ARMISelLowering.cpp revision 907eebd5a6779e8539ef7bf63550a5b72de76ab2
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "ARM.h"
16#include "ARMAddressingModes.h"
17#include "ARMConstantPoolValue.h"
18#include "ARMISelLowering.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMPerfectShuffle.h"
21#include "ARMRegisterInfo.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "llvm/CallingConv.h"
26#include "llvm/Constants.h"
27#include "llvm/Function.h"
28#include "llvm/GlobalValue.h"
29#include "llvm/Instruction.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Type.h"
32#include "llvm/CodeGen/CallingConvLower.h"
33#include "llvm/CodeGen/MachineBasicBlock.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetOptions.h"
41#include "llvm/ADT/VectorExtras.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/MathExtras.h"
44#include <sstream>
45using namespace llvm;
46
47static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
48                                   CCValAssign::LocInfo &LocInfo,
49                                   ISD::ArgFlagsTy &ArgFlags,
50                                   CCState &State);
51static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
52                                    CCValAssign::LocInfo &LocInfo,
53                                    ISD::ArgFlagsTy &ArgFlags,
54                                    CCState &State);
55static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
56                                      CCValAssign::LocInfo &LocInfo,
57                                      ISD::ArgFlagsTy &ArgFlags,
58                                      CCState &State);
59static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
60                                       CCValAssign::LocInfo &LocInfo,
61                                       ISD::ArgFlagsTy &ArgFlags,
62                                       CCState &State);
63
64void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
65                                       EVT PromotedBitwiseVT) {
66  if (VT != PromotedLdStVT) {
67    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
68    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
69                       PromotedLdStVT.getSimpleVT());
70
71    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
72    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
73                       PromotedLdStVT.getSimpleVT());
74  }
75
76  EVT ElemTy = VT.getVectorElementType();
77  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
78    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
79  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
80    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
81  if (ElemTy != MVT::i32) {
82    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
83    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
84    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
85    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
86  }
87  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
88  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
89  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Custom);
90  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
91  if (VT.isInteger()) {
92    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
93    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
94    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
95  }
96
97  // Promote all bit-wise operations.
98  if (VT.isInteger() && VT != PromotedBitwiseVT) {
99    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
100    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
101                       PromotedBitwiseVT.getSimpleVT());
102    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
103    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
104                       PromotedBitwiseVT.getSimpleVT());
105    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
106    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
107                       PromotedBitwiseVT.getSimpleVT());
108  }
109
110  // Neon does not support vector divide/remainder operations.
111  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
112  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
113  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
114  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
115  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
116  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
117}
118
119void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
120  addRegisterClass(VT, ARM::DPRRegisterClass);
121  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
122}
123
124void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
125  addRegisterClass(VT, ARM::QPRRegisterClass);
126  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
127}
128
129static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
130  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
131    return new TargetLoweringObjectFileMachO();
132  return new ARMElfTargetObjectFile();
133}
134
135ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
136    : TargetLowering(TM, createTLOF(TM)), ARMPCLabelIndex(0) {
137  Subtarget = &TM.getSubtarget<ARMSubtarget>();
138
139  if (Subtarget->isTargetDarwin()) {
140    // Uses VFP for Thumb libfuncs if available.
141    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
142      // Single-precision floating-point arithmetic.
143      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
144      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
145      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
146      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
147
148      // Double-precision floating-point arithmetic.
149      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
150      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
151      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
152      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
153
154      // Single-precision comparisons.
155      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
156      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
157      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
158      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
159      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
160      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
161      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
162      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
163
164      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
165      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
166      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
167      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
168      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
169      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
170      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
171      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
172
173      // Double-precision comparisons.
174      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
175      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
176      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
177      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
178      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
179      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
180      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
181      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
182
183      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
184      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
185      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
186      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
187      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
188      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
189      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
190      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
191
192      // Floating-point to integer conversions.
193      // i64 conversions are done via library routines even when generating VFP
194      // instructions, so use the same ones.
195      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
196      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
197      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
198      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
199
200      // Conversions between floating types.
201      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
202      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
203
204      // Integer to floating-point conversions.
205      // i64 conversions are done via library routines even when generating VFP
206      // instructions, so use the same ones.
207      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
208      // e.g., __floatunsidf vs. __floatunssidfvfp.
209      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
210      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
211      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
212      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
213    }
214  }
215
216  // These libcalls are not available in 32-bit.
217  setLibcallName(RTLIB::SHL_I128, 0);
218  setLibcallName(RTLIB::SRL_I128, 0);
219  setLibcallName(RTLIB::SRA_I128, 0);
220
221  // Libcalls should use the AAPCS base standard ABI, even if hard float
222  // is in effect, as per the ARM RTABI specification, section 4.1.2.
223  if (Subtarget->isAAPCS_ABI()) {
224    for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
225      setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
226                            CallingConv::ARM_AAPCS);
227    }
228  }
229
230  if (Subtarget->isThumb1Only())
231    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
232  else
233    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
234  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
235    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
236    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
237
238    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
239  }
240
241  if (Subtarget->hasNEON()) {
242    addDRTypeForNEON(MVT::v2f32);
243    addDRTypeForNEON(MVT::v8i8);
244    addDRTypeForNEON(MVT::v4i16);
245    addDRTypeForNEON(MVT::v2i32);
246    addDRTypeForNEON(MVT::v1i64);
247
248    addQRTypeForNEON(MVT::v4f32);
249    addQRTypeForNEON(MVT::v2f64);
250    addQRTypeForNEON(MVT::v16i8);
251    addQRTypeForNEON(MVT::v8i16);
252    addQRTypeForNEON(MVT::v4i32);
253    addQRTypeForNEON(MVT::v2i64);
254
255    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
256    // neither Neon nor VFP support any arithmetic operations on it.
257    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
258    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
259    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
260    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
261    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
262    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
263    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
264    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
265    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
266    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
267    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
268    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
269    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
270    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
271    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
272    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
273    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
274    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
275    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
276    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
277    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
278    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
279    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
280    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
281
282    // Neon does not support some operations on v1i64 and v2i64 types.
283    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
284    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
285    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
286    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
287
288    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
289    setTargetDAGCombine(ISD::SHL);
290    setTargetDAGCombine(ISD::SRL);
291    setTargetDAGCombine(ISD::SRA);
292    setTargetDAGCombine(ISD::SIGN_EXTEND);
293    setTargetDAGCombine(ISD::ZERO_EXTEND);
294    setTargetDAGCombine(ISD::ANY_EXTEND);
295  }
296
297  computeRegisterProperties();
298
299  // ARM does not have f32 extending load.
300  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
301
302  // ARM does not have i1 sign extending load.
303  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
304
305  // ARM supports all 4 flavors of integer indexed load / store.
306  if (!Subtarget->isThumb1Only()) {
307    for (unsigned im = (unsigned)ISD::PRE_INC;
308         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
309      setIndexedLoadAction(im,  MVT::i1,  Legal);
310      setIndexedLoadAction(im,  MVT::i8,  Legal);
311      setIndexedLoadAction(im,  MVT::i16, Legal);
312      setIndexedLoadAction(im,  MVT::i32, Legal);
313      setIndexedStoreAction(im, MVT::i1,  Legal);
314      setIndexedStoreAction(im, MVT::i8,  Legal);
315      setIndexedStoreAction(im, MVT::i16, Legal);
316      setIndexedStoreAction(im, MVT::i32, Legal);
317    }
318  }
319
320  // i64 operation support.
321  if (Subtarget->isThumb1Only()) {
322    setOperationAction(ISD::MUL,     MVT::i64, Expand);
323    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
324    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
325    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
326    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
327  } else {
328    setOperationAction(ISD::MUL,     MVT::i64, Expand);
329    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
330    if (!Subtarget->hasV6Ops())
331      setOperationAction(ISD::MULHS, MVT::i32, Expand);
332  }
333  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
334  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
335  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
336  setOperationAction(ISD::SRL,       MVT::i64, Custom);
337  setOperationAction(ISD::SRA,       MVT::i64, Custom);
338
339  // ARM does not have ROTL.
340  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
341  setOperationAction(ISD::CTTZ,  MVT::i32, Expand);
342  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
343  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
344    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
345
346  // Only ARMv6 has BSWAP.
347  if (!Subtarget->hasV6Ops())
348    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
349
350  // These are expanded into libcalls.
351  setOperationAction(ISD::SDIV,  MVT::i32, Expand);
352  setOperationAction(ISD::UDIV,  MVT::i32, Expand);
353  setOperationAction(ISD::SREM,  MVT::i32, Expand);
354  setOperationAction(ISD::UREM,  MVT::i32, Expand);
355  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
356  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
357
358  // Support label based line numbers.
359  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
360  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
361
362  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
363  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
364  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
365  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
366  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
367
368  // Use the default implementation.
369  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
370  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
371  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
372  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
373  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
374  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
375  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
376  // FIXME: Shouldn't need this, since no register is used, but the legalizer
377  // doesn't yet know how to not do that for SjLj.
378  setExceptionSelectorRegister(ARM::R0);
379  if (Subtarget->isThumb())
380    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
381  else
382    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
383  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
384
385  if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
386    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
387    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
388  }
389  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
390
391  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
392    // Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2.
393    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
394
395  // We want to custom lower some of our intrinsics.
396  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
397
398  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
399  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
400  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
401  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
402  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
403  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
404  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
405  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
406  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
407
408  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
409  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
410  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
411  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
412  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
413
414  // We don't support sin/cos/fmod/copysign/pow
415  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
416  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
417  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
418  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
419  setOperationAction(ISD::FREM,      MVT::f64, Expand);
420  setOperationAction(ISD::FREM,      MVT::f32, Expand);
421  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
422    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
423    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
424  }
425  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
426  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
427
428  // int <-> fp are custom expanded into bit_convert + ARMISD ops.
429  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
430    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
431    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
432    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
433    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
434  }
435
436  // We have target-specific dag combine patterns for the following nodes:
437  // ARMISD::FMRRD  - No need to call setTargetDAGCombine
438  setTargetDAGCombine(ISD::ADD);
439  setTargetDAGCombine(ISD::SUB);
440
441  setStackPointerRegisterToSaveRestore(ARM::SP);
442  setSchedulingPreference(SchedulingForRegPressure);
443
444  // FIXME: If-converter should use instruction latency to determine
445  // profitability rather than relying on fixed limits.
446  if (Subtarget->getCPUString() == "generic") {
447    // Generic (and overly aggressive) if-conversion limits.
448    setIfCvtBlockSizeLimit(10);
449    setIfCvtDupBlockSizeLimit(2);
450  } else if (Subtarget->hasV6Ops()) {
451    setIfCvtBlockSizeLimit(2);
452    setIfCvtDupBlockSizeLimit(1);
453  } else {
454    setIfCvtBlockSizeLimit(3);
455    setIfCvtDupBlockSizeLimit(2);
456  }
457
458  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
459  // Do not enable CodePlacementOpt for now: it currently runs after the
460  // ARMConstantIslandPass and messes up branch relaxation and placement
461  // of constant islands.
462  // benefitFromCodePlacementOpt = true;
463}
464
465const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
466  switch (Opcode) {
467  default: return 0;
468  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
469  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
470  case ARMISD::CALL:          return "ARMISD::CALL";
471  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
472  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
473  case ARMISD::tCALL:         return "ARMISD::tCALL";
474  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
475  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
476  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
477  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
478  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
479  case ARMISD::CMP:           return "ARMISD::CMP";
480  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
481  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
482  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
483  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
484  case ARMISD::CMOV:          return "ARMISD::CMOV";
485  case ARMISD::CNEG:          return "ARMISD::CNEG";
486
487  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
488  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
489  case ARMISD::SITOF:         return "ARMISD::SITOF";
490  case ARMISD::UITOF:         return "ARMISD::UITOF";
491
492  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
493  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
494  case ARMISD::RRX:           return "ARMISD::RRX";
495
496  case ARMISD::FMRRD:         return "ARMISD::FMRRD";
497  case ARMISD::FMDRR:         return "ARMISD::FMDRR";
498
499  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
500  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
501
502  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
503
504  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
505
506  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
507  case ARMISD::VCGE:          return "ARMISD::VCGE";
508  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
509  case ARMISD::VCGT:          return "ARMISD::VCGT";
510  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
511  case ARMISD::VTST:          return "ARMISD::VTST";
512
513  case ARMISD::VSHL:          return "ARMISD::VSHL";
514  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
515  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
516  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
517  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
518  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
519  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
520  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
521  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
522  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
523  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
524  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
525  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
526  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
527  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
528  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
529  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
530  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
531  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
532  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
533  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
534  case ARMISD::VDUP:          return "ARMISD::VDUP";
535  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
536  case ARMISD::VEXT:          return "ARMISD::VEXT";
537  case ARMISD::VREV64:        return "ARMISD::VREV64";
538  case ARMISD::VREV32:        return "ARMISD::VREV32";
539  case ARMISD::VREV16:        return "ARMISD::VREV16";
540  case ARMISD::VZIP:          return "ARMISD::VZIP";
541  case ARMISD::VUZP:          return "ARMISD::VUZP";
542  case ARMISD::VTRN:          return "ARMISD::VTRN";
543  }
544}
545
546/// getFunctionAlignment - Return the Log2 alignment of this function.
547unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
548  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 0 : 1;
549}
550
551//===----------------------------------------------------------------------===//
552// Lowering Code
553//===----------------------------------------------------------------------===//
554
555/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
556static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
557  switch (CC) {
558  default: llvm_unreachable("Unknown condition code!");
559  case ISD::SETNE:  return ARMCC::NE;
560  case ISD::SETEQ:  return ARMCC::EQ;
561  case ISD::SETGT:  return ARMCC::GT;
562  case ISD::SETGE:  return ARMCC::GE;
563  case ISD::SETLT:  return ARMCC::LT;
564  case ISD::SETLE:  return ARMCC::LE;
565  case ISD::SETUGT: return ARMCC::HI;
566  case ISD::SETUGE: return ARMCC::HS;
567  case ISD::SETULT: return ARMCC::LO;
568  case ISD::SETULE: return ARMCC::LS;
569  }
570}
571
572/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
573static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
574                        ARMCC::CondCodes &CondCode2) {
575  CondCode2 = ARMCC::AL;
576  switch (CC) {
577  default: llvm_unreachable("Unknown FP condition!");
578  case ISD::SETEQ:
579  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
580  case ISD::SETGT:
581  case ISD::SETOGT: CondCode = ARMCC::GT; break;
582  case ISD::SETGE:
583  case ISD::SETOGE: CondCode = ARMCC::GE; break;
584  case ISD::SETOLT: CondCode = ARMCC::MI; break;
585  case ISD::SETOLE: CondCode = ARMCC::LS; break;
586  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
587  case ISD::SETO:   CondCode = ARMCC::VC; break;
588  case ISD::SETUO:  CondCode = ARMCC::VS; break;
589  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
590  case ISD::SETUGT: CondCode = ARMCC::HI; break;
591  case ISD::SETUGE: CondCode = ARMCC::PL; break;
592  case ISD::SETLT:
593  case ISD::SETULT: CondCode = ARMCC::LT; break;
594  case ISD::SETLE:
595  case ISD::SETULE: CondCode = ARMCC::LE; break;
596  case ISD::SETNE:
597  case ISD::SETUNE: CondCode = ARMCC::NE; break;
598  }
599}
600
601//===----------------------------------------------------------------------===//
602//                      Calling Convention Implementation
603//===----------------------------------------------------------------------===//
604
605#include "ARMGenCallingConv.inc"
606
607// APCS f64 is in register pairs, possibly split to stack
608static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
609                          CCValAssign::LocInfo &LocInfo,
610                          CCState &State, bool CanFail) {
611  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
612
613  // Try to get the first register.
614  if (unsigned Reg = State.AllocateReg(RegList, 4))
615    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
616  else {
617    // For the 2nd half of a v2f64, do not fail.
618    if (CanFail)
619      return false;
620
621    // Put the whole thing on the stack.
