ARMISelLowering.cpp revision 6a1b5cc7c60d54608bbe579b06497b7ade42dbc8
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARMISelLowering.h"
17#include "ARM.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "MCTargetDesc/ARMAddressingModes.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/CallingConv.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/IntrinsicLowering.h"
31#include "llvm/CodeGen/MachineBasicBlock.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Constants.h"
39#include "llvm/Function.h"
40#include "llvm/GlobalValue.h"
41#include "llvm/Instruction.h"
42#include "llvm/Instructions.h"
43#include "llvm/Intrinsics.h"
44#include "llvm/MC/MCSectionMachO.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetOptions.h"
50#include "llvm/Type.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
55STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
56
57// This option should go away when tail calls fully work.
58static cl::opt<bool>
59EnableARMTailCalls("arm-tail-calls", cl::Hidden,
60  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
61  cl::init(false));
62
63cl::opt<bool>
64EnableARMLongCalls("arm-long-calls", cl::Hidden,
65  cl::desc("Generate calls via indirect call instructions"),
66  cl::init(false));
67
68static cl::opt<bool>
69ARMInterworking("arm-interworking", cl::Hidden,
70  cl::desc("Enable / disable ARM interworking (for debugging only)"),
71  cl::init(true));
72
73namespace {
74  class ARMCCState : public CCState {
75  public:
76    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
77               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
78               LLVMContext &C, ParmContext PC)
79        : CCState(CC, isVarArg, MF, TM, locs, C) {
80      assert(((PC == Call) || (PC == Prologue)) &&
81             "ARMCCState users must specify whether their context is call"
82             "or prologue generation.");
83      CallOrPrologue = PC;
84    }
85  };
86}
87
88// The APCS parameter registers.
89static const uint16_t GPRArgRegs[] = {
90  ARM::R0, ARM::R1, ARM::R2, ARM::R3
91};
92
93void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
94                                       MVT PromotedBitwiseVT) {
95  if (VT != PromotedLdStVT) {
96    setOperationAction(ISD::LOAD, VT, Promote);
97    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
98
99    setOperationAction(ISD::STORE, VT, Promote);
100    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
101  }
102
103  MVT ElemTy = VT.getVectorElementType();
104  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
105    setOperationAction(ISD::SETCC, VT, Custom);
106  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
107  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
108  if (ElemTy == MVT::i32) {
109    setOperationAction(ISD::SINT_TO_FP, VT, Custom);
110    setOperationAction(ISD::UINT_TO_FP, VT, Custom);
111    setOperationAction(ISD::FP_TO_SINT, VT, Custom);
112    setOperationAction(ISD::FP_TO_UINT, VT, Custom);
113  } else {
114    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
115    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
116    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
117    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
118  }
119  setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
120  setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
121  setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
122  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
123  setOperationAction(ISD::SELECT,            VT, Expand);
124  setOperationAction(ISD::SELECT_CC,         VT, Expand);
125  setOperationAction(ISD::VSELECT,           VT, Expand);
126  setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
127  if (VT.isInteger()) {
128    setOperationAction(ISD::SHL, VT, Custom);
129    setOperationAction(ISD::SRA, VT, Custom);
130    setOperationAction(ISD::SRL, VT, Custom);
131  }
132
133  // Promote all bit-wise operations.
134  if (VT.isInteger() && VT != PromotedBitwiseVT) {
135    setOperationAction(ISD::AND, VT, Promote);
136    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
137    setOperationAction(ISD::OR,  VT, Promote);
138    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
139    setOperationAction(ISD::XOR, VT, Promote);
140    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
141  }
142
143  // Neon does not support vector divide/remainder operations.
144  setOperationAction(ISD::SDIV, VT, Expand);
145  setOperationAction(ISD::UDIV, VT, Expand);
146  setOperationAction(ISD::FDIV, VT, Expand);
147  setOperationAction(ISD::SREM, VT, Expand);
148  setOperationAction(ISD::UREM, VT, Expand);
149  setOperationAction(ISD::FREM, VT, Expand);
150}
151
152void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
153  addRegisterClass(VT, &ARM::DPRRegClass);
154  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
155}
156
157void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
158  addRegisterClass(VT, &ARM::QPRRegClass);
159  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
160}
161
162static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
163  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
164    return new TargetLoweringObjectFileMachO();
165
166  return new ARMElfTargetObjectFile();
167}
168
169ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
170    : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<ARMSubtarget>();
172  RegInfo = TM.getRegisterInfo();
173  Itins = TM.getInstrItineraryData();
174
175  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
176
177  if (Subtarget->isTargetDarwin()) {
178    // Uses VFP for Thumb libfuncs if available.
179    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
180      // Single-precision floating-point arithmetic.
181      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
182      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
183      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
184      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
185
186      // Double-precision floating-point arithmetic.
187      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
188      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
189      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
190      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
191
192      // Single-precision comparisons.
193      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
194      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
195      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
196      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
197      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
198      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
199      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
200      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
201
202      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
209      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
210
211      // Double-precision comparisons.
212      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
213      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
214      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
215      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
216      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
217      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
218      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
219      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
220
221      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
222      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
223      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
224      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
225      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
226      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
227      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
228      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
229
230      // Floating-point to integer conversions.
231      // i64 conversions are done via library routines even when generating VFP
232      // instructions, so use the same ones.
233      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
234      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
235      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
236      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
237
238      // Conversions between floating types.
239      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
240      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
241
242      // Integer to floating-point conversions.
243      // i64 conversions are done via library routines even when generating VFP
244      // instructions, so use the same ones.
245      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
246      // e.g., __floatunsidf vs. __floatunssidfvfp.
247      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
248      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
249      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
250      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
251    }
252  }
253
254  // These libcalls are not available in 32-bit.
255  setLibcallName(RTLIB::SHL_I128, 0);
256  setLibcallName(RTLIB::SRL_I128, 0);
257  setLibcallName(RTLIB::SRA_I128, 0);
258
259  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
260    // Double-precision floating-point arithmetic helper functions
261    // RTABI chapter 4.1.2, Table 2
262    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
263    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
264    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
265    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
266    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
267    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
268    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
269    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
270
271    // Double-precision floating-point comparison helper functions
272    // RTABI chapter 4.1.2, Table 3
273    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
274    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
275    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
276    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
277    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
278    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
279    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
280    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
281    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
282    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
283    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
284    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
285    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
286    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
287    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
288    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
289    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
290    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
291    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
292    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
293    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
297
298    // Single-precision floating-point arithmetic helper functions
299    // RTABI chapter 4.1.2, Table 4
300    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
301    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
302    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
303    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
304    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
305    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
306    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
307    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
308
309    // Single-precision floating-point comparison helper functions
310    // RTABI chapter 4.1.2, Table 5
311    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
312    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
313    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
314    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
315    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
316    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
317    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
318    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
319    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
320    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
321    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
322    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
323    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
324    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
325    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
326    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
327    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
335
336    // Floating-point to integer conversions.
337    // RTABI chapter 4.1.2, Table 6
338    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
339    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
340    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
341    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
342    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
343    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
344    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
345    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
346    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
347    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
348    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
349    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
350    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
354
355    // Conversions between floating types.
356    // RTABI chapter 4.1.2, Table 7
357    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
358    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
359    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
361
362    // Integer to floating-point conversions.
363    // RTABI chapter 4.1.2, Table 8
364    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
365    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
366    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
367    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
368    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
369    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
370    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
371    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
372    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
373    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
374    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
376    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
380
381    // Long long helper functions
382    // RTABI chapter 4.2, Table 9
383    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
384    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
385    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
386    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
387    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
388    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
389    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
391    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
392    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
393
394    // Integer division functions
395    // RTABI chapter 4.3.1
396    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
397    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
398    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
399    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
400    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
401    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
402    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
403    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
404    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
405    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
406    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
407    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
408    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
409    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
410    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
412
413    // Memory operations
414    // RTABI chapter 4.3.4
415    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
416    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
417    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
418    setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
419    setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
420    setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
421  }
422
423  // Use divmod compiler-rt calls for iOS 5.0 and later.
424  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
425      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
426    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
427    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
428  }
429
430  if (Subtarget->isThumb1Only())
431    addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
432  else
433    addRegisterClass(MVT::i32, &ARM::GPRRegClass);
434  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
435      !Subtarget->isThumb1Only()) {
436    addRegisterClass(MVT::f32, &ARM::SPRRegClass);
437    if (!Subtarget->isFPOnlySP())
438      addRegisterClass(MVT::f64, &ARM::DPRRegClass);
439
440    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
441  }
442
443  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
444       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
445    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
446         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
447      setTruncStoreAction((MVT::SimpleValueType)VT,
448                          (MVT::SimpleValueType)InnerVT, Expand);
449    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
450    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
451    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
452  }
453
454  setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
455
456  if (Subtarget->hasNEON()) {
457    addDRTypeForNEON(MVT::v2f32);
458    addDRTypeForNEON(MVT::v8i8);
459    addDRTypeForNEON(MVT::v4i16);
460    addDRTypeForNEON(MVT::v2i32);
461    addDRTypeForNEON(MVT::v1i64);
462
463    addQRTypeForNEON(MVT::v4f32);
464    addQRTypeForNEON(MVT::v2f64);
465    addQRTypeForNEON(MVT::v16i8);
466    addQRTypeForNEON(MVT::v8i16);
467    addQRTypeForNEON(MVT::v4i32);
468    addQRTypeForNEON(MVT::v2i64);
469
470    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
471    // neither Neon nor VFP support any arithmetic operations on it.
472    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
473    // supported for v4f32.
474    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
475    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
476    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
477    // FIXME: Code duplication: FDIV and FREM are expanded always, see
478    // ARMTargetLowering::addTypeForNEON method for details.
479    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
480    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
481    // FIXME: Create unittest.
482    // In another words, find a way when "copysign" appears in DAG with vector
483    // operands.
484    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
485    // FIXME: Code duplication: SETCC has custom operation action, see
486    // ARMTargetLowering::addTypeForNEON method for details.
487    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
488    // FIXME: Create unittest for FNEG and for FABS.
489    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
490    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
491    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
492    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
493    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
494    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
495    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
496    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
497    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
498    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
499    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
500    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
501    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
502    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
503    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
504    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
505    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
506    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
507
508    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
509    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
510    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
511    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
512    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
513    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
514    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
515    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
516    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
517    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
518    setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
519    setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
520    setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
521    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
522    setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
523
524    // Neon does not support some operations on v1i64 and v2i64 types.
525    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
526    // Custom handling for some quad-vector types to detect VMULL.
527    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
528    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
529    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
530    // Custom handling for some vector types to avoid expensive expansions
531    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
532    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
533    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
534    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
535    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
536    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
537    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
538    // a destination type that is wider than the source, and nor does
539    // it have a FP_TO_[SU]INT instruction with a narrower destination than
540    // source.
541    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
542    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
543    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
544    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
545
546    setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
547    setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
548
549    // NEON does not have single instruction CTPOP for vectors with element
550    // types wider than 8-bits.  However, custom lowering can leverage the
551    // v8i8/v16i8 vcnt instruction.
552    setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
553    setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
554    setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
555    setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
556
557    setTargetDAGCombine(ISD::INTRINSIC_VOID);
558    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
559    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
560    setTargetDAGCombine(ISD::SHL);
561    setTargetDAGCombine(ISD::SRL);
562    setTargetDAGCombine(ISD::SRA);
563    setTargetDAGCombine(ISD::SIGN_EXTEND);
564    setTargetDAGCombine(ISD::ZERO_EXTEND);
565    setTargetDAGCombine(ISD::ANY_EXTEND);
566    setTargetDAGCombine(ISD::SELECT_CC);
567    setTargetDAGCombine(ISD::BUILD_VECTOR);
568    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
569    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
570    setTargetDAGCombine(ISD::STORE);
571    setTargetDAGCombine(ISD::FP_TO_SINT);
572    setTargetDAGCombine(ISD::FP_TO_UINT);
573    setTargetDAGCombine(ISD::FDIV);
574
575    // It is legal to extload from v4i8 to v4i16 or v4i32.
576    MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
577                  MVT::v4i16, MVT::v2i16,
578                  MVT::v2i32};
579    for (unsigned i = 0; i < 6; ++i) {
580      setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
581      setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
582      setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
583    }
584  }
585
586  // ARM and Thumb2 support UMLAL/SMLAL.
587  if (!Subtarget->isThumb1Only())
588    setTargetDAGCombine(ISD::ADDC);
589
590
591  computeRegisterProperties();
592
593  // ARM does not have f32 extending load.
594  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
595
596  // ARM does not have i1 sign extending load.
597  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
598
599  // ARM supports all 4 flavors of integer indexed load / store.
600  if (!Subtarget->isThumb1Only()) {
601    for (unsigned im = (unsigned)ISD::PRE_INC;
602         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
603      setIndexedLoadAction(im,  MVT::i1,  Legal);
604      setIndexedLoadAction(im,  MVT::i8,  Legal);
605      setIndexedLoadAction(im,  MVT::i16, Legal);
606      setIndexedLoadAction(im,  MVT::i32, Legal);
607      setIndexedStoreAction(im, MVT::i1,  Legal);
608      setIndexedStoreAction(im, MVT::i8,  Legal);
609      setIndexedStoreAction(im, MVT::i16, Legal);
610      setIndexedStoreAction(im, MVT::i32, Legal);
611    }
612  }
613
614  // i64 operation support.
615  setOperationAction(ISD::MUL,     MVT::i64, Expand);
616  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
617  if (Subtarget->isThumb1Only()) {
618    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
619    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
620  }
621  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
622      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
623    setOperationAction(ISD::MULHS, MVT::i32, Expand);
624
625  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
626  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
627  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
628  setOperationAction(ISD::SRL,       MVT::i64, Custom);
629  setOperationAction(ISD::SRA,       MVT::i64, Custom);
630
631  if (!Subtarget->isThumb1Only()) {
632    // FIXME: We should do this for Thumb1 as well.
633    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
634    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
635    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
636    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
637  }
638
639  // ARM does not have ROTL.
640  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
641  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
642  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
643  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
644    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
645
646  // These just redirect to CTTZ and CTLZ on ARM.
647  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
648  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
649
650  // Only ARMv6 has BSWAP.
651  if (!Subtarget->hasV6Ops())
652    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
653
654  if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
655      !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
656    // These are expanded into libcalls if the cpu doesn't have HW divider.
657    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
658    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
659  }
660  setOperationAction(ISD::SREM,  MVT::i32, Expand);
661  setOperationAction(ISD::UREM,  MVT::i32, Expand);
662  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
663  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
664
665  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
666  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
667  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
668  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
669  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
670
671  setOperationAction(ISD::TRAP, MVT::Other, Legal);
672
673  // Use the default implementation.
674  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
675  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
676  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
677  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
678  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
679  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
680
681  if (!Subtarget->isTargetDarwin()) {
682    // Non-Darwin platforms may return values in these registers via the
683    // personality function.
684    setOperationAction(ISD::EHSELECTION,      MVT::i32,   Expand);
685    setOperationAction(ISD::EXCEPTIONADDR,    MVT::i32,   Expand);
686    setExceptionPointerRegister(ARM::R0);
687    setExceptionSelectorRegister(ARM::R1);
688  }
689
690  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
691  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
692  // the default expansion.
693  // FIXME: This should be checking for v6k, not just v6.
694  if (Subtarget->hasDataBarrier() ||
695      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
696    // membarrier needs custom lowering; the rest are legal and handled
697    // normally.
698    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
699    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
700    // Custom lowering for 64-bit ops
701    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
702    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
703    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
704    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
705    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
706    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Custom);
707    setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i64, Custom);
708    setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i64, Custom);
709    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
710    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
711    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
712    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
713    setInsertFencesForAtomic(true);
714  } else {
715    // Set them all for expansion, which will force libcalls.
716    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
717    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
718    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
719    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
720    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
721    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
722    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
723    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
724    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
725    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
726    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
727    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
728    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
729    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
730    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
731    // Unordered/Monotonic case.
732    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
733    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
734    // Since the libcalls include locking, fold in the fences
735    setShouldFoldAtomicFences(true);
736  }
737
738  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
739
740  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
741  if (!Subtarget->hasV6Ops()) {
742    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
743    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
744  }
745  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
746
747  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
748      !Subtarget->isThumb1Only()) {
749    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
750    // iff target supports vfp2.
751    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
752    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
753  }
754
755  // We want to custom lower some of our intrinsics.
756  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
757  if (Subtarget->isTargetDarwin()) {
758    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
759    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
760    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
761  }
762
763  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
764  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
765  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
766  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
767  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
768  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
769  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
770  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
771  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
772
773  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
774  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
775  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
776  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
777  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
778
779  // We don't support sin/cos/fmod/copysign/pow
780  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
781  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
782  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
783  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
784  setOperationAction(ISD::FREM,      MVT::f64, Expand);
785  setOperationAction(ISD::FREM,      MVT::f32, Expand);
786  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
787      !Subtarget->isThumb1Only()) {
788    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
789    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
790  }
791  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
792  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
793
794  if (!Subtarget->hasVFP4()) {
795    setOperationAction(ISD::FMA, MVT::f64, Expand);
796    setOperationAction(ISD::FMA, MVT::f32, Expand);
797  }
798
799  // Various VFP goodness
800  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
801    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
802    if (Subtarget->hasVFP2()) {
803      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
804      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
805      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
806      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
807    }
808    // Special handling for half-precision FP.
809    if (!Subtarget->hasFP16()) {
810      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
811      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
812    }
813  }
814
815  // We have target-specific dag combine patterns for the following nodes:
816  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
817  setTargetDAGCombine(ISD::ADD);
818  setTargetDAGCombine(ISD::SUB);
819  setTargetDAGCombine(ISD::MUL);
820  setTargetDAGCombine(ISD::AND);
821  setTargetDAGCombine(ISD::OR);
822  setTargetDAGCombine(ISD::XOR);
823
824  if (Subtarget->hasV6Ops())
825    setTargetDAGCombine(ISD::SRL);
826
827  setStackPointerRegisterToSaveRestore(ARM::SP);
828
829  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
830      !Subtarget->hasVFP2())
831    setSchedulingPreference(Sched::RegPressure);
832  else
833    setSchedulingPreference(Sched::Hybrid);
834
835  //// temporary - rewrite interface to use type
836  maxStoresPerMemset = 8;
837  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
838  maxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
839  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
840  maxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
841  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
842
843  // On ARM arguments smaller than 4 bytes are extended, so all arguments
844  // are at least 4 bytes aligned.
845  setMinStackArgumentAlignment(4);
846
847  benefitFromCodePlacementOpt = true;
848
849  // Prefer likely predicted branches to selects on out-of-order cores.
850  predictableSelectIsExpensive = Subtarget->isLikeA9();
851
852  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
853}
854
855// FIXME: It might make sense to define the representative register class as the
856// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
857// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
858// SPR's representative would be DPR_VFP2. This should work well if register
859// pressure tracking were modified such that a register use would increment the
860// pressure of the register class's representative and all of it's super
861// classes' representatives transitively. We have not implemented this because
862// of the difficulty prior to coalescing of modeling operand register classes
863// due to the common occurrence of cross class copies and subregister insertions
864// and extractions.
865std::pair<const TargetRegisterClass*, uint8_t>
866ARMTargetLowering::findRepresentativeClass(EVT VT) const{
867  const TargetRegisterClass *RRC = 0;
868  uint8_t Cost = 1;
869  switch (VT.getSimpleVT().SimpleTy) {
870  default:
871    return TargetLowering::findRepresentativeClass(VT);
872  // Use DPR as representative register class for all floating point
873  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
874  // the cost is 1 for both f32 and f64.
875  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
876  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
877    RRC = &ARM::DPRRegClass;
878    // When NEON is used for SP, only half of the register file is available
879    // because operations that define both SP and DP results will be constrained
880    // to the VFP2 class (D0-D15). We currently model this constraint prior to
881    // coalescing by double-counting the SP regs. See the FIXME above.
882    if (Subtarget->useNEONForSinglePrecisionFP())
883      Cost = 2;
884    break;
885  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
886  case MVT::v4f32: case MVT::v2f64:
887    RRC = &ARM::DPRRegClass;
888    Cost = 2;
889    break;
890  case MVT::v4i64:
891    RRC = &ARM::DPRRegClass;
892    Cost = 4;
893    break;
894  case MVT::v8i64:
895    RRC = &ARM::DPRRegClass;
896    Cost = 8;
897    break;
898  }
899  return std::make_pair(RRC, Cost);
900}
901
902const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
903  switch (Opcode) {
904  default: return 0;
905  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
906  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
907  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
908  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
909  case ARMISD::CALL:          return "ARMISD::CALL";
910  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
911  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
912  case ARMISD::tCALL:         return "ARMISD::tCALL";
913  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
914  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
915  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
916  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
917  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
918  case ARMISD::CMP:           return "ARMISD::CMP";
919  case ARMISD::CMN:           return "ARMISD::CMN";
920  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
921  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
922  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
923  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
924  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
925
926  case ARMISD::CMOV:          return "ARMISD::CMOV";
927
928  case ARMISD::RBIT:          return "ARMISD::RBIT";
929
930  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
931  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
932  case ARMISD::SITOF:         return "ARMISD::SITOF";
933  case ARMISD::UITOF:         return "ARMISD::UITOF";
934
935  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
936  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
937  case ARMISD::RRX:           return "ARMISD::RRX";
938
939  case ARMISD::ADDC:          return "ARMISD::ADDC";
940  case ARMISD::ADDE:          return "ARMISD::ADDE";
941  case ARMISD::SUBC:          return "ARMISD::SUBC";
942  case ARMISD::SUBE:          return "ARMISD::SUBE";
943
944  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
945  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
946
947  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
948  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
949
950  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
951
952  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
953
954  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
955
956  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
957  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
958
959  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
960
961  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
962  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
963  case ARMISD::VCGE:          return "ARMISD::VCGE";
964  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
965  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
966  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
967  case ARMISD::VCGT:          return "ARMISD::VCGT";
968  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
969  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
970  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
971  case ARMISD::VTST:          return "ARMISD::VTST";
972
973  case ARMISD::VSHL:          return "ARMISD::VSHL";
974  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
975  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
976  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
977  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
978  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
979  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
980  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
981  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
982  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
983  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
984  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
985  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
986  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
987  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
988  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
989  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
990  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
991  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
992  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
993  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
994  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
995  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
996  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
997  case ARMISD::VDUP:          return "ARMISD::VDUP";
998  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
999  case ARMISD::VEXT:          return "ARMISD::VEXT";
1000  case ARMISD::VREV64:        return "ARMISD::VREV64";
1001  case ARMISD::VREV32:        return "ARMISD::VREV32";
1002  case ARMISD::VREV16:        return "ARMISD::VREV16";
1003  case ARMISD::VZIP:          return "ARMISD::VZIP";
1004  case ARMISD::VUZP:          return "ARMISD::VUZP";
1005  case ARMISD::VTRN:          return "ARMISD::VTRN";
1006  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1007  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1008  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1009  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1010  case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1011  case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1012  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1013  case ARMISD::FMAX:          return "ARMISD::FMAX";
1014  case ARMISD::FMIN:          return "ARMISD::FMIN";
1015  case ARMISD::BFI:           return "ARMISD::BFI";
1016  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1017  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1018  case ARMISD::VBSL:          return "ARMISD::VBSL";
1019  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1020  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1021  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1022  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1023  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1024  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1025  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1026  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1027  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1028  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1029  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1030  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1031  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1032  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1033  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1034  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1035  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1036  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1037  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1038  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1039  }
1040}
1041
1042EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
1043  if (!VT.isVector()) return getPointerTy();
1044  return VT.changeVectorElementTypeToInteger();
1045}
1046
1047/// getRegClassFor - Return the register class that should be used for the
1048/// specified value type.
1049const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
1050  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1051  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1052  // load / store 4 to 8 consecutive D registers.
1053  if (Subtarget->hasNEON()) {
1054    if (VT == MVT::v4i64)
1055      return &ARM::QQPRRegClass;
1056    if (VT == MVT::v8i64)
1057      return &ARM::QQQQPRRegClass;
1058  }
1059  return TargetLowering::getRegClassFor(VT);
1060}
1061
1062// Create a fast isel object.
1063FastISel *
1064ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1065                                  const TargetLibraryInfo *libInfo) const {
1066  return ARM::createFastISel(funcInfo, libInfo);
1067}
1068
1069/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1070/// be used for loads / stores from the global.
1071unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1072  return (Subtarget->isThumb1Only() ? 127 : 4095);
1073}
1074
1075Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1076  unsigned NumVals = N->getNumValues();
1077  if (!NumVals)
1078    return Sched::RegPressure;
1079
1080  for (unsigned i = 0; i != NumVals; ++i) {
1081    EVT VT = N->getValueType(i);
1082    if (VT == MVT::Glue || VT == MVT::Other)
1083      continue;
1084    if (VT.isFloatingPoint() || VT.isVector())
1085      return Sched::ILP;
1086  }
1087
1088  if (!N->isMachineOpcode())
1089    return Sched::RegPressure;
1090
1091  // Load are scheduled for latency even if there instruction itinerary
1092  // is not available.
1093  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1094  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1095
1096  if (MCID.getNumDefs() == 0)
1097    return Sched::RegPressure;
1098  if (!Itins->isEmpty() &&
1099      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1100    return Sched::ILP;
1101
1102  return Sched::RegPressure;
1103}
1104
1105//===----------------------------------------------------------------------===//
1106// Lowering Code
1107//===----------------------------------------------------------------------===//
1108
1109/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1110static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1111  switch (CC) {
1112  default: llvm_unreachable("Unknown condition code!");
1113  case ISD::SETNE:  return ARMCC::NE;
1114  case ISD::SETEQ:  return ARMCC::EQ;
1115  case ISD::SETGT:  return ARMCC::GT;
1116  case ISD::SETGE:  return ARMCC::GE;
1117  case ISD::SETLT:  return ARMCC::LT;
1118  case ISD::SETLE:  return ARMCC::LE;
1119  case ISD::SETUGT: return ARMCC::HI;
1120  case ISD::SETUGE: return ARMCC::HS;
1121  case ISD::SETULT: return ARMCC::LO;
1122  case ISD::SETULE: return ARMCC::LS;
1123  }
1124}
1125
1126/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1127static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1128                        ARMCC::CondCodes &CondCode2) {
1129  CondCode2 = ARMCC::AL;
1130  switch (CC) {
1131  default: llvm_unreachable("Unknown FP condition!");
1132  case ISD::SETEQ:
1133  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1134  case ISD::SETGT:
1135  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1136  case ISD::SETGE:
1137  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1138  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1139  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1140  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1141  case ISD::SETO:   CondCode = ARMCC::VC; break;
1142  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1143  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1144  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1145  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1146  case ISD::SETLT:
1147  case ISD::SETULT: CondCode = ARMCC::LT; break;
1148  case ISD::SETLE:
1149  case ISD::SETULE: CondCode = ARMCC::LE; break;
1150  case ISD::SETNE:
1151  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1152  }
1153}
1154
1155//===----------------------------------------------------------------------===//
1156//                      Calling Convention Implementation
1157//===----------------------------------------------------------------------===//
1158
1159#include "ARMGenCallingConv.inc"
1160
1161/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1162/// given CallingConvention value.
1163CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1164                                                 bool Return,
1165                                                 bool isVarArg) const {
1166  switch (CC) {
1167  default:
1168    llvm_unreachable("Unsupported calling convention");
1169  case CallingConv::Fast:
1170    if (Subtarget->hasVFP2() && !isVarArg) {
1171      if (!Subtarget->isAAPCS_ABI())
1172        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1173      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1174      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1175    }
1176    // Fallthrough
1177  case CallingConv::C: {
1178    // Use target triple & subtarget features to do actual dispatch.
1179    if (!Subtarget->isAAPCS_ABI())
1180      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1181    else if (Subtarget->hasVFP2() &&
1182             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1183             !isVarArg)
1184      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1185    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1186  }
1187  case CallingConv::ARM_AAPCS_VFP:
1188    if (!isVarArg)
1189      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1190    // Fallthrough
1191  case CallingConv::ARM_AAPCS:
1192    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1193  case CallingConv::ARM_APCS:
1194    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1195  case CallingConv::GHC:
1196    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1197  }
1198}
1199
1200/// LowerCallResult - Lower the result values of a call into the
1201/// appropriate copies out of appropriate physical registers.
1202SDValue
1203ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1204                                   CallingConv::ID CallConv, bool isVarArg,
1205                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1206                                   DebugLoc dl, SelectionDAG &DAG,
1207                                   SmallVectorImpl<SDValue> &InVals) const {
1208
1209  // Assign locations to each value returned by this call.
1210  SmallVector<CCValAssign, 16> RVLocs;
1211  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1212                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1213  CCInfo.AnalyzeCallResult(Ins,
1214                           CCAssignFnForNode(CallConv, /* Return*/ true,
1215                                             isVarArg));
1216
1217  // Copy all of the result registers out of their specified physreg.
1218  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1219    CCValAssign VA = RVLocs[i];
1220
1221    SDValue Val;
1222    if (VA.needsCustom()) {
1223      // Handle f64 or half of a v2f64.
1224      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1225                                      InFlag);
1226      Chain = Lo.getValue(1);
1227      InFlag = Lo.getValue(2);
1228      VA = RVLocs[++i]; // skip ahead to next loc
1229      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1230                                      InFlag);
1231      Chain = Hi.getValue(1);
1232      InFlag = Hi.getValue(2);
1233      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1234
1235      if (VA.getLocVT() == MVT::v2f64) {
1236        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1237        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1238                          DAG.getConstant(0, MVT::i32));
1239
1240        VA = RVLocs[++i]; // skip ahead to next loc
1241        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1242        Chain = Lo.getValue(1);
1243        InFlag = Lo.getValue(2);
1244        VA = RVLocs[++i]; // skip ahead to next loc
1245        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1246        Chain = Hi.getValue(1);
1247        InFlag = Hi.getValue(2);
1248        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1249        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1250                          DAG.getConstant(1, MVT::i32));
1251      }
1252    } else {
1253      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1254                               InFlag);
1255      Chain = Val.getValue(1);
1256      InFlag = Val.getValue(2);
1257    }
1258
1259    switch (VA.getLocInfo()) {
1260    default: llvm_unreachable("Unknown loc info!");
1261    case CCValAssign::Full: break;
1262    case CCValAssign::BCvt:
1263      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1264      break;
1265    }
1266
1267    InVals.push_back(Val);
1268  }
1269
1270  return Chain;
1271}
1272
1273/// LowerMemOpCallTo - Store the argument to the stack.
1274SDValue
1275ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1276                                    SDValue StackPtr, SDValue Arg,
1277                                    DebugLoc dl, SelectionDAG &DAG,
1278                                    const CCValAssign &VA,
1279                                    ISD::ArgFlagsTy Flags) const {
1280  unsigned LocMemOffset = VA.getLocMemOffset();
1281  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1282  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1283  return DAG.getStore(Chain, dl, Arg, PtrOff,
1284                      MachinePointerInfo::getStack(LocMemOffset),
1285                      false, false, 0);
1286}
1287
1288void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1289                                         SDValue Chain, SDValue &Arg,
1290                                         RegsToPassVector &RegsToPass,
1291                                         CCValAssign &VA, CCValAssign &NextVA,
1292                                         SDValue &StackPtr,
1293                                         SmallVector<SDValue, 8> &MemOpChains,
1294                                         ISD::ArgFlagsTy Flags) const {
1295
1296  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1297                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1298  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1299
1300  if (NextVA.isRegLoc())
1301    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1302  else {
1303    assert(NextVA.isMemLoc());
1304    if (StackPtr.getNode() == 0)
1305      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1306
1307    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1308                                           dl, DAG, NextVA,
1309                                           Flags));
1310  }
1311}
1312
1313/// LowerCall - Lowering a call into a callseq_start <-
1314/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1315/// nodes.
1316SDValue
1317ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1318                             SmallVectorImpl<SDValue> &InVals) const {
1319  SelectionDAG &DAG                     = CLI.DAG;
1320  DebugLoc &dl                          = CLI.DL;
1321  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
1322  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
1323  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
1324  SDValue Chain                         = CLI.Chain;
1325  SDValue Callee                        = CLI.Callee;
1326  bool &isTailCall                      = CLI.IsTailCall;
1327  CallingConv::ID CallConv              = CLI.CallConv;
1328  bool doesNotRet                       = CLI.DoesNotReturn;
1329  bool isVarArg                         = CLI.IsVarArg;
1330
1331  MachineFunction &MF = DAG.getMachineFunction();
1332  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1333  bool IsSibCall = false;
1334  // Disable tail calls if they're not supported.
1335  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1336    isTailCall = false;
1337  if (isTailCall) {
1338    // Check if it's really possible to do a tail call.
1339    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1340                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1341                                                   Outs, OutVals, Ins, DAG);
1342    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1343    // detected sibcalls.
1344    if (isTailCall) {
1345      ++NumTailCalls;
1346      IsSibCall = true;
1347    }
1348  }
1349
1350  // Analyze operands of the call, assigning locations to each operand.
1351  SmallVector<CCValAssign, 16> ArgLocs;
1352  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1353                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1354  CCInfo.AnalyzeCallOperands(Outs,
1355                             CCAssignFnForNode(CallConv, /* Return*/ false,
1356                                               isVarArg));
1357
1358  // Get a count of how many bytes are to be pushed on the stack.
1359  unsigned NumBytes = CCInfo.getNextStackOffset();
1360
1361  // For tail calls, memory operands are available in our caller's stack.
1362  if (IsSibCall)
1363    NumBytes = 0;
1364
1365  // Adjust the stack pointer for the new arguments...
1366  // These operations are automatically eliminated by the prolog/epilog pass
1367  if (!IsSibCall)
1368    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1369
1370  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1371
1372  RegsToPassVector RegsToPass;
1373  SmallVector<SDValue, 8> MemOpChains;
1374
1375  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1376  // of tail call optimization, arguments are handled later.
1377  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1378       i != e;
1379       ++i, ++realArgIdx) {
1380    CCValAssign &VA = ArgLocs[i];
1381    SDValue Arg = OutVals[realArgIdx];
1382    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1383    bool isByVal = Flags.isByVal();
1384
1385    // Promote the value if needed.
1386    switch (VA.getLocInfo()) {
1387    default: llvm_unreachable("Unknown loc info!");
1388    case CCValAssign::Full: break;
1389    case CCValAssign::SExt:
1390      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1391      break;
1392    case CCValAssign::ZExt:
1393      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1394      break;
1395    case CCValAssign::AExt:
1396      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1397      break;
1398    case CCValAssign::BCvt:
1399      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1400      break;
1401    }
1402
1403    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1404    if (VA.needsCustom()) {
1405      if (VA.getLocVT() == MVT::v2f64) {
1406        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1407                                  DAG.getConstant(0, MVT::i32));
1408        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1409                                  DAG.getConstant(1, MVT::i32));
1410
1411        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1412                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1413
1414        VA = ArgLocs[++i]; // skip ahead to next loc
1415        if (VA.isRegLoc()) {
1416          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1417                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1418        } else {
1419          assert(VA.isMemLoc());
1420
1421          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1422                                                 dl, DAG, VA, Flags));
1423        }
1424      } else {
1425        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1426                         StackPtr, MemOpChains, Flags);
1427      }
1428    } else if (VA.isRegLoc()) {
1429      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1430    } else if (isByVal) {
1431      assert(VA.isMemLoc());
1432      unsigned offset = 0;
1433
1434      // True if this byval aggregate will be split between registers
1435      // and memory.
1436      if (CCInfo.isFirstByValRegValid()) {
1437        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1438        unsigned int i, j;
1439        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1440          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1441          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1442          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1443                                     MachinePointerInfo(),
1444                                     false, false, false, 0);
1445          MemOpChains.push_back(Load.getValue(1));
1446          RegsToPass.push_back(std::make_pair(j, Load));
1447        }
1448        offset = ARM::R4 - CCInfo.getFirstByValReg();
1449        CCInfo.clearFirstByValReg();
1450      }
1451
1452      if (Flags.getByValSize() - 4*offset > 0) {
1453        unsigned LocMemOffset = VA.getLocMemOffset();
1454        SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1455        SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1456                                  StkPtrOff);
1457        SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1458        SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1459        SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1460                                           MVT::i32);
1461        SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1462
1463        SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1464        SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1465        MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1466                                          Ops, array_lengthof(Ops)));
1467      }
1468    } else if (!IsSibCall) {
1469      assert(VA.isMemLoc());
1470
1471      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1472                                             dl, DAG, VA, Flags));
1473    }
1474  }
1475
1476  if (!MemOpChains.empty())
1477    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1478                        &MemOpChains[0], MemOpChains.size());
1479
1480  // Build a sequence of copy-to-reg nodes chained together with token chain
1481  // and flag operands which copy the outgoing args into the appropriate regs.
1482  SDValue InFlag;
1483  // Tail call byval lowering might overwrite argument registers so in case of
1484  // tail call optimization the copies to registers are lowered later.
1485  if (!isTailCall)
1486    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1487      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1488                               RegsToPass[i].second, InFlag);
1489      InFlag = Chain.getValue(1);
1490    }
1491
1492  // For tail calls lower the arguments to the 'real' stack slot.
1493  if (isTailCall) {
1494    // Force all the incoming stack arguments to be loaded from the stack
1495    // before any new outgoing arguments are stored to the stack, because the
1496    // outgoing stack slots may alias the incoming argument stack slots, and
1497    // the alias isn't otherwise explicit. This is slightly more conservative
1498    // than necessary, because it means that each store effectively depends
1499    // on every argument instead of just those arguments it would clobber.
1500
1501    // Do not flag preceding copytoreg stuff together with the following stuff.
1502    InFlag = SDValue();
1503    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1504      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1505                               RegsToPass[i].second, InFlag);
1506      InFlag = Chain.getValue(1);
1507    }
1508    InFlag =SDValue();
1509  }
1510
1511  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1512  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1513  // node so that legalize doesn't hack it.
1514  bool isDirect = false;
1515  bool isARMFunc = false;
1516  bool isLocalARMFunc = false;
1517  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1518
1519  if (EnableARMLongCalls) {
1520    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1521            && "long-calls with non-static relocation model!");
1522    // Handle a global address or an external symbol. If it's not one of
1523    // those, the target's already in a register, so we don't need to do
1524    // anything extra.
1525    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1526      const GlobalValue *GV = G->getGlobal();
1527      // Create a constant pool entry for the callee address
1528      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1529      ARMConstantPoolValue *CPV =
1530        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1531
1532      // Get the address of the callee into a register
1533      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1534      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1535      Callee = DAG.getLoad(getPointerTy(), dl,
1536                           DAG.getEntryNode(), CPAddr,
1537                           MachinePointerInfo::getConstantPool(),
1538                           false, false, false, 0);
1539    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1540      const char *Sym = S->getSymbol();
1541
1542      // Create a constant pool entry for the callee address
1543      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1544      ARMConstantPoolValue *CPV =
1545        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1546                                      ARMPCLabelIndex, 0);
1547      // Get the address of the callee into a register
1548      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1549      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1550      Callee = DAG.getLoad(getPointerTy(), dl,
1551                           DAG.getEntryNode(), CPAddr,
1552                           MachinePointerInfo::getConstantPool(),
1553                           false, false, false, 0);
1554    }
1555  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1556    const GlobalValue *GV = G->getGlobal();
1557    isDirect = true;
1558    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1559    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1560                   getTargetMachine().getRelocationModel() != Reloc::Static;
1561    isARMFunc = !Subtarget->isThumb() || isStub;
1562    // ARM call to a local ARM function is predicable.
