ARMISelLowering.cpp revision b52ba9f8a896b6717d6395ad59f6550e1fa475b0
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARMISelLowering.h"
17#include "ARM.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "MCTargetDesc/ARMAddressingModes.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/GlobalValue.h"
30#include "llvm/Instruction.h"
31#include "llvm/Instructions.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Type.h"
34#include "llvm/CodeGen/CallingConvLower.h"
35#include "llvm/CodeGen/IntrinsicLowering.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineModuleInfo.h"
41#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
55STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
56
57// This option should go away when tail calls fully work.
58static cl::opt<bool>
59EnableARMTailCalls("arm-tail-calls", cl::Hidden,
60  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
61  cl::init(false));
62
63cl::opt<bool>
64EnableARMLongCalls("arm-long-calls", cl::Hidden,
65  cl::desc("Generate calls via indirect call instructions"),
66  cl::init(false));
67
68static cl::opt<bool>
69ARMInterworking("arm-interworking", cl::Hidden,
70  cl::desc("Enable / disable ARM interworking (for debugging only)"),
71  cl::init(true));
72
73namespace {
74  class ARMCCState : public CCState {
75  public:
76    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
77               const TargetMachine &TM, SmallVector<CCValAssign, 16> &locs,
78               LLVMContext &C, ParmContext PC)
79        : CCState(CC, isVarArg, MF, TM, locs, C) {
80      assert(((PC == Call) || (PC == Prologue)) &&
81             "ARMCCState users must specify whether their context is call"
82             "or prologue generation.");
83      CallOrPrologue = PC;
84    }
85  };
86}
87
88// The APCS parameter registers.
89static const uint16_t GPRArgRegs[] = {
90  ARM::R0, ARM::R1, ARM::R2, ARM::R3
91};
92
93void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
94                                       MVT PromotedBitwiseVT) {
95  if (VT != PromotedLdStVT) {
96    setOperationAction(ISD::LOAD, VT, Promote);
97    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
98
99    setOperationAction(ISD::STORE, VT, Promote);
100    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
101  }
102
103  MVT ElemTy = VT.getVectorElementType();
104  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
105    setOperationAction(ISD::SETCC, VT, Custom);
106  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
107  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
108  if (ElemTy == MVT::i32) {
109    setOperationAction(ISD::SINT_TO_FP, VT, Custom);
110    setOperationAction(ISD::UINT_TO_FP, VT, Custom);
111    setOperationAction(ISD::FP_TO_SINT, VT, Custom);
112    setOperationAction(ISD::FP_TO_UINT, VT, Custom);
113  } else {
114    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
115    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
116    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
117    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
118  }
119  setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
120  setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
121  setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
122  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
123  setOperationAction(ISD::SELECT,            VT, Expand);
124  setOperationAction(ISD::SELECT_CC,         VT, Expand);
125  setOperationAction(ISD::VSELECT,           VT, Expand);
126  setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
127  if (VT.isInteger()) {
128    setOperationAction(ISD::SHL, VT, Custom);
129    setOperationAction(ISD::SRA, VT, Custom);
130    setOperationAction(ISD::SRL, VT, Custom);
131  }
132
133  // Promote all bit-wise operations.
134  if (VT.isInteger() && VT != PromotedBitwiseVT) {
135    setOperationAction(ISD::AND, VT, Promote);
136    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
137    setOperationAction(ISD::OR,  VT, Promote);
138    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
139    setOperationAction(ISD::XOR, VT, Promote);
140    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
141  }
142
143  // Neon does not support vector divide/remainder operations.
144  setOperationAction(ISD::SDIV, VT, Expand);
145  setOperationAction(ISD::UDIV, VT, Expand);
146  setOperationAction(ISD::FDIV, VT, Expand);
147  setOperationAction(ISD::SREM, VT, Expand);
148  setOperationAction(ISD::UREM, VT, Expand);
149  setOperationAction(ISD::FREM, VT, Expand);
150}
151
152void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
153  addRegisterClass(VT, &ARM::DPRRegClass);
154  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
155}
156
157void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
158  addRegisterClass(VT, &ARM::QPRRegClass);
159  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
160}
161
162static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
163  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
164    return new TargetLoweringObjectFileMachO();
165
166  return new ARMElfTargetObjectFile();
167}
168
169ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
170    : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<ARMSubtarget>();
172  RegInfo = TM.getRegisterInfo();
173  Itins = TM.getInstrItineraryData();
174
175  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
176
177  if (Subtarget->isTargetDarwin()) {
178    // Uses VFP for Thumb libfuncs if available.
179    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
180      // Single-precision floating-point arithmetic.
181      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
182      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
183      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
184      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
185
186      // Double-precision floating-point arithmetic.
187      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
188      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
189      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
190      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
191
192      // Single-precision comparisons.
193      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
194      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
195      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
196      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
197      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
198      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
199      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
200      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
201
202      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
209      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
210
211      // Double-precision comparisons.
212      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
213      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
214      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
215      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
216      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
217      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
218      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
219      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
220
221      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
222      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
223      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
224      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
225      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
226      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
227      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
228      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
229
230      // Floating-point to integer conversions.
231      // i64 conversions are done via library routines even when generating VFP
232      // instructions, so use the same ones.
233      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
234      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
235      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
236      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
237
238      // Conversions between floating types.
239      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
240      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
241
242      // Integer to floating-point conversions.
243      // i64 conversions are done via library routines even when generating VFP
244      // instructions, so use the same ones.
245      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
246      // e.g., __floatunsidf vs. __floatunssidfvfp.
247      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
248      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
249      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
250      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
251    }
252  }
253
254  // These libcalls are not available in 32-bit.
255  setLibcallName(RTLIB::SHL_I128, 0);
256  setLibcallName(RTLIB::SRL_I128, 0);
257  setLibcallName(RTLIB::SRA_I128, 0);
258
259  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
260    // Double-precision floating-point arithmetic helper functions
261    // RTABI chapter 4.1.2, Table 2
262    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
263    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
264    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
265    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
266    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
267    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
268    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
269    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
270
271    // Double-precision floating-point comparison helper functions
272    // RTABI chapter 4.1.2, Table 3
273    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
274    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
275    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
276    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
277    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
278    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
279    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
280    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
281    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
282    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
283    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
284    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
285    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
286    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
287    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
288    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
289    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
290    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
291    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
292    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
293    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
297
298    // Single-precision floating-point arithmetic helper functions
299    // RTABI chapter 4.1.2, Table 4
300    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
301    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
302    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
303    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
304    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
305    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
306    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
307    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
308
309    // Single-precision floating-point comparison helper functions
310    // RTABI chapter 4.1.2, Table 5
311    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
312    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
313    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
314    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
315    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
316    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
317    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
318    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
319    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
320    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
321    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
322    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
323    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
324    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
325    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
326    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
327    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
335
336    // Floating-point to integer conversions.