622    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
623                                           State.AllocateStack(8, 4),
624                                           LocVT, LocInfo));
625    return true;
626  }
627
628  // Try to get the second register.
629  if (unsigned Reg = State.AllocateReg(RegList, 4))
630    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
631  else
632    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
633                                           State.AllocateStack(4, 4),
634                                           LocVT, LocInfo));
635  return true;
636}
637
638static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
639                                   CCValAssign::LocInfo &LocInfo,
640                                   ISD::ArgFlagsTy &ArgFlags,
641                                   CCState &State) {
642  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
643    return false;
644  if (LocVT == MVT::v2f64 &&
645      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
646    return false;
647  return true;  // we handled it
648}
649
650// AAPCS f64 is in aligned register pairs
651static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
652                           CCValAssign::LocInfo &LocInfo,
653                           CCState &State, bool CanFail) {
654  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
655  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
656
657  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
658  if (Reg == 0) {
659    // For the 2nd half of a v2f64, do not just fail.
660    if (CanFail)
661      return false;
662
663    // Put the whole thing on the stack.
664    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
665                                           State.AllocateStack(8, 8),
666                                           LocVT, LocInfo));
667    return true;
668  }
669
670  unsigned i;
671  for (i = 0; i < 2; ++i)
672    if (HiRegList[i] == Reg)
673      break;
674
675  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
676  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
677                                         LocVT, LocInfo));
678  return true;
679}
680
681static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
682                                    CCValAssign::LocInfo &LocInfo,
683                                    ISD::ArgFlagsTy &ArgFlags,
684                                    CCState &State) {
685  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
686    return false;
687  if (LocVT == MVT::v2f64 &&
688      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
689    return false;
690  return true;  // we handled it
691}
692
693static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
694                         CCValAssign::LocInfo &LocInfo, CCState &State) {
695  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
696  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
697
698  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
699  if (Reg == 0)
700    return false; // we didn't handle it
701
702  unsigned i;
703  for (i = 0; i < 2; ++i)
704    if (HiRegList[i] == Reg)
705      break;
706
707  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
708  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
709                                         LocVT, LocInfo));
710  return true;
711}
712
713static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
714                                      CCValAssign::LocInfo &LocInfo,
715                                      ISD::ArgFlagsTy &ArgFlags,
716                                      CCState &State) {
717  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
718    return false;
719  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
720    return false;
721  return true;  // we handled it
722}
723
724static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
725                                       CCValAssign::LocInfo &LocInfo,
726                                       ISD::ArgFlagsTy &ArgFlags,
727                                       CCState &State) {
728  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
729                                   State);
730}
731
732/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
733/// given CallingConvention value.
734CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
735                                                 bool Return,
736                                                 bool isVarArg) const {
737  switch (CC) {
738  default:
739    llvm_unreachable("Unsupported calling convention");
740  case CallingConv::C:
741  case CallingConv::Fast:
742    // Use target triple & subtarget features to do actual dispatch.
743    if (Subtarget->isAAPCS_ABI()) {
744      if (Subtarget->hasVFP2() &&
745          FloatABIType == FloatABI::Hard && !isVarArg)
746        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
747      else
748        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
749    } else
750        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
751  case CallingConv::ARM_AAPCS_VFP:
752    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
753  case CallingConv::ARM_AAPCS:
754    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
755  case CallingConv::ARM_APCS:
756    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
757  }
758}
759
760/// LowerCallResult - Lower the result values of a call into the
761/// appropriate copies out of appropriate physical registers.
762SDValue
763ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
764                                   CallingConv::ID CallConv, bool isVarArg,
765                                   const SmallVectorImpl<ISD::InputArg> &Ins,
766                                   DebugLoc dl, SelectionDAG &DAG,
767                                   SmallVectorImpl<SDValue> &InVals) {
768
769  // Assign locations to each value returned by this call.
770  SmallVector<CCValAssign, 16> RVLocs;
771  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
772                 RVLocs, *DAG.getContext());
773  CCInfo.AnalyzeCallResult(Ins,
774                           CCAssignFnForNode(CallConv, /* Return*/ true,
775                                             isVarArg));
776
777  // Copy all of the result registers out of their specified physreg.
778  for (unsigned i = 0; i != RVLocs.size(); ++i) {
779    CCValAssign VA = RVLocs[i];
780
781    SDValue Val;
782    if (VA.needsCustom()) {
783      // Handle f64 or half of a v2f64.
784      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
785                                      InFlag);
786      Chain = Lo.getValue(1);
787      InFlag = Lo.getValue(2);
788      VA = RVLocs[++i]; // skip ahead to next loc
789      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
790                                      InFlag);
791      Chain = Hi.getValue(1);
792      InFlag = Hi.getValue(2);
793      Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
794
795      if (VA.getLocVT() == MVT::v2f64) {
796        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
797        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
798                          DAG.getConstant(0, MVT::i32));
799
800        VA = RVLocs[++i]; // skip ahead to next loc
801        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
802        Chain = Lo.getValue(1);
803        InFlag = Lo.getValue(2);
804        VA = RVLocs[++i]; // skip ahead to next loc
805        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
806        Chain = Hi.getValue(1);
807        InFlag = Hi.getValue(2);
808        Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
809        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
810                          DAG.getConstant(1, MVT::i32));
811      }
812    } else {
813      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
814                               InFlag);
815      Chain = Val.getValue(1);
816      InFlag = Val.getValue(2);
817    }
818
819    switch (VA.getLocInfo()) {
820    default: llvm_unreachable("Unknown loc info!");
821    case CCValAssign::Full: break;
822    case CCValAssign::BCvt:
823      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
824      break;
825    }
826
827    InVals.push_back(Val);
828  }
829
830  return Chain;
831}
832
833/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
834/// by "Src" to address "Dst" of size "Size".  Alignment information is
835/// specified by the specific parameter attribute.  The copy will be passed as
836/// a byval function parameter.
837/// Sometimes what we are copying is the end of a larger object, the part that
838/// does not fit in registers.
839static SDValue
840CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
841                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
842                          DebugLoc dl) {
843  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
844  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
845                       /*AlwaysInline=*/false, NULL, 0, NULL, 0);
846}
847
848/// LowerMemOpCallTo - Store the argument to the stack.
849SDValue
850ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
851                                    SDValue StackPtr, SDValue Arg,
852                                    DebugLoc dl, SelectionDAG &DAG,
853                                    const CCValAssign &VA,
854                                    ISD::ArgFlagsTy Flags) {
855  unsigned LocMemOffset = VA.getLocMemOffset();
856  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
857  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
858  if (Flags.isByVal()) {
859    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
860  }
861  return DAG.getStore(Chain, dl, Arg, PtrOff,
862                      PseudoSourceValue::getStack(), LocMemOffset);
863}
864
865void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
866                                         SDValue Chain, SDValue &Arg,
867                                         RegsToPassVector &RegsToPass,
868                                         CCValAssign &VA, CCValAssign &NextVA,
869                                         SDValue &StackPtr,
870                                         SmallVector<SDValue, 8> &MemOpChains,
871                                         ISD::ArgFlagsTy Flags) {
872
873  SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
874                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
875  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
876
877  if (NextVA.isRegLoc())
878    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
879  else {
880    assert(NextVA.isMemLoc());
881    if (StackPtr.getNode() == 0)
882      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
883
884    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
885                                           dl, DAG, NextVA,
886                                           Flags));
887  }
888}
889
890/// LowerCall - Lowering a call into a callseq_start <-
891/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
892/// nodes.
893SDValue
894ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
895                             CallingConv::ID CallConv, bool isVarArg,
896                             bool isTailCall,
897                             const SmallVectorImpl<ISD::OutputArg> &Outs,
898                             const SmallVectorImpl<ISD::InputArg> &Ins,
899                             DebugLoc dl, SelectionDAG &DAG,
900                             SmallVectorImpl<SDValue> &InVals) {
901
902  // Analyze operands of the call, assigning locations to each operand.
903  SmallVector<CCValAssign, 16> ArgLocs;
904  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
905                 *DAG.getContext());
906  CCInfo.AnalyzeCallOperands(Outs,
907                             CCAssignFnForNode(CallConv, /* Return*/ false,
908                                               isVarArg));
909
910  // Get a count of how many bytes are to be pushed on the stack.
911  unsigned NumBytes = CCInfo.getNextStackOffset();
912
913  // Adjust the stack pointer for the new arguments...
914  // These operations are automatically eliminated by the prolog/epilog pass
915  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
916
917  SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
918
919  RegsToPassVector RegsToPass;
920  SmallVector<SDValue, 8> MemOpChains;
921
922  // Walk the register/memloc assignments, inserting copies/loads.  In the case
923  // of tail call optimization, arguments are handled later.
924  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
925       i != e;
926       ++i, ++realArgIdx) {
927    CCValAssign &VA = ArgLocs[i];
928    SDValue Arg = Outs[realArgIdx].Val;
929    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
930
931    // Promote the value if needed.
932    switch (VA.getLocInfo()) {
933    default: llvm_unreachable("Unknown loc info!");
934    case CCValAssign::Full: break;
935    case CCValAssign::SExt:
936      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
937      break;
938    case CCValAssign::ZExt:
939      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
940      break;
941    case CCValAssign::AExt:
942      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
943      break;
944    case CCValAssign::BCvt:
945      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
946      break;
947    }
948
949    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
950    if (VA.needsCustom()) {
951      if (VA.getLocVT() == MVT::v2f64) {
952        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
953                                  DAG.getConstant(0, MVT::i32));
954        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
955                                  DAG.getConstant(1, MVT::i32));
956
957        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
958                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
959
960        VA = ArgLocs[++i]; // skip ahead to next loc
961        if (VA.isRegLoc()) {
962          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
963                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
964        } else {
965          assert(VA.isMemLoc());
966          if (StackPtr.getNode() == 0)
967            StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
968
969          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
970                                                 dl, DAG, VA, Flags));
971        }
972      } else {
973        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
974                         StackPtr, MemOpChains, Flags);
975      }
976    } else if (VA.isRegLoc()) {
977      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
978    } else {
979      assert(VA.isMemLoc());
980      if (StackPtr.getNode() == 0)
981        StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
982
983      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
984                                             dl, DAG, VA, Flags));
985    }
986  }
987
988  if (!MemOpChains.empty())
989    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
990                        &MemOpChains[0], MemOpChains.size());
991
992  // Build a sequence of copy-to-reg nodes chained together with token chain
993  // and flag operands which copy the outgoing args into the appropriate regs.
994  SDValue InFlag;
995  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
996    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
997                             RegsToPass[i].second, InFlag);
998    InFlag = Chain.getValue(1);
999  }
1000
1001  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1002  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1003  // node so that legalize doesn't hack it.
1004  bool isDirect = false;
1005  bool isARMFunc = false;
1006  bool isLocalARMFunc = false;
1007  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1008    GlobalValue *GV = G->getGlobal();
1009    isDirect = true;
1010    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1011    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1012                   getTargetMachine().getRelocationModel() != Reloc::Static;
1013    isARMFunc = !Subtarget->isThumb() || isStub;
1014    // ARM call to a local ARM function is predicable.
1015    isLocalARMFunc = !Subtarget->isThumb() && !isExt;
1016    // tBX takes a register source operand.
1017    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1018      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1019                                                           ARMPCLabelIndex,
1020                                                           ARMCP::CPValue, 4);
1021      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1022      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1023      Callee = DAG.getLoad(getPointerTy(), dl,
1024                           DAG.getEntryNode(), CPAddr,
1025                           PseudoSourceValue::getConstantPool(), 0);
1026      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1027      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1028                           getPointerTy(), Callee, PICLabel);
1029   } else
1030      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
1031  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1032    isDirect = true;
1033    bool isStub = Subtarget->isTargetDarwin() &&
1034                  getTargetMachine().getRelocationModel() != Reloc::Static;
1035    isARMFunc = !Subtarget->isThumb() || isStub;
1036    // tBX takes a register source operand.
1037    const char *Sym = S->getSymbol();
1038    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1039      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1040                                                       Sym, ARMPCLabelIndex, 4);
1041      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1042      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1043      Callee = DAG.getLoad(getPointerTy(), dl,
1044                           DAG.getEntryNode(), CPAddr,
1045                           PseudoSourceValue::getConstantPool(), 0);
1046      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1047      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1048                           getPointerTy(), Callee, PICLabel);
1049    } else
1050      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1051  }
1052
1053  // FIXME: handle tail calls differently.
1054  unsigned CallOpc;
1055  if (Subtarget->isThumb()) {
1056    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1057      CallOpc = ARMISD::CALL_NOLINK;
1058    else
1059      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1060  } else {
1061    CallOpc = (isDirect || Subtarget->hasV5TOps())
1062      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1063      : ARMISD::CALL_NOLINK;
1064  }
1065  if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
1066    // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
1067    Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
1068    InFlag = Chain.getValue(1);
1069  }
1070
1071  std::vector<SDValue> Ops;
1072  Ops.push_back(Chain);
1073  Ops.push_back(Callee);
1074
1075  // Add argument registers to the end of the list so that they are known live
1076  // into the call.
1077  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1078    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1079                                  RegsToPass[i].second.getValueType()));
1080
1081  if (InFlag.getNode())
1082    Ops.push_back(InFlag);
1083  // Returns a chain and a flag for retval copy to use.
1084  Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
1085                      &Ops[0], Ops.size());
1086  InFlag = Chain.getValue(1);
1087
1088  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1089                             DAG.getIntPtrConstant(0, true), InFlag);
1090  if (!Ins.empty())
1091    InFlag = Chain.getValue(1);
1092
1093  // Handle result values, copying them out of physregs into vregs that we
1094  // return.
1095  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1096                         dl, DAG, InVals);
1097}
1098
1099SDValue
1100ARMTargetLowering::LowerReturn(SDValue Chain,
1101                               CallingConv::ID CallConv, bool isVarArg,
1102                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1103                               DebugLoc dl, SelectionDAG &DAG) {
1104
1105  // CCValAssign - represent the assignment of the return value to a location.
1106  SmallVector<CCValAssign, 16> RVLocs;
1107
1108  // CCState - Info about the registers and stack slots.
1109  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1110                 *DAG.getContext());
1111
1112  // Analyze outgoing return values.
1113  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1114                                               isVarArg));
1115
1116  // If this is the first return lowered for this function, add
1117  // the regs to the liveout set for the function.
1118  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1119    for (unsigned i = 0; i != RVLocs.size(); ++i)
1120      if (RVLocs[i].isRegLoc())
1121        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1122  }
1123
1124  SDValue Flag;
1125
1126  // Copy the result values into the output registers.
1127  for (unsigned i = 0, realRVLocIdx = 0;
1128       i != RVLocs.size();
1129       ++i, ++realRVLocIdx) {
1130    CCValAssign &VA = RVLocs[i];
1131    assert(VA.isRegLoc() && "Can only return in registers!");
1132
1133    SDValue Arg = Outs[realRVLocIdx].Val;
1134
1135    switch (VA.getLocInfo()) {
1136    default: llvm_unreachable("Unknown loc info!");
1137    case CCValAssign::Full: break;
1138    case CCValAssign::BCvt:
1139      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1140      break;
1141    }
1142
1143    if (VA.needsCustom()) {
1144      if (VA.getLocVT() == MVT::v2f64) {
1145        // Extract the first half and return it in two registers.
1146        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1147                                   DAG.getConstant(0, MVT::i32));
1148        SDValue HalfGPRs = DAG.getNode(ARMISD::FMRRD, dl,
1149                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1150
1151        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1152        Flag = Chain.getValue(1);
1153        VA = RVLocs[++i]; // skip ahead to next loc
1154        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1155                                 HalfGPRs.getValue(1), Flag);
1156        Flag = Chain.getValue(1);
1157        VA = RVLocs[++i]; // skip ahead to next loc
1158
1159        // Extract the 2nd half and fall through to handle it as an f64 value.
1160        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1161                          DAG.getConstant(1, MVT::i32));
1162      }
1163      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1164      // available.