1563    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1564    // tBX takes a register source operand.
1565    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1566      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1567      ARMConstantPoolValue *CPV =
1568        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1569      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1570      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1571      Callee = DAG.getLoad(getPointerTy(), dl,
1572                           DAG.getEntryNode(), CPAddr,
1573                           MachinePointerInfo::getConstantPool(),
1574                           false, false, false, 0);
1575      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1576      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1577                           getPointerTy(), Callee, PICLabel);
1578    } else {
1579      // On ELF targets for PIC code, direct calls should go through the PLT
1580      unsigned OpFlags = 0;
1581      if (Subtarget->isTargetELF() &&
1582                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1583        OpFlags = ARMII::MO_PLT;
1584      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1585    }
1586  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1587    isDirect = true;
1588    bool isStub = Subtarget->isTargetDarwin() &&
1589                  getTargetMachine().getRelocationModel() != Reloc::Static;
1590    isARMFunc = !Subtarget->isThumb() || isStub;
1591    // tBX takes a register source operand.
1592    const char *Sym = S->getSymbol();
1593    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1594      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1595      ARMConstantPoolValue *CPV =
1596        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1597                                      ARMPCLabelIndex, 4);
1598      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1599      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1600      Callee = DAG.getLoad(getPointerTy(), dl,
1601                           DAG.getEntryNode(), CPAddr,
1602                           MachinePointerInfo::getConstantPool(),
1603                           false, false, false, 0);
1604      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1605      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1606                           getPointerTy(), Callee, PICLabel);
1607    } else {
1608      unsigned OpFlags = 0;
1609      // On ELF targets for PIC code, direct calls should go through the PLT
1610      if (Subtarget->isTargetELF() &&
1611                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1612        OpFlags = ARMII::MO_PLT;
1613      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1614    }
1615  }
1616
1617  // FIXME: handle tail calls differently.
1618  unsigned CallOpc;
1619  bool HasMinSizeAttr = MF.getFunction()->getFnAttributes().
1620    hasAttribute(Attributes::MinSize);
1621  if (Subtarget->isThumb()) {
1622    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1623      CallOpc = ARMISD::CALL_NOLINK;
1624    else
1625      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1626  } else {
1627    if (!isDirect && !Subtarget->hasV5TOps())
1628      CallOpc = ARMISD::CALL_NOLINK;
1629    else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
1630               // Emit regular call when code size is the priority
1631               !HasMinSizeAttr)
1632      // "mov lr, pc; b _foo" to avoid confusing the RSP
1633      CallOpc = ARMISD::CALL_NOLINK;
1634    else
1635      CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1636  }
1637
1638  std::vector<SDValue> Ops;
1639  Ops.push_back(Chain);
1640  Ops.push_back(Callee);
1641
1642  // Add argument registers to the end of the list so that they are known live
1643  // into the call.
1644  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1645    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1646                                  RegsToPass[i].second.getValueType()));
1647
1648  // Add a register mask operand representing the call-preserved registers.
1649  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1650  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1651  assert(Mask && "Missing call preserved mask for calling convention");
1652  Ops.push_back(DAG.getRegisterMask(Mask));
1653
1654  if (InFlag.getNode())
1655    Ops.push_back(InFlag);
1656
1657  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1658  if (isTailCall)
1659    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1660
1661  // Returns a chain and a flag for retval copy to use.
1662  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1663  InFlag = Chain.getValue(1);
1664
1665  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1666                             DAG.getIntPtrConstant(0, true), InFlag);
1667  if (!Ins.empty())
1668    InFlag = Chain.getValue(1);
1669
1670  // Handle result values, copying them out of physregs into vregs that we
1671  // return.
1672  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1673                         dl, DAG, InVals);
1674}
1675
1676/// HandleByVal - Every parameter *after* a byval parameter is passed
1677/// on the stack.  Remember the next parameter register to allocate,
1678/// and then confiscate the rest of the parameter registers to insure
1679/// this.
1680void
1681ARMTargetLowering::HandleByVal(
1682    CCState *State, unsigned &size, unsigned Align) const {
1683  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1684  assert((State->getCallOrPrologue() == Prologue ||
1685          State->getCallOrPrologue() == Call) &&
1686         "unhandled ParmContext");
1687  if ((!State->isFirstByValRegValid()) &&
1688      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1689    if (Subtarget->isAAPCS_ABI() && Align > 4) {
1690      unsigned AlignInRegs = Align / 4;
1691      unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
1692      for (unsigned i = 0; i < Waste; ++i)
1693        reg = State->AllocateReg(GPRArgRegs, 4);
1694    }
1695    if (reg != 0) {
1696      State->setFirstByValReg(reg);
1697      // At a call site, a byval parameter that is split between
1698      // registers and memory needs its size truncated here.  In a
1699      // function prologue, such byval parameters are reassembled in
1700      // memory, and are not truncated.
1701      if (State->getCallOrPrologue() == Call) {
1702        unsigned excess = 4 * (ARM::R4 - reg);
1703        assert(size >= excess && "expected larger existing stack allocation");
1704        size -= excess;
1705      }
1706    }
1707  }
1708  // Confiscate any remaining parameter registers to preclude their
1709  // assignment to subsequent parameters.
1710  while (State->AllocateReg(GPRArgRegs, 4))
1711    ;
1712}
1713
1714/// MatchingStackOffset - Return true if the given stack call argument is
1715/// already available in the same position (relatively) of the caller's
1716/// incoming argument stack.
1717static
1718bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1719                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1720                         const TargetInstrInfo *TII) {
1721  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1722  int FI = INT_MAX;
1723  if (Arg.getOpcode() == ISD::CopyFromReg) {
1724    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1725    if (!TargetRegisterInfo::isVirtualRegister(VR))
1726      return false;
1727    MachineInstr *Def = MRI->getVRegDef(VR);
1728    if (!Def)
1729      return false;
1730    if (!Flags.isByVal()) {
1731      if (!TII->isLoadFromStackSlot(Def, FI))
1732        return false;
1733    } else {
1734      return false;
1735    }
1736  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1737    if (Flags.isByVal())
1738      // ByVal argument is passed in as a pointer but it's now being
1739      // dereferenced. e.g.
1740      // define @foo(%struct.X* %A) {
1741      //   tail call @bar(%struct.X* byval %A)
1742      // }
1743      return false;
1744    SDValue Ptr = Ld->getBasePtr();
1745    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1746    if (!FINode)
1747      return false;
1748    FI = FINode->getIndex();
1749  } else
1750    return false;
1751
1752  assert(FI != INT_MAX);
1753  if (!MFI->isFixedObjectIndex(FI))
1754    return false;
1755  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1756}
1757
1758/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1759/// for tail call optimization. Targets which want to do tail call
1760/// optimization should implement this function.
1761bool
1762ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1763                                                     CallingConv::ID CalleeCC,
1764                                                     bool isVarArg,
1765                                                     bool isCalleeStructRet,
1766                                                     bool isCallerStructRet,
1767                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1768                                    const SmallVectorImpl<SDValue> &OutVals,
1769                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1770                                                     SelectionDAG& DAG) const {
1771  const Function *CallerF = DAG.getMachineFunction().getFunction();
1772  CallingConv::ID CallerCC = CallerF->getCallingConv();
1773  bool CCMatch = CallerCC == CalleeCC;
1774
1775  // Look for obvious safe cases to perform tail call optimization that do not
1776  // require ABI changes. This is what gcc calls sibcall.
1777
1778  // Do not sibcall optimize vararg calls unless the call site is not passing
1779  // any arguments.
1780  if (isVarArg && !Outs.empty())
1781    return false;
1782
1783  // Also avoid sibcall optimization if either caller or callee uses struct
1784  // return semantics.
1785  if (isCalleeStructRet || isCallerStructRet)
1786    return false;
1787
1788  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1789  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1790  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1791  // support in the assembler and linker to be used. This would need to be
1792  // fixed to fully support tail calls in Thumb1.
1793  //
1794  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1795  // LR.  This means if we need to reload LR, it takes an extra instructions,
1796  // which outweighs the value of the tail call; but here we don't know yet
1797  // whether LR is going to be used.  Probably the right approach is to
1798  // generate the tail call here and turn it back into CALL/RET in
1799  // emitEpilogue if LR is used.
1800
1801  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1802  // but we need to make sure there are enough registers; the only valid
1803  // registers are the 4 used for parameters.  We don't currently do this
1804  // case.
1805  if (Subtarget->isThumb1Only())
1806    return false;
1807
1808  // If the calling conventions do not match, then we'd better make sure the
1809  // results are returned in the same way as what the caller expects.
1810  if (!CCMatch) {
1811    SmallVector<CCValAssign, 16> RVLocs1;
1812    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1813                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1814    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1815
1816    SmallVector<CCValAssign, 16> RVLocs2;
1817    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1818                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1819    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1820
1821    if (RVLocs1.size() != RVLocs2.size())
1822      return false;
1823    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1824      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1825        return false;
1826      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1827        return false;
1828      if (RVLocs1[i].isRegLoc()) {
1829        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1830          return false;
1831      } else {
1832        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1833          return false;
1834      }
1835    }
1836  }
1837
1838  // If Caller's vararg or byval argument has been split between registers and
1839  // stack, do not perform tail call, since part of the argument is in caller's
1840  // local frame.
1841  const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
1842                                      getInfo<ARMFunctionInfo>();
1843  if (AFI_Caller->getVarArgsRegSaveSize())
1844    return false;
1845
1846  // If the callee takes no arguments then go on to check the results of the
1847  // call.
1848  if (!Outs.empty()) {
1849    // Check if stack adjustment is needed. For now, do not do this if any
1850    // argument is passed on the stack.
1851    SmallVector<CCValAssign, 16> ArgLocs;
1852    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1853                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1854    CCInfo.AnalyzeCallOperands(Outs,
1855                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1856    if (CCInfo.getNextStackOffset()) {
1857      MachineFunction &MF = DAG.getMachineFunction();
1858
1859      // Check if the arguments are already laid out in the right way as
1860      // the caller's fixed stack objects.
1861      MachineFrameInfo *MFI = MF.getFrameInfo();
1862      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1863      const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1864      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1865           i != e;
1866           ++i, ++realArgIdx) {
1867        CCValAssign &VA = ArgLocs[i];
1868        EVT RegVT = VA.getLocVT();
1869        SDValue Arg = OutVals[realArgIdx];
1870        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1871        if (VA.getLocInfo() == CCValAssign::Indirect)
1872          return false;
1873        if (VA.needsCustom()) {
1874          // f64 and vector types are split into multiple registers or
1875          // register/stack-slot combinations.  The types will not match
1876          // the registers; give up on memory f64 refs until we figure
1877          // out what to do about this.
1878          if (!VA.isRegLoc())
1879            return false;
1880          if (!ArgLocs[++i].isRegLoc())
1881            return false;
1882          if (RegVT == MVT::v2f64) {
1883            if (!ArgLocs[++i].isRegLoc())
1884              return false;
1885            if (!ArgLocs[++i].isRegLoc())
1886              return false;
1887          }
1888        } else if (!VA.isRegLoc()) {
1889          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1890                                   MFI, MRI, TII))
1891            return false;
1892        }
1893      }
1894    }
1895  }
1896
1897  return true;
1898}
1899
1900bool
1901ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1902                                  MachineFunction &MF, bool isVarArg,
1903                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
1904                                  LLVMContext &Context) const {
1905  SmallVector<CCValAssign, 16> RVLocs;
1906  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
1907  return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
1908                                                    isVarArg));
1909}
1910
1911SDValue
1912ARMTargetLowering::LowerReturn(SDValue Chain,
1913                               CallingConv::ID CallConv, bool isVarArg,
1914                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1915                               const SmallVectorImpl<SDValue> &OutVals,
1916                               DebugLoc dl, SelectionDAG &DAG) const {
1917
1918  // CCValAssign - represent the assignment of the return value to a location.
1919  SmallVector<CCValAssign, 16> RVLocs;
1920
1921  // CCState - Info about the registers and stack slots.
1922  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1923                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1924
1925  // Analyze outgoing return values.
1926  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1927                                               isVarArg));
1928
1929  // If this is the first return lowered for this function, add
1930  // the regs to the liveout set for the function.
1931  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1932    for (unsigned i = 0; i != RVLocs.size(); ++i)
1933      if (RVLocs[i].isRegLoc())
1934        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1935  }
1936
1937  SDValue Flag;
1938
1939  // Copy the result values into the output registers.
1940  for (unsigned i = 0, realRVLocIdx = 0;
1941       i != RVLocs.size();
1942       ++i, ++realRVLocIdx) {
1943    CCValAssign &VA = RVLocs[i];
1944    assert(VA.isRegLoc() && "Can only return in registers!");
1945
1946    SDValue Arg = OutVals[realRVLocIdx];
1947
1948    switch (VA.getLocInfo()) {
1949    default: llvm_unreachable("Unknown loc info!");
1950    case CCValAssign::Full: break;
1951    case CCValAssign::BCvt:
1952      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1953      break;
1954    }
1955
1956    if (VA.needsCustom()) {
1957      if (VA.getLocVT() == MVT::v2f64) {
1958        // Extract the first half and return it in two registers.
1959        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1960                                   DAG.getConstant(0, MVT::i32));
1961        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1962                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1963
1964        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1965        Flag = Chain.getValue(1);
1966        VA = RVLocs[++i]; // skip ahead to next loc
1967        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1968                                 HalfGPRs.getValue(1), Flag);
1969        Flag = Chain.getValue(1);
1970        VA = RVLocs[++i]; // skip ahead to next loc
1971
1972        // Extract the 2nd half and fall through to handle it as an f64 value.
1973        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1974                          DAG.getConstant(1, MVT::i32));
1975      }
1976      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1977      // available.
1978      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1979                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1980      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1981      Flag = Chain.getValue(1);
1982      VA = RVLocs[++i]; // skip ahead to next loc
1983      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1984                               Flag);
1985    } else
1986      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1987
1988    // Guarantee that all emitted copies are
1989    // stuck together, avoiding something bad.
1990    Flag = Chain.getValue(1);
1991  }
1992
1993  SDValue result;
1994  if (Flag.getNode())
1995    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1996  else // Return Void
1997    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1998
1999  return result;
2000}
2001
2002bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2003  if (N->getNumValues() != 1)
2004    return false;
2005  if (!N->hasNUsesOfValue(1, 0))
2006    return false;
2007
2008  SDValue TCChain = Chain;
2009  SDNode *Copy = *N->use_begin();
2010  if (Copy->getOpcode() == ISD::CopyToReg) {
2011    // If the copy has a glue operand, we conservatively assume it isn't safe to
2012    // perform a tail call.
2013    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2014      return false;
2015    TCChain = Copy->getOperand(0);
2016  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2017    SDNode *VMov = Copy;
2018    // f64 returned in a pair of GPRs.
2019    SmallPtrSet<SDNode*, 2> Copies;
2020    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2021         UI != UE; ++UI) {
2022      if (UI->getOpcode() != ISD::CopyToReg)
2023        return false;
2024      Copies.insert(*UI);
2025    }
2026    if (Copies.size() > 2)
2027      return false;
2028
2029    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2030         UI != UE; ++UI) {
2031      SDValue UseChain = UI->getOperand(0);
2032      if (Copies.count(UseChain.getNode()))
2033        // Second CopyToReg
2034        Copy = *UI;
2035      else
2036        // First CopyToReg
2037        TCChain = UseChain;
2038    }
2039  } else if (Copy->getOpcode() == ISD::BITCAST) {
2040    // f32 returned in a single GPR.
2041    if (!Copy->hasOneUse())
2042      return false;
2043    Copy = *Copy->use_begin();
2044    if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2045      return false;
2046    Chain = Copy->getOperand(0);
2047  } else {
2048    return false;
2049  }
2050
2051  bool HasRet = false;
2052  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2053       UI != UE; ++UI) {
2054    if (UI->getOpcode() != ARMISD::RET_FLAG)
2055      return false;
2056    HasRet = true;
2057  }
2058
2059  if (!HasRet)
2060    return false;
2061
2062  Chain = TCChain;
2063  return true;
2064}
2065
2066bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2067  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2068    return false;
2069
2070  if (!CI->isTailCall())
2071    return false;
2072
2073  return !Subtarget->isThumb1Only();
2074}
2075
2076// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2077// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2078// one of the above mentioned nodes. It has to be wrapped because otherwise
2079// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2080// be used to form addressing mode. These wrapped nodes will be selected
2081// into MOVi.
2082static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2083  EVT PtrVT = Op.getValueType();
2084  // FIXME there is no actual debug info here
2085  DebugLoc dl = Op.getDebugLoc();
2086  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2087  SDValue Res;
2088  if (CP->isMachineConstantPoolEntry())
2089    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2090                                    CP->getAlignment());
2091  else
2092    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2093                                    CP->getAlignment());
2094  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2095}
2096
2097unsigned ARMTargetLowering::getJumpTableEncoding() const {
2098  return MachineJumpTableInfo::EK_Inline;
2099}
2100
2101SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2102                                             SelectionDAG &DAG) const {
2103  MachineFunction &MF = DAG.getMachineFunction();
2104  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2105  unsigned ARMPCLabelIndex = 0;
2106  DebugLoc DL = Op.getDebugLoc();
2107  EVT PtrVT = getPointerTy();
2108  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2109  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2110  SDValue CPAddr;
2111  if (RelocM == Reloc::Static) {
2112    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2113  } else {
2114    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2115    ARMPCLabelIndex = AFI->createPICLabelUId();
2116    ARMConstantPoolValue *CPV =
2117      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2118                                      ARMCP::CPBlockAddress, PCAdj);
2119    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2120  }
2121  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2122  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2123                               MachinePointerInfo::getConstantPool(),
2124                               false, false, false, 0);
2125  if (RelocM == Reloc::Static)
2126    return Result;
2127  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2128  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2129}
2130
2131// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2132SDValue
2133ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2134                                                 SelectionDAG &DAG) const {
2135  DebugLoc dl = GA->getDebugLoc();
2136  EVT PtrVT = getPointerTy();
2137  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2138  MachineFunction &MF = DAG.getMachineFunction();
2139  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2140  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2141  ARMConstantPoolValue *CPV =
2142    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2143                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2144  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2145  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2146  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2147                         MachinePointerInfo::getConstantPool(),
2148                         false, false, false, 0);
2149  SDValue Chain = Argument.getValue(1);
2150
2151  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2152  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2153
2154  // call __tls_get_addr.
2155  ArgListTy Args;
2156  ArgListEntry Entry;
2157  Entry.Node = Argument;
2158  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2159  Args.push_back(Entry);
2160  // FIXME: is there useful debug info available here?
2161  TargetLowering::CallLoweringInfo CLI(Chain,
2162                (Type *) Type::getInt32Ty(*DAG.getContext()),
2163                false, false, false, false,
2164                0, CallingConv::C, /*isTailCall=*/false,
2165                /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2166                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2167  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2168  return CallResult.first;
2169}
2170
2171// Lower ISD::GlobalTLSAddress using the "initial exec" or
2172// "local exec" model.
2173SDValue
2174ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2175                                        SelectionDAG &DAG,
2176                                        TLSModel::Model model) const {
2177  const GlobalValue *GV = GA->getGlobal();
2178  DebugLoc dl = GA->getDebugLoc();
2179  SDValue Offset;
2180  SDValue Chain = DAG.getEntryNode();
2181  EVT PtrVT = getPointerTy();
2182  // Get the Thread Pointer
2183  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2184
2185  if (model == TLSModel::InitialExec) {
2186    MachineFunction &MF = DAG.getMachineFunction();
2187    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2188    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2189    // Initial exec model.
2190    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2191    ARMConstantPoolValue *CPV =
2192      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2193                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2194                                      true);
2195    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2196    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2197    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2198                         MachinePointerInfo::getConstantPool(),
2199                         false, false, false, 0);
2200    Chain = Offset.getValue(1);
2201
2202    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2203    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2204
2205    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2206                         MachinePointerInfo::getConstantPool(),
2207                         false, false, false, 0);
2208  } else {
2209    // local exec model
2210    assert(model == TLSModel::LocalExec);
2211    ARMConstantPoolValue *CPV =
2212      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2213    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2214    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2215    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2216                         MachinePointerInfo::getConstantPool(),
2217                         false, false, false, 0);
2218  }
2219
2220  // The address of the thread local variable is the add of the thread
2221  // pointer with the offset of the variable.
2222  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2223}
2224
2225SDValue
2226ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2227  // TODO: implement the "local dynamic" model
2228  assert(Subtarget->isTargetELF() &&
2229         "TLS not implemented for non-ELF targets");
2230  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2231
2232  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2233
2234  switch (model) {
2235    case TLSModel::GeneralDynamic:
2236    case TLSModel::LocalDynamic:
2237      return LowerToTLSGeneralDynamicModel(GA, DAG);
2238    case TLSModel::InitialExec:
2239    case TLSModel::LocalExec:
2240      return LowerToTLSExecModels(GA, DAG, model);
2241  }
2242  llvm_unreachable("bogus TLS model");
2243}
2244
2245SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2246                                                 SelectionDAG &DAG) const {
2247  EVT PtrVT = getPointerTy();
2248  DebugLoc dl = Op.getDebugLoc();
2249  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2250  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2251  if (RelocM == Reloc::PIC_) {
2252    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2253    ARMConstantPoolValue *CPV =
2254      ARMConstantPoolConstant::Create(GV,
2255                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2256    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2257    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2258    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2259                                 CPAddr,
2260                                 MachinePointerInfo::getConstantPool(),
2261                                 false, false, false, 0);
2262    SDValue Chain = Result.getValue(1);
2263    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2264    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2265    if (!UseGOTOFF)
2266      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2267                           MachinePointerInfo::getGOT(),
2268                           false, false, false, 0);
2269    return Result;
2270  }
2271
2272  // If we have T2 ops, we can materialize the address directly via movt/movw
2273  // pair. This is always cheaper.
2274  if (Subtarget->useMovt()) {
2275    ++NumMovwMovt;
2276    // FIXME: Once remat is capable of dealing with instructions with register
2277    // operands, expand this into two nodes.
2278    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2279                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2280  } else {
2281    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2282    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2283    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2284                       MachinePointerInfo::getConstantPool(),
2285                       false, false, false, 0);
2286  }
2287}
2288
2289SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2290                                                    SelectionDAG &DAG) const {
2291  EVT PtrVT = getPointerTy();
2292  DebugLoc dl = Op.getDebugLoc();
2293  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2294  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2295  MachineFunction &MF = DAG.getMachineFunction();
2296  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2297
2298  // FIXME: Enable this for static codegen when tool issues are fixed.  Also
2299  // update ARMFastISel::ARMMaterializeGV.
2300  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2301    ++NumMovwMovt;
2302    // FIXME: Once remat is capable of dealing with instructions with register
2303    // operands, expand this into two nodes.
2304    if (RelocM == Reloc::Static)
2305      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2306                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2307
2308    unsigned Wrapper = (RelocM == Reloc::PIC_)
2309      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2310    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2311                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2312    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2313      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2314                           MachinePointerInfo::getGOT(),
2315                           false, false, false, 0);
2316    return Result;
2317  }
2318
2319  unsigned ARMPCLabelIndex = 0;
2320  SDValue CPAddr;
2321  if (RelocM == Reloc::Static) {
2322    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2323  } else {
2324    ARMPCLabelIndex = AFI->createPICLabelUId();
2325    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2326    ARMConstantPoolValue *CPV =
2327      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2328                                      PCAdj);
2329    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2330  }
2331  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2332
2333  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2334                               MachinePointerInfo::getConstantPool(),
2335                               false, false, false, 0);
2336  SDValue Chain = Result.getValue(1);
2337
2338  if (RelocM == Reloc::PIC_) {
2339    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2340    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2341  }
2342
2343  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2344    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2345                         false, false, false, 0);
2346
2347  return Result;
2348}
2349
2350SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2351                                                    SelectionDAG &DAG) const {
2352  assert(Subtarget->isTargetELF() &&
2353         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2354  MachineFunction &MF = DAG.getMachineFunction();
2355  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2356  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2357  EVT PtrVT = getPointerTy();
2358  DebugLoc dl = Op.getDebugLoc();
2359  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2360  ARMConstantPoolValue *CPV =
2361    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2362                                  ARMPCLabelIndex, PCAdj);
2363  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2364  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2365  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2366                               MachinePointerInfo::getConstantPool(),
2367                               false, false, false, 0);
2368  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2369  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2370}
2371
2372SDValue
2373ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2374  DebugLoc dl = Op.getDebugLoc();
2375  SDValue Val = DAG.getConstant(0, MVT::i32);
2376  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2377                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2378                     Op.getOperand(1), Val);
2379}
2380
2381SDValue
2382ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2383  DebugLoc dl = Op.getDebugLoc();
2384  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2385                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2386}
2387
2388SDValue
2389ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2390                                          const ARMSubtarget *Subtarget) const {
2391  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2392  DebugLoc dl = Op.getDebugLoc();
2393  switch (IntNo) {
2394  default: return SDValue();    // Don't custom lower most intrinsics.
2395  case Intrinsic::arm_thread_pointer: {
2396    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2397    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2398  }
2399  case Intrinsic::eh_sjlj_lsda: {
2400    MachineFunction &MF = DAG.getMachineFunction();
2401    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2402    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2403    EVT PtrVT = getPointerTy();
2404    DebugLoc dl = Op.getDebugLoc();
2405    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2406    SDValue CPAddr;
2407    unsigned PCAdj = (RelocM != Reloc::PIC_)
2408      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2409    ARMConstantPoolValue *CPV =
2410      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2411                                      ARMCP::CPLSDA, PCAdj);
2412    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2413    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2414    SDValue Result =
2415      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2416                  MachinePointerInfo::getConstantPool(),
2417                  false, false, false, 0);
2418
2419    if (RelocM == Reloc::PIC_) {
2420      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2421      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2422    }
2423    return Result;
2424  }
2425  case Intrinsic::arm_neon_vmulls:
2426  case Intrinsic::arm_neon_vmullu: {
2427    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2428      ? ARMISD::VMULLs : ARMISD::VMULLu;
2429    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2430                       Op.getOperand(1), Op.getOperand(2));
2431  }
2432  }
2433}
2434
2435static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2436                               const ARMSubtarget *Subtarget) {
2437  DebugLoc dl = Op.getDebugLoc();
2438  if (!Subtarget->hasDataBarrier()) {
2439    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2440    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2441    // here.
2442    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2443           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2444    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2445                       DAG.getConstant(0, MVT::i32));
2446  }
2447
2448  SDValue Op5 = Op.getOperand(5);
2449  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2450  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2451  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2452  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2453
2454  ARM_MB::MemBOpt DMBOpt;
2455  if (isDeviceBarrier)
2456    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2457  else
2458    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2459  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2460                     DAG.getConstant(DMBOpt, MVT::i32));
2461}
2462
2463
2464static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2465                                 const ARMSubtarget *Subtarget) {
2466  // FIXME: handle "fence singlethread" more efficiently.
2467  DebugLoc dl = Op.getDebugLoc();
2468  if (!Subtarget->hasDataBarrier()) {
2469    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2470    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2471    // here.
2472    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2473           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2474    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2475                       DAG.getConstant(0, MVT::i32));
2476  }
2477
2478  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2479                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2480}
2481
2482static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2483                             const ARMSubtarget *Subtarget) {
2484  // ARM pre v5TE and Thumb1 does not have preload instructions.
2485  if (!(Subtarget->isThumb2() ||
2486        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2487    // Just preserve the chain.
2488    return Op.getOperand(0);
2489
2490  DebugLoc dl = Op.getDebugLoc();
2491  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2492  if (!isRead &&
2493      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2494    // ARMv7 with MP extension has PLDW.
2495    return Op.getOperand(0);
2496
2497  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2498  if (Subtarget->isThumb()) {
2499    // Invert the bits.
2500    isRead = ~isRead & 1;
2501    isData = ~isData & 1;
2502  }
2503
2504  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2505                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2506                     DAG.getConstant(isData, MVT::i32));
2507}
2508
2509static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2510  MachineFunction &MF = DAG.getMachineFunction();
2511  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2512
2513  // vastart just stores the address of the VarArgsFrameIndex slot into the
2514  // memory location argument.
2515  DebugLoc dl = Op.getDebugLoc();
2516  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2517  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2518  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2519  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2520                      MachinePointerInfo(SV), false, false, 0);
2521}
2522
2523SDValue
2524ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2525                                        SDValue &Root, SelectionDAG &DAG,
2526                                        DebugLoc dl) const {
2527  MachineFunction &MF = DAG.getMachineFunction();
2528  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2529
2530  const TargetRegisterClass *RC;
2531  if (AFI->isThumb1OnlyFunction())
2532    RC = &ARM::tGPRRegClass;
2533  else
2534    RC = &ARM::GPRRegClass;
2535
2536  // Transform the arguments stored in physical registers into virtual ones.
2537  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2538  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2539
2540  SDValue ArgValue2;
2541  if (NextVA.isMemLoc()) {
2542    MachineFrameInfo *MFI = MF.getFrameInfo();
2543    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2544
2545    // Create load node to retrieve arguments from the stack.
2546    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2547    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2548                            MachinePointerInfo::getFixedStack(FI),
2549                            false, false, false, 0);
2550  } else {
2551    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2552    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2553  }
2554
2555  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2556}
2557
2558void
2559ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2560                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2561  const {
2562  unsigned NumGPRs;
2563  if (CCInfo.isFirstByValRegValid())
2564    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2565  else {
2566    unsigned int firstUnalloced;
2567    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2568                                                sizeof(GPRArgRegs) /
2569                                                sizeof(GPRArgRegs[0]));
2570    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2571  }
2572
2573  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2574  VARegSize = NumGPRs * 4;
2575  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2576}
2577
2578// The remaining GPRs hold either the beginning of variable-argument
2579// data, or the beginning of an aggregate passed by value (usuall
2580// byval).  Either way, we allocate stack slots adjacent to the data
2581// provided by our caller, and store the unallocated registers there.
2582// If this is a variadic function, the va_list pointer will begin with
2583// these values; otherwise, this reassembles a (byval) structure that
2584// was split between registers and memory.
2585void
2586ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2587                                        DebugLoc dl, SDValue &Chain,
2588                                        const Value *OrigArg,
2589                                        unsigned OffsetFromOrigArg,
2590                                        unsigned ArgOffset,
2591                                        bool ForceMutable) const {
2592  MachineFunction &MF = DAG.getMachineFunction();
2593  MachineFrameInfo *MFI = MF.getFrameInfo();
2594  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2595  unsigned firstRegToSaveIndex;
2596  if (CCInfo.isFirstByValRegValid())
2597    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2598  else {
2599    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2600      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2601  }
2602
2603  unsigned VARegSize, VARegSaveSize;
2604  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2605  if (VARegSaveSize) {
2606    // If this function is vararg, store any remaining integer argument regs
2607    // to their spots on the stack so that they may be loaded by deferencing
2608    // the result of va_next.
2609    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2610    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2611                                                     ArgOffset + VARegSaveSize
2612                                                     - VARegSize,
2613                                                     false));
2614    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2615                                    getPointerTy());
2616
2617    SmallVector<SDValue, 4> MemOps;
2618    for (unsigned i = 0; firstRegToSaveIndex < 4; ++firstRegToSaveIndex, ++i) {
2619      const TargetRegisterClass *RC;
2620      if (AFI->isThumb1OnlyFunction())
2621        RC = &ARM::tGPRRegClass;
2622      else
2623        RC = &ARM::GPRRegClass;
2624
2625      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2626      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2627      SDValue Store =
2628        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2629                     MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
2630                     false, false, 0);
2631      MemOps.push_back(Store);
2632      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2633                        DAG.getConstant(4, getPointerTy()));
2634    }
2635    if (!MemOps.empty())
2636      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2637                          &MemOps[0], MemOps.size());
2638  } else
2639    // This will point to the next argument passed via stack.
2640    AFI->setVarArgsFrameIndex(
2641        MFI->CreateFixedObject(4, ArgOffset, !ForceMutable));
2642}
2643
2644SDValue
2645ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2646                                        CallingConv::ID CallConv, bool isVarArg,
2647                                        const SmallVectorImpl<ISD::InputArg>
2648                                          &Ins,
2649                                        DebugLoc dl, SelectionDAG &DAG,
2650                                        SmallVectorImpl<SDValue> &InVals)
2651                                          const {
2652  MachineFunction &MF = DAG.getMachineFunction();
2653  MachineFrameInfo *MFI = MF.getFrameInfo();
2654
2655  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2656
2657  // Assign locations to all of the incoming arguments.
2658  SmallVector<CCValAssign, 16> ArgLocs;
2659  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2660                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2661  CCInfo.AnalyzeFormalArguments(Ins,
2662                                CCAssignFnForNode(CallConv, /* Return*/ false,
2663                                                  isVarArg));
2664
2665  SmallVector<SDValue, 16> ArgValues;
2666  int lastInsIndex = -1;
2667  SDValue ArgValue;
2668  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2669  unsigned CurArgIdx = 0;
2670  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2671    CCValAssign &VA = ArgLocs[i];
2672    std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
2673    CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
2674    // Arguments stored in registers.
2675    if (VA.isRegLoc()) {
2676      EVT RegVT = VA.getLocVT();
2677
2678      if (VA.needsCustom()) {
2679        // f64 and vector types are split up into multiple registers or
2680        // combinations of registers and stack slots.
2681        if (VA.getLocVT() == MVT::v2f64) {
2682          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2683                                                   Chain, DAG, dl);
2684          VA = ArgLocs[++i]; // skip ahead to next loc
2685          SDValue ArgValue2;
2686          if (VA.isMemLoc()) {
2687            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2688            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2689            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2690                                    MachinePointerInfo::getFixedStack(FI),
2691                                    false, false, false, 0);
2692          } else {
2693            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2694                                             Chain, DAG, dl);
2695          }
2696          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2697          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2698                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2699          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2700                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2701        } else
2702          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2703
2704      } else {
2705        const TargetRegisterClass *RC;
2706
2707        if (RegVT == MVT::f32)
2708          RC = &ARM::SPRRegClass;
2709        else if (RegVT == MVT::f64)
2710          RC = &ARM::DPRRegClass;
2711        else if (RegVT == MVT::v2f64)
2712          RC = &ARM::QPRRegClass;
2713        else if (RegVT == MVT::i32)
2714          RC = AFI->isThumb1OnlyFunction() ?
2715            (const TargetRegisterClass*)&ARM::tGPRRegClass :
2716            (const TargetRegisterClass*)&ARM::GPRRegClass;
2717        else
2718          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2719
2720        // Transform the arguments in physical registers into virtual ones.
2721        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2722        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2723      }
2724
2725      // If this is an 8 or 16-bit value, it is really passed promoted
2726      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2727      // truncate to the right size.
2728      switch (VA.getLocInfo()) {
2729      default: llvm_unreachable("Unknown loc info!");
2730      case CCValAssign::Full: break;
2731      case CCValAssign::BCvt:
2732        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2733        break;
2734      case CCValAssign::SExt:
2735        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2736                               DAG.getValueType(VA.getValVT()));
2737        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2738        break;
2739      case CCValAssign::ZExt:
2740        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2741                               DAG.getValueType(VA.getValVT()));
2742        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2743        break;
2744      }
2745
2746      InVals.push_back(ArgValue);
2747
2748    } else { // VA.isRegLoc()
2749
2750      // sanity check
2751      assert(VA.isMemLoc());
2752      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2753
2754      int index = ArgLocs[i].getValNo();
2755
2756      // Some Ins[] entries become multiple ArgLoc[] entries.
2757      // Process them only once.
2758      if (index != lastInsIndex)
2759        {
2760          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2761          // FIXME: For now, all byval parameter objects are marked mutable.
2762          // This can be changed with more analysis.
2763          // In case of tail call optimization mark all arguments mutable.
2764          // Since they could be overwritten by lowering of arguments in case of
2765          // a tail call.
2766          if (Flags.isByVal()) {
2767            ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2768            if (!AFI->getVarArgsFrameIndex()) {
2769              VarArgStyleRegisters(CCInfo, DAG,
2770                                   dl, Chain, CurOrigArg,
2771                                   Ins[VA.getValNo()].PartOffset,
2772                                   VA.getLocMemOffset(),
2773                                   true /*force mutable frames*/);
2774              int VAFrameIndex = AFI->getVarArgsFrameIndex();
2775              InVals.push_back(DAG.getFrameIndex(VAFrameIndex, getPointerTy()));
2776            } else {
2777              int FI = MFI->CreateFixedObject(Flags.getByValSize(),
2778                                              VA.getLocMemOffset(), false);
2779              InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2780            }
2781          } else {
2782            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2783                                            VA.getLocMemOffset(), true);
2784
2785            // Create load nodes to retrieve arguments from the stack.
2786            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2787            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2788                                         MachinePointerInfo::getFixedStack(FI),
2789                                         false, false, false, 0));
2790          }
2791          lastInsIndex = index;
2792        }
2793    }
2794  }
2795
2796  // varargs
2797  if (isVarArg)
2798    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0, 0,
2799                         CCInfo.getNextStackOffset());
2800
2801  return Chain;
2802}
2803
2804/// isFloatingPointZero - Return true if this is +0.0.
2805static bool isFloatingPointZero(SDValue Op) {
2806  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2807    return CFP->getValueAPF().isPosZero();
2808  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2809    // Maybe this has already been legalized into the constant pool?
2810    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2811      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2812      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2813        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2814          return CFP->getValueAPF().isPosZero();
2815    }
2816  }
2817  return false;
2818}
2819
2820/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2821/// the given operands.
2822SDValue
2823ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2824                             SDValue &ARMcc, SelectionDAG &DAG,
2825                             DebugLoc dl) const {
2826  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2827    unsigned C = RHSC->getZExtValue();
2828    if (!isLegalICmpImmediate(C)) {
2829      // Constant does not fit, try adjusting it by one?
2830      switch (CC) {
2831      default: break;
2832      case ISD::SETLT:
2833      case ISD::SETGE:
2834        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2835          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2836          RHS = DAG.getConstant(C-1, MVT::i32);
2837        }
2838        break;
2839      case ISD::SETULT:
2840      case ISD::SETUGE:
2841        if (C != 0 && isLegalICmpImmediate(C-1)) {
2842          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2843          RHS = DAG.getConstant(C-1, MVT::i32);
2844        }
2845        break;
2846      case ISD::SETLE:
2847      case ISD::SETGT:
2848        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2849          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2850          RHS = DAG.getConstant(C+1, MVT::i32);
2851        }
2852        break;
2853      case ISD::SETULE:
2854      case ISD::SETUGT:
2855        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2856          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2857          RHS = DAG.getConstant(C+1, MVT::i32);
2858        }
2859        break;
2860      }
2861    }
2862  }
2863
2864  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2865  ARMISD::NodeType CompareType;
2866  switch (CondCode) {
2867  default:
2868    CompareType = ARMISD::CMP;
2869    break;
2870  case ARMCC::EQ:
2871  case ARMCC::NE:
2872    // Uses only Z Flag
2873    CompareType = ARMISD::CMPZ;
2874    break;
2875  }
2876  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2877  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2878}
2879
2880/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2881SDValue
2882ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2883                             DebugLoc dl) const {
2884  SDValue Cmp;
2885  if (!isFloatingPointZero(RHS))
2886    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2887  else
2888    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2889  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2890}
2891
2892/// duplicateCmp - Glue values can have only one use, so this function
2893/// duplicates a comparison node.