337    // RTABI chapter 4.1.2, Table 6
338    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
339    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
340    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
341    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
342    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
343    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
344    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
345    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
346    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
347    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
348    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
349    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
350    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
354
355    // Conversions between floating types.
356    // RTABI chapter 4.1.2, Table 7
357    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
358    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
359    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
361
362    // Integer to floating-point conversions.
363    // RTABI chapter 4.1.2, Table 8
364    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
365    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
366    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
367    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
368    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
369    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
370    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
371    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
372    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
373    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
374    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
376    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
380
381    // Long long helper functions
382    // RTABI chapter 4.2, Table 9
383    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
384    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
385    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
386    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
387    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
388    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
389    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
391    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
392    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
393
394    // Integer division functions
395    // RTABI chapter 4.3.1
396    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
397    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
398    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
399    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
400    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
401    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
402    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
403    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
404    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
405    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
406    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
407    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
408    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
409    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
410    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
412
413    // Memory operations
414    // RTABI chapter 4.3.4
415    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
416    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
417    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
418    setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
419    setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
420    setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
421  }
422
423  // Use divmod compiler-rt calls for iOS 5.0 and later.
424  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
425      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
426    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
427    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
428  }
429
430  if (Subtarget->isThumb1Only())
431    addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
432  else
433    addRegisterClass(MVT::i32, &ARM::GPRRegClass);
434  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
435      !Subtarget->isThumb1Only()) {
436    addRegisterClass(MVT::f32, &ARM::SPRRegClass);
437    if (!Subtarget->isFPOnlySP())
438      addRegisterClass(MVT::f64, &ARM::DPRRegClass);
439
440    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
441  }
442
443  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
444       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
445    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
446         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
447      setTruncStoreAction((MVT::SimpleValueType)VT,
448                          (MVT::SimpleValueType)InnerVT, Expand);
449    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
450    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
451    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
452  }
453
454  setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
455
456  if (Subtarget->hasNEON()) {
457    addDRTypeForNEON(MVT::v2f32);
458    addDRTypeForNEON(MVT::v8i8);
459    addDRTypeForNEON(MVT::v4i16);
460    addDRTypeForNEON(MVT::v2i32);
461    addDRTypeForNEON(MVT::v1i64);
462
463    addQRTypeForNEON(MVT::v4f32);
464    addQRTypeForNEON(MVT::v2f64);
465    addQRTypeForNEON(MVT::v16i8);
466    addQRTypeForNEON(MVT::v8i16);
467    addQRTypeForNEON(MVT::v4i32);
468    addQRTypeForNEON(MVT::v2i64);
469
470    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
471    // neither Neon nor VFP support any arithmetic operations on it.
472    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
473    // supported for v4f32.
474    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
475    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
476    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
477    // FIXME: Code duplication: FDIV and FREM are expanded always, see
478    // ARMTargetLowering::addTypeForNEON method for details.
479    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
480    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
481    // FIXME: Create unittest.
482    // In another words, find a way when "copysign" appears in DAG with vector
483    // operands.
484    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
485    // FIXME: Code duplication: SETCC has custom operation action, see
486    // ARMTargetLowering::addTypeForNEON method for details.
487    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
488    // FIXME: Create unittest for FNEG and for FABS.
489    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
490    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
491    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
492    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
493    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
494    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
495    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
496    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
497    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
498    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
499    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
500    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
501    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
502    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
503    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
504    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
505    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
506    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
507
508    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
509    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
510    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
511    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
512    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
513    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
514    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
515    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
516    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
517    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
518    setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
519
520    // Neon does not support some operations on v1i64 and v2i64 types.
521    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
522    // Custom handling for some quad-vector types to detect VMULL.
523    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
524    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
525    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
526    // Custom handling for some vector types to avoid expensive expansions
527    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
528    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
529    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
530    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
531    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
532    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
533    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
534    // a destination type that is wider than the source, and nor does
535    // it have a FP_TO_[SU]INT instruction with a narrower destination than
536    // source.
537    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
538    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
539    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
540    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
541
542    setTargetDAGCombine(ISD::INTRINSIC_VOID);
543    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
544    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
545    setTargetDAGCombine(ISD::SHL);
546    setTargetDAGCombine(ISD::SRL);
547    setTargetDAGCombine(ISD::SRA);
548    setTargetDAGCombine(ISD::SIGN_EXTEND);
549    setTargetDAGCombine(ISD::ZERO_EXTEND);
550    setTargetDAGCombine(ISD::ANY_EXTEND);
551    setTargetDAGCombine(ISD::SELECT_CC);
552    setTargetDAGCombine(ISD::BUILD_VECTOR);
553    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
554    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
555    setTargetDAGCombine(ISD::STORE);
556    setTargetDAGCombine(ISD::FP_TO_SINT);
557    setTargetDAGCombine(ISD::FP_TO_UINT);
558    setTargetDAGCombine(ISD::FDIV);
559
560    // It is legal to extload from v4i8 to v4i16 or v4i32.
561    MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
562                  MVT::v4i16, MVT::v2i16,
563                  MVT::v2i32};
564    for (unsigned i = 0; i < 6; ++i) {
565      setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
566      setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
567      setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
568    }
569  }
570
571  // ARM and Thumb2 support UMLAL/SMLAL.
572  if (!Subtarget->isThumb1Only())
573    setTargetDAGCombine(ISD::ADDC);
574
575
576  computeRegisterProperties();
577
578  // ARM does not have f32 extending load.
579  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
580
581  // ARM does not have i1 sign extending load.
582  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
583
584  // ARM supports all 4 flavors of integer indexed load / store.
585  if (!Subtarget->isThumb1Only()) {
586    for (unsigned im = (unsigned)ISD::PRE_INC;
587         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
588      setIndexedLoadAction(im,  MVT::i1,  Legal);
589      setIndexedLoadAction(im,  MVT::i8,  Legal);
590      setIndexedLoadAction(im,  MVT::i16, Legal);
591      setIndexedLoadAction(im,  MVT::i32, Legal);
592      setIndexedStoreAction(im, MVT::i1,  Legal);
593      setIndexedStoreAction(im, MVT::i8,  Legal);
594      setIndexedStoreAction(im, MVT::i16, Legal);
595      setIndexedStoreAction(im, MVT::i32, Legal);
596    }
597  }
598
599  // i64 operation support.
600  setOperationAction(ISD::MUL,     MVT::i64, Expand);
601  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
602  if (Subtarget->isThumb1Only()) {
603    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
604    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
605  }
606  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
607      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
608    setOperationAction(ISD::MULHS, MVT::i32, Expand);
609
610  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
611  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
612  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
613  setOperationAction(ISD::SRL,       MVT::i64, Custom);
614  setOperationAction(ISD::SRA,       MVT::i64, Custom);
615
616  if (!Subtarget->isThumb1Only()) {
617    // FIXME: We should do this for Thumb1 as well.