1165      SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
1166                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1167      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1168      Flag = Chain.getValue(1);
1169      VA = RVLocs[++i]; // skip ahead to next loc
1170      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1171                               Flag);
1172    } else
1173      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1174
1175    // Guarantee that all emitted copies are
1176    // stuck together, avoiding something bad.
1177    Flag = Chain.getValue(1);
1178  }
1179
1180  SDValue result;
1181  if (Flag.getNode())
1182    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1183  else // Return Void
1184    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1185
1186  return result;
1187}
1188
1189// ConstantPool, BlockAddress, JumpTable, GlobalAddress, and ExternalSymbol are
1190// lowered as their target counterpart wrapped in the ARMISD::Wrapper
1191// node. Suppose N is one of the above mentioned nodes. It has to be wrapped
1192// because otherwise Select(N) returns N. So the raw TargetGlobalAddress
1193// nodes, etc. can only be used to form addressing mode. These wrapped nodes
1194// will be selected into MOVi.
1195static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1196  EVT PtrVT = Op.getValueType();
1197  // FIXME there is no actual debug info here
1198  DebugLoc dl = Op.getDebugLoc();
1199  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1200  SDValue Res;
1201  if (CP->isMachineConstantPoolEntry())
1202    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1203                                    CP->getAlignment());
1204  else
1205    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1206                                    CP->getAlignment());
1207  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1208}
1209
1210SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
1211  DebugLoc DL = Op.getDebugLoc();
1212  EVT PtrVT = getPointerTy();
1213  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1214  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1215  SDValue CPAddr;
1216  if (RelocM == Reloc::Static) {
1217    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1218  } else {
1219    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1220    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1221                                                         ARMCP::CPBlockAddress,
1222                                                         PCAdj);
1223    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1224  }
1225  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1226  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1227                               PseudoSourceValue::getConstantPool(), 0);
1228  if (RelocM == Reloc::Static)
1229    return Result;
1230  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1231  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1232}
1233
1234// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1235SDValue
1236ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1237                                                 SelectionDAG &DAG) {
1238  DebugLoc dl = GA->getDebugLoc();
1239  EVT PtrVT = getPointerTy();
1240  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1241  ARMConstantPoolValue *CPV =
1242    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1243                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1244  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1245  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1246  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1247                         PseudoSourceValue::getConstantPool(), 0);
1248  SDValue Chain = Argument.getValue(1);
1249
1250  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1251  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1252
1253  // call __tls_get_addr.
1254  ArgListTy Args;
1255  ArgListEntry Entry;
1256  Entry.Node = Argument;
1257  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1258  Args.push_back(Entry);
1259  // FIXME: is there useful debug info available here?
1260  std::pair<SDValue, SDValue> CallResult =
1261    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1262                false, false, false, false,
1263                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1264                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1265  return CallResult.first;
1266}
1267
1268// Lower ISD::GlobalTLSAddress using the "initial exec" or
1269// "local exec" model.
1270SDValue
1271ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1272                                        SelectionDAG &DAG) {
1273  GlobalValue *GV = GA->getGlobal();
1274  DebugLoc dl = GA->getDebugLoc();
1275  SDValue Offset;
1276  SDValue Chain = DAG.getEntryNode();
1277  EVT PtrVT = getPointerTy();
1278  // Get the Thread Pointer
1279  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1280
1281  if (GV->isDeclaration()) {
1282    // initial exec model
1283    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1284    ARMConstantPoolValue *CPV =
1285      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1286                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1287    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1288    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1289    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1290                         PseudoSourceValue::getConstantPool(), 0);
1291    Chain = Offset.getValue(1);
1292
1293    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1294    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1295
1296    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1297                         PseudoSourceValue::getConstantPool(), 0);
1298  } else {
1299    // local exec model
1300    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1301    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1302    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1303    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1304                         PseudoSourceValue::getConstantPool(), 0);
1305  }
1306
1307  // The address of the thread local variable is the add of the thread
1308  // pointer with the offset of the variable.
1309  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1310}
1311
1312SDValue
1313ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
1314  // TODO: implement the "local dynamic" model
1315  assert(Subtarget->isTargetELF() &&
1316         "TLS not implemented for non-ELF targets");
1317  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1318  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1319  // otherwise use the "Local Exec" TLS Model
1320  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1321    return LowerToTLSGeneralDynamicModel(GA, DAG);
1322  else
1323    return LowerToTLSExecModels(GA, DAG);
1324}
1325
1326SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1327                                                 SelectionDAG &DAG) {
1328  EVT PtrVT = getPointerTy();
1329  DebugLoc dl = Op.getDebugLoc();
1330  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1331  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1332  if (RelocM == Reloc::PIC_) {
1333    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1334    ARMConstantPoolValue *CPV =
1335      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1336    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1337    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1338    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1339                                 CPAddr,
1340                                 PseudoSourceValue::getConstantPool(), 0);
1341    SDValue Chain = Result.getValue(1);
1342    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1343    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1344    if (!UseGOTOFF)
1345      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1346                           PseudoSourceValue::getGOT(), 0);
1347    return Result;
1348  } else {
1349    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1350    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1351    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1352                       PseudoSourceValue::getConstantPool(), 0);
1353  }
1354}
1355
1356SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1357                                                    SelectionDAG &DAG) {
1358  EVT PtrVT = getPointerTy();
1359  DebugLoc dl = Op.getDebugLoc();
1360  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1361  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1362  SDValue CPAddr;
1363  if (RelocM == Reloc::Static)
1364    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1365  else {
1366    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1367    ARMConstantPoolValue *CPV =
1368      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1369    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1370  }
1371  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1372
1373  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1374                               PseudoSourceValue::getConstantPool(), 0);
1375  SDValue Chain = Result.getValue(1);
1376
1377  if (RelocM == Reloc::PIC_) {
1378    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1379    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1380  }
1381
1382  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1383    Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1384                         PseudoSourceValue::getGOT(), 0);
1385
1386  return Result;
1387}
1388
1389SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1390                                                    SelectionDAG &DAG){
1391  assert(Subtarget->isTargetELF() &&
1392         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1393  EVT PtrVT = getPointerTy();
1394  DebugLoc dl = Op.getDebugLoc();
1395  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1396  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1397                                                       "_GLOBAL_OFFSET_TABLE_",
1398                                                       ARMPCLabelIndex, PCAdj);
1399  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1400  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1401  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1402                               PseudoSourceValue::getConstantPool(), 0);
1403  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1404  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1405}
1406
1407SDValue
1408ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
1409  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1410  DebugLoc dl = Op.getDebugLoc();
1411  switch (IntNo) {
1412  default: return SDValue();    // Don't custom lower most intrinsics.
1413  case Intrinsic::arm_thread_pointer: {
1414    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1415    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1416  }
1417  case Intrinsic::eh_sjlj_lsda: {
1418    MachineFunction &MF = DAG.getMachineFunction();
1419    EVT PtrVT = getPointerTy();
1420    DebugLoc dl = Op.getDebugLoc();
1421    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1422    SDValue CPAddr;
1423    unsigned PCAdj = (RelocM != Reloc::PIC_)
1424      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1425    ARMConstantPoolValue *CPV =
1426      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
1427                               ARMCP::CPLSDA, PCAdj);
1428    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1429    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1430    SDValue Result =
1431      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1432                  PseudoSourceValue::getConstantPool(), 0);
1433    SDValue Chain = Result.getValue(1);
1434
1435    if (RelocM == Reloc::PIC_) {
1436      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1437      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1438    }
1439    return Result;
1440  }
1441  case Intrinsic::eh_sjlj_setjmp:
1442    return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1));
1443  }
1444}
1445
1446static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1447                            unsigned VarArgsFrameIndex) {
1448  // vastart just stores the address of the VarArgsFrameIndex slot into the
1449  // memory location argument.
1450  DebugLoc dl = Op.getDebugLoc();
1451  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1452  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1453  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1454  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1455}
1456
1457SDValue
1458ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
1459  SDNode *Node = Op.getNode();
1460  DebugLoc dl = Node->getDebugLoc();
1461  EVT VT = Node->getValueType(0);
1462  SDValue Chain = Op.getOperand(0);
1463  SDValue Size  = Op.getOperand(1);
1464  SDValue Align = Op.getOperand(2);
1465
1466  // Chain the dynamic stack allocation so that it doesn't modify the stack
1467  // pointer when other instructions are using the stack.
1468  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1469
1470  unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue();
1471  unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment();
1472  if (AlignVal > StackAlign)
1473    // Do this now since selection pass cannot introduce new target
1474    // independent node.
1475    Align = DAG.getConstant(-(uint64_t)AlignVal, VT);
1476
1477  // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up
1478  // using a "add r, sp, r" instead. Negate the size now so we don't have to
1479  // do even more horrible hack later.
1480  MachineFunction &MF = DAG.getMachineFunction();
1481  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1482  if (AFI->isThumb1OnlyFunction()) {
1483    bool Negate = true;
1484    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size);
1485    if (C) {
1486      uint32_t Val = C->getZExtValue();
1487      if (Val <= 508 && ((Val & 3) == 0))
1488        Negate = false;
1489    }
1490    if (Negate)
1491      Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size);
1492  }
1493
1494  SDVTList VTList = DAG.getVTList(VT, MVT::Other);
1495  SDValue Ops1[] = { Chain, Size, Align };
1496  SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3);
1497  Chain = Res.getValue(1);
1498  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true),
1499                             DAG.getIntPtrConstant(0, true), SDValue());
1500  SDValue Ops2[] = { Res, Chain };
1501  return DAG.getMergeValues(Ops2, 2, dl);
1502}
1503
1504SDValue
1505ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1506                                        SDValue &Root, SelectionDAG &DAG,
1507                                        DebugLoc dl) {
1508  MachineFunction &MF = DAG.getMachineFunction();
1509  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1510
1511  TargetRegisterClass *RC;
1512  if (AFI->isThumb1OnlyFunction())
1513    RC = ARM::tGPRRegisterClass;
1514  else
1515    RC = ARM::GPRRegisterClass;
1516
1517  // Transform the arguments stored in physical registers into virtual ones.
1518  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1519  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1520
1521  SDValue ArgValue2;
1522  if (NextVA.isMemLoc()) {
1523    unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8;
1524    MachineFrameInfo *MFI = MF.getFrameInfo();
1525    int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset());
1526
1527    // Create load node to retrieve arguments from the stack.
1528    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1529    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
1530                            PseudoSourceValue::getFixedStack(FI), 0);
1531  } else {
1532    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1533    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1534  }
1535
1536  return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, ArgValue, ArgValue2);
1537}
1538
1539SDValue
1540ARMTargetLowering::LowerFormalArguments(SDValue Chain,
1541                                        CallingConv::ID CallConv, bool isVarArg,
1542                                        const SmallVectorImpl<ISD::InputArg>
1543                                          &Ins,
1544                                        DebugLoc dl, SelectionDAG &DAG,
1545                                        SmallVectorImpl<SDValue> &InVals) {
1546
1547  MachineFunction &MF = DAG.getMachineFunction();
1548  MachineFrameInfo *MFI = MF.getFrameInfo();
1549
1550  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1551
1552  // Assign locations to all of the incoming arguments.
1553  SmallVector<CCValAssign, 16> ArgLocs;
1554  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1555                 *DAG.getContext());
1556  CCInfo.AnalyzeFormalArguments(Ins,
1557                                CCAssignFnForNode(CallConv, /* Return*/ false,
1558                                                  isVarArg));
1559
1560  SmallVector<SDValue, 16> ArgValues;
1561
1562  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1563    CCValAssign &VA = ArgLocs[i];
1564
1565    // Arguments stored in registers.
1566    if (VA.isRegLoc()) {
1567      EVT RegVT = VA.getLocVT();
1568
1569      SDValue ArgValue;
1570      if (VA.needsCustom()) {
1571        // f64 and vector types are split up into multiple registers or
1572        // combinations of registers and stack slots.
1573        RegVT = MVT::i32;
1574
1575        if (VA.getLocVT() == MVT::v2f64) {
1576          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
1577                                                   Chain, DAG, dl);
1578          VA = ArgLocs[++i]; // skip ahead to next loc
1579          SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
1580                                                   Chain, DAG, dl);
1581          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1582          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1583                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
1584          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1585                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
1586        } else
1587          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
1588
1589      } else {
1590        TargetRegisterClass *RC;
1591
1592        if (RegVT == MVT::f32)
1593          RC = ARM::SPRRegisterClass;
1594        else if (RegVT == MVT::f64)
1595          RC = ARM::DPRRegisterClass;
1596        else if (RegVT == MVT::v2f64)
1597          RC = ARM::QPRRegisterClass;
1598        else if (RegVT == MVT::i32)
1599          RC = (AFI->isThumb1OnlyFunction() ?
1600                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
1601        else
1602          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
1603
1604        // Transform the arguments in physical registers into virtual ones.
1605        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1606        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1607      }
1608
1609      // If this is an 8 or 16-bit value, it is really passed promoted
1610      // to 32 bits.  Insert an assert[sz]ext to capture this, then
1611      // truncate to the right size.
1612      switch (VA.getLocInfo()) {
1613      default: llvm_unreachable("Unknown loc info!");
1614      case CCValAssign::Full: break;
1615      case CCValAssign::BCvt:
1616        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1617        break;
1618      case CCValAssign::SExt:
1619        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1620                               DAG.getValueType(VA.getValVT()));
1621        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1622        break;
1623      case CCValAssign::ZExt:
1624        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1625                               DAG.getValueType(VA.getValVT()));
1626        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1627        break;
1628      }
1629
1630      InVals.push_back(ArgValue);
1631
1632    } else { // VA.isRegLoc()
1633
1634      // sanity check
1635      assert(VA.isMemLoc());
1636      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1637
1638      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1639      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset());
1640
1641      // Create load nodes to retrieve arguments from the stack.
1642      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1643      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1644                                   PseudoSourceValue::getFixedStack(FI), 0));
1645    }
1646  }
1647
1648  // varargs
1649  if (isVarArg) {
1650    static const unsigned GPRArgRegs[] = {
1651      ARM::R0, ARM::R1, ARM::R2, ARM::R3
1652    };
1653
1654    unsigned NumGPRs = CCInfo.getFirstUnallocated
1655      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1656
1657    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1658    unsigned VARegSize = (4 - NumGPRs) * 4;
1659    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1660    unsigned ArgOffset = CCInfo.getNextStackOffset();
1661    if (VARegSaveSize) {
1662      // If this function is vararg, store any remaining integer argument regs
1663      // to their spots on the stack so that they may be loaded by deferencing
1664      // the result of va_next.
1665      AFI->setVarArgsRegSaveSize(VARegSaveSize);
1666      VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1667                                                 VARegSaveSize - VARegSize);
1668      SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1669
1670      SmallVector<SDValue, 4> MemOps;
1671      for (; NumGPRs < 4; ++NumGPRs) {
1672        TargetRegisterClass *RC;
1673        if (AFI->isThumb1OnlyFunction())
1674          RC = ARM::tGPRRegisterClass;
1675        else
1676          RC = ARM::GPRRegisterClass;
1677
1678        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1679        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1680        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1681                        PseudoSourceValue::getFixedStack(VarArgsFrameIndex), 0);
1682        MemOps.push_back(Store);
1683        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1684                          DAG.getConstant(4, getPointerTy()));
1685      }
1686      if (!MemOps.empty())
1687        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1688                            &MemOps[0], MemOps.size());
1689    } else
1690      // This will point to the next argument passed via stack.
1691      VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1692  }
1693
1694  return Chain;
1695}
1696
1697/// isFloatingPointZero - Return true if this is +0.0.
1698static bool isFloatingPointZero(SDValue Op) {
1699  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1700    return CFP->getValueAPF().isPosZero();
1701  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1702    // Maybe this has already been legalized into the constant pool?
1703    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1704      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1705      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1706        if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1707          return CFP->getValueAPF().isPosZero();
1708    }
1709  }
1710  return false;
1711}
1712
1713static bool isLegalCmpImmediate(unsigned C, bool isThumb1Only) {
1714  return ( isThumb1Only && (C & ~255U) == 0) ||
1715         (!isThumb1Only && ARM_AM::getSOImmVal(C) != -1);
1716}
1717
1718/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1719/// the given operands.