2894SDValue
2895ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2896  unsigned Opc = Cmp.getOpcode();
2897  DebugLoc DL = Cmp.getDebugLoc();
2898  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2899    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2900
2901  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2902  Cmp = Cmp.getOperand(0);
2903  Opc = Cmp.getOpcode();
2904  if (Opc == ARMISD::CMPFP)
2905    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2906  else {
2907    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2908    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2909  }
2910  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2911}
2912
2913SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2914  SDValue Cond = Op.getOperand(0);
2915  SDValue SelectTrue = Op.getOperand(1);
2916  SDValue SelectFalse = Op.getOperand(2);
2917  DebugLoc dl = Op.getDebugLoc();
2918
2919  // Convert:
2920  //
2921  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2922  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2923  //
2924  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2925    const ConstantSDNode *CMOVTrue =
2926      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2927    const ConstantSDNode *CMOVFalse =
2928      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2929
2930    if (CMOVTrue && CMOVFalse) {
2931      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2932      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2933
2934      SDValue True;
2935      SDValue False;
2936      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2937        True = SelectTrue;
2938        False = SelectFalse;
2939      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2940        True = SelectFalse;
2941        False = SelectTrue;
2942      }
2943
2944      if (True.getNode() && False.getNode()) {
2945        EVT VT = Op.getValueType();
2946        SDValue ARMcc = Cond.getOperand(2);
2947        SDValue CCR = Cond.getOperand(3);
2948        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2949        assert(True.getValueType() == VT);
2950        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2951      }
2952    }
2953  }
2954
2955  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
2956  // undefined bits before doing a full-word comparison with zero.
2957  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
2958                     DAG.getConstant(1, Cond.getValueType()));
2959
2960  return DAG.getSelectCC(dl, Cond,
2961                         DAG.getConstant(0, Cond.getValueType()),
2962                         SelectTrue, SelectFalse, ISD::SETNE);
2963}
2964
2965SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2966  EVT VT = Op.getValueType();
2967  SDValue LHS = Op.getOperand(0);
2968  SDValue RHS = Op.getOperand(1);
2969  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2970  SDValue TrueVal = Op.getOperand(2);
2971  SDValue FalseVal = Op.getOperand(3);
2972  DebugLoc dl = Op.getDebugLoc();
2973
2974  if (LHS.getValueType() == MVT::i32) {
2975    SDValue ARMcc;
2976    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2977    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2978    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2979  }
2980
2981  ARMCC::CondCodes CondCode, CondCode2;
2982  FPCCToARMCC(CC, CondCode, CondCode2);
2983
2984  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2985  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2986  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2987  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2988                               ARMcc, CCR, Cmp);
2989  if (CondCode2 != ARMCC::AL) {
2990    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2991    // FIXME: Needs another CMP because flag can have but one use.
2992    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2993    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2994                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2995  }
2996  return Result;
2997}
2998
2999/// canChangeToInt - Given the fp compare operand, return true if it is suitable
3000/// to morph to an integer compare sequence.
3001static bool canChangeToInt(SDValue Op, bool &SeenZero,
3002                           const ARMSubtarget *Subtarget) {
3003  SDNode *N = Op.getNode();
3004  if (!N->hasOneUse())
3005    // Otherwise it requires moving the value from fp to integer registers.
3006    return false;
3007  if (!N->getNumValues())
3008    return false;
3009  EVT VT = Op.getValueType();
3010  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3011    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3012    // vmrs are very slow, e.g. cortex-a8.
3013    return false;
3014
3015  if (isFloatingPointZero(Op)) {
3016    SeenZero = true;
3017    return true;
3018  }
3019  return ISD::isNormalLoad(N);
3020}
3021
3022static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
3023  if (isFloatingPointZero(Op))
3024    return DAG.getConstant(0, MVT::i32);
3025
3026  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3027    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3028                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3029                       Ld->isVolatile(), Ld->isNonTemporal(),
3030                       Ld->isInvariant(), Ld->getAlignment());
3031
3032  llvm_unreachable("Unknown VFP cmp argument!");
3033}
3034
3035static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3036                           SDValue &RetVal1, SDValue &RetVal2) {
3037  if (isFloatingPointZero(Op)) {
3038    RetVal1 = DAG.getConstant(0, MVT::i32);
3039    RetVal2 = DAG.getConstant(0, MVT::i32);
3040    return;
3041  }
3042
3043  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3044    SDValue Ptr = Ld->getBasePtr();
3045    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3046                          Ld->getChain(), Ptr,
3047                          Ld->getPointerInfo(),
3048                          Ld->isVolatile(), Ld->isNonTemporal(),
3049                          Ld->isInvariant(), Ld->getAlignment());
3050
3051    EVT PtrType = Ptr.getValueType();
3052    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3053    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
3054                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
3055    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3056                          Ld->getChain(), NewPtr,
3057                          Ld->getPointerInfo().getWithOffset(4),
3058                          Ld->isVolatile(), Ld->isNonTemporal(),
3059                          Ld->isInvariant(), NewAlign);
3060    return;
3061  }
3062
3063  llvm_unreachable("Unknown VFP cmp argument!");
3064}
3065
3066/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3067/// f32 and even f64 comparisons to integer ones.
3068SDValue
3069ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3070  SDValue Chain = Op.getOperand(0);
3071  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3072  SDValue LHS = Op.getOperand(2);
3073  SDValue RHS = Op.getOperand(3);
3074  SDValue Dest = Op.getOperand(4);
3075  DebugLoc dl = Op.getDebugLoc();
3076
3077  bool LHSSeenZero = false;
3078  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3079  bool RHSSeenZero = false;
3080  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3081  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3082    // If unsafe fp math optimization is enabled and there are no other uses of
3083    // the CMP operands, and the condition code is EQ or NE, we can optimize it
3084    // to an integer comparison.
3085    if (CC == ISD::SETOEQ)
3086      CC = ISD::SETEQ;
3087    else if (CC == ISD::SETUNE)
3088      CC = ISD::SETNE;
3089
3090    SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3091    SDValue ARMcc;
3092    if (LHS.getValueType() == MVT::f32) {
3093      LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3094                        bitcastf32Toi32(LHS, DAG), Mask);
3095      RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3096                        bitcastf32Toi32(RHS, DAG), Mask);
3097      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3098      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3099      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3100                         Chain, Dest, ARMcc, CCR, Cmp);
3101    }
3102
3103    SDValue LHS1, LHS2;
3104    SDValue RHS1, RHS2;
3105    expandf64Toi32(LHS, DAG, LHS1, LHS2);
3106    expandf64Toi32(RHS, DAG, RHS1, RHS2);
3107    LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3108    RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3109    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3110    ARMcc = DAG.getConstant(CondCode, MVT::i32);
3111    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3112    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3113    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3114  }
3115
3116  return SDValue();
3117}
3118
3119SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3120  SDValue Chain = Op.getOperand(0);
3121  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3122  SDValue LHS = Op.getOperand(2);
3123  SDValue RHS = Op.getOperand(3);
3124  SDValue Dest = Op.getOperand(4);
3125  DebugLoc dl = Op.getDebugLoc();
3126
3127  if (LHS.getValueType() == MVT::i32) {
3128    SDValue ARMcc;
3129    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3130    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3131    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3132                       Chain, Dest, ARMcc, CCR, Cmp);
3133  }
3134
3135  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3136
3137  if (getTargetMachine().Options.UnsafeFPMath &&
3138      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3139       CC == ISD::SETNE || CC == ISD::SETUNE)) {
3140    SDValue Result = OptimizeVFPBrcond(Op, DAG);
3141    if (Result.getNode())
3142      return Result;
3143  }
3144
3145  ARMCC::CondCodes CondCode, CondCode2;
3146  FPCCToARMCC(CC, CondCode, CondCode2);
3147
3148  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3149  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3150  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3151  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3152  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3153  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3154  if (CondCode2 != ARMCC::AL) {
3155    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3156    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3157    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3158  }
3159  return Res;
3160}
3161
3162SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3163  SDValue Chain = Op.getOperand(0);
3164  SDValue Table = Op.getOperand(1);
3165  SDValue Index = Op.getOperand(2);
3166  DebugLoc dl = Op.getDebugLoc();
3167
3168  EVT PTy = getPointerTy();
3169  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3170  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3171  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3172  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3173  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3174  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3175  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3176  if (Subtarget->isThumb2()) {
3177    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3178    // which does another jump to the destination. This also makes it easier
3179    // to translate it to TBB / TBH later.
3180    // FIXME: This might not work if the function is extremely large.
3181    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3182                       Addr, Op.getOperand(2), JTI, UId);
3183  }
3184  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3185    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3186                       MachinePointerInfo::getJumpTable(),
3187                       false, false, false, 0);
3188    Chain = Addr.getValue(1);
3189    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3190    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3191  } else {
3192    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3193                       MachinePointerInfo::getJumpTable(),
3194                       false, false, false, 0);
3195    Chain = Addr.getValue(1);
3196    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3197  }
3198}
3199
3200static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3201  EVT VT = Op.getValueType();
3202  DebugLoc dl = Op.getDebugLoc();
3203
3204  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3205    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3206      return Op;
3207    return DAG.UnrollVectorOp(Op.getNode());
3208  }
3209
3210  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3211         "Invalid type for custom lowering!");
3212  if (VT != MVT::v4i16)
3213    return DAG.UnrollVectorOp(Op.getNode());
3214
3215  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3216  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3217}
3218
3219static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3220  EVT VT = Op.getValueType();
3221  if (VT.isVector())
3222    return LowerVectorFP_TO_INT(Op, DAG);
3223
3224  DebugLoc dl = Op.getDebugLoc();
3225  unsigned Opc;
3226
3227  switch (Op.getOpcode()) {
3228  default: llvm_unreachable("Invalid opcode!");
3229  case ISD::FP_TO_SINT:
3230    Opc = ARMISD::FTOSI;
3231    break;
3232  case ISD::FP_TO_UINT:
3233    Opc = ARMISD::FTOUI;
3234    break;
3235  }
3236  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3237  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3238}
3239
3240static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3241  EVT VT = Op.getValueType();
3242  DebugLoc dl = Op.getDebugLoc();
3243
3244  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3245    if (VT.getVectorElementType() == MVT::f32)
3246      return Op;
3247    return DAG.UnrollVectorOp(Op.getNode());
3248  }
3249
3250  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3251         "Invalid type for custom lowering!");
3252  if (VT != MVT::v4f32)
3253    return DAG.UnrollVectorOp(Op.getNode());
3254
3255  unsigned CastOpc;
3256  unsigned Opc;
3257  switch (Op.getOpcode()) {
3258  default: llvm_unreachable("Invalid opcode!");
3259  case ISD::SINT_TO_FP:
3260    CastOpc = ISD::SIGN_EXTEND;
3261    Opc = ISD::SINT_TO_FP;
3262    break;
3263  case ISD::UINT_TO_FP:
3264    CastOpc = ISD::ZERO_EXTEND;
3265    Opc = ISD::UINT_TO_FP;
3266    break;
3267  }
3268
3269  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3270  return DAG.getNode(Opc, dl, VT, Op);
3271}
3272
3273static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3274  EVT VT = Op.getValueType();
3275  if (VT.isVector())
3276    return LowerVectorINT_TO_FP(Op, DAG);
3277
3278  DebugLoc dl = Op.getDebugLoc();
3279  unsigned Opc;
3280
3281  switch (Op.getOpcode()) {
3282  default: llvm_unreachable("Invalid opcode!");
3283  case ISD::SINT_TO_FP:
3284    Opc = ARMISD::SITOF;
3285    break;
3286  case ISD::UINT_TO_FP:
3287    Opc = ARMISD::UITOF;
3288    break;
3289  }
3290
3291  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3292  return DAG.getNode(Opc, dl, VT, Op);
3293}
3294
3295SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3296  // Implement fcopysign with a fabs and a conditional fneg.
3297  SDValue Tmp0 = Op.getOperand(0);
3298  SDValue Tmp1 = Op.getOperand(1);
3299  DebugLoc dl = Op.getDebugLoc();
3300  EVT VT = Op.getValueType();
3301  EVT SrcVT = Tmp1.getValueType();
3302  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3303    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3304  bool UseNEON = !InGPR && Subtarget->hasNEON();
3305
3306  if (UseNEON) {
3307    // Use VBSL to copy the sign bit.
3308    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3309    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3310                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3311    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3312    if (VT == MVT::f64)
3313      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3314                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3315                         DAG.getConstant(32, MVT::i32));
3316    else /*if (VT == MVT::f32)*/
3317      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3318    if (SrcVT == MVT::f32) {
3319      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3320      if (VT == MVT::f64)
3321        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3322                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3323                           DAG.getConstant(32, MVT::i32));
3324    } else if (VT == MVT::f32)
3325      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3326                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3327                         DAG.getConstant(32, MVT::i32));
3328    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3329    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3330
3331    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3332                                            MVT::i32);
3333    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3334    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3335                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3336
3337    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3338                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3339                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3340    if (VT == MVT::f32) {
3341      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3342      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3343                        DAG.getConstant(0, MVT::i32));
3344    } else {
3345      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3346    }
3347
3348    return Res;
3349  }
3350
3351  // Bitcast operand 1 to i32.
3352  if (SrcVT == MVT::f64)
3353    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3354                       &Tmp1, 1).getValue(1);
3355  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3356
3357  // Or in the signbit with integer operations.
3358  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3359  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3360  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3361  if (VT == MVT::f32) {
3362    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3363                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3364    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3365                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3366  }
3367
3368  // f64: Or the high part with signbit and then combine two parts.
3369  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3370                     &Tmp0, 1);
3371  SDValue Lo = Tmp0.getValue(0);
3372  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3373  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3374  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3375}
3376
3377SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3378  MachineFunction &MF = DAG.getMachineFunction();
3379  MachineFrameInfo *MFI = MF.getFrameInfo();
3380  MFI->setReturnAddressIsTaken(true);
3381
3382  EVT VT = Op.getValueType();
3383  DebugLoc dl = Op.getDebugLoc();
3384  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3385  if (Depth) {
3386    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3387    SDValue Offset = DAG.getConstant(4, MVT::i32);
3388    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3389                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3390                       MachinePointerInfo(), false, false, false, 0);
3391  }
3392
3393  // Return LR, which contains the return address. Mark it an implicit live-in.
3394  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3395  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3396}
3397
3398SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3399  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3400  MFI->setFrameAddressIsTaken(true);
3401
3402  EVT VT = Op.getValueType();
3403  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3404  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3405  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3406    ? ARM::R7 : ARM::R11;
3407  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3408  while (Depth--)
3409    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3410                            MachinePointerInfo(),
3411                            false, false, false, 0);
3412  return FrameAddr;
3413}
3414
3415/// ExpandBITCAST - If the target supports VFP, this function is called to
3416/// expand a bit convert where either the source or destination type is i64 to
3417/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3418/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3419/// vectors), since the legalizer won't know what to do with that.
3420static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3421  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3422  DebugLoc dl = N->getDebugLoc();
3423  SDValue Op = N->getOperand(0);
3424
3425  // This function is only supposed to be called for i64 types, either as the
3426  // source or destination of the bit convert.
3427  EVT SrcVT = Op.getValueType();
3428  EVT DstVT = N->getValueType(0);
3429  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3430         "ExpandBITCAST called for non-i64 type");
3431
3432  // Turn i64->f64 into VMOVDRR.
3433  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3434    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3435                             DAG.getConstant(0, MVT::i32));
3436    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3437                             DAG.getConstant(1, MVT::i32));
3438    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3439                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3440  }
3441
3442  // Turn f64->i64 into VMOVRRD.
3443  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3444    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3445                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3446    // Merge the pieces into a single i64 value.
3447    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3448  }
3449
3450  return SDValue();
3451}
3452
3453/// getZeroVector - Returns a vector of specified type with all zero elements.
3454/// Zero vectors are used to represent vector negation and in those cases
3455/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3456/// not support i64 elements, so sometimes the zero vectors will need to be
3457/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3458/// zero vector.
3459static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3460  assert(VT.isVector() && "Expected a vector type");
3461  // The canonical modified immediate encoding of a zero vector is....0!
3462  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3463  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3464  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3465  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3466}
3467
3468/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3469/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3470SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3471                                                SelectionDAG &DAG) const {
3472  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3473  EVT VT = Op.getValueType();
3474  unsigned VTBits = VT.getSizeInBits();
3475  DebugLoc dl = Op.getDebugLoc();
3476  SDValue ShOpLo = Op.getOperand(0);
3477  SDValue ShOpHi = Op.getOperand(1);
3478  SDValue ShAmt  = Op.getOperand(2);
3479  SDValue ARMcc;
3480  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3481
3482  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3483
3484  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3485                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3486  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3487  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3488                                   DAG.getConstant(VTBits, MVT::i32));
3489  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3490  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3491  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3492
3493  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3494  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3495                          ARMcc, DAG, dl);
3496  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3497  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3498                           CCR, Cmp);
3499
3500  SDValue Ops[2] = { Lo, Hi };
3501  return DAG.getMergeValues(Ops, 2, dl);
3502}
3503
3504/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3505/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3506SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3507                                               SelectionDAG &DAG) const {
3508  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3509  EVT VT = Op.getValueType();
3510  unsigned VTBits = VT.getSizeInBits();
3511  DebugLoc dl = Op.getDebugLoc();
3512  SDValue ShOpLo = Op.getOperand(0);
3513  SDValue ShOpHi = Op.getOperand(1);
3514  SDValue ShAmt  = Op.getOperand(2);
3515  SDValue ARMcc;
3516
3517  assert(Op.getOpcode() == ISD::SHL_PARTS);
3518  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3519                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3520  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3521  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3522                                   DAG.getConstant(VTBits, MVT::i32));
3523  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3524  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3525
3526  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3527  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3528  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3529                          ARMcc, DAG, dl);
3530  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3531  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3532                           CCR, Cmp);
3533
3534  SDValue Ops[2] = { Lo, Hi };
3535  return DAG.getMergeValues(Ops, 2, dl);
3536}
3537
3538SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3539                                            SelectionDAG &DAG) const {
3540  // The rounding mode is in bits 23:22 of the FPSCR.
3541  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3542  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3543  // so that the shift + and get folded into a bitfield extract.
3544  DebugLoc dl = Op.getDebugLoc();
3545  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3546                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3547                                              MVT::i32));
3548  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3549                                  DAG.getConstant(1U << 22, MVT::i32));
3550  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3551                              DAG.getConstant(22, MVT::i32));
3552  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3553                     DAG.getConstant(3, MVT::i32));
3554}
3555
3556static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3557                         const ARMSubtarget *ST) {
3558  EVT VT = N->getValueType(0);
3559  DebugLoc dl = N->getDebugLoc();
3560
3561  if (!ST->hasV6T2Ops())
3562    return SDValue();
3563
3564  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3565  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3566}
3567
3568/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
3569/// for each 16-bit element from operand, repeated.  The basic idea is to
3570/// leverage vcnt to get the 8-bit counts, gather and add the results.
3571///
3572/// Trace for v4i16:
3573/// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
3574/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
3575/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
3576/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
3577///            [b0 b1 b2 b3 b4 b5 b6 b7]
3578///           +[b1 b0 b3 b2 b5 b4 b7 b6]
3579/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
3580/// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
3581static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
3582  EVT VT = N->getValueType(0);
3583  DebugLoc DL = N->getDebugLoc();
3584
3585  EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
3586  SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
3587  SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
3588  SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
3589  SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
3590  return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
3591}
3592
3593/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
3594/// bit-count for each 16-bit element from the operand.  We need slightly
3595/// different sequencing for v4i16 and v8i16 to stay within NEON's available
3596/// 64/128-bit registers.
3597///
3598/// Trace for v4i16:
3599/// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
3600/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
3601/// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
3602/// v4i16:Extracted = [k0    k1    k2    k3    ]
3603static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
3604  EVT VT = N->getValueType(0);
3605  DebugLoc DL = N->getDebugLoc();
3606
3607  SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
3608  if (VT.is64BitVector()) {
3609    SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
3610    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
3611                       DAG.getIntPtrConstant(0));
3612  } else {
3613    SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
3614                                    BitCounts, DAG.getIntPtrConstant(0));
3615    return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
3616  }
3617}
3618
3619/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
3620/// bit-count for each 32-bit element from the operand.  The idea here is
3621/// to split the vector into 16-bit elements, leverage the 16-bit count
3622/// routine, and then combine the results.
3623///
3624/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
3625/// input    = [v0    v1    ] (vi: 32-bit elements)
3626/// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
3627/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
3628/// vrev: N0 = [k1 k0 k3 k2 ]
3629///            [k0 k1 k2 k3 ]
3630///       N1 =+[k1 k0 k3 k2 ]
3631///            [k0 k2 k1 k3 ]
3632///       N2 =+[k1 k3 k0 k2 ]
3633///            [k0    k2    k1    k3    ]
3634/// Extended =+[k1    k3    k0    k2    ]
3635///            [k0    k2    ]
3636/// Extracted=+[k1    k3    ]
3637///
3638static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
3639  EVT VT = N->getValueType(0);
3640  DebugLoc DL = N->getDebugLoc();
3641
3642  EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
3643
3644  SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
3645  SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
3646  SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
3647  SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
3648  SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
3649
3650  if (VT.is64BitVector()) {
3651    SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
3652    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
3653                       DAG.getIntPtrConstant(0));
3654  } else {
3655    SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
3656                                    DAG.getIntPtrConstant(0));
3657    return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
3658  }
3659}
3660
3661static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
3662                          const ARMSubtarget *ST) {
3663  EVT VT = N->getValueType(0);
3664
3665  assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
3666  assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
3667          VT == MVT::v4i16 || VT == MVT::v8i16) &&
3668         "Unexpected type for custom ctpop lowering");
3669
3670  if (VT.getVectorElementType() == MVT::i32)
3671    return lowerCTPOP32BitElements(N, DAG);
3672  else
3673    return lowerCTPOP16BitElements(N, DAG);
3674}
3675
3676static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3677                          const ARMSubtarget *ST) {
3678  EVT VT = N->getValueType(0);
3679  DebugLoc dl = N->getDebugLoc();
3680
3681  if (!VT.isVector())
3682    return SDValue();
3683
3684  // Lower vector shifts on NEON to use VSHL.
3685  assert(ST->hasNEON() && "unexpected vector shift");
3686
3687  // Left shifts translate directly to the vshiftu intrinsic.
3688  if (N->getOpcode() == ISD::SHL)
3689    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3690                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3691                       N->getOperand(0), N->getOperand(1));
3692
3693  assert((N->getOpcode() == ISD::SRA ||
3694          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3695
3696  // NEON uses the same intrinsics for both left and right shifts.  For
3697  // right shifts, the shift amounts are negative, so negate the vector of
3698  // shift amounts.
3699  EVT ShiftVT = N->getOperand(1).getValueType();
3700  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3701                                     getZeroVector(ShiftVT, DAG, dl),
3702                                     N->getOperand(1));
3703  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3704                             Intrinsic::arm_neon_vshifts :
3705                             Intrinsic::arm_neon_vshiftu);
3706  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3707                     DAG.getConstant(vshiftInt, MVT::i32),
3708                     N->getOperand(0), NegatedCount);
3709}
3710
3711static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3712                                const ARMSubtarget *ST) {
3713  EVT VT = N->getValueType(0);
3714  DebugLoc dl = N->getDebugLoc();
3715
3716  // We can get here for a node like i32 = ISD::SHL i32, i64
3717  if (VT != MVT::i64)
3718    return SDValue();
3719
3720  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3721         "Unknown shift to lower!");
3722
3723  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3724  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3725      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3726    return SDValue();
3727
3728  // If we are in thumb mode, we don't have RRX.
3729  if (ST->isThumb1Only()) return SDValue();
3730
3731  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3732  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3733                           DAG.getConstant(0, MVT::i32));
3734  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3735                           DAG.getConstant(1, MVT::i32));
3736
3737  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3738  // captures the result into a carry flag.
3739  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3740  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3741
3742  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3743  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3744
3745  // Merge the pieces into a single i64 value.
3746 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3747}
3748
3749static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3750  SDValue TmpOp0, TmpOp1;
3751  bool Invert = false;
3752  bool Swap = false;
3753  unsigned Opc = 0;
3754
3755  SDValue Op0 = Op.getOperand(0);
3756  SDValue Op1 = Op.getOperand(1);
3757  SDValue CC = Op.getOperand(2);
3758  EVT VT = Op.getValueType();
3759  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3760  DebugLoc dl = Op.getDebugLoc();
3761
3762  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3763    switch (SetCCOpcode) {
3764    default: llvm_unreachable("Illegal FP comparison");
3765    case ISD::SETUNE:
3766    case ISD::SETNE:  Invert = true; // Fallthrough
3767    case ISD::SETOEQ:
3768    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3769    case ISD::SETOLT:
3770    case ISD::SETLT: Swap = true; // Fallthrough
3771    case ISD::SETOGT:
3772    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3773    case ISD::SETOLE:
3774    case ISD::SETLE:  Swap = true; // Fallthrough
3775    case ISD::SETOGE:
3776    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3777    case ISD::SETUGE: Swap = true; // Fallthrough
3778    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3779    case ISD::SETUGT: Swap = true; // Fallthrough
3780    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3781    case ISD::SETUEQ: Invert = true; // Fallthrough
3782    case ISD::SETONE:
3783      // Expand this to (OLT | OGT).
3784      TmpOp0 = Op0;
3785      TmpOp1 = Op1;
3786      Opc = ISD::OR;
3787      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3788      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3789      break;
3790    case ISD::SETUO: Invert = true; // Fallthrough
3791    case ISD::SETO:
3792      // Expand this to (OLT | OGE).
3793      TmpOp0 = Op0;
3794      TmpOp1 = Op1;
3795      Opc = ISD::OR;
3796      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3797      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3798      break;
3799    }
3800  } else {
3801    // Integer comparisons.
3802    switch (SetCCOpcode) {
3803    default: llvm_unreachable("Illegal integer comparison");
3804    case ISD::SETNE:  Invert = true;
3805    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3806    case ISD::SETLT:  Swap = true;
3807    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3808    case ISD::SETLE:  Swap = true;
3809    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3810    case ISD::SETULT: Swap = true;
3811    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3812    case ISD::SETULE: Swap = true;
3813    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3814    }
3815
3816    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3817    if (Opc == ARMISD::VCEQ) {
3818
3819      SDValue AndOp;
3820      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3821        AndOp = Op0;
3822      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3823        AndOp = Op1;
3824
3825      // Ignore bitconvert.
3826      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3827        AndOp = AndOp.getOperand(0);
3828
3829      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3830        Opc = ARMISD::VTST;
3831        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3832        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3833        Invert = !Invert;
3834      }
3835    }
3836  }
3837
3838  if (Swap)
3839    std::swap(Op0, Op1);
3840
3841  // If one of the operands is a constant vector zero, attempt to fold the
3842  // comparison to a specialized compare-against-zero form.
3843  SDValue SingleOp;
3844  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3845    SingleOp = Op0;
3846  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3847    if (Opc == ARMISD::VCGE)
3848      Opc = ARMISD::VCLEZ;
3849    else if (Opc == ARMISD::VCGT)
3850      Opc = ARMISD::VCLTZ;
3851    SingleOp = Op1;
3852  }
3853
3854  SDValue Result;
3855  if (SingleOp.getNode()) {
3856    switch (Opc) {
3857    case ARMISD::VCEQ:
3858      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3859    case ARMISD::VCGE:
3860      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3861    case ARMISD::VCLEZ:
3862      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3863    case ARMISD::VCGT:
3864      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3865    case ARMISD::VCLTZ:
3866      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3867    default:
3868      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3869    }
3870  } else {
3871     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3872  }
3873
3874  if (Invert)
3875    Result = DAG.getNOT(dl, Result, VT);
3876
3877  return Result;
3878}
3879
3880/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3881/// valid vector constant for a NEON instruction with a "modified immediate"
3882/// operand (e.g., VMOV).  If so, return the encoded value.
3883static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3884                                 unsigned SplatBitSize, SelectionDAG &DAG,
3885                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3886  unsigned OpCmode, Imm;
3887
3888  // SplatBitSize is set to the smallest size that splats the vector, so a
3889  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3890  // immediate instructions others than VMOV do not support the 8-bit encoding
3891  // of a zero vector, and the default encoding of zero is supposed to be the
3892  // 32-bit version.
3893  if (SplatBits == 0)
3894    SplatBitSize = 32;
3895
3896  switch (SplatBitSize) {
3897  case 8:
3898    if (type != VMOVModImm)
3899      return SDValue();
3900    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3901    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3902    OpCmode = 0xe;
3903    Imm = SplatBits;
3904    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3905    break;
3906
3907  case 16:
3908    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3909    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3910    if ((SplatBits & ~0xff) == 0) {
3911      // Value = 0x00nn: Op=x, Cmode=100x.
3912      OpCmode = 0x8;
3913      Imm = SplatBits;
3914      break;
3915    }
3916    if ((SplatBits & ~0xff00) == 0) {
3917      // Value = 0xnn00: Op=x, Cmode=101x.
3918      OpCmode = 0xa;
3919      Imm = SplatBits >> 8;
3920      break;
3921    }
3922    return SDValue();
3923
3924  case 32:
3925    // NEON's 32-bit VMOV supports splat values where:
3926    // * only one byte is nonzero, or
3927    // * the least significant byte is 0xff and the second byte is nonzero, or
3928    // * the least significant 2 bytes are 0xff and the third is nonzero.
3929    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3930    if ((SplatBits & ~0xff) == 0) {
3931      // Value = 0x000000nn: Op=x, Cmode=000x.
3932      OpCmode = 0;
3933      Imm = SplatBits;
3934      break;
3935    }
3936    if ((SplatBits & ~0xff00) == 0) {
3937      // Value = 0x0000nn00: Op=x, Cmode=001x.
3938      OpCmode = 0x2;
3939      Imm = SplatBits >> 8;
3940      break;
3941    }
3942    if ((SplatBits & ~0xff0000) == 0) {
3943      // Value = 0x00nn0000: Op=x, Cmode=010x.
3944      OpCmode = 0x4;
3945      Imm = SplatBits >> 16;
3946      break;
3947    }
3948    if ((SplatBits & ~0xff000000) == 0) {
3949      // Value = 0xnn000000: Op=x, Cmode=011x.
3950      OpCmode = 0x6;
3951      Imm = SplatBits >> 24;
3952      break;
3953    }
3954
3955    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3956    if (type == OtherModImm) return SDValue();
3957
3958    if ((SplatBits & ~0xffff) == 0 &&
3959        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3960      // Value = 0x0000nnff: Op=x, Cmode=1100.
3961      OpCmode = 0xc;
3962      Imm = SplatBits >> 8;
3963      SplatBits |= 0xff;
3964      break;
3965    }
3966
3967    if ((SplatBits & ~0xffffff) == 0 &&
3968        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3969      // Value = 0x00nnffff: Op=x, Cmode=1101.
3970      OpCmode = 0xd;
3971      Imm = SplatBits >> 16;
3972      SplatBits |= 0xffff;
3973      break;
3974    }
3975
3976    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3977    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3978    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3979    // and fall through here to test for a valid 64-bit splat.  But, then the
3980    // caller would also need to check and handle the change in size.
3981    return SDValue();
3982
3983  case 64: {
3984    if (type != VMOVModImm)
3985      return SDValue();
3986    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3987    uint64_t BitMask = 0xff;
3988    uint64_t Val = 0;
3989    unsigned ImmMask = 1;
3990    Imm = 0;
3991    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3992      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3993        Val |= BitMask;
3994        Imm |= ImmMask;
3995      } else if ((SplatBits & BitMask) != 0) {
3996        return SDValue();
3997      }
3998      BitMask <<= 8;
3999      ImmMask <<= 1;
4000    }
4001    // Op=1, Cmode=1110.
4002    OpCmode = 0x1e;
4003    SplatBits = Val;
4004    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
4005    break;
4006  }
4007
4008  default:
4009    llvm_unreachable("unexpected size for isNEONModifiedImm");
4010  }
4011
4012  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
4013  return DAG.getTargetConstant(EncodedVal, MVT::i32);
4014}
4015
4016SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
4017                                           const ARMSubtarget *ST) const {
4018  if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
4019    return SDValue();
4020
4021  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
4022  assert(Op.getValueType() == MVT::f32 &&
4023         "ConstantFP custom lowering should only occur for f32.");
4024
4025  // Try splatting with a VMOV.f32...
4026  APFloat FPVal = CFP->getValueAPF();
4027  int ImmVal = ARM_AM::getFP32Imm(FPVal);
4028  if (ImmVal != -1) {
4029    DebugLoc DL = Op.getDebugLoc();
4030    SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
4031    SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
4032                                      NewVal);
4033    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
4034                       DAG.getConstant(0, MVT::i32));
4035  }
4036
4037  // If that fails, try a VMOV.i32
4038  EVT VMovVT;
4039  unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
4040  SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
4041                                     VMOVModImm);
4042  if (NewVal != SDValue()) {
4043    DebugLoc DL = Op.getDebugLoc();
4044    SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
4045                                      NewVal);
4046    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4047                                       VecConstant);
4048    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4049                       DAG.getConstant(0, MVT::i32));
4050  }
4051
4052  // Finally, try a VMVN.i32
4053  NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
4054                             VMVNModImm);
4055  if (NewVal != SDValue()) {
4056    DebugLoc DL = Op.getDebugLoc();
4057    SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
4058    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4059                                       VecConstant);
4060    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4061                       DAG.getConstant(0, MVT::i32));
4062  }
4063
4064  return SDValue();
4065}
4066
4067// check if an VEXT instruction can handle the shuffle mask when the
4068// vector sources of the shuffle are the same.
4069static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4070  unsigned NumElts = VT.getVectorNumElements();
4071
4072  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4073  if (M[0] < 0)
4074    return false;
4075
4076  Imm = M[0];
4077
4078  // If this is a VEXT shuffle, the immediate value is the index of the first
4079  // element.  The other shuffle indices must be the successive elements after
4080  // the first one.
4081  unsigned ExpectedElt = Imm;
4082  for (unsigned i = 1; i < NumElts; ++i) {
4083    // Increment the expected index.  If it wraps around, just follow it
4084    // back to index zero and keep going.
4085    ++ExpectedElt;
4086    if (ExpectedElt == NumElts)
4087      ExpectedElt = 0;
4088
4089    if (M[i] < 0) continue; // ignore UNDEF indices
4090    if (ExpectedElt != static_cast<unsigned>(M[i]))
4091      return false;
4092  }
4093
4094  return true;
4095}
4096
4097
4098static bool isVEXTMask(ArrayRef<int> M, EVT VT,
4099                       bool &ReverseVEXT, unsigned &Imm) {
4100  unsigned NumElts = VT.getVectorNumElements();
4101  ReverseVEXT = false;
4102
4103  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4104  if (M[0] < 0)
4105    return false;
4106
4107  Imm = M[0];
4108
4109  // If this is a VEXT shuffle, the immediate value is the index of the first
4110  // element.  The other shuffle indices must be the successive elements after
4111  // the first one.
4112  unsigned ExpectedElt = Imm;
4113  for (unsigned i = 1; i < NumElts; ++i) {
4114    // Increment the expected index.  If it wraps around, it may still be
4115    // a VEXT but the source vectors must be swapped.
4116    ExpectedElt += 1;
4117    if (ExpectedElt == NumElts * 2) {
4118      ExpectedElt = 0;
4119      ReverseVEXT = true;
4120    }
4121
4122    if (M[i] < 0) continue; // ignore UNDEF indices
4123    if (ExpectedElt != static_cast<unsigned>(M[i]))
4124      return false;
4125  }
4126
4127  // Adjust the index value if the source operands will be swapped.
4128  if (ReverseVEXT)
4129    Imm -= NumElts;
4130
4131  return true;
4132}
4133
4134/// isVREVMask - Check if a vector shuffle corresponds to a VREV
4135/// instruction with the specified blocksize.  (The order of the elements
4136/// within each block of the vector is reversed.)
4137static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4138  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
4139         "Only possible block sizes for VREV are: 16, 32, 64");
4140
4141  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4142  if (EltSz == 64)
4143    return false;
4144
4145  unsigned NumElts = VT.getVectorNumElements();
4146  unsigned BlockElts = M[0] + 1;
4147  // If the first shuffle index is UNDEF, be optimistic.
4148  if (M[0] < 0)
4149    BlockElts = BlockSize / EltSz;
4150
4151  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4152    return false;
4153
4154  for (unsigned i = 0; i < NumElts; ++i) {
4155    if (M[i] < 0) continue; // ignore UNDEF indices
4156    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
4157      return false;
4158  }
4159
4160  return true;
4161}
4162
4163static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
4164  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
4165  // range, then 0 is placed into the resulting vector. So pretty much any mask
4166  // of 8 elements can work here.
4167  return VT == MVT::v8i8 && M.size() == 8;
4168}
4169
4170static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4171  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4172  if (EltSz == 64)
4173    return false;
4174
4175  unsigned NumElts = VT.getVectorNumElements();
4176  WhichResult = (M[0] == 0 ? 0 : 1);
4177  for (unsigned i = 0; i < NumElts; i += 2) {
4178    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4179        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
4180      return false;
4181  }
4182  return true;
4183}
4184
4185/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
4186/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4187/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4188static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4189  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4190  if (EltSz == 64)
4191    return false;
4192
4193  unsigned NumElts = VT.getVectorNumElements();
4194  WhichResult = (M[0] == 0 ? 0 : 1);
4195  for (unsigned i = 0; i < NumElts; i += 2) {
4196    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4197        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
4198      return false;
4199  }
4200  return true;
4201}
4202
4203static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4204  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4205  if (EltSz == 64)
4206    return false;
4207
4208  unsigned NumElts = VT.getVectorNumElements();
4209  WhichResult = (M[0] == 0 ? 0 : 1);
4210  for (unsigned i = 0; i != NumElts; ++i) {
4211    if (M[i] < 0) continue; // ignore UNDEF indices
4212    if ((unsigned) M[i] != 2 * i + WhichResult)
4213      return false;
4214  }
4215
4216  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4217  if (VT.is64BitVector() && EltSz == 32)
4218    return false;
4219
4220  return true;
4221}
4222
4223/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4224/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4225/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4226static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4227  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4228  if (EltSz == 64)
4229    return false;
4230
4231  unsigned Half = VT.getVectorNumElements() / 2;
4232  WhichResult = (M[0] == 0 ? 0 : 1);
4233  for (unsigned j = 0; j != 2; ++j) {
4234    unsigned Idx = WhichResult;
4235    for (unsigned i = 0; i != Half; ++i) {
4236      int MIdx = M[i + j * Half];
4237      if (MIdx >= 0 && (unsigned) MIdx != Idx)
4238        return false;
4239      Idx += 2;
4240    }
4241  }
4242
4243  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4244  if (VT.is64BitVector() && EltSz == 32)
4245    return false;
4246
4247  return true;
4248}
4249
4250static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4251  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4252  if (EltSz == 64)
4253    return false;
4254
4255  unsigned NumElts = VT.getVectorNumElements();
4256  WhichResult = (M[0] == 0 ? 0 : 1);
4257  unsigned Idx = WhichResult * NumElts / 2;
4258  for (unsigned i = 0; i != NumElts; i += 2) {
4259    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4260        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4261      return false;
4262    Idx += 1;
4263  }
4264
4265  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4266  if (VT.is64BitVector() && EltSz == 32)
4267    return false;
4268
4269  return true;
4270}
4271
4272/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4273/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4274/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4275static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4276  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4277  if (EltSz == 64)
4278    return false;
4279
4280  unsigned NumElts = VT.getVectorNumElements();
4281  WhichResult = (M[0] == 0 ? 0 : 1);
4282  unsigned Idx = WhichResult * NumElts / 2;
4283  for (unsigned i = 0; i != NumElts; i += 2) {
4284    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4285        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4286      return false;
4287    Idx += 1;
4288  }
4289
4290  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4291  if (VT.is64BitVector() && EltSz == 32)
4292    return false;
4293
4294  return true;
4295}
4296
4297// If N is an integer constant that can be moved into a register in one
4298// instruction, return an SDValue of such a constant (will become a MOV
4299// instruction).  Otherwise return null.
