *MF = MBB->getParent();
6541  MachineRegisterInfo *MRI = &MF->getRegInfo();
6542  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6543  MachineFrameInfo *MFI = MF->getFrameInfo();
6544  int FI = MFI->getFunctionContextIndex();
6545
6546  const TargetRegisterClass *TRC = Subtarget->isThumb() ?
6547    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6548    (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
6549
6550  // Get a mapping of the call site numbers to all of the landing pads they're
6551  // associated with.
6552  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
6553  unsigned MaxCSNum = 0;
6554  MachineModuleInfo &MMI = MF->getMMI();
6555  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
6556       ++BB) {
6557    if (!BB->isLandingPad()) continue;
6558
6559    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
6560    // pad.
6561    for (MachineBasicBlock::iterator
6562           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
6563      if (!II->isEHLabel()) continue;
6564
6565      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
6566      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
6567
6568      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
6569      for (SmallVectorImpl<unsigned>::iterator
6570             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
6571           CSI != CSE; ++CSI) {
6572        CallSiteNumToLPad[*CSI].push_back(BB);
6573        MaxCSNum = std::max(MaxCSNum, *CSI);
6574      }
6575      break;
6576    }
6577  }
6578
6579  // Get an ordered list of the machine basic blocks for the jump table.
6580  std::vector<MachineBasicBlock*> LPadList;
6581  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
6582  LPadList.reserve(CallSiteNumToLPad.size());
6583  for (unsigned I = 1; I <= MaxCSNum; ++I) {
6584    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
6585    for (SmallVectorImpl<MachineBasicBlock*>::iterator
6586           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
6587      LPadList.push_back(*II);
6588      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
6589    }
6590  }
6591
6592  assert(!LPadList.empty() &&
6593         "No landing pad destinations for the dispatch jump table!");
6594
6595  // Create the jump table and associated information.
6596  MachineJumpTableInfo *JTI =
6597    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
6598  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
6599  unsigned UId = AFI->createJumpTableUId();
6600  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
6601
6602  // Create the MBBs for the dispatch code.
6603
6604  // Shove the dispatch's address into the return slot in the function context.
6605  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
6606  DispatchBB->setIsLandingPad();
6607
6608  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
6609  unsigned trap_opcode;
6610  if (Subtarget->isThumb())
6611    trap_opcode = ARM::tTRAP;
6612  else
6613    trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
6614
6615  BuildMI(TrapBB, dl, TII->get(trap_opcode));
6616  DispatchBB->addSuccessor(TrapBB);
6617
6618  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
6619  DispatchBB->addSuccessor(DispContBB);
6620
6621  // Insert and MBBs.
6622  MF->insert(MF->end(), DispatchBB);
6623  MF->insert(MF->end(), DispContBB);
6624  MF->insert(MF->end(), TrapBB);
6625
6626  // Insert code into the entry block that creates and registers the function
6627  // context.
6628  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
6629
6630  MachineMemOperand *FIMMOLd =
6631    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6632                             MachineMemOperand::MOLoad |
6633                             MachineMemOperand::MOVolatile, 4, 4);
6634
6635  MachineInstrBuilder MIB;
6636  MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
6637
6638  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6639  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6640
6641  // Add a register mask with no preserved registers.  This results in all
6642  // registers being marked as clobbered.
6643  MIB.addRegMask(RI.getNoPreservedMask());
6644
6645  unsigned NumLPads = LPadList.size();
6646  if (Subtarget->isThumb2()) {
6647    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6648    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6649                   .addFrameIndex(FI)
6650                   .addImm(4)
6651                   .addMemOperand(FIMMOLd));
6652
6653    if (NumLPads < 256) {
6654      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6655                     .addReg(NewVReg1)
6656                     .addImm(LPadList.size()));
6657    } else {
6658      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6659      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6660                     .addImm(NumLPads & 0xFFFF));
6661
6662      unsigned VReg2 = VReg1;
6663      if ((NumLPads & 0xFFFF0000) != 0) {
6664        VReg2 = MRI->createVirtualRegister(TRC);
6665        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6666                       .addReg(VReg1)
6667                       .addImm(NumLPads >> 16));
6668      }
6669
6670      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6671                     .addReg(NewVReg1)
6672                     .addReg(VReg2));
6673    }
6674
6675    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
6676      .addMBB(TrapBB)
6677      .addImm(ARMCC::HI)
6678      .addReg(ARM::CPSR);
6679
6680    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6681    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
6682                   .addJumpTableIndex(MJTI)
6683                   .addImm(UId));
6684
6685    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6686    AddDefaultCC(
6687      AddDefaultPred(
6688        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
6689        .addReg(NewVReg3, RegState::Kill)
6690        .addReg(NewVReg1)
6691        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6692
6693    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
6694      .addReg(NewVReg4, RegState::Kill)
6695      .addReg(NewVReg1)
6696      .addJumpTableIndex(MJTI)
6697      .addImm(UId);
6698  } else if (Subtarget->isThumb()) {
6699    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6700    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6701                   .addFrameIndex(FI)
6702                   .addImm(1)
6703                   .addMemOperand(FIMMOLd));
6704
6705    if (NumLPads < 256) {
6706      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6707                     .addReg(NewVReg1)
6708                     .addImm(NumLPads));
6709    } else {
6710      MachineConstantPool *ConstantPool = MF->getConstantPool();
6711      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6712      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6713
6714      // MachineConstantPool wants an explicit alignment.
6715      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6716      if (Align == 0)
6717        Align = getDataLayout()->getTypeAllocSize(C->getType());
6718      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6719
6720      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6721      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6722                     .addReg(VReg1, RegState::Define)
6723                     .addConstantPoolIndex(Idx));
6724      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6725                     .addReg(NewVReg1)
6726                     .addReg(VReg1));
6727    }
6728
6729    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6730      .addMBB(TrapBB)
6731      .addImm(ARMCC::HI)
6732      .addReg(ARM::CPSR);
6733
6734    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6735    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6736                   .addReg(ARM::CPSR, RegState::Define)
6737                   .addReg(NewVReg1)
6738                   .addImm(2));
6739
6740    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6741    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6742                   .addJumpTableIndex(MJTI)
6743                   .addImm(UId));
6744
6745    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6746    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6747                   .addReg(ARM::CPSR, RegState::Define)
6748                   .addReg(NewVReg2, RegState::Kill)
6749                   .addReg(NewVReg3));
6750
6751    MachineMemOperand *JTMMOLd =
6752      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6753                               MachineMemOperand::MOLoad, 4, 4);
6754
6755    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6756    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6757                   .addReg(NewVReg4, RegState::Kill)
6758                   .addImm(0)
6759                   .addMemOperand(JTMMOLd));
6760
6761    unsigned NewVReg6 = NewVReg5;
6762    if (RelocM == Reloc::PIC_) {
6763      NewVReg6 = MRI->createVirtualRegister(TRC);
6764      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6765                     .addReg(ARM::CPSR, RegState::Define)
6766                     .addReg(NewVReg5, RegState::Kill)
6767                     .addReg(NewVReg3));
6768    }
6769
6770    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6771      .addReg(NewVReg6, RegState::Kill)
6772      .addJumpTableIndex(MJTI)
6773      .addImm(UId);
6774  } else {
6775    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6776    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6777                   .addFrameIndex(FI)
6778                   .addImm(4)
6779                   .addMemOperand(FIMMOLd));
6780
6781    if (NumLPads < 256) {
6782      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6783                     .addReg(NewVReg1)
6784                     .addImm(NumLPads));
6785    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6786      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6787      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6788                     .addImm(NumLPads & 0xFFFF));
6789
6790      unsigned VReg2 = VReg1;
6791      if ((NumLPads & 0xFFFF0000) != 0) {
6792        VReg2 = MRI->createVirtualRegister(TRC);
6793        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6794                       .addReg(VReg1)
6795                       .addImm(NumLPads >> 16));
6796      }
6797
6798      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6799                     .addReg(NewVReg1)
6800                     .addReg(VReg2));
6801    } else {
6802      MachineConstantPool *ConstantPool = MF->getConstantPool();
6803      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6804      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6805
6806      // MachineConstantPool wants an explicit alignment.
6807      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6808      if (Align == 0)
6809        Align = getDataLayout()->getTypeAllocSize(C->getType());
6810      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6811
6812      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6813      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6814                     .addReg(VReg1, RegState::Define)
6815                     .addConstantPoolIndex(Idx)
6816                     .addImm(0));
6817      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6818                     .addReg(NewVReg1)
6819                     .addReg(VReg1, RegState::Kill));
6820    }
6821
6822    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6823      .addMBB(TrapBB)
6824      .addImm(ARMCC::HI)
6825      .addReg(ARM::CPSR);
6826
6827    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6828    AddDefaultCC(
6829      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6830                     .addReg(NewVReg1)
6831                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6832    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6833    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6834                   .addJumpTableIndex(MJTI)
6835                   .addImm(UId));
6836
6837    MachineMemOperand *JTMMOLd =
6838      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6839                               MachineMemOperand::MOLoad, 4, 4);
6840    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6841    AddDefaultPred(
6842      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6843      .addReg(NewVReg3, RegState::Kill)
6844      .addReg(NewVReg4)
6845      .addImm(0)
6846      .addMemOperand(JTMMOLd));
6847
6848    if (RelocM == Reloc::PIC_) {
6849      BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6850        .addReg(NewVReg5, RegState::Kill)
6851        .addReg(NewVReg4)
6852        .addJumpTableIndex(MJTI)
6853        .addImm(UId);
6854    } else {
6855      BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
6856        .addReg(NewVReg5, RegState::Kill)
6857        .addJumpTableIndex(MJTI)
6858        .addImm(UId);
6859    }
6860  }
6861
6862  // Add the jump table entries as successors to the MBB.
6863  SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
6864  for (std::vector<MachineBasicBlock*>::iterator
6865         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6866    MachineBasicBlock *CurMBB = *I;
6867    if (SeenMBBs.insert(CurMBB))
6868      DispContBB->addSuccessor(CurMBB);
6869  }
6870
6871  // N.B. the order the invoke BBs are processed in doesn't matter here.
6872  const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
6873  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6874  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6875         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6876    MachineBasicBlock *BB = *I;
6877
6878    // Remove the landing pad successor from the invoke block and replace it
6879    // with the new dispatch block.
6880    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6881                                                  BB->succ_end());
6882    while (!Successors.empty()) {
6883      MachineBasicBlock *SMBB = Successors.pop_back_val();
6884      if (SMBB->isLandingPad()) {
6885        BB->removeSuccessor(SMBB);
6886        MBBLPads.push_back(SMBB);
6887      }
6888    }
6889
6890    BB->addSuccessor(DispatchBB);
6891
6892    // Find the invoke call and mark all of the callee-saved registers as
6893    // 'implicit defined' so that they're spilled. This prevents code from
6894    // moving instructions to before the EH block, where they will never be
6895    // executed.
6896    for (MachineBasicBlock::reverse_iterator
6897           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6898      if (!II->isCall()) continue;
6899
6900      DenseMap<unsigned, bool> DefRegs;
6901      for (MachineInstr::mop_iterator
6902             OI = II->operands_begin(), OE = II->operands_end();
6903           OI != OE; ++OI) {
6904        if (!OI->isReg()) continue;
6905        DefRegs[OI->getReg()] = true;
6906      }
6907
6908      MachineInstrBuilder MIB(*MF, &*II);
6909
6910      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6911        unsigned Reg = SavedRegs[i];
6912        if (Subtarget->isThumb2() &&
6913            !ARM::tGPRRegClass.contains(Reg) &&
6914            !ARM::hGPRRegClass.contains(Reg))
6915          continue;
6916        if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6917          continue;
6918        if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6919          continue;
6920        if (!DefRegs[Reg])
6921          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6922      }
6923
6924      break;
6925    }
6926  }
6927
6928  // Mark all former landing pads as non-landing pads. The dispatch is the only
6929  // landing pad now.
6930  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6931         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6932    (*I)->setIsLandingPad(false);
6933
6934  // The instruction is gone now.
6935  MI->eraseFromParent();
6936
6937  return MBB;
6938}
6939
6940static
6941MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6942  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6943       E = MBB->succ_end(); I != E; ++I)
6944    if (*I != Succ)
6945      return *I;
6946  llvm_unreachable("Expecting a BB with two successors!");
6947}
6948
6949MachineBasicBlock *ARMTargetLowering::
6950EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
6951  // This pseudo instruction has 3 operands: dst, src, size
6952  // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
6953  // Otherwise, we will generate unrolled scalar copies.
6954  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6955  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6956  MachineFunction::iterator It = BB;
6957  ++It;
6958
6959  unsigned dest = MI->getOperand(0).getReg();
6960  unsigned src = MI->getOperand(1).getReg();
6961  unsigned SizeVal = MI->getOperand(2).getImm();
6962  unsigned Align = MI->getOperand(3).getImm();
6963  DebugLoc dl = MI->getDebugLoc();
6964
6965  bool isThumb2 = Subtarget->isThumb2();
6966  MachineFunction *MF = BB->getParent();
6967  MachineRegisterInfo &MRI = MF->getRegInfo();
6968  unsigned ldrOpc, strOpc, UnitSize = 0;
6969
6970  const TargetRegisterClass *TRC = isThumb2 ?
6971    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6972    (const TargetRegisterClass*)&ARM::GPRRegClass;
6973  const TargetRegisterClass *TRC_Vec = 0;
6974
6975  if (Align & 1) {
6976    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6977    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6978    UnitSize = 1;
6979  } else if (Align & 2) {
6980    ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
6981    strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
6982    UnitSize = 2;
6983  } else {
6984    // Check whether we can use NEON instructions.
6985    if (!MF->getFunction()->getAttributes().
6986          hasAttribute(AttributeSet::FunctionIndex,
6987                       Attribute::NoImplicitFloat) &&
6988        Subtarget->hasNEON()) {
6989      if ((Align % 16 == 0) && SizeVal >= 16) {
6990        ldrOpc = ARM::VLD1q32wb_fixed;
6991        strOpc = ARM::VST1q32wb_fixed;
6992        UnitSize = 16;
6993        TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
6994      }
6995      else if ((Align % 8 == 0) && SizeVal >= 8) {
6996        ldrOpc = ARM::VLD1d32wb_fixed;
6997        strOpc = ARM::VST1d32wb_fixed;
6998        UnitSize = 8;
6999        TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
7000      }
7001    }
7002    // Can't use NEON instructions.
7003    if (UnitSize == 0) {
7004      ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
7005      strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
7006      UnitSize = 4;
7007    }
7008  }
7009
7010  unsigned BytesLeft = SizeVal % UnitSize;
7011  unsigned LoopSize = SizeVal - BytesLeft;
7012
7013  if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
7014    // Use LDR and STR to copy.
7015    // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
7016    // [destOut] = STR_POST(scratch, destIn, UnitSize)
7017    unsigned srcIn = src;
7018    unsigned destIn = dest;
7019    for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
7020      unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
7021      unsigned srcOut = MRI.createVirtualRegister(TRC);
7022      unsigned destOut = MRI.createVirtualRegister(TRC);
7023      if (UnitSize >= 8) {
7024        AddDefaultPred(BuildMI(*BB, MI, dl,
7025          TII->get(ldrOpc), scratch)
7026          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
7027
7028        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
7029          .addReg(destIn).addImm(0).addReg(scratch));
7030      } else if (isThumb2) {
7031        AddDefaultPred(BuildMI(*BB, MI, dl,
7032          TII->get(ldrOpc), scratch)
7033          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
7034
7035        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
7036          .addReg(scratch).addReg(destIn)
7037          .addImm(UnitSize));
7038      } else {
7039        AddDefaultPred(BuildMI(*BB, MI, dl,
7040          TII->get(ldrOpc), scratch)
7041          .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
7042          .addImm(UnitSize));
7043
7044        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
7045          .addReg(scratch).addReg(destIn)
7046          .addReg(0).addImm(UnitSize));
7047      }
7048      srcIn = srcOut;
7049      destIn = destOut;
7050    }
7051
7052    // Handle the leftover bytes with LDRB and STRB.
7053    // [scratch, srcOut] = LDRB_POST(srcIn, 1)
7054    // [destOut] = STRB_POST(scratch, destIn, 1)
7055    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
7056    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
7057    for (unsigned i = 0; i < BytesLeft; i++) {
7058      unsigned scratch = MRI.createVirtualRegister(TRC);
7059      unsigned srcOut = MRI.createVirtualRegister(TRC);
7060      unsigned destOut = MRI.createVirtualRegister(TRC);
7061      if (isThumb2) {
7062        AddDefaultPred(BuildMI(*BB, MI, dl,
7063          TII->get(ldrOpc),scratch)
7064          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
7065
7066        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
7067          .addReg(scratch).addReg(destIn)
7068          .addReg(0).addImm(1));
7069      } else {
7070        AddDefaultPred(BuildMI(*BB, MI, dl,
7071          TII->get(ldrOpc),scratch)
7072          .addReg(srcOut, RegState::Define).addReg(srcIn)
7073          .addReg(0).addImm(1));
7074
7075        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
7076          .addReg(scratch).addReg(destIn)
7077          .addReg(0).addImm(1));
7078      }
7079      srcIn = srcOut;
7080      destIn = destOut;
7081    }
7082    MI->eraseFromParent();   // The instruction is gone now.
7083    return BB;
7084  }
7085
7086  // Expand the pseudo op to a loop.
7087  // thisMBB:
7088  //   ...