618    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
619    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
620    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
621    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
622  }
623
624  // ARM does not have ROTL.
625  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
626  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
627  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
628  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
629    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
630
631  // These just redirect to CTTZ and CTLZ on ARM.
632  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
633  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
634
635  // Only ARMv6 has BSWAP.
636  if (!Subtarget->hasV6Ops())
637    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
638
639  if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
640      !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
641    // These are expanded into libcalls if the cpu doesn't have HW divider.
642    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
643    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
644  }
645  setOperationAction(ISD::SREM,  MVT::i32, Expand);
646  setOperationAction(ISD::UREM,  MVT::i32, Expand);
647  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
648  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
649
650  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
651  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
652  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
653  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
654  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
655
656  setOperationAction(ISD::TRAP, MVT::Other, Legal);
657
658  // Use the default implementation.
659  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
660  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
661  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
662  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
663  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
664  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
665
666  if (!Subtarget->isTargetDarwin()) {
667    // Non-Darwin platforms may return values in these registers via the
668    // personality function.
669    setOperationAction(ISD::EHSELECTION,      MVT::i32,   Expand);
670    setOperationAction(ISD::EXCEPTIONADDR,    MVT::i32,   Expand);
671    setExceptionPointerRegister(ARM::R0);
672    setExceptionSelectorRegister(ARM::R1);
673  }
674
675  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
676  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
677  // the default expansion.
678  // FIXME: This should be checking for v6k, not just v6.
679  if (Subtarget->hasDataBarrier() ||
680      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
681    // membarrier needs custom lowering; the rest are legal and handled
682    // normally.
683    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
684    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
685    // Custom lowering for 64-bit ops
686    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
687    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
688    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
689    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
690    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
691    setOperationAction(ISD::ATOMIC_SWAP,  MVT::i64, Custom);
692    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
693    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
694    setInsertFencesForAtomic(true);
695  } else {
696    // Set them all for expansion, which will force libcalls.
697    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
698    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
699    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
700    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
701    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
702    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
703    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
704    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
705    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
706    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
707    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
708    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
709    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
710    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
711    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
712    // Unordered/Monotonic case.
713    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
714    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
715    // Since the libcalls include locking, fold in the fences
716    setShouldFoldAtomicFences(true);
717  }
718
719  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
720
721  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
722  if (!Subtarget->hasV6Ops()) {
723    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
724    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
725  }
726  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
727
728  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
729      !Subtarget->isThumb1Only()) {
730    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
731    // iff target supports vfp2.
732    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
733    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
734  }
735
736  // We want to custom lower some of our intrinsics.
737  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
738  if (Subtarget->isTargetDarwin()) {
739    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
740    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
741    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
742  }
743
744  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
745  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
746  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
747  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
748  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
749  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
750  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
751  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
752  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
753
754  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
755  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
756  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
757  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
758  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
759
760  // We don't support sin/cos/fmod/copysign/pow
761  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
762  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
763  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
764  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
765  setOperationAction(ISD::FREM,      MVT::f64, Expand);
766  setOperationAction(ISD::FREM,      MVT::f32, Expand);
767  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
768      !Subtarget->isThumb1Only()) {
769    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
770    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
771  }
772  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
773  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
774
775  if (!Subtarget->hasVFP4()) {
776    setOperationAction(ISD::FMA, MVT::f64, Expand);
777    setOperationAction(ISD::FMA, MVT::f32, Expand);
778  }
779
780  // Various VFP goodness
781  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
782    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
783    if (Subtarget->hasVFP2()) {
784      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
785      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
786      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
787      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
788    }
789    // Special handling for half-precision FP.
790    if (!Subtarget->hasFP16()) {
791      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
792      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
793    }
794  }
795
796  // We have target-specific dag combine patterns for the following nodes:
797  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
798  setTargetDAGCombine(ISD::ADD);
799  setTargetDAGCombine(ISD::SUB);
800  setTargetDAGCombine(ISD::MUL);
801  setTargetDAGCombine(ISD::AND);
802  setTargetDAGCombine(ISD::OR);
803  setTargetDAGCombine(ISD::XOR);
804
805  if (Subtarget->hasV6Ops())
806    setTargetDAGCombine(ISD::SRL);
807
808  setStackPointerRegisterToSaveRestore(ARM::SP);
809
810  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
811      !Subtarget->hasVFP2())
812    setSchedulingPreference(Sched::RegPressure);
813  else
814    setSchedulingPreference(Sched::Hybrid);
815
816  //// temporary - rewrite interface to use type
817  maxStoresPerMemcpy = maxStoresPerMemcpyOptSize = 1;
818  maxStoresPerMemset = 16;
819  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
820
821  // On ARM arguments smaller than 4 bytes are extended, so all arguments
822  // are at least 4 bytes aligned.
823  setMinStackArgumentAlignment(4);
824
825  benefitFromCodePlacementOpt = true;
826
827  // Prefer likely predicted branches to selects on out-of-order cores.
828  predictableSelectIsExpensive = Subtarget->isLikeA9();
829
830  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
831}
832
833// FIXME: It might make sense to define the representative register class as the
834// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
835// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
836// SPR's representative would be DPR_VFP2. This should work well if register
837// pressure tracking were modified such that a register use would increment the
838// pressure of the register class's representative and all of it's super
839// classes' representatives transitively. We have not implemented this because
840// of the difficulty prior to coalescing of modeling operand register classes
841// due to the common occurrence of cross class copies and subregister insertions
842// and extractions.
843std::pair<const TargetRegisterClass*, uint8_t>
844ARMTargetLowering::findRepresentativeClass(EVT VT) const{
845  const TargetRegisterClass *RRC = 0;
846  uint8_t Cost = 1;
847  switch (VT.getSimpleVT().SimpleTy) {
848  default:
849    return TargetLowering::findRepresentativeClass(VT);
850  // Use DPR as representative register class for all floating point
851  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
852  // the cost is 1 for both f32 and f64.
853  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
854  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
855    RRC = &ARM::DPRRegClass;
856    // When NEON is used for SP, only half of the register file is available
857    // because operations that define both SP and DP results will be constrained
858    // to the VFP2 class (D0-D15). We currently model this constraint prior to
859    // coalescing by double-counting the SP regs. See the FIXME above.