4300static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4301                                     const ARMSubtarget *ST, DebugLoc dl) {
4302  uint64_t Val;
4303  if (!isa<ConstantSDNode>(N))
4304    return SDValue();
4305  Val = cast<ConstantSDNode>(N)->getZExtValue();
4306
4307  if (ST->isThumb1Only()) {
4308    if (Val <= 255 || ~Val <= 255)
4309      return DAG.getConstant(Val, MVT::i32);
4310  } else {
4311    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4312      return DAG.getConstant(Val, MVT::i32);
4313  }
4314  return SDValue();
4315}
4316
4317// If this is a case we can't handle, return null and let the default
4318// expansion code take care of it.
4319SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4320                                             const ARMSubtarget *ST) const {
4321  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4322  DebugLoc dl = Op.getDebugLoc();
4323  EVT VT = Op.getValueType();
4324
4325  APInt SplatBits, SplatUndef;
4326  unsigned SplatBitSize;
4327  bool HasAnyUndefs;
4328  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4329    if (SplatBitSize <= 64) {
4330      // Check if an immediate VMOV works.
4331      EVT VmovVT;
4332      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4333                                      SplatUndef.getZExtValue(), SplatBitSize,
4334                                      DAG, VmovVT, VT.is128BitVector(),
4335                                      VMOVModImm);
4336      if (Val.getNode()) {
4337        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4338        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4339      }
4340
4341      // Try an immediate VMVN.
4342      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4343      Val = isNEONModifiedImm(NegatedImm,
4344                                      SplatUndef.getZExtValue(), SplatBitSize,
4345                                      DAG, VmovVT, VT.is128BitVector(),
4346                                      VMVNModImm);
4347      if (Val.getNode()) {
4348        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4349        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4350      }
4351
4352      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4353      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4354        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4355        if (ImmVal != -1) {
4356          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4357          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4358        }
4359      }
4360    }
4361  }
4362
4363  // Scan through the operands to see if only one value is used.
4364  //
4365  // As an optimisation, even if more than one value is used it may be more
4366  // profitable to splat with one value then change some lanes.
4367  //
4368  // Heuristically we decide to do this if the vector has a "dominant" value,
4369  // defined as splatted to more than half of the lanes.
4370  unsigned NumElts = VT.getVectorNumElements();
4371  bool isOnlyLowElement = true;
4372  bool usesOnlyOneValue = true;
4373  bool hasDominantValue = false;
4374  bool isConstant = true;
4375
4376  // Map of the number of times a particular SDValue appears in the
4377  // element list.
4378  DenseMap<SDValue, unsigned> ValueCounts;
4379  SDValue Value;
4380  for (unsigned i = 0; i < NumElts; ++i) {
4381    SDValue V = Op.getOperand(i);
4382    if (V.getOpcode() == ISD::UNDEF)
4383      continue;
4384    if (i > 0)
4385      isOnlyLowElement = false;
4386    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4387      isConstant = false;
4388
4389    ValueCounts.insert(std::make_pair(V, 0));
4390    unsigned &Count = ValueCounts[V];
4391
4392    // Is this value dominant? (takes up more than half of the lanes)
4393    if (++Count > (NumElts / 2)) {
4394      hasDominantValue = true;
4395      Value = V;
4396    }
4397  }
4398  if (ValueCounts.size() != 1)
4399    usesOnlyOneValue = false;
4400  if (!Value.getNode() && ValueCounts.size() > 0)
4401    Value = ValueCounts.begin()->first;
4402
4403  if (ValueCounts.size() == 0)
4404    return DAG.getUNDEF(VT);
4405
4406  if (isOnlyLowElement)
4407    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4408
4409  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4410
4411  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4412  // i32 and try again.
4413  if (hasDominantValue && EltSize <= 32) {
4414    if (!isConstant) {
4415      SDValue N;
4416
4417      // If we are VDUPing a value that comes directly from a vector, that will
4418      // cause an unnecessary move to and from a GPR, where instead we could
4419      // just use VDUPLANE.
4420      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4421        // We need to create a new undef vector to use for the VDUPLANE if the
4422        // size of the vector from which we get the value is different than the
4423        // size of the vector that we need to create. We will insert the element
4424        // such that the register coalescer will remove unnecessary copies.
4425        if (VT != Value->getOperand(0).getValueType()) {
4426          ConstantSDNode *constIndex;
4427          constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
4428          assert(constIndex && "The index is not a constant!");
4429          unsigned index = constIndex->getAPIntValue().getLimitedValue() %
4430                             VT.getVectorNumElements();
4431          N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4432                 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
4433                        Value, DAG.getConstant(index, MVT::i32)),
4434                           DAG.getConstant(index, MVT::i32));
4435        } else {
4436          N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4437                        Value->getOperand(0), Value->getOperand(1));
4438        }
4439      }
4440      else
4441        N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4442
4443      if (!usesOnlyOneValue) {
4444        // The dominant value was splatted as 'N', but we now have to insert
4445        // all differing elements.
4446        for (unsigned I = 0; I < NumElts; ++I) {
4447          if (Op.getOperand(I) == Value)
4448            continue;
4449          SmallVector<SDValue, 3> Ops;
4450          Ops.push_back(N);
4451          Ops.push_back(Op.getOperand(I));
4452          Ops.push_back(DAG.getConstant(I, MVT::i32));
4453          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
4454        }
4455      }
4456      return N;
4457    }
4458    if (VT.getVectorElementType().isFloatingPoint()) {
4459      SmallVector<SDValue, 8> Ops;
4460      for (unsigned i = 0; i < NumElts; ++i)
4461        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4462                                  Op.getOperand(i)));
4463      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4464      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4465      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4466      if (Val.getNode())
4467        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4468    }
4469    if (usesOnlyOneValue) {
4470      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4471      if (isConstant && Val.getNode())
4472        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4473    }
4474  }
4475
4476  // If all elements are constants and the case above didn't get hit, fall back
4477  // to the default expansion, which will generate a load from the constant
4478  // pool.
4479  if (isConstant)
4480    return SDValue();
4481
4482  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4483  if (NumElts >= 4) {
4484    SDValue shuffle = ReconstructShuffle(Op, DAG);
4485    if (shuffle != SDValue())
4486      return shuffle;
4487  }
4488
4489  // Vectors with 32- or 64-bit elements can be built by directly assigning
4490  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4491  // will be legalized.
4492  if (EltSize >= 32) {
4493    // Do the expansion with floating-point types, since that is what the VFP
4494    // registers are defined to use, and since i64 is not legal.
4495    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4496    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4497    SmallVector<SDValue, 8> Ops;
4498    for (unsigned i = 0; i < NumElts; ++i)
4499      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4500    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4501    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4502  }
4503
4504  return SDValue();
4505}
4506
4507// Gather data to see if the operation can be modelled as a
4508// shuffle in combination with VEXTs.
4509SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4510                                              SelectionDAG &DAG) const {
4511  DebugLoc dl = Op.getDebugLoc();
4512  EVT VT = Op.getValueType();
4513  unsigned NumElts = VT.getVectorNumElements();
4514
4515  SmallVector<SDValue, 2> SourceVecs;
4516  SmallVector<unsigned, 2> MinElts;
4517  SmallVector<unsigned, 2> MaxElts;
4518
4519  for (unsigned i = 0; i < NumElts; ++i) {
4520    SDValue V = Op.getOperand(i);
4521    if (V.getOpcode() == ISD::UNDEF)
4522      continue;
4523    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4524      // A shuffle can only come from building a vector from various
4525      // elements of other vectors.
4526      return SDValue();
4527    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4528               VT.getVectorElementType()) {
4529      // This code doesn't know how to handle shuffles where the vector
4530      // element types do not match (this happens because type legalization
4531      // promotes the return type of EXTRACT_VECTOR_ELT).
4532      // FIXME: It might be appropriate to extend this code to handle
4533      // mismatched types.
4534      return SDValue();
4535    }
4536
4537    // Record this extraction against the appropriate vector if possible...
4538    SDValue SourceVec = V.getOperand(0);
4539    // If the element number isn't a constant, we can't effectively
4540    // analyze what's going on.
4541    if (!isa<ConstantSDNode>(V.getOperand(1)))
4542      return SDValue();
4543    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4544    bool FoundSource = false;
4545    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4546      if (SourceVecs[j] == SourceVec) {
4547        if (MinElts[j] > EltNo)
4548          MinElts[j] = EltNo;
4549        if (MaxElts[j] < EltNo)
4550          MaxElts[j] = EltNo;
4551        FoundSource = true;
4552        break;
4553      }
4554    }
4555
4556    // Or record a new source if not...
4557    if (!FoundSource) {
4558      SourceVecs.push_back(SourceVec);
4559      MinElts.push_back(EltNo);
4560      MaxElts.push_back(EltNo);
4561    }
4562  }
4563
4564  // Currently only do something sane when at most two source vectors
4565  // involved.
4566  if (SourceVecs.size() > 2)
4567    return SDValue();
4568
4569  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4570  int VEXTOffsets[2] = {0, 0};
4571
4572  // This loop extracts the usage patterns of the source vectors
4573  // and prepares appropriate SDValues for a shuffle if possible.
4574  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4575    if (SourceVecs[i].getValueType() == VT) {
4576      // No VEXT necessary
4577      ShuffleSrcs[i] = SourceVecs[i];
4578      VEXTOffsets[i] = 0;
4579      continue;
4580    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4581      // It probably isn't worth padding out a smaller vector just to
4582      // break it down again in a shuffle.
4583      return SDValue();
4584    }
4585
4586    // Since only 64-bit and 128-bit vectors are legal on ARM and
4587    // we've eliminated the other cases...
4588    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4589           "unexpected vector sizes in ReconstructShuffle");
4590
4591    if (MaxElts[i] - MinElts[i] >= NumElts) {
4592      // Span too large for a VEXT to cope
4593      return SDValue();
4594    }
4595
4596    if (MinElts[i] >= NumElts) {
4597      // The extraction can just take the second half
4598      VEXTOffsets[i] = NumElts;
4599      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4600                                   SourceVecs[i],
4601                                   DAG.getIntPtrConstant(NumElts));
4602    } else if (MaxElts[i] < NumElts) {
4603      // The extraction can just take the first half
4604      VEXTOffsets[i] = 0;
4605      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4606                                   SourceVecs[i],
4607                                   DAG.getIntPtrConstant(0));
4608    } else {
4609      // An actual VEXT is needed
4610      VEXTOffsets[i] = MinElts[i];
4611      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4612                                     SourceVecs[i],
4613                                     DAG.getIntPtrConstant(0));
4614      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4615                                     SourceVecs[i],
4616                                     DAG.getIntPtrConstant(NumElts));
4617      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4618                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4619    }
4620  }
4621
4622  SmallVector<int, 8> Mask;
4623
4624  for (unsigned i = 0; i < NumElts; ++i) {
4625    SDValue Entry = Op.getOperand(i);
4626    if (Entry.getOpcode() == ISD::UNDEF) {
4627      Mask.push_back(-1);
4628      continue;
4629    }
4630
4631    SDValue ExtractVec = Entry.getOperand(0);
4632    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4633                                          .getOperand(1))->getSExtValue();
4634    if (ExtractVec == SourceVecs[0]) {
4635      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4636    } else {
4637      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4638    }
4639  }
4640
4641  // Final check before we try to produce nonsense...
4642  if (isShuffleMaskLegal(Mask, VT))
4643    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4644                                &Mask[0]);
4645
4646  return SDValue();
4647}
4648
4649/// isShuffleMaskLegal - Targets can use this to indicate that they only
4650/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4651/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4652/// are assumed to be legal.
4653bool
4654ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4655                                      EVT VT) const {
4656  if (VT.getVectorNumElements() == 4 &&
4657      (VT.is128BitVector() || VT.is64BitVector())) {
4658    unsigned PFIndexes[4];
4659    for (unsigned i = 0; i != 4; ++i) {
4660      if (M[i] < 0)
4661        PFIndexes[i] = 8;
4662      else
4663        PFIndexes[i] = M[i];
4664    }
4665
4666    // Compute the index in the perfect shuffle table.
4667    unsigned PFTableIndex =
4668      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4669    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4670    unsigned Cost = (PFEntry >> 30);
4671
4672    if (Cost <= 4)
4673      return true;
4674  }
4675
4676  bool ReverseVEXT;
4677  unsigned Imm, WhichResult;
4678
4679  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4680  return (EltSize >= 32 ||
4681          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4682          isVREVMask(M, VT, 64) ||
4683          isVREVMask(M, VT, 32) ||
4684          isVREVMask(M, VT, 16) ||
4685          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4686          isVTBLMask(M, VT) ||
4687          isVTRNMask(M, VT, WhichResult) ||
4688          isVUZPMask(M, VT, WhichResult) ||
4689          isVZIPMask(M, VT, WhichResult) ||
4690          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4691          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4692          isVZIP_v_undef_Mask(M, VT, WhichResult));
4693}
4694
4695/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4696/// the specified operations to build the shuffle.
4697static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4698                                      SDValue RHS, SelectionDAG &DAG,
4699                                      DebugLoc dl) {
4700  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4701  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4702  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4703
4704  enum {
4705    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4706    OP_VREV,
4707    OP_VDUP0,
4708    OP_VDUP1,
4709    OP_VDUP2,
4710    OP_VDUP3,
4711    OP_VEXT1,
4712    OP_VEXT2,
4713    OP_VEXT3,
4714    OP_VUZPL, // VUZP, left result
4715    OP_VUZPR, // VUZP, right result
4716    OP_VZIPL, // VZIP, left result
4717    OP_VZIPR, // VZIP, right result
4718    OP_VTRNL, // VTRN, left result
4719    OP_VTRNR  // VTRN, right result
4720  };
4721
4722  if (OpNum == OP_COPY) {
4723    if (LHSID == (1*9+2)*9+3) return LHS;
4724    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4725    return RHS;
4726  }
4727
4728  SDValue OpLHS, OpRHS;
4729  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4730  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4731  EVT VT = OpLHS.getValueType();
4732
4733  switch (OpNum) {
4734  default: llvm_unreachable("Unknown shuffle opcode!");
4735  case OP_VREV:
4736    // VREV divides the vector in half and swaps within the half.
4737    if (VT.getVectorElementType() == MVT::i32 ||
4738        VT.getVectorElementType() == MVT::f32)
4739      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4740    // vrev <4 x i16> -> VREV32
4741    if (VT.getVectorElementType() == MVT::i16)
4742      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4743    // vrev <4 x i8> -> VREV16
4744    assert(VT.getVectorElementType() == MVT::i8);
4745    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4746  case OP_VDUP0:
4747  case OP_VDUP1:
4748  case OP_VDUP2:
4749  case OP_VDUP3:
4750    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4751                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4752  case OP_VEXT1:
4753  case OP_VEXT2:
4754  case OP_VEXT3:
4755    return DAG.getNode(ARMISD::VEXT, dl, VT,
4756                       OpLHS, OpRHS,
4757                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4758  case OP_VUZPL:
4759  case OP_VUZPR:
4760    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4761                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4762  case OP_VZIPL:
4763  case OP_VZIPR:
4764    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4765                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4766  case OP_VTRNL:
4767  case OP_VTRNR:
4768    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4769                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4770  }
4771}
4772
4773static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4774                                       ArrayRef<int> ShuffleMask,
4775                                       SelectionDAG &DAG) {
4776  // Check to see if we can use the VTBL instruction.
4777  SDValue V1 = Op.getOperand(0);
4778  SDValue V2 = Op.getOperand(1);
4779  DebugLoc DL = Op.getDebugLoc();
4780
4781  SmallVector<SDValue, 8> VTBLMask;
4782  for (ArrayRef<int>::iterator
4783         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4784    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4785
4786  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4787    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4788                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4789                                   &VTBLMask[0], 8));
4790
4791  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4792                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4793                                 &VTBLMask[0], 8));
4794}
4795
4796static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4797  SDValue V1 = Op.getOperand(0);
4798  SDValue V2 = Op.getOperand(1);
4799  DebugLoc dl = Op.getDebugLoc();
4800  EVT VT = Op.getValueType();
4801  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4802
4803  // Convert shuffles that are directly supported on NEON to target-specific
4804  // DAG nodes, instead of keeping them as shuffles and matching them again
4805  // during code selection.  This is more efficient and avoids the possibility
4806  // of inconsistencies between legalization and selection.
4807  // FIXME: floating-point vectors should be canonicalized to integer vectors
4808  // of the same time so that they get CSEd properly.
4809  ArrayRef<int> ShuffleMask = SVN->getMask();
4810
4811  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4812  if (EltSize <= 32) {
4813    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4814      int Lane = SVN->getSplatIndex();
4815      // If this is undef splat, generate it via "just" vdup, if possible.
4816      if (Lane == -1) Lane = 0;
4817
4818      // Test if V1 is a SCALAR_TO_VECTOR.
4819      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4820        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4821      }
4822      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4823      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4824      // reaches it).
4825      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4826          !isa<ConstantSDNode>(V1.getOperand(0))) {
4827        bool IsScalarToVector = true;
4828        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4829          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4830            IsScalarToVector = false;
4831            break;
4832          }
4833        if (IsScalarToVector)
4834          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4835      }
4836      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4837                         DAG.getConstant(Lane, MVT::i32));
4838    }
4839
4840    bool ReverseVEXT;
4841    unsigned Imm;
4842    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4843      if (ReverseVEXT)
4844        std::swap(V1, V2);
4845      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4846                         DAG.getConstant(Imm, MVT::i32));
4847    }
4848
4849    if (isVREVMask(ShuffleMask, VT, 64))
4850      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4851    if (isVREVMask(ShuffleMask, VT, 32))
4852      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4853    if (isVREVMask(ShuffleMask, VT, 16))
4854      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4855
4856    if (V2->getOpcode() == ISD::UNDEF &&
4857        isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
4858      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
4859                         DAG.getConstant(Imm, MVT::i32));
4860    }
4861
4862    // Check for Neon shuffles that modify both input vectors in place.
4863    // If both results are used, i.e., if there are two shuffles with the same
4864    // source operands and with masks corresponding to both results of one of
4865    // these operations, DAG memoization will ensure that a single node is
4866    // used for both shuffles.
4867    unsigned WhichResult;
4868    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4869      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4870                         V1, V2).getValue(WhichResult);
4871    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4872      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4873                         V1, V2).getValue(WhichResult);
4874    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4875      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4876                         V1, V2).getValue(WhichResult);
4877
4878    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4879      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4880                         V1, V1).getValue(WhichResult);
4881    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4882      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4883                         V1, V1).getValue(WhichResult);
4884    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4885      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4886                         V1, V1).getValue(WhichResult);
4887  }
4888
4889  // If the shuffle is not directly supported and it has 4 elements, use
4890  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4891  unsigned NumElts = VT.getVectorNumElements();
4892  if (NumElts == 4) {
4893    unsigned PFIndexes[4];
4894    for (unsigned i = 0; i != 4; ++i) {
4895      if (ShuffleMask[i] < 0)
4896        PFIndexes[i] = 8;
4897      else
4898        PFIndexes[i] = ShuffleMask[i];
4899    }
4900
4901    // Compute the index in the perfect shuffle table.
4902    unsigned PFTableIndex =
4903      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4904    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4905    unsigned Cost = (PFEntry >> 30);
4906
4907    if (Cost <= 4)
4908      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4909  }
4910
4911  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4912  if (EltSize >= 32) {
4913    // Do the expansion with floating-point types, since that is what the VFP
4914    // registers are defined to use, and since i64 is not legal.
4915    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4916    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4917    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4918    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4919    SmallVector<SDValue, 8> Ops;
4920    for (unsigned i = 0; i < NumElts; ++i) {
4921      if (ShuffleMask[i] < 0)
4922        Ops.push_back(DAG.getUNDEF(EltVT));
4923      else
4924        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4925                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4926                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4927                                                  MVT::i32)));
4928    }
4929    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4930    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4931  }
4932
4933  if (VT == MVT::v8i8) {
4934    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4935    if (NewOp.getNode())
4936      return NewOp;
4937  }
4938
4939  return SDValue();
4940}
4941
4942static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4943  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4944  SDValue Lane = Op.getOperand(2);
4945  if (!isa<ConstantSDNode>(Lane))
4946    return SDValue();
4947
4948  return Op;
4949}
4950
4951static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4952  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4953  SDValue Lane = Op.getOperand(1);
4954  if (!isa<ConstantSDNode>(Lane))
4955    return SDValue();
4956
4957  SDValue Vec = Op.getOperand(0);
4958  if (Op.getValueType() == MVT::i32 &&
4959      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4960    DebugLoc dl = Op.getDebugLoc();
4961    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4962  }
4963
4964  return Op;
4965}
4966
4967static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4968  // The only time a CONCAT_VECTORS operation can have legal types is when
4969  // two 64-bit vectors are concatenated to a 128-bit vector.
4970  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4971         "unexpected CONCAT_VECTORS");
4972  DebugLoc dl = Op.getDebugLoc();
4973  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4974  SDValue Op0 = Op.getOperand(0);
4975  SDValue Op1 = Op.getOperand(1);
4976  if (Op0.getOpcode() != ISD::UNDEF)
4977    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4978                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4979                      DAG.getIntPtrConstant(0));
4980  if (Op1.getOpcode() != ISD::UNDEF)
4981    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4982                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4983                      DAG.getIntPtrConstant(1));
4984  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4985}
4986
4987/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4988/// element has been zero/sign-extended, depending on the isSigned parameter,
4989/// from an integer type half its size.
4990static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4991                                   bool isSigned) {
4992  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4993  EVT VT = N->getValueType(0);
4994  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4995    SDNode *BVN = N->getOperand(0).getNode();
4996    if (BVN->getValueType(0) != MVT::v4i32 ||
4997        BVN->getOpcode() != ISD::BUILD_VECTOR)
4998      return false;
4999    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5000    unsigned HiElt = 1 - LoElt;
5001    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
5002    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
5003    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
5004    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
5005    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
5006      return false;
5007    if (isSigned) {
5008      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
5009          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
5010        return true;
5011    } else {
5012      if (Hi0->isNullValue() && Hi1->isNullValue())
5013        return true;
5014    }
5015    return false;
5016  }
5017
5018  if (N->getOpcode() != ISD::BUILD_VECTOR)
5019    return false;
5020
5021  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5022    SDNode *Elt = N->getOperand(i).getNode();
5023    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
5024      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5025      unsigned HalfSize = EltSize / 2;
5026      if (isSigned) {
5027        if (!isIntN(HalfSize, C->getSExtValue()))
5028          return false;
5029      } else {
5030        if (!isUIntN(HalfSize, C->getZExtValue()))
5031          return false;
5032      }
5033      continue;
5034    }
5035    return false;
5036  }
5037
5038  return true;
5039}
5040
5041/// isSignExtended - Check if a node is a vector value that is sign-extended
5042/// or a constant BUILD_VECTOR with sign-extended elements.
5043static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
5044  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
5045    return true;
5046  if (isExtendedBUILD_VECTOR(N, DAG, true))
5047    return true;
5048  return false;
5049}
5050
5051/// isZeroExtended - Check if a node is a vector value that is zero-extended
5052/// or a constant BUILD_VECTOR with zero-extended elements.
5053static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
5054  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
5055    return true;
5056  if (isExtendedBUILD_VECTOR(N, DAG, false))
5057    return true;
5058  return false;
5059}
5060
5061/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
5062/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
5063/// We insert the required extension here to get the vector to fill a D register.
5064static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
5065                                            const EVT &OrigTy,
5066                                            const EVT &ExtTy,
5067                                            unsigned ExtOpcode) {
5068  // The vector originally had a size of OrigTy. It was then extended to ExtTy.
5069  // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
5070  // 64-bits we need to insert a new extension so that it will be 64-bits.
5071  assert(ExtTy.is128BitVector() && "Unexpected extension size");
5072  if (OrigTy.getSizeInBits() >= 64)
5073    return N;
5074
5075  // Must extend size to at least 64 bits to be used as an operand for VMULL.
5076  MVT::SimpleValueType OrigSimpleTy = OrigTy.getSimpleVT().SimpleTy;
5077  EVT NewVT;
5078  switch (OrigSimpleTy) {
5079  default: llvm_unreachable("Unexpected Orig Vector Type");
5080  case MVT::v2i8:
5081  case MVT::v2i16:
5082    NewVT = MVT::v2i32;
5083    break;
5084  case MVT::v4i8:
5085    NewVT = MVT::v4i16;
5086    break;
5087  }
5088  return DAG.getNode(ExtOpcode, N->getDebugLoc(), NewVT, N);
5089}
5090
5091/// SkipLoadExtensionForVMULL - return a load of the original vector size that
5092/// does not do any sign/zero extension. If the original vector is less
5093/// than 64 bits, an appropriate extension will be added after the load to
5094/// reach a total size of 64 bits. We have to add the extension separately
5095/// because ARM does not have a sign/zero extending load for vectors.
5096static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
5097  SDValue NonExtendingLoad =
5098    DAG.getLoad(LD->getMemoryVT(), LD->getDebugLoc(), LD->getChain(),
5099                LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
5100                LD->isNonTemporal(), LD->isInvariant(),
5101                LD->getAlignment());
5102  unsigned ExtOp = 0;
5103  switch (LD->getExtensionType()) {
5104  default: llvm_unreachable("Unexpected LoadExtType");
5105  case ISD::EXTLOAD:
5106  case ISD::SEXTLOAD: ExtOp = ISD::SIGN_EXTEND; break;
5107  case ISD::ZEXTLOAD: ExtOp = ISD::ZERO_EXTEND; break;
5108  }
5109  MVT::SimpleValueType MemType = LD->getMemoryVT().getSimpleVT().SimpleTy;
5110  MVT::SimpleValueType ExtType = LD->getValueType(0).getSimpleVT().SimpleTy;
5111  return AddRequiredExtensionForVMULL(NonExtendingLoad, DAG,
5112                                      MemType, ExtType, ExtOp);
5113}
5114
5115/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
5116/// extending load, or BUILD_VECTOR with extended elements, return the
5117/// unextended value. The unextended vector should be 64 bits so that it can
5118/// be used as an operand to a VMULL instruction. If the original vector size
5119/// before extension is less than 64 bits we add a an extension to resize
5120/// the vector to 64 bits.
5121static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
5122  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
5123    return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
5124                                        N->getOperand(0)->getValueType(0),
5125                                        N->getValueType(0),
5126                                        N->getOpcode());
5127
5128  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
5129    return SkipLoadExtensionForVMULL(LD, DAG);
5130
5131  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
5132  // have been legalized as a BITCAST from v4i32.
5133  if (N->getOpcode() == ISD::BITCAST) {
5134    SDNode *BVN = N->getOperand(0).getNode();
5135    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
5136           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
5137    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5138    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
5139                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
5140  }
5141  // Construct a new BUILD_VECTOR with elements truncated to half the size.
5142  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
5143  EVT VT = N->getValueType(0);
5144  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
5145  unsigned NumElts = VT.getVectorNumElements();
5146  MVT TruncVT = MVT::getIntegerVT(EltSize);
5147  SmallVector<SDValue, 8> Ops;
5148  for (unsigned i = 0; i != NumElts; ++i) {
5149    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
5150    const APInt &CInt = C->getAPIntValue();
5151    // Element types smaller than 32 bits are not legal, so use i32 elements.
5152    // The values are implicitly truncated so sext vs. zext doesn't matter.
5153    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
5154  }
5155  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
5156                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
5157}
5158
5159static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
5160  unsigned Opcode = N->getOpcode();
5161  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5162    SDNode *N0 = N->getOperand(0).getNode();
5163    SDNode *N1 = N->getOperand(1).getNode();
5164    return N0->hasOneUse() && N1->hasOneUse() &&
5165      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
5166  }
5167  return false;
5168}
5169
5170static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
5171  unsigned Opcode = N->getOpcode();
5172  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5173    SDNode *N0 = N->getOperand(0).getNode();
5174    SDNode *N1 = N->getOperand(1).getNode();
5175    return N0->hasOneUse() && N1->hasOneUse() &&
5176      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
5177  }
5178  return false;
5179}
5180
5181static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
5182  // Multiplications are only custom-lowered for 128-bit vectors so that
5183  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
5184  EVT VT = Op.getValueType();
5185  assert(VT.is128BitVector() && VT.isInteger() &&
5186         "unexpected type for custom-lowering ISD::MUL");
5187  SDNode *N0 = Op.getOperand(0).getNode();
5188  SDNode *N1 = Op.getOperand(1).getNode();
5189  unsigned NewOpc = 0;
5190  bool isMLA = false;
5191  bool isN0SExt = isSignExtended(N0, DAG);
5192  bool isN1SExt = isSignExtended(N1, DAG);
5193  if (isN0SExt && isN1SExt)
5194    NewOpc = ARMISD::VMULLs;
5195  else {
5196    bool isN0ZExt = isZeroExtended(N0, DAG);
5197    bool isN1ZExt = isZeroExtended(N1, DAG);
5198    if (isN0ZExt && isN1ZExt)
5199      NewOpc = ARMISD::VMULLu;
5200    else if (isN1SExt || isN1ZExt) {
5201      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
5202      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
5203      if (isN1SExt && isAddSubSExt(N0, DAG)) {
5204        NewOpc = ARMISD::VMULLs;
5205        isMLA = true;
5206      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
5207        NewOpc = ARMISD::VMULLu;
5208        isMLA = true;
5209      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
5210        std::swap(N0, N1);
5211        NewOpc = ARMISD::VMULLu;
5212        isMLA = true;
5213      }
5214    }
5215
5216    if (!NewOpc) {
5217      if (VT == MVT::v2i64)
5218        // Fall through to expand this.  It is not legal.
5219        return SDValue();
5220      else
5221        // Other vector multiplications are legal.
5222        return Op;
5223    }
5224  }
5225
5226  // Legalize to a VMULL instruction.
5227  DebugLoc DL = Op.getDebugLoc();
5228  SDValue Op0;
5229  SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
5230  if (!isMLA) {
5231    Op0 = SkipExtensionForVMULL(N0, DAG);
5232    assert(Op0.getValueType().is64BitVector() &&
5233           Op1.getValueType().is64BitVector() &&
5234           "unexpected types for extended operands to VMULL");
5235    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
5236  }
5237
5238  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
5239  // isel lowering to take advantage of no-stall back to back vmul + vmla.
5240  //   vmull q0, d4, d6
5241  //   vmlal q0, d5, d6
5242  // is faster than
5243  //   vaddl q0, d4, d5
5244  //   vmovl q1, d6
5245  //   vmul  q0, q0, q1
5246  SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
5247  SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
5248  EVT Op1VT = Op1.getValueType();
5249  return DAG.getNode(N0->getOpcode(), DL, VT,
5250                     DAG.getNode(NewOpc, DL, VT,
5251                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
5252                     DAG.getNode(NewOpc, DL, VT,
5253                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
5254}
5255
5256static SDValue
5257LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
5258  // Convert to float
5259  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
5260  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
5261  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
5262  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
5263  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
5264  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
5265  // Get reciprocal estimate.
5266  // float4 recip = vrecpeq_f32(yf);
5267  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5268                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
5269  // Because char has a smaller range than uchar, we can actually get away
5270  // without any newton steps.  This requires that we use a weird bias
5271  // of 0xb000, however (again, this has been exhaustively tested).
5272  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
5273  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
5274  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
5275  Y = DAG.getConstant(0xb000, MVT::i32);
5276  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
5277  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
5278  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
5279  // Convert back to short.
5280  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
5281  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
5282  return X;
5283}
5284
5285static SDValue
5286LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
5287  SDValue N2;
5288  // Convert to float.
5289  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
5290  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
5291  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
5292  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
5293  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5294  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5295
5296  // Use reciprocal estimate and one refinement step.
5297  // float4 recip = vrecpeq_f32(yf);
5298  // recip *= vrecpsq_f32(yf, recip);
5299  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5300                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
5301  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5302                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5303                   N1, N2);
5304  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5305  // Because short has a smaller range than ushort, we can actually get away
5306  // with only a single newton step.  This requires that we use a weird bias
5307  // of 89, however (again, this has been exhaustively tested).
5308  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
5309  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5310  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5311  N1 = DAG.getConstant(0x89, MVT::i32);
5312  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5313  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5314  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5315  // Convert back to integer and return.
5316  // return vmovn_s32(vcvt_s32_f32(result));
5317  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5318  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5319  return N0;
5320}
5321
5322static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
5323  EVT VT = Op.getValueType();
5324  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5325         "unexpected type for custom-lowering ISD::SDIV");
5326
5327  DebugLoc dl = Op.getDebugLoc();
5328  SDValue N0 = Op.getOperand(0);
5329  SDValue N1 = Op.getOperand(1);
5330  SDValue N2, N3;
5331
5332  if (VT == MVT::v8i8) {
5333    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
5334    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
5335
5336    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5337                     DAG.getIntPtrConstant(4));
5338    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5339                     DAG.getIntPtrConstant(4));
5340    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5341                     DAG.getIntPtrConstant(0));
5342    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5343                     DAG.getIntPtrConstant(0));
5344
5345    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5346    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5347
5348    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5349    N0 = LowerCONCAT_VECTORS(N0, DAG);
5350
5351    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5352    return N0;
5353  }
5354  return LowerSDIV_v4i16(N0, N1, dl, DAG);
5355}
5356
5357static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
5358  EVT VT = Op.getValueType();
5359  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5360         "unexpected type for custom-lowering ISD::UDIV");
5361
5362  DebugLoc dl = Op.getDebugLoc();
5363  SDValue N0 = Op.getOperand(0);
5364  SDValue N1 = Op.getOperand(1);
5365  SDValue N2, N3;
5366
5367  if (VT == MVT::v8i8) {
5368    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5369    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5370
5371    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5372                     DAG.getIntPtrConstant(4));
5373    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5374                     DAG.getIntPtrConstant(4));
5375    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5376                     DAG.getIntPtrConstant(0));
5377    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5378                     DAG.getIntPtrConstant(0));
5379
5380    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5381    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5382
5383    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5384    N0 = LowerCONCAT_VECTORS(N0, DAG);
5385
5386    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5387                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5388                     N0);
5389    return N0;
5390  }
5391
5392  // v4i16 sdiv ... Convert to float.
5393  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5394  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5395  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5396  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5397  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5398  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5399
5400  // Use reciprocal estimate and two refinement steps.
5401  // float4 recip = vrecpeq_f32(yf);
5402  // recip *= vrecpsq_f32(yf, recip);
5403  // recip *= vrecpsq_f32(yf, recip);
5404  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5405                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5406  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5407                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5408                   BN1, N2);
5409  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5410  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5411                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5412                   BN1, N2);
5413  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5414  // Simply multiplying by the reciprocal estimate can leave us a few ulps
5415  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5416  // and that it will never cause us to return an answer too large).
5417  // float4 result = as_float4(as_int4(xf*recip) + 2);
5418  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5419  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5420  N1 = DAG.getConstant(2, MVT::i32);
5421  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5422  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5423  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5424  // Convert back to integer and return.
5425  // return vmovn_u32(vcvt_s32_f32(result));
5426  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5427  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5428  return N0;
5429}
5430
5431static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
5432  EVT VT = Op.getNode()->getValueType(0);
5433  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5434
5435  unsigned Opc;
5436  bool ExtraOp = false;
5437  switch (Op.getOpcode()) {
5438  default: llvm_unreachable("Invalid code");
5439  case ISD::ADDC: Opc = ARMISD::ADDC; break;
5440  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5441  case ISD::SUBC: Opc = ARMISD::SUBC; break;
5442  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5443  }
5444
5445  if (!ExtraOp)
5446    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5447                       Op.getOperand(1));
5448  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5449                     Op.getOperand(1), Op.getOperand(2));
5450}
5451
5452static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5453  // Monotonic load/store is legal for all targets
5454  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5455    return Op;
5456
5457  // Aquire/Release load/store is not legal for targets without a
5458  // dmb or equivalent available.
5459  return SDValue();
5460}
5461
5462
5463static void
5464ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5465                    SelectionDAG &DAG, unsigned NewOp) {
5466  DebugLoc dl = Node->getDebugLoc();
5467  assert (Node->getValueType(0) == MVT::i64 &&
5468          "Only know how to expand i64 atomics");
5469
5470  SmallVector<SDValue, 6> Ops;
5471  Ops.push_back(Node->getOperand(0)); // Chain
5472  Ops.push_back(Node->getOperand(1)); // Ptr
5473  // Low part of Val1
5474  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5475                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
5476  // High part of Val1
5477  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5478                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
5479  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5480    // High part of Val1
5481    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5482                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5483    // High part of Val2
5484    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5485                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5486  }
5487  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5488  SDValue Result =
5489    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5490                            cast<MemSDNode>(Node)->getMemOperand());
5491  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5492  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5493  Results.push_back(Result.getValue(2));
5494}
5495
5496SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5497  switch (Op.getOpcode()) {
5498  default: llvm_unreachable("Don't know how to custom lower this!");
5499  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5500  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5501  case ISD::GlobalAddress:
5502    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5503      LowerGlobalAddressELF(Op, DAG);
5504  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5505  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5506  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5507  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5508  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5509  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5510  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
5511  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5512  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5513  case ISD::SINT_TO_FP:
5514  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5515  case ISD::FP_TO_SINT:
5516  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5517  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5518  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5519  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5520  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5521  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5522  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5523  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5524                                                               Subtarget);
5525  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5526  case ISD::SHL:
5527  case ISD::SRL:
5528  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5529  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5530  case ISD::SRL_PARTS:
5531  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5532  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5533  case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
5534  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5535  case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
5536  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5537  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5538  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5539  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5540  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5541  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5542  case ISD::MUL:           return LowerMUL(Op, DAG);
5543  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5544  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5545  case ISD::ADDC:
5546  case ISD::ADDE:
5547  case ISD::SUBC:
5548  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5549  case ISD::ATOMIC_LOAD:
5550  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5551  }
5552}
5553
5554/// ReplaceNodeResults - Replace the results of node with an illegal result
5555/// type with new values built out of custom code.