7089  //   movw varEnd, # --> with thumb2
7090  //   movt varEnd, #
7091  //   ldrcp varEnd, idx --> without thumb2
7092  //   fallthrough --> loopMBB
7093  // loopMBB:
7094  //   PHI varPhi, varEnd, varLoop
7095  //   PHI srcPhi, src, srcLoop
7096  //   PHI destPhi, dst, destLoop
7097  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7098  //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
7099  //   subs varLoop, varPhi, #UnitSize
7100  //   bne loopMBB
7101  //   fallthrough --> exitMBB
7102  // exitMBB:
7103  //   epilogue to handle left-over bytes
7104  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7105  //   [destOut] = STRB_POST(scratch, destLoop, 1)
7106  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7107  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7108  MF->insert(It, loopMBB);
7109  MF->insert(It, exitMBB);
7110
7111  // Transfer the remainder of BB and its successor edges to exitMBB.
7112  exitMBB->splice(exitMBB->begin(), BB,
7113                  llvm::next(MachineBasicBlock::iterator(MI)),
7114                  BB->end());
7115  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
7116
7117  // Load an immediate to varEnd.
7118  unsigned varEnd = MRI.createVirtualRegister(TRC);
7119  if (isThumb2) {
7120    unsigned VReg1 = varEnd;
7121    if ((LoopSize & 0xFFFF0000) != 0)
7122      VReg1 = MRI.createVirtualRegister(TRC);
7123    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
7124                   .addImm(LoopSize & 0xFFFF));
7125
7126    if ((LoopSize & 0xFFFF0000) != 0)
7127      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
7128                     .addReg(VReg1)
7129                     .addImm(LoopSize >> 16));
7130  } else {
7131    MachineConstantPool *ConstantPool = MF->getConstantPool();
7132    Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7133    const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
7134
7135    // MachineConstantPool wants an explicit alignment.
7136    unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
7137    if (Align == 0)
7138      Align = getDataLayout()->getTypeAllocSize(C->getType());
7139    unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7140
7141    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
7142                   .addReg(varEnd, RegState::Define)
7143                   .addConstantPoolIndex(Idx)
7144                   .addImm(0));
7145  }
7146  BB->addSuccessor(loopMBB);
7147
7148  // Generate the loop body:
7149  //   varPhi = PHI(varLoop, varEnd)
7150  //   srcPhi = PHI(srcLoop, src)
7151  //   destPhi = PHI(destLoop, dst)
7152  MachineBasicBlock *entryBB = BB;
7153  BB = loopMBB;
7154  unsigned varLoop = MRI.createVirtualRegister(TRC);
7155  unsigned varPhi = MRI.createVirtualRegister(TRC);
7156  unsigned srcLoop = MRI.createVirtualRegister(TRC);
7157  unsigned srcPhi = MRI.createVirtualRegister(TRC);
7158  unsigned destLoop = MRI.createVirtualRegister(TRC);
7159  unsigned destPhi = MRI.createVirtualRegister(TRC);
7160
7161  BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
7162    .addReg(varLoop).addMBB(loopMBB)
7163    .addReg(varEnd).addMBB(entryBB);
7164  BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
7165    .addReg(srcLoop).addMBB(loopMBB)
7166    .addReg(src).addMBB(entryBB);
7167  BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
7168    .addReg(destLoop).addMBB(loopMBB)
7169    .addReg(dest).addMBB(entryBB);
7170
7171  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7172  //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
7173  unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
7174  if (UnitSize >= 8) {
7175    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
7176      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
7177
7178    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
7179      .addReg(destPhi).addImm(0).addReg(scratch));
7180  } else if (isThumb2) {
7181    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
7182      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
7183
7184    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
7185      .addReg(scratch).addReg(destPhi)
7186      .addImm(UnitSize));
7187  } else {
7188    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
7189      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
7190      .addImm(UnitSize));
7191
7192    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
7193      .addReg(scratch).addReg(destPhi)
7194      .addReg(0).addImm(UnitSize));
7195  }
7196
7197  // Decrement loop variable by UnitSize.
7198  MachineInstrBuilder MIB = BuildMI(BB, dl,
7199    TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
7200  AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
7201  MIB->getOperand(5).setReg(ARM::CPSR);
7202  MIB->getOperand(5).setIsDef(true);
7203
7204  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
7205    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
7206
7207  // loopMBB can loop back to loopMBB or fall through to exitMBB.
7208  BB->addSuccessor(loopMBB);
7209  BB->addSuccessor(exitMBB);
7210
7211  // Add epilogue to handle BytesLeft.
7212  BB = exitMBB;
7213  MachineInstr *StartOfExit = exitMBB->begin();
7214  ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
7215  strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
7216
7217  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7218  //   [destOut] = STRB_POST(scratch, destLoop, 1)
7219  unsigned srcIn = srcLoop;
7220  unsigned destIn = destLoop;
7221  for (unsigned i = 0; i < BytesLeft; i++) {
7222    unsigned scratch = MRI.createVirtualRegister(TRC);
7223    unsigned srcOut = MRI.createVirtualRegister(TRC);
7224    unsigned destOut = MRI.createVirtualRegister(TRC);
7225    if (isThumb2) {
7226      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
7227        TII->get(ldrOpc),scratch)
7228        .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
7229
7230      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
7231        .addReg(scratch).addReg(destIn)
7232        .addImm(1));
7233    } else {
7234      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
7235        TII->get(ldrOpc),scratch)
7236        .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
7237
7238      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
7239        .addReg(scratch).addReg(destIn)
7240        .addReg(0).addImm(1));
7241    }
7242    srcIn = srcOut;
7243    destIn = destOut;
7244  }
7245
7246  MI->eraseFromParent();   // The instruction is gone now.
7247  return BB;
7248}
7249
7250MachineBasicBlock *
7251ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7252                                               MachineBasicBlock *BB) const {
7253  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7254  DebugLoc dl = MI->getDebugLoc();
7255  bool isThumb2 = Subtarget->isThumb2();
7256  switch (MI->getOpcode()) {
7257  default: {
7258    MI->dump();
7259    llvm_unreachable("Unexpected instr type to insert");
7260  }
7261  // The Thumb2 pre-indexed stores have the same MI operands, they just
7262  // define them differently in the .td files from the isel patterns, so
7263  // they need pseudos.
7264  case ARM::t2STR_preidx:
7265    MI->setDesc(TII->get(ARM::t2STR_PRE));
7266    return BB;
7267  case ARM::t2STRB_preidx:
7268    MI->setDesc(TII->get(ARM::t2STRB_PRE));
7269    return BB;
7270  case ARM::t2STRH_preidx:
7271    MI->setDesc(TII->get(ARM::t2STRH_PRE));
7272    return BB;
7273
7274  case ARM::STRi_preidx:
7275  case ARM::STRBi_preidx: {
7276    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
7277      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
7278    // Decode the offset.
7279    unsigned Offset = MI->getOperand(4).getImm();
7280    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
7281    Offset = ARM_AM::getAM2Offset(Offset);
7282    if (isSub)
7283      Offset = -Offset;
7284
7285    MachineMemOperand *MMO = *MI->memoperands_begin();
7286    BuildMI(*BB, MI, dl, TII->get(NewOpc))
7287      .addOperand(MI->getOperand(0))  // Rn_wb
7288      .addOperand(MI->getOperand(1))  // Rt
7289      .addOperand(MI->getOperand(2))  // Rn
7290      .addImm(Offset)                 // offset (skip GPR==zero_reg)
7291      .addOperand(MI->getOperand(5))  // pred
7292      .addOperand(MI->getOperand(6))
7293      .addMemOperand(MMO);
7294    MI->eraseFromParent();
7295    return BB;
7296  }
7297  case ARM::STRr_preidx:
7298  case ARM::STRBr_preidx:
7299  case ARM::STRH_preidx: {
7300    unsigned NewOpc;
7301    switch (MI->getOpcode()) {
7302    default: llvm_unreachable("unexpected opcode!");
7303    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
7304    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
7305    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
7306    }
7307    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
7308    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
7309      MIB.addOperand(MI->getOperand(i));
7310    MI->eraseFromParent();
7311    return BB;
7312  }
7313  case ARM::ATOMIC_LOAD_ADD_I8:
7314     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7315  case ARM::ATOMIC_LOAD_ADD_I16:
7316     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7317  case ARM::ATOMIC_LOAD_ADD_I32:
7318     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7319
7320  case ARM::ATOMIC_LOAD_AND_I8:
7321     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7322  case ARM::ATOMIC_LOAD_AND_I16:
7323     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7324  case ARM::ATOMIC_LOAD_AND_I32:
7325     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7326
7327  case ARM::ATOMIC_LOAD_OR_I8:
7328     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7329  case ARM::ATOMIC_LOAD_OR_I16:
7330     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7331  case ARM::ATOMIC_LOAD_OR_I32:
7332     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7333
7334  case ARM::ATOMIC_LOAD_XOR_I8:
7335     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7336  case ARM::ATOMIC_LOAD_XOR_I16:
7337     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7338  case ARM::ATOMIC_LOAD_XOR_I32:
7339     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7340
7341  case ARM::ATOMIC_LOAD_NAND_I8:
7342     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7343  case ARM::ATOMIC_LOAD_NAND_I16:
7344     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7345  case ARM::ATOMIC_LOAD_NAND_I32:
7346     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7347
7348  case ARM::ATOMIC_LOAD_SUB_I8:
7349     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7350  case ARM::ATOMIC_LOAD_SUB_I16:
7351     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7352  case ARM::ATOMIC_LOAD_SUB_I32:
7353     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7354
7355  case ARM::ATOMIC_LOAD_MIN_I8:
7356     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
7357  case ARM::ATOMIC_LOAD_MIN_I16:
7358     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
7359  case ARM::ATOMIC_LOAD_MIN_I32:
7360     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
7361
7362  case ARM::ATOMIC_LOAD_MAX_I8:
7363     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
7364  case ARM::ATOMIC_LOAD_MAX_I16:
7365     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
7366  case ARM::ATOMIC_LOAD_MAX_I32:
7367     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
7368
7369  case ARM::ATOMIC_LOAD_UMIN_I8:
7370     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
7371  case ARM::ATOMIC_LOAD_UMIN_I16:
7372     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
7373  case ARM::ATOMIC_LOAD_UMIN_I32:
7374     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
7375
7376  case ARM::ATOMIC_LOAD_UMAX_I8:
7377     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
7378  case ARM::ATOMIC_LOAD_UMAX_I16:
7379     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
7380  case ARM::ATOMIC_LOAD_UMAX_I32:
7381     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
7382
7383  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
7384  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
7385  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
7386
7387  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
7388  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
7389  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
7390
7391
7392  case ARM::ATOMADD6432:
7393    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
7394                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
7395                              /*NeedsCarry*/ true);
7396  case ARM::ATOMSUB6432:
7397    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7398                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7399                              /*NeedsCarry*/ true);
7400  case ARM::ATOMOR6432:
7401    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
7402                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7403  case ARM::ATOMXOR6432:
7404    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
7405                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7406  case ARM::ATOMAND6432:
7407    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
7408                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7409  case ARM::ATOMSWAP6432:
7410    return EmitAtomicBinary64(MI, BB, 0, 0, false);
7411  case ARM::ATOMCMPXCHG6432:
7412    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7413                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7414                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
7415  case ARM::ATOMMIN6432:
7416    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7417                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7418                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7419                              /*IsMinMax*/ true, ARMCC::LT);
7420  case ARM::ATOMMAX6432:
7421    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7422                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7423                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7424                              /*IsMinMax*/ true, ARMCC::GE);
7425  case ARM::ATOMUMIN6432:
7426    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7427                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7428                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7429                              /*IsMinMax*/ true, ARMCC::LO);
7430  case ARM::ATOMUMAX6432:
7431    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7432                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7433                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7434                              /*IsMinMax*/ true, ARMCC::HS);
7435
7436  case ARM::tMOVCCr_pseudo: {
7437    // To "insert" a SELECT_CC instruction, we actually have to insert the
7438    // diamond control-flow pattern.  The incoming instruction knows the
7439    // destination vreg to set, the condition code register to branch on, the
7440    // true/false values to select between, and a branch opcode to use.
7441    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7442    MachineFunction::iterator It = BB;
7443    ++It;
7444
7445    //  thisMBB:
7446    //  ...
7447    //   TrueVal = ...
7448    //   cmpTY ccX, r1, r2
7449    //   bCC copy1MBB
7450    //   fallthrough --> copy0MBB
7451    MachineBasicBlock *thisMBB  = BB;
7452    MachineFunction *F = BB->getParent();
7453    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7454    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
7455    F->insert(It, copy0MBB);
7456    F->insert(It, sinkMBB);
7457
7458    // Transfer the remainder of BB and its successor edges to sinkMBB.
7459    sinkMBB->splice(sinkMBB->begin(), BB,
7460                    llvm::next(MachineBasicBlock::iterator(MI)),
7461                    BB->end());
7462    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
7463
7464    BB->addSuccessor(copy0MBB);
7465    BB->addSuccessor(sinkMBB);
7466
7467    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
7468      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
7469
7470    //  copy0MBB:
7471    //   %FalseValue = ...
7472    //   # fallthrough to sinkMBB
7473    BB = copy0MBB;
7474
7475    // Update machine-CFG edges
7476    BB->addSuccessor(sinkMBB);
7477
7478    //  sinkMBB:
7479    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7480    //  ...
7481    BB = sinkMBB;
7482    BuildMI(*BB, BB->begin(), dl,
7483            TII->get(ARM::PHI), MI->getOperand(0).getReg())
7484      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7485      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7486
7487    MI->eraseFromParent();   // The pseudo instruction is gone now.
7488    return BB;
7489  }
7490
7491  case ARM::BCCi64:
7492  case ARM::BCCZi64: {
7493    // If there is an unconditional branch to the other successor, remove it.
7494    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
7495
7496    // Compare both parts that make up the double comparison separately for
7497    // equality.
7498    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
7499
7500    unsigned LHS1 = MI->getOperand(1).getReg();
7501    unsigned LHS2 = MI->getOperand(2).getReg();
7502    if (RHSisZero) {
7503      AddDefaultPred(BuildMI(BB, dl,
7504                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7505                     .addReg(LHS1).addImm(0));
7506      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7507        .addReg(LHS2).addImm(0)
7508        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7509    } else {
7510      unsigned RHS1 = MI->getOperand(3).getReg();
7511      unsigned RHS2 = MI->getOperand(4).getReg();
7512      AddDefaultPred(BuildMI(BB, dl,
7513                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7514                     .addReg(LHS1).addReg(RHS1));
7515      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7516        .addReg(LHS2).addReg(RHS2)
7517        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7518    }
7519
7520    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
7521    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
7522    if (MI->getOperand(0).getImm() == ARMCC::NE)
7523      std::swap(destMBB, exitMBB);
7524
7525    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
7526      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
7527    if (isThumb2)
7528      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
7529    else
7530      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
7531
7532    MI->eraseFromParent();   // The pseudo instruction is gone now.
7533    return BB;
7534  }
7535
7536  case ARM::Int_eh_sjlj_setjmp:
7537  case ARM::Int_eh_sjlj_setjmp_nofp:
7538  case ARM::tInt_eh_sjlj_setjmp:
7539  case ARM::t2Int_eh_sjlj_setjmp:
7540  case ARM::t2Int_eh_sjlj_setjmp_nofp:
7541    EmitSjLjDispatchBlock(MI, BB);
7542    return BB;
7543
7544  case ARM::ABS:
7545  case ARM::t2ABS: {
7546    // To insert an ABS instruction, we have to insert the
7547    // diamond control-flow pattern.  The incoming instruction knows the
7548    // source vreg to test against 0, the destination vreg to set,
7549    // the condition code register to branch on, the
7550    // true/false values to select between, and a branch opcode to use.
7551    // It transforms
7552    //     V1 = ABS V0
7553    // into
7554    //     V2 = MOVS V0
7555    //     BCC                      (branch to SinkBB if V0 >= 0)
7556    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
7557    //     SinkBB: V1 = PHI(V2, V3)
7558    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7559    MachineFunction::iterator BBI = BB;
7560    ++BBI;
7561    MachineFunction *Fn = BB->getParent();
7562    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7563    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
7564    Fn->insert(BBI, RSBBB);
7565    Fn->insert(BBI, SinkBB);
7566
7567    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
7568    unsigned int ABSDstReg = MI->getOperand(0).getReg();
7569    bool isThumb2 = Subtarget->isThumb2();
7570    MachineRegisterInfo &MRI = Fn->getRegInfo();
7571    // In Thumb mode S must not be specified if source register is the SP or
7572    // PC and if destination register is the SP, so restrict register class
7573    unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
7574      (const TargetRegisterClass*)&ARM::rGPRRegClass :
7575      (const TargetRegisterClass*)&ARM::GPRRegClass);
7576
7577    // Transfer the remainder of BB and its successor edges to sinkMBB.
7578    SinkBB->splice(SinkBB->begin(), BB,
7579      llvm::next(MachineBasicBlock::iterator(MI)),
7580      BB->end());
7581    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
7582
7583    BB->addSuccessor(RSBBB);
7584    BB->addSuccessor(SinkBB);
7585
7586    // fall through to SinkMBB
7587    RSBBB->addSuccessor(SinkBB);
7588
7589    // insert a cmp at the end of BB
7590    AddDefaultPred(BuildMI(BB, dl,
7591                           TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7592                   .addReg(ABSSrcReg).addImm(0));
7593
7594    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
7595    BuildMI(BB, dl,
7596      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
7597      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
7598
7599    // insert rsbri in RSBBB
7600    // Note: BCC and rsbri will be converted into predicated rsbmi
7601    // by if-conversion pass
7602    BuildMI(*RSBBB, RSBBB->begin(), dl,
7603      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
7604      .addReg(ABSSrcReg, RegState::Kill)
7605      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
7606
7607    // insert PHI in SinkBB,
7608    // reuse ABSDstReg to not change uses of ABS instruction
7609    BuildMI(*SinkBB, SinkBB->begin(), dl,
7610      TII->get(ARM::PHI), ABSDstReg)
7611      .addReg(NewRsbDstReg).addMBB(RSBBB)
7612      .addReg(ABSSrcReg).addMBB(BB);
7613
7614    // remove ABS instruction
7615    MI->eraseFromParent();
7616
7617    // return last added BB
7618    return SinkBB;
7619  }
7620  case ARM::COPY_STRUCT_BYVAL_I32:
7621    ++NumLoopByVals;
7622    return EmitStructByval(MI, BB);
7623  }
7624}
7625
7626void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
7627                                                      SDNode *Node) const {
7628  if (!MI->hasPostISelHook()) {
7629    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
7630           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
7631    return;
7632  }
7633
7634  const MCInstrDesc *MCID = &MI->getDesc();
7635  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
7636  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
7637  // operand is still set to noreg. If needed, set the optional operand's
7638  // register to CPSR, and remove the redundant implicit def.