860    if (Subtarget->useNEONForSinglePrecisionFP())
861      Cost = 2;
862    break;
863  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
864  case MVT::v4f32: case MVT::v2f64:
865    RRC = &ARM::DPRRegClass;
866    Cost = 2;
867    break;
868  case MVT::v4i64:
869    RRC = &ARM::DPRRegClass;
870    Cost = 4;
871    break;
872  case MVT::v8i64:
873    RRC = &ARM::DPRRegClass;
874    Cost = 8;
875    break;
876  }
877  return std::make_pair(RRC, Cost);
878}
879
880const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
881  switch (Opcode) {
882  default: return 0;
883  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
884  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
885  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
886  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
887  case ARMISD::CALL:          return "ARMISD::CALL";
888  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
889  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
890  case ARMISD::tCALL:         return "ARMISD::tCALL";
891  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
892  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
893  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
894  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
895  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
896  case ARMISD::CMP:           return "ARMISD::CMP";
897  case ARMISD::CMN:           return "ARMISD::CMN";
898  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
899  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
900  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
901  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
902  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
903
904  case ARMISD::CMOV:          return "ARMISD::CMOV";
905
906  case ARMISD::RBIT:          return "ARMISD::RBIT";
907
908  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
909  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
910  case ARMISD::SITOF:         return "ARMISD::SITOF";
911  case ARMISD::UITOF:         return "ARMISD::UITOF";
912
913  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
914  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
915  case ARMISD::RRX:           return "ARMISD::RRX";
916
917  case ARMISD::ADDC:          return "ARMISD::ADDC";
918  case ARMISD::ADDE:          return "ARMISD::ADDE";
919  case ARMISD::SUBC:          return "ARMISD::SUBC";
920  case ARMISD::SUBE:          return "ARMISD::SUBE";
921
922  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
923  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
924
925  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
926  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
927
928  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
929
930  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
931
932  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
933
934  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
935  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
936
937  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
938
939  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
940  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
941  case ARMISD::VCGE:          return "ARMISD::VCGE";
942  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
943  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
944  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
945  case ARMISD::VCGT:          return "ARMISD::VCGT";
946  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
947  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
948  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
949  case ARMISD::VTST:          return "ARMISD::VTST";
950
951  case ARMISD::VSHL:          return "ARMISD::VSHL";
952  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
953  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
954  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
955  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
956  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
957  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
958  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
959  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
960  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
961  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
962  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
963  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
964  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
965  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
966  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
967  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
968  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
969  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
970  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
971  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
972  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
973  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
974  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
975  case ARMISD::VDUP:          return "ARMISD::VDUP";
976  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
977  case ARMISD::VEXT:          return "ARMISD::VEXT";
978  case ARMISD::VREV64:        return "ARMISD::VREV64";
979  case ARMISD::VREV32:        return "ARMISD::VREV32";
980  case ARMISD::VREV16:        return "ARMISD::VREV16";
981  case ARMISD::VZIP:          return "ARMISD::VZIP";
982  case ARMISD::VUZP:          return "ARMISD::VUZP";
983  case ARMISD::VTRN:          return "ARMISD::VTRN";
984  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
985  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
986  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
987  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
988  case ARMISD::UMLAL:         return "ARMISD::UMLAL";
989  case ARMISD::SMLAL:         return "ARMISD::SMLAL";
990  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
991  case ARMISD::FMAX:          return "ARMISD::FMAX";
992  case ARMISD::FMIN:          return "ARMISD::FMIN";
993  case ARMISD::BFI:           return "ARMISD::BFI";
994  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
995  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
996  case ARMISD::VBSL:          return "ARMISD::VBSL";
997  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
998  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
999  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1000  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1001  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1002  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1003  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1004  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1005  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1006  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1007  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1008  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1009  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1010  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1011  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1012  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1013  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1014  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1015  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1016  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1017  }
1018}
1019
1020EVT ARMTargetLowering::getSetCCResultType(EVT VT) const {
1021  if (!VT.isVector()) return getPointerTy();
1022  return VT.changeVectorElementTypeToInteger();
1023}
1024
1025/// getRegClassFor - Return the register class that should be used for the
1026/// specified value type.
1027const TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
1028  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1029  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1030  // load / store 4 to 8 consecutive D registers.
1031  if (Subtarget->hasNEON()) {
1032    if (VT == MVT::v4i64)
1033      return &ARM::QQPRRegClass;
1034    if (VT == MVT::v8i64)
1035      return &ARM::QQQQPRRegClass;
1036  }
1037  return TargetLowering::getRegClassFor(VT);
1038}
1039
1040// Create a fast isel object.
1041FastISel *
1042ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1043                                  const TargetLibraryInfo *libInfo) const {
1044  return ARM::createFastISel(funcInfo, libInfo);
1045}
1046
1047/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1048/// be used for loads / stores from the global.
1049unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1050  return (Subtarget->isThumb1Only() ? 127 : 4095);
1051}
1052
1053Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1054  unsigned NumVals = N->getNumValues();
1055  if (!NumVals)
1056    return Sched::RegPressure;
1057
1058  for (unsigned i = 0; i != NumVals; ++i) {
1059    EVT VT = N->getValueType(i);
1060    if (VT == MVT::Glue || VT == MVT::Other)
1061      continue;
1062    if (VT.isFloatingPoint() || VT.isVector())
1063      return Sched::ILP;
1064  }
1065
1066  if (!N->isMachineOpcode())
1067    return Sched::RegPressure;
1068
1069  // Load are scheduled for latency even if there instruction itinerary
1070  // is not available.
1071  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1072  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1073
1074  if (MCID.getNumDefs() == 0)
1075    return Sched::RegPressure;
1076  if (!Itins->isEmpty() &&
1077      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1078    return Sched::ILP;
1079
1080  return Sched::RegPressure;
1081}
1082
1083//===----------------------------------------------------------------------===//
1084// Lowering Code
1085//===----------------------------------------------------------------------===//
1086
1087/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1088static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1089  switch (CC) {
1090  default: llvm_unreachable("Unknown condition code!");
1091  case ISD::SETNE:  return ARMCC::NE;
1092  case ISD::SETEQ:  return ARMCC::EQ;
1093  case ISD::SETGT:  return ARMCC::GT;
1094  case ISD::SETGE:  return ARMCC::GE;
1095  case ISD::SETLT:  return ARMCC::LT;
1096  case ISD::SETLE:  return ARMCC::LE;
1097  case ISD::SETUGT: return ARMCC::HI;
1098  case ISD::SETUGE: return ARMCC::HS;
1099  case ISD::SETULT: return ARMCC::LO;
1100  case ISD::SETULE: return ARMCC::LS;
1101  }
1102}
1103
1104/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1105static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1106                        ARMCC::CondCodes &CondCode2) {
1107  CondCode2 = ARMCC::AL;
1108  switch (CC) {
1109  default: llvm_unreachable("Unknown FP condition!");
1110  case ISD::SETEQ:
1111  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1112  case ISD::SETGT:
1113  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1114  case ISD::SETGE:
1115  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1116  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1117  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1118  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1119  case ISD::SETO:   CondCode = ARMCC::VC; break;
1120  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1121  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1122  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1123  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1124  case ISD::SETLT:
1125  case ISD::SETULT: CondCode = ARMCC::LT; break;
1126  case ISD::SETLE:
1127  case ISD::SETULE: CondCode = ARMCC::LE; break;
1128  case ISD::SETNE:
1129  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1130  }
1131}
1132
1133//===----------------------------------------------------------------------===//
1134//                      Calling Convention Implementation
1135//===----------------------------------------------------------------------===//
1136
1137#include "ARMGenCallingConv.inc"
1138
1139/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1140/// given CallingConvention value.