5556void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5557                                           SmallVectorImpl<SDValue>&Results,
5558                                           SelectionDAG &DAG) const {
5559  SDValue Res;
5560  switch (N->getOpcode()) {
5561  default:
5562    llvm_unreachable("Don't know how to custom expand this!");
5563  case ISD::BITCAST:
5564    Res = ExpandBITCAST(N, DAG);
5565    break;
5566  case ISD::SRL:
5567  case ISD::SRA:
5568    Res = Expand64BitShift(N, DAG, Subtarget);
5569    break;
5570  case ISD::ATOMIC_LOAD_ADD:
5571    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5572    return;
5573  case ISD::ATOMIC_LOAD_AND:
5574    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5575    return;
5576  case ISD::ATOMIC_LOAD_NAND:
5577    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5578    return;
5579  case ISD::ATOMIC_LOAD_OR:
5580    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5581    return;
5582  case ISD::ATOMIC_LOAD_SUB:
5583    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5584    return;
5585  case ISD::ATOMIC_LOAD_XOR:
5586    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5587    return;
5588  case ISD::ATOMIC_SWAP:
5589    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5590    return;
5591  case ISD::ATOMIC_CMP_SWAP:
5592    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5593    return;
5594  case ISD::ATOMIC_LOAD_MIN:
5595    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMIN64_DAG);
5596    return;
5597  case ISD::ATOMIC_LOAD_UMIN:
5598    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMIN64_DAG);
5599    return;
5600  case ISD::ATOMIC_LOAD_MAX:
5601    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMAX64_DAG);
5602    return;
5603  case ISD::ATOMIC_LOAD_UMAX:
5604    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMAX64_DAG);
5605    return;
5606  }
5607  if (Res.getNode())
5608    Results.push_back(Res);
5609}
5610
5611//===----------------------------------------------------------------------===//
5612//                           ARM Scheduler Hooks
5613//===----------------------------------------------------------------------===//
5614
5615MachineBasicBlock *
5616ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5617                                     MachineBasicBlock *BB,
5618                                     unsigned Size) const {
5619  unsigned dest    = MI->getOperand(0).getReg();
5620  unsigned ptr     = MI->getOperand(1).getReg();
5621  unsigned oldval  = MI->getOperand(2).getReg();
5622  unsigned newval  = MI->getOperand(3).getReg();
5623  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5624  DebugLoc dl = MI->getDebugLoc();
5625  bool isThumb2 = Subtarget->isThumb2();
5626
5627  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5628  unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
5629    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5630    (const TargetRegisterClass*)&ARM::GPRRegClass);
5631
5632  if (isThumb2) {
5633    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5634    MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
5635    MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
5636  }
5637
5638  unsigned ldrOpc, strOpc;
5639  switch (Size) {
5640  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5641  case 1:
5642    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5643    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5644    break;
5645  case 2:
5646    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5647    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5648    break;
5649  case 4:
5650    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5651    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5652    break;
5653  }
5654
5655  MachineFunction *MF = BB->getParent();
5656  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5657  MachineFunction::iterator It = BB;
5658  ++It; // insert the new blocks after the current block
5659
5660  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5661  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5662  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5663  MF->insert(It, loop1MBB);
5664  MF->insert(It, loop2MBB);
5665  MF->insert(It, exitMBB);
5666
5667  // Transfer the remainder of BB and its successor edges to exitMBB.
5668  exitMBB->splice(exitMBB->begin(), BB,
5669                  llvm::next(MachineBasicBlock::iterator(MI)),
5670                  BB->end());
5671  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5672
5673  //  thisMBB:
5674  //   ...
5675  //   fallthrough --> loop1MBB
5676  BB->addSuccessor(loop1MBB);
5677
5678  // loop1MBB:
5679  //   ldrex dest, [ptr]
5680  //   cmp dest, oldval
5681  //   bne exitMBB
5682  BB = loop1MBB;
5683  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5684  if (ldrOpc == ARM::t2LDREX)
5685    MIB.addImm(0);
5686  AddDefaultPred(MIB);
5687  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5688                 .addReg(dest).addReg(oldval));
5689  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5690    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5691  BB->addSuccessor(loop2MBB);
5692  BB->addSuccessor(exitMBB);
5693
5694  // loop2MBB:
5695  //   strex scratch, newval, [ptr]
5696  //   cmp scratch, #0
5697  //   bne loop1MBB
5698  BB = loop2MBB;
5699  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5700  if (strOpc == ARM::t2STREX)
5701    MIB.addImm(0);
5702  AddDefaultPred(MIB);
5703  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5704                 .addReg(scratch).addImm(0));
5705  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5706    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5707  BB->addSuccessor(loop1MBB);
5708  BB->addSuccessor(exitMBB);
5709
5710  //  exitMBB:
5711  //   ...
5712  BB = exitMBB;
5713
5714  MI->eraseFromParent();   // The instruction is gone now.
5715
5716  return BB;
5717}
5718
5719MachineBasicBlock *
5720ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5721                                    unsigned Size, unsigned BinOpcode) const {
5722  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5723  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5724
5725  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5726  MachineFunction *MF = BB->getParent();
5727  MachineFunction::iterator It = BB;
5728  ++It;
5729
5730  unsigned dest = MI->getOperand(0).getReg();
5731  unsigned ptr = MI->getOperand(1).getReg();
5732  unsigned incr = MI->getOperand(2).getReg();
5733  DebugLoc dl = MI->getDebugLoc();
5734  bool isThumb2 = Subtarget->isThumb2();
5735
5736  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5737  if (isThumb2) {
5738    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5739    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5740  }
5741
5742  unsigned ldrOpc, strOpc;
5743  switch (Size) {
5744  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5745  case 1:
5746    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5747    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5748    break;
5749  case 2:
5750    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5751    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5752    break;
5753  case 4:
5754    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5755    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5756    break;
5757  }
5758
5759  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5760  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5761  MF->insert(It, loopMBB);
5762  MF->insert(It, exitMBB);
5763
5764  // Transfer the remainder of BB and its successor edges to exitMBB.
5765  exitMBB->splice(exitMBB->begin(), BB,
5766                  llvm::next(MachineBasicBlock::iterator(MI)),
5767                  BB->end());
5768  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5769
5770  const TargetRegisterClass *TRC = isThumb2 ?
5771    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5772    (const TargetRegisterClass*)&ARM::GPRRegClass;
5773  unsigned scratch = MRI.createVirtualRegister(TRC);
5774  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5775
5776  //  thisMBB:
5777  //   ...
5778  //   fallthrough --> loopMBB
5779  BB->addSuccessor(loopMBB);
5780
5781  //  loopMBB:
5782  //   ldrex dest, ptr
5783  //   <binop> scratch2, dest, incr
5784  //   strex scratch, scratch2, ptr
5785  //   cmp scratch, #0
5786  //   bne- loopMBB
5787  //   fallthrough --> exitMBB
5788  BB = loopMBB;
5789  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5790  if (ldrOpc == ARM::t2LDREX)
5791    MIB.addImm(0);
5792  AddDefaultPred(MIB);
5793  if (BinOpcode) {
5794    // operand order needs to go the other way for NAND
5795    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5796      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5797                     addReg(incr).addReg(dest)).addReg(0);
5798    else
5799      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5800                     addReg(dest).addReg(incr)).addReg(0);
5801  }
5802
5803  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5804  if (strOpc == ARM::t2STREX)
5805    MIB.addImm(0);
5806  AddDefaultPred(MIB);
5807  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5808                 .addReg(scratch).addImm(0));
5809  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5810    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5811
5812  BB->addSuccessor(loopMBB);
5813  BB->addSuccessor(exitMBB);
5814
5815  //  exitMBB:
5816  //   ...
5817  BB = exitMBB;
5818
5819  MI->eraseFromParent();   // The instruction is gone now.
5820
5821  return BB;
5822}
5823
5824MachineBasicBlock *
5825ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5826                                          MachineBasicBlock *BB,
5827                                          unsigned Size,
5828                                          bool signExtend,
5829                                          ARMCC::CondCodes Cond) const {
5830  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5831
5832  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5833  MachineFunction *MF = BB->getParent();
5834  MachineFunction::iterator It = BB;
5835  ++It;
5836
5837  unsigned dest = MI->getOperand(0).getReg();
5838  unsigned ptr = MI->getOperand(1).getReg();
5839  unsigned incr = MI->getOperand(2).getReg();
5840  unsigned oldval = dest;
5841  DebugLoc dl = MI->getDebugLoc();
5842  bool isThumb2 = Subtarget->isThumb2();
5843
5844  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5845  if (isThumb2) {
5846    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5847    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5848  }
5849
5850  unsigned ldrOpc, strOpc, extendOpc;
5851  switch (Size) {
5852  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5853  case 1:
5854    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5855    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5856    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5857    break;
5858  case 2:
5859    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5860    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5861    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5862    break;
5863  case 4:
5864    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5865    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5866    extendOpc = 0;
5867    break;
5868  }
5869
5870  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5871  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5872  MF->insert(It, loopMBB);
5873  MF->insert(It, exitMBB);
5874
5875  // Transfer the remainder of BB and its successor edges to exitMBB.
5876  exitMBB->splice(exitMBB->begin(), BB,
5877                  llvm::next(MachineBasicBlock::iterator(MI)),
5878                  BB->end());
5879  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5880
5881  const TargetRegisterClass *TRC = isThumb2 ?
5882    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5883    (const TargetRegisterClass*)&ARM::GPRRegClass;
5884  unsigned scratch = MRI.createVirtualRegister(TRC);
5885  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5886
5887  //  thisMBB:
5888  //   ...
5889  //   fallthrough --> loopMBB
5890  BB->addSuccessor(loopMBB);
5891
5892  //  loopMBB:
5893  //   ldrex dest, ptr
5894  //   (sign extend dest, if required)
5895  //   cmp dest, incr
5896  //   cmov.cond scratch2, incr, dest
5897  //   strex scratch, scratch2, ptr
5898  //   cmp scratch, #0
5899  //   bne- loopMBB
5900  //   fallthrough --> exitMBB
5901  BB = loopMBB;
5902  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5903  if (ldrOpc == ARM::t2LDREX)
5904    MIB.addImm(0);
5905  AddDefaultPred(MIB);
5906
5907  // Sign extend the value, if necessary.
5908  if (signExtend && extendOpc) {
5909    oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
5910    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5911                     .addReg(dest)
5912                     .addImm(0));
5913  }
5914
5915  // Build compare and cmov instructions.
5916  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5917                 .addReg(oldval).addReg(incr));
5918  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5919         .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR);
5920
5921  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5922  if (strOpc == ARM::t2STREX)
5923    MIB.addImm(0);
5924  AddDefaultPred(MIB);
5925  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5926                 .addReg(scratch).addImm(0));
5927  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5928    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5929
5930  BB->addSuccessor(loopMBB);
5931  BB->addSuccessor(exitMBB);
5932
5933  //  exitMBB:
5934  //   ...
5935  BB = exitMBB;
5936
5937  MI->eraseFromParent();   // The instruction is gone now.
5938
5939  return BB;
5940}
5941
5942MachineBasicBlock *
5943ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5944                                      unsigned Op1, unsigned Op2,
5945                                      bool NeedsCarry, bool IsCmpxchg,
5946                                      bool IsMinMax, ARMCC::CondCodes CC) const {
5947  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5948  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5949
5950  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5951  MachineFunction *MF = BB->getParent();
5952  MachineFunction::iterator It = BB;
5953  ++It;
5954
5955  unsigned destlo = MI->getOperand(0).getReg();
5956  unsigned desthi = MI->getOperand(1).getReg();
5957  unsigned ptr = MI->getOperand(2).getReg();
5958  unsigned vallo = MI->getOperand(3).getReg();
5959  unsigned valhi = MI->getOperand(4).getReg();
5960  DebugLoc dl = MI->getDebugLoc();
5961  bool isThumb2 = Subtarget->isThumb2();
5962
5963  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5964  if (isThumb2) {
5965    MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
5966    MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
5967    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5968  }
5969
5970  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5971  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5972
5973  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5974  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5975  if (IsCmpxchg || IsMinMax)
5976    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5977  if (IsCmpxchg)
5978    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5979  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5980
5981  MF->insert(It, loopMBB);
5982  if (IsCmpxchg || IsMinMax) MF->insert(It, contBB);
5983  if (IsCmpxchg) MF->insert(It, cont2BB);
5984  MF->insert(It, exitMBB);
5985
5986  // Transfer the remainder of BB and its successor edges to exitMBB.
5987  exitMBB->splice(exitMBB->begin(), BB,
5988                  llvm::next(MachineBasicBlock::iterator(MI)),
5989                  BB->end());
5990  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5991
5992  const TargetRegisterClass *TRC = isThumb2 ?
5993    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5994    (const TargetRegisterClass*)&ARM::GPRRegClass;
5995  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5996
5997  //  thisMBB:
5998  //   ...
5999  //   fallthrough --> loopMBB
6000  BB->addSuccessor(loopMBB);
6001
6002  //  loopMBB:
6003  //   ldrexd r2, r3, ptr
6004  //   <binopa> r0, r2, incr
6005  //   <binopb> r1, r3, incr
6006  //   strexd storesuccess, r0, r1, ptr
6007  //   cmp storesuccess, #0
6008  //   bne- loopMBB
6009  //   fallthrough --> exitMBB
6010  //
6011  // Note that the registers are explicitly specified because there is not any
6012  // way to force the register allocator to allocate a register pair.
6013  //
6014  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
6015  // need to properly enforce the restriction that the two output registers
6016  // for ldrexd must be different.
6017  BB = loopMBB;
6018  // Load
6019  unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6020  unsigned GPRPair1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6021  unsigned GPRPair2;
6022  if (IsMinMax) {
6023    //We need an extra double register for doing min/max.
6024    unsigned undef = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6025    unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6026    GPRPair2 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6027    BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), undef);
6028    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
6029      .addReg(undef)
6030      .addReg(vallo)
6031      .addImm(ARM::gsub_0);
6032    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), GPRPair2)
6033      .addReg(r1)
6034      .addReg(valhi)
6035      .addImm(ARM::gsub_1);
6036  }
6037
6038  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
6039                 .addReg(GPRPair0, RegState::Define).addReg(ptr));
6040  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
6041  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo)
6042    .addReg(GPRPair0, 0, ARM::gsub_0);
6043  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi)
6044    .addReg(GPRPair0, 0, ARM::gsub_1);
6045
6046  if (IsCmpxchg) {
6047    // Add early exit
6048    for (unsigned i = 0; i < 2; i++) {
6049      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
6050                                                         ARM::CMPrr))
6051                     .addReg(i == 0 ? destlo : desthi)
6052                     .addReg(i == 0 ? vallo : valhi));
6053      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6054        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6055      BB->addSuccessor(exitMBB);
6056      BB->addSuccessor(i == 0 ? contBB : cont2BB);
6057      BB = (i == 0 ? contBB : cont2BB);
6058    }
6059
6060    // Copy to physregs for strexd
6061    unsigned setlo = MI->getOperand(5).getReg();
6062    unsigned sethi = MI->getOperand(6).getReg();
6063    unsigned undef = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6064    unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6065    BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), undef);
6066    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
6067      .addReg(undef)
6068      .addReg(setlo)
6069      .addImm(ARM::gsub_0);
6070    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), GPRPair1)
6071      .addReg(r1)
6072      .addReg(sethi)
6073      .addImm(ARM::gsub_1);
6074  } else if (Op1) {
6075    // Perform binary operation
6076    unsigned tmpRegLo = MRI.createVirtualRegister(TRC);
6077    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), tmpRegLo)
6078                   .addReg(destlo).addReg(vallo))
6079        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
6080    unsigned tmpRegHi = MRI.createVirtualRegister(TRC);
6081    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), tmpRegHi)
6082                   .addReg(desthi).addReg(valhi))
6083        .addReg(IsMinMax ? ARM::CPSR : 0, getDefRegState(IsMinMax));
6084
6085    unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6086    BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair);
6087    unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6088    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
6089      .addReg(UndefPair)
6090      .addReg(tmpRegLo)
6091      .addImm(ARM::gsub_0);
6092    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), GPRPair1)
6093      .addReg(r1)
6094      .addReg(tmpRegHi)
6095      .addImm(ARM::gsub_1);
6096  } else {
6097    // Copy to physregs for strexd
6098    unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6099    unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6100    BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair);
6101    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
6102      .addReg(UndefPair)
6103      .addReg(vallo)
6104      .addImm(ARM::gsub_0);
6105    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), GPRPair1)
6106      .addReg(r1)
6107      .addReg(valhi)
6108      .addImm(ARM::gsub_1);
6109  }
6110  unsigned GPRPairStore = GPRPair1;
6111  if (IsMinMax) {
6112    // Compare and branch to exit block.
6113    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6114      .addMBB(exitMBB).addImm(CC).addReg(ARM::CPSR);
6115    BB->addSuccessor(exitMBB);
6116    BB->addSuccessor(contBB);
6117    BB = contBB;
6118    GPRPairStore = GPRPair2;
6119  }
6120
6121  // Store
6122  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
6123                 .addReg(GPRPairStore).addReg(ptr));
6124  // Cmp+jump
6125  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6126                 .addReg(storesuccess).addImm(0));
6127  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6128    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6129
6130  BB->addSuccessor(loopMBB);
6131  BB->addSuccessor(exitMBB);
6132
6133  //  exitMBB:
6134  //   ...
6135  BB = exitMBB;
6136
6137  MI->eraseFromParent();   // The instruction is gone now.
6138
6139  return BB;
6140}
6141
6142/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
6143/// registers the function context.
6144void ARMTargetLowering::
6145SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
6146                       MachineBasicBlock *DispatchBB, int FI) const {
6147  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6148  DebugLoc dl = MI->getDebugLoc();
6149  MachineFunction *MF = MBB->getParent();
6150  MachineRegisterInfo *MRI = &MF->getRegInfo();
6151  MachineConstantPool *MCP = MF->getConstantPool();
6152  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6153  const Function *F = MF->getFunction();
6154
6155  bool isThumb = Subtarget->isThumb();
6156  bool isThumb2 = Subtarget->isThumb2();
6157
6158  unsigned PCLabelId = AFI->createPICLabelUId();
6159  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
6160  ARMConstantPoolValue *CPV =
6161    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
6162  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
6163
6164  const TargetRegisterClass *TRC = isThumb ?
6165    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6166    (const TargetRegisterClass*)&ARM::GPRRegClass;
6167
6168  // Grab constant pool and fixed stack memory operands.
6169  MachineMemOperand *CPMMO =
6170    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
6171                             MachineMemOperand::MOLoad, 4, 4);
6172
6173  MachineMemOperand *FIMMOSt =
6174    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6175                             MachineMemOperand::MOStore, 4, 4);
6176
6177  // Load the address of the dispatch MBB into the jump buffer.
6178  if (isThumb2) {
6179    // Incoming value: jbuf
6180    //   ldr.n  r5, LCPI1_1
6181    //   orr    r5, r5, #1
6182    //   add    r5, pc
6183    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
6184    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6185    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
6186                   .addConstantPoolIndex(CPI)
6187                   .addMemOperand(CPMMO));
6188    // Set the low bit because of thumb mode.
6189    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6190    AddDefaultCC(
6191      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
6192                     .addReg(NewVReg1, RegState::Kill)
6193                     .addImm(0x01)));
6194    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6195    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
6196      .addReg(NewVReg2, RegState::Kill)
6197      .addImm(PCLabelId);
6198    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
6199                   .addReg(NewVReg3, RegState::Kill)
6200                   .addFrameIndex(FI)
6201                   .addImm(36)  // &jbuf[1] :: pc
6202                   .addMemOperand(FIMMOSt));
6203  } else if (isThumb) {
6204    // Incoming value: jbuf
6205    //   ldr.n  r1, LCPI1_4
6206    //   add    r1, pc
6207    //   mov    r2, #1
6208    //   orrs   r1, r2
6209    //   add    r2, $jbuf, #+4 ; &jbuf[1]
6210    //   str    r1, [r2]
6211    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6212    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
6213                   .addConstantPoolIndex(CPI)
6214                   .addMemOperand(CPMMO));
6215    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6216    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
6217      .addReg(NewVReg1, RegState::Kill)
6218      .addImm(PCLabelId);
6219    // Set the low bit because of thumb mode.
6220    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6221    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
6222                   .addReg(ARM::CPSR, RegState::Define)
6223                   .addImm(1));
6224    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6225    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
6226                   .addReg(ARM::CPSR, RegState::Define)
6227                   .addReg(NewVReg2, RegState::Kill)
6228                   .addReg(NewVReg3, RegState::Kill));
6229    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6230    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
6231                   .addFrameIndex(FI)
6232                   .addImm(36)); // &jbuf[1] :: pc
6233    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
6234                   .addReg(NewVReg4, RegState::Kill)
6235                   .addReg(NewVReg5, RegState::Kill)
6236                   .addImm(0)
6237                   .addMemOperand(FIMMOSt));
6238  } else {
6239    // Incoming value: jbuf
6240    //   ldr  r1, LCPI1_1
6241    //   add  r1, pc, r1
6242    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
6243    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6244    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
6245                   .addConstantPoolIndex(CPI)
6246                   .addImm(0)
6247                   .addMemOperand(CPMMO));
6248    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6249    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
6250                   .addReg(NewVReg1, RegState::Kill)
6251                   .addImm(PCLabelId));
6252    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
6253                   .addReg(NewVReg2, RegState::Kill)
6254                   .addFrameIndex(FI)
6255                   .addImm(36)  // &jbuf[1] :: pc
6256                   .addMemOperand(FIMMOSt));
6257  }
6258}
6259
6260MachineBasicBlock *ARMTargetLowering::
6261EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
6262  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6263  DebugLoc dl = MI->getDebugLoc();
6264  MachineFunction *MF = MBB->getParent();
6265  MachineRegisterInfo *MRI = &MF->getRegInfo();
6266  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6267  MachineFrameInfo *MFI = MF->getFrameInfo();
6268  int FI = MFI->getFunctionContextIndex();
6269
6270  const TargetRegisterClass *TRC = Subtarget->isThumb() ?
6271    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6272    (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
6273
6274  // Get a mapping of the call site numbers to all of the landing pads they're
6275  // associated with.
6276  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
6277  unsigned MaxCSNum = 0;
6278  MachineModuleInfo &MMI = MF->getMMI();
6279  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
6280       ++BB) {
6281    if (!BB->isLandingPad()) continue;
6282
6283    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
6284    // pad.
6285    for (MachineBasicBlock::iterator
6286           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
6287      if (!II->isEHLabel()) continue;
6288
6289      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
6290      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
6291
6292      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
6293      for (SmallVectorImpl<unsigned>::iterator
6294             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
6295           CSI != CSE; ++CSI) {
6296        CallSiteNumToLPad[*CSI].push_back(BB);
6297        MaxCSNum = std::max(MaxCSNum, *CSI);
6298      }
6299      break;
6300    }
6301  }
6302
6303  // Get an ordered list of the machine basic blocks for the jump table.
6304  std::vector<MachineBasicBlock*> LPadList;
6305  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
6306  LPadList.reserve(CallSiteNumToLPad.size());
6307  for (unsigned I = 1; I <= MaxCSNum; ++I) {
6308    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
6309    for (SmallVectorImpl<MachineBasicBlock*>::iterator
6310           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
6311      LPadList.push_back(*II);
6312      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
6313    }
6314  }
6315
6316  assert(!LPadList.empty() &&
6317         "No landing pad destinations for the dispatch jump table!");
6318
6319  // Create the jump table and associated information.
6320  MachineJumpTableInfo *JTI =
6321    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
6322  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
6323  unsigned UId = AFI->createJumpTableUId();
6324
6325  // Create the MBBs for the dispatch code.
6326
6327  // Shove the dispatch's address into the return slot in the function context.
6328  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
6329  DispatchBB->setIsLandingPad();
6330
6331  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
6332  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
6333  DispatchBB->addSuccessor(TrapBB);
6334
6335  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
6336  DispatchBB->addSuccessor(DispContBB);
6337
6338  // Insert and MBBs.
6339  MF->insert(MF->end(), DispatchBB);
6340  MF->insert(MF->end(), DispContBB);
6341  MF->insert(MF->end(), TrapBB);
6342
6343  // Insert code into the entry block that creates and registers the function
6344  // context.
6345  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
6346
6347  MachineMemOperand *FIMMOLd =
6348    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6349                             MachineMemOperand::MOLoad |
6350                             MachineMemOperand::MOVolatile, 4, 4);
6351
6352  MachineInstrBuilder MIB;
6353  MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
6354
6355  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6356  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6357
6358  // Add a register mask with no preserved registers.  This results in all
6359  // registers being marked as clobbered.
6360  MIB.addRegMask(RI.getNoPreservedMask());
6361
6362  unsigned NumLPads = LPadList.size();
6363  if (Subtarget->isThumb2()) {
6364    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6365    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6366                   .addFrameIndex(FI)
6367                   .addImm(4)
6368                   .addMemOperand(FIMMOLd));
6369
6370    if (NumLPads < 256) {
6371      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6372                     .addReg(NewVReg1)
6373                     .addImm(LPadList.size()));
6374    } else {
6375      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6376      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6377                     .addImm(NumLPads & 0xFFFF));
6378
6379      unsigned VReg2 = VReg1;
6380      if ((NumLPads & 0xFFFF0000) != 0) {
6381        VReg2 = MRI->createVirtualRegister(TRC);
6382        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6383                       .addReg(VReg1)
6384                       .addImm(NumLPads >> 16));
6385      }
6386
6387      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6388                     .addReg(NewVReg1)
6389                     .addReg(VReg2));
6390    }
6391
6392    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
6393      .addMBB(TrapBB)
6394      .addImm(ARMCC::HI)
6395      .addReg(ARM::CPSR);
6396
6397    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6398    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
6399                   .addJumpTableIndex(MJTI)
6400                   .addImm(UId));
6401
6402    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6403    AddDefaultCC(
6404      AddDefaultPred(
6405        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
6406        .addReg(NewVReg3, RegState::Kill)
6407        .addReg(NewVReg1)
6408        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6409
6410    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
6411      .addReg(NewVReg4, RegState::Kill)
6412      .addReg(NewVReg1)
6413      .addJumpTableIndex(MJTI)
6414      .addImm(UId);
6415  } else if (Subtarget->isThumb()) {
6416    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6417    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6418                   .addFrameIndex(FI)
6419                   .addImm(1)
6420                   .addMemOperand(FIMMOLd));
6421
6422    if (NumLPads < 256) {
6423      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6424                     .addReg(NewVReg1)
6425                     .addImm(NumLPads));
6426    } else {
6427      MachineConstantPool *ConstantPool = MF->getConstantPool();
6428      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6429      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6430
6431      // MachineConstantPool wants an explicit alignment.
6432      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6433      if (Align == 0)
6434        Align = getDataLayout()->getTypeAllocSize(C->getType());
6435      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6436
6437      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6438      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6439                     .addReg(VReg1, RegState::Define)
6440                     .addConstantPoolIndex(Idx));
6441      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6442                     .addReg(NewVReg1)
6443                     .addReg(VReg1));
6444    }
6445
6446    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6447      .addMBB(TrapBB)
6448      .addImm(ARMCC::HI)
6449      .addReg(ARM::CPSR);
6450
6451    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6452    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6453                   .addReg(ARM::CPSR, RegState::Define)
6454                   .addReg(NewVReg1)
6455                   .addImm(2));
6456
6457    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6458    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6459                   .addJumpTableIndex(MJTI)
6460                   .addImm(UId));
6461
6462    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6463    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6464                   .addReg(ARM::CPSR, RegState::Define)
6465                   .addReg(NewVReg2, RegState::Kill)
6466                   .addReg(NewVReg3));
6467
6468    MachineMemOperand *JTMMOLd =
6469      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6470                               MachineMemOperand::MOLoad, 4, 4);
6471
6472    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6473    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6474                   .addReg(NewVReg4, RegState::Kill)
6475                   .addImm(0)
6476                   .addMemOperand(JTMMOLd));
6477
6478    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
6479    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6480                   .addReg(ARM::CPSR, RegState::Define)
6481                   .addReg(NewVReg5, RegState::Kill)
6482                   .addReg(NewVReg3));
6483
6484    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6485      .addReg(NewVReg6, RegState::Kill)
6486      .addJumpTableIndex(MJTI)
6487      .addImm(UId);
6488  } else {
6489    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6490    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6491                   .addFrameIndex(FI)
6492                   .addImm(4)
6493                   .addMemOperand(FIMMOLd));
6494
6495    if (NumLPads < 256) {
6496      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6497                     .addReg(NewVReg1)
6498                     .addImm(NumLPads));
6499    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6500      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6501      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6502                     .addImm(NumLPads & 0xFFFF));
6503
6504      unsigned VReg2 = VReg1;
6505      if ((NumLPads & 0xFFFF0000) != 0) {
6506        VReg2 = MRI->createVirtualRegister(TRC);
6507        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6508                       .addReg(VReg1)
6509                       .addImm(NumLPads >> 16));
6510      }
6511
6512      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6513                     .addReg(NewVReg1)
6514                     .addReg(VReg2));
6515    } else {
6516      MachineConstantPool *ConstantPool = MF->getConstantPool();
6517      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6518      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6519
6520      // MachineConstantPool wants an explicit alignment.
6521      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6522      if (Align == 0)
6523        Align = getDataLayout()->getTypeAllocSize(C->getType());
6524      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6525
6526      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6527      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6528                     .addReg(VReg1, RegState::Define)
6529                     .addConstantPoolIndex(Idx)
6530                     .addImm(0));
6531      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6532                     .addReg(NewVReg1)
6533                     .addReg(VReg1, RegState::Kill));
6534    }
6535
6536    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6537      .addMBB(TrapBB)
6538      .addImm(ARMCC::HI)
6539      .addReg(ARM::CPSR);
6540
6541    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6542    AddDefaultCC(
6543      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6544                     .addReg(NewVReg1)
6545                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6546    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6547    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6548                   .addJumpTableIndex(MJTI)
6549                   .addImm(UId));
6550
6551    MachineMemOperand *JTMMOLd =
6552      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6553                               MachineMemOperand::MOLoad, 4, 4);
6554    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6555    AddDefaultPred(
6556      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6557      .addReg(NewVReg3, RegState::Kill)
6558      .addReg(NewVReg4)
6559      .addImm(0)
6560      .addMemOperand(JTMMOLd));
6561
6562    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6563      .addReg(NewVReg5, RegState::Kill)
6564      .addReg(NewVReg4)
6565      .addJumpTableIndex(MJTI)
6566      .addImm(UId);
6567  }
6568
6569  // Add the jump table entries as successors to the MBB.
6570  SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
6571  for (std::vector<MachineBasicBlock*>::iterator
6572         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6573    MachineBasicBlock *CurMBB = *I;
6574    if (SeenMBBs.insert(CurMBB))
6575      DispContBB->addSuccessor(CurMBB);
6576  }
6577
6578  // N.B. the order the invoke BBs are processed in doesn't matter here.
6579  const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
6580  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6581  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6582         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6583    MachineBasicBlock *BB = *I;
6584
6585    // Remove the landing pad successor from the invoke block and replace it
6586    // with the new dispatch block.
6587    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6588                                                  BB->succ_end());
6589    while (!Successors.empty()) {
6590      MachineBasicBlock *SMBB = Successors.pop_back_val();
6591      if (SMBB->isLandingPad()) {
6592        BB->removeSuccessor(SMBB);
6593        MBBLPads.push_back(SMBB);
6594      }
6595    }
6596
6597    BB->addSuccessor(DispatchBB);
6598
6599    // Find the invoke call and mark all of the callee-saved registers as
6600    // 'implicit defined' so that they're spilled. This prevents code from
6601    // moving instructions to before the EH block, where they will never be
6602    // executed.
6603    for (MachineBasicBlock::reverse_iterator
6604           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6605      if (!II->isCall()) continue;
6606
6607      DenseMap<unsigned, bool> DefRegs;
6608      for (MachineInstr::mop_iterator
6609             OI = II->operands_begin(), OE = II->operands_end();
6610           OI != OE; ++OI) {
6611        if (!OI->isReg()) continue;
6612        DefRegs[OI->getReg()] = true;
6613      }
6614
6615      MachineInstrBuilder MIB(&*II);
6616
6617      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6618        unsigned Reg = SavedRegs[i];
6619        if (Subtarget->isThumb2() &&
6620            !ARM::tGPRRegClass.contains(Reg) &&
6621            !ARM::hGPRRegClass.contains(Reg))
6622          continue;
6623        if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6624          continue;
6625        if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6626          continue;
6627        if (!DefRegs[Reg])
6628          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6629      }
6630
6631      break;
6632    }
6633  }
6634
6635  // Mark all former landing pads as non-landing pads. The dispatch is the only
6636  // landing pad now.
6637  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6638         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6639    (*I)->setIsLandingPad(false);
6640
6641  // The instruction is gone now.
6642  MI->eraseFromParent();
6643
6644  return MBB;
6645}
6646
6647static
6648MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6649  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6650       E = MBB->succ_end(); I != E; ++I)
6651    if (*I != Succ)
6652      return *I;
6653  llvm_unreachable("Expecting a BB with two successors!");
6654}
6655
6656MachineBasicBlock *ARMTargetLowering::
6657EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
6658  // This pseudo instruction has 3 operands: dst, src, size
6659  // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
6660  // Otherwise, we will generate unrolled scalar copies.
6661  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6662  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6663  MachineFunction::iterator It = BB;
6664  ++It;
6665
6666  unsigned dest = MI->getOperand(0).getReg();
6667  unsigned src = MI->getOperand(1).getReg();
6668  unsigned SizeVal = MI->getOperand(2).getImm();
6669  unsigned Align = MI->getOperand(3).getImm();
6670  DebugLoc dl = MI->getDebugLoc();
6671
6672  bool isThumb2 = Subtarget->isThumb2();
6673  MachineFunction *MF = BB->getParent();
6674  MachineRegisterInfo &MRI = MF->getRegInfo();
6675  unsigned ldrOpc, strOpc, UnitSize = 0;
6676
6677  const TargetRegisterClass *TRC = isThumb2 ?
6678    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6679    (const TargetRegisterClass*)&ARM::GPRRegClass;
6680  const TargetRegisterClass *TRC_Vec = 0;
6681
6682  if (Align & 1) {
6683    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6684    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6685    UnitSize = 1;
6686  } else if (Align & 2) {
6687    ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
6688    strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
6689    UnitSize = 2;
6690  } else {
6691    // Check whether we can use NEON instructions.
6692    if (!MF->getFunction()->getFnAttributes().
6693          hasAttribute(Attributes::NoImplicitFloat) &&
6694        Subtarget->hasNEON()) {
6695      if ((Align % 16 == 0) && SizeVal >= 16) {
6696        ldrOpc = ARM::VLD1q32wb_fixed;
6697        strOpc = ARM::VST1q32wb_fixed;
6698        UnitSize = 16;
6699        TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
6700      }
6701      else if ((Align % 8 == 0) && SizeVal >= 8) {
6702        ldrOpc = ARM::VLD1d32wb_fixed;
6703        strOpc = ARM::VST1d32wb_fixed;
6704        UnitSize = 8;
6705        TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
6706      }
6707    }
6708    // Can't use NEON instructions.
6709    if (UnitSize == 0) {
6710      ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6711      strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
6712      UnitSize = 4;
6713    }
6714  }
6715
6716  unsigned BytesLeft = SizeVal % UnitSize;
6717  unsigned LoopSize = SizeVal - BytesLeft;
6718
6719  if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
6720    // Use LDR and STR to copy.
6721    // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
6722    // [destOut] = STR_POST(scratch, destIn, UnitSize)
6723    unsigned srcIn = src;
6724    unsigned destIn = dest;
6725    for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
6726      unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6727      unsigned srcOut = MRI.createVirtualRegister(TRC);
6728      unsigned destOut = MRI.createVirtualRegister(TRC);
6729      if (UnitSize >= 8) {
6730        AddDefaultPred(BuildMI(*BB, MI, dl,
6731          TII->get(ldrOpc), scratch)
6732          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
6733
6734        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6735          .addReg(destIn).addImm(0).addReg(scratch));
6736      } else if (isThumb2) {
6737        AddDefaultPred(BuildMI(*BB, MI, dl,
6738          TII->get(ldrOpc), scratch)
6739          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
6740
6741        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6742          .addReg(scratch).addReg(destIn)
6743          .addImm(UnitSize));
6744      } else {
6745        AddDefaultPred(BuildMI(*BB, MI, dl,
6746          TII->get(ldrOpc), scratch)
6747          .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
6748          .addImm(UnitSize));
6749
6750        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6751          .addReg(scratch).addReg(destIn)
6752          .addReg(0).addImm(UnitSize));
6753      }
6754      srcIn = srcOut;
6755      destIn = destOut;
6756    }
6757
6758    // Handle the leftover bytes with LDRB and STRB.
6759    // [scratch, srcOut] = LDRB_POST(srcIn, 1)
6760    // [destOut] = STRB_POST(scratch, destIn, 1)
6761    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6762    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6763    for (unsigned i = 0; i < BytesLeft; i++) {
6764      unsigned scratch = MRI.createVirtualRegister(TRC);
6765      unsigned srcOut = MRI.createVirtualRegister(TRC);
6766      unsigned destOut = MRI.createVirtualRegister(TRC);
6767      if (isThumb2) {
6768        AddDefaultPred(BuildMI(*BB, MI, dl,
6769          TII->get(ldrOpc),scratch)
6770          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6771
6772        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6773          .addReg(scratch).addReg(destIn)
6774          .addReg(0).addImm(1));
6775      } else {
6776        AddDefaultPred(BuildMI(*BB, MI, dl,
6777          TII->get(ldrOpc),scratch)
6778          .addReg(srcOut, RegState::Define).addReg(srcIn)
6779          .addReg(0).addImm(1));
6780
6781        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6782          .addReg(scratch).addReg(destIn)
6783          .addReg(0).addImm(1));
6784      }
6785      srcIn = srcOut;
6786      destIn = destOut;
6787    }
6788    MI->eraseFromParent();   // The instruction is gone now.
6789    return BB;
6790  }
6791
6792  // Expand the pseudo op to a loop.
6793  // thisMBB:
6794  //   ...
6795  //   movw varEnd, # --> with thumb2
6796  //   movt varEnd, #
6797  //   ldrcp varEnd, idx --> without thumb2
6798  //   fallthrough --> loopMBB
6799  // loopMBB:
6800  //   PHI varPhi, varEnd, varLoop
6801  //   PHI srcPhi, src, srcLoop
6802  //   PHI destPhi, dst, destLoop
6803  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6804  //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
6805  //   subs varLoop, varPhi, #UnitSize
6806  //   bne loopMBB
6807  //   fallthrough --> exitMBB
6808  // exitMBB:
6809  //   epilogue to handle left-over bytes
6810  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6811  //   [destOut] = STRB_POST(scratch, destLoop, 1)
6812  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6813  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6814  MF->insert(It, loopMBB);
6815  MF->insert(It, exitMBB);
6816
6817  // Transfer the remainder of BB and its successor edges to exitMBB.
6818  exitMBB->splice(exitMBB->begin(), BB,
6819                  llvm::next(MachineBasicBlock::iterator(MI)),
6820                  BB->end());
6821  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6822
6823  // Load an immediate to varEnd.