7639  //
7640  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
7641
7642  // Rename pseudo opcodes.
7643  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
7644  if (NewOpc) {
7645    const ARMBaseInstrInfo *TII =
7646      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
7647    MCID = &TII->get(NewOpc);
7648
7649    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
7650           "converted opcode should be the same except for cc_out");
7651
7652    MI->setDesc(*MCID);
7653
7654    // Add the optional cc_out operand
7655    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
7656  }
7657  unsigned ccOutIdx = MCID->getNumOperands() - 1;
7658
7659  // Any ARM instruction that sets the 's' bit should specify an optional
7660  // "cc_out" operand in the last operand position.
7661  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
7662    assert(!NewOpc && "Optional cc_out operand required");
7663    return;
7664  }
7665  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
7666  // since we already have an optional CPSR def.
7667  bool definesCPSR = false;
7668  bool deadCPSR = false;
7669  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
7670       i != e; ++i) {
7671    const MachineOperand &MO = MI->getOperand(i);
7672    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
7673      definesCPSR = true;
7674      if (MO.isDead())
7675        deadCPSR = true;
7676      MI->RemoveOperand(i);
7677      break;
7678    }
7679  }
7680  if (!definesCPSR) {
7681    assert(!NewOpc && "Optional cc_out operand required");
7682    return;
7683  }
7684  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
7685  if (deadCPSR) {
7686    assert(!MI->getOperand(ccOutIdx).getReg() &&
7687           "expect uninitialized optional cc_out operand");
7688    return;
7689  }
7690
7691  // If this instruction was defined with an optional CPSR def and its dag node
7692  // had a live implicit CPSR def, then activate the optional CPSR def.
7693  MachineOperand &MO = MI->getOperand(ccOutIdx);
7694  MO.setReg(ARM::CPSR);
7695  MO.setIsDef(true);
7696}
7697
7698//===----------------------------------------------------------------------===//
7699//                           ARM Optimization Hooks
7700//===----------------------------------------------------------------------===//
7701
7702// Helper function that checks if N is a null or all ones constant.
7703static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
7704  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
7705  if (!C)
7706    return false;
7707  return AllOnes ? C->isAllOnesValue() : C->isNullValue();
7708}
7709
7710// Return true if N is conditionally 0 or all ones.
7711// Detects these expressions where cc is an i1 value:
7712//
7713//   (select cc 0, y)   [AllOnes=0]
7714//   (select cc y, 0)   [AllOnes=0]
7715//   (zext cc)          [AllOnes=0]
7716//   (sext cc)          [AllOnes=0/1]
7717//   (select cc -1, y)  [AllOnes=1]
7718//   (select cc y, -1)  [AllOnes=1]
7719//
7720// Invert is set when N is the null/all ones constant when CC is false.
7721// OtherOp is set to the alternative value of N.
7722static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
7723                                       SDValue &CC, bool &Invert,
7724                                       SDValue &OtherOp,
7725                                       SelectionDAG &DAG) {
7726  switch (N->getOpcode()) {
7727  default: return false;
7728  case ISD::SELECT: {
7729    CC = N->getOperand(0);
7730    SDValue N1 = N->getOperand(1);
7731    SDValue N2 = N->getOperand(2);
7732    if (isZeroOrAllOnes(N1, AllOnes)) {
7733      Invert = false;
7734      OtherOp = N2;
7735      return true;
7736    }
7737    if (isZeroOrAllOnes(N2, AllOnes)) {
7738      Invert = true;
7739      OtherOp = N1;
7740      return true;
7741    }
7742    return false;
7743  }
7744  case ISD::ZERO_EXTEND:
7745    // (zext cc) can never be the all ones value.
7746    if (AllOnes)
7747      return false;
7748    // Fall through.
7749  case ISD::SIGN_EXTEND: {
7750    EVT VT = N->getValueType(0);
7751    CC = N->getOperand(0);
7752    if (CC.getValueType() != MVT::i1)
7753      return false;
7754    Invert = !AllOnes;
7755    if (AllOnes)
7756      // When looking for an AllOnes constant, N is an sext, and the 'other'
7757      // value is 0.
7758      OtherOp = DAG.getConstant(0, VT);
7759    else if (N->getOpcode() == ISD::ZERO_EXTEND)
7760      // When looking for a 0 constant, N can be zext or sext.
7761      OtherOp = DAG.getConstant(1, VT);
7762    else
7763      OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
7764    return true;
7765  }
7766  }
7767}
7768
7769// Combine a constant select operand into its use:
7770//
7771//   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
7772//   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
7773//   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
7774//   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
7775//   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
7776//
7777// The transform is rejected if the select doesn't have a constant operand that
7778// is null, or all ones when AllOnes is set.
7779//
7780// Also recognize sext/zext from i1:
7781//
7782//   (add (zext cc), x) -> (select cc (add x, 1), x)
7783//   (add (sext cc), x) -> (select cc (add x, -1), x)
7784//
7785// These transformations eventually create predicated instructions.
7786//
7787// @param N       The node to transform.
7788// @param Slct    The N operand that is a select.
7789// @param OtherOp The other N operand (x above).
7790// @param DCI     Context.
7791// @param AllOnes Require the select constant to be all ones instead of null.
7792// @returns The new node, or SDValue() on failure.
7793static
7794SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7795                            TargetLowering::DAGCombinerInfo &DCI,
7796                            bool AllOnes = false) {
7797  SelectionDAG &DAG = DCI.DAG;
7798  EVT VT = N->getValueType(0);
7799  SDValue NonConstantVal;
7800  SDValue CCOp;
7801  bool SwapSelectOps;
7802  if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
7803                                  NonConstantVal, DAG))
7804    return SDValue();
7805
7806  // Slct is now know to be the desired identity constant when CC is true.
7807  SDValue TrueVal = OtherOp;
7808  SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
7809                                 OtherOp, NonConstantVal);
7810  // Unless SwapSelectOps says CC should be false.
7811  if (SwapSelectOps)
7812    std::swap(TrueVal, FalseVal);
7813
7814  return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7815                     CCOp, TrueVal, FalseVal);
7816}
7817
7818// Attempt combineSelectAndUse on each operand of a commutative operator N.
7819static
7820SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
7821                                       TargetLowering::DAGCombinerInfo &DCI) {
7822  SDValue N0 = N->getOperand(0);
7823  SDValue N1 = N->getOperand(1);
7824  if (N0.getNode()->hasOneUse()) {
7825    SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
7826    if (Result.getNode())
7827      return Result;
7828  }
7829  if (N1.getNode()->hasOneUse()) {
7830    SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
7831    if (Result.getNode())
7832      return Result;
7833  }
7834  return SDValue();
7835}
7836
7837// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
7838// (only after legalization).
7839static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
7840                                 TargetLowering::DAGCombinerInfo &DCI,
7841                                 const ARMSubtarget *Subtarget) {
7842
7843  // Only perform optimization if after legalize, and if NEON is available. We
7844  // also expected both operands to be BUILD_VECTORs.
7845  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
7846      || N0.getOpcode() != ISD::BUILD_VECTOR
7847      || N1.getOpcode() != ISD::BUILD_VECTOR)
7848    return SDValue();
7849
7850  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
7851  EVT VT = N->getValueType(0);
7852  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
7853    return SDValue();
7854
7855  // Check that the vector operands are of the right form.
7856  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
7857  // operands, where N is the size of the formed vector.
7858  // Each EXTRACT_VECTOR should have the same input vector and odd or even
7859  // index such that we have a pair wise add pattern.
7860
7861  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
7862  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7863    return SDValue();
7864  SDValue Vec = N0->getOperand(0)->getOperand(0);
7865  SDNode *V = Vec.getNode();
7866  unsigned nextIndex = 0;
7867
7868  // For each operands to the ADD which are BUILD_VECTORs,
7869  // check to see if each of their operands are an EXTRACT_VECTOR with
7870  // the same vector and appropriate index.
7871  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
7872    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
7873        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7874
7875      SDValue ExtVec0 = N0->getOperand(i);
7876      SDValue ExtVec1 = N1->getOperand(i);
7877
7878      // First operand is the vector, verify its the same.
7879      if (V != ExtVec0->getOperand(0).getNode() ||
7880          V != ExtVec1->getOperand(0).getNode())
7881        return SDValue();
7882
7883      // Second is the constant, verify its correct.
7884      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
7885      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
7886
7887      // For the constant, we want to see all the even or all the odd.
7888      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
7889          || C1->getZExtValue() != nextIndex+1)
7890        return SDValue();
7891
7892      // Increment index.
7893      nextIndex+=2;
7894    } else
7895      return SDValue();
7896  }
7897
7898  // Create VPADDL node.
7899  SelectionDAG &DAG = DCI.DAG;
7900  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7901
7902  // Build operand list.
7903  SmallVector<SDValue, 8> Ops;
7904  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
7905                                TLI.getPointerTy()));
7906
7907  // Input is the vector.
7908  Ops.push_back(Vec);
7909
7910  // Get widened type and narrowed type.
7911  MVT widenType;
7912  unsigned numElem = VT.getVectorNumElements();
7913  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
7914    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
7915    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
7916    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
7917    default:
7918      llvm_unreachable("Invalid vector element type for padd optimization.");
7919  }
7920
7921  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
7922                            widenType, &Ops[0], Ops.size());
7923  return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, tmp);
7924}
7925
7926static SDValue findMUL_LOHI(SDValue V) {
7927  if (V->getOpcode() == ISD::UMUL_LOHI ||
7928      V->getOpcode() == ISD::SMUL_LOHI)
7929    return V;
7930  return SDValue();
7931}
7932
7933static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
7934                                     TargetLowering::DAGCombinerInfo &DCI,
7935                                     const ARMSubtarget *Subtarget) {
7936
7937  if (Subtarget->isThumb1Only()) return SDValue();
7938
7939  // Only perform the checks after legalize when the pattern is available.
7940  if (DCI.isBeforeLegalize()) return SDValue();
7941
7942  // Look for multiply add opportunities.
7943  // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
7944  // each add nodes consumes a value from ISD::UMUL_LOHI and there is
7945  // a glue link from the first add to the second add.
7946  // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
7947  // a S/UMLAL instruction.
7948  //          loAdd   UMUL_LOHI
7949  //            \    / :lo    \ :hi
7950  //             \  /          \          [no multiline comment]
7951  //              ADDC         |  hiAdd
7952  //                 \ :glue  /  /
7953  //                  \      /  /
7954  //                    ADDE
7955  //
7956  assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
7957  SDValue AddcOp0 = AddcNode->getOperand(0);
7958  SDValue AddcOp1 = AddcNode->getOperand(1);
7959
7960  // Check if the two operands are from the same mul_lohi node.
7961  if (AddcOp0.getNode() == AddcOp1.getNode())
7962    return SDValue();
7963
7964  assert(AddcNode->getNumValues() == 2 &&
7965         AddcNode->getValueType(0) == MVT::i32 &&
7966         "Expect ADDC with two result values. First: i32");
7967
7968  // Check that we have a glued ADDC node.
7969  if (AddcNode->getValueType(1) != MVT::Glue)
7970    return SDValue();
7971
7972  // Check that the ADDC adds the low result of the S/UMUL_LOHI.
7973  if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
7974      AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
7975      AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
7976      AddcOp1->getOpcode() != ISD::SMUL_LOHI)
7977    return SDValue();
7978
7979  // Look for the glued ADDE.
7980  SDNode* AddeNode = AddcNode->getGluedUser();
7981  if (AddeNode == NULL)
7982    return SDValue();
7983
7984  // Make sure it is really an ADDE.
7985  if (AddeNode->getOpcode() != ISD::ADDE)
7986    return SDValue();
7987
7988  assert(AddeNode->getNumOperands() == 3 &&
7989         AddeNode->getOperand(2).getValueType() == MVT::Glue &&
7990         "ADDE node has the wrong inputs");
7991
7992  // Check for the triangle shape.
7993  SDValue AddeOp0 = AddeNode->getOperand(0);
7994  SDValue AddeOp1 = AddeNode->getOperand(1);
7995
7996  // Make sure that the ADDE operands are not coming from the same node.
7997  if (AddeOp0.getNode() == AddeOp1.getNode())
7998    return SDValue();
7999
8000  // Find the MUL_LOHI node walking up ADDE's operands.
8001  bool IsLeftOperandMUL = false;
8002  SDValue MULOp = findMUL_LOHI(AddeOp0);
8003  if (MULOp == SDValue())
8004   MULOp = findMUL_LOHI(AddeOp1);
8005  else
8006    IsLeftOperandMUL = true;
8007  if (MULOp == SDValue())
8008     return SDValue();
8009
8010  // Figure out the right opcode.
8011  unsigned Opc = MULOp->getOpcode();
8012  unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
8013
8014  // Figure out the high and low input values to the MLAL node.
8015  SDValue* HiMul = &MULOp;
8016  SDValue* HiAdd = NULL;
8017  SDValue* LoMul = NULL;
8018  SDValue* LowAdd = NULL;
8019
8020  if (IsLeftOperandMUL)
8021    HiAdd = &AddeOp1;
8022  else
8023    HiAdd = &AddeOp0;
8024
8025
8026  if (AddcOp0->getOpcode() == Opc) {
8027    LoMul = &AddcOp0;
8028    LowAdd = &AddcOp1;
8029  }
8030  if (AddcOp1->getOpcode() == Opc) {
8031    LoMul = &AddcOp1;
8032    LowAdd = &AddcOp0;
8033  }
8034
8035  if (LoMul == NULL)
8036    return SDValue();
8037
8038  if (LoMul->getNode() != HiMul->getNode())
8039    return SDValue();
8040
8041  // Create the merged node.
8042  SelectionDAG &DAG = DCI.DAG;
8043
8044  // Build operand list.
8045  SmallVector<SDValue, 8> Ops;
8046  Ops.push_back(LoMul->getOperand(0));
8047  Ops.push_back(LoMul->getOperand(1));
8048  Ops.push_back(*LowAdd);
8049  Ops.push_back(*HiAdd);
8050
8051  SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
8052                                 DAG.getVTList(MVT::i32, MVT::i32),
8053                                 &Ops[0], Ops.size());
8054
8055  // Replace the ADDs' nodes uses by the MLA node's values.
8056  SDValue HiMLALResult(MLALNode.getNode(), 1);
8057  DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
8058
8059  SDValue LoMLALResult(MLALNode.getNode(), 0);
8060  DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
8061
8062  // Return original node to notify the driver to stop replacing.
8063  SDValue resNode(AddcNode, 0);
8064  return resNode;
8065}
8066
8067/// PerformADDCCombine - Target-specific dag combine transform from
8068/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
8069static SDValue PerformADDCCombine(SDNode *N,
8070                                 TargetLowering::DAGCombinerInfo &DCI,
8071                                 const ARMSubtarget *Subtarget) {
8072
8073  return AddCombineTo64bitMLAL(N, DCI, Subtarget);
8074
8075}
8076
8077/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
8078/// operands N0 and N1.  This is a helper for PerformADDCombine that is
8079/// called with the default operands, and if that fails, with commuted
8080/// operands.
8081static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
8082                                          TargetLowering::DAGCombinerInfo &DCI,
8083                                          const ARMSubtarget *Subtarget){
8084
8085  // Attempt to create vpaddl for this add.
8086  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
8087  if (Result.getNode())
8088    return Result;
8089
8090  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
8091  if (N0.getNode()->hasOneUse()) {
8092    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
8093    if (Result.getNode()) return Result;
8094  }
8095  return SDValue();
8096}
8097
8098/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
8099///
8100static SDValue PerformADDCombine(SDNode *N,
8101                                 TargetLowering::DAGCombinerInfo &DCI,
8102                                 const ARMSubtarget *Subtarget) {
8103  SDValue N0 = N->getOperand(0);
8104  SDValue N1 = N->getOperand(1);
8105
8106  // First try with the default operand order.
8107  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
8108  if (Result.getNode())
8109    return Result;
8110
8111  // If that didn't work, try again with the operands commuted.
8112  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
8113}
8114
8115/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
8116///
8117static SDValue PerformSUBCombine(SDNode *N,
8118                                 TargetLowering::DAGCombinerInfo &DCI) {
8119  SDValue N0 = N->getOperand(0);
8120  SDValue N1 = N->getOperand(1);
8121
8122  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
8123  if (N1.getNode()->hasOneUse()) {
8124    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
8125    if (Result.getNode()) return Result;
8126  }
8127
8128  return SDValue();
8129}
8130
8131/// PerformVMULCombine
8132/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
8133/// special multiplier accumulator forwarding.