1141CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1142                                                 bool Return,
1143                                                 bool isVarArg) const {
1144  switch (CC) {
1145  default:
1146    llvm_unreachable("Unsupported calling convention");
1147  case CallingConv::Fast:
1148    if (Subtarget->hasVFP2() && !isVarArg) {
1149      if (!Subtarget->isAAPCS_ABI())
1150        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1151      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1152      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1153    }
1154    // Fallthrough
1155  case CallingConv::C: {
1156    // Use target triple & subtarget features to do actual dispatch.
1157    if (!Subtarget->isAAPCS_ABI())
1158      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1159    else if (Subtarget->hasVFP2() &&
1160             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1161             !isVarArg)
1162      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1163    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1164  }
1165  case CallingConv::ARM_AAPCS_VFP:
1166    if (!isVarArg)
1167      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1168    // Fallthrough
1169  case CallingConv::ARM_AAPCS:
1170    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1171  case CallingConv::ARM_APCS:
1172    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1173  case CallingConv::GHC:
1174    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1175  }
1176}
1177
1178/// LowerCallResult - Lower the result values of a call into the
1179/// appropriate copies out of appropriate physical registers.
1180SDValue
1181ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1182                                   CallingConv::ID CallConv, bool isVarArg,
1183                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1184                                   DebugLoc dl, SelectionDAG &DAG,
1185                                   SmallVectorImpl<SDValue> &InVals) const {
1186
1187  // Assign locations to each value returned by this call.
1188  SmallVector<CCValAssign, 16> RVLocs;
1189  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1190                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1191  CCInfo.AnalyzeCallResult(Ins,
1192                           CCAssignFnForNode(CallConv, /* Return*/ true,
1193                                             isVarArg));
1194
1195  // Copy all of the result registers out of their specified physreg.
1196  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1197    CCValAssign VA = RVLocs[i];
1198
1199    SDValue Val;
1200    if (VA.needsCustom()) {
1201      // Handle f64 or half of a v2f64.
1202      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1203                                      InFlag);
1204      Chain = Lo.getValue(1);
1205      InFlag = Lo.getValue(2);
1206      VA = RVLocs[++i]; // skip ahead to next loc
1207      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1208                                      InFlag);
1209      Chain = Hi.getValue(1);
1210      InFlag = Hi.getValue(2);
1211      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1212
1213      if (VA.getLocVT() == MVT::v2f64) {
1214        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1215        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1216                          DAG.getConstant(0, MVT::i32));
1217
1218        VA = RVLocs[++i]; // skip ahead to next loc
1219        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1220        Chain = Lo.getValue(1);
1221        InFlag = Lo.getValue(2);
1222        VA = RVLocs[++i]; // skip ahead to next loc
1223        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1224        Chain = Hi.getValue(1);
1225        InFlag = Hi.getValue(2);
1226        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1227        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1228                          DAG.getConstant(1, MVT::i32));
1229      }
1230    } else {
1231      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1232                               InFlag);
1233      Chain = Val.getValue(1);
1234      InFlag = Val.getValue(2);
1235    }
1236
1237    switch (VA.getLocInfo()) {
1238    default: llvm_unreachable("Unknown loc info!");
1239    case CCValAssign::Full: break;
1240    case CCValAssign::BCvt:
1241      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1242      break;
1243    }
1244
1245    InVals.push_back(Val);
1246  }
1247
1248  return Chain;
1249}
1250
1251/// LowerMemOpCallTo - Store the argument to the stack.
1252SDValue
1253ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1254                                    SDValue StackPtr, SDValue Arg,
1255                                    DebugLoc dl, SelectionDAG &DAG,
1256                                    const CCValAssign &VA,
1257                                    ISD::ArgFlagsTy Flags) const {
1258  unsigned LocMemOffset = VA.getLocMemOffset();
1259  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1260  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1261  return DAG.getStore(Chain, dl, Arg, PtrOff,
1262                      MachinePointerInfo::getStack(LocMemOffset),
1263                      false, false, 0);
1264}
1265
1266void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1267                                         SDValue Chain, SDValue &Arg,
1268                                         RegsToPassVector &RegsToPass,
1269                                         CCValAssign &VA, CCValAssign &NextVA,
1270                                         SDValue &StackPtr,
1271                                         SmallVector<SDValue, 8> &MemOpChains,
1272                                         ISD::ArgFlagsTy Flags) const {
1273
1274  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1275                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1276  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1277
1278  if (NextVA.isRegLoc())
1279    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1280  else {
1281    assert(NextVA.isMemLoc());
1282    if (StackPtr.getNode() == 0)
1283      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1284
1285    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1286                                           dl, DAG, NextVA,
1287                                           Flags));
1288  }
1289}
1290
1291/// LowerCall - Lowering a call into a callseq_start <-
1292/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1293/// nodes.
1294SDValue
1295ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1296                             SmallVectorImpl<SDValue> &InVals) const {
1297  SelectionDAG &DAG                     = CLI.DAG;
1298  DebugLoc &dl                          = CLI.DL;
1299  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
1300  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
1301  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
1302  SDValue Chain                         = CLI.Chain;
1303  SDValue Callee                        = CLI.Callee;
1304  bool &isTailCall                      = CLI.IsTailCall;
1305  CallingConv::ID CallConv              = CLI.CallConv;
1306  bool doesNotRet                       = CLI.DoesNotReturn;
1307  bool isVarArg                         = CLI.IsVarArg;
1308
1309  MachineFunction &MF = DAG.getMachineFunction();
1310  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1311  bool IsSibCall = false;
1312  // Disable tail calls if they're not supported.
1313  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1314    isTailCall = false;
1315  if (isTailCall) {
1316    // Check if it's really possible to do a tail call.
1317    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1318                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1319                                                   Outs, OutVals, Ins, DAG);
1320    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1321    // detected sibcalls.
1322    if (isTailCall) {
1323      ++NumTailCalls;
1324      IsSibCall = true;
1325    }
1326  }
1327
1328  // Analyze operands of the call, assigning locations to each operand.
1329  SmallVector<CCValAssign, 16> ArgLocs;
1330  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1331                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1332  CCInfo.AnalyzeCallOperands(Outs,
1333                             CCAssignFnForNode(CallConv, /* Return*/ false,
1334                                               isVarArg));
1335
1336  // Get a count of how many bytes are to be pushed on the stack.