6824  unsigned varEnd = MRI.createVirtualRegister(TRC);
6825  if (isThumb2) {
6826    unsigned VReg1 = varEnd;
6827    if ((LoopSize & 0xFFFF0000) != 0)
6828      VReg1 = MRI.createVirtualRegister(TRC);
6829    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
6830                   .addImm(LoopSize & 0xFFFF));
6831
6832    if ((LoopSize & 0xFFFF0000) != 0)
6833      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
6834                     .addReg(VReg1)
6835                     .addImm(LoopSize >> 16));
6836  } else {
6837    MachineConstantPool *ConstantPool = MF->getConstantPool();
6838    Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6839    const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
6840
6841    // MachineConstantPool wants an explicit alignment.
6842    unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6843    if (Align == 0)
6844      Align = getDataLayout()->getTypeAllocSize(C->getType());
6845    unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6846
6847    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
6848                   .addReg(varEnd, RegState::Define)
6849                   .addConstantPoolIndex(Idx)
6850                   .addImm(0));
6851  }
6852  BB->addSuccessor(loopMBB);
6853
6854  // Generate the loop body:
6855  //   varPhi = PHI(varLoop, varEnd)
6856  //   srcPhi = PHI(srcLoop, src)
6857  //   destPhi = PHI(destLoop, dst)
6858  MachineBasicBlock *entryBB = BB;
6859  BB = loopMBB;
6860  unsigned varLoop = MRI.createVirtualRegister(TRC);
6861  unsigned varPhi = MRI.createVirtualRegister(TRC);
6862  unsigned srcLoop = MRI.createVirtualRegister(TRC);
6863  unsigned srcPhi = MRI.createVirtualRegister(TRC);
6864  unsigned destLoop = MRI.createVirtualRegister(TRC);
6865  unsigned destPhi = MRI.createVirtualRegister(TRC);
6866
6867  BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
6868    .addReg(varLoop).addMBB(loopMBB)
6869    .addReg(varEnd).addMBB(entryBB);
6870  BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
6871    .addReg(srcLoop).addMBB(loopMBB)
6872    .addReg(src).addMBB(entryBB);
6873  BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
6874    .addReg(destLoop).addMBB(loopMBB)
6875    .addReg(dest).addMBB(entryBB);
6876
6877  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6878  //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
6879  unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6880  if (UnitSize >= 8) {
6881    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6882      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
6883
6884    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6885      .addReg(destPhi).addImm(0).addReg(scratch));
6886  } else if (isThumb2) {
6887    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6888      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
6889
6890    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6891      .addReg(scratch).addReg(destPhi)
6892      .addImm(UnitSize));
6893  } else {
6894    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6895      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
6896      .addImm(UnitSize));
6897
6898    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6899      .addReg(scratch).addReg(destPhi)
6900      .addReg(0).addImm(UnitSize));
6901  }
6902
6903  // Decrement loop variable by UnitSize.
6904  MachineInstrBuilder MIB = BuildMI(BB, dl,
6905    TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
6906  AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
6907  MIB->getOperand(5).setReg(ARM::CPSR);
6908  MIB->getOperand(5).setIsDef(true);
6909
6910  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6911    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6912
6913  // loopMBB can loop back to loopMBB or fall through to exitMBB.
6914  BB->addSuccessor(loopMBB);
6915  BB->addSuccessor(exitMBB);
6916
6917  // Add epilogue to handle BytesLeft.
6918  BB = exitMBB;
6919  MachineInstr *StartOfExit = exitMBB->begin();
6920  ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6921  strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6922
6923  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6924  //   [destOut] = STRB_POST(scratch, destLoop, 1)
6925  unsigned srcIn = srcLoop;
6926  unsigned destIn = destLoop;
6927  for (unsigned i = 0; i < BytesLeft; i++) {
6928    unsigned scratch = MRI.createVirtualRegister(TRC);
6929    unsigned srcOut = MRI.createVirtualRegister(TRC);
6930    unsigned destOut = MRI.createVirtualRegister(TRC);
6931    if (isThumb2) {
6932      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6933        TII->get(ldrOpc),scratch)
6934        .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6935
6936      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6937        .addReg(scratch).addReg(destIn)
6938        .addImm(1));
6939    } else {
6940      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6941        TII->get(ldrOpc),scratch)
6942        .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
6943
6944      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6945        .addReg(scratch).addReg(destIn)
6946        .addReg(0).addImm(1));
6947    }
6948    srcIn = srcOut;
6949    destIn = destOut;
6950  }
6951
6952  MI->eraseFromParent();   // The instruction is gone now.
6953  return BB;
6954}
6955
6956MachineBasicBlock *
6957ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6958                                               MachineBasicBlock *BB) const {
6959  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6960  DebugLoc dl = MI->getDebugLoc();
6961  bool isThumb2 = Subtarget->isThumb2();
6962  switch (MI->getOpcode()) {
6963  default: {
6964    MI->dump();
6965    llvm_unreachable("Unexpected instr type to insert");
6966  }
6967  // The Thumb2 pre-indexed stores have the same MI operands, they just
6968  // define them differently in the .td files from the isel patterns, so
6969  // they need pseudos.
6970  case ARM::t2STR_preidx:
6971    MI->setDesc(TII->get(ARM::t2STR_PRE));
6972    return BB;
6973  case ARM::t2STRB_preidx:
6974    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6975    return BB;
6976  case ARM::t2STRH_preidx:
6977    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6978    return BB;
6979
6980  case ARM::STRi_preidx:
6981  case ARM::STRBi_preidx: {
6982    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6983      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6984    // Decode the offset.
6985    unsigned Offset = MI->getOperand(4).getImm();
6986    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6987    Offset = ARM_AM::getAM2Offset(Offset);
6988    if (isSub)
6989      Offset = -Offset;
6990
6991    MachineMemOperand *MMO = *MI->memoperands_begin();
6992    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6993      .addOperand(MI->getOperand(0))  // Rn_wb
6994      .addOperand(MI->getOperand(1))  // Rt
6995      .addOperand(MI->getOperand(2))  // Rn
6996      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6997      .addOperand(MI->getOperand(5))  // pred
6998      .addOperand(MI->getOperand(6))
6999      .addMemOperand(MMO);
7000    MI->eraseFromParent();
7001    return BB;
7002  }
7003  case ARM::STRr_preidx:
7004  case ARM::STRBr_preidx:
7005  case ARM::STRH_preidx: {
7006    unsigned NewOpc;
7007    switch (MI->getOpcode()) {
7008    default: llvm_unreachable("unexpected opcode!");
7009    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
7010    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
7011    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
7012    }
7013    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
7014    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
7015      MIB.addOperand(MI->getOperand(i));
7016    MI->eraseFromParent();
7017    return BB;
7018  }
7019  case ARM::ATOMIC_LOAD_ADD_I8:
7020     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7021  case ARM::ATOMIC_LOAD_ADD_I16:
7022     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7023  case ARM::ATOMIC_LOAD_ADD_I32:
7024     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7025
7026  case ARM::ATOMIC_LOAD_AND_I8:
7027     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7028  case ARM::ATOMIC_LOAD_AND_I16:
7029     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7030  case ARM::ATOMIC_LOAD_AND_I32:
7031     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7032
7033  case ARM::ATOMIC_LOAD_OR_I8:
7034     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7035  case ARM::ATOMIC_LOAD_OR_I16:
7036     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7037  case ARM::ATOMIC_LOAD_OR_I32:
7038     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7039
7040  case ARM::ATOMIC_LOAD_XOR_I8:
7041     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7042  case ARM::ATOMIC_LOAD_XOR_I16:
7043     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7044  case ARM::ATOMIC_LOAD_XOR_I32:
7045     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7046
7047  case ARM::ATOMIC_LOAD_NAND_I8:
7048     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7049  case ARM::ATOMIC_LOAD_NAND_I16:
7050     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7051  case ARM::ATOMIC_LOAD_NAND_I32:
7052     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7053
7054  case ARM::ATOMIC_LOAD_SUB_I8:
7055     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7056  case ARM::ATOMIC_LOAD_SUB_I16:
7057     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7058  case ARM::ATOMIC_LOAD_SUB_I32:
7059     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7060
7061  case ARM::ATOMIC_LOAD_MIN_I8:
7062     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
7063  case ARM::ATOMIC_LOAD_MIN_I16:
7064     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
7065  case ARM::ATOMIC_LOAD_MIN_I32:
7066     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
7067
7068  case ARM::ATOMIC_LOAD_MAX_I8:
7069     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
7070  case ARM::ATOMIC_LOAD_MAX_I16:
7071     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
7072  case ARM::ATOMIC_LOAD_MAX_I32:
7073     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
7074
7075  case ARM::ATOMIC_LOAD_UMIN_I8:
7076     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
7077  case ARM::ATOMIC_LOAD_UMIN_I16:
7078     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
7079  case ARM::ATOMIC_LOAD_UMIN_I32:
7080     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
7081
7082  case ARM::ATOMIC_LOAD_UMAX_I8:
7083     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
7084  case ARM::ATOMIC_LOAD_UMAX_I16:
7085     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
7086  case ARM::ATOMIC_LOAD_UMAX_I32:
7087     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
7088
7089  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
7090  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
7091  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
7092
7093  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
7094  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
7095  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
7096
7097
7098  case ARM::ATOMADD6432:
7099    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
7100                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
7101                              /*NeedsCarry*/ true);
7102  case ARM::ATOMSUB6432:
7103    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7104                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7105                              /*NeedsCarry*/ true);
7106  case ARM::ATOMOR6432:
7107    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
7108                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7109  case ARM::ATOMXOR6432:
7110    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
7111                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7112  case ARM::ATOMAND6432:
7113    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
7114                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7115  case ARM::ATOMSWAP6432:
7116    return EmitAtomicBinary64(MI, BB, 0, 0, false);
7117  case ARM::ATOMCMPXCHG6432:
7118    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7119                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7120                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
7121  case ARM::ATOMMIN6432:
7122    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7123                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7124                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7125                              /*IsMinMax*/ true, ARMCC::LE);
7126  case ARM::ATOMMAX6432:
7127    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7128                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7129                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7130                              /*IsMinMax*/ true, ARMCC::GE);
7131  case ARM::ATOMUMIN6432:
7132    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7133                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7134                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7135                              /*IsMinMax*/ true, ARMCC::LS);
7136  case ARM::ATOMUMAX6432:
7137    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7138                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7139                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7140                              /*IsMinMax*/ true, ARMCC::HS);
7141
7142  case ARM::tMOVCCr_pseudo: {
7143    // To "insert" a SELECT_CC instruction, we actually have to insert the
7144    // diamond control-flow pattern.  The incoming instruction knows the
7145    // destination vreg to set, the condition code register to branch on, the
7146    // true/false values to select between, and a branch opcode to use.
7147    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7148    MachineFunction::iterator It = BB;
7149    ++It;
7150
7151    //  thisMBB:
7152    //  ...
7153    //   TrueVal = ...
7154    //   cmpTY ccX, r1, r2
7155    //   bCC copy1MBB
7156    //   fallthrough --> copy0MBB
7157    MachineBasicBlock *thisMBB  = BB;
7158    MachineFunction *F = BB->getParent();
7159    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7160    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
7161    F->insert(It, copy0MBB);
7162    F->insert(It, sinkMBB);
7163
7164    // Transfer the remainder of BB and its successor edges to sinkMBB.
7165    sinkMBB->splice(sinkMBB->begin(), BB,
7166                    llvm::next(MachineBasicBlock::iterator(MI)),
7167                    BB->end());
7168    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
7169
7170    BB->addSuccessor(copy0MBB);
7171    BB->addSuccessor(sinkMBB);
7172
7173    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
7174      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
7175
7176    //  copy0MBB:
7177    //   %FalseValue = ...
7178    //   # fallthrough to sinkMBB
7179    BB = copy0MBB;
7180
7181    // Update machine-CFG edges
7182    BB->addSuccessor(sinkMBB);
7183
7184    //  sinkMBB:
7185    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7186    //  ...
7187    BB = sinkMBB;
7188    BuildMI(*BB, BB->begin(), dl,
7189            TII->get(ARM::PHI), MI->getOperand(0).getReg())
7190      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7191      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7192
7193    MI->eraseFromParent();   // The pseudo instruction is gone now.
7194    return BB;
7195  }
7196
7197  case ARM::BCCi64:
7198  case ARM::BCCZi64: {
7199    // If there is an unconditional branch to the other successor, remove it.
7200    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
7201
7202    // Compare both parts that make up the double comparison separately for
7203    // equality.
7204    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
7205
7206    unsigned LHS1 = MI->getOperand(1).getReg();
7207    unsigned LHS2 = MI->getOperand(2).getReg();
7208    if (RHSisZero) {
7209      AddDefaultPred(BuildMI(BB, dl,
7210                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7211                     .addReg(LHS1).addImm(0));
7212      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7213        .addReg(LHS2).addImm(0)
7214        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7215    } else {
7216      unsigned RHS1 = MI->getOperand(3).getReg();
7217      unsigned RHS2 = MI->getOperand(4).getReg();
7218      AddDefaultPred(BuildMI(BB, dl,
7219                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7220                     .addReg(LHS1).addReg(RHS1));
7221      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7222        .addReg(LHS2).addReg(RHS2)
7223        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7224    }
7225
7226    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
7227    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
7228    if (MI->getOperand(0).getImm() == ARMCC::NE)
7229      std::swap(destMBB, exitMBB);
7230
7231    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
7232      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
7233    if (isThumb2)
7234      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
7235    else
7236      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
7237
7238    MI->eraseFromParent();   // The pseudo instruction is gone now.
7239    return BB;
7240  }
7241
7242  case ARM::Int_eh_sjlj_setjmp:
7243  case ARM::Int_eh_sjlj_setjmp_nofp:
7244  case ARM::tInt_eh_sjlj_setjmp:
7245  case ARM::t2Int_eh_sjlj_setjmp:
7246  case ARM::t2Int_eh_sjlj_setjmp_nofp:
7247    EmitSjLjDispatchBlock(MI, BB);
7248    return BB;
7249
7250  case ARM::ABS:
7251  case ARM::t2ABS: {
7252    // To insert an ABS instruction, we have to insert the
7253    // diamond control-flow pattern.  The incoming instruction knows the
7254    // source vreg to test against 0, the destination vreg to set,
7255    // the condition code register to branch on, the
7256    // true/false values to select between, and a branch opcode to use.
7257    // It transforms
7258    //     V1 = ABS V0
7259    // into
7260    //     V2 = MOVS V0
7261    //     BCC                      (branch to SinkBB if V0 >= 0)
7262    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
7263    //     SinkBB: V1 = PHI(V2, V3)
7264    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7265    MachineFunction::iterator BBI = BB;
7266    ++BBI;
7267    MachineFunction *Fn = BB->getParent();
7268    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7269    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
7270    Fn->insert(BBI, RSBBB);
7271    Fn->insert(BBI, SinkBB);
7272
7273    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
7274    unsigned int ABSDstReg = MI->getOperand(0).getReg();
7275    bool isThumb2 = Subtarget->isThumb2();
7276    MachineRegisterInfo &MRI = Fn->getRegInfo();
7277    // In Thumb mode S must not be specified if source register is the SP or
7278    // PC and if destination register is the SP, so restrict register class
7279    unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
7280      (const TargetRegisterClass*)&ARM::rGPRRegClass :
7281      (const TargetRegisterClass*)&ARM::GPRRegClass);
7282
7283    // Transfer the remainder of BB and its successor edges to sinkMBB.
7284    SinkBB->splice(SinkBB->begin(), BB,
7285      llvm::next(MachineBasicBlock::iterator(MI)),
7286      BB->end());
7287    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
7288
7289    BB->addSuccessor(RSBBB);
7290    BB->addSuccessor(SinkBB);
7291
7292    // fall through to SinkMBB
7293    RSBBB->addSuccessor(SinkBB);
7294
7295    // insert a cmp at the end of BB
7296    AddDefaultPred(BuildMI(BB, dl,
7297                           TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7298                   .addReg(ABSSrcReg).addImm(0));
7299
7300    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
7301    BuildMI(BB, dl,
7302      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
7303      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
7304
7305    // insert rsbri in RSBBB
7306    // Note: BCC and rsbri will be converted into predicated rsbmi
7307    // by if-conversion pass
7308    BuildMI(*RSBBB, RSBBB->begin(), dl,
7309      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
7310      .addReg(ABSSrcReg, RegState::Kill)
7311      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
7312
7313    // insert PHI in SinkBB,
7314    // reuse ABSDstReg to not change uses of ABS instruction
7315    BuildMI(*SinkBB, SinkBB->begin(), dl,
7316      TII->get(ARM::PHI), ABSDstReg)
7317      .addReg(NewRsbDstReg).addMBB(RSBBB)
7318      .addReg(ABSSrcReg).addMBB(BB);
7319
7320    // remove ABS instruction
7321    MI->eraseFromParent();
7322
7323    // return last added BB
7324    return SinkBB;
7325  }
7326  case ARM::COPY_STRUCT_BYVAL_I32:
7327    ++NumLoopByVals;
7328    return EmitStructByval(MI, BB);
7329  }
7330}
7331
7332void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
7333                                                      SDNode *Node) const {
7334  if (!MI->hasPostISelHook()) {
7335    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
7336           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
7337    return;
7338  }
7339
7340  const MCInstrDesc *MCID = &MI->getDesc();
7341  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
7342  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
7343  // operand is still set to noreg. If needed, set the optional operand's
7344  // register to CPSR, and remove the redundant implicit def.
7345  //
7346  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
7347
7348  // Rename pseudo opcodes.
7349  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
7350  if (NewOpc) {
7351    const ARMBaseInstrInfo *TII =
7352      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
7353    MCID = &TII->get(NewOpc);
7354
7355    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
7356           "converted opcode should be the same except for cc_out");
7357
7358    MI->setDesc(*MCID);
7359
7360    // Add the optional cc_out operand
7361    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
7362  }
7363  unsigned ccOutIdx = MCID->getNumOperands() - 1;
7364
7365  // Any ARM instruction that sets the 's' bit should specify an optional
7366  // "cc_out" operand in the last operand position.
7367  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
7368    assert(!NewOpc && "Optional cc_out operand required");
7369    return;
7370  }
7371  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
7372  // since we already have an optional CPSR def.
7373  bool definesCPSR = false;
7374  bool deadCPSR = false;
7375  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
7376       i != e; ++i) {
7377    const MachineOperand &MO = MI->getOperand(i);
7378    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
7379      definesCPSR = true;
7380      if (MO.isDead())
7381        deadCPSR = true;
7382      MI->RemoveOperand(i);
7383      break;
7384    }
7385  }
7386  if (!definesCPSR) {
7387    assert(!NewOpc && "Optional cc_out operand required");
7388    return;
7389  }
7390  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
7391  if (deadCPSR) {
7392    assert(!MI->getOperand(ccOutIdx).getReg() &&
7393           "expect uninitialized optional cc_out operand");
7394    return;
7395  }
7396
7397  // If this instruction was defined with an optional CPSR def and its dag node
7398  // had a live implicit CPSR def, then activate the optional CPSR def.
7399  MachineOperand &MO = MI->getOperand(ccOutIdx);
7400  MO.setReg(ARM::CPSR);
7401  MO.setIsDef(true);
7402}
7403
7404//===----------------------------------------------------------------------===//
7405//                           ARM Optimization Hooks
7406//===----------------------------------------------------------------------===//
7407
7408// Helper function that checks if N is a null or all ones constant.
7409static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
7410  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
7411  if (!C)
7412    return false;
7413  return AllOnes ? C->isAllOnesValue() : C->isNullValue();
7414}
7415
7416// Return true if N is conditionally 0 or all ones.
7417// Detects these expressions where cc is an i1 value:
7418//
7419//   (select cc 0, y)   [AllOnes=0]
7420//   (select cc y, 0)   [AllOnes=0]
7421//   (zext cc)          [AllOnes=0]
7422//   (sext cc)          [AllOnes=0/1]
7423//   (select cc -1, y)  [AllOnes=1]
7424//   (select cc y, -1)  [AllOnes=1]
7425//
7426// Invert is set when N is the null/all ones constant when CC is false.
7427// OtherOp is set to the alternative value of N.
7428static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
7429                                       SDValue &CC, bool &Invert,
7430                                       SDValue &OtherOp,
7431                                       SelectionDAG &DAG) {
7432  switch (N->getOpcode()) {
7433  default: return false;
7434  case ISD::SELECT: {
7435    CC = N->getOperand(0);
7436    SDValue N1 = N->getOperand(1);
7437    SDValue N2 = N->getOperand(2);
7438    if (isZeroOrAllOnes(N1, AllOnes)) {
7439      Invert = false;
7440      OtherOp = N2;
7441      return true;
7442    }
7443    if (isZeroOrAllOnes(N2, AllOnes)) {
7444      Invert = true;
7445      OtherOp = N1;
7446      return true;
7447    }
7448    return false;
7449  }
7450  case ISD::ZERO_EXTEND:
7451    // (zext cc) can never be the all ones value.
7452    if (AllOnes)
7453      return false;
7454    // Fall through.
7455  case ISD::SIGN_EXTEND: {
7456    EVT VT = N->getValueType(0);
7457    CC = N->getOperand(0);
7458    if (CC.getValueType() != MVT::i1)
7459      return false;
7460    Invert = !AllOnes;
7461    if (AllOnes)
7462      // When looking for an AllOnes constant, N is an sext, and the 'other'
7463      // value is 0.
7464      OtherOp = DAG.getConstant(0, VT);
7465    else if (N->getOpcode() == ISD::ZERO_EXTEND)
7466      // When looking for a 0 constant, N can be zext or sext.
7467      OtherOp = DAG.getConstant(1, VT);
7468    else
7469      OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
7470    return true;
7471  }
7472  }
7473}
7474
7475// Combine a constant select operand into its use:
7476//
7477//   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
7478//   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
7479//   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
7480//   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
7481//   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
7482//
7483// The transform is rejected if the select doesn't have a constant operand that
7484// is null, or all ones when AllOnes is set.
7485//
7486// Also recognize sext/zext from i1:
7487//
7488//   (add (zext cc), x) -> (select cc (add x, 1), x)
7489//   (add (sext cc), x) -> (select cc (add x, -1), x)
7490//
7491// These transformations eventually create predicated instructions.
7492//
7493// @param N       The node to transform.
7494// @param Slct    The N operand that is a select.
7495// @param OtherOp The other N operand (x above).
7496// @param DCI     Context.
7497// @param AllOnes Require the select constant to be all ones instead of null.
7498// @returns The new node, or SDValue() on failure.
7499static
7500SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7501                            TargetLowering::DAGCombinerInfo &DCI,
7502                            bool AllOnes = false) {
7503  SelectionDAG &DAG = DCI.DAG;
7504  EVT VT = N->getValueType(0);
7505  SDValue NonConstantVal;
7506  SDValue CCOp;
7507  bool SwapSelectOps;
7508  if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
7509                                  NonConstantVal, DAG))
7510    return SDValue();
7511
7512  // Slct is now know to be the desired identity constant when CC is true.
7513  SDValue TrueVal = OtherOp;
7514  SDValue FalseVal = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
7515                                 OtherOp, NonConstantVal);
7516  // Unless SwapSelectOps says CC should be false.
7517  if (SwapSelectOps)
7518    std::swap(TrueVal, FalseVal);
7519
7520  return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
7521                     CCOp, TrueVal, FalseVal);
7522}
7523
7524// Attempt combineSelectAndUse on each operand of a commutative operator N.
7525static
7526SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
7527                                       TargetLowering::DAGCombinerInfo &DCI) {
7528  SDValue N0 = N->getOperand(0);
7529  SDValue N1 = N->getOperand(1);
7530  if (N0.getNode()->hasOneUse()) {
7531    SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
7532    if (Result.getNode())
7533      return Result;
7534  }
7535  if (N1.getNode()->hasOneUse()) {
7536    SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
7537    if (Result.getNode())
7538      return Result;
7539  }
7540  return SDValue();
7541}
7542
7543// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
7544// (only after legalization).
7545static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
7546                                 TargetLowering::DAGCombinerInfo &DCI,
7547                                 const ARMSubtarget *Subtarget) {
7548
7549  // Only perform optimization if after legalize, and if NEON is available. We
7550  // also expected both operands to be BUILD_VECTORs.
7551  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
7552      || N0.getOpcode() != ISD::BUILD_VECTOR
7553      || N1.getOpcode() != ISD::BUILD_VECTOR)
7554    return SDValue();
7555
7556  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
7557  EVT VT = N->getValueType(0);
7558  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
7559    return SDValue();
7560
7561  // Check that the vector operands are of the right form.
7562  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
7563  // operands, where N is the size of the formed vector.
7564  // Each EXTRACT_VECTOR should have the same input vector and odd or even
7565  // index such that we have a pair wise add pattern.
7566
7567  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
7568  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7569    return SDValue();
7570  SDValue Vec = N0->getOperand(0)->getOperand(0);
7571  SDNode *V = Vec.getNode();
7572  unsigned nextIndex = 0;
7573
7574  // For each operands to the ADD which are BUILD_VECTORs,
7575  // check to see if each of their operands are an EXTRACT_VECTOR with
7576  // the same vector and appropriate index.
7577  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
7578    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
7579        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7580
7581      SDValue ExtVec0 = N0->getOperand(i);
7582      SDValue ExtVec1 = N1->getOperand(i);
7583
7584      // First operand is the vector, verify its the same.
7585      if (V != ExtVec0->getOperand(0).getNode() ||
7586          V != ExtVec1->getOperand(0).getNode())
7587        return SDValue();
7588
7589      // Second is the constant, verify its correct.
7590      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
7591      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
7592
7593      // For the constant, we want to see all the even or all the odd.
7594      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
7595          || C1->getZExtValue() != nextIndex+1)
7596        return SDValue();
7597
7598      // Increment index.
7599      nextIndex+=2;
7600    } else
7601      return SDValue();
7602  }
7603
7604  // Create VPADDL node.
7605  SelectionDAG &DAG = DCI.DAG;
7606  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7607
7608  // Build operand list.
7609  SmallVector<SDValue, 8> Ops;
7610  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
7611                                TLI.getPointerTy()));
7612
7613  // Input is the vector.
7614  Ops.push_back(Vec);
7615
7616  // Get widened type and narrowed type.
7617  MVT widenType;
7618  unsigned numElem = VT.getVectorNumElements();
7619  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
7620    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
7621    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
7622    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
7623    default:
7624      llvm_unreachable("Invalid vector element type for padd optimization.");
7625  }
7626
7627  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7628                            widenType, &Ops[0], Ops.size());
7629  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
7630}
7631
7632static SDValue findMUL_LOHI(SDValue V) {
7633  if (V->getOpcode() == ISD::UMUL_LOHI ||
7634      V->getOpcode() == ISD::SMUL_LOHI)
7635    return V;
7636  return SDValue();
7637}
7638
7639static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
7640                                     TargetLowering::DAGCombinerInfo &DCI,
7641                                     const ARMSubtarget *Subtarget) {
7642
7643  if (Subtarget->isThumb1Only()) return SDValue();
7644
7645  // Only perform the checks after legalize when the pattern is available.
7646  if (DCI.isBeforeLegalize()) return SDValue();
7647
7648  // Look for multiply add opportunities.
7649  // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
7650  // each add nodes consumes a value from ISD::UMUL_LOHI and there is
7651  // a glue link from the first add to the second add.
7652  // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
7653  // a S/UMLAL instruction.
7654  //          loAdd   UMUL_LOHI
7655  //            \    / :lo    \ :hi
7656  //             \  /          \          [no multiline comment]
7657  //              ADDC         |  hiAdd
7658  //                 \ :glue  /  /
7659  //                  \      /  /
7660  //                    ADDE
7661  //
7662  assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
7663  SDValue AddcOp0 = AddcNode->getOperand(0);
7664  SDValue AddcOp1 = AddcNode->getOperand(1);
7665
7666  // Check if the two operands are from the same mul_lohi node.
7667  if (AddcOp0.getNode() == AddcOp1.getNode())
7668    return SDValue();
7669
7670  assert(AddcNode->getNumValues() == 2 &&
7671         AddcNode->getValueType(0) == MVT::i32 &&
7672         AddcNode->getValueType(1) == MVT::Glue &&
7673         "Expect ADDC with two result values: i32, glue");
7674
7675  // Check that the ADDC adds the low result of the S/UMUL_LOHI.
7676  if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
7677      AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
7678      AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
7679      AddcOp1->getOpcode() != ISD::SMUL_LOHI)
7680    return SDValue();
7681
7682  // Look for the glued ADDE.
7683  SDNode* AddeNode = AddcNode->getGluedUser();
7684  if (AddeNode == NULL)
7685    return SDValue();
7686
7687  // Make sure it is really an ADDE.
7688  if (AddeNode->getOpcode() != ISD::ADDE)
7689    return SDValue();
7690
7691  assert(AddeNode->getNumOperands() == 3 &&
7692         AddeNode->getOperand(2).getValueType() == MVT::Glue &&
7693         "ADDE node has the wrong inputs");
7694
7695  // Check for the triangle shape.
7696  SDValue AddeOp0 = AddeNode->getOperand(0);
7697  SDValue AddeOp1 = AddeNode->getOperand(1);
7698
7699  // Make sure that the ADDE operands are not coming from the same node.
7700  if (AddeOp0.getNode() == AddeOp1.getNode())
7701    return SDValue();
7702
7703  // Find the MUL_LOHI node walking up ADDE's operands.
7704  bool IsLeftOperandMUL = false;
7705  SDValue MULOp = findMUL_LOHI(AddeOp0);
7706  if (MULOp == SDValue())
7707   MULOp = findMUL_LOHI(AddeOp1);
7708  else
7709    IsLeftOperandMUL = true;
7710  if (MULOp == SDValue())
7711     return SDValue();
7712
7713  // Figure out the right opcode.
7714  unsigned Opc = MULOp->getOpcode();
7715  unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
7716
7717  // Figure out the high and low input values to the MLAL node.
7718  SDValue* HiMul = &MULOp;
7719  SDValue* HiAdd = NULL;
7720  SDValue* LoMul = NULL;
7721  SDValue* LowAdd = NULL;
7722
7723  if (IsLeftOperandMUL)
7724    HiAdd = &AddeOp1;
7725  else
7726    HiAdd = &AddeOp0;
7727
7728
7729  if (AddcOp0->getOpcode() == Opc) {
7730    LoMul = &AddcOp0;
7731    LowAdd = &AddcOp1;
7732  }
7733  if (AddcOp1->getOpcode() == Opc) {
7734    LoMul = &AddcOp1;
7735    LowAdd = &AddcOp0;
7736  }
7737
7738  if (LoMul == NULL)
7739    return SDValue();
7740
7741  if (LoMul->getNode() != HiMul->getNode())
7742    return SDValue();
7743
7744  // Create the merged node.
7745  SelectionDAG &DAG = DCI.DAG;
7746
7747  // Build operand list.
7748  SmallVector<SDValue, 8> Ops;
7749  Ops.push_back(LoMul->getOperand(0));
7750  Ops.push_back(LoMul->getOperand(1));
7751  Ops.push_back(*LowAdd);
7752  Ops.push_back(*HiAdd);
7753
7754  SDValue MLALNode =  DAG.getNode(FinalOpc, AddcNode->getDebugLoc(),
7755                                 DAG.getVTList(MVT::i32, MVT::i32),
7756                                 &Ops[0], Ops.size());
7757
7758  // Replace the ADDs' nodes uses by the MLA node's values.
7759  SDValue HiMLALResult(MLALNode.getNode(), 1);
7760  DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
7761
7762  SDValue LoMLALResult(MLALNode.getNode(), 0);
7763  DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
7764
7765  // Return original node to notify the driver to stop replacing.
7766  SDValue resNode(AddcNode, 0);
7767  return resNode;
7768}
7769
7770/// PerformADDCCombine - Target-specific dag combine transform from
7771/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
7772static SDValue PerformADDCCombine(SDNode *N,
7773                                 TargetLowering::DAGCombinerInfo &DCI,
7774                                 const ARMSubtarget *Subtarget) {
7775
7776  return AddCombineTo64bitMLAL(N, DCI, Subtarget);
7777
7778}
7779
7780/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
7781/// operands N0 and N1.  This is a helper for PerformADDCombine that is
7782/// called with the default operands, and if that fails, with commuted
7783/// operands.
7784static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
7785                                          TargetLowering::DAGCombinerInfo &DCI,
7786                                          const ARMSubtarget *Subtarget){
7787
7788  // Attempt to create vpaddl for this add.
7789  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
7790  if (Result.getNode())
7791    return Result;
7792
7793  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
7794  if (N0.getNode()->hasOneUse()) {
7795    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
7796    if (Result.getNode()) return Result;
7797  }
7798  return SDValue();
7799}
7800
7801/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
7802///
7803static SDValue PerformADDCombine(SDNode *N,
7804                                 TargetLowering::DAGCombinerInfo &DCI,
7805                                 const ARMSubtarget *Subtarget) {
7806  SDValue N0 = N->getOperand(0);
7807  SDValue N1 = N->getOperand(1);
7808
7809  // First try with the default operand order.
7810  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
7811  if (Result.getNode())
7812    return Result;
7813
7814  // If that didn't work, try again with the operands commuted.
7815  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
7816}
7817
7818/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
7819///
7820static SDValue PerformSUBCombine(SDNode *N,
7821                                 TargetLowering::DAGCombinerInfo &DCI) {
7822  SDValue N0 = N->getOperand(0);
7823  SDValue N1 = N->getOperand(1);
7824
7825  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
7826  if (N1.getNode()->hasOneUse()) {
7827    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
7828    if (Result.getNode()) return Result;
7829  }
7830
7831  return SDValue();
7832}
7833
7834/// PerformVMULCombine
7835/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
7836/// special multiplier accumulator forwarding.
7837///   vmul d3, d0, d2
7838///   vmla d3, d1, d2
7839/// is faster than
7840///   vadd d3, d0, d1
7841///   vmul d3, d3, d2
7842static SDValue PerformVMULCombine(SDNode *N,
7843                                  TargetLowering::DAGCombinerInfo &DCI,
7844                                  const ARMSubtarget *Subtarget) {
7845  if (!Subtarget->hasVMLxForwarding())
7846    return SDValue();
7847
7848  SelectionDAG &DAG = DCI.DAG;
7849  SDValue N0 = N->getOperand(0);
7850  SDValue N1 = N->getOperand(1);
7851  unsigned Opcode = N0.getOpcode();
7852  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7853      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
7854    Opcode = N1.getOpcode();
7855    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7856        Opcode != ISD::FADD && Opcode != ISD::FSUB)
7857      return SDValue();
7858    std::swap(N0, N1);
7859  }
7860
7861  EVT VT = N->getValueType(0);
7862  DebugLoc DL = N->getDebugLoc();
7863  SDValue N00 = N0->getOperand(0);
7864  SDValue N01 = N0->getOperand(1);
7865  return DAG.getNode(Opcode, DL, VT,
7866                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
7867                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
7868}
7869
7870static SDValue PerformMULCombine(SDNode *N,
7871                                 TargetLowering::DAGCombinerInfo &DCI,
7872                                 const ARMSubtarget *Subtarget) {
7873  SelectionDAG &DAG = DCI.DAG;
7874
7875  if (Subtarget->isThumb1Only())
7876    return SDValue();
7877
7878  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7879    return SDValue();
7880
7881  EVT VT = N->getValueType(0);
7882  if (VT.is64BitVector() || VT.is128BitVector())
7883    return PerformVMULCombine(N, DCI, Subtarget);
7884  if (VT != MVT::i32)
7885    return SDValue();
7886
7887  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7888  if (!C)
7889    return SDValue();
7890
7891  int64_t MulAmt = C->getSExtValue();
7892  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
7893
7894  ShiftAmt = ShiftAmt & (32 - 1);
7895  SDValue V = N->getOperand(0);
7896  DebugLoc DL = N->getDebugLoc();
7897
7898  SDValue Res;
7899  MulAmt >>= ShiftAmt;
7900
7901  if (MulAmt >= 0) {
7902    if (isPowerOf2_32(MulAmt - 1)) {
7903      // (mul x, 2^N + 1) => (add (shl x, N), x)
7904      Res = DAG.getNode(ISD::ADD, DL, VT,
7905                        V,
7906                        DAG.getNode(ISD::SHL, DL, VT,
7907                                    V,
7908                                    DAG.getConstant(Log2_32(MulAmt - 1),
7909                                                    MVT::i32)));
7910    } else if (isPowerOf2_32(MulAmt + 1)) {
7911      // (mul x, 2^N - 1) => (sub (shl x, N), x)
7912      Res = DAG.getNode(ISD::SUB, DL, VT,
7913                        DAG.getNode(ISD::SHL, DL, VT,
7914                                    V,
7915                                    DAG.getConstant(Log2_32(MulAmt + 1),
7916                                                    MVT::i32)),
7917                        V);
7918    } else
7919      return SDValue();
7920  } else {
7921    uint64_t MulAmtAbs = -MulAmt;
7922    if (isPowerOf2_32(MulAmtAbs + 1)) {
7923      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7924      Res = DAG.getNode(ISD::SUB, DL, VT,
7925                        V,
7926                        DAG.getNode(ISD::SHL, DL, VT,
7927                                    V,
7928                                    DAG.getConstant(Log2_32(MulAmtAbs + 1),
7929                                                    MVT::i32)));
7930    } else if (isPowerOf2_32(MulAmtAbs - 1)) {
7931      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7932      Res = DAG.getNode(ISD::ADD, DL, VT,
7933                        V,
7934                        DAG.getNode(ISD::SHL, DL, VT,
7935                                    V,
7936                                    DAG.getConstant(Log2_32(MulAmtAbs-1),
7937                                                    MVT::i32)));
7938      Res = DAG.getNode(ISD::SUB, DL, VT,
7939                        DAG.getConstant(0, MVT::i32),Res);
7940
7941    } else
7942      return SDValue();
7943  }
7944
7945  if (ShiftAmt != 0)
7946    Res = DAG.getNode(ISD::SHL, DL, VT,
7947                      Res, DAG.getConstant(ShiftAmt, MVT::i32));
7948
7949  // Do not add new nodes to DAG combiner worklist.
7950  DCI.CombineTo(N, Res, false);
7951  return SDValue();
7952}
7953
7954static SDValue PerformANDCombine(SDNode *N,
7955                                 TargetLowering::DAGCombinerInfo &DCI,
7956                                 const ARMSubtarget *Subtarget) {
7957
7958  // Attempt to use immediate-form VBIC
7959  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7960  DebugLoc dl = N->getDebugLoc();
7961  EVT VT = N->getValueType(0);
7962  SelectionDAG &DAG = DCI.DAG;
7963
7964  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7965    return SDValue();
7966
7967  APInt SplatBits, SplatUndef;
7968  unsigned SplatBitSize;
7969  bool HasAnyUndefs;
7970  if (BVN &&
7971      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7972    if (SplatBitSize <= 64) {
7973      EVT VbicVT;
7974      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
7975                                      SplatUndef.getZExtValue(), SplatBitSize,
7976                                      DAG, VbicVT, VT.is128BitVector(),
7977                                      OtherModImm);
7978      if (Val.getNode()) {
7979        SDValue Input =
7980          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
7981        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
7982        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
7983      }
7984    }
7985  }
7986
7987  if (!Subtarget->isThumb1Only()) {
7988    // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
7989    SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
7990    if (Result.getNode())
7991      return Result;
7992  }
7993
7994  return SDValue();
7995}
7996
7997/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
7998static SDValue PerformORCombine(SDNode *N,
7999                                TargetLowering::DAGCombinerInfo &DCI,
8000                                const ARMSubtarget *Subtarget) {
8001  // Attempt to use immediate-form VORR
8002  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8003  DebugLoc dl = N->getDebugLoc();
8004  EVT VT = N->getValueType(0);
8005  SelectionDAG &DAG = DCI.DAG;
8006
8007  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8008    return SDValue();
8009
8010  APInt SplatBits, SplatUndef;
8011  unsigned SplatBitSize;
8012  bool HasAnyUndefs;
8013  if (BVN && Subtarget->hasNEON() &&
8014      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8015    if (SplatBitSize <= 64) {
8016      EVT VorrVT;
8017      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
8018                                      SplatUndef.getZExtValue(), SplatBitSize,
8019                                      DAG, VorrVT, VT.is128BitVector(),
8020                                      OtherModImm);
8021      if (Val.getNode()) {
8022        SDValue Input =
8023          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
8024        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
8025        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
8026      }
8027    }
8028  }
8029
8030  if (!Subtarget->isThumb1Only()) {
8031    // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
8032    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8033    if (Result.getNode())
8034      return Result;
8035  }
8036
8037  // The code below optimizes (or (and X, Y), Z).