8134///   vmul d3, d0, d2
8135///   vmla d3, d1, d2
8136/// is faster than
8137///   vadd d3, d0, d1
8138///   vmul d3, d3, d2
8139static SDValue PerformVMULCombine(SDNode *N,
8140                                  TargetLowering::DAGCombinerInfo &DCI,
8141                                  const ARMSubtarget *Subtarget) {
8142  if (!Subtarget->hasVMLxForwarding())
8143    return SDValue();
8144
8145  SelectionDAG &DAG = DCI.DAG;
8146  SDValue N0 = N->getOperand(0);
8147  SDValue N1 = N->getOperand(1);
8148  unsigned Opcode = N0.getOpcode();
8149  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8150      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
8151    Opcode = N1.getOpcode();
8152    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8153        Opcode != ISD::FADD && Opcode != ISD::FSUB)
8154      return SDValue();
8155    std::swap(N0, N1);
8156  }
8157
8158  EVT VT = N->getValueType(0);
8159  SDLoc DL(N);
8160  SDValue N00 = N0->getOperand(0);
8161  SDValue N01 = N0->getOperand(1);
8162  return DAG.getNode(Opcode, DL, VT,
8163                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
8164                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
8165}
8166
8167static SDValue PerformMULCombine(SDNode *N,
8168                                 TargetLowering::DAGCombinerInfo &DCI,
8169                                 const ARMSubtarget *Subtarget) {
8170  SelectionDAG &DAG = DCI.DAG;
8171
8172  if (Subtarget->isThumb1Only())
8173    return SDValue();
8174
8175  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8176    return SDValue();
8177
8178  EVT VT = N->getValueType(0);
8179  if (VT.is64BitVector() || VT.is128BitVector())
8180    return PerformVMULCombine(N, DCI, Subtarget);
8181  if (VT != MVT::i32)
8182    return SDValue();
8183
8184  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8185  if (!C)
8186    return SDValue();
8187
8188  int64_t MulAmt = C->getSExtValue();
8189  unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
8190
8191  ShiftAmt = ShiftAmt & (32 - 1);
8192  SDValue V = N->getOperand(0);
8193  SDLoc DL(N);
8194
8195  SDValue Res;
8196  MulAmt >>= ShiftAmt;
8197
8198  if (MulAmt >= 0) {
8199    if (isPowerOf2_32(MulAmt - 1)) {
8200      // (mul x, 2^N + 1) => (add (shl x, N), x)
8201      Res = DAG.getNode(ISD::ADD, DL, VT,
8202                        V,
8203                        DAG.getNode(ISD::SHL, DL, VT,
8204                                    V,
8205                                    DAG.getConstant(Log2_32(MulAmt - 1),
8206                                                    MVT::i32)));
8207    } else if (isPowerOf2_32(MulAmt + 1)) {
8208      // (mul x, 2^N - 1) => (sub (shl x, N), x)
8209      Res = DAG.getNode(ISD::SUB, DL, VT,
8210                        DAG.getNode(ISD::SHL, DL, VT,
8211                                    V,
8212                                    DAG.getConstant(Log2_32(MulAmt + 1),
8213                                                    MVT::i32)),
8214                        V);
8215    } else
8216      return SDValue();
8217  } else {
8218    uint64_t MulAmtAbs = -MulAmt;
8219    if (isPowerOf2_32(MulAmtAbs + 1)) {
8220      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
8221      Res = DAG.getNode(ISD::SUB, DL, VT,
8222                        V,
8223                        DAG.getNode(ISD::SHL, DL, VT,
8224                                    V,
8225                                    DAG.getConstant(Log2_32(MulAmtAbs + 1),
8226                                                    MVT::i32)));
8227    } else if (isPowerOf2_32(MulAmtAbs - 1)) {
8228      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
8229      Res = DAG.getNode(ISD::ADD, DL, VT,
8230                        V,
8231                        DAG.getNode(ISD::SHL, DL, VT,
8232                                    V,
8233                                    DAG.getConstant(Log2_32(MulAmtAbs-1),
8234                                                    MVT::i32)));
8235      Res = DAG.getNode(ISD::SUB, DL, VT,
8236                        DAG.getConstant(0, MVT::i32),Res);
8237
8238    } else
8239      return SDValue();
8240  }
8241
8242  if (ShiftAmt != 0)
8243    Res = DAG.getNode(ISD::SHL, DL, VT,
8244                      Res, DAG.getConstant(ShiftAmt, MVT::i32));
8245
8246  // Do not add new nodes to DAG combiner worklist.
8247  DCI.CombineTo(N, Res, false);
8248  return SDValue();
8249}
8250
8251static SDValue PerformANDCombine(SDNode *N,
8252                                 TargetLowering::DAGCombinerInfo &DCI,
8253                                 const ARMSubtarget *Subtarget) {
8254
8255  // Attempt to use immediate-form VBIC
8256  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8257  SDLoc dl(N);
8258  EVT VT = N->getValueType(0);
8259  SelectionDAG &DAG = DCI.DAG;
8260
8261  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8262    return SDValue();
8263
8264  APInt SplatBits, SplatUndef;
8265  unsigned SplatBitSize;
8266  bool HasAnyUndefs;
8267  if (BVN &&
8268      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8269    if (SplatBitSize <= 64) {
8270      EVT VbicVT;
8271      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
8272                                      SplatUndef.getZExtValue(), SplatBitSize,
8273                                      DAG, VbicVT, VT.is128BitVector(),
8274                                      OtherModImm);
8275      if (Val.getNode()) {
8276        SDValue Input =
8277          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
8278        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
8279        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
8280      }
8281    }
8282  }
8283
8284  if (!Subtarget->isThumb1Only()) {
8285    // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
8286    SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
8287    if (Result.getNode())
8288      return Result;
8289  }
8290
8291  return SDValue();
8292}
8293
8294/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
8295static SDValue PerformORCombine(SDNode *N,
8296                                TargetLowering::DAGCombinerInfo &DCI,
8297                                const ARMSubtarget *Subtarget) {
8298  // Attempt to use immediate-form VORR
8299  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8300  SDLoc dl(N);
8301  EVT VT = N->getValueType(0);
8302  SelectionDAG &DAG = DCI.DAG;
8303
8304  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8305    return SDValue();
8306
8307  APInt SplatBits, SplatUndef;
8308  unsigned SplatBitSize;
8309  bool HasAnyUndefs;
8310  if (BVN && Subtarget->hasNEON() &&
8311      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8312    if (SplatBitSize <= 64) {
8313      EVT VorrVT;
8314      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
8315                                      SplatUndef.getZExtValue(), SplatBitSize,
8316                                      DAG, VorrVT, VT.is128BitVector(),
8317                                      OtherModImm);
8318      if (Val.getNode()) {
8319        SDValue Input =
8320          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
8321        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
8322        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
8323      }
8324    }
8325  }
8326
8327  if (!Subtarget->isThumb1Only()) {
8328    // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
8329    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8330    if (Result.getNode())
8331      return Result;
8332  }
8333
8334  // The code below optimizes (or (and X, Y), Z).
8335  // The AND operand needs to have a single user to make these optimizations
8336  // profitable.
8337  SDValue N0 = N->getOperand(0);
8338  if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
8339    return SDValue();
8340  SDValue N1 = N->getOperand(1);
8341
8342  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
8343  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
8344      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
8345    APInt SplatUndef;
8346    unsigned SplatBitSize;
8347    bool HasAnyUndefs;
8348
8349    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
8350    APInt SplatBits0;
8351    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
8352                                  HasAnyUndefs) && !HasAnyUndefs) {
8353      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
8354      APInt SplatBits1;
8355      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
8356                                    HasAnyUndefs) && !HasAnyUndefs &&
8357          SplatBits0 == ~SplatBits1) {
8358        // Canonicalize the vector type to make instruction selection simpler.
8359        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
8360        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
8361                                     N0->getOperand(1), N0->getOperand(0),
8362                                     N1->getOperand(0));
8363        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
8364      }
8365    }
8366  }
8367
8368  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
8369  // reasonable.
8370
8371  // BFI is only available on V6T2+
8372  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
8373    return SDValue();
8374
8375  SDLoc DL(N);
8376  // 1) or (and A, mask), val => ARMbfi A, val, mask
8377  //      iff (val & mask) == val
8378  //
8379  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8380  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
8381  //          && mask == ~mask2
8382  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
8383  //          && ~mask == mask2
8384  //  (i.e., copy a bitfield value into another bitfield of the same width)
8385
8386  if (VT != MVT::i32)
8387    return SDValue();
8388
8389  SDValue N00 = N0.getOperand(0);
8390
8391  // The value and the mask need to be constants so we can verify this is
8392  // actually a bitfield set. If the mask is 0xffff, we can do better
8393  // via a movt instruction, so don't use BFI in that case.
8394  SDValue MaskOp = N0.getOperand(1);
8395  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
8396  if (!MaskC)
8397    return SDValue();
8398  unsigned Mask = MaskC->getZExtValue();
8399  if (Mask == 0xffff)
8400    return SDValue();
8401  SDValue Res;
8402  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
8403  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
8404  if (N1C) {
8405    unsigned Val = N1C->getZExtValue();
8406    if ((Val & ~Mask) != Val)
8407      return SDValue();
8408
8409    if (ARM::isBitFieldInvertedMask(Mask)) {
8410      Val >>= countTrailingZeros(~Mask);
8411
8412      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
8413                        DAG.getConstant(Val, MVT::i32),
8414                        DAG.getConstant(Mask, MVT::i32));
8415
8416      // Do not add new nodes to DAG combiner worklist.
8417      DCI.CombineTo(N, Res, false);
8418      return SDValue();
8419    }
8420  } else if (N1.getOpcode() == ISD::AND) {
8421    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8422    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8423    if (!N11C)
8424      return SDValue();
8425    unsigned Mask2 = N11C->getZExtValue();
8426
8427    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
8428    // as is to match.
8429    if (ARM::isBitFieldInvertedMask(Mask) &&
8430        (Mask == ~Mask2)) {
8431      // The pack halfword instruction works better for masks that fit it,
8432      // so use that when it's available.
8433      if (Subtarget->hasT2ExtractPack() &&
8434          (Mask == 0xffff || Mask == 0xffff0000))
8435        return SDValue();
8436      // 2a
8437      unsigned amt = countTrailingZeros(Mask2);
8438      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
8439                        DAG.getConstant(amt, MVT::i32));
8440      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
8441                        DAG.getConstant(Mask, MVT::i32));
8442      // Do not add new nodes to DAG combiner worklist.
8443      DCI.CombineTo(N, Res, false);
8444      return SDValue();
8445    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
8446               (~Mask == Mask2)) {
8447      // The pack halfword instruction works better for masks that fit it,
8448      // so use that when it's available.
8449      if (Subtarget->hasT2ExtractPack() &&
8450          (Mask2 == 0xffff || Mask2 == 0xffff0000))
8451        return SDValue();
8452      // 2b
8453      unsigned lsb = countTrailingZeros(Mask);
8454      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
8455                        DAG.getConstant(lsb, MVT::i32));
8456      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
8457                        DAG.getConstant(Mask2, MVT::i32));
8458      // Do not add new nodes to DAG combiner worklist.
8459      DCI.CombineTo(N, Res, false);
8460      return SDValue();
8461    }
8462  }
8463
8464  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
8465      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
8466      ARM::isBitFieldInvertedMask(~Mask)) {
8467    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
8468    // where lsb(mask) == #shamt and masked bits of B are known zero.
8469    SDValue ShAmt = N00.getOperand(1);
8470    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
8471    unsigned LSB = countTrailingZeros(Mask);
8472    if (ShAmtC != LSB)
8473      return SDValue();
8474
8475    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
8476                      DAG.getConstant(~Mask, MVT::i32));
8477
8478    // Do not add new nodes to DAG combiner worklist.
8479    DCI.CombineTo(N, Res, false);
8480  }
8481
8482  return SDValue();
8483}
8484
8485static SDValue PerformXORCombine(SDNode *N,
8486                                 TargetLowering::DAGCombinerInfo &DCI,
8487                                 const ARMSubtarget *Subtarget) {
8488  EVT VT = N->getValueType(0);
8489  SelectionDAG &DAG = DCI.DAG;
8490
8491  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8492    return SDValue();
8493
8494  if (!Subtarget->isThumb1Only()) {
8495    // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
8496    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8497    if (Result.getNode())
8498      return Result;
8499  }
8500
8501  return SDValue();
8502}
8503
8504/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
8505/// the bits being cleared by the AND are not demanded by the BFI.
8506static SDValue PerformBFICombine(SDNode *N,
8507                                 TargetLowering::DAGCombinerInfo &DCI) {
8508  SDValue N1 = N->getOperand(1);
8509  if (N1.getOpcode() == ISD::AND) {
8510    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8511    if (!N11C)
8512      return SDValue();
8513    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
8514    unsigned LSB = countTrailingZeros(~InvMask);
8515    unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
8516    unsigned Mask = (1 << Width)-1;
8517    unsigned Mask2 = N11C->getZExtValue();
8518    if ((Mask & (~Mask2)) == 0)
8519      return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
8520                             N->getOperand(0), N1.getOperand(0),
8521                             N->getOperand(2));
8522  }
8523  return SDValue();
8524}
8525
8526/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
8527/// ARMISD::VMOVRRD.
8528static SDValue PerformVMOVRRDCombine(SDNode *N,
8529                                     TargetLowering::DAGCombinerInfo &DCI) {
8530  // vmovrrd(vmovdrr x, y) -> x,y
8531  SDValue InDouble = N->getOperand(0);
8532  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
8533    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
8534
8535  // vmovrrd(load f64) -> (load i32), (load i32)
8536  SDNode *InNode = InDouble.getNode();
8537  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
8538      InNode->getValueType(0) == MVT::f64 &&
8539      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
8540      !cast<LoadSDNode>(InNode)->isVolatile()) {
8541    // TODO: Should this be done for non-FrameIndex operands?
8542    LoadSDNode *LD = cast<LoadSDNode>(InNode);
8543
8544    SelectionDAG &DAG = DCI.DAG;
8545    SDLoc DL(LD);
8546    SDValue BasePtr = LD->getBasePtr();
8547    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
8548                                 LD->getPointerInfo(), LD->isVolatile(),
8549                                 LD->isNonTemporal(), LD->isInvariant(),
8550                                 LD->getAlignment());
8551
8552    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8553                                    DAG.getConstant(4, MVT::i32));
8554    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
8555                                 LD->getPointerInfo(), LD->isVolatile(),
8556                                 LD->isNonTemporal(), LD->isInvariant(),
8557                                 std::min(4U, LD->getAlignment() / 2));
8558
8559    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
8560    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
8561    DCI.RemoveFromWorklist(LD);
8562    DAG.DeleteNode(LD);
8563    return Result;
8564  }
8565
8566  return SDValue();
8567}
8568
8569/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
8570/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
8571static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
8572  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
8573  SDValue Op0 = N->getOperand(0);
8574  SDValue Op1 = N->getOperand(1);
8575  if (Op0.getOpcode() == ISD::BITCAST)
8576    Op0 = Op0.getOperand(0);
8577  if (Op1.getOpcode() == ISD::BITCAST)
8578    Op1 = Op1.getOperand(0);
8579  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
8580      Op0.getNode() == Op1.getNode() &&
8581      Op0.getResNo() == 0 && Op1.getResNo() == 1)
8582    return DAG.getNode(ISD::BITCAST, SDLoc(N),
8583                       N->getValueType(0), Op0.getOperand(0));
8584  return SDValue();
8585}
8586
8587/// PerformSTORECombine - Target-specific dag combine xforms for
8588/// ISD::STORE.
8589static SDValue PerformSTORECombine(SDNode *N,
8590                                   TargetLowering::DAGCombinerInfo &DCI) {
8591  StoreSDNode *St = cast<StoreSDNode>(N);
8592  if (St->isVolatile())
8593    return SDValue();
8594
8595  // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
8596  // pack all of the elements in one place.  Next, store to memory in fewer
8597  // chunks.
8598  SDValue StVal = St->getValue();
8599  EVT VT = StVal.getValueType();
8600  if (St->isTruncatingStore() && VT.isVector()) {
8601    SelectionDAG &DAG = DCI.DAG;
8602    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8603    EVT StVT = St->getMemoryVT();
8604    unsigned NumElems = VT.getVectorNumElements();
8605    assert(StVT != VT && "Cannot truncate to the same type");
8606    unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
8607    unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
8608
8609    // From, To sizes and ElemCount must be pow of two
8610    if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
8611
8612    // We are going to use the original vector elt for storing.
8613    // Accumulated smaller vector elements must be a multiple of the store size.
8614    if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
8615
8616    unsigned SizeRatio  = FromEltSz / ToEltSz;
8617    assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
8618
8619    // Create a type on which we perform the shuffle.
8620    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
8621                                     NumElems*SizeRatio);
8622    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
8623
8624    SDLoc DL(St);
8625    SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
8626    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
8627    for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
8628
8629    // Can't shuffle using an illegal type.
8630    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
8631
8632    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
8633                                DAG.getUNDEF(WideVec.getValueType()),
8634                                ShuffleVec.data());
8635    // At this point all of the data is stored at the bottom of the
8636    // register. We now need to save it to mem.
8637
8638    // Find the largest store unit
8639    MVT StoreType = MVT::i8;
8640    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
8641         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
8642      MVT Tp = (MVT::SimpleValueType)tp;
8643      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
8644        StoreType = Tp;
8645    }
8646    // Didn't find a legal store type.
8647    if (!TLI.isTypeLegal(StoreType))
8648      return SDValue();
8649
8650    // Bitcast the original vector into a vector of store-size units
8651    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
8652            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
8653    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
8654    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
8655    SmallVector<SDValue, 8> Chains;
8656    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
8657                                        TLI.getPointerTy());
8658    SDValue BasePtr = St->getBasePtr();
8659
8660    // Perform one or more big stores into memory.