1720static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1721                         SDValue &ARMCC, SelectionDAG &DAG, bool isThumb1Only,
1722                         DebugLoc dl) {
1723  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1724    unsigned C = RHSC->getZExtValue();
1725    if (!isLegalCmpImmediate(C, isThumb1Only)) {
1726      // Constant does not fit, try adjusting it by one?
1727      switch (CC) {
1728      default: break;
1729      case ISD::SETLT:
1730      case ISD::SETGE:
1731        if (isLegalCmpImmediate(C-1, isThumb1Only)) {
1732          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1733          RHS = DAG.getConstant(C-1, MVT::i32);
1734        }
1735        break;
1736      case ISD::SETULT:
1737      case ISD::SETUGE:
1738        if (C > 0 && isLegalCmpImmediate(C-1, isThumb1Only)) {
1739          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1740          RHS = DAG.getConstant(C-1, MVT::i32);
1741        }
1742        break;
1743      case ISD::SETLE:
1744      case ISD::SETGT:
1745        if (isLegalCmpImmediate(C+1, isThumb1Only)) {
1746          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1747          RHS = DAG.getConstant(C+1, MVT::i32);
1748        }
1749        break;
1750      case ISD::SETULE:
1751      case ISD::SETUGT:
1752        if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb1Only)) {
1753          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1754          RHS = DAG.getConstant(C+1, MVT::i32);
1755        }
1756        break;
1757      }
1758    }
1759  }
1760
1761  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1762  ARMISD::NodeType CompareType;
1763  switch (CondCode) {
1764  default:
1765    CompareType = ARMISD::CMP;
1766    break;
1767  case ARMCC::EQ:
1768  case ARMCC::NE:
1769    // Uses only Z Flag
1770    CompareType = ARMISD::CMPZ;
1771    break;
1772  }
1773  ARMCC = DAG.getConstant(CondCode, MVT::i32);
1774  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1775}
1776
1777/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1778static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1779                         DebugLoc dl) {
1780  SDValue Cmp;
1781  if (!isFloatingPointZero(RHS))
1782    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1783  else
1784    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1785  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1786}
1787
1788static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
1789                              const ARMSubtarget *ST) {
1790  EVT VT = Op.getValueType();
1791  SDValue LHS = Op.getOperand(0);
1792  SDValue RHS = Op.getOperand(1);
1793  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1794  SDValue TrueVal = Op.getOperand(2);
1795  SDValue FalseVal = Op.getOperand(3);
1796  DebugLoc dl = Op.getDebugLoc();
1797
1798  if (LHS.getValueType() == MVT::i32) {
1799    SDValue ARMCC;
1800    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1801    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1802    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1803  }
1804
1805  ARMCC::CondCodes CondCode, CondCode2;
1806  FPCCToARMCC(CC, CondCode, CondCode2);
1807
1808  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1809  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1810  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1811  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1812                                 ARMCC, CCR, Cmp);
1813  if (CondCode2 != ARMCC::AL) {
1814    SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1815    // FIXME: Needs another CMP because flag can have but one use.
1816    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1817    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1818                         Result, TrueVal, ARMCC2, CCR, Cmp2);
1819  }
1820  return Result;
1821}
1822
1823static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
1824                          const ARMSubtarget *ST) {
1825  SDValue  Chain = Op.getOperand(0);
1826  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1827  SDValue    LHS = Op.getOperand(2);
1828  SDValue    RHS = Op.getOperand(3);
1829  SDValue   Dest = Op.getOperand(4);
1830  DebugLoc dl = Op.getDebugLoc();
1831
1832  if (LHS.getValueType() == MVT::i32) {
1833    SDValue ARMCC;
1834    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1835    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1836    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1837                       Chain, Dest, ARMCC, CCR,Cmp);
1838  }
1839
1840  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1841  ARMCC::CondCodes CondCode, CondCode2;
1842  FPCCToARMCC(CC, CondCode, CondCode2);
1843
1844  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1845  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1846  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1847  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1848  SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1849  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1850  if (CondCode2 != ARMCC::AL) {
1851    ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1852    SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1853    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1854  }
1855  return Res;
1856}
1857
1858SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1859  SDValue Chain = Op.getOperand(0);
1860  SDValue Table = Op.getOperand(1);
1861  SDValue Index = Op.getOperand(2);
1862  DebugLoc dl = Op.getDebugLoc();
1863
1864  EVT PTy = getPointerTy();
1865  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
1866  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
1867  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
1868  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
1869  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
1870  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
1871  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1872  if (Subtarget->isThumb2()) {
1873    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
1874    // which does another jump to the destination. This also makes it easier
1875    // to translate it to TBB / TBH later.
1876    // FIXME: This might not work if the function is extremely large.
1877    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
1878                       Addr, Op.getOperand(2), JTI, UId);
1879  }
1880  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1881    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
1882                       PseudoSourceValue::getJumpTable(), 0);
1883    Chain = Addr.getValue(1);
1884    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
1885    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1886  } else {
1887    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
1888                       PseudoSourceValue::getJumpTable(), 0);
1889    Chain = Addr.getValue(1);
1890    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1891  }
1892}
1893
1894static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1895  DebugLoc dl = Op.getDebugLoc();
1896  unsigned Opc =
1897    Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
1898  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
1899  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
1900}
1901
1902static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1903  EVT VT = Op.getValueType();
1904  DebugLoc dl = Op.getDebugLoc();
1905  unsigned Opc =
1906    Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
1907
1908  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
1909  return DAG.getNode(Opc, dl, VT, Op);
1910}
1911
1912static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
1913  // Implement fcopysign with a fabs and a conditional fneg.
1914  SDValue Tmp0 = Op.getOperand(0);
1915  SDValue Tmp1 = Op.getOperand(1);
1916  DebugLoc dl = Op.getDebugLoc();
1917  EVT VT = Op.getValueType();
1918  EVT SrcVT = Tmp1.getValueType();
1919  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
1920  SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
1921  SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
1922  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1923  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
1924}
1925
1926SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
1927  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1928  MFI->setFrameAddressIsTaken(true);
1929  EVT VT = Op.getValueType();
1930  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
1931  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1932  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
1933    ? ARM::R7 : ARM::R11;
1934  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
1935  while (Depth--)
1936    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
1937  return FrameAddr;
1938}
1939
1940SDValue
1941ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1942                                           SDValue Chain,
1943                                           SDValue Dst, SDValue Src,
1944                                           SDValue Size, unsigned Align,
1945                                           bool AlwaysInline,
1946                                         const Value *DstSV, uint64_t DstSVOff,
1947                                         const Value *SrcSV, uint64_t SrcSVOff){
1948  // Do repeated 4-byte loads and stores. To be improved.
1949  // This requires 4-byte alignment.
1950  if ((Align & 3) != 0)
1951    return SDValue();
1952  // This requires the copy size to be a constant, preferrably
1953  // within a subtarget-specific limit.
1954  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
1955  if (!ConstantSize)
1956    return SDValue();
1957  uint64_t SizeVal = ConstantSize->getZExtValue();
1958  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
1959    return SDValue();
1960
1961  unsigned BytesLeft = SizeVal & 3;
1962  unsigned NumMemOps = SizeVal >> 2;
1963  unsigned EmittedNumMemOps = 0;
1964  EVT VT = MVT::i32;
1965  unsigned VTSize = 4;
1966  unsigned i = 0;
1967  const unsigned MAX_LOADS_IN_LDM = 6;
1968  SDValue TFOps[MAX_LOADS_IN_LDM];
1969  SDValue Loads[MAX_LOADS_IN_LDM];
1970  uint64_t SrcOff = 0, DstOff = 0;
1971
1972  // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
1973  // same number of stores.  The loads and stores will get combined into
1974  // ldm/stm later on.
1975  while (EmittedNumMemOps < NumMemOps) {
1976    for (i = 0;
1977         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1978      Loads[i] = DAG.getLoad(VT, dl, Chain,
1979                             DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1980                                         DAG.getConstant(SrcOff, MVT::i32)),
1981                             SrcSV, SrcSVOff + SrcOff);
1982      TFOps[i] = Loads[i].getValue(1);
1983      SrcOff += VTSize;
1984    }
1985    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1986
1987    for (i = 0;
1988         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1989      TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1990                           DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1991                                       DAG.getConstant(DstOff, MVT::i32)),
1992                           DstSV, DstSVOff + DstOff);
1993      DstOff += VTSize;
1994    }
1995    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1996
1997    EmittedNumMemOps += i;
1998  }
1999
2000  if (BytesLeft == 0)
2001    return Chain;
2002
2003  // Issue loads / stores for the trailing (1 - 3) bytes.
2004  unsigned BytesLeftSave = BytesLeft;
2005  i = 0;
2006  while (BytesLeft) {
2007    if (BytesLeft >= 2) {
2008      VT = MVT::i16;
2009      VTSize = 2;
2010    } else {
2011      VT = MVT::i8;
2012      VTSize = 1;
2013    }
2014
2015    Loads[i] = DAG.getLoad(VT, dl, Chain,
2016                           DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
2017                                       DAG.getConstant(SrcOff, MVT::i32)),
2018                           SrcSV, SrcSVOff + SrcOff);
2019    TFOps[i] = Loads[i].getValue(1);
2020    ++i;
2021    SrcOff += VTSize;
2022    BytesLeft -= VTSize;
2023  }
2024  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2025
2026  i = 0;
2027  BytesLeft = BytesLeftSave;
2028  while (BytesLeft) {
2029    if (BytesLeft >= 2) {
2030      VT = MVT::i16;
2031      VTSize = 2;
2032    } else {
2033      VT = MVT::i8;
2034      VTSize = 1;
2035    }
2036
2037    TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
2038                            DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
2039                                        DAG.getConstant(DstOff, MVT::i32)),
2040                            DstSV, DstSVOff + DstOff);
2041    ++i;
2042    DstOff += VTSize;
2043    BytesLeft -= VTSize;
2044  }
2045  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
2046}
2047
2048static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2049  SDValue Op = N->getOperand(0);
2050  DebugLoc dl = N->getDebugLoc();
2051  if (N->getValueType(0) == MVT::f64) {
2052    // Turn i64->f64 into FMDRR.
2053    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2054                             DAG.getConstant(0, MVT::i32));
2055    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2056                             DAG.getConstant(1, MVT::i32));
2057    return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
2058  }
2059
2060  // Turn f64->i64 into FMRRD.
2061  SDValue Cvt = DAG.getNode(ARMISD::FMRRD, dl,
2062                            DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2063
2064  // Merge the pieces into a single i64 value.
2065  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2066}
2067
2068/// getZeroVector - Returns a vector of specified type with all zero elements.
2069///
2070static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2071  assert(VT.isVector() && "Expected a vector type");
2072
2073  // Zero vectors are used to represent vector negation and in those cases
2074  // will be implemented with the NEON VNEG instruction.  However, VNEG does
2075  // not support i64 elements, so sometimes the zero vectors will need to be
2076  // explicitly constructed.  For those cases, and potentially other uses in
2077  // the future, always build zero vectors as <16 x i8> or <8 x i8> bitcasted
2078  // to their dest type.  This ensures they get CSE'd.
2079  SDValue Vec;
2080  SDValue Cst = DAG.getTargetConstant(0, MVT::i8);
2081  SmallVector<SDValue, 8> Ops;
2082  MVT TVT;
2083
2084  if (VT.getSizeInBits() == 64) {
2085    Ops.assign(8, Cst); TVT = MVT::v8i8;
2086  } else {
2087    Ops.assign(16, Cst); TVT = MVT::v16i8;
2088  }
2089  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2090
2091  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2092}
2093
2094/// getOnesVector - Returns a vector of specified type with all bits set.
2095///
2096static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2097  assert(VT.isVector() && "Expected a vector type");
2098
2099  // Always build ones vectors as <16 x i8> or <8 x i8> bitcasted to their
2100  // dest type. This ensures they get CSE'd.
2101  SDValue Vec;
2102  SDValue Cst = DAG.getTargetConstant(0xFF, MVT::i8);
2103  SmallVector<SDValue, 8> Ops;
2104  MVT TVT;
2105
2106  if (VT.getSizeInBits() == 64) {
2107    Ops.assign(8, Cst); TVT = MVT::v8i8;
2108  } else {
2109    Ops.assign(16, Cst); TVT = MVT::v16i8;
2110  }
2111  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size());
2112
2113  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
2114}
2115
2116/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2117/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2118static SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
2119                                   const ARMSubtarget *ST) {
2120  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2121  EVT VT = Op.getValueType();
2122  unsigned VTBits = VT.getSizeInBits();
2123  DebugLoc dl = Op.getDebugLoc();
2124  SDValue ShOpLo = Op.getOperand(0);
2125  SDValue ShOpHi = Op.getOperand(1);
2126  SDValue ShAmt  = Op.getOperand(2);
2127  SDValue ARMCC;
2128  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2129
2130  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2131
2132  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2133                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2134  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2135  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2136                                   DAG.getConstant(VTBits, MVT::i32));
2137  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2138  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2139  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2140
2141  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2142  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2143                          ARMCC, DAG, ST->isThumb1Only(), dl);
2144  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2145  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC,
2146                           CCR, Cmp);
2147
2148  SDValue Ops[2] = { Lo, Hi };
2149  return DAG.getMergeValues(Ops, 2, dl);
2150}
2151
2152/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2153/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2154static SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG,
2155                                   const ARMSubtarget *ST) {
2156  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2157  EVT VT = Op.getValueType();
2158  unsigned VTBits = VT.getSizeInBits();
2159  DebugLoc dl = Op.getDebugLoc();
2160  SDValue ShOpLo = Op.getOperand(0);
2161  SDValue ShOpHi = Op.getOperand(1);
2162  SDValue ShAmt  = Op.getOperand(2);
2163  SDValue ARMCC;
2164
2165  assert(Op.getOpcode() == ISD::SHL_PARTS);
2166  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2167                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2168  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2169  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2170                                   DAG.getConstant(VTBits, MVT::i32));
2171  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2172  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2173
2174  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2175  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2176  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2177                          ARMCC, DAG, ST->isThumb1Only(), dl);
2178  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2179  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMCC,
2180                           CCR, Cmp);
2181
2182  SDValue Ops[2] = { Lo, Hi };
2183  return DAG.getMergeValues(Ops, 2, dl);
2184}
2185
2186static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2187                          const ARMSubtarget *ST) {
2188  EVT VT = N->getValueType(0);
2189  DebugLoc dl = N->getDebugLoc();
2190
2191  // Lower vector shifts on NEON to use VSHL.
2192  if (VT.isVector()) {
2193    assert(ST->hasNEON() && "unexpected vector shift");
2194
2195    // Left shifts translate directly to the vshiftu intrinsic.
2196    if (N->getOpcode() == ISD::SHL)
2197      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2198                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2199                         N->getOperand(0), N->getOperand(1));
2200
2201    assert((N->getOpcode() == ISD::SRA ||
2202            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2203
2204    // NEON uses the same intrinsics for both left and right shifts.  For
2205    // right shifts, the shift amounts are negative, so negate the vector of
2206    // shift amounts.
2207    EVT ShiftVT = N->getOperand(1).getValueType();
2208    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2209                                       getZeroVector(ShiftVT, DAG, dl),
2210                                       N->getOperand(1));
2211    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2212                               Intrinsic::arm_neon_vshifts :
2213                               Intrinsic::arm_neon_vshiftu);
2214    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2215                       DAG.getConstant(vshiftInt, MVT::i32),
2216                       N->getOperand(0), NegatedCount);
2217  }
2218
2219  // We can get here for a node like i32 = ISD::SHL i32, i64
2220  if (VT != MVT::i64)
2221    return SDValue();
2222
2223  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2224         "Unknown shift to lower!");
2225
2226  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2227  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2228      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2229    return SDValue();
2230
2231  // If we are in thumb mode, we don't have RRX.