1337  unsigned NumBytes = CCInfo.getNextStackOffset();
1338
1339  // For tail calls, memory operands are available in our caller's stack.
1340  if (IsSibCall)
1341    NumBytes = 0;
1342
1343  // Adjust the stack pointer for the new arguments...
1344  // These operations are automatically eliminated by the prolog/epilog pass
1345  if (!IsSibCall)
1346    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1347
1348  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1349
1350  RegsToPassVector RegsToPass;
1351  SmallVector<SDValue, 8> MemOpChains;
1352
1353  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1354  // of tail call optimization, arguments are handled later.
1355  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1356       i != e;
1357       ++i, ++realArgIdx) {
1358    CCValAssign &VA = ArgLocs[i];
1359    SDValue Arg = OutVals[realArgIdx];
1360    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1361    bool isByVal = Flags.isByVal();
1362
1363    // Promote the value if needed.
1364    switch (VA.getLocInfo()) {
1365    default: llvm_unreachable("Unknown loc info!");
1366    case CCValAssign::Full: break;
1367    case CCValAssign::SExt:
1368      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1369      break;
1370    case CCValAssign::ZExt:
1371      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1372      break;
1373    case CCValAssign::AExt:
1374      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1375      break;
1376    case CCValAssign::BCvt:
1377      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1378      break;
1379    }
1380
1381    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1382    if (VA.needsCustom()) {
1383      if (VA.getLocVT() == MVT::v2f64) {
1384        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1385                                  DAG.getConstant(0, MVT::i32));
1386        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1387                                  DAG.getConstant(1, MVT::i32));
1388
1389        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1390                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1391
1392        VA = ArgLocs[++i]; // skip ahead to next loc
1393        if (VA.isRegLoc()) {
1394          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1395                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1396        } else {
1397          assert(VA.isMemLoc());
1398
1399          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1400                                                 dl, DAG, VA, Flags));
1401        }
1402      } else {
1403        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1404                         StackPtr, MemOpChains, Flags);
1405      }
1406    } else if (VA.isRegLoc()) {
1407      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1408    } else if (isByVal) {
1409      assert(VA.isMemLoc());
1410      unsigned offset = 0;
1411
1412      // True if this byval aggregate will be split between registers
1413      // and memory.
1414      if (CCInfo.isFirstByValRegValid()) {
1415        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1416        unsigned int i, j;
1417        for (i = 0, j = CCInfo.getFirstByValReg(); j < ARM::R4; i++, j++) {
1418          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1419          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1420          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1421                                     MachinePointerInfo(),
1422                                     false, false, false, 0);
1423          MemOpChains.push_back(Load.getValue(1));
1424          RegsToPass.push_back(std::make_pair(j, Load));
1425        }
1426        offset = ARM::R4 - CCInfo.getFirstByValReg();
1427        CCInfo.clearFirstByValReg();
1428      }
1429
1430      if (Flags.getByValSize() - 4*offset > 0) {
1431        unsigned LocMemOffset = VA.getLocMemOffset();
1432        SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1433        SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1434                                  StkPtrOff);
1435        SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1436        SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1437        SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1438                                           MVT::i32);
1439        SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1440
1441        SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1442        SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1443        MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1444                                          Ops, array_lengthof(Ops)));
1445      }
1446    } else if (!IsSibCall) {
1447      assert(VA.isMemLoc());
1448
1449      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1450                                             dl, DAG, VA, Flags));
1451    }
1452  }
1453
1454  if (!MemOpChains.empty())
1455    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1456                        &MemOpChains[0], MemOpChains.size());
1457
1458  // Build a sequence of copy-to-reg nodes chained together with token chain
1459  // and flag operands which copy the outgoing args into the appropriate regs.
1460  SDValue InFlag;
1461  // Tail call byval lowering might overwrite argument registers so in case of
1462  // tail call optimization the copies to registers are lowered later.
1463  if (!isTailCall)
1464    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1465      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1466                               RegsToPass[i].second, InFlag);
1467      InFlag = Chain.getValue(1);
1468    }
1469
1470  // For tail calls lower the arguments to the 'real' stack slot.
1471  if (isTailCall) {
1472    // Force all the incoming stack arguments to be loaded from the stack
1473    // before any new outgoing arguments are stored to the stack, because the
1474    // outgoing stack slots may alias the incoming argument stack slots, and
1475    // the alias isn't otherwise explicit. This is slightly more conservative
1476    // than necessary, because it means that each store effectively depends
1477    // on every argument instead of just those arguments it would clobber.
1478
1479    // Do not flag preceding copytoreg stuff together with the following stuff.
1480    InFlag = SDValue();
1481    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1482      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1483                               RegsToPass[i].second, InFlag);
1484      InFlag = Chain.getValue(1);
1485    }
1486    InFlag =SDValue();
1487  }
1488
1489  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1490  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1491  // node so that legalize doesn't hack it.
1492  bool isDirect = false;
1493  bool isARMFunc = false;
1494  bool isLocalARMFunc = false;
1495  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1496
1497  if (EnableARMLongCalls) {
1498    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1499            && "long-calls with non-static relocation model!");
1500    // Handle a global address or an external symbol. If it's not one of
1501    // those, the target's already in a register, so we don't need to do
1502    // anything extra.
1503    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1504      const GlobalValue *GV = G->getGlobal();
1505      // Create a constant pool entry for the callee address
1506      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1507      ARMConstantPoolValue *CPV =
1508        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1509
1510      // Get the address of the callee into a register
1511      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1512      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1513      Callee = DAG.getLoad(getPointerTy(), dl,
1514                           DAG.getEntryNode(), CPAddr,
1515                           MachinePointerInfo::getConstantPool(),
1516                           false, false, false, 0);
1517    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1518      const char *Sym = S->getSymbol();
1519
1520      // Create a constant pool entry for the callee address
1521      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1522      ARMConstantPoolValue *CPV =
1523        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1524                                      ARMPCLabelIndex, 0);
1525      // Get the address of the callee into a register
1526      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1527      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1528      Callee = DAG.getLoad(getPointerTy(), dl,
1529                           DAG.getEntryNode(), CPAddr,
1530                           MachinePointerInfo::getConstantPool(),
1531                           false, false, false, 0);
1532    }
1533  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1534    const GlobalValue *GV = G->getGlobal();
1535    isDirect = true;
1536    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1537    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1538                   getTargetMachine().getRelocationModel() != Reloc::Static;
1539    isARMFunc = !Subtarget->isThumb() || isStub;
1540    // ARM call to a local ARM function is predicable.
1541    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1542    // tBX takes a register source operand.