8661    unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
8662    for (unsigned I = 0; I < E; I++) {
8663      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
8664                                   StoreType, ShuffWide,
8665                                   DAG.getIntPtrConstant(I));
8666      SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
8667                                St->getPointerInfo(), St->isVolatile(),
8668                                St->isNonTemporal(), St->getAlignment());
8669      BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
8670                            Increment);
8671      Chains.push_back(Ch);
8672    }
8673    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
8674                       Chains.size());
8675  }
8676
8677  if (!ISD::isNormalStore(St))
8678    return SDValue();
8679
8680  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
8681  // ARM stores of arguments in the same cache line.
8682  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
8683      StVal.getNode()->hasOneUse()) {
8684    SelectionDAG  &DAG = DCI.DAG;
8685    SDLoc DL(St);
8686    SDValue BasePtr = St->getBasePtr();
8687    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
8688                                  StVal.getNode()->getOperand(0), BasePtr,
8689                                  St->getPointerInfo(), St->isVolatile(),
8690                                  St->isNonTemporal(), St->getAlignment());
8691
8692    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8693                                    DAG.getConstant(4, MVT::i32));
8694    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
8695                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
8696                        St->isNonTemporal(),
8697                        std::min(4U, St->getAlignment() / 2));
8698  }
8699
8700  if (StVal.getValueType() != MVT::i64 ||
8701      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8702    return SDValue();
8703
8704  // Bitcast an i64 store extracted from a vector to f64.
8705  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8706  SelectionDAG &DAG = DCI.DAG;
8707  SDLoc dl(StVal);
8708  SDValue IntVec = StVal.getOperand(0);
8709  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8710                                 IntVec.getValueType().getVectorNumElements());
8711  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
8712  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8713                               Vec, StVal.getOperand(1));
8714  dl = SDLoc(N);
8715  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
8716  // Make the DAGCombiner fold the bitcasts.
8717  DCI.AddToWorklist(Vec.getNode());
8718  DCI.AddToWorklist(ExtElt.getNode());
8719  DCI.AddToWorklist(V.getNode());
8720  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
8721                      St->getPointerInfo(), St->isVolatile(),
8722                      St->isNonTemporal(), St->getAlignment(),
8723                      St->getTBAAInfo());
8724}
8725
8726/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
8727/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
8728/// i64 vector to have f64 elements, since the value can then be loaded
8729/// directly into a VFP register.
8730static bool hasNormalLoadOperand(SDNode *N) {
8731  unsigned NumElts = N->getValueType(0).getVectorNumElements();
8732  for (unsigned i = 0; i < NumElts; ++i) {
8733    SDNode *Elt = N->getOperand(i).getNode();
8734    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
8735      return true;
8736  }
8737  return false;
8738}
8739
8740/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
8741/// ISD::BUILD_VECTOR.
8742static SDValue PerformBUILD_VECTORCombine(SDNode *N,
8743                                          TargetLowering::DAGCombinerInfo &DCI){
8744  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
8745  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
8746  // into a pair of GPRs, which is fine when the value is used as a scalar,
8747  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
8748  SelectionDAG &DAG = DCI.DAG;
8749  if (N->getNumOperands() == 2) {
8750    SDValue RV = PerformVMOVDRRCombine(N, DAG);
8751    if (RV.getNode())
8752      return RV;
8753  }
8754
8755  // Load i64 elements as f64 values so that type legalization does not split
8756  // them up into i32 values.
8757  EVT VT = N->getValueType(0);
8758  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
8759    return SDValue();
8760  SDLoc dl(N);
8761  SmallVector<SDValue, 8> Ops;
8762  unsigned NumElts = VT.getVectorNumElements();
8763  for (unsigned i = 0; i < NumElts; ++i) {
8764    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
8765    Ops.push_back(V);
8766    // Make the DAGCombiner fold the bitcast.
8767    DCI.AddToWorklist(V.getNode());
8768  }
8769  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
8770  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
8771  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8772}
8773
8774/// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
8775static SDValue
8776PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8777  // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
8778  // At that time, we may have inserted bitcasts from integer to float.
8779  // If these bitcasts have survived DAGCombine, change the lowering of this
8780  // BUILD_VECTOR in something more vector friendly, i.e., that does not
8781  // force to use floating point types.
8782
8783  // Make sure we can change the type of the vector.
8784  // This is possible iff:
8785  // 1. The vector is only used in a bitcast to a integer type. I.e.,
8786  //    1.1. Vector is used only once.
8787  //    1.2. Use is a bit convert to an integer type.
8788  // 2. The size of its operands are 32-bits (64-bits are not legal).
8789  EVT VT = N->getValueType(0);
8790  EVT EltVT = VT.getVectorElementType();
8791
8792  // Check 1.1. and 2.
8793  if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
8794    return SDValue();
8795
8796  // By construction, the input type must be float.
8797  assert(EltVT == MVT::f32 && "Unexpected type!");
8798
8799  // Check 1.2.
8800  SDNode *Use = *N->use_begin();
8801  if (Use->getOpcode() != ISD::BITCAST ||
8802      Use->getValueType(0).isFloatingPoint())
8803    return SDValue();
8804
8805  // Check profitability.
8806  // Model is, if more than half of the relevant operands are bitcast from
8807  // i32, turn the build_vector into a sequence of insert_vector_elt.
8808  // Relevant operands are everything that is not statically
8809  // (i.e., at compile time) bitcasted.
8810  unsigned NumOfBitCastedElts = 0;
8811  unsigned NumElts = VT.getVectorNumElements();
8812  unsigned NumOfRelevantElts = NumElts;
8813  for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
8814    SDValue Elt = N->getOperand(Idx);
8815    if (Elt->getOpcode() == ISD::BITCAST) {
8816      // Assume only bit cast to i32 will go away.
8817      if (Elt->getOperand(0).getValueType() == MVT::i32)
8818        ++NumOfBitCastedElts;
8819    } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
8820      // Constants are statically casted, thus do not count them as
8821      // relevant operands.
8822      --NumOfRelevantElts;
8823  }
8824
8825  // Check if more than half of the elements require a non-free bitcast.
8826  if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
8827    return SDValue();
8828
8829  SelectionDAG &DAG = DCI.DAG;
8830  // Create the new vector type.
8831  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
8832  // Check if the type is legal.
8833  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8834  if (!TLI.isTypeLegal(VecVT))
8835    return SDValue();
8836
8837  // Combine:
8838  // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
8839  // => BITCAST INSERT_VECTOR_ELT
8840  //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
8841  //                      (BITCAST EN), N.
8842  SDValue Vec = DAG.getUNDEF(VecVT);
8843  SDLoc dl(N);
8844  for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
8845    SDValue V = N->getOperand(Idx);
8846    if (V.getOpcode() == ISD::UNDEF)
8847      continue;
8848    if (V.getOpcode() == ISD::BITCAST &&
8849        V->getOperand(0).getValueType() == MVT::i32)
8850      // Fold obvious case.
8851      V = V.getOperand(0);
8852    else {
8853      V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
8854      // Make the DAGCombiner fold the bitcasts.
8855      DCI.AddToWorklist(V.getNode());
8856    }
8857    SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32);
8858    Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
8859  }
8860  Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
8861  // Make the DAGCombiner fold the bitcasts.
8862  DCI.AddToWorklist(Vec.getNode());
8863  return Vec;
8864}
8865
8866/// PerformInsertEltCombine - Target-specific dag combine xforms for
8867/// ISD::INSERT_VECTOR_ELT.
8868static SDValue PerformInsertEltCombine(SDNode *N,
8869                                       TargetLowering::DAGCombinerInfo &DCI) {
8870  // Bitcast an i64 load inserted into a vector to f64.
8871  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8872  EVT VT = N->getValueType(0);
8873  SDNode *Elt = N->getOperand(1).getNode();
8874  if (VT.getVectorElementType() != MVT::i64 ||
8875      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
8876    return SDValue();
8877
8878  SelectionDAG &DAG = DCI.DAG;
8879  SDLoc dl(N);
8880  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8881                                 VT.getVectorNumElements());
8882  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
8883  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
8884  // Make the DAGCombiner fold the bitcasts.
8885  DCI.AddToWorklist(Vec.getNode());
8886  DCI.AddToWorklist(V.getNode());
8887  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
8888                               Vec, V, N->getOperand(2));
8889  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
8890}
8891
8892/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
8893/// ISD::VECTOR_SHUFFLE.
8894static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
8895  // The LLVM shufflevector instruction does not require the shuffle mask
8896  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
8897  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
8898  // operands do not match the mask length, they are extended by concatenating
8899  // them with undef vectors.  That is probably the right thing for other
8900  // targets, but for NEON it is better to concatenate two double-register
8901  // size vector operands into a single quad-register size vector.  Do that
8902  // transformation here:
8903  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
8904  //   shuffle(concat(v1, v2), undef)
8905  SDValue Op0 = N->getOperand(0);
8906  SDValue Op1 = N->getOperand(1);
8907  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
8908      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
8909      Op0.getNumOperands() != 2 ||
8910      Op1.getNumOperands() != 2)
8911    return SDValue();
8912  SDValue Concat0Op1 = Op0.getOperand(1);
8913  SDValue Concat1Op1 = Op1.getOperand(1);
8914  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
8915      Concat1Op1.getOpcode() != ISD::UNDEF)
8916    return SDValue();
8917  // Skip the transformation if any of the types are illegal.
8918  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8919  EVT VT = N->getValueType(0);
8920  if (!TLI.isTypeLegal(VT) ||
8921      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
8922      !TLI.isTypeLegal(Concat1Op1.getValueType()))
8923    return SDValue();
8924
8925  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
8926                                  Op0.getOperand(0), Op1.getOperand(0));
8927  // Translate the shuffle mask.
8928  SmallVector<int, 16> NewMask;
8929  unsigned NumElts = VT.getVectorNumElements();
8930  unsigned HalfElts = NumElts/2;
8931  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8932  for (unsigned n = 0; n < NumElts; ++n) {
8933    int MaskElt = SVN->getMaskElt(n);
8934    int NewElt = -1;
8935    if (MaskElt < (int)HalfElts)
8936      NewElt = MaskElt;
8937    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
8938      NewElt = HalfElts + MaskElt - NumElts;
8939    NewMask.push_back(NewElt);
8940  }
8941  return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
8942                              DAG.getUNDEF(VT), NewMask.data());
8943}
8944
8945/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
8946/// NEON load/store intrinsics to merge base address updates.
8947static SDValue CombineBaseUpdate(SDNode *N,
8948                                 TargetLowering::DAGCombinerInfo &DCI) {
8949  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8950    return SDValue();
8951
8952  SelectionDAG &DAG = DCI.DAG;
8953  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
8954                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
8955  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
8956  SDValue Addr = N->getOperand(AddrOpIdx);
8957
8958  // Search for a use of the address operand that is an increment.
8959  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8960         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8961    SDNode *User = *UI;
8962    if (User->getOpcode() != ISD::ADD ||
8963        UI.getUse().getResNo() != Addr.getResNo())
8964      continue;
8965
8966    // Check that the add is independent of the load/store.  Otherwise, folding
8967    // it would create a cycle.
8968    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8969      continue;
8970
8971    // Find the new opcode for the updating load/store.
8972    bool isLoad = true;
8973    bool isLaneOp = false;
8974    unsigned NewOpc = 0;
8975    unsigned NumVecs = 0;
8976    if (isIntrinsic) {
8977      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8978      switch (IntNo) {
8979      default: llvm_unreachable("unexpected intrinsic for Neon base update");
8980      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
8981        NumVecs = 1; break;
8982      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
8983        NumVecs = 2; break;
8984      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
8985        NumVecs = 3; break;
8986      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
8987        NumVecs = 4; break;
8988      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
8989        NumVecs = 2; isLaneOp = true; break;
8990      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
8991        NumVecs = 3; isLaneOp = true; break;
8992      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
8993        NumVecs = 4; isLaneOp = true; break;
8994      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
8995        NumVecs = 1; isLoad = false; break;
8996      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
8997        NumVecs = 2; isLoad = false; break;
8998      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
8999        NumVecs = 3; isLoad = false; break;
9000      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
9001        NumVecs = 4; isLoad = false; break;
9002      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
9003        NumVecs = 2; isLoad = false; isLaneOp = true; break;
9004      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
9005        NumVecs = 3; isLoad = false; isLaneOp = true; break;
9006      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
9007        NumVecs = 4; isLoad = false; isLaneOp = true; break;
9008      }
9009    } else {
9010      isLaneOp = true;
9011      switch (N->getOpcode()) {
9012      default: llvm_unreachable("unexpected opcode for Neon base update");
9013      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
9014      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
9015      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
9016      }
9017    }
9018
9019    // Find the size of memory referenced by the load/store.
9020    EVT VecTy;
9021    if (isLoad)
9022      VecTy = N->getValueType(0);
9023    else
9024      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
9025    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9026    if (isLaneOp)
9027      NumBytes /= VecTy.getVectorNumElements();
9028
9029    // If the increment is a constant, it must match the memory ref size.
9030    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9031    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9032      uint64_t IncVal = CInc->getZExtValue();
9033      if (IncVal != NumBytes)
9034        continue;
9035    } else if (NumBytes >= 3 * 16) {
9036      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
9037      // separate instructions that make it harder to use a non-constant update.
9038      continue;
9039    }
9040
9041    // Create the new updating load/store node.
9042    EVT Tys[6];
9043    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
9044    unsigned n;
9045    for (n = 0; n < NumResultVecs; ++n)
9046      Tys[n] = VecTy;
9047    Tys[n++] = MVT::i32;
9048    Tys[n] = MVT::Other;
9049    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
9050    SmallVector<SDValue, 8> Ops;
9051    Ops.push_back(N->getOperand(0)); // incoming chain
9052    Ops.push_back(N->getOperand(AddrOpIdx));
9053    Ops.push_back(Inc);
9054    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
9055      Ops.push_back(N->getOperand(i));
9056    }
9057    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
9058    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
9059                                           Ops.data(), Ops.size(),
9060                                           MemInt->getMemoryVT(),
9061                                           MemInt->getMemOperand());
9062
9063    // Update the uses.
9064    std::vector<SDValue> NewResults;
9065    for (unsigned i = 0; i < NumResultVecs; ++i) {
9066      NewResults.push_back(SDValue(UpdN.getNode(), i));
9067    }
9068    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
9069    DCI.CombineTo(N, NewResults);
9070    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9071
9072    break;
9073  }
9074  return SDValue();
9075}
9076
9077/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
9078/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
9079/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
9080/// return true.
9081static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
9082  SelectionDAG &DAG = DCI.DAG;
9083  EVT VT = N->getValueType(0);
9084  // vldN-dup instructions only support 64-bit vectors for N > 1.
9085  if (!VT.is64BitVector())
9086    return false;
9087
9088  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
9089  SDNode *VLD = N->getOperand(0).getNode();
9090  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
9091    return false;
9092  unsigned NumVecs = 0;
9093  unsigned NewOpc = 0;
9094  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
9095  if (IntNo == Intrinsic::arm_neon_vld2lane) {
9096    NumVecs = 2;
9097    NewOpc = ARMISD::VLD2DUP;
9098  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
9099    NumVecs = 3;
9100    NewOpc = ARMISD::VLD3DUP;
9101  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
9102    NumVecs = 4;
9103    NewOpc = ARMISD::VLD4DUP;
9104  } else {
9105    return false;
9106  }
9107
9108  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
9109  // numbers match the load.
9110  unsigned VLDLaneNo =
9111    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
9112  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9113       UI != UE; ++UI) {
9114    // Ignore uses of the chain result.
9115    if (UI.getUse().getResNo() == NumVecs)
9116      continue;
9117    SDNode *User = *UI;
9118    if (User->getOpcode() != ARMISD::VDUPLANE ||
9119        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
9120      return false;
9121  }
9122
9123  // Create the vldN-dup node.
9124  EVT Tys[5];
9125  unsigned n;
9126  for (n = 0; n < NumVecs; ++n)
9127    Tys[n] = VT;
9128  Tys[n] = MVT::Other;
9129  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
9130  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
9131  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
9132  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
9133                                           Ops, 2, VLDMemInt->getMemoryVT(),
9134                                           VLDMemInt->getMemOperand());
9135
9136  // Update the uses.
9137  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9138       UI != UE; ++UI) {
9139    unsigned ResNo = UI.getUse().getResNo();
9140    // Ignore uses of the chain result.
9141    if (ResNo == NumVecs)
9142      continue;
9143    SDNode *User = *UI;
9144    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
9145  }
9146
9147  // Now the vldN-lane intrinsic is dead except for its chain result.
9148  // Update uses of the chain.
9149  std::vector<SDValue> VLDDupResults;
9150  for (unsigned n = 0; n < NumVecs; ++n)
9151    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
9152  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
9153  DCI.CombineTo(VLD, VLDDupResults);
9154
9155  return true;
9156}
9157
9158/// PerformVDUPLANECombine - Target-specific dag combine xforms for
9159/// ARMISD::VDUPLANE.
9160static SDValue PerformVDUPLANECombine(SDNode *N,
9161                                      TargetLowering::DAGCombinerInfo &DCI) {
9162  SDValue Op = N->getOperand(0);
9163
9164  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
9165  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
9166  if (CombineVLDDUP(N, DCI))
9167    return SDValue(N, 0);
9168
9169  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
9170  // redundant.  Ignore bit_converts for now; element sizes are checked below.
9171  while (Op.getOpcode() == ISD::BITCAST)
9172    Op = Op.getOperand(0);
9173  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
9174    return SDValue();
9175
9176  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
9177  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
9178  // The canonical VMOV for a zero vector uses a 32-bit element size.