2232  if (ST->isThumb1Only()) return SDValue();
2233
2234  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2235  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2236                             DAG.getConstant(0, MVT::i32));
2237  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2238                             DAG.getConstant(1, MVT::i32));
2239
2240  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2241  // captures the result into a carry flag.
2242  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2243  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2244
2245  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2246  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2247
2248  // Merge the pieces into a single i64 value.
2249 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2250}
2251
2252static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2253  SDValue TmpOp0, TmpOp1;
2254  bool Invert = false;
2255  bool Swap = false;
2256  unsigned Opc = 0;
2257
2258  SDValue Op0 = Op.getOperand(0);
2259  SDValue Op1 = Op.getOperand(1);
2260  SDValue CC = Op.getOperand(2);
2261  EVT VT = Op.getValueType();
2262  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2263  DebugLoc dl = Op.getDebugLoc();
2264
2265  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2266    switch (SetCCOpcode) {
2267    default: llvm_unreachable("Illegal FP comparison"); break;
2268    case ISD::SETUNE:
2269    case ISD::SETNE:  Invert = true; // Fallthrough
2270    case ISD::SETOEQ:
2271    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2272    case ISD::SETOLT:
2273    case ISD::SETLT: Swap = true; // Fallthrough
2274    case ISD::SETOGT:
2275    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2276    case ISD::SETOLE:
2277    case ISD::SETLE:  Swap = true; // Fallthrough
2278    case ISD::SETOGE:
2279    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2280    case ISD::SETUGE: Swap = true; // Fallthrough
2281    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2282    case ISD::SETUGT: Swap = true; // Fallthrough
2283    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2284    case ISD::SETUEQ: Invert = true; // Fallthrough
2285    case ISD::SETONE:
2286      // Expand this to (OLT | OGT).
2287      TmpOp0 = Op0;
2288      TmpOp1 = Op1;
2289      Opc = ISD::OR;
2290      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2291      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2292      break;
2293    case ISD::SETUO: Invert = true; // Fallthrough
2294    case ISD::SETO:
2295      // Expand this to (OLT | OGE).
2296      TmpOp0 = Op0;
2297      TmpOp1 = Op1;
2298      Opc = ISD::OR;
2299      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2300      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2301      break;
2302    }
2303  } else {
2304    // Integer comparisons.
2305    switch (SetCCOpcode) {
2306    default: llvm_unreachable("Illegal integer comparison"); break;
2307    case ISD::SETNE:  Invert = true;
2308    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2309    case ISD::SETLT:  Swap = true;
2310    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2311    case ISD::SETLE:  Swap = true;
2312    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2313    case ISD::SETULT: Swap = true;
2314    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2315    case ISD::SETULE: Swap = true;
2316    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2317    }
2318
2319    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2320    if (Opc == ARMISD::VCEQ) {
2321
2322      SDValue AndOp;
2323      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2324        AndOp = Op0;
2325      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2326        AndOp = Op1;
2327
2328      // Ignore bitconvert.
2329      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2330        AndOp = AndOp.getOperand(0);
2331
2332      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2333        Opc = ARMISD::VTST;
2334        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2335        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2336        Invert = !Invert;
2337      }
2338    }
2339  }
2340
2341  if (Swap)
2342    std::swap(Op0, Op1);
2343
2344  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2345
2346  if (Invert)
2347    Result = DAG.getNOT(dl, Result, VT);
2348
2349  return Result;
2350}
2351
2352/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
2353/// VMOV instruction, and if so, return the constant being splatted.
2354static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
2355                           unsigned SplatBitSize, SelectionDAG &DAG) {
2356  switch (SplatBitSize) {
2357  case 8:
2358    // Any 1-byte value is OK.
2359    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2360    return DAG.getTargetConstant(SplatBits, MVT::i8);
2361
2362  case 16:
2363    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2364    if ((SplatBits & ~0xff) == 0 ||
2365        (SplatBits & ~0xff00) == 0)
2366      return DAG.getTargetConstant(SplatBits, MVT::i16);
2367    break;
2368
2369  case 32:
2370    // NEON's 32-bit VMOV supports splat values where:
2371    // * only one byte is nonzero, or
2372    // * the least significant byte is 0xff and the second byte is nonzero, or
2373    // * the least significant 2 bytes are 0xff and the third is nonzero.
2374    if ((SplatBits & ~0xff) == 0 ||
2375        (SplatBits & ~0xff00) == 0 ||
2376        (SplatBits & ~0xff0000) == 0 ||
2377        (SplatBits & ~0xff000000) == 0)
2378      return DAG.getTargetConstant(SplatBits, MVT::i32);
2379
2380    if ((SplatBits & ~0xffff) == 0 &&
2381        ((SplatBits | SplatUndef) & 0xff) == 0xff)
2382      return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
2383
2384    if ((SplatBits & ~0xffffff) == 0 &&
2385        ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
2386      return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
2387
2388    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2389    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2390    // VMOV.I32.  A (very) minor optimization would be to replicate the value
2391    // and fall through here to test for a valid 64-bit splat.  But, then the
2392    // caller would also need to check and handle the change in size.
2393    break;
2394
2395  case 64: {
2396    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2397    uint64_t BitMask = 0xff;
2398    uint64_t Val = 0;
2399    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2400      if (((SplatBits | SplatUndef) & BitMask) == BitMask)
2401        Val |= BitMask;
2402      else if ((SplatBits & BitMask) != 0)
2403        return SDValue();
2404      BitMask <<= 8;
2405    }
2406    return DAG.getTargetConstant(Val, MVT::i64);
2407  }
2408
2409  default:
2410    llvm_unreachable("unexpected size for isVMOVSplat");
2411    break;
2412  }
2413
2414  return SDValue();
2415}
2416
2417/// getVMOVImm - If this is a build_vector of constants which can be
2418/// formed by using a VMOV instruction of the specified element size,
2419/// return the constant being splatted.  The ByteSize field indicates the
2420/// number of bytes of each element [1248].
2421SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2422  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2423  APInt SplatBits, SplatUndef;
2424  unsigned SplatBitSize;
2425  bool HasAnyUndefs;
2426  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2427                                      HasAnyUndefs, ByteSize * 8))
2428    return SDValue();
2429
2430  if (SplatBitSize > ByteSize * 8)
2431    return SDValue();
2432
2433  return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2434                     SplatBitSize, DAG);
2435}
2436
2437static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
2438                       bool &ReverseVEXT, unsigned &Imm) {
2439  unsigned NumElts = VT.getVectorNumElements();
2440  ReverseVEXT = false;
2441  Imm = M[0];
2442
2443  // If this is a VEXT shuffle, the immediate value is the index of the first
2444  // element.  The other shuffle indices must be the successive elements after
2445  // the first one.
2446  unsigned ExpectedElt = Imm;
2447  for (unsigned i = 1; i < NumElts; ++i) {
2448    // Increment the expected index.  If it wraps around, it may still be
2449    // a VEXT but the source vectors must be swapped.
2450    ExpectedElt += 1;
2451    if (ExpectedElt == NumElts * 2) {
2452      ExpectedElt = 0;
2453      ReverseVEXT = true;
2454    }
2455
2456    if (ExpectedElt != static_cast<unsigned>(M[i]))
2457      return false;
2458  }
2459
2460  // Adjust the index value if the source operands will be swapped.
2461  if (ReverseVEXT)
2462    Imm -= NumElts;
2463
2464  return true;
2465}
2466
2467/// isVREVMask - Check if a vector shuffle corresponds to a VREV
2468/// instruction with the specified blocksize.  (The order of the elements
2469/// within each block of the vector is reversed.)
2470static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
2471                       unsigned BlockSize) {
2472  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
2473         "Only possible block sizes for VREV are: 16, 32, 64");
2474
2475  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2476  if (EltSz == 64)
2477    return false;
2478
2479  unsigned NumElts = VT.getVectorNumElements();
2480  unsigned BlockElts = M[0] + 1;
2481
2482  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
2483    return false;
2484
2485  for (unsigned i = 0; i < NumElts; ++i) {
2486    if ((unsigned) M[i] !=
2487        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
2488      return false;
2489  }
2490
2491  return true;
2492}
2493
2494static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
2495                       unsigned &WhichResult) {
2496  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2497  if (EltSz == 64)
2498    return false;
2499
2500  unsigned NumElts = VT.getVectorNumElements();
2501  WhichResult = (M[0] == 0 ? 0 : 1);
2502  for (unsigned i = 0; i < NumElts; i += 2) {
2503    if ((unsigned) M[i] != i + WhichResult ||
2504        (unsigned) M[i+1] != i + NumElts + WhichResult)
2505      return false;
2506  }
2507  return true;
2508}
2509
2510static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
2511                       unsigned &WhichResult) {
2512  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2513  if (EltSz == 64)
2514    return false;
2515
2516  unsigned NumElts = VT.getVectorNumElements();
2517  WhichResult = (M[0] == 0 ? 0 : 1);
2518  for (unsigned i = 0; i != NumElts; ++i) {
2519    if ((unsigned) M[i] != 2 * i + WhichResult)
2520      return false;
2521  }
2522
2523  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2524  if (VT.is64BitVector() && EltSz == 32)
2525    return false;
2526
2527  return true;
2528}
2529
2530static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
2531                       unsigned &WhichResult) {
2532  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2533  if (EltSz == 64)
2534    return false;
2535
2536  unsigned NumElts = VT.getVectorNumElements();
2537  WhichResult = (M[0] == 0 ? 0 : 1);
2538  unsigned Idx = WhichResult * NumElts / 2;
2539  for (unsigned i = 0; i != NumElts; i += 2) {
2540    if ((unsigned) M[i] != Idx ||
2541        (unsigned) M[i+1] != Idx + NumElts)
2542      return false;
2543    Idx += 1;
2544  }
2545
2546  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
2547  if (VT.is64BitVector() && EltSz == 32)
2548    return false;
2549
2550  return true;
2551}
2552
2553static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2554  // Canonicalize all-zeros and all-ones vectors.
2555  ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode());
2556  if (ConstVal->isNullValue())
2557    return getZeroVector(VT, DAG, dl);
2558  if (ConstVal->isAllOnesValue())
2559    return getOnesVector(VT, DAG, dl);
2560
2561  EVT CanonicalVT;
2562  if (VT.is64BitVector()) {
2563    switch (Val.getValueType().getSizeInBits()) {
2564    case 8:  CanonicalVT = MVT::v8i8; break;
2565    case 16: CanonicalVT = MVT::v4i16; break;
2566    case 32: CanonicalVT = MVT::v2i32; break;
2567    case 64: CanonicalVT = MVT::v1i64; break;
2568    default: llvm_unreachable("unexpected splat element type"); break;
2569    }
2570  } else {
2571    assert(VT.is128BitVector() && "unknown splat vector size");
2572    switch (Val.getValueType().getSizeInBits()) {
2573    case 8:  CanonicalVT = MVT::v16i8; break;
2574    case 16: CanonicalVT = MVT::v8i16; break;
2575    case 32: CanonicalVT = MVT::v4i32; break;
2576    case 64: CanonicalVT = MVT::v2i64; break;
2577    default: llvm_unreachable("unexpected splat element type"); break;
2578    }
2579  }
2580
2581  // Build a canonical splat for this value.
2582  SmallVector<SDValue, 8> Ops;
2583  Ops.assign(CanonicalVT.getVectorNumElements(), Val);
2584  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
2585                            Ops.size());
2586  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
2587}
2588
2589// If this is a case we can't handle, return null and let the default
2590// expansion code take care of it.
2591static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
2592  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
2593  DebugLoc dl = Op.getDebugLoc();
2594  EVT VT = Op.getValueType();
2595
2596  APInt SplatBits, SplatUndef;
2597  unsigned SplatBitSize;
2598  bool HasAnyUndefs;
2599  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
2600    if (SplatBitSize <= 64) {
2601      SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
2602                                SplatUndef.getZExtValue(), SplatBitSize, DAG);
2603      if (Val.getNode())
2604        return BuildSplat(Val, VT, DAG, dl);
2605    }
2606  }
2607
2608  // If there are only 2 elements in a 128-bit vector, insert them into an
2609  // undef vector.  This handles the common case for 128-bit vector argument
2610  // passing, where the insertions should be translated to subreg accesses
2611  // with no real instructions.
2612  if (VT.is128BitVector() && Op.getNumOperands() == 2) {
2613    SDValue Val = DAG.getUNDEF(VT);
2614    SDValue Op0 = Op.getOperand(0);
2615    SDValue Op1 = Op.getOperand(1);
2616    if (Op0.getOpcode() != ISD::UNDEF)
2617      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0,
2618                        DAG.getIntPtrConstant(0));
2619    if (Op1.getOpcode() != ISD::UNDEF)
2620      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1,
2621                        DAG.getIntPtrConstant(1));
2622    return Val;
2623  }
2624
2625  return SDValue();
2626}
2627
2628/// isShuffleMaskLegal - Targets can use this to indicate that they only
2629/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
2630/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
2631/// are assumed to be legal.
2632bool
2633ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
2634                                      EVT VT) const {
2635  if (VT.getVectorNumElements() == 4 &&
2636      (VT.is128BitVector() || VT.is64BitVector())) {
2637    unsigned PFIndexes[4];
2638    for (unsigned i = 0; i != 4; ++i) {
2639      if (M[i] < 0)
2640        PFIndexes[i] = 8;
2641      else
2642        PFIndexes[i] = M[i];
2643    }
2644
2645    // Compute the index in the perfect shuffle table.
2646    unsigned PFTableIndex =
2647      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2648    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2649    unsigned Cost = (PFEntry >> 30);
2650
2651    if (Cost <= 4)
2652      return true;
2653  }
2654
2655  bool ReverseVEXT;
2656  unsigned Imm, WhichResult;
2657
2658  return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
2659          isVREVMask(M, VT, 64) ||
2660          isVREVMask(M, VT, 32) ||
2661          isVREVMask(M, VT, 16) ||
2662          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
2663          isVTRNMask(M, VT, WhichResult) ||
2664          isVUZPMask(M, VT, WhichResult) ||
2665          isVZIPMask(M, VT, WhichResult));
2666}
2667
2668/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2669/// the specified operations to build the shuffle.
2670static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
2671                                      SDValue RHS, SelectionDAG &DAG,
2672                                      DebugLoc dl) {
2673  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2674  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2675  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2676
2677  enum {
2678    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2679    OP_VREV,
2680    OP_VDUP0,
2681    OP_VDUP1,
2682    OP_VDUP2,
2683    OP_VDUP3,
2684    OP_VEXT1,
2685    OP_VEXT2,
2686    OP_VEXT3,
2687    OP_VUZPL, // VUZP, left result
2688    OP_VUZPR, // VUZP, right result
2689    OP_VZIPL, // VZIP, left result
2690    OP_VZIPR, // VZIP, right result
2691    OP_VTRNL, // VTRN, left result
2692    OP_VTRNR  // VTRN, right result
2693  };
2694
2695  if (OpNum == OP_COPY) {
2696    if (LHSID == (1*9+2)*9+3) return LHS;
2697    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2698    return RHS;
2699  }
2700
2701  SDValue OpLHS, OpRHS;
2702  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
2703  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
2704  EVT VT = OpLHS.getValueType();
2705
2706  switch (OpNum) {
2707  default: llvm_unreachable("Unknown shuffle opcode!");
2708  case OP_VREV:
2709    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
2710  case OP_VDUP0:
2711  case OP_VDUP1:
2712  case OP_VDUP2:
2713  case OP_VDUP3:
2714    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
2715                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
2716  case OP_VEXT1:
2717  case OP_VEXT2:
2718  case OP_VEXT3:
2719    return DAG.getNode(ARMISD::VEXT, dl, VT,
2720                       OpLHS, OpRHS,
2721                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
2722  case OP_VUZPL:
2723  case OP_VUZPR:
2724    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2725                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
2726  case OP_VZIPL:
2727  case OP_VZIPR:
2728    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2729                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
2730  case OP_VTRNL:
2731  case OP_VTRNR:
2732    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2733                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
2734  }
2735}
2736
2737static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2738  SDValue V1 = Op.getOperand(0);
2739  SDValue V2 = Op.getOperand(1);
2740  DebugLoc dl = Op.getDebugLoc();
2741  EVT VT = Op.getValueType();
2742  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2743  SmallVector<int, 8> ShuffleMask;
2744
2745  // Convert shuffles that are directly supported on NEON to target-specific
2746  // DAG nodes, instead of keeping them as shuffles and matching them again
2747  // during code selection.  This is more efficient and avoids the possibility
2748  // of inconsistencies between legalization and selection.