1543    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1544      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1545      ARMConstantPoolValue *CPV =
1546        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1547      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1548      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1549      Callee = DAG.getLoad(getPointerTy(), dl,
1550                           DAG.getEntryNode(), CPAddr,
1551                           MachinePointerInfo::getConstantPool(),
1552                           false, false, false, 0);
1553      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1554      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1555                           getPointerTy(), Callee, PICLabel);
1556    } else {
1557      // On ELF targets for PIC code, direct calls should go through the PLT
1558      unsigned OpFlags = 0;
1559      if (Subtarget->isTargetELF() &&
1560                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1561        OpFlags = ARMII::MO_PLT;
1562      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1563    }
1564  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1565    isDirect = true;
1566    bool isStub = Subtarget->isTargetDarwin() &&
1567                  getTargetMachine().getRelocationModel() != Reloc::Static;
1568    isARMFunc = !Subtarget->isThumb() || isStub;
1569    // tBX takes a register source operand.
1570    const char *Sym = S->getSymbol();
1571    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1572      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1573      ARMConstantPoolValue *CPV =
1574        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1575                                      ARMPCLabelIndex, 4);
1576      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1577      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1578      Callee = DAG.getLoad(getPointerTy(), dl,
1579                           DAG.getEntryNode(), CPAddr,
1580                           MachinePointerInfo::getConstantPool(),
1581                           false, false, false, 0);
1582      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1583      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1584                           getPointerTy(), Callee, PICLabel);
1585    } else {
1586      unsigned OpFlags = 0;
1587      // On ELF targets for PIC code, direct calls should go through the PLT
1588      if (Subtarget->isTargetELF() &&
1589                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1590        OpFlags = ARMII::MO_PLT;
1591      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1592    }
1593  }
1594
1595  // FIXME: handle tail calls differently.
1596  unsigned CallOpc;
1597  if (Subtarget->isThumb()) {
1598    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1599      CallOpc = ARMISD::CALL_NOLINK;
1600    else if (doesNotRet && isDirect && !isARMFunc &&
1601             Subtarget->hasRAS() && !Subtarget->isThumb1Only())
1602      // "mov lr, pc; b _foo" to avoid confusing the RSP
1603      CallOpc = ARMISD::CALL_NOLINK;
1604    else
1605      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1606  } else {
1607    if (!isDirect && !Subtarget->hasV5TOps()) {
1608      CallOpc = ARMISD::CALL_NOLINK;
1609    } else if (doesNotRet && isDirect && Subtarget->hasRAS())
1610      // "mov lr, pc; b _foo" to avoid confusing the RSP
1611      CallOpc = ARMISD::CALL_NOLINK;
1612    else
1613      CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1614  }
1615
1616  std::vector<SDValue> Ops;
1617  Ops.push_back(Chain);
1618  Ops.push_back(Callee);
1619
1620  // Add argument registers to the end of the list so that they are known live
1621  // into the call.
1622  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1623    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1624                                  RegsToPass[i].second.getValueType()));
1625
1626  // Add a register mask operand representing the call-preserved registers.
1627  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1628  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1629  assert(Mask && "Missing call preserved mask for calling convention");
1630  Ops.push_back(DAG.getRegisterMask(Mask));
1631
1632  if (InFlag.getNode())
1633    Ops.push_back(InFlag);
1634
1635  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1636  if (isTailCall)
1637    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1638
1639  // Returns a chain and a flag for retval copy to use.
1640  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1641  InFlag = Chain.getValue(1);
1642
1643  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1644                             DAG.getIntPtrConstant(0, true), InFlag);
1645  if (!Ins.empty())
1646    InFlag = Chain.getValue(1);
1647
1648  // Handle result values, copying them out of physregs into vregs that we
1649  // return.
1650  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1651                         dl, DAG, InVals);
1652}
1653
1654/// HandleByVal - Every parameter *after* a byval parameter is passed
1655/// on the stack.  Remember the next parameter register to allocate,
1656/// and then confiscate the rest of the parameter registers to insure
1657/// this.
1658void
1659ARMTargetLowering::HandleByVal(
1660    CCState *State, unsigned &size, unsigned Align) const {
1661  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1662  assert((State->getCallOrPrologue() == Prologue ||
1663          State->getCallOrPrologue() == Call) &&
1664         "unhandled ParmContext");
1665  if ((!State->isFirstByValRegValid()) &&
1666      (ARM::R0 <= reg) && (reg <= ARM::R3)) {
1667    if (Subtarget->isAAPCS_ABI() && Align > 4) {
1668      unsigned AlignInRegs = Align / 4;
1669      unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
1670      for (unsigned i = 0; i < Waste; ++i)
1671        reg = State->AllocateReg(GPRArgRegs, 4);
1672    }
1673    if (reg != 0) {
1674      State->setFirstByValReg(reg);
1675      // At a call site, a byval parameter that is split between
1676      // registers and memory needs its size truncated here.  In a
1677      // function prologue, such byval parameters are reassembled in
1678      // memory, and are not truncated.
1679      if (State->getCallOrPrologue() == Call) {
1680        unsigned excess = 4 * (ARM::R4 - reg);
1681        assert(size >= excess && "expected larger existing stack allocation");
1682        size -= excess;
1683      }
1684    }
1685  }
1686  // Confiscate any remaining parameter registers to preclude their
1687  // assignment to subsequent parameters.
1688  while (State->AllocateReg(GPRArgRegs, 4))
1689    ;
1690}
1691
1692/// MatchingStackOffset - Return true if the given stack call argument is
1693/// already available in the same position (relatively) of the caller's
1694/// incoming argument stack.
1695static
1696bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1697                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1698                         const TargetInstrInfo *TII) {
1699  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1700  int FI = INT_MAX;
1701  if (Arg.getOpcode() == ISD::CopyFromReg) {
1702    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1703    if (!TargetRegisterInfo::isVirtualRegister(VR))
1704      return false;
1705    MachineInstr *Def = MRI->getVRegDef(VR);
1706    if (!Def)
1707      return false;
1708    if (!Flags.isByVal()) {
1709      if (!TII->isLoadFromStackSlot(Def, FI))
1710        return false;
1711    } else {
1712      return false;
1713    }
1714  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1715    if (Flags.isByVal())
1716      // ByVal argument is passed in as a pointer but it's now being
1717      // dereferenced. e.g.
1718      // define @foo(%struct.X* %A) {
1719      //   tail call @bar(%struct.X* byval %A)
1720      // }
1721      return false;
1722    SDValue Ptr = Ld->getBasePtr();
1723    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1724    if (!FINode)
1725      return false;
1726    FI = FINode->getIndex();
1727  } else
1728    return false;
1729
1730  assert(FI != INT_MAX);
1731  if (!MFI->isFixedObjectIndex(FI))
1732    return false;
1733  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1734}
1735
1736/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1737/// for tail call optimization. Targets which want to do tail call
1738/// optimization should implement this function.