9179  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9180  unsigned EltBits;
9181  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
9182    EltSize = 8;
9183  EVT VT = N->getValueType(0);
9184  if (EltSize > VT.getVectorElementType().getSizeInBits())
9185    return SDValue();
9186
9187  return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
9188}
9189
9190// isConstVecPow2 - Return true if each vector element is a power of 2, all
9191// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
9192static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
9193{
9194  integerPart cN;
9195  integerPart c0 = 0;
9196  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
9197       I != E; I++) {
9198    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
9199    if (!C)
9200      return false;
9201
9202    bool isExact;
9203    APFloat APF = C->getValueAPF();
9204    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
9205        != APFloat::opOK || !isExact)
9206      return false;
9207
9208    c0 = (I == 0) ? cN : c0;
9209    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
9210      return false;
9211  }
9212  C = c0;
9213  return true;
9214}
9215
9216/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
9217/// can replace combinations of VMUL and VCVT (floating-point to integer)
9218/// when the VMUL has a constant operand that is a power of 2.
9219///
9220/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
9221///  vmul.f32        d16, d17, d16
9222///  vcvt.s32.f32    d16, d16
9223/// becomes:
9224///  vcvt.s32.f32    d16, d16, #3
9225static SDValue PerformVCVTCombine(SDNode *N,
9226                                  TargetLowering::DAGCombinerInfo &DCI,
9227                                  const ARMSubtarget *Subtarget) {
9228  SelectionDAG &DAG = DCI.DAG;
9229  SDValue Op = N->getOperand(0);
9230
9231  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
9232      Op.getOpcode() != ISD::FMUL)
9233    return SDValue();
9234
9235  uint64_t C;
9236  SDValue N0 = Op->getOperand(0);
9237  SDValue ConstVec = Op->getOperand(1);
9238  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
9239
9240  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
9241      !isConstVecPow2(ConstVec, isSigned, C))
9242    return SDValue();
9243
9244  MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
9245  MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
9246  if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
9247    // These instructions only exist converting from f32 to i32. We can handle
9248    // smaller integers by generating an extra truncate, but larger ones would
9249    // be lossy.
9250    return SDValue();
9251  }
9252
9253  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
9254    Intrinsic::arm_neon_vcvtfp2fxu;
9255  unsigned NumLanes = Op.getValueType().getVectorNumElements();
9256  SDValue FixConv =  DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9257                                 NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9258                                 DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
9259                                 DAG.getConstant(Log2_64(C), MVT::i32));
9260
9261  if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9262    FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv);
9263
9264  return FixConv;
9265}
9266
9267/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
9268/// can replace combinations of VCVT (integer to floating-point) and VDIV
9269/// when the VDIV has a constant operand that is a power of 2.
9270///
9271/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
9272///  vcvt.f32.s32    d16, d16
9273///  vdiv.f32        d16, d17, d16
9274/// becomes:
9275///  vcvt.f32.s32    d16, d16, #3
9276static SDValue PerformVDIVCombine(SDNode *N,
9277                                  TargetLowering::DAGCombinerInfo &DCI,
9278                                  const ARMSubtarget *Subtarget) {
9279  SelectionDAG &DAG = DCI.DAG;
9280  SDValue Op = N->getOperand(0);
9281  unsigned OpOpcode = Op.getNode()->getOpcode();
9282
9283  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
9284      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
9285    return SDValue();
9286
9287  uint64_t C;
9288  SDValue ConstVec = N->getOperand(1);
9289  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
9290
9291  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
9292      !isConstVecPow2(ConstVec, isSigned, C))
9293    return SDValue();
9294
9295  MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
9296  MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
9297  if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
9298    // These instructions only exist converting from i32 to f32. We can handle
9299    // smaller integers by generating an extra extend, but larger ones would
9300    // be lossy.
9301    return SDValue();
9302  }
9303
9304  SDValue ConvInput = Op.getOperand(0);
9305  unsigned NumLanes = Op.getValueType().getVectorNumElements();
9306  if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9307    ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9308                            SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9309                            ConvInput);
9310
9311  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
9312    Intrinsic::arm_neon_vcvtfxu2fp;
9313  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9314                     Op.getValueType(),
9315                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
9316                     ConvInput, DAG.getConstant(Log2_64(C), MVT::i32));
9317}
9318
9319/// Getvshiftimm - Check if this is a valid build_vector for the immediate
9320/// operand of a vector shift operation, where all the elements of the
9321/// build_vector must have the same constant integer value.
9322static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
9323  // Ignore bit_converts.
9324  while (Op.getOpcode() == ISD::BITCAST)
9325    Op = Op.getOperand(0);
9326  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9327  APInt SplatBits, SplatUndef;
9328  unsigned SplatBitSize;
9329  bool HasAnyUndefs;
9330  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
9331                                      HasAnyUndefs, ElementBits) ||
9332      SplatBitSize > ElementBits)
9333    return false;
9334  Cnt = SplatBits.getSExtValue();
9335  return true;
9336}
9337
9338/// isVShiftLImm - Check if this is a valid build_vector for the immediate
9339/// operand of a vector shift left operation.  That value must be in the range:
9340///   0 <= Value < ElementBits for a left shift; or
9341///   0 <= Value <= ElementBits for a long left shift.
9342static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
9343  assert(VT.isVector() && "vector shift count is not a vector type");
9344  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9345  if (! getVShiftImm(Op, ElementBits, Cnt))
9346    return false;
9347  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
9348}
9349
9350/// isVShiftRImm - Check if this is a valid build_vector for the immediate
9351/// operand of a vector shift right operation.  For a shift opcode, the value
9352/// is positive, but for an intrinsic the value count must be negative. The
9353/// absolute value must be in the range:
9354///   1 <= |Value| <= ElementBits for a right shift; or
9355///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
9356static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
9357                         int64_t &Cnt) {
9358  assert(VT.isVector() && "vector shift count is not a vector type");
9359  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9360  if (! getVShiftImm(Op, ElementBits, Cnt))
9361    return false;
9362  if (isIntrinsic)
9363    Cnt = -Cnt;
9364  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
9365}
9366
9367/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
9368static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
9369  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9370  switch (IntNo) {
9371  default:
9372    // Don't do anything for most intrinsics.
9373    break;
9374
9375  // Vector shifts: check for immediate versions and lower them.
9376  // Note: This is done during DAG combining instead of DAG legalizing because
9377  // the build_vectors for 64-bit vector element shift counts are generally
9378  // not legal, and it is hard to see their values after they get legalized to
9379  // loads from a constant pool.
9380  case Intrinsic::arm_neon_vshifts:
9381  case Intrinsic::arm_neon_vshiftu:
9382  case Intrinsic::arm_neon_vshiftls:
9383  case Intrinsic::arm_neon_vshiftlu:
9384  case Intrinsic::arm_neon_vshiftn:
9385  case Intrinsic::arm_neon_vrshifts:
9386  case Intrinsic::arm_neon_vrshiftu:
9387  case Intrinsic::arm_neon_vrshiftn:
9388  case Intrinsic::arm_neon_vqshifts:
9389  case Intrinsic::arm_neon_vqshiftu:
9390  case Intrinsic::arm_neon_vqshiftsu:
9391  case Intrinsic::arm_neon_vqshiftns:
9392  case Intrinsic::arm_neon_vqshiftnu:
9393  case Intrinsic::arm_neon_vqshiftnsu:
9394  case Intrinsic::arm_neon_vqrshiftns:
9395  case Intrinsic::arm_neon_vqrshiftnu:
9396  case Intrinsic::arm_neon_vqrshiftnsu: {
9397    EVT VT = N->getOperand(1).getValueType();
9398    int64_t Cnt;
9399    unsigned VShiftOpc = 0;
9400
9401    switch (IntNo) {
9402    case Intrinsic::arm_neon_vshifts:
9403    case Intrinsic::arm_neon_vshiftu:
9404      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
9405        VShiftOpc = ARMISD::VSHL;
9406        break;
9407      }
9408      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
9409        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
9410                     ARMISD::VSHRs : ARMISD::VSHRu);
9411        break;
9412      }
9413      return SDValue();
9414
9415    case Intrinsic::arm_neon_vshiftls:
9416    case Intrinsic::arm_neon_vshiftlu:
9417      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
9418        break;
9419      llvm_unreachable("invalid shift count for vshll intrinsic");
9420
9421    case Intrinsic::arm_neon_vrshifts:
9422    case Intrinsic::arm_neon_vrshiftu:
9423      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
9424        break;
9425      return SDValue();
9426
9427    case Intrinsic::arm_neon_vqshifts:
9428    case Intrinsic::arm_neon_vqshiftu:
9429      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9430        break;
9431      return SDValue();
9432
9433    case Intrinsic::arm_neon_vqshiftsu:
9434      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9435        break;
9436      llvm_unreachable("invalid shift count for vqshlu intrinsic");
9437
9438    case Intrinsic::arm_neon_vshiftn:
9439    case Intrinsic::arm_neon_vrshiftn:
9440    case Intrinsic::arm_neon_vqshiftns:
9441    case Intrinsic::arm_neon_vqshiftnu:
9442    case Intrinsic::arm_neon_vqshiftnsu:
9443    case Intrinsic::arm_neon_vqrshiftns:
9444    case Intrinsic::arm_neon_vqrshiftnu:
9445    case Intrinsic::arm_neon_vqrshiftnsu:
9446      // Narrowing shifts require an immediate right shift.
9447      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
9448        break;
9449      llvm_unreachable("invalid shift count for narrowing vector shift "
9450                       "intrinsic");
9451
9452    default:
9453      llvm_unreachable("unhandled vector shift");
9454    }
9455
9456    switch (IntNo) {
9457    case Intrinsic::arm_neon_vshifts:
9458    case Intrinsic::arm_neon_vshiftu:
9459      // Opcode already set above.
9460      break;
9461    case Intrinsic::arm_neon_vshiftls:
9462    case Intrinsic::arm_neon_vshiftlu:
9463      if (Cnt == VT.getVectorElementType().getSizeInBits())
9464        VShiftOpc = ARMISD::VSHLLi;
9465      else
9466        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
9467                     ARMISD::VSHLLs : ARMISD::VSHLLu);
9468      break;
9469    case Intrinsic::arm_neon_vshiftn:
9470      VShiftOpc = ARMISD::VSHRN; break;
9471    case Intrinsic::arm_neon_vrshifts:
9472      VShiftOpc = ARMISD::VRSHRs; break;
9473    case Intrinsic::arm_neon_vrshiftu:
9474      VShiftOpc = ARMISD::VRSHRu; break;
9475    case Intrinsic::arm_neon_vrshiftn:
9476      VShiftOpc = ARMISD::VRSHRN; break;
9477    case Intrinsic::arm_neon_vqshifts:
9478      VShiftOpc = ARMISD::VQSHLs; break;
9479    case Intrinsic::arm_neon_vqshiftu:
9480      VShiftOpc = ARMISD::VQSHLu; break;
9481    case Intrinsic::arm_neon_vqshiftsu:
9482      VShiftOpc = ARMISD::VQSHLsu; break;
9483    case Intrinsic::arm_neon_vqshiftns:
9484      VShiftOpc = ARMISD::VQSHRNs; break;
9485    case Intrinsic::arm_neon_vqshiftnu:
9486      VShiftOpc = ARMISD::VQSHRNu; break;
9487    case Intrinsic::arm_neon_vqshiftnsu:
9488      VShiftOpc = ARMISD::VQSHRNsu; break;
9489    case Intrinsic::arm_neon_vqrshiftns:
9490      VShiftOpc = ARMISD::VQRSHRNs; break;
9491    case Intrinsic::arm_neon_vqrshiftnu:
9492      VShiftOpc = ARMISD::VQRSHRNu; break;
9493    case Intrinsic::arm_neon_vqrshiftnsu:
9494      VShiftOpc = ARMISD::VQRSHRNsu; break;
9495    }
9496
9497    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9498                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
9499  }
9500
9501  case Intrinsic::arm_neon_vshiftins: {
9502    EVT VT = N->getOperand(1).getValueType();
9503    int64_t Cnt;
9504    unsigned VShiftOpc = 0;
9505
9506    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
9507      VShiftOpc = ARMISD::VSLI;
9508    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
9509      VShiftOpc = ARMISD::VSRI;
9510    else {
9511      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
9512    }
9513
9514    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9515                       N->getOperand(1), N->getOperand(2),
9516                       DAG.getConstant(Cnt, MVT::i32));
9517  }
9518
9519  case Intrinsic::arm_neon_vqrshifts:
9520  case Intrinsic::arm_neon_vqrshiftu:
9521    // No immediate versions of these to check for.
9522    break;
9523  }
9524
9525  return SDValue();
9526}
9527
9528/// PerformShiftCombine - Checks for immediate versions of vector shifts and
9529/// lowers them.  As with the vector shift intrinsics, this is done during DAG
9530/// combining instead of DAG legalizing because the build_vectors for 64-bit
9531/// vector element shift counts are generally not legal, and it is hard to see
9532/// their values after they get legalized to loads from a constant pool.
9533static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
9534                                   const ARMSubtarget *ST) {
9535  EVT VT = N->getValueType(0);
9536  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
9537    // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
9538    // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
9539    SDValue N1 = N->getOperand(1);
9540    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9541      SDValue N0 = N->getOperand(0);
9542      if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
9543          DAG.MaskedValueIsZero(N0.getOperand(0),
9544                                APInt::getHighBitsSet(32, 16)))
9545        return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
9546    }
9547  }
9548
9549  // Nothing to be done for scalar shifts.
9550  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9551  if (!VT.isVector() || !TLI.isTypeLegal(VT))
9552    return SDValue();
9553
9554  assert(ST->hasNEON() && "unexpected vector shift");
9555  int64_t Cnt;
9556
9557  switch (N->getOpcode()) {
9558  default: llvm_unreachable("unexpected shift opcode");
9559
9560  case ISD::SHL:
9561    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
9562      return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0),
9563                         DAG.getConstant(Cnt, MVT::i32));
9564    break;
9565
9566  case ISD::SRA:
9567  case ISD::SRL:
9568    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
9569      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
9570                            ARMISD::VSHRs : ARMISD::VSHRu);
9571      return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0),
9572                         DAG.getConstant(Cnt, MVT::i32));
9573    }
9574  }
9575  return SDValue();
9576}
9577
9578/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
9579/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
9580static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
9581                                    const ARMSubtarget *ST) {
9582  SDValue N0 = N->getOperand(0);
9583
9584  // Check for sign- and zero-extensions of vector extract operations of 8-
9585  // and 16-bit vector elements.  NEON supports these directly.  They are
9586  // handled during DAG combining because type legalization will promote them
9587  // to 32-bit types and it is messy to recognize the operations after that.
9588  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9589    SDValue Vec = N0.getOperand(0);
9590    SDValue Lane = N0.getOperand(1);
9591    EVT VT = N->getValueType(0);
9592    EVT EltVT = N0.getValueType();
9593    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9594
9595    if (VT == MVT::i32 &&
9596        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
9597        TLI.isTypeLegal(Vec.getValueType()) &&
9598        isa<ConstantSDNode>(Lane)) {
9599
9600      unsigned Opc = 0;
9601      switch (N->getOpcode()) {
9602      default: llvm_unreachable("unexpected opcode");
9603      case ISD::SIGN_EXTEND:
9604        Opc = ARMISD::VGETLANEs;
9605        break;
9606      case ISD::ZERO_EXTEND:
9607      case ISD::ANY_EXTEND:
9608        Opc = ARMISD::VGETLANEu;
9609        break;
9610      }
9611      return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
9612    }
9613  }
9614
9615  return SDValue();
9616}
9617
9618/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
9619/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
9620static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
9621                                       const ARMSubtarget *ST) {
9622  // If the target supports NEON, try to use vmax/vmin instructions for f32
9623  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
9624  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
9625  // a NaN; only do the transformation when it matches that behavior.
9626
9627  // For now only do this when using NEON for FP operations; if using VFP, it
9628  // is not obvious that the benefit outweighs the cost of switching to the
9629  // NEON pipeline.
9630  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
9631      N->getValueType(0) != MVT::f32)
9632    return SDValue();
9633
9634  SDValue CondLHS = N->getOperand(0);
9635  SDValue CondRHS = N->getOperand(1);
9636  SDValue LHS = N->getOperand(2);
9637  SDValue RHS = N->getOperand(3);
9638  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
9639
9640  unsigned Opcode = 0;
9641  bool IsReversed;
9642  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
9643    IsReversed = false; // x CC y ? x : y
9644  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
9645    IsReversed = true ; // x CC y ? y : x
9646  } else {
9647    return SDValue();
9648  }
9649
9650  bool IsUnordered;
9651  switch (CC) {
9652  default: break;
9653  case ISD::SETOLT:
9654  case ISD::SETOLE:
9655  case ISD::SETLT:
9656  case ISD::SETLE:
9657  case ISD::SETULT:
9658  case ISD::SETULE:
9659    // If LHS is NaN, an ordered comparison will be false and the result will
9660    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
9661    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9662    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
9663    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9664      break;
9665    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
9666    // will return -0, so vmin can only be used for unsafe math or if one of
9667    // the operands is known to be nonzero.
9668    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
9669        !DAG.getTarget().Options.UnsafeFPMath &&
9670        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9671      break;
9672    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
9673    break;
9674
9675  case ISD::SETOGT:
9676  case ISD::SETOGE:
9677  case ISD::SETGT:
9678  case ISD::SETGE:
9679  case ISD::SETUGT:
9680  case ISD::SETUGE:
9681    // If LHS is NaN, an ordered comparison will be false and the result will
9682    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
9683    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9684    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
9685    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9686      break;
9687    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
9688    // will return +0, so vmax can only be used for unsafe math or if one of
9689    // the operands is known to be nonzero.