2749  // FIXME: floating-point vectors should be canonicalized to integer vectors
2750  // of the same time so that they get CSEd properly.
2751  SVN->getMask(ShuffleMask);
2752
2753  if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
2754    int Lane = SVN->getSplatIndex();
2755    // If this is undef splat, generate it via "just" vdup, if possible.
2756    if (Lane == -1) Lane = 0;
2757
2758    if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
2759      return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
2760    }
2761    return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
2762                       DAG.getConstant(Lane, MVT::i32));
2763  }
2764
2765  bool ReverseVEXT;
2766  unsigned Imm;
2767  if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
2768    if (ReverseVEXT)
2769      std::swap(V1, V2);
2770    return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
2771                       DAG.getConstant(Imm, MVT::i32));
2772  }
2773
2774  if (isVREVMask(ShuffleMask, VT, 64))
2775    return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
2776  if (isVREVMask(ShuffleMask, VT, 32))
2777    return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
2778  if (isVREVMask(ShuffleMask, VT, 16))
2779    return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
2780
2781  // Check for Neon shuffles that modify both input vectors in place.
2782  // If both results are used, i.e., if there are two shuffles with the same
2783  // source operands and with masks corresponding to both results of one of
2784  // these operations, DAG memoization will ensure that a single node is
2785  // used for both shuffles.
2786  unsigned WhichResult;
2787  if (isVTRNMask(ShuffleMask, VT, WhichResult))
2788    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
2789                       V1, V2).getValue(WhichResult);
2790  if (isVUZPMask(ShuffleMask, VT, WhichResult))
2791    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
2792                       V1, V2).getValue(WhichResult);
2793  if (isVZIPMask(ShuffleMask, VT, WhichResult))
2794    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
2795                       V1, V2).getValue(WhichResult);
2796
2797  // If the shuffle is not directly supported and it has 4 elements, use
2798  // the PerfectShuffle-generated table to synthesize it from other shuffles.
2799  if (VT.getVectorNumElements() == 4 &&
2800      (VT.is128BitVector() || VT.is64BitVector())) {
2801    unsigned PFIndexes[4];
2802    for (unsigned i = 0; i != 4; ++i) {
2803      if (ShuffleMask[i] < 0)
2804        PFIndexes[i] = 8;
2805      else
2806        PFIndexes[i] = ShuffleMask[i];
2807    }
2808
2809    // Compute the index in the perfect shuffle table.
2810    unsigned PFTableIndex =
2811      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2812
2813    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2814    unsigned Cost = (PFEntry >> 30);
2815
2816    if (Cost <= 4)
2817      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
2818  }
2819
2820  return SDValue();
2821}
2822
2823static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
2824  EVT VT = Op.getValueType();
2825  DebugLoc dl = Op.getDebugLoc();
2826  SDValue Vec = Op.getOperand(0);
2827  SDValue Lane = Op.getOperand(1);
2828  assert(VT == MVT::i32 &&
2829         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
2830         "unexpected type for custom-lowering vector extract");
2831  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
2832}
2833
2834static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
2835  // The only time a CONCAT_VECTORS operation can have legal types is when
2836  // two 64-bit vectors are concatenated to a 128-bit vector.
2837  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
2838         "unexpected CONCAT_VECTORS");
2839  DebugLoc dl = Op.getDebugLoc();
2840  SDValue Val = DAG.getUNDEF(MVT::v2f64);
2841  SDValue Op0 = Op.getOperand(0);
2842  SDValue Op1 = Op.getOperand(1);
2843  if (Op0.getOpcode() != ISD::UNDEF)
2844    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2845                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
2846                      DAG.getIntPtrConstant(0));
2847  if (Op1.getOpcode() != ISD::UNDEF)
2848    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
2849                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
2850                      DAG.getIntPtrConstant(1));
2851  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
2852}
2853
2854SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
2855  switch (Op.getOpcode()) {
2856  default: llvm_unreachable("Don't know how to custom lower this!");
2857  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
2858  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
2859  case ISD::GlobalAddress:
2860    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
2861      LowerGlobalAddressELF(Op, DAG);
2862  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2863  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG, Subtarget);
2864  case ISD::BR_CC:         return LowerBR_CC(Op, DAG, Subtarget);
2865  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
2866  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
2867  case ISD::VASTART:       return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2868  case ISD::SINT_TO_FP:
2869  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
2870  case ISD::FP_TO_SINT:
2871  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
2872  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
2873  case ISD::RETURNADDR:    break;
2874  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
2875  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2876  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2877  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
2878  case ISD::SHL:
2879  case ISD::SRL:
2880  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
2881  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG, Subtarget);
2882  case ISD::SRL_PARTS:
2883  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG, Subtarget);
2884  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
2885  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
2886  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2887  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2888  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
2889  }
2890  return SDValue();
2891}
2892
2893/// ReplaceNodeResults - Replace the results of node with an illegal result
2894/// type with new values built out of custom code.
2895void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
2896                                           SmallVectorImpl<SDValue>&Results,
2897                                           SelectionDAG &DAG) {
2898  switch (N->getOpcode()) {
2899  default:
2900    llvm_unreachable("Don't know how to custom expand this!");
2901    return;
2902  case ISD::BIT_CONVERT:
2903    Results.push_back(ExpandBIT_CONVERT(N, DAG));
2904    return;
2905  case ISD::SRL:
2906  case ISD::SRA: {
2907    SDValue Res = LowerShift(N, DAG, Subtarget);
2908    if (Res.getNode())
2909      Results.push_back(Res);
2910    return;
2911  }
2912  }
2913}
2914
2915//===----------------------------------------------------------------------===//
2916//                           ARM Scheduler Hooks
2917//===----------------------------------------------------------------------===//
2918
2919MachineBasicBlock *
2920ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
2921                                               MachineBasicBlock *BB,
2922                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
2923  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2924  DebugLoc dl = MI->getDebugLoc();
2925  switch (MI->getOpcode()) {
2926  default:
2927    llvm_unreachable("Unexpected instr type to insert");
2928  case ARM::tMOVCCr_pseudo: {
2929    // To "insert" a SELECT_CC instruction, we actually have to insert the
2930    // diamond control-flow pattern.  The incoming instruction knows the
2931    // destination vreg to set, the condition code register to branch on, the
2932    // true/false values to select between, and a branch opcode to use.
2933    const BasicBlock *LLVM_BB = BB->getBasicBlock();
2934    MachineFunction::iterator It = BB;
2935    ++It;
2936
2937    //  thisMBB:
2938    //  ...
2939    //   TrueVal = ...
2940    //   cmpTY ccX, r1, r2
2941    //   bCC copy1MBB
2942    //   fallthrough --> copy0MBB
2943    MachineBasicBlock *thisMBB  = BB;
2944    MachineFunction *F = BB->getParent();
2945    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
2946    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
2947    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
2948      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
2949    F->insert(It, copy0MBB);
2950    F->insert(It, sinkMBB);
2951    // Update machine-CFG edges by first adding all successors of the current
2952    // block to the new block which will contain the Phi node for the select.
2953    // Also inform sdisel of the edge changes.
2954    for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
2955           E = BB->succ_end(); I != E; ++I) {
2956      EM->insert(std::make_pair(*I, sinkMBB));
2957      sinkMBB->addSuccessor(*I);
2958    }
2959    // Next, remove all successors of the current block, and add the true
2960    // and fallthrough blocks as its successors.
2961    while (!BB->succ_empty())
2962      BB->removeSuccessor(BB->succ_begin());
2963    BB->addSuccessor(copy0MBB);
2964    BB->addSuccessor(sinkMBB);
2965
2966    //  copy0MBB:
2967    //   %FalseValue = ...
2968    //   # fallthrough to sinkMBB
2969    BB = copy0MBB;
2970
2971    // Update machine-CFG edges
2972    BB->addSuccessor(sinkMBB);
2973
2974    //  sinkMBB:
2975    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2976    //  ...
2977    BB = sinkMBB;
2978    BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
2979      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
2980      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2981
2982    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
2983    return BB;
2984  }
2985
2986  case ARM::tANDsp:
2987  case ARM::tADDspr_:
2988  case ARM::tSUBspi_:
2989  case ARM::t2SUBrSPi_:
2990  case ARM::t2SUBrSPi12_:
2991  case ARM::t2SUBrSPs_: {
2992    MachineFunction *MF = BB->getParent();
2993    unsigned DstReg = MI->getOperand(0).getReg();
2994    unsigned SrcReg = MI->getOperand(1).getReg();
2995    bool DstIsDead = MI->getOperand(0).isDead();
2996    bool SrcIsKill = MI->getOperand(1).isKill();
2997
2998    if (SrcReg != ARM::SP) {
2999      // Copy the source to SP from virtual register.
3000      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
3001      unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3002        ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
3003      BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP)
3004        .addReg(SrcReg, getKillRegState(SrcIsKill));
3005    }
3006
3007    unsigned OpOpc = 0;
3008    bool NeedPred = false, NeedCC = false, NeedOp3 = false;
3009    switch (MI->getOpcode()) {
3010    default:
3011      llvm_unreachable("Unexpected pseudo instruction!");
3012    case ARM::tANDsp:
3013      OpOpc = ARM::tAND;
3014      NeedPred = true;
3015      break;
3016    case ARM::tADDspr_:
3017      OpOpc = ARM::tADDspr;
3018      break;
3019    case ARM::tSUBspi_:
3020      OpOpc = ARM::tSUBspi;
3021      break;
3022    case ARM::t2SUBrSPi_:
3023      OpOpc = ARM::t2SUBrSPi;
3024      NeedPred = true; NeedCC = true;
3025      break;
3026    case ARM::t2SUBrSPi12_:
3027      OpOpc = ARM::t2SUBrSPi12;
3028      NeedPred = true;
3029      break;
3030    case ARM::t2SUBrSPs_:
3031      OpOpc = ARM::t2SUBrSPs;
3032      NeedPred = true; NeedCC = true; NeedOp3 = true;
3033      break;
3034    }
3035    MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP);
3036    if (OpOpc == ARM::tAND)
3037      AddDefaultT1CC(MIB);
3038    MIB.addReg(ARM::SP);
3039    MIB.addOperand(MI->getOperand(2));
3040    if (NeedOp3)
3041      MIB.addOperand(MI->getOperand(3));
3042    if (NeedPred)
3043      AddDefaultPred(MIB);
3044    if (NeedCC)
3045      AddDefaultCC(MIB);
3046
3047    // Copy the result from SP to virtual register.
3048    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
3049    unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
3050      ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
3051    BuildMI(BB, dl, TII->get(CopyOpc))
3052      .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
3053      .addReg(ARM::SP);
3054    MF->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
3055    return BB;
3056  }
3057  }
3058}
3059
3060//===----------------------------------------------------------------------===//
3061//                           ARM Optimization Hooks
3062//===----------------------------------------------------------------------===//
3063
3064static
3065SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
3066                            TargetLowering::DAGCombinerInfo &DCI) {
3067  SelectionDAG &DAG = DCI.DAG;
3068  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3069  EVT VT = N->getValueType(0);
3070  unsigned Opc = N->getOpcode();
3071  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
3072  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
3073  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
3074  ISD::CondCode CC = ISD::SETCC_INVALID;
3075
3076  if (isSlctCC) {
3077    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
3078  } else {
3079    SDValue CCOp = Slct.getOperand(0);
3080    if (CCOp.getOpcode() == ISD::SETCC)
3081      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
3082  }
3083
3084  bool DoXform = false;
3085  bool InvCC = false;
3086  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
3087          "Bad input!");
3088
3089  if (LHS.getOpcode() == ISD::Constant &&
3090      cast<ConstantSDNode>(LHS)->isNullValue()) {
3091    DoXform = true;
3092  } else if (CC != ISD::SETCC_INVALID &&
3093             RHS.getOpcode() == ISD::Constant &&
3094             cast<ConstantSDNode>(RHS)->isNullValue()) {
3095    std::swap(LHS, RHS);
3096    SDValue Op0 = Slct.getOperand(0);
3097    EVT OpVT = isSlctCC ? Op0.getValueType() :
3098                          Op0.getOperand(0).getValueType();
3099    bool isInt = OpVT.isInteger();
3100    CC = ISD::getSetCCInverse(CC, isInt);
3101
3102    if (!TLI.isCondCodeLegal(CC, OpVT))
3103      return SDValue();         // Inverse operator isn't legal.
3104
3105    DoXform = true;
3106    InvCC = true;
3107  }
3108
3109  if (DoXform) {
3110    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
3111    if (isSlctCC)
3112      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
3113                             Slct.getOperand(0), Slct.getOperand(1), CC);
3114    SDValue CCOp = Slct.getOperand(0);
3115    if (InvCC)
3116      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
3117                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
3118    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
3119                       CCOp, OtherOp, Result);
3120  }
3121  return SDValue();
3122}
3123
3124/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
3125static SDValue PerformADDCombine(SDNode *N,
3126                                 TargetLowering::DAGCombinerInfo &DCI) {
3127  // added by evan in r37685 with no testcase.
3128  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3129
3130  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
3131  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
3132    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
3133    if (Result.getNode()) return Result;
3134  }
3135  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
3136    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
3137    if (Result.getNode()) return Result;
3138  }
3139
3140  return SDValue();
3141}
3142
3143/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
3144static SDValue PerformSUBCombine(SDNode *N,
3145                                 TargetLowering::DAGCombinerInfo &DCI) {
3146  // added by evan in r37685 with no testcase.
3147  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3148
3149  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
3150  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
3151    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
3152    if (Result.getNode()) return Result;
3153  }
3154
3155  return SDValue();
3156}
3157
3158/// PerformFMRRDCombine - Target-specific dag combine xforms for ARMISD::FMRRD.
3159static SDValue PerformFMRRDCombine(SDNode *N,
3160                                   TargetLowering::DAGCombinerInfo &DCI) {
3161  // fmrrd(fmdrr x, y) -> x,y
3162  SDValue InDouble = N->getOperand(0);
3163  if (InDouble.getOpcode() == ARMISD::FMDRR)
3164    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
3165  return SDValue();
3166}
3167
3168/// getVShiftImm - Check if this is a valid build_vector for the immediate
3169/// operand of a vector shift operation, where all the elements of the
3170/// build_vector must have the same constant integer value.
3171static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
3172  // Ignore bit_converts.
3173  while (Op.getOpcode() == ISD::BIT_CONVERT)
3174    Op = Op.getOperand(0);
3175  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3176  APInt SplatBits, SplatUndef;
3177  unsigned SplatBitSize;
3178  bool HasAnyUndefs;
3179  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
3180                                      HasAnyUndefs, ElementBits) ||
3181      SplatBitSize > ElementBits)
3182    return false;
3183  Cnt = SplatBits.getSExtValue();
3184  return true;
3185}
3186
3187/// isVShiftLImm - Check if this is a valid build_vector for the immediate
3188/// operand of a vector shift left operation.  That value must be in the range:
3189///   0 <= Value < ElementBits for a left shift; or
3190///   0 <= Value <= ElementBits for a long left shift.
3191static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
3192  assert(VT.isVector() && "vector shift count is not a vector type");
3193  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3194  if (! getVShiftImm(Op, ElementBits, Cnt))
3195    return false;
3196  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
3197}
3198
3199/// isVShiftRImm - Check if this is a valid build_vector for the immediate
3200/// operand of a vector shift right operation.  For a shift opcode, the value
3201/// is positive, but for an intrinsic the value count must be negative. The
3202/// absolute value must be in the range:
3203///   1 <= |Value| <= ElementBits for a right shift; or
3204///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
3205static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
3206                         int64_t &Cnt) {
3207  assert(VT.isVector() && "vector shift count is not a vector type");
3208  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3209  if (! getVShiftImm(Op, ElementBits, Cnt))
3210    return false;
3211  if (isIntrinsic)
3212    Cnt = -Cnt;
3213  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
3214}
3215
3216/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
3217static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
3218  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3219  switch (IntNo) {
3220  default:
3221    // Don't do anything for most intrinsics.