8038  // The AND operand needs to have a single user to make these optimizations
8039  // profitable.
8040  SDValue N0 = N->getOperand(0);
8041  if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
8042    return SDValue();
8043  SDValue N1 = N->getOperand(1);
8044
8045  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
8046  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
8047      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
8048    APInt SplatUndef;
8049    unsigned SplatBitSize;
8050    bool HasAnyUndefs;
8051
8052    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
8053    APInt SplatBits0;
8054    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
8055                                  HasAnyUndefs) && !HasAnyUndefs) {
8056      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
8057      APInt SplatBits1;
8058      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
8059                                    HasAnyUndefs) && !HasAnyUndefs &&
8060          SplatBits0 == ~SplatBits1) {
8061        // Canonicalize the vector type to make instruction selection simpler.
8062        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
8063        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
8064                                     N0->getOperand(1), N0->getOperand(0),
8065                                     N1->getOperand(0));
8066        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
8067      }
8068    }
8069  }
8070
8071  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
8072  // reasonable.
8073
8074  // BFI is only available on V6T2+
8075  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
8076    return SDValue();
8077
8078  DebugLoc DL = N->getDebugLoc();
8079  // 1) or (and A, mask), val => ARMbfi A, val, mask
8080  //      iff (val & mask) == val
8081  //
8082  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8083  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
8084  //          && mask == ~mask2
8085  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
8086  //          && ~mask == mask2
8087  //  (i.e., copy a bitfield value into another bitfield of the same width)
8088
8089  if (VT != MVT::i32)
8090    return SDValue();
8091
8092  SDValue N00 = N0.getOperand(0);
8093
8094  // The value and the mask need to be constants so we can verify this is
8095  // actually a bitfield set. If the mask is 0xffff, we can do better
8096  // via a movt instruction, so don't use BFI in that case.
8097  SDValue MaskOp = N0.getOperand(1);
8098  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
8099  if (!MaskC)
8100    return SDValue();
8101  unsigned Mask = MaskC->getZExtValue();
8102  if (Mask == 0xffff)
8103    return SDValue();
8104  SDValue Res;
8105  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
8106  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
8107  if (N1C) {
8108    unsigned Val = N1C->getZExtValue();
8109    if ((Val & ~Mask) != Val)
8110      return SDValue();
8111
8112    if (ARM::isBitFieldInvertedMask(Mask)) {
8113      Val >>= CountTrailingZeros_32(~Mask);
8114
8115      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
8116                        DAG.getConstant(Val, MVT::i32),
8117                        DAG.getConstant(Mask, MVT::i32));
8118
8119      // Do not add new nodes to DAG combiner worklist.
8120      DCI.CombineTo(N, Res, false);
8121      return SDValue();
8122    }
8123  } else if (N1.getOpcode() == ISD::AND) {
8124    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8125    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8126    if (!N11C)
8127      return SDValue();
8128    unsigned Mask2 = N11C->getZExtValue();
8129
8130    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
8131    // as is to match.
8132    if (ARM::isBitFieldInvertedMask(Mask) &&
8133        (Mask == ~Mask2)) {
8134      // The pack halfword instruction works better for masks that fit it,
8135      // so use that when it's available.
8136      if (Subtarget->hasT2ExtractPack() &&
8137          (Mask == 0xffff || Mask == 0xffff0000))
8138        return SDValue();
8139      // 2a
8140      unsigned amt = CountTrailingZeros_32(Mask2);
8141      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
8142                        DAG.getConstant(amt, MVT::i32));
8143      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
8144                        DAG.getConstant(Mask, MVT::i32));
8145      // Do not add new nodes to DAG combiner worklist.
8146      DCI.CombineTo(N, Res, false);
8147      return SDValue();
8148    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
8149               (~Mask == Mask2)) {
8150      // The pack halfword instruction works better for masks that fit it,
8151      // so use that when it's available.
8152      if (Subtarget->hasT2ExtractPack() &&
8153          (Mask2 == 0xffff || Mask2 == 0xffff0000))
8154        return SDValue();
8155      // 2b
8156      unsigned lsb = CountTrailingZeros_32(Mask);
8157      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
8158                        DAG.getConstant(lsb, MVT::i32));
8159      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
8160                        DAG.getConstant(Mask2, MVT::i32));
8161      // Do not add new nodes to DAG combiner worklist.
8162      DCI.CombineTo(N, Res, false);
8163      return SDValue();
8164    }
8165  }
8166
8167  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
8168      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
8169      ARM::isBitFieldInvertedMask(~Mask)) {
8170    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
8171    // where lsb(mask) == #shamt and masked bits of B are known zero.
8172    SDValue ShAmt = N00.getOperand(1);
8173    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
8174    unsigned LSB = CountTrailingZeros_32(Mask);
8175    if (ShAmtC != LSB)
8176      return SDValue();
8177
8178    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
8179                      DAG.getConstant(~Mask, MVT::i32));
8180
8181    // Do not add new nodes to DAG combiner worklist.
8182    DCI.CombineTo(N, Res, false);
8183  }
8184
8185  return SDValue();
8186}
8187
8188static SDValue PerformXORCombine(SDNode *N,
8189                                 TargetLowering::DAGCombinerInfo &DCI,
8190                                 const ARMSubtarget *Subtarget) {
8191  EVT VT = N->getValueType(0);
8192  SelectionDAG &DAG = DCI.DAG;
8193
8194  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8195    return SDValue();
8196
8197  if (!Subtarget->isThumb1Only()) {
8198    // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
8199    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8200    if (Result.getNode())
8201      return Result;
8202  }
8203
8204  return SDValue();
8205}
8206
8207/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
8208/// the bits being cleared by the AND are not demanded by the BFI.
8209static SDValue PerformBFICombine(SDNode *N,
8210                                 TargetLowering::DAGCombinerInfo &DCI) {
8211  SDValue N1 = N->getOperand(1);
8212  if (N1.getOpcode() == ISD::AND) {
8213    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8214    if (!N11C)
8215      return SDValue();
8216    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
8217    unsigned LSB = CountTrailingZeros_32(~InvMask);
8218    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
8219    unsigned Mask = (1 << Width)-1;
8220    unsigned Mask2 = N11C->getZExtValue();
8221    if ((Mask & (~Mask2)) == 0)
8222      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
8223                             N->getOperand(0), N1.getOperand(0),
8224                             N->getOperand(2));
8225  }
8226  return SDValue();
8227}
8228
8229/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
8230/// ARMISD::VMOVRRD.
8231static SDValue PerformVMOVRRDCombine(SDNode *N,
8232                                     TargetLowering::DAGCombinerInfo &DCI) {
8233  // vmovrrd(vmovdrr x, y) -> x,y
8234  SDValue InDouble = N->getOperand(0);
8235  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
8236    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
8237
8238  // vmovrrd(load f64) -> (load i32), (load i32)
8239  SDNode *InNode = InDouble.getNode();
8240  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
8241      InNode->getValueType(0) == MVT::f64 &&
8242      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
8243      !cast<LoadSDNode>(InNode)->isVolatile()) {
8244    // TODO: Should this be done for non-FrameIndex operands?
8245    LoadSDNode *LD = cast<LoadSDNode>(InNode);
8246
8247    SelectionDAG &DAG = DCI.DAG;
8248    DebugLoc DL = LD->getDebugLoc();
8249    SDValue BasePtr = LD->getBasePtr();
8250    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
8251                                 LD->getPointerInfo(), LD->isVolatile(),
8252                                 LD->isNonTemporal(), LD->isInvariant(),
8253                                 LD->getAlignment());
8254
8255    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8256                                    DAG.getConstant(4, MVT::i32));
8257    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
8258                                 LD->getPointerInfo(), LD->isVolatile(),
8259                                 LD->isNonTemporal(), LD->isInvariant(),
8260                                 std::min(4U, LD->getAlignment() / 2));
8261
8262    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
8263    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
8264    DCI.RemoveFromWorklist(LD);
8265    DAG.DeleteNode(LD);
8266    return Result;
8267  }
8268
8269  return SDValue();
8270}
8271
8272/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
8273/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
8274static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
8275  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
8276  SDValue Op0 = N->getOperand(0);
8277  SDValue Op1 = N->getOperand(1);
8278  if (Op0.getOpcode() == ISD::BITCAST)
8279    Op0 = Op0.getOperand(0);
8280  if (Op1.getOpcode() == ISD::BITCAST)
8281    Op1 = Op1.getOperand(0);
8282  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
8283      Op0.getNode() == Op1.getNode() &&
8284      Op0.getResNo() == 0 && Op1.getResNo() == 1)
8285    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
8286                       N->getValueType(0), Op0.getOperand(0));
8287  return SDValue();
8288}
8289
8290/// PerformSTORECombine - Target-specific dag combine xforms for
8291/// ISD::STORE.
8292static SDValue PerformSTORECombine(SDNode *N,
8293                                   TargetLowering::DAGCombinerInfo &DCI) {
8294  StoreSDNode *St = cast<StoreSDNode>(N);
8295  if (St->isVolatile())
8296    return SDValue();
8297
8298  // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
8299  // pack all of the elements in one place.  Next, store to memory in fewer
8300  // chunks.
8301  SDValue StVal = St->getValue();
8302  EVT VT = StVal.getValueType();
8303  if (St->isTruncatingStore() && VT.isVector()) {
8304    SelectionDAG &DAG = DCI.DAG;
8305    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8306    EVT StVT = St->getMemoryVT();
8307    unsigned NumElems = VT.getVectorNumElements();
8308    assert(StVT != VT && "Cannot truncate to the same type");
8309    unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
8310    unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
8311
8312    // From, To sizes and ElemCount must be pow of two
8313    if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
8314
8315    // We are going to use the original vector elt for storing.
8316    // Accumulated smaller vector elements must be a multiple of the store size.
8317    if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
8318
8319    unsigned SizeRatio  = FromEltSz / ToEltSz;
8320    assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
8321
8322    // Create a type on which we perform the shuffle.
8323    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
8324                                     NumElems*SizeRatio);
8325    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
8326
8327    DebugLoc DL = St->getDebugLoc();
8328    SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
8329    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
8330    for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
8331
8332    // Can't shuffle using an illegal type.
8333    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
8334
8335    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
8336                                DAG.getUNDEF(WideVec.getValueType()),
8337                                ShuffleVec.data());
8338    // At this point all of the data is stored at the bottom of the
8339    // register. We now need to save it to mem.
8340
8341    // Find the largest store unit
8342    MVT StoreType = MVT::i8;
8343    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
8344         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
8345      MVT Tp = (MVT::SimpleValueType)tp;
8346      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
8347        StoreType = Tp;
8348    }
8349    // Didn't find a legal store type.
8350    if (!TLI.isTypeLegal(StoreType))
8351      return SDValue();
8352
8353    // Bitcast the original vector into a vector of store-size units
8354    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
8355            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
8356    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
8357    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
8358    SmallVector<SDValue, 8> Chains;
8359    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
8360                                        TLI.getPointerTy());
8361    SDValue BasePtr = St->getBasePtr();
8362
8363    // Perform one or more big stores into memory.
8364    unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
8365    for (unsigned I = 0; I < E; I++) {
8366      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
8367                                   StoreType, ShuffWide,
8368                                   DAG.getIntPtrConstant(I));
8369      SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
8370                                St->getPointerInfo(), St->isVolatile(),
8371                                St->isNonTemporal(), St->getAlignment());
8372      BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
8373                            Increment);
8374      Chains.push_back(Ch);
8375    }
8376    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
8377                       Chains.size());
8378  }
8379
8380  if (!ISD::isNormalStore(St))
8381    return SDValue();
8382
8383  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
8384  // ARM stores of arguments in the same cache line.
8385  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
8386      StVal.getNode()->hasOneUse()) {
8387    SelectionDAG  &DAG = DCI.DAG;
8388    DebugLoc DL = St->getDebugLoc();
8389    SDValue BasePtr = St->getBasePtr();
8390    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
8391                                  StVal.getNode()->getOperand(0), BasePtr,
8392                                  St->getPointerInfo(), St->isVolatile(),
8393                                  St->isNonTemporal(), St->getAlignment());
8394
8395    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8396                                    DAG.getConstant(4, MVT::i32));
8397    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
8398                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
8399                        St->isNonTemporal(),
8400                        std::min(4U, St->getAlignment() / 2));
8401  }
8402
8403  if (StVal.getValueType() != MVT::i64 ||
8404      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8405    return SDValue();
8406
8407  // Bitcast an i64 store extracted from a vector to f64.
8408  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8409  SelectionDAG &DAG = DCI.DAG;
8410  DebugLoc dl = StVal.getDebugLoc();
8411  SDValue IntVec = StVal.getOperand(0);
8412  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8413                                 IntVec.getValueType().getVectorNumElements());
8414  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
8415  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8416                               Vec, StVal.getOperand(1));
8417  dl = N->getDebugLoc();
8418  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
8419  // Make the DAGCombiner fold the bitcasts.
8420  DCI.AddToWorklist(Vec.getNode());
8421  DCI.AddToWorklist(ExtElt.getNode());
8422  DCI.AddToWorklist(V.getNode());
8423  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
8424                      St->getPointerInfo(), St->isVolatile(),
8425                      St->isNonTemporal(), St->getAlignment(),
8426                      St->getTBAAInfo());
8427}
8428
8429/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
8430/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
8431/// i64 vector to have f64 elements, since the value can then be loaded
8432/// directly into a VFP register.
8433static bool hasNormalLoadOperand(SDNode *N) {
8434  unsigned NumElts = N->getValueType(0).getVectorNumElements();
8435  for (unsigned i = 0; i < NumElts; ++i) {
8436    SDNode *Elt = N->getOperand(i).getNode();
8437    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
8438      return true;
8439  }
8440  return false;
8441}
8442
8443/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
8444/// ISD::BUILD_VECTOR.
8445static SDValue PerformBUILD_VECTORCombine(SDNode *N,
8446                                          TargetLowering::DAGCombinerInfo &DCI){
8447  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
8448  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
8449  // into a pair of GPRs, which is fine when the value is used as a scalar,
8450  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
8451  SelectionDAG &DAG = DCI.DAG;
8452  if (N->getNumOperands() == 2) {
8453    SDValue RV = PerformVMOVDRRCombine(N, DAG);
8454    if (RV.getNode())
8455      return RV;
8456  }
8457
8458  // Load i64 elements as f64 values so that type legalization does not split
8459  // them up into i32 values.
8460  EVT VT = N->getValueType(0);
8461  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
8462    return SDValue();
8463  DebugLoc dl = N->getDebugLoc();
8464  SmallVector<SDValue, 8> Ops;
8465  unsigned NumElts = VT.getVectorNumElements();
8466  for (unsigned i = 0; i < NumElts; ++i) {
8467    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
8468    Ops.push_back(V);
8469    // Make the DAGCombiner fold the bitcast.
8470    DCI.AddToWorklist(V.getNode());
8471  }
8472  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
8473  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
8474  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8475}
8476
8477/// PerformInsertEltCombine - Target-specific dag combine xforms for
8478/// ISD::INSERT_VECTOR_ELT.
8479static SDValue PerformInsertEltCombine(SDNode *N,
8480                                       TargetLowering::DAGCombinerInfo &DCI) {
8481  // Bitcast an i64 load inserted into a vector to f64.
8482  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8483  EVT VT = N->getValueType(0);
8484  SDNode *Elt = N->getOperand(1).getNode();
8485  if (VT.getVectorElementType() != MVT::i64 ||
8486      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
8487    return SDValue();
8488
8489  SelectionDAG &DAG = DCI.DAG;
8490  DebugLoc dl = N->getDebugLoc();
8491  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8492                                 VT.getVectorNumElements());
8493  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
8494  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
8495  // Make the DAGCombiner fold the bitcasts.
8496  DCI.AddToWorklist(Vec.getNode());
8497  DCI.AddToWorklist(V.getNode());
8498  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
8499                               Vec, V, N->getOperand(2));
8500  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
8501}
8502
8503/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
8504/// ISD::VECTOR_SHUFFLE.
8505static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
8506  // The LLVM shufflevector instruction does not require the shuffle mask
8507  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
8508  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
8509  // operands do not match the mask length, they are extended by concatenating
8510  // them with undef vectors.  That is probably the right thing for other
8511  // targets, but for NEON it is better to concatenate two double-register
8512  // size vector operands into a single quad-register size vector.  Do that
8513  // transformation here:
8514  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
8515  //   shuffle(concat(v1, v2), undef)
8516  SDValue Op0 = N->getOperand(0);
8517  SDValue Op1 = N->getOperand(1);
8518  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
8519      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
8520      Op0.getNumOperands() != 2 ||
8521      Op1.getNumOperands() != 2)
8522    return SDValue();
8523  SDValue Concat0Op1 = Op0.getOperand(1);
8524  SDValue Concat1Op1 = Op1.getOperand(1);
8525  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
8526      Concat1Op1.getOpcode() != ISD::UNDEF)
8527    return SDValue();
8528  // Skip the transformation if any of the types are illegal.
8529  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8530  EVT VT = N->getValueType(0);
8531  if (!TLI.isTypeLegal(VT) ||
8532      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
8533      !TLI.isTypeLegal(Concat1Op1.getValueType()))
8534    return SDValue();
8535
8536  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
8537                                  Op0.getOperand(0), Op1.getOperand(0));
8538  // Translate the shuffle mask.
8539  SmallVector<int, 16> NewMask;
8540  unsigned NumElts = VT.getVectorNumElements();
8541  unsigned HalfElts = NumElts/2;
8542  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8543  for (unsigned n = 0; n < NumElts; ++n) {
8544    int MaskElt = SVN->getMaskElt(n);
8545    int NewElt = -1;
8546    if (MaskElt < (int)HalfElts)
8547      NewElt = MaskElt;
8548    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
8549      NewElt = HalfElts + MaskElt - NumElts;
8550    NewMask.push_back(NewElt);
8551  }
8552  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
8553                              DAG.getUNDEF(VT), NewMask.data());
8554}
8555
8556/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
8557/// NEON load/store intrinsics to merge base address updates.
8558static SDValue CombineBaseUpdate(SDNode *N,
8559                                 TargetLowering::DAGCombinerInfo &DCI) {
8560  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8561    return SDValue();
8562
8563  SelectionDAG &DAG = DCI.DAG;
8564  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
8565                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
8566  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
8567  SDValue Addr = N->getOperand(AddrOpIdx);
8568
8569  // Search for a use of the address operand that is an increment.
8570  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8571         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8572    SDNode *User = *UI;
8573    if (User->getOpcode() != ISD::ADD ||
8574        UI.getUse().getResNo() != Addr.getResNo())
8575      continue;
8576
8577    // Check that the add is independent of the load/store.  Otherwise, folding
8578    // it would create a cycle.
8579    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8580      continue;
8581
8582    // Find the new opcode for the updating load/store.
8583    bool isLoad = true;
8584    bool isLaneOp = false;
8585    unsigned NewOpc = 0;
8586    unsigned NumVecs = 0;
8587    if (isIntrinsic) {
8588      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8589      switch (IntNo) {
8590      default: llvm_unreachable("unexpected intrinsic for Neon base update");
8591      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
8592        NumVecs = 1; break;
8593      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
8594        NumVecs = 2; break;
8595      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
8596        NumVecs = 3; break;
8597      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
8598        NumVecs = 4; break;
8599      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
8600        NumVecs = 2; isLaneOp = true; break;
8601      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
8602        NumVecs = 3; isLaneOp = true; break;
8603      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
8604        NumVecs = 4; isLaneOp = true; break;
8605      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
8606        NumVecs = 1; isLoad = false; break;
8607      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
8608        NumVecs = 2; isLoad = false; break;
8609      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
8610        NumVecs = 3; isLoad = false; break;
8611      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
8612        NumVecs = 4; isLoad = false; break;
8613      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
8614        NumVecs = 2; isLoad = false; isLaneOp = true; break;
8615      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
8616        NumVecs = 3; isLoad = false; isLaneOp = true; break;
8617      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
8618        NumVecs = 4; isLoad = false; isLaneOp = true; break;
8619      }
8620    } else {
8621      isLaneOp = true;
8622      switch (N->getOpcode()) {
8623      default: llvm_unreachable("unexpected opcode for Neon base update");
8624      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
8625      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
8626      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
8627      }
8628    }
8629
8630    // Find the size of memory referenced by the load/store.
8631    EVT VecTy;
8632    if (isLoad)
8633      VecTy = N->getValueType(0);
8634    else
8635      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
8636    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8637    if (isLaneOp)
8638      NumBytes /= VecTy.getVectorNumElements();
8639
8640    // If the increment is a constant, it must match the memory ref size.
8641    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8642    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8643      uint64_t IncVal = CInc->getZExtValue();
8644      if (IncVal != NumBytes)
8645        continue;
8646    } else if (NumBytes >= 3 * 16) {
8647      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
8648      // separate instructions that make it harder to use a non-constant update.
8649      continue;
8650    }
8651
8652    // Create the new updating load/store node.
8653    EVT Tys[6];
8654    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
8655    unsigned n;
8656    for (n = 0; n < NumResultVecs; ++n)
8657      Tys[n] = VecTy;
8658    Tys[n++] = MVT::i32;
8659    Tys[n] = MVT::Other;
8660    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
8661    SmallVector<SDValue, 8> Ops;
8662    Ops.push_back(N->getOperand(0)); // incoming chain
8663    Ops.push_back(N->getOperand(AddrOpIdx));
8664    Ops.push_back(Inc);
8665    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
8666      Ops.push_back(N->getOperand(i));
8667    }
8668    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8669    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
8670                                           Ops.data(), Ops.size(),
8671                                           MemInt->getMemoryVT(),
8672                                           MemInt->getMemOperand());
8673
8674    // Update the uses.
8675    std::vector<SDValue> NewResults;
8676    for (unsigned i = 0; i < NumResultVecs; ++i) {
8677      NewResults.push_back(SDValue(UpdN.getNode(), i));
8678    }
8679    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
8680    DCI.CombineTo(N, NewResults);
8681    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8682
8683    break;
8684  }
8685  return SDValue();
8686}
8687
8688/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
8689/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
8690/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
8691/// return true.
8692static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8693  SelectionDAG &DAG = DCI.DAG;
8694  EVT VT = N->getValueType(0);
8695  // vldN-dup instructions only support 64-bit vectors for N > 1.
8696  if (!VT.is64BitVector())
8697    return false;
8698
8699  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
8700  SDNode *VLD = N->getOperand(0).getNode();
8701  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
8702    return false;
8703  unsigned NumVecs = 0;
8704  unsigned NewOpc = 0;
8705  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
8706  if (IntNo == Intrinsic::arm_neon_vld2lane) {
8707    NumVecs = 2;
8708    NewOpc = ARMISD::VLD2DUP;
8709  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
8710    NumVecs = 3;
8711    NewOpc = ARMISD::VLD3DUP;
8712  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
8713    NumVecs = 4;
8714    NewOpc = ARMISD::VLD4DUP;
8715  } else {
8716    return false;
8717  }
8718
8719  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
8720  // numbers match the load.
8721  unsigned VLDLaneNo =
8722    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
8723  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8724       UI != UE; ++UI) {
8725    // Ignore uses of the chain result.
8726    if (UI.getUse().getResNo() == NumVecs)
8727      continue;
8728    SDNode *User = *UI;
8729    if (User->getOpcode() != ARMISD::VDUPLANE ||
8730        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
8731      return false;
8732  }
8733
8734  // Create the vldN-dup node.
8735  EVT Tys[5];
8736  unsigned n;
8737  for (n = 0; n < NumVecs; ++n)
8738    Tys[n] = VT;
8739  Tys[n] = MVT::Other;
8740  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
8741  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
8742  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
8743  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
8744                                           Ops, 2, VLDMemInt->getMemoryVT(),
8745                                           VLDMemInt->getMemOperand());
8746
8747  // Update the uses.
8748  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8749       UI != UE; ++UI) {
8750    unsigned ResNo = UI.getUse().getResNo();
8751    // Ignore uses of the chain result.
8752    if (ResNo == NumVecs)
8753      continue;
8754    SDNode *User = *UI;
8755    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
8756  }
8757
8758  // Now the vldN-lane intrinsic is dead except for its chain result.
8759  // Update uses of the chain.
8760  std::vector<SDValue> VLDDupResults;
8761  for (unsigned n = 0; n < NumVecs; ++n)
8762    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
8763  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
8764  DCI.CombineTo(VLD, VLDDupResults);
8765
8766  return true;
8767}
8768
8769/// PerformVDUPLANECombine - Target-specific dag combine xforms for
8770/// ARMISD::VDUPLANE.
8771static SDValue PerformVDUPLANECombine(SDNode *N,
8772                                      TargetLowering::DAGCombinerInfo &DCI) {
8773  SDValue Op = N->getOperand(0);
8774
8775  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
8776  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
8777  if (CombineVLDDUP(N, DCI))
8778    return SDValue(N, 0);
8779
8780  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
8781  // redundant.  Ignore bit_converts for now; element sizes are checked below.
8782  while (Op.getOpcode() == ISD::BITCAST)
8783    Op = Op.getOperand(0);
8784  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
8785    return SDValue();
8786
8787  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
8788  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
8789  // The canonical VMOV for a zero vector uses a 32-bit element size.
8790  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8791  unsigned EltBits;
8792  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
8793    EltSize = 8;
8794  EVT VT = N->getValueType(0);
8795  if (EltSize > VT.getVectorElementType().getSizeInBits())
8796    return SDValue();
8797
8798  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
8799}
8800
8801// isConstVecPow2 - Return true if each vector element is a power of 2, all
8802// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
8803static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
8804{
8805  integerPart cN;
8806  integerPart c0 = 0;
8807  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
8808       I != E; I++) {
8809    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
8810    if (!C)
8811      return false;
8812
8813    bool isExact;
8814    APFloat APF = C->getValueAPF();
8815    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
8816        != APFloat::opOK || !isExact)
8817      return false;
8818
8819    c0 = (I == 0) ? cN : c0;
8820    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
8821      return false;
8822  }
8823  C = c0;
8824  return true;
8825}
8826
8827/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
8828/// can replace combinations of VMUL and VCVT (floating-point to integer)
8829/// when the VMUL has a constant operand that is a power of 2.
8830///
8831/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8832///  vmul.f32        d16, d17, d16
8833///  vcvt.s32.f32    d16, d16
8834/// becomes:
8835///  vcvt.s32.f32    d16, d16, #3
8836static SDValue PerformVCVTCombine(SDNode *N,
8837                                  TargetLowering::DAGCombinerInfo &DCI,
8838                                  const ARMSubtarget *Subtarget) {
8839  SelectionDAG &DAG = DCI.DAG;
8840  SDValue Op = N->getOperand(0);
8841
8842  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
8843      Op.getOpcode() != ISD::FMUL)
8844    return SDValue();
8845
8846  uint64_t C;
8847  SDValue N0 = Op->getOperand(0);
8848  SDValue ConstVec = Op->getOperand(1);
8849  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
8850
8851  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8852      !isConstVecPow2(ConstVec, isSigned, C))
8853    return SDValue();
8854
8855  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
8856    Intrinsic::arm_neon_vcvtfp2fxu;
8857  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8858                     N->getValueType(0),
8859                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
8860                     DAG.getConstant(Log2_64(C), MVT::i32));
8861}
8862
8863/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
8864/// can replace combinations of VCVT (integer to floating-point) and VDIV
8865/// when the VDIV has a constant operand that is a power of 2.
8866///
8867/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8868///  vcvt.f32.s32    d16, d16
8869///  vdiv.f32        d16, d17, d16
8870/// becomes:
8871///  vcvt.f32.s32    d16, d16, #3
8872static SDValue PerformVDIVCombine(SDNode *N,
8873                                  TargetLowering::DAGCombinerInfo &DCI,
8874                                  const ARMSubtarget *Subtarget) {
8875  SelectionDAG &DAG = DCI.DAG;
8876  SDValue Op = N->getOperand(0);
8877  unsigned OpOpcode = Op.getNode()->getOpcode();
8878
8879  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
8880      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
8881    return SDValue();
8882
8883  uint64_t C;
8884  SDValue ConstVec = N->getOperand(1);
8885  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
8886
8887  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8888      !isConstVecPow2(ConstVec, isSigned, C))
8889    return SDValue();
8890
8891  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
8892    Intrinsic::arm_neon_vcvtfxu2fp;
8893  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8894                     Op.getValueType(),
8895                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
8896                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
8897}
8898
8899/// Getvshiftimm - Check if this is a valid build_vector for the immediate
8900/// operand of a vector shift operation, where all the elements of the
8901/// build_vector must have the same constant integer value.
8902static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
8903  // Ignore bit_converts.
8904  while (Op.getOpcode() == ISD::BITCAST)
8905    Op = Op.getOperand(0);
8906  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8907  APInt SplatBits, SplatUndef;
8908  unsigned SplatBitSize;
8909  bool HasAnyUndefs;
8910  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
8911                                      HasAnyUndefs, ElementBits) ||
8912      SplatBitSize > ElementBits)
8913    return false;
8914  Cnt = SplatBits.getSExtValue();
8915  return true;
8916}
8917
8918/// isVShiftLImm - Check if this is a valid build_vector for the immediate
8919/// operand of a vector shift left operation.  That value must be in the range:
8920///   0 <= Value < ElementBits for a left shift; or
8921///   0 <= Value <= ElementBits for a long left shift.
8922static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
8923  assert(VT.isVector() && "vector shift count is not a vector type");
8924  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8925  if (! getVShiftImm(Op, ElementBits, Cnt))
8926    return false;
8927  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
8928}
8929
8930/// isVShiftRImm - Check if this is a valid build_vector for the immediate
8931/// operand of a vector shift right operation.  For a shift opcode, the value
8932/// is positive, but for an intrinsic the value count must be negative. The
8933/// absolute value must be in the range:
8934///   1 <= |Value| <= ElementBits for a right shift; or
8935///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
8936static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
8937                         int64_t &Cnt) {
8938  assert(VT.isVector() && "vector shift count is not a vector type");
8939  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8940  if (! getVShiftImm(Op, ElementBits, Cnt))
8941    return false;
8942  if (isIntrinsic)
8943    Cnt = -Cnt;
8944  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
8945}
8946
8947/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
8948static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
8949  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8950  switch (IntNo) {
8951  default:
8952    // Don't do anything for most intrinsics.
8953    break;
8954
8955  // Vector shifts: check for immediate versions and lower them.
8956  // Note: This is done during DAG combining instead of DAG legalizing because
8957  // the build_vectors for 64-bit vector element shift counts are generally
8958  // not legal, and it is hard to see their values after they get legalized to
8959  // loads from a constant pool.
8960  case Intrinsic::arm_neon_vshifts:
8961  case Intrinsic::arm_neon_vshiftu:
8962  case Intrinsic::arm_neon_vshiftls:
8963  case Intrinsic::arm_neon_vshiftlu:
8964  case Intrinsic::arm_neon_vshiftn:
8965  case Intrinsic::arm_neon_vrshifts:
8966  case Intrinsic::arm_neon_vrshiftu:
8967  case Intrinsic::arm_neon_vrshiftn:
8968  case Intrinsic::arm_neon_vqshifts:
8969  case Intrinsic::arm_neon_vqshiftu:
8970  case Intrinsic::arm_neon_vqshiftsu:
8971  case Intrinsic::arm_neon_vqshiftns:
8972  case Intrinsic::arm_neon_vqshiftnu:
8973  case Intrinsic::arm_neon_vqshiftnsu:
8974  case Intrinsic::arm_neon_vqrshiftns:
8975  case Intrinsic::arm_neon_vqrshiftnu:
8976  case Intrinsic::arm_neon_vqrshiftnsu: {
8977    EVT VT = N->getOperand(1).getValueType();
8978    int64_t Cnt;
8979    unsigned VShiftOpc = 0;
8980
8981    switch (IntNo) {
8982    case Intrinsic::arm_neon_vshifts:
8983    case Intrinsic::arm_neon_vshiftu:
8984      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
8985        VShiftOpc = ARMISD::VSHL;
8986        break;
8987      }
8988      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
8989        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
8990                     ARMISD::VSHRs : ARMISD::VSHRu);
8991        break;
8992      }
8993      return SDValue();
8994
8995    case Intrinsic::arm_neon_vshiftls:
8996    case Intrinsic::arm_neon_vshiftlu:
8997      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
8998        break;
8999      llvm_unreachable("invalid shift count for vshll intrinsic");
9000
9001    case Intrinsic::arm_neon_vrshifts:
9002    case Intrinsic::arm_neon_vrshiftu:
9003      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
9004        break;
9005      return SDValue();
9006
9007    case Intrinsic::arm_neon_vqshifts:
9008    case Intrinsic::arm_neon_vqshiftu:
9009      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9010        break;
9011      return SDValue();
9012
9013    case Intrinsic::arm_neon_vqshiftsu:
9014      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9015        break;
9016      llvm_unreachable("invalid shift count for vqshlu intrinsic");
9017
9018    case Intrinsic::arm_neon_vshiftn:
9019    case Intrinsic::arm_neon_vrshiftn:
9020    case Intrinsic::arm_neon_vqshiftns:
9021    case Intrinsic::arm_neon_vqshiftnu:
9022    case Intrinsic::arm_neon_vqshiftnsu:
9023    case Intrinsic::arm_neon_vqrshiftns:
9024    case Intrinsic::arm_neon_vqrshiftnu:
9025    case Intrinsic::arm_neon_vqrshiftnsu:
9026      // Narrowing shifts require an immediate right shift.
9027      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
9028        break;
9029      llvm_unreachable("invalid shift count for narrowing vector shift "
9030                       "intrinsic");
9031
9032    default:
9033      llvm_unreachable("unhandled vector shift");
9034    }
9035
9036    switch (IntNo) {
9037    case Intrinsic::arm_neon_vshifts:
9038    case Intrinsic::arm_neon_vshiftu:
9039      // Opcode already set above.
9040      break;
9041    case Intrinsic::arm_neon_vshiftls:
9042    case Intrinsic::arm_neon_vshiftlu:
9043      if (Cnt == VT.getVectorElementType().getSizeInBits())
9044        VShiftOpc = ARMISD::VSHLLi;
9045      else
9046        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
9047                     ARMISD::VSHLLs : ARMISD::VSHLLu);
9048      break;
9049    case Intrinsic::arm_neon_vshiftn:
9050      VShiftOpc = ARMISD::VSHRN; break;
9051    case Intrinsic::arm_neon_vrshifts:
9052      VShiftOpc = ARMISD::VRSHRs; break;
9053    case Intrinsic::arm_neon_vrshiftu:
9054      VShiftOpc = ARMISD::VRSHRu; break;
9055    case Intrinsic::arm_neon_vrshiftn:
9056      VShiftOpc = ARMISD::VRSHRN; break;
9057    case Intrinsic::arm_neon_vqshifts:
9058      VShiftOpc = ARMISD::VQSHLs; break;
9059    case Intrinsic::arm_neon_vqshiftu:
9060      VShiftOpc = ARMISD::VQSHLu; break;
9061    case Intrinsic::arm_neon_vqshiftsu:
9062      VShiftOpc = ARMISD::VQSHLsu; break;
9063    case Intrinsic::arm_neon_vqshiftns:
9064      VShiftOpc = ARMISD::VQSHRNs; break;
9065    case Intrinsic::arm_neon_vqshiftnu:
9066      VShiftOpc = ARMISD::VQSHRNu; break;
9067    case Intrinsic::arm_neon_vqshiftnsu:
9068      VShiftOpc = ARMISD::VQSHRNsu; break;
9069    case Intrinsic::arm_neon_vqrshiftns:
9070      VShiftOpc = ARMISD::VQRSHRNs; break;
9071    case Intrinsic::arm_neon_vqrshiftnu:
9072      VShiftOpc = ARMISD::VQRSHRNu; break;
9073    case Intrinsic::arm_neon_vqrshiftnsu:
9074      VShiftOpc = ARMISD::VQRSHRNsu; break;
9075    }
9076
9077    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
9078                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
9079  }
9080
9081  case Intrinsic::arm_neon_vshiftins: {
9082    EVT VT = N->getOperand(1).getValueType();
9083    int64_t Cnt;
9084    unsigned VShiftOpc = 0;
9085
9086    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
9087      VShiftOpc = ARMISD::VSLI;
9088    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
9089      VShiftOpc = ARMISD::VSRI;
9090    else {
9091      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
9092    }
9093
9094    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
9095                       N->getOperand(1), N->getOperand(2),
9096                       DAG.getConstant(Cnt, MVT::i32));
9097  }
9098
9099  case Intrinsic::arm_neon_vqrshifts:
9100  case Intrinsic::arm_neon_vqrshiftu:
9101    // No immediate versions of these to check for.
9102    break;
9103  }
9104
9105  return SDValue();
9106}
9107
9108/// PerformShiftCombine - Checks for immediate versions of vector shifts and
9109/// lowers them.  As with the vector shift intrinsics, this is done during DAG
9110/// combining instead of DAG legalizing because the build_vectors for 64-bit
9111/// vector element shift counts are generally not legal, and it is hard to see
9112/// their values after they get legalized to loads from a constant pool.
9113static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
9114                                   const ARMSubtarget *ST) {
9115  EVT VT = N->getValueType(0);
9116  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
9117    // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
9118    // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
9119    SDValue N1 = N->getOperand(1);
9120    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9121      SDValue N0 = N->getOperand(0);
9122      if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
9123          DAG.MaskedValueIsZero(N0.getOperand(0),
9124                                APInt::getHighBitsSet(32, 16)))
9125        return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
9126    }
9127  }
9128
9129  // Nothing to be done for scalar shifts.