9690    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
9691        !DAG.getTarget().Options.UnsafeFPMath &&
9692        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9693      break;
9694    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
9695    break;
9696  }
9697
9698  if (!Opcode)
9699    return SDValue();
9700  return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
9701}
9702
9703/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
9704SDValue
9705ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
9706  SDValue Cmp = N->getOperand(4);
9707  if (Cmp.getOpcode() != ARMISD::CMPZ)
9708    // Only looking at EQ and NE cases.
9709    return SDValue();
9710
9711  EVT VT = N->getValueType(0);
9712  SDLoc dl(N);
9713  SDValue LHS = Cmp.getOperand(0);
9714  SDValue RHS = Cmp.getOperand(1);
9715  SDValue FalseVal = N->getOperand(0);
9716  SDValue TrueVal = N->getOperand(1);
9717  SDValue ARMcc = N->getOperand(2);
9718  ARMCC::CondCodes CC =
9719    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
9720
9721  // Simplify
9722  //   mov     r1, r0
9723  //   cmp     r1, x
9724  //   mov     r0, y
9725  //   moveq   r0, x
9726  // to
9727  //   cmp     r0, x
9728  //   movne   r0, y
9729  //
9730  //   mov     r1, r0
9731  //   cmp     r1, x
9732  //   mov     r0, x
9733  //   movne   r0, y
9734  // to
9735  //   cmp     r0, x
9736  //   movne   r0, y
9737  /// FIXME: Turn this into a target neutral optimization?
9738  SDValue Res;
9739  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
9740    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
9741                      N->getOperand(3), Cmp);
9742  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
9743    SDValue ARMcc;
9744    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
9745    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
9746                      N->getOperand(3), NewCmp);
9747  }
9748
9749  if (Res.getNode()) {
9750    APInt KnownZero, KnownOne;
9751    DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
9752    // Capture demanded bits information that would be otherwise lost.
9753    if (KnownZero == 0xfffffffe)
9754      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9755                        DAG.getValueType(MVT::i1));
9756    else if (KnownZero == 0xffffff00)
9757      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9758                        DAG.getValueType(MVT::i8));
9759    else if (KnownZero == 0xffff0000)
9760      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9761                        DAG.getValueType(MVT::i16));
9762  }
9763
9764  return Res;
9765}
9766
9767SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
9768                                             DAGCombinerInfo &DCI) const {
9769  switch (N->getOpcode()) {
9770  default: break;
9771  case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
9772  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
9773  case ISD::SUB:        return PerformSUBCombine(N, DCI);
9774  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
9775  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
9776  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
9777  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
9778  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
9779  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
9780  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
9781  case ISD::STORE:      return PerformSTORECombine(N, DCI);
9782  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
9783  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
9784  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
9785  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
9786  case ISD::FP_TO_SINT:
9787  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
9788  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
9789  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
9790  case ISD::SHL:
9791  case ISD::SRA:
9792  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
9793  case ISD::SIGN_EXTEND:
9794  case ISD::ZERO_EXTEND:
9795  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
9796  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
9797  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
9798  case ARMISD::VLD2DUP:
9799  case ARMISD::VLD3DUP:
9800  case ARMISD::VLD4DUP:
9801    return CombineBaseUpdate(N, DCI);
9802  case ARMISD::BUILD_VECTOR:
9803    return PerformARMBUILD_VECTORCombine(N, DCI);
9804  case ISD::INTRINSIC_VOID:
9805  case ISD::INTRINSIC_W_CHAIN:
9806    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9807    case Intrinsic::arm_neon_vld1:
9808    case Intrinsic::arm_neon_vld2:
9809    case Intrinsic::arm_neon_vld3:
9810    case Intrinsic::arm_neon_vld4:
9811    case Intrinsic::arm_neon_vld2lane:
9812    case Intrinsic::arm_neon_vld3lane:
9813    case Intrinsic::arm_neon_vld4lane:
9814    case Intrinsic::arm_neon_vst1:
9815    case Intrinsic::arm_neon_vst2:
9816    case Intrinsic::arm_neon_vst3:
9817    case Intrinsic::arm_neon_vst4:
9818    case Intrinsic::arm_neon_vst2lane:
9819    case Intrinsic::arm_neon_vst3lane:
9820    case Intrinsic::arm_neon_vst4lane:
9821      return CombineBaseUpdate(N, DCI);
9822    default: break;
9823    }
9824    break;
9825  }
9826  return SDValue();
9827}
9828
9829bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
9830                                                          EVT VT) const {
9831  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
9832}
9833
9834bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
9835  // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
9836  bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
9837
9838  switch (VT.getSimpleVT().SimpleTy) {
9839  default:
9840    return false;
9841  case MVT::i8:
9842  case MVT::i16:
9843  case MVT::i32: {
9844    // Unaligned access can use (for example) LRDB, LRDH, LDR
9845    if (AllowsUnaligned) {
9846      if (Fast)
9847        *Fast = Subtarget->hasV7Ops();
9848      return true;
9849    }
9850    return false;
9851  }
9852  case MVT::f64:
9853  case MVT::v2f64: {
9854    // For any little-endian targets with neon, we can support unaligned ld/st
9855    // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
9856    // A big-endian target may also explictly support unaligned accesses
9857    if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
9858      if (Fast)
9859        *Fast = true;
9860      return true;
9861    }
9862    return false;
9863  }
9864  }
9865}
9866
9867static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9868                       unsigned AlignCheck) {
9869  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9870          (DstAlign == 0 || DstAlign % AlignCheck == 0));
9871}
9872
9873EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
9874                                           unsigned DstAlign, unsigned SrcAlign,
9875                                           bool IsMemset, bool ZeroMemset,
9876                                           bool MemcpyStrSrc,
9877                                           MachineFunction &MF) const {
9878  const Function *F = MF.getFunction();
9879
9880  // See if we can use NEON instructions for this...
9881  if ((!IsMemset || ZeroMemset) &&
9882      Subtarget->hasNEON() &&
9883      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
9884                                       Attribute::NoImplicitFloat)) {
9885    bool Fast;
9886    if (Size >= 16 &&
9887        (memOpAlign(SrcAlign, DstAlign, 16) ||
9888         (allowsUnalignedMemoryAccesses(MVT::v2f64, &Fast) && Fast))) {
9889      return MVT::v2f64;
9890    } else if (Size >= 8 &&
9891               (memOpAlign(SrcAlign, DstAlign, 8) ||
9892                (allowsUnalignedMemoryAccesses(MVT::f64, &Fast) && Fast))) {
9893      return MVT::f64;
9894    }
9895  }
9896
9897  // Lowering to i32/i16 if the size permits.
9898  if (Size >= 4)
9899    return MVT::i32;
9900  else if (Size >= 2)
9901    return MVT::i16;
9902
9903  // Let the target-independent logic figure it out.
9904  return MVT::Other;
9905}
9906
9907bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
9908  if (Val.getOpcode() != ISD::LOAD)
9909    return false;
9910
9911  EVT VT1 = Val.getValueType();
9912  if (!VT1.isSimple() || !VT1.isInteger() ||
9913      !VT2.isSimple() || !VT2.isInteger())
9914    return false;
9915
9916  switch (VT1.getSimpleVT().SimpleTy) {
9917  default: break;
9918  case MVT::i1:
9919  case MVT::i8:
9920  case MVT::i16:
9921    // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
9922    return true;
9923  }
9924
9925  return false;
9926}
9927
9928static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
9929  if (V < 0)
9930    return false;
9931
9932  unsigned Scale = 1;
9933  switch (VT.getSimpleVT().SimpleTy) {
9934  default: return false;
9935  case MVT::i1:
9936  case MVT::i8:
9937    // Scale == 1;
9938    break;
9939  case MVT::i16:
9940    // Scale == 2;
9941    Scale = 2;
9942    break;
9943  case MVT::i32:
9944    // Scale == 4;
9945    Scale = 4;
9946    break;
9947  }
9948
9949  if ((V & (Scale - 1)) != 0)
9950    return false;
9951  V /= Scale;
9952  return V == (V & ((1LL << 5) - 1));
9953}
9954
9955static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
9956                                      const ARMSubtarget *Subtarget) {
9957  bool isNeg = false;
9958  if (V < 0) {
9959    isNeg = true;
9960    V = - V;
9961  }
9962
9963  switch (VT.getSimpleVT().SimpleTy) {
9964  default: return false;
9965  case MVT::i1:
9966  case MVT::i8:
9967  case MVT::i16:
9968  case MVT::i32:
9969    // + imm12 or - imm8
9970    if (isNeg)
9971      return V == (V & ((1LL << 8) - 1));
9972    return V == (V & ((1LL << 12) - 1));
9973  case MVT::f32:
9974  case MVT::f64:
9975    // Same as ARM mode. FIXME: NEON?
9976    if (!Subtarget->hasVFP2())
9977      return false;
9978    if ((V & 3) != 0)
9979      return false;
9980    V >>= 2;
9981    return V == (V & ((1LL << 8) - 1));
9982  }
9983}
9984
9985/// isLegalAddressImmediate - Return true if the integer value can be used
9986/// as the offset of the target addressing mode for load / store of the
9987/// given type.
9988static bool isLegalAddressImmediate(int64_t V, EVT VT,
9989                                    const ARMSubtarget *Subtarget) {
9990  if (V == 0)
9991    return true;
9992
9993  if (!VT.isSimple())
9994    return false;
9995
9996  if (Subtarget->isThumb1Only())
9997    return isLegalT1AddressImmediate(V, VT);
9998  else if (Subtarget->isThumb2())
9999    return isLegalT2AddressImmediate(V, VT, Subtarget);
10000
10001  // ARM mode.
10002  if (V < 0)
10003    V = - V;
10004  switch (VT.getSimpleVT().SimpleTy) {
10005  default: return false;
10006  case MVT::i1:
10007  case MVT::i8:
10008  case MVT::i32:
10009    // +- imm12
10010    return V == (V & ((1LL << 12) - 1));
10011  case MVT::i16:
10012    // +- imm8
10013    return V == (V & ((1LL << 8) - 1));
10014  case MVT::f32:
10015  case MVT::f64:
10016    if (!Subtarget->hasVFP2()) // FIXME: NEON?
10017      return false;
10018    if ((V & 3) != 0)
10019      return false;
10020    V >>= 2;
10021    return V == (V & ((1LL << 8) - 1));
10022  }
10023}
10024
10025bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
10026                                                      EVT VT) const {
10027  int Scale = AM.Scale;
10028  if (Scale < 0)
10029    return false;
10030
10031  switch (VT.getSimpleVT().SimpleTy) {
10032  default: return false;
10033  case MVT::i1:
10034  case MVT::i8:
10035  case MVT::i16:
10036  case MVT::i32:
10037    if (Scale == 1)
10038      return true;
10039    // r + r << imm
10040    Scale = Scale & ~1;
10041    return Scale == 2 || Scale == 4 || Scale == 8;
10042  case MVT::i64:
10043    // r + r
10044    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
10045      return true;
10046    return false;
10047  case MVT::isVoid:
10048    // Note, we allow "void" uses (basically, uses that aren't loads or
10049    // stores), because arm allows folding a scale into many arithmetic
10050    // operations.  This should be made more precise and revisited later.
10051
10052    // Allow r << imm, but the imm has to be a multiple of two.
10053    if (Scale & 1) return false;
10054    return isPowerOf2_32(Scale);
10055  }
10056}
10057
10058/// isLegalAddressingMode - Return true if the addressing mode represented
10059/// by AM is legal for this target, for a load/store of the specified type.
10060bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
10061                                              Type *Ty) const {
10062  EVT VT = getValueType(Ty, true);
10063  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
10064    return false;
10065
10066  // Can never fold addr of global into load/store.
10067  if (AM.BaseGV)
10068    return false;
10069
10070  switch (AM.Scale) {
10071  case 0:  // no scale reg, must be "r+i" or "r", or "i".
10072    break;
10073  case 1:
10074    if (Subtarget->isThumb1Only())
10075      return false;
10076    // FALL THROUGH.
10077  default:
10078    // ARM doesn't support any R+R*scale+imm addr modes.
10079    if (AM.BaseOffs)
10080      return false;
10081
10082    if (!VT.isSimple())
10083      return false;
10084
10085    if (Subtarget->isThumb2())
10086      return isLegalT2ScaledAddressingMode(AM, VT);
10087
10088    int Scale = AM.Scale;
10089    switch (VT.getSimpleVT().SimpleTy) {
10090    default: return false;
10091    case MVT::i1:
10092    case MVT::i8:
10093    case MVT::i32:
10094      if (Scale < 0) Scale = -Scale;
10095      if (Scale == 1)
10096        return true;
10097      // r + r << imm
10098      return isPowerOf2_32(Scale & ~1);
10099    case MVT::i16:
10100    case MVT::i64:
10101      // r + r
10102      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
10103        return true;
10104      return false;
10105
10106    case MVT::isVoid:
10107      // Note, we allow "void" uses (basically, uses that aren't loads or
10108      // stores), because arm allows folding a scale into many arithmetic
10109      // operations.  This should be made more precise and revisited later.
10110
10111      // Allow r << imm, but the imm has to be a multiple of two.
10112      if (Scale & 1) return false;
10113      return isPowerOf2_32(Scale);
10114    }
10115  }
10116  return true;
10117}
10118
10119/// isLegalICmpImmediate - Return true if the specified immediate is legal
10120/// icmp immediate, that is the target has icmp instructions which can compare
10121/// a register against the immediate without having to materialize the
10122/// immediate into a register.
10123bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
10124  // Thumb2 and ARM modes can use cmn for negative immediates.
10125  if (!Subtarget->isThumb())
10126    return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
10127  if (Subtarget->isThumb2())
10128    return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
10129  // Thumb1 doesn't have cmn, and only 8-bit immediates.
10130  return Imm >= 0 && Imm <= 255;
10131}
10132
10133/// isLegalAddImmediate - Return true if the specified immediate is a legal add
10134/// *or sub* immediate, that is the target has add or sub instructions which can
10135/// add a register with the immediate without having to materialize the
10136/// immediate into a register.
10137bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
10138  // Same encoding for add/sub, just flip the sign.
10139  int64_t AbsImm = llvm::abs64(Imm);
10140  if (!Subtarget->isThumb())
10141    return ARM_AM::getSOImmVal(AbsImm) != -1;
10142  if (Subtarget->isThumb2())
10143    return ARM_AM::getT2SOImmVal(AbsImm) != -1;
10144  // Thumb1 only has 8-bit unsigned immediate.
10145  return AbsImm >= 0 && AbsImm <= 255;
10146}
10147
10148static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
10149                                      bool isSEXTLoad, SDValue &Base,
10150                                      SDValue &Offset, bool &isInc,
10151                                      SelectionDAG &DAG) {
10152  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
10153    return false;
10154
10155  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
10156    // AddressingMode 3
10157    Base = Ptr->getOperand(0);
10158    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10159      int RHSC = (int)RHS->getZExtValue();
10160      if (RHSC < 0 && RHSC > -256) {
10161        assert(Ptr->getOpcode() == ISD::ADD);
10162        isInc = false;
10163        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10164        return true;
10165      }
10166    }
10167    isInc = (Ptr->getOpcode() == ISD::ADD);
10168    Offset = Ptr->getOperand(1);
10169    return true;
10170  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
10171    // AddressingMode 2
10172    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10173      int RHSC = (int)RHS->getZExtValue();
10174      if (RHSC < 0 && RHSC > -0x1000) {
10175        assert(Ptr->getOpcode() == ISD::ADD);
10176        isInc = false;
10177        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10178        Base = Ptr->getOperand(0);
10179        return true;
10180      }
10181    }
10182
10183    if (Ptr->getOpcode() == ISD::ADD) {
10184      isInc = true;
10185      ARM_AM::ShiftOpc ShOpcVal=
10186        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
10187      if (ShOpcVal != ARM_AM::no_shift) {
10188        Base = Ptr->getOperand(1);
10189        Offset = Ptr->getOperand(0);
10190      } else {
10191        Base = Ptr->getOperand(0);
10192        Offset = Ptr->getOperand(1);
10193      }
10194      return true;
10195    }
10196
10197    isInc = (Ptr->getOpcode() == ISD::ADD);
10198    Base = Ptr->getOperand(0);
10199    Offset = Ptr->getOperand(1);
10200    return true;
10201  }
10202
10203  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
10204  return false;
10205}
10206
10207static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
10208                                     bool isSEXTLoad, SDValue &Base,
10209                                     SDValue &Offset, bool &isInc,
10210                                     SelectionDAG &DAG) {
10211  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
10212    return false;
10213
10214  Base = Ptr->getOperand(0);
10215  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10216    int RHSC = (int)RHS->getZExtValue();
10217    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
10218      assert(Ptr->getOpcode() == ISD::ADD);
10219      isInc = false;
10220      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10221      return true;
10222    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
10223      isInc = Ptr->getOpcode() == ISD::ADD;
10224      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
10225      return true;
10226    }
10227  }
10228
10229  return false;
10230}
10231
10232/// getPreIndexedAddressParts - returns true by value, base pointer and
10233/// offset pointer and addressing mode by reference if the node's address
10234/// can be legally represented as pre-indexed load / store address.
10235bool
10236ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
10237                                             SDValue &Offset,
10238                                             ISD::MemIndexedMode &AM,
10239                                             SelectionDAG &DAG) const {
10240  if (Subtarget->isThumb1Only())
10241    return false;
10242
10243  EVT VT;
10244  SDValue Ptr;
10245  bool isSEXTLoad = false;
10246  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10247    Ptr = LD->getBasePtr();
10248    VT  = LD->getMemoryVT();
10249    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10250  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10251    Ptr = ST->getBasePtr();
10252    VT  = ST->getMemoryVT();
10253  } else
10254    return false;
10255
10256  bool isInc;
10257  bool isLegal = false;
10258  if (Subtarget->isThumb2())
10259    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10260                                       Offset, isInc, DAG);
10261  else
10262    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10263                                        Offset, isInc, DAG);
10264  if (!isLegal)
10265    return false;
10266
10267  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
10268  return true;
10269}
10270
10271/// getPostIndexedAddressParts - returns true by value, base pointer and
10272/// offset pointer and addressing mode by reference if this node can be
10273/// combined with a load / store to form a post-indexed load / store.