3222    break;
3223
3224  // Vector shifts: check for immediate versions and lower them.
3225  // Note: This is done during DAG combining instead of DAG legalizing because
3226  // the build_vectors for 64-bit vector element shift counts are generally
3227  // not legal, and it is hard to see their values after they get legalized to
3228  // loads from a constant pool.
3229  case Intrinsic::arm_neon_vshifts:
3230  case Intrinsic::arm_neon_vshiftu:
3231  case Intrinsic::arm_neon_vshiftls:
3232  case Intrinsic::arm_neon_vshiftlu:
3233  case Intrinsic::arm_neon_vshiftn:
3234  case Intrinsic::arm_neon_vrshifts:
3235  case Intrinsic::arm_neon_vrshiftu:
3236  case Intrinsic::arm_neon_vrshiftn:
3237  case Intrinsic::arm_neon_vqshifts:
3238  case Intrinsic::arm_neon_vqshiftu:
3239  case Intrinsic::arm_neon_vqshiftsu:
3240  case Intrinsic::arm_neon_vqshiftns:
3241  case Intrinsic::arm_neon_vqshiftnu:
3242  case Intrinsic::arm_neon_vqshiftnsu:
3243  case Intrinsic::arm_neon_vqrshiftns:
3244  case Intrinsic::arm_neon_vqrshiftnu:
3245  case Intrinsic::arm_neon_vqrshiftnsu: {
3246    EVT VT = N->getOperand(1).getValueType();
3247    int64_t Cnt;
3248    unsigned VShiftOpc = 0;
3249
3250    switch (IntNo) {
3251    case Intrinsic::arm_neon_vshifts:
3252    case Intrinsic::arm_neon_vshiftu:
3253      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
3254        VShiftOpc = ARMISD::VSHL;
3255        break;
3256      }
3257      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
3258        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
3259                     ARMISD::VSHRs : ARMISD::VSHRu);
3260        break;
3261      }
3262      return SDValue();
3263
3264    case Intrinsic::arm_neon_vshiftls:
3265    case Intrinsic::arm_neon_vshiftlu:
3266      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
3267        break;
3268      llvm_unreachable("invalid shift count for vshll intrinsic");
3269
3270    case Intrinsic::arm_neon_vrshifts:
3271    case Intrinsic::arm_neon_vrshiftu:
3272      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
3273        break;
3274      return SDValue();
3275
3276    case Intrinsic::arm_neon_vqshifts:
3277    case Intrinsic::arm_neon_vqshiftu:
3278      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
3279        break;
3280      return SDValue();
3281
3282    case Intrinsic::arm_neon_vqshiftsu:
3283      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
3284        break;
3285      llvm_unreachable("invalid shift count for vqshlu intrinsic");
3286
3287    case Intrinsic::arm_neon_vshiftn:
3288    case Intrinsic::arm_neon_vrshiftn:
3289    case Intrinsic::arm_neon_vqshiftns:
3290    case Intrinsic::arm_neon_vqshiftnu:
3291    case Intrinsic::arm_neon_vqshiftnsu:
3292    case Intrinsic::arm_neon_vqrshiftns:
3293    case Intrinsic::arm_neon_vqrshiftnu:
3294    case Intrinsic::arm_neon_vqrshiftnsu:
3295      // Narrowing shifts require an immediate right shift.
3296      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
3297        break;
3298      llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
3299
3300    default:
3301      llvm_unreachable("unhandled vector shift");
3302    }
3303
3304    switch (IntNo) {
3305    case Intrinsic::arm_neon_vshifts:
3306    case Intrinsic::arm_neon_vshiftu:
3307      // Opcode already set above.
3308      break;
3309    case Intrinsic::arm_neon_vshiftls:
3310    case Intrinsic::arm_neon_vshiftlu:
3311      if (Cnt == VT.getVectorElementType().getSizeInBits())
3312        VShiftOpc = ARMISD::VSHLLi;
3313      else
3314        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
3315                     ARMISD::VSHLLs : ARMISD::VSHLLu);
3316      break;
3317    case Intrinsic::arm_neon_vshiftn:
3318      VShiftOpc = ARMISD::VSHRN; break;
3319    case Intrinsic::arm_neon_vrshifts:
3320      VShiftOpc = ARMISD::VRSHRs; break;
3321    case Intrinsic::arm_neon_vrshiftu:
3322      VShiftOpc = ARMISD::VRSHRu; break;
3323    case Intrinsic::arm_neon_vrshiftn:
3324      VShiftOpc = ARMISD::VRSHRN; break;
3325    case Intrinsic::arm_neon_vqshifts:
3326      VShiftOpc = ARMISD::VQSHLs; break;
3327    case Intrinsic::arm_neon_vqshiftu:
3328      VShiftOpc = ARMISD::VQSHLu; break;
3329    case Intrinsic::arm_neon_vqshiftsu:
3330      VShiftOpc = ARMISD::VQSHLsu; break;
3331    case Intrinsic::arm_neon_vqshiftns:
3332      VShiftOpc = ARMISD::VQSHRNs; break;
3333    case Intrinsic::arm_neon_vqshiftnu:
3334      VShiftOpc = ARMISD::VQSHRNu; break;
3335    case Intrinsic::arm_neon_vqshiftnsu:
3336      VShiftOpc = ARMISD::VQSHRNsu; break;
3337    case Intrinsic::arm_neon_vqrshiftns:
3338      VShiftOpc = ARMISD::VQRSHRNs; break;
3339    case Intrinsic::arm_neon_vqrshiftnu:
3340      VShiftOpc = ARMISD::VQRSHRNu; break;
3341    case Intrinsic::arm_neon_vqrshiftnsu:
3342      VShiftOpc = ARMISD::VQRSHRNsu; break;
3343    }
3344
3345    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
3346                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
3347  }
3348
3349  case Intrinsic::arm_neon_vshiftins: {
3350    EVT VT = N->getOperand(1).getValueType();
3351    int64_t Cnt;
3352    unsigned VShiftOpc = 0;
3353
3354    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
3355      VShiftOpc = ARMISD::VSLI;
3356    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
3357      VShiftOpc = ARMISD::VSRI;
3358    else {
3359      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
3360    }
3361
3362    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
3363                       N->getOperand(1), N->getOperand(2),
3364                       DAG.getConstant(Cnt, MVT::i32));
3365  }
3366
3367  case Intrinsic::arm_neon_vqrshifts:
3368  case Intrinsic::arm_neon_vqrshiftu:
3369    // No immediate versions of these to check for.
3370    break;
3371  }
3372
3373  return SDValue();
3374}
3375
3376/// PerformShiftCombine - Checks for immediate versions of vector shifts and
3377/// lowers them.  As with the vector shift intrinsics, this is done during DAG
3378/// combining instead of DAG legalizing because the build_vectors for 64-bit
3379/// vector element shift counts are generally not legal, and it is hard to see
3380/// their values after they get legalized to loads from a constant pool.
3381static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
3382                                   const ARMSubtarget *ST) {
3383  EVT VT = N->getValueType(0);
3384
3385  // Nothing to be done for scalar shifts.
3386  if (! VT.isVector())
3387    return SDValue();
3388
3389  assert(ST->hasNEON() && "unexpected vector shift");
3390  int64_t Cnt;
3391
3392  switch (N->getOpcode()) {
3393  default: llvm_unreachable("unexpected shift opcode");
3394
3395  case ISD::SHL:
3396    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
3397      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
3398                         DAG.getConstant(Cnt, MVT::i32));
3399    break;
3400
3401  case ISD::SRA:
3402  case ISD::SRL:
3403    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
3404      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
3405                            ARMISD::VSHRs : ARMISD::VSHRu);
3406      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
3407                         DAG.getConstant(Cnt, MVT::i32));
3408    }
3409  }
3410  return SDValue();
3411}
3412
3413/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
3414/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
3415static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
3416                                    const ARMSubtarget *ST) {
3417  SDValue N0 = N->getOperand(0);
3418
3419  // Check for sign- and zero-extensions of vector extract operations of 8-
3420  // and 16-bit vector elements.  NEON supports these directly.  They are
3421  // handled during DAG combining because type legalization will promote them
3422  // to 32-bit types and it is messy to recognize the operations after that.
3423  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
3424    SDValue Vec = N0.getOperand(0);
3425    SDValue Lane = N0.getOperand(1);
3426    EVT VT = N->getValueType(0);
3427    EVT EltVT = N0.getValueType();
3428    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3429
3430    if (VT == MVT::i32 &&
3431        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
3432        TLI.isTypeLegal(Vec.getValueType())) {
3433
3434      unsigned Opc = 0;
3435      switch (N->getOpcode()) {
3436      default: llvm_unreachable("unexpected opcode");
3437      case ISD::SIGN_EXTEND:
3438        Opc = ARMISD::VGETLANEs;
3439        break;
3440      case ISD::ZERO_EXTEND:
3441      case ISD::ANY_EXTEND:
3442        Opc = ARMISD::VGETLANEu;
3443        break;
3444      }
3445      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
3446    }
3447  }
3448
3449  return SDValue();
3450}
3451
3452SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
3453                                             DAGCombinerInfo &DCI) const {
3454  switch (N->getOpcode()) {
3455  default: break;
3456  case ISD::ADD:      return PerformADDCombine(N, DCI);
3457  case ISD::SUB:      return PerformSUBCombine(N, DCI);
3458  case ARMISD::FMRRD: return PerformFMRRDCombine(N, DCI);
3459  case ISD::INTRINSIC_WO_CHAIN:
3460    return PerformIntrinsicCombine(N, DCI.DAG);
3461  case ISD::SHL:
3462  case ISD::SRA:
3463  case ISD::SRL:
3464    return PerformShiftCombine(N, DCI.DAG, Subtarget);
3465  case ISD::SIGN_EXTEND:
3466  case ISD::ZERO_EXTEND:
3467  case ISD::ANY_EXTEND:
3468    return PerformExtendCombine(N, DCI.DAG, Subtarget);
3469  }
3470  return SDValue();
3471}
3472
3473bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
3474  if (!Subtarget->hasV6Ops())
3475    // Pre-v6 does not support unaligned mem access.
3476    return false;
3477  else if (!Subtarget->hasV6Ops()) {
3478    // v6 may or may not support unaligned mem access.
3479    if (!Subtarget->isTargetDarwin())
3480      return false;
3481  }
3482
3483  switch (VT.getSimpleVT().SimpleTy) {
3484  default:
3485    return false;
3486  case MVT::i8:
3487  case MVT::i16:
3488  case MVT::i32:
3489    return true;
3490  // FIXME: VLD1 etc with standard alignment is legal.
3491  }
3492}
3493
3494static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
3495  if (V < 0)
3496    return false;
3497
3498  unsigned Scale = 1;
3499  switch (VT.getSimpleVT().SimpleTy) {
3500  default: return false;
3501  case MVT::i1:
3502  case MVT::i8:
3503    // Scale == 1;
3504    break;
3505  case MVT::i16:
3506    // Scale == 2;
3507    Scale = 2;
3508    break;
3509  case MVT::i32:
3510    // Scale == 4;
3511    Scale = 4;
3512    break;
3513  }
3514
3515  if ((V & (Scale - 1)) != 0)
3516    return false;
3517  V /= Scale;
3518  return V == (V & ((1LL << 5) - 1));
3519}
3520
3521static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
3522                                      const ARMSubtarget *Subtarget) {
3523  bool isNeg = false;
3524  if (V < 0) {
3525    isNeg = true;
3526    V = - V;
3527  }
3528
3529  switch (VT.getSimpleVT().SimpleTy) {
3530  default: return false;
3531  case MVT::i1:
3532  case MVT::i8:
3533  case MVT::i16:
3534  case MVT::i32:
3535    // + imm12 or - imm8
3536    if (isNeg)
3537      return V == (V & ((1LL << 8) - 1));
3538    return V == (V & ((1LL << 12) - 1));
3539  case MVT::f32:
3540  case MVT::f64:
3541    // Same as ARM mode. FIXME: NEON?
3542    if (!Subtarget->hasVFP2())
3543      return false;
3544    if ((V & 3) != 0)
3545      return false;
3546    V >>= 2;
3547    return V == (V & ((1LL << 8) - 1));
3548  }
3549}
3550
3551/// isLegalAddressImmediate - Return true if the integer value can be used
3552/// as the offset of the target addressing mode for load / store of the
3553/// given type.
3554static bool isLegalAddressImmediate(int64_t V, EVT VT,
3555                                    const ARMSubtarget *Subtarget) {
3556  if (V == 0)
3557    return true;
3558
3559  if (!VT.isSimple())
3560    return false;
3561
3562  if (Subtarget->isThumb1Only())
3563    return isLegalT1AddressImmediate(V, VT);
3564  else if (Subtarget->isThumb2())
3565    return isLegalT2AddressImmediate(V, VT, Subtarget);
3566
3567  // ARM mode.
3568  if (V < 0)
3569    V = - V;
3570  switch (VT.getSimpleVT().SimpleTy) {
3571  default: return false;
3572  case MVT::i1:
3573  case MVT::i8:
3574  case MVT::i32:
3575    // +- imm12
3576    return V == (V & ((1LL << 12) - 1));
3577  case MVT::i16:
3578    // +- imm8
3579    return V == (V & ((1LL << 8) - 1));
3580  case MVT::f32:
3581  case MVT::f64:
3582    if (!Subtarget->hasVFP2()) // FIXME: NEON?
3583      return false;
3584    if ((V & 3) != 0)
3585      return false;
3586    V >>= 2;
3587    return V == (V & ((1LL << 8) - 1));
3588  }
3589}
3590
3591bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
3592                                                      EVT VT) const {
3593  int Scale = AM.Scale;
3594  if (Scale < 0)
3595    return false;
3596
3597  switch (VT.getSimpleVT().SimpleTy) {
3598  default: return false;
3599  case MVT::i1:
3600  case MVT::i8:
3601  case MVT::i16:
3602  case MVT::i32:
3603    if (Scale == 1)
3604      return true;
3605    // r + r << imm
3606    Scale = Scale & ~1;
3607    return Scale == 2 || Scale == 4 || Scale == 8;
3608  case MVT::i64:
3609    // r + r
3610    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
3611      return true;
3612    return false;
3613  case MVT::isVoid:
3614    // Note, we allow "void" uses (basically, uses that aren't loads or
3615    // stores), because arm allows folding a scale into many arithmetic
3616    // operations.  This should be made more precise and revisited later.
3617
3618    // Allow r << imm, but the imm has to be a multiple of two.
3619    if (Scale & 1) return false;
3620    return isPowerOf2_32(Scale);
3621  }
3622}
3623
3624/// isLegalAddressingMode - Return true if the addressing mode represented
3625/// by AM is legal for this target, for a load/store of the specified type.
3626bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3627                                              const Type *Ty) const {
3628  EVT VT = getValueType(Ty, true);
3629  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
3630    return false;
3631
3632  // Can never fold addr of global into load/store.
3633  if (AM.BaseGV)
3634    return false;
3635
3636  switch (AM.Scale) {
3637  case 0:  // no scale reg, must be "r+i" or "r", or "i".
3638    break;
3639  case 1:
3640    if (Subtarget->isThumb1Only())
3641      return false;
3642    // FALL THROUGH.
3643  default:
3644    // ARM doesn't support any R+R*scale+imm addr modes.