9130  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9131  if (!VT.isVector() || !TLI.isTypeLegal(VT))
9132    return SDValue();
9133
9134  assert(ST->hasNEON() && "unexpected vector shift");
9135  int64_t Cnt;
9136
9137  switch (N->getOpcode()) {
9138  default: llvm_unreachable("unexpected shift opcode");
9139
9140  case ISD::SHL:
9141    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
9142      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
9143                         DAG.getConstant(Cnt, MVT::i32));
9144    break;
9145
9146  case ISD::SRA:
9147  case ISD::SRL:
9148    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
9149      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
9150                            ARMISD::VSHRs : ARMISD::VSHRu);
9151      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
9152                         DAG.getConstant(Cnt, MVT::i32));
9153    }
9154  }
9155  return SDValue();
9156}
9157
9158/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
9159/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
9160static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
9161                                    const ARMSubtarget *ST) {
9162  SDValue N0 = N->getOperand(0);
9163
9164  // Check for sign- and zero-extensions of vector extract operations of 8-
9165  // and 16-bit vector elements.  NEON supports these directly.  They are
9166  // handled during DAG combining because type legalization will promote them
9167  // to 32-bit types and it is messy to recognize the operations after that.
9168  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9169    SDValue Vec = N0.getOperand(0);
9170    SDValue Lane = N0.getOperand(1);
9171    EVT VT = N->getValueType(0);
9172    EVT EltVT = N0.getValueType();
9173    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9174
9175    if (VT == MVT::i32 &&
9176        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
9177        TLI.isTypeLegal(Vec.getValueType()) &&
9178        isa<ConstantSDNode>(Lane)) {
9179
9180      unsigned Opc = 0;
9181      switch (N->getOpcode()) {
9182      default: llvm_unreachable("unexpected opcode");
9183      case ISD::SIGN_EXTEND:
9184        Opc = ARMISD::VGETLANEs;
9185        break;
9186      case ISD::ZERO_EXTEND:
9187      case ISD::ANY_EXTEND:
9188        Opc = ARMISD::VGETLANEu;
9189        break;
9190      }
9191      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
9192    }
9193  }
9194
9195  return SDValue();
9196}
9197
9198/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
9199/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
9200static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
9201                                       const ARMSubtarget *ST) {
9202  // If the target supports NEON, try to use vmax/vmin instructions for f32
9203  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
9204  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
9205  // a NaN; only do the transformation when it matches that behavior.
9206
9207  // For now only do this when using NEON for FP operations; if using VFP, it
9208  // is not obvious that the benefit outweighs the cost of switching to the
9209  // NEON pipeline.
9210  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
9211      N->getValueType(0) != MVT::f32)
9212    return SDValue();
9213
9214  SDValue CondLHS = N->getOperand(0);
9215  SDValue CondRHS = N->getOperand(1);
9216  SDValue LHS = N->getOperand(2);
9217  SDValue RHS = N->getOperand(3);
9218  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
9219
9220  unsigned Opcode = 0;
9221  bool IsReversed;
9222  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
9223    IsReversed = false; // x CC y ? x : y
9224  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
9225    IsReversed = true ; // x CC y ? y : x
9226  } else {
9227    return SDValue();
9228  }
9229
9230  bool IsUnordered;
9231  switch (CC) {
9232  default: break;
9233  case ISD::SETOLT:
9234  case ISD::SETOLE:
9235  case ISD::SETLT:
9236  case ISD::SETLE:
9237  case ISD::SETULT:
9238  case ISD::SETULE:
9239    // If LHS is NaN, an ordered comparison will be false and the result will
9240    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
9241    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9242    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
9243    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9244      break;
9245    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
9246    // will return -0, so vmin can only be used for unsafe math or if one of
9247    // the operands is known to be nonzero.
9248    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
9249        !DAG.getTarget().Options.UnsafeFPMath &&
9250        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9251      break;
9252    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
9253    break;
9254
9255  case ISD::SETOGT:
9256  case ISD::SETOGE:
9257  case ISD::SETGT:
9258  case ISD::SETGE:
9259  case ISD::SETUGT:
9260  case ISD::SETUGE:
9261    // If LHS is NaN, an ordered comparison will be false and the result will
9262    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
9263    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9264    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
9265    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9266      break;
9267    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
9268    // will return +0, so vmax can only be used for unsafe math or if one of
9269    // the operands is known to be nonzero.
9270    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
9271        !DAG.getTarget().Options.UnsafeFPMath &&
9272        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9273      break;
9274    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
9275    break;
9276  }
9277
9278  if (!Opcode)
9279    return SDValue();
9280  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
9281}
9282
9283/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
9284SDValue
9285ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
9286  SDValue Cmp = N->getOperand(4);
9287  if (Cmp.getOpcode() != ARMISD::CMPZ)
9288    // Only looking at EQ and NE cases.
9289    return SDValue();
9290
9291  EVT VT = N->getValueType(0);
9292  DebugLoc dl = N->getDebugLoc();
9293  SDValue LHS = Cmp.getOperand(0);
9294  SDValue RHS = Cmp.getOperand(1);
9295  SDValue FalseVal = N->getOperand(0);
9296  SDValue TrueVal = N->getOperand(1);
9297  SDValue ARMcc = N->getOperand(2);
9298  ARMCC::CondCodes CC =
9299    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
9300
9301  // Simplify
9302  //   mov     r1, r0
9303  //   cmp     r1, x
9304  //   mov     r0, y
9305  //   moveq   r0, x
9306  // to
9307  //   cmp     r0, x
9308  //   movne   r0, y
9309  //
9310  //   mov     r1, r0
9311  //   cmp     r1, x
9312  //   mov     r0, x
9313  //   movne   r0, y
9314  // to
9315  //   cmp     r0, x
9316  //   movne   r0, y
9317  /// FIXME: Turn this into a target neutral optimization?
9318  SDValue Res;
9319  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
9320    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
9321                      N->getOperand(3), Cmp);
9322  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
9323    SDValue ARMcc;
9324    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
9325    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
9326                      N->getOperand(3), NewCmp);
9327  }
9328
9329  if (Res.getNode()) {
9330    APInt KnownZero, KnownOne;
9331    DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
9332    // Capture demanded bits information that would be otherwise lost.
9333    if (KnownZero == 0xfffffffe)
9334      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9335                        DAG.getValueType(MVT::i1));
9336    else if (KnownZero == 0xffffff00)
9337      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9338                        DAG.getValueType(MVT::i8));
9339    else if (KnownZero == 0xffff0000)
9340      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9341                        DAG.getValueType(MVT::i16));
9342  }
9343
9344  return Res;
9345}
9346
9347SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
9348                                             DAGCombinerInfo &DCI) const {
9349  switch (N->getOpcode()) {
9350  default: break;
9351  case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
9352  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
9353  case ISD::SUB:        return PerformSUBCombine(N, DCI);
9354  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
9355  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
9356  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
9357  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
9358  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
9359  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
9360  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
9361  case ISD::STORE:      return PerformSTORECombine(N, DCI);
9362  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
9363  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
9364  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
9365  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
9366  case ISD::FP_TO_SINT:
9367  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
9368  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
9369  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
9370  case ISD::SHL:
9371  case ISD::SRA:
9372  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
9373  case ISD::SIGN_EXTEND:
9374  case ISD::ZERO_EXTEND:
9375  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
9376  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
9377  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
9378  case ARMISD::VLD2DUP:
9379  case ARMISD::VLD3DUP:
9380  case ARMISD::VLD4DUP:
9381    return CombineBaseUpdate(N, DCI);
9382  case ISD::INTRINSIC_VOID:
9383  case ISD::INTRINSIC_W_CHAIN:
9384    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9385    case Intrinsic::arm_neon_vld1:
9386    case Intrinsic::arm_neon_vld2:
9387    case Intrinsic::arm_neon_vld3:
9388    case Intrinsic::arm_neon_vld4:
9389    case Intrinsic::arm_neon_vld2lane:
9390    case Intrinsic::arm_neon_vld3lane:
9391    case Intrinsic::arm_neon_vld4lane:
9392    case Intrinsic::arm_neon_vst1:
9393    case Intrinsic::arm_neon_vst2:
9394    case Intrinsic::arm_neon_vst3:
9395    case Intrinsic::arm_neon_vst4:
9396    case Intrinsic::arm_neon_vst2lane:
9397    case Intrinsic::arm_neon_vst3lane:
9398    case Intrinsic::arm_neon_vst4lane:
9399      return CombineBaseUpdate(N, DCI);
9400    default: break;
9401    }
9402    break;
9403  }
9404  return SDValue();
9405}
9406
9407bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
9408                                                          EVT VT) const {
9409  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
9410}
9411
9412bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
9413  // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
9414  bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
9415
9416  switch (VT.getSimpleVT().SimpleTy) {
9417  default:
9418    return false;
9419  case MVT::i8:
9420  case MVT::i16:
9421  case MVT::i32: {
9422    // Unaligned access can use (for example) LRDB, LRDH, LDR
9423    if (AllowsUnaligned) {
9424      if (Fast)
9425        *Fast = Subtarget->hasV7Ops();
9426      return true;
9427    }
9428    return false;
9429  }
9430  case MVT::f64:
9431  case MVT::v2f64: {
9432    // For any little-endian targets with neon, we can support unaligned ld/st
9433    // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
9434    // A big-endian target may also explictly support unaligned accesses
9435    if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
9436      if (Fast)
9437        *Fast = true;
9438      return true;
9439    }
9440    return false;
9441  }
9442  }
9443}
9444
9445static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9446                       unsigned AlignCheck) {
9447  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9448          (DstAlign == 0 || DstAlign % AlignCheck == 0));
9449}
9450
9451EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
9452                                           unsigned DstAlign, unsigned SrcAlign,
9453                                           bool IsZeroVal,
9454                                           bool MemcpyStrSrc,
9455                                           MachineFunction &MF) const {
9456  const Function *F = MF.getFunction();
9457
9458  // See if we can use NEON instructions for this...
9459  if (IsZeroVal &&
9460      Subtarget->hasNEON() &&
9461      !F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat)) {
9462    bool Fast;
9463    if (Size >= 16 &&
9464        (memOpAlign(SrcAlign, DstAlign, 16) ||
9465         (allowsUnalignedMemoryAccesses(MVT::v2f64, &Fast) && Fast))) {
9466      return MVT::v2f64;
9467    } else if (Size >= 8 &&
9468               (memOpAlign(SrcAlign, DstAlign, 8) ||
9469                (allowsUnalignedMemoryAccesses(MVT::f64, &Fast) && Fast))) {
9470      return MVT::f64;
9471    }
9472  }
9473
9474  // Lowering to i32/i16 if the size permits.
9475  if (Size >= 4)
9476    return MVT::i32;
9477  else if (Size >= 2)
9478    return MVT::i16;
9479
9480  // Let the target-independent logic figure it out.
9481  return MVT::Other;
9482}
9483
9484bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
9485  if (Val.getOpcode() != ISD::LOAD)
9486    return false;
9487
9488  EVT VT1 = Val.getValueType();
9489  if (!VT1.isSimple() || !VT1.isInteger() ||
9490      !VT2.isSimple() || !VT2.isInteger())
9491    return false;
9492
9493  switch (VT1.getSimpleVT().SimpleTy) {
9494  default: break;
9495  case MVT::i1:
9496  case MVT::i8:
9497  case MVT::i16:
9498    // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
9499    return true;
9500  }
9501
9502  return false;
9503}
9504
9505static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
9506  if (V < 0)
9507    return false;
9508
9509  unsigned Scale = 1;
9510  switch (VT.getSimpleVT().SimpleTy) {
9511  default: return false;
9512  case MVT::i1:
9513  case MVT::i8:
9514    // Scale == 1;
9515    break;
9516  case MVT::i16:
9517    // Scale == 2;
9518    Scale = 2;
9519    break;
9520  case MVT::i32:
9521    // Scale == 4;
9522    Scale = 4;
9523    break;
9524  }
9525
9526  if ((V & (Scale - 1)) != 0)
9527    return false;
9528  V /= Scale;
9529  return V == (V & ((1LL << 5) - 1));
9530}
9531
9532static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
9533                                      const ARMSubtarget *Subtarget) {
9534  bool isNeg = false;
9535  if (V < 0) {
9536    isNeg = true;
9537    V = - V;
9538  }
9539
9540  switch (VT.getSimpleVT().SimpleTy) {
9541  default: return false;
9542  case MVT::i1:
9543  case MVT::i8:
9544  case MVT::i16:
9545  case MVT::i32:
9546    // + imm12 or - imm8
9547    if (isNeg)
9548      return V == (V & ((1LL << 8) - 1));
9549    return V == (V & ((1LL << 12) - 1));
9550  case MVT::f32:
9551  case MVT::f64:
9552    // Same as ARM mode. FIXME: NEON?
9553    if (!Subtarget->hasVFP2())
9554      return false;
9555    if ((V & 3) != 0)
9556      return false;
9557    V >>= 2;
9558    return V == (V & ((1LL << 8) - 1));
9559  }
9560}
9561
9562/// isLegalAddressImmediate - Return true if the integer value can be used
9563/// as the offset of the target addressing mode for load / store of the
9564/// given type.
9565static bool isLegalAddressImmediate(int64_t V, EVT VT,
9566                                    const ARMSubtarget *Subtarget) {
9567  if (V == 0)
9568    return true;
9569
9570  if (!VT.isSimple())
9571    return false;
9572
9573  if (Subtarget->isThumb1Only())
9574    return isLegalT1AddressImmediate(V, VT);
9575  else if (Subtarget->isThumb2())
9576    return isLegalT2AddressImmediate(V, VT, Subtarget);
9577
9578  // ARM mode.
9579  if (V < 0)
9580    V = - V;
9581  switch (VT.getSimpleVT().SimpleTy) {
9582  default: return false;
9583  case MVT::i1:
9584  case MVT::i8:
9585  case MVT::i32:
9586    // +- imm12
9587    return V == (V & ((1LL << 12) - 1));
9588  case MVT::i16:
9589    // +- imm8
9590    return V == (V & ((1LL << 8) - 1));
9591  case MVT::f32:
9592  case MVT::f64:
9593    if (!Subtarget->hasVFP2()) // FIXME: NEON?
9594      return false;
9595    if ((V & 3) != 0)
9596      return false;
9597    V >>= 2;
9598    return V == (V & ((1LL << 8) - 1));
9599  }
9600}
9601
9602bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
9603                                                      EVT VT) const {
9604  int Scale = AM.Scale;
9605  if (Scale < 0)
9606    return false;
9607
9608  switch (VT.getSimpleVT().SimpleTy) {
9609  default: return false;
9610  case MVT::i1:
9611  case MVT::i8:
9612  case MVT::i16:
9613  case MVT::i32:
9614    if (Scale == 1)
9615      return true;
9616    // r + r << imm
9617    Scale = Scale & ~1;
9618    return Scale == 2 || Scale == 4 || Scale == 8;
9619  case MVT::i64:
9620    // r + r
9621    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9622      return true;
9623    return false;
9624  case MVT::isVoid:
9625    // Note, we allow "void" uses (basically, uses that aren't loads or
9626    // stores), because arm allows folding a scale into many arithmetic
9627    // operations.  This should be made more precise and revisited later.
9628
9629    // Allow r << imm, but the imm has to be a multiple of two.
9630    if (Scale & 1) return false;
9631    return isPowerOf2_32(Scale);
9632  }
9633}
9634
9635/// isLegalAddressingMode - Return true if the addressing mode represented
9636/// by AM is legal for this target, for a load/store of the specified type.
9637bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
9638                                              Type *Ty) const {
9639  EVT VT = getValueType(Ty, true);
9640  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
9641    return false;
9642
9643  // Can never fold addr of global into load/store.
9644  if (AM.BaseGV)
9645    return false;
9646
9647  switch (AM.Scale) {
9648  case 0:  // no scale reg, must be "r+i" or "r", or "i".
9649    break;
9650  case 1:
9651    if (Subtarget->isThumb1Only())
9652      return false;
9653    // FALL THROUGH.
9654  default:
9655    // ARM doesn't support any R+R*scale+imm addr modes.
9656    if (AM.BaseOffs)
9657      return false;
9658
9659    if (!VT.isSimple())
9660      return false;
9661
9662    if (Subtarget->isThumb2())
9663      return isLegalT2ScaledAddressingMode(AM, VT);
9664
9665    int Scale = AM.Scale;
9666    switch (VT.getSimpleVT().SimpleTy) {
9667    default: return false;
9668    case MVT::i1:
9669    case MVT::i8:
9670    case MVT::i32:
9671      if (Scale < 0) Scale = -Scale;
9672      if (Scale == 1)
9673        return true;
9674      // r + r << imm
9675      return isPowerOf2_32(Scale & ~1);
9676    case MVT::i16:
9677    case MVT::i64:
9678      // r + r
9679      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9680        return true;
9681      return false;
9682
9683    case MVT::isVoid:
9684      // Note, we allow "void" uses (basically, uses that aren't loads or
9685      // stores), because arm allows folding a scale into many arithmetic
9686      // operations.  This should be made more precise and revisited later.
9687
9688      // Allow r << imm, but the imm has to be a multiple of two.
9689      if (Scale & 1) return false;
9690      return isPowerOf2_32(Scale);
9691    }
9692  }
9693  return true;
9694}
9695
9696/// isLegalICmpImmediate - Return true if the specified immediate is legal
9697/// icmp immediate, that is the target has icmp instructions which can compare
9698/// a register against the immediate without having to materialize the
9699/// immediate into a register.
9700bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
9701  // Thumb2 and ARM modes can use cmn for negative immediates.
9702  if (!Subtarget->isThumb())
9703    return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
9704  if (Subtarget->isThumb2())
9705    return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
9706  // Thumb1 doesn't have cmn, and only 8-bit immediates.
9707  return Imm >= 0 && Imm <= 255;
9708}
9709
9710/// isLegalAddImmediate - Return true if the specified immediate is a legal add
9711/// *or sub* immediate, that is the target has add or sub instructions which can
9712/// add a register with the immediate without having to materialize the
9713/// immediate into a register.
9714bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
9715  // Same encoding for add/sub, just flip the sign.
9716  int64_t AbsImm = llvm::abs64(Imm);
9717  if (!Subtarget->isThumb())
9718    return ARM_AM::getSOImmVal(AbsImm) != -1;
9719  if (Subtarget->isThumb2())
9720    return ARM_AM::getT2SOImmVal(AbsImm) != -1;
9721  // Thumb1 only has 8-bit unsigned immediate.
9722  return AbsImm >= 0 && AbsImm <= 255;
9723}
9724
9725static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
9726                                      bool isSEXTLoad, SDValue &Base,
9727                                      SDValue &Offset, bool &isInc,
9728                                      SelectionDAG &DAG) {
9729  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9730    return false;
9731
9732  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
9733    // AddressingMode 3
9734    Base = Ptr->getOperand(0);
9735    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9736      int RHSC = (int)RHS->getZExtValue();
9737      if (RHSC < 0 && RHSC > -256) {
9738        assert(Ptr->getOpcode() == ISD::ADD);
9739        isInc = false;
9740        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9741        return true;
9742      }
9743    }
9744    isInc = (Ptr->getOpcode() == ISD::ADD);
9745    Offset = Ptr->getOperand(1);
9746    return true;
9747  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
9748    // AddressingMode 2
9749    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9750      int RHSC = (int)RHS->getZExtValue();
9751      if (RHSC < 0 && RHSC > -0x1000) {
9752        assert(Ptr->getOpcode() == ISD::ADD);
9753        isInc = false;
9754        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9755        Base = Ptr->getOperand(0);
9756        return true;
9757      }
9758    }
9759
9760    if (Ptr->getOpcode() == ISD::ADD) {
9761      isInc = true;
9762      ARM_AM::ShiftOpc ShOpcVal=
9763        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
9764      if (ShOpcVal != ARM_AM::no_shift) {
9765        Base = Ptr->getOperand(1);
9766        Offset = Ptr->getOperand(0);
9767      } else {
9768        Base = Ptr->getOperand(0);
9769        Offset = Ptr->getOperand(1);
9770      }
9771      return true;
9772    }
9773
9774    isInc = (Ptr->getOpcode() == ISD::ADD);
9775    Base = Ptr->getOperand(0);
9776    Offset = Ptr->getOperand(1);
9777    return true;
9778  }
9779
9780  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
9781  return false;
9782}
9783
9784static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
9785                                     bool isSEXTLoad, SDValue &Base,
9786                                     SDValue &Offset, bool &isInc,
9787                                     SelectionDAG &DAG) {
9788  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9789    return false;
9790
9791  Base = Ptr->getOperand(0);
9792  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9793    int RHSC = (int)RHS->getZExtValue();
9794    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
9795      assert(Ptr->getOpcode() == ISD::ADD);
9796      isInc = false;
9797      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9798      return true;
9799    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
9800      isInc = Ptr->getOpcode() == ISD::ADD;
9801      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
9802      return true;
9803    }
9804  }
9805
9806  return false;
9807}
9808
9809/// getPreIndexedAddressParts - returns true by value, base pointer and
9810/// offset pointer and addressing mode by reference if the node's address
9811/// can be legally represented as pre-indexed load / store address.
9812bool
9813ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9814                                             SDValue &Offset,
9815                                             ISD::MemIndexedMode &AM,
9816                                             SelectionDAG &DAG) const {
9817  if (Subtarget->isThumb1Only())
9818    return false;
9819
9820  EVT VT;
9821  SDValue Ptr;
9822  bool isSEXTLoad = false;
9823  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9824    Ptr = LD->getBasePtr();
9825    VT  = LD->getMemoryVT();
9826    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9827  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9828    Ptr = ST->getBasePtr();
9829    VT  = ST->getMemoryVT();
9830  } else
9831    return false;
9832
9833  bool isInc;
9834  bool isLegal = false;
9835  if (Subtarget->isThumb2())
9836    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9837                                       Offset, isInc, DAG);
9838  else
9839    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9840                                        Offset, isInc, DAG);
9841  if (!isLegal)
9842    return false;
9843
9844  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
9845  return true;
9846}
9847
9848/// getPostIndexedAddressParts - returns true by value, base pointer and
9849/// offset pointer and addressing mode by reference if this node can be
9850/// combined with a load / store to form a post-indexed load / store.
9851bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
9852                                                   SDValue &Base,
9853                                                   SDValue &Offset,
9854                                                   ISD::MemIndexedMode &AM,
9855                                                   SelectionDAG &DAG) const {
9856  if (Subtarget->isThumb1Only())
9857    return false;
9858
9859  EVT VT;
9860  SDValue Ptr;
9861  bool isSEXTLoad = false;
9862  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9863    VT  = LD->getMemoryVT();
9864    Ptr = LD->getBasePtr();
9865    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9866  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9867    VT  = ST->getMemoryVT();
9868    Ptr = ST->getBasePtr();
9869  } else
9870    return false;
9871
9872  bool isInc;
9873  bool isLegal = false;
9874  if (Subtarget->isThumb2())
9875    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9876                                       isInc, DAG);
9877  else
9878    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9879                                        isInc, DAG);
9880  if (!isLegal)
9881    return false;
9882
9883  if (Ptr != Base) {
9884    // Swap base ptr and offset to catch more post-index load / store when
9885    // it's legal. In Thumb2 mode, offset must be an immediate.
9886    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
9887        !Subtarget->isThumb2())
9888      std::swap(Base, Offset);
9889
9890    // Post-indexed load / store update the base pointer.
9891    if (Ptr != Base)
9892      return false;
9893  }
9894
9895  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
9896  return true;
9897}
9898
9899void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9900                                                       APInt &KnownZero,
9901                                                       APInt &KnownOne,
9902                                                       const SelectionDAG &DAG,
9903                                                       unsigned Depth) const {
9904  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
9905  switch (Op.getOpcode()) {
9906  default: break;
9907  case ARMISD::CMOV: {
9908    // Bits are known zero/one if known on the LHS and RHS.
9909    DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
9910    if (KnownZero == 0 && KnownOne == 0) return;
9911
9912    APInt KnownZeroRHS, KnownOneRHS;
9913    DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
9914    KnownZero &= KnownZeroRHS;
9915    KnownOne  &= KnownOneRHS;
9916    return;
9917  }
9918  }
9919}
9920
9921//===----------------------------------------------------------------------===//
9922//                           ARM Inline Assembly Support
9923//===----------------------------------------------------------------------===//
9924
9925bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
9926  // Looking for "rev" which is V6+.
9927  if (!Subtarget->hasV6Ops())
9928    return false;
9929
9930  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9931  std::string AsmStr = IA->getAsmString();
9932  SmallVector<StringRef, 4> AsmPieces;
9933  SplitString(AsmStr, AsmPieces, ";\n");
9934
9935  switch (AsmPieces.size()) {
9936  default: return false;
9937  case 1:
9938    AsmStr = AsmPieces[0];
9939    AsmPieces.clear();
9940    SplitString(AsmStr, AsmPieces, " \t,");
9941
9942    // rev $0, $1
9943    if (AsmPieces.size() == 3 &&
9944        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
9945        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
9946      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9947      if (Ty && Ty->getBitWidth() == 32)
9948        return IntrinsicLowering::LowerToByteSwap(CI);
9949    }
9950    break;
9951  }
9952
9953  return false;
9954}
9955
9956/// getConstraintType - Given a constraint letter, return the type of
9957/// constraint it is for this target.
9958ARMTargetLowering::ConstraintType
9959ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
9960  if (Constraint.size() == 1) {
9961    switch (Constraint[0]) {
9962    default:  break;
9963    case 'l': return C_RegisterClass;
9964    case 'w': return C_RegisterClass;
9965    case 'h': return C_RegisterClass;
9966    case 'x': return C_RegisterClass;
9967    case 't': return C_RegisterClass;
9968    case 'j': return C_Other; // Constant for movw.
9969      // An address with a single base register. Due to the way we
9970      // currently handle addresses it is the same as an 'r' memory constraint.
9971    case 'Q': return C_Memory;
9972    }
9973  } else if (Constraint.size() == 2) {
9974    switch (Constraint[0]) {
9975    default: break;
9976    // All 'U+' constraints are addresses.
9977    case 'U': return C_Memory;
9978    }
9979  }
9980  return TargetLowering::getConstraintType(Constraint);
9981}
9982
9983/// Examine constraint type and operand type and determine a weight value.
9984/// This object must already have been set up with the operand type
9985/// and the current alternative constraint selected.
9986TargetLowering::ConstraintWeight
9987ARMTargetLowering::getSingleConstraintMatchWeight(
9988    AsmOperandInfo &info, const char *constraint) const {
9989  ConstraintWeight weight = CW_Invalid;
9990  Value *CallOperandVal = info.CallOperandVal;
9991    // If we don't have a value, we can't do a match,
9992    // but allow it at the lowest weight.
9993  if (CallOperandVal == NULL)
9994    return CW_Default;
9995  Type *type = CallOperandVal->getType();
9996  // Look at the constraint type.
9997  switch (*constraint) {
9998  default:
9999    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10000    break;
10001  case 'l':
10002    if (type->isIntegerTy()) {
10003      if (Subtarget->isThumb())
10004        weight = CW_SpecificReg;
10005      else
10006        weight = CW_Register;
10007    }
10008    break;
10009  case 'w':
10010    if (type->isFloatingPointTy())
10011      weight = CW_Register;
10012    break;
10013  }
10014  return weight;
10015}
10016
10017typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
10018RCPair
10019ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10020                                                EVT VT) const {
10021  if (Constraint.size() == 1) {
10022    // GCC ARM Constraint Letters
10023    switch (Constraint[0]) {
10024    case 'l': // Low regs or general regs.
10025      if (Subtarget->isThumb())
10026        return RCPair(0U, &ARM::tGPRRegClass);
10027      return RCPair(0U, &ARM::GPRRegClass);
10028    case 'h': // High regs or no regs.
10029      if (Subtarget->isThumb())
10030        return RCPair(0U, &ARM::hGPRRegClass);
10031      break;
10032    case 'r':
10033      return RCPair(0U, &ARM::GPRRegClass);
10034    case 'w':
10035      if (VT == MVT::f32)
10036        return RCPair(0U, &ARM::SPRRegClass);
10037      if (VT.getSizeInBits() == 64)
10038        return RCPair(0U, &ARM::DPRRegClass);
10039      if (VT.getSizeInBits() == 128)
10040        return RCPair(0U, &ARM::QPRRegClass);
10041      break;
10042    case 'x':
10043      if (VT == MVT::f32)
10044        return RCPair(0U, &ARM::SPR_8RegClass);
10045      if (VT.getSizeInBits() == 64)
10046        return RCPair(0U, &ARM::DPR_8RegClass);
10047      if (VT.getSizeInBits() == 128)
10048        return RCPair(0U, &ARM::QPR_8RegClass);
10049      break;
10050    case 't':
10051      if (VT == MVT::f32)
10052        return RCPair(0U, &ARM::SPRRegClass);
10053      break;
10054    }
10055  }
10056  if (StringRef("{cc}").equals_lower(Constraint))
10057    return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
10058
10059  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10060}
10061
10062/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10063/// vector.  If it is invalid, don't add anything to Ops.
10064void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10065                                                     std::string &Constraint,
10066                                                     std::vector<SDValue>&Ops,
10067                                                     SelectionDAG &DAG) const {
10068  SDValue Result(0, 0);
10069
10070  // Currently only support length 1 constraints.
10071  if (Constraint.length() != 1) return;
10072
10073  char ConstraintLetter = Constraint[0];
10074  switch (ConstraintLetter) {
10075  default: break;
10076  case 'j':
10077  case 'I': case 'J': case 'K': case 'L':
10078  case 'M': case 'N': case 'O':
10079    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
10080    if (!C)
10081      return;
10082
10083    int64_t CVal64 = C->getSExtValue();
10084    int CVal = (int) CVal64;
10085    // None of these constraints allow values larger than 32 bits.  Check
10086    // that the value fits in an int.
10087    if (CVal != CVal64)
10088      return;
10089
10090    switch (ConstraintLetter) {
10091      case 'j':
10092        // Constant suitable for movw, must be between 0 and
10093        // 65535.
10094        if (Subtarget->hasV6T2Ops())
10095          if (CVal >= 0 && CVal <= 65535)
10096            break;
10097        return;
10098      case 'I':
10099        if (Subtarget->isThumb1Only()) {
10100          // This must be a constant between 0 and 255, for ADD
10101          // immediates.
10102          if (CVal >= 0 && CVal <= 255)
10103            break;
10104        } else if (Subtarget->isThumb2()) {
10105          // A constant that can be used as an immediate value in a
10106          // data-processing instruction.
10107          if (ARM_AM::getT2SOImmVal(CVal) != -1)
10108            break;
10109        } else {
10110          // A constant that can be used as an immediate value in a
10111          // data-processing instruction.
10112          if (ARM_AM::getSOImmVal(CVal) != -1)
10113            break;
10114        }
10115        return;
10116
10117      case 'J':
10118        if (Subtarget->isThumb()) {  // FIXME thumb2
10119          // This must be a constant between -255 and -1, for negated ADD
10120          // immediates. This can be used in GCC with an "n" modifier that
10121          // prints the negated value, for use with SUB instructions. It is
10122          // not useful otherwise but is implemented for compatibility.
10123          if (CVal >= -255 && CVal <= -1)
10124            break;
10125        } else {
10126          // This must be a constant between -4095 and 4095. It is not clear
10127          // what this constraint is intended for. Implemented for
10128          // compatibility with GCC.
10129          if (CVal >= -4095 && CVal <= 4095)
10130            break;
10131        }
10132        return;
10133
10134      case 'K':
10135        if (Subtarget->isThumb1Only()) {
10136          // A 32-bit value where only one byte has a nonzero value. Exclude
10137          // zero to match GCC. This constraint is used by GCC internally for
10138          // constants that can be loaded with a move/shift combination.
10139          // It is not useful otherwise but is implemented for compatibility.
10140          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
10141            break;
10142        } else if (Subtarget->isThumb2()) {
10143          // A constant whose bitwise inverse can be used as an immediate
10144          // value in a data-processing instruction. This can be used in GCC
10145          // with a "B" modifier that prints the inverted value, for use with
10146          // BIC and MVN instructions. It is not useful otherwise but is
10147          // implemented for compatibility.
10148          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
10149            break;
10150        } else {
10151          // A constant whose bitwise inverse can be used as an immediate
10152          // value in a data-processing instruction. This can be used in GCC
10153          // with a "B" modifier that prints the inverted value, for use with
10154          // BIC and MVN instructions. It is not useful otherwise but is
10155          // implemented for compatibility.
10156          if (ARM_AM::getSOImmVal(~CVal) != -1)
10157            break;
10158        }
10159        return;
10160
10161      case 'L':
10162        if (Subtarget->isThumb1Only()) {
10163          // This must be a constant between -7 and 7,
10164          // for 3-operand ADD/SUB immediate instructions.
10165          if (CVal >= -7 && CVal < 7)
10166            break;
10167        } else if (Subtarget->isThumb2()) {
10168          // A constant whose negation can be used as an immediate value in a
10169          // data-processing instruction. This can be used in GCC with an "n"
10170          // modifier that prints the negated value, for use with SUB
10171          // instructions. It is not useful otherwise but is implemented for
10172          // compatibility.
10173          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
10174            break;
10175        } else {
10176          // A constant whose negation can be used as an immediate value in a
10177          // data-processing instruction. This can be used in GCC with an "n"
10178          // modifier that prints the negated value, for use with SUB
10179          // instructions. It is not useful otherwise but is implemented for
10180          // compatibility.
10181          if (ARM_AM::getSOImmVal(-CVal) != -1)
10182            break;
10183        }
10184        return;
10185
10186      case 'M':
10187        if (Subtarget->isThumb()) { // FIXME thumb2
10188          // This must be a multiple of 4 between 0 and 1020, for
10189          // ADD sp + immediate.
10190          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
10191            break;
10192        } else {
10193          // A power of two or a constant between 0 and 32.  This is used in
10194          // GCC for the shift amount on shifted register operands, but it is
10195          // useful in general for any shift amounts.
10196          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
10197            break;
10198        }
10199        return;
10200
10201      case 'N':
10202        if (Subtarget->isThumb()) {  // FIXME thumb2
10203          // This must be a constant between 0 and 31, for shift amounts.
10204          if (CVal >= 0 && CVal <= 31)
10205            break;
10206        }
10207        return;
10208
10209      case 'O':
10210        if (Subtarget->isThumb()) {  // FIXME thumb2
10211          // This must be a multiple of 4 between -508 and 508, for
10212          // ADD/SUB sp = sp + immediate.
10213          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
10214            break;
10215        }
10216        return;
10217    }
10218    Result = DAG.getTargetConstant(CVal, Op.getValueType());
10219    break;
10220  }
10221
10222  if (Result.getNode()) {
10223    Ops.push_back(Result);
10224    return;
10225  }
10226  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10227}
10228
10229bool
10230ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
10231  // The ARM target isn't yet aware of offsets.
10232  return false;
10233}
10234
10235bool ARM::isBitFieldInvertedMask(unsigned v) {
10236  if (v == 0xffffffff)
10237    return 0;
10238  // there can be 1's on either or both "outsides", all the "inside"
10239  // bits must be 0's
10240  unsigned int lsb = 0, msb = 31;
10241  while (v & (1 << msb)) --msb;
10242  while (v & (1 << lsb)) ++lsb;
10243  for (unsigned int i = lsb; i <= msb; ++i) {
10244    if (v & (1 << i))
10245      return 0;
10246  }
10247  return 1;
10248}
10249
10250/// isFPImmLegal - Returns true if the target can instruction select the
10251/// specified FP immediate natively. If false, the legalizer will
10252/// materialize the FP immediate as a load from a constant pool.
10253bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
10254  if (!Subtarget->hasVFP3())
10255    return false;
10256  if (VT == MVT::f32)
10257    return ARM_AM::getFP32Imm(Imm) != -1;
10258  if (VT == MVT::f64)
10259    return ARM_AM::getFP64Imm(Imm) != -1;
10260  return false;
10261}
10262
10263bool ARMTargetLowering::isIntImmLegal(const APInt &Imm, EVT VT) const {
10264  if (VT.getSizeInBits() > 32)
10265    return false;
10266
10267  int32_t ImmVal = Imm.getSExtValue();
10268  if (!Subtarget->isThumb()) {
10269    return (ImmVal >= 0 && ImmVal < 65536) ||
10270      (ARM_AM::getSOImmVal(ImmVal) != -1) ||
10271      (ARM_AM::getSOImmVal(~ImmVal) != -1);
10272  } else if (Subtarget->isThumb2()) {
10273    return (ImmVal >= 0 && ImmVal < 65536) ||
10274      (ARM_AM::getT2SOImmVal(ImmVal) != -1) ||
10275      (ARM_AM::getT2SOImmVal(~ImmVal) != -1);
10276  } else /*Thumb1*/ {
10277    return (ImmVal >= 0 && ImmVal < 256);
10278  }
10279}
10280
10281/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
10282/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
10283/// specified in the intrinsic calls.
10284bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
10285                                           const CallInst &I,
10286                                           unsigned Intrinsic) const {
10287  switch (Intrinsic) {
10288  case Intrinsic::arm_neon_vld1:
10289  case Intrinsic::arm_neon_vld2:
10290  case Intrinsic::arm_neon_vld3:
10291  case Intrinsic::arm_neon_vld4:
10292  case Intrinsic::arm_neon_vld2lane:
10293  case Intrinsic::arm_neon_vld3lane:
10294  case Intrinsic::arm_neon_vld4lane: {
10295    Info.opc = ISD::INTRINSIC_W_CHAIN;
10296    // Conservatively set memVT to the entire set of vectors loaded.
10297    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
10298    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10299    Info.ptrVal = I.getArgOperand(0);
10300    Info.offset = 0;
10301    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10302    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10303    Info.vol = false; // volatile loads with NEON intrinsics not supported
10304    Info.readMem = true;
10305    Info.writeMem = false;
10306    return true;
10307  }
10308  case Intrinsic::arm_neon_vst1:
10309  case Intrinsic::arm_neon_vst2:
10310  case Intrinsic::arm_neon_vst3:
10311  case Intrinsic::arm_neon_vst4:
10312  case Intrinsic::arm_neon_vst2lane:
10313  case Intrinsic::arm_neon_vst3lane:
10314  case Intrinsic::arm_neon_vst4lane: {
10315    Info.opc = ISD::INTRINSIC_VOID;
10316    // Conservatively set memVT to the entire set of vectors stored.
10317    unsigned NumElts = 0;
10318    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
10319      Type *ArgTy = I.getArgOperand(ArgI)->getType();
10320      if (!ArgTy->isVectorTy())
10321        break;
10322      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
10323    }
10324    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10325    Info.ptrVal = I.getArgOperand(0);
10326    Info.offset = 0;
10327    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10328    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10329    Info.vol = false; // volatile stores with NEON intrinsics not supported
10330    Info.readMem = false;
10331    Info.writeMem = true;
10332    return true;
10333  }
10334  case Intrinsic::arm_strexd: {
10335    Info.opc = ISD::INTRINSIC_W_CHAIN;
10336    Info.memVT = MVT::i64;
10337    Info.ptrVal = I.getArgOperand(2);
10338    Info.offset = 0;
10339    Info.align = 8;
10340    Info.vol = true;
10341    Info.readMem = false;
10342    Info.writeMem = true;
10343    return true;
10344  }
10345  case Intrinsic::arm_ldrexd: {
10346    Info.opc = ISD::INTRINSIC_W_CHAIN;
10347    Info.memVT = MVT::i64;
10348    Info.ptrVal = I.getArgOperand(0);
10349    Info.offset = 0;
10350    Info.align = 8;
10351    Info.vol = true;
10352    Info.readMem = true;
10353    Info.writeMem = false;
10354    return true;
10355  }
10356  default:
10357    break;
10358  }
10359
10360  return false;
10361}
10362