10274bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
10275                                                   SDValue &Base,
10276                                                   SDValue &Offset,
10277                                                   ISD::MemIndexedMode &AM,
10278                                                   SelectionDAG &DAG) const {
10279  if (Subtarget->isThumb1Only())
10280    return false;
10281
10282  EVT VT;
10283  SDValue Ptr;
10284  bool isSEXTLoad = false;
10285  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10286    VT  = LD->getMemoryVT();
10287    Ptr = LD->getBasePtr();
10288    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10289  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10290    VT  = ST->getMemoryVT();
10291    Ptr = ST->getBasePtr();
10292  } else
10293    return false;
10294
10295  bool isInc;
10296  bool isLegal = false;
10297  if (Subtarget->isThumb2())
10298    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10299                                       isInc, DAG);
10300  else
10301    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10302                                        isInc, DAG);
10303  if (!isLegal)
10304    return false;
10305
10306  if (Ptr != Base) {
10307    // Swap base ptr and offset to catch more post-index load / store when
10308    // it's legal. In Thumb2 mode, offset must be an immediate.
10309    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
10310        !Subtarget->isThumb2())
10311      std::swap(Base, Offset);
10312
10313    // Post-indexed load / store update the base pointer.
10314    if (Ptr != Base)
10315      return false;
10316  }
10317
10318  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
10319  return true;
10320}
10321
10322void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10323                                                       APInt &KnownZero,
10324                                                       APInt &KnownOne,
10325                                                       const SelectionDAG &DAG,
10326                                                       unsigned Depth) const {
10327  unsigned BitWidth = KnownOne.getBitWidth();
10328  KnownZero = KnownOne = APInt(BitWidth, 0);
10329  switch (Op.getOpcode()) {
10330  default: break;
10331  case ARMISD::ADDC:
10332  case ARMISD::ADDE:
10333  case ARMISD::SUBC:
10334  case ARMISD::SUBE:
10335    // These nodes' second result is a boolean
10336    if (Op.getResNo() == 0)
10337      break;
10338    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
10339    break;
10340  case ARMISD::CMOV: {
10341    // Bits are known zero/one if known on the LHS and RHS.
10342    DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
10343    if (KnownZero == 0 && KnownOne == 0) return;
10344
10345    APInt KnownZeroRHS, KnownOneRHS;
10346    DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
10347    KnownZero &= KnownZeroRHS;
10348    KnownOne  &= KnownOneRHS;
10349    return;
10350  }
10351  }
10352}
10353
10354//===----------------------------------------------------------------------===//
10355//                           ARM Inline Assembly Support
10356//===----------------------------------------------------------------------===//
10357
10358bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
10359  // Looking for "rev" which is V6+.
10360  if (!Subtarget->hasV6Ops())
10361    return false;
10362
10363  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10364  std::string AsmStr = IA->getAsmString();
10365  SmallVector<StringRef, 4> AsmPieces;
10366  SplitString(AsmStr, AsmPieces, ";\n");
10367
10368  switch (AsmPieces.size()) {
10369  default: return false;
10370  case 1:
10371    AsmStr = AsmPieces[0];
10372    AsmPieces.clear();
10373    SplitString(AsmStr, AsmPieces, " \t,");
10374
10375    // rev $0, $1
10376    if (AsmPieces.size() == 3 &&
10377        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
10378        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
10379      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10380      if (Ty && Ty->getBitWidth() == 32)
10381        return IntrinsicLowering::LowerToByteSwap(CI);
10382    }
10383    break;
10384  }
10385
10386  return false;
10387}
10388
10389/// getConstraintType - Given a constraint letter, return the type of
10390/// constraint it is for this target.
10391ARMTargetLowering::ConstraintType
10392ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
10393  if (Constraint.size() == 1) {
10394    switch (Constraint[0]) {
10395    default:  break;
10396    case 'l': return C_RegisterClass;
10397    case 'w': return C_RegisterClass;
10398    case 'h': return C_RegisterClass;
10399    case 'x': return C_RegisterClass;
10400    case 't': return C_RegisterClass;
10401    case 'j': return C_Other; // Constant for movw.
10402      // An address with a single base register. Due to the way we
10403      // currently handle addresses it is the same as an 'r' memory constraint.
10404    case 'Q': return C_Memory;
10405    }
10406  } else if (Constraint.size() == 2) {
10407    switch (Constraint[0]) {
10408    default: break;
10409    // All 'U+' constraints are addresses.
10410    case 'U': return C_Memory;
10411    }
10412  }
10413  return TargetLowering::getConstraintType(Constraint);
10414}
10415
10416/// Examine constraint type and operand type and determine a weight value.
10417/// This object must already have been set up with the operand type
10418/// and the current alternative constraint selected.
10419TargetLowering::ConstraintWeight
10420ARMTargetLowering::getSingleConstraintMatchWeight(
10421    AsmOperandInfo &info, const char *constraint) const {
10422  ConstraintWeight weight = CW_Invalid;
10423  Value *CallOperandVal = info.CallOperandVal;
10424    // If we don't have a value, we can't do a match,
10425    // but allow it at the lowest weight.
10426  if (CallOperandVal == NULL)
10427    return CW_Default;
10428  Type *type = CallOperandVal->getType();
10429  // Look at the constraint type.
10430  switch (*constraint) {
10431  default:
10432    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10433    break;
10434  case 'l':
10435    if (type->isIntegerTy()) {
10436      if (Subtarget->isThumb())
10437        weight = CW_SpecificReg;
10438      else
10439        weight = CW_Register;
10440    }
10441    break;
10442  case 'w':
10443    if (type->isFloatingPointTy())
10444      weight = CW_Register;
10445    break;
10446  }
10447  return weight;
10448}
10449
10450typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
10451RCPair
10452ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10453                                                MVT VT) const {
10454  if (Constraint.size() == 1) {
10455    // GCC ARM Constraint Letters
10456    switch (Constraint[0]) {
10457    case 'l': // Low regs or general regs.
10458      if (Subtarget->isThumb())
10459        return RCPair(0U, &ARM::tGPRRegClass);
10460      return RCPair(0U, &ARM::GPRRegClass);
10461    case 'h': // High regs or no regs.
10462      if (Subtarget->isThumb())
10463        return RCPair(0U, &ARM::hGPRRegClass);
10464      break;
10465    case 'r':
10466      return RCPair(0U, &ARM::GPRRegClass);
10467    case 'w':
10468      if (VT == MVT::f32)
10469        return RCPair(0U, &ARM::SPRRegClass);
10470      if (VT.getSizeInBits() == 64)
10471        return RCPair(0U, &ARM::DPRRegClass);
10472      if (VT.getSizeInBits() == 128)
10473        return RCPair(0U, &ARM::QPRRegClass);
10474      break;
10475    case 'x':
10476      if (VT == MVT::f32)
10477        return RCPair(0U, &ARM::SPR_8RegClass);
10478      if (VT.getSizeInBits() == 64)
10479        return RCPair(0U, &ARM::DPR_8RegClass);
10480      if (VT.getSizeInBits() == 128)
10481        return RCPair(0U, &ARM::QPR_8RegClass);
10482      break;
10483    case 't':
10484      if (VT == MVT::f32)
10485        return RCPair(0U, &ARM::SPRRegClass);
10486      break;
10487    }
10488  }
10489  if (StringRef("{cc}").equals_lower(Constraint))
10490    return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
10491
10492  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10493}
10494
10495/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10496/// vector.  If it is invalid, don't add anything to Ops.
10497void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10498                                                     std::string &Constraint,
10499                                                     std::vector<SDValue>&Ops,
10500                                                     SelectionDAG &DAG) const {
10501  SDValue Result(0, 0);
10502
10503  // Currently only support length 1 constraints.
10504  if (Constraint.length() != 1) return;
10505
10506  char ConstraintLetter = Constraint[0];
10507  switch (ConstraintLetter) {
10508  default: break;
10509  case 'j':
10510  case 'I': case 'J': case 'K': case 'L':
10511  case 'M': case 'N': case 'O':
10512    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
10513    if (!C)
10514      return;
10515
10516    int64_t CVal64 = C->getSExtValue();
10517    int CVal = (int) CVal64;
10518    // None of these constraints allow values larger than 32 bits.  Check
10519    // that the value fits in an int.
10520    if (CVal != CVal64)
10521      return;
10522
10523    switch (ConstraintLetter) {
10524      case 'j':
10525        // Constant suitable for movw, must be between 0 and
10526        // 65535.
10527        if (Subtarget->hasV6T2Ops())
10528          if (CVal >= 0 && CVal <= 65535)
10529            break;
10530        return;
10531      case 'I':
10532        if (Subtarget->isThumb1Only()) {
10533          // This must be a constant between 0 and 255, for ADD
10534          // immediates.
10535          if (CVal >= 0 && CVal <= 255)
10536            break;
10537        } else if (Subtarget->isThumb2()) {
10538          // A constant that can be used as an immediate value in a
10539          // data-processing instruction.
10540          if (ARM_AM::getT2SOImmVal(CVal) != -1)
10541            break;
10542        } else {
10543          // A constant that can be used as an immediate value in a
10544          // data-processing instruction.
10545          if (ARM_AM::getSOImmVal(CVal) != -1)
10546            break;
10547        }
10548        return;
10549
10550      case 'J':
10551        if (Subtarget->isThumb()) {  // FIXME thumb2
10552          // This must be a constant between -255 and -1, for negated ADD
10553          // immediates. This can be used in GCC with an "n" modifier that
10554          // prints the negated value, for use with SUB instructions. It is
10555          // not useful otherwise but is implemented for compatibility.
10556          if (CVal >= -255 && CVal <= -1)
10557            break;
10558        } else {
10559          // This must be a constant between -4095 and 4095. It is not clear
10560          // what this constraint is intended for. Implemented for
10561          // compatibility with GCC.
10562          if (CVal >= -4095 && CVal <= 4095)
10563            break;
10564        }
10565        return;
10566
10567      case 'K':
10568        if (Subtarget->isThumb1Only()) {
10569          // A 32-bit value where only one byte has a nonzero value. Exclude
10570          // zero to match GCC. This constraint is used by GCC internally for
10571          // constants that can be loaded with a move/shift combination.
10572          // It is not useful otherwise but is implemented for compatibility.
10573          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
10574            break;
10575        } else if (Subtarget->isThumb2()) {
10576          // A constant whose bitwise inverse can be used as an immediate
10577          // value in a data-processing instruction. This can be used in GCC
10578          // with a "B" modifier that prints the inverted value, for use with
10579          // BIC and MVN instructions. It is not useful otherwise but is
10580          // implemented for compatibility.
10581          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
10582            break;
10583        } else {
10584          // A constant whose bitwise inverse can be used as an immediate
10585          // value in a data-processing instruction. This can be used in GCC
10586          // with a "B" modifier that prints the inverted value, for use with
10587          // BIC and MVN instructions. It is not useful otherwise but is
10588          // implemented for compatibility.
10589          if (ARM_AM::getSOImmVal(~CVal) != -1)
10590            break;
10591        }
10592        return;
10593
10594      case 'L':
10595        if (Subtarget->isThumb1Only()) {
10596          // This must be a constant between -7 and 7,
10597          // for 3-operand ADD/SUB immediate instructions.
10598          if (CVal >= -7 && CVal < 7)
10599            break;
10600        } else if (Subtarget->isThumb2()) {
10601          // A constant whose negation can be used as an immediate value in a
10602          // data-processing instruction. This can be used in GCC with an "n"
10603          // modifier that prints the negated value, for use with SUB
10604          // instructions. It is not useful otherwise but is implemented for
10605          // compatibility.
10606          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
10607            break;
10608        } else {
10609          // A constant whose negation can be used as an immediate value in a
10610          // data-processing instruction. This can be used in GCC with an "n"
10611          // modifier that prints the negated value, for use with SUB
10612          // instructions. It is not useful otherwise but is implemented for
10613          // compatibility.
10614          if (ARM_AM::getSOImmVal(-CVal) != -1)
10615            break;
10616        }
10617        return;
10618
10619      case 'M':
10620        if (Subtarget->isThumb()) { // FIXME thumb2
10621          // This must be a multiple of 4 between 0 and 1020, for
10622          // ADD sp + immediate.
10623          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
10624            break;
10625        } else {
10626          // A power of two or a constant between 0 and 32.  This is used in
10627          // GCC for the shift amount on shifted register operands, but it is
10628          // useful in general for any shift amounts.
10629          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
10630            break;
10631        }
10632        return;
10633
10634      case 'N':
10635        if (Subtarget->isThumb()) {  // FIXME thumb2
10636          // This must be a constant between 0 and 31, for shift amounts.
10637          if (CVal >= 0 && CVal <= 31)
10638            break;
10639        }
10640        return;
10641
10642      case 'O':
10643        if (Subtarget->isThumb()) {  // FIXME thumb2
10644          // This must be a multiple of 4 between -508 and 508, for
10645          // ADD/SUB sp = sp + immediate.
10646          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
10647            break;
10648        }
10649        return;
10650    }
10651    Result = DAG.getTargetConstant(CVal, Op.getValueType());
10652    break;
10653  }
10654
10655  if (Result.getNode()) {
10656    Ops.push_back(Result);
10657    return;
10658  }
10659  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10660}
10661
10662bool
10663ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
10664  // The ARM target isn't yet aware of offsets.
10665  return false;
10666}
10667
10668bool ARM::isBitFieldInvertedMask(unsigned v) {
10669  if (v == 0xffffffff)
10670    return false;
10671
10672  // there can be 1's on either or both "outsides", all the "inside"
10673  // bits must be 0's
10674  unsigned TO = CountTrailingOnes_32(v);
10675  unsigned LO = CountLeadingOnes_32(v);
10676  v = (v >> TO) << TO;
10677  v = (v << LO) >> LO;
10678  return v == 0;
10679}
10680
10681/// isFPImmLegal - Returns true if the target can instruction select the
10682/// specified FP immediate natively. If false, the legalizer will
10683/// materialize the FP immediate as a load from a constant pool.
10684bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
10685  if (!Subtarget->hasVFP3())
10686    return false;
10687  if (VT == MVT::f32)
10688    return ARM_AM::getFP32Imm(Imm) != -1;
10689  if (VT == MVT::f64)
10690    return ARM_AM::getFP64Imm(Imm) != -1;
10691  return false;
10692}
10693
10694/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
10695/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
10696/// specified in the intrinsic calls.
10697bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
10698                                           const CallInst &I,
10699                                           unsigned Intrinsic) const {
10700  switch (Intrinsic) {
10701  case Intrinsic::arm_neon_vld1:
10702  case Intrinsic::arm_neon_vld2:
10703  case Intrinsic::arm_neon_vld3:
10704  case Intrinsic::arm_neon_vld4:
10705  case Intrinsic::arm_neon_vld2lane:
10706  case Intrinsic::arm_neon_vld3lane:
10707  case Intrinsic::arm_neon_vld4lane: {
10708    Info.opc = ISD::INTRINSIC_W_CHAIN;
10709    // Conservatively set memVT to the entire set of vectors loaded.
10710    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
10711    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10712    Info.ptrVal = I.getArgOperand(0);
10713    Info.offset = 0;
10714    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10715    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10716    Info.vol = false; // volatile loads with NEON intrinsics not supported
10717    Info.readMem = true;
10718    Info.writeMem = false;
10719    return true;
10720  }
10721  case Intrinsic::arm_neon_vst1:
10722  case Intrinsic::arm_neon_vst2:
10723  case Intrinsic::arm_neon_vst3:
10724  case Intrinsic::arm_neon_vst4:
10725  case Intrinsic::arm_neon_vst2lane:
10726  case Intrinsic::arm_neon_vst3lane:
10727  case Intrinsic::arm_neon_vst4lane: {
10728    Info.opc = ISD::INTRINSIC_VOID;
10729    // Conservatively set memVT to the entire set of vectors stored.
10730    unsigned NumElts = 0;
10731    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
10732      Type *ArgTy = I.getArgOperand(ArgI)->getType();
10733      if (!ArgTy->isVectorTy())
10734        break;
10735      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
10736    }
10737    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10738    Info.ptrVal = I.getArgOperand(0);
10739    Info.offset = 0;
10740    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10741    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10742    Info.vol = false; // volatile stores with NEON intrinsics not supported
10743    Info.readMem = false;
10744    Info.writeMem = true;
10745    return true;
10746  }
10747  case Intrinsic::arm_strexd: {
10748    Info.opc = ISD::INTRINSIC_W_CHAIN;
10749    Info.memVT = MVT::i64;
10750    Info.ptrVal = I.getArgOperand(2);
10751    Info.offset = 0;
10752    Info.align = 8;
10753    Info.vol = true;
10754    Info.readMem = false;
10755    Info.writeMem = true;
10756    return true;
10757  }
10758  case Intrinsic::arm_ldrexd: {
10759    Info.opc = ISD::INTRINSIC_W_CHAIN;
10760    Info.memVT = MVT::i64;
10761    Info.ptrVal = I.getArgOperand(0);
10762    Info.offset = 0;
10763    Info.align = 8;
10764    Info.vol = true;
10765    Info.readMem = true;
10766    Info.writeMem = false;
10767    return true;
10768  }
10769  default:
10770    break;
10771  }
10772
10773  return false;
10774}
10775