3645    if (AM.BaseOffs)
3646      return false;
3647
3648    if (!VT.isSimple())
3649      return false;
3650
3651    if (Subtarget->isThumb2())
3652      return isLegalT2ScaledAddressingMode(AM, VT);
3653
3654    int Scale = AM.Scale;
3655    switch (VT.getSimpleVT().SimpleTy) {
3656    default: return false;
3657    case MVT::i1:
3658    case MVT::i8:
3659    case MVT::i32:
3660      if (Scale < 0) Scale = -Scale;
3661      if (Scale == 1)
3662        return true;
3663      // r + r << imm
3664      return isPowerOf2_32(Scale & ~1);
3665    case MVT::i16:
3666    case MVT::i64:
3667      // r + r
3668      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
3669        return true;
3670      return false;
3671
3672    case MVT::isVoid:
3673      // Note, we allow "void" uses (basically, uses that aren't loads or
3674      // stores), because arm allows folding a scale into many arithmetic
3675      // operations.  This should be made more precise and revisited later.
3676
3677      // Allow r << imm, but the imm has to be a multiple of two.
3678      if (Scale & 1) return false;
3679      return isPowerOf2_32(Scale);
3680    }
3681    break;
3682  }
3683  return true;
3684}
3685
3686static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
3687                                      bool isSEXTLoad, SDValue &Base,
3688                                      SDValue &Offset, bool &isInc,
3689                                      SelectionDAG &DAG) {
3690  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
3691    return false;
3692
3693  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
3694    // AddressingMode 3
3695    Base = Ptr->getOperand(0);
3696    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3697      int RHSC = (int)RHS->getZExtValue();
3698      if (RHSC < 0 && RHSC > -256) {
3699        assert(Ptr->getOpcode() == ISD::ADD);
3700        isInc = false;
3701        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3702        return true;
3703      }
3704    }
3705    isInc = (Ptr->getOpcode() == ISD::ADD);
3706    Offset = Ptr->getOperand(1);
3707    return true;
3708  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
3709    // AddressingMode 2
3710    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3711      int RHSC = (int)RHS->getZExtValue();
3712      if (RHSC < 0 && RHSC > -0x1000) {
3713        assert(Ptr->getOpcode() == ISD::ADD);
3714        isInc = false;
3715        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3716        Base = Ptr->getOperand(0);
3717        return true;
3718      }
3719    }
3720
3721    if (Ptr->getOpcode() == ISD::ADD) {
3722      isInc = true;
3723      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
3724      if (ShOpcVal != ARM_AM::no_shift) {
3725        Base = Ptr->getOperand(1);
3726        Offset = Ptr->getOperand(0);
3727      } else {
3728        Base = Ptr->getOperand(0);
3729        Offset = Ptr->getOperand(1);
3730      }
3731      return true;
3732    }
3733
3734    isInc = (Ptr->getOpcode() == ISD::ADD);
3735    Base = Ptr->getOperand(0);
3736    Offset = Ptr->getOperand(1);
3737    return true;
3738  }
3739
3740  // FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
3741  return false;
3742}
3743
3744static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
3745                                     bool isSEXTLoad, SDValue &Base,
3746                                     SDValue &Offset, bool &isInc,
3747                                     SelectionDAG &DAG) {
3748  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
3749    return false;
3750
3751  Base = Ptr->getOperand(0);
3752  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3753    int RHSC = (int)RHS->getZExtValue();
3754    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
3755      assert(Ptr->getOpcode() == ISD::ADD);
3756      isInc = false;
3757      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3758      return true;
3759    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
3760      isInc = Ptr->getOpcode() == ISD::ADD;
3761      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
3762      return true;
3763    }
3764  }
3765
3766  return false;
3767}
3768
3769/// getPreIndexedAddressParts - returns true by value, base pointer and
3770/// offset pointer and addressing mode by reference if the node's address
3771/// can be legally represented as pre-indexed load / store address.
3772bool
3773ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
3774                                             SDValue &Offset,
3775                                             ISD::MemIndexedMode &AM,
3776                                             SelectionDAG &DAG) const {
3777  if (Subtarget->isThumb1Only())
3778    return false;
3779
3780  EVT VT;
3781  SDValue Ptr;
3782  bool isSEXTLoad = false;
3783  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3784    Ptr = LD->getBasePtr();
3785    VT  = LD->getMemoryVT();
3786    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3787  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3788    Ptr = ST->getBasePtr();
3789    VT  = ST->getMemoryVT();
3790  } else
3791    return false;
3792
3793  bool isInc;
3794  bool isLegal = false;
3795  if (Subtarget->isThumb2())
3796    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3797                                       Offset, isInc, DAG);
3798  else
3799    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3800                                        Offset, isInc, DAG);
3801  if (!isLegal)
3802    return false;
3803
3804  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
3805  return true;
3806}
3807
3808/// getPostIndexedAddressParts - returns true by value, base pointer and
3809/// offset pointer and addressing mode by reference if this node can be
3810/// combined with a load / store to form a post-indexed load / store.
3811bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
3812                                                   SDValue &Base,
3813                                                   SDValue &Offset,
3814                                                   ISD::MemIndexedMode &AM,
3815                                                   SelectionDAG &DAG) const {
3816  if (Subtarget->isThumb1Only())
3817    return false;
3818
3819  EVT VT;
3820  SDValue Ptr;
3821  bool isSEXTLoad = false;
3822  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3823    VT  = LD->getMemoryVT();
3824    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3825  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3826    VT  = ST->getMemoryVT();
3827  } else
3828    return false;
3829
3830  bool isInc;
3831  bool isLegal = false;
3832  if (Subtarget->isThumb2())
3833    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3834                                        isInc, DAG);
3835  else
3836    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3837                                        isInc, DAG);
3838  if (!isLegal)
3839    return false;
3840
3841  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
3842  return true;
3843}
3844
3845void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
3846                                                       const APInt &Mask,
3847                                                       APInt &KnownZero,
3848                                                       APInt &KnownOne,
3849                                                       const SelectionDAG &DAG,
3850                                                       unsigned Depth) const {
3851  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3852  switch (Op.getOpcode()) {
3853  default: break;
3854  case ARMISD::CMOV: {
3855    // Bits are known zero/one if known on the LHS and RHS.
3856    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
3857    if (KnownZero == 0 && KnownOne == 0) return;
3858
3859    APInt KnownZeroRHS, KnownOneRHS;
3860    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
3861                          KnownZeroRHS, KnownOneRHS, Depth+1);
3862    KnownZero &= KnownZeroRHS;
3863    KnownOne  &= KnownOneRHS;
3864    return;
3865  }
3866  }
3867}
3868
3869//===----------------------------------------------------------------------===//
3870//                           ARM Inline Assembly Support
3871//===----------------------------------------------------------------------===//
3872
3873/// getConstraintType - Given a constraint letter, return the type of
3874/// constraint it is for this target.
3875ARMTargetLowering::ConstraintType
3876ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
3877  if (Constraint.size() == 1) {
3878    switch (Constraint[0]) {
3879    default:  break;
3880    case 'l': return C_RegisterClass;
3881    case 'w': return C_RegisterClass;
3882    }
3883  }
3884  return TargetLowering::getConstraintType(Constraint);
3885}
3886
3887std::pair<unsigned, const TargetRegisterClass*>
3888ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3889                                                EVT VT) const {
3890  if (Constraint.size() == 1) {
3891    // GCC RS6000 Constraint Letters
3892    switch (Constraint[0]) {
3893    case 'l':
3894      if (Subtarget->isThumb1Only())
3895        return std::make_pair(0U, ARM::tGPRRegisterClass);
3896      else
3897        return std::make_pair(0U, ARM::GPRRegisterClass);
3898    case 'r':
3899      return std::make_pair(0U, ARM::GPRRegisterClass);
3900    case 'w':
3901      if (VT == MVT::f32)
3902        return std::make_pair(0U, ARM::SPRRegisterClass);
3903      if (VT == MVT::f64)
3904        return std::make_pair(0U, ARM::DPRRegisterClass);
3905      break;
3906    }
3907  }
3908  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3909}
3910
3911std::vector<unsigned> ARMTargetLowering::
3912getRegClassForInlineAsmConstraint(const std::string &Constraint,
3913                                  EVT VT) const {
3914  if (Constraint.size() != 1)
3915    return std::vector<unsigned>();
3916
3917  switch (Constraint[0]) {      // GCC ARM Constraint Letters
3918  default: break;
3919  case 'l':
3920    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3921                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3922                                 0);
3923  case 'r':
3924    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3925                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3926                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
3927                                 ARM::R12, ARM::LR, 0);
3928  case 'w':
3929    if (VT == MVT::f32)
3930      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
3931                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
3932                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
3933                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
3934                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
3935                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
3936                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
3937                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
3938    if (VT == MVT::f64)
3939      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
3940                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
3941                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
3942                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
3943      break;
3944  }
3945
3946  return std::vector<unsigned>();
3947}
3948
3949/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3950/// vector.  If it is invalid, don't add anything to Ops.
3951void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3952                                                     char Constraint,
3953                                                     bool hasMemory,
3954                                                     std::vector<SDValue>&Ops,
3955                                                     SelectionDAG &DAG) const {
3956  SDValue Result(0, 0);
3957
3958  switch (Constraint) {
3959  default: break;
3960  case 'I': case 'J': case 'K': case 'L':
3961  case 'M': case 'N': case 'O':
3962    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3963    if (!C)
3964      return;
3965
3966    int64_t CVal64 = C->getSExtValue();
3967    int CVal = (int) CVal64;
3968    // None of these constraints allow values larger than 32 bits.  Check
3969    // that the value fits in an int.
3970    if (CVal != CVal64)
3971      return;
3972
3973    switch (Constraint) {
3974      case 'I':
3975        if (Subtarget->isThumb1Only()) {
3976          // This must be a constant between 0 and 255, for ADD
3977          // immediates.
3978          if (CVal >= 0 && CVal <= 255)
3979            break;
3980        } else if (Subtarget->isThumb2()) {
3981          // A constant that can be used as an immediate value in a
3982          // data-processing instruction.
3983          if (ARM_AM::getT2SOImmVal(CVal) != -1)
3984            break;
3985        } else {
3986          // A constant that can be used as an immediate value in a
3987          // data-processing instruction.
3988          if (ARM_AM::getSOImmVal(CVal) != -1)
3989            break;
3990        }
3991        return;
3992
3993      case 'J':
3994        if (Subtarget->isThumb()) {  // FIXME thumb2
3995          // This must be a constant between -255 and -1, for negated ADD
3996          // immediates. This can be used in GCC with an "n" modifier that
3997          // prints the negated value, for use with SUB instructions. It is
3998          // not useful otherwise but is implemented for compatibility.
3999          if (CVal >= -255 && CVal <= -1)
4000            break;
4001        } else {
4002          // This must be a constant between -4095 and 4095. It is not clear
4003          // what this constraint is intended for. Implemented for
4004          // compatibility with GCC.
4005          if (CVal >= -4095 && CVal <= 4095)
4006            break;
4007        }
4008        return;
4009
4010      case 'K':
4011        if (Subtarget->isThumb1Only()) {
4012          // A 32-bit value where only one byte has a nonzero value. Exclude
4013          // zero to match GCC. This constraint is used by GCC internally for
4014          // constants that can be loaded with a move/shift combination.
4015          // It is not useful otherwise but is implemented for compatibility.
4016          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
4017            break;
4018        } else if (Subtarget->isThumb2()) {
4019          // A constant whose bitwise inverse can be used as an immediate
4020          // value in a data-processing instruction. This can be used in GCC
4021          // with a "B" modifier that prints the inverted value, for use with
4022          // BIC and MVN instructions. It is not useful otherwise but is
4023          // implemented for compatibility.
4024          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
4025            break;
4026        } else {
4027          // A constant whose bitwise inverse can be used as an immediate
4028          // value in a data-processing instruction. This can be used in GCC
4029          // with a "B" modifier that prints the inverted value, for use with
4030          // BIC and MVN instructions. It is not useful otherwise but is
4031          // implemented for compatibility.
4032          if (ARM_AM::getSOImmVal(~CVal) != -1)
4033            break;
4034        }
4035        return;
4036
4037      case 'L':
4038        if (Subtarget->isThumb1Only()) {
4039          // This must be a constant between -7 and 7,
4040          // for 3-operand ADD/SUB immediate instructions.
4041          if (CVal >= -7 && CVal < 7)
4042            break;
4043        } else if (Subtarget->isThumb2()) {
4044          // A constant whose negation can be used as an immediate value in a
4045          // data-processing instruction. This can be used in GCC with an "n"
4046          // modifier that prints the negated value, for use with SUB
4047          // instructions. It is not useful otherwise but is implemented for
4048          // compatibility.
4049          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
4050            break;
4051        } else {
4052          // A constant whose negation can be used as an immediate value in a
4053          // data-processing instruction. This can be used in GCC with an "n"
4054          // modifier that prints the negated value, for use with SUB
4055          // instructions. It is not useful otherwise but is implemented for
4056          // compatibility.
4057          if (ARM_AM::getSOImmVal(-CVal) != -1)
4058            break;
4059        }
4060        return;
4061
4062      case 'M':
4063        if (Subtarget->isThumb()) { // FIXME thumb2
4064          // This must be a multiple of 4 between 0 and 1020, for
4065          // ADD sp + immediate.
4066          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
4067            break;
4068        } else {
4069          // A power of two or a constant between 0 and 32.  This is used in
4070          // GCC for the shift amount on shifted register operands, but it is
4071          // useful in general for any shift amounts.
4072          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
4073            break;
4074        }
4075        return;
4076
4077      case 'N':
4078        if (Subtarget->isThumb()) {  // FIXME thumb2
4079          // This must be a constant between 0 and 31, for shift amounts.
4080          if (CVal >= 0 && CVal <= 31)
4081            break;
4082        }
4083        return;
4084
4085      case 'O':
4086        if (Subtarget->isThumb()) {  // FIXME thumb2
4087          // This must be a multiple of 4 between -508 and 508, for
4088          // ADD/SUB sp = sp + immediate.
4089          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
4090            break;
4091        }
4092        return;
4093    }
4094    Result = DAG.getTargetConstant(CVal, Op.getValueType());
4095    break;
4096  }
4097
4098  if (Result.getNode()) {
4099    Ops.push_back(Result);
4100    return;
4101  }
4102  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
4103                                                      Ops, DAG);
4104}
4105
4106bool
4107ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
4108  // The ARM target isn't yet aware of offsets.
4109  return false;
4110}
4111
4112int ARM::getVFPf32Imm(const APFloat &FPImm) {
4113  APInt Imm = FPImm.bitcastToAPInt();
4114  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
4115  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
4116  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
4117
4118  // We can handle 4 bits of mantissa.
4119  // mantissa = (16+UInt(e:f:g:h))/16.
4120  if (Mantissa & 0x7ffff)
4121    return -1;
4122  Mantissa >>= 19;
4123  if ((Mantissa & 0xf) != Mantissa)
4124    return -1;
4125
4126  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
4127  if (Exp < -3 || Exp > 4)
4128    return -1;
4129  Exp = ((Exp+3) & 0x7) ^ 4;
4130
4131  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
4132}
4133
4134int ARM::getVFPf64Imm(const APFloat &FPImm) {
4135  APInt Imm = FPImm.bitcastToAPInt();
4136  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
4137  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
4138  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
4139
4140  // We can handle 4 bits of mantissa.
4141  // mantissa = (16+UInt(e:f:g:h))/16.
4142  if (Mantissa & 0xffffffffffffLL)
4143    return -1;
4144  Mantissa >>= 48;
4145  if ((Mantissa & 0xf) != Mantissa)
4146    return -1;
4147
4148  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
4149  if (Exp < -3 || Exp > 4)
4150    return -1;
4151  Exp = ((Exp+3) & 0x7) ^ 4;
4152
4153  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
4154}
4155
4156/// isFPImmLegal - Returns true if the target can instruction select the
4157/// specified FP immediate natively. If false, the legalizer will
4158/// materialize the FP immediate as a load from a constant pool.
4159bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
4160  if (!Subtarget->hasVFP3())
4161    return false;
4162  if (VT == MVT::f32)
4163    return ARM::getVFPf32Imm(Imm) != -1;
4164  if (VT == MVT::f64)
4165    return ARM::getVFPf64Imm(Imm) != -1;
4166  return false;
4167}
4168