1739bool
1740ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1741                                                     CallingConv::ID CalleeCC,
1742                                                     bool isVarArg,
1743                                                     bool isCalleeStructRet,
1744                                                     bool isCallerStructRet,
1745                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1746                                    const SmallVectorImpl<SDValue> &OutVals,
1747                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1748                                                     SelectionDAG& DAG) const {
1749  const Function *CallerF = DAG.getMachineFunction().getFunction();
1750  CallingConv::ID CallerCC = CallerF->getCallingConv();
1751  bool CCMatch = CallerCC == CalleeCC;
1752
1753  // Look for obvious safe cases to perform tail call optimization that do not
1754  // require ABI changes. This is what gcc calls sibcall.
1755
1756  // Do not sibcall optimize vararg calls unless the call site is not passing
1757  // any arguments.
1758  if (isVarArg && !Outs.empty())
1759    return false;
1760
1761  // Also avoid sibcall optimization if either caller or callee uses struct
1762  // return semantics.
1763  if (isCalleeStructRet || isCallerStructRet)
1764    return false;
1765
1766  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1767  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1768  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1769  // support in the assembler and linker to be used. This would need to be
1770  // fixed to fully support tail calls in Thumb1.
1771  //
1772  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1773  // LR.  This means if we need to reload LR, it takes an extra instructions,
1774  // which outweighs the value of the tail call; but here we don't know yet
1775  // whether LR is going to be used.  Probably the right approach is to
1776  // generate the tail call here and turn it back into CALL/RET in
1777  // emitEpilogue if LR is used.
1778
1779  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1780  // but we need to make sure there are enough registers; the only valid
1781  // registers are the 4 used for parameters.  We don't currently do this
1782  // case.
1783  if (Subtarget->isThumb1Only())
1784    return false;
1785
1786  // If the calling conventions do not match, then we'd better make sure the
1787  // results are returned in the same way as what the caller expects.
1788  if (!CCMatch) {
1789    SmallVector<CCValAssign, 16> RVLocs1;
1790    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1791                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1792    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1793
1794    SmallVector<CCValAssign, 16> RVLocs2;
1795    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1796                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1797    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1798
1799    if (RVLocs1.size() != RVLocs2.size())
1800      return false;
1801    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1802      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1803        return false;
1804      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1805        return false;
1806      if (RVLocs1[i].isRegLoc()) {
1807        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1808          return false;
1809      } else {
1810        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1811          return false;
1812      }
1813    }
1814  }
1815
1816  // If Caller's vararg or byval argument has been split between registers and
1817  // stack, do not perform tail call, since part of the argument is in caller's
1818  // local frame.
1819  const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
1820                                      getInfo<ARMFunctionInfo>();
1821  if (AFI_Caller->getVarArgsRegSaveSize())
1822    return false;
1823
1824  // If the callee takes no arguments then go on to check the results of the
1825  // call.
1826  if (!Outs.empty()) {
1827    // Check if stack adjustment is needed. For now, do not do this if any
1828    // argument is passed on the stack.
1829    SmallVector<CCValAssign, 16> ArgLocs;
1830    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
1831                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1832    CCInfo.AnalyzeCallOperands(Outs,
1833                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1834    if (CCInfo.getNextStackOffset()) {
1835      MachineFunction &MF = DAG.getMachineFunction();
1836
1837      // Check if the arguments are already laid out in the right way as
1838      // the caller's fixed stack objects.
1839      MachineFrameInfo *MFI = MF.getFrameInfo();
1840      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1841      const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1842      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1843           i != e;
1844           ++i, ++realArgIdx) {
1845        CCValAssign &VA = ArgLocs[i];
1846        EVT RegVT = VA.getLocVT();
1847        SDValue Arg = OutVals[realArgIdx];
1848        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1849        if (VA.getLocInfo() == CCValAssign::Indirect)
1850          return false;
1851        if (VA.needsCustom()) {
1852          // f64 and vector types are split into multiple registers or
1853          // register/stack-slot combinations.  The types will not match
1854          // the registers; give up on memory f64 refs until we figure
1855          // out what to do about this.
1856          if (!VA.isRegLoc())
1857            return false;
1858          if (!ArgLocs[++i].isRegLoc())
1859            return false;
1860          if (RegVT == MVT::v2f64) {
1861            if (!ArgLocs[++i].isRegLoc())
1862              return false;
1863            if (!ArgLocs[++i].isRegLoc())
1864              return false;
1865          }
1866        } else if (!VA.isRegLoc()) {
1867          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1868                                   MFI, MRI, TII))
1869            return false;
1870        }
1871      }
1872    }
1873  }
1874
1875  return true;
1876}
1877
1878SDValue
1879ARMTargetLowering::LowerReturn(SDValue Chain,
1880                               CallingConv::ID CallConv, bool isVarArg,
1881                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1882                               const SmallVectorImpl<SDValue> &OutVals,
1883                               DebugLoc dl, SelectionDAG &DAG) const {
1884
1885  // CCValAssign - represent the assignment of the return value to a location.
1886  SmallVector<CCValAssign, 16> RVLocs;
1887
1888  // CCState - Info about the registers and stack slots.
1889  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1890                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1891
1892  // Analyze outgoing return values.
1893  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1894                                               isVarArg));
1895
1896  // If this is the first return lowered for this function, add
1897  // the regs to the liveout set for the function.
1898  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1899    for (unsigned i = 0; i != RVLocs.size(); ++i)
1900      if (RVLocs[i].isRegLoc())
1901        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1902  }
1903
1904  SDValue Flag;
1905
1906  // Copy the result values into the output registers.
1907  for (unsigned i = 0, realRVLocIdx = 0;
1908       i != RVLocs.size();
1909       ++i, ++realRVLocIdx) {
1910    CCValAssign &VA = RVLocs[i];
1911    assert(VA.isRegLoc() && "Can only return in registers!");
1912
1913    SDValue Arg = OutVals[realRVLocIdx];
1914
1915    switch (VA.getLocInfo()) {
1916    default: llvm_unreachable("Unknown loc info!");
1917    case CCValAssign::Full: break;
1918    case CCValAssign::BCvt:
1919      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1920      break;
1921    }
1922
1923    if (VA.needsCustom()) {
1924      if (VA.getLocVT() == MVT::v2f64) {
1925        // Extract the first half and return it in two registers.
1926        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1927                                   DAG.getConstant(0, MVT::i32));
1928        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1929                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1930
1931        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1932        Flag = Chain.getValue(1);
1933        VA = RVLocs[++i]; // skip ahead to next loc
1934        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1935                                 HalfGPRs.getValue(1), Flag);
1936        Flag = Chain.getValue(1);
1937        VA = RVLocs[++i]; // skip ahead to next loc
1938
1939        // Extract the 2nd half and fall through to handle it as an f64 value.
1940        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1941                          DAG.getConstant(1, MVT::i32));
1942      }
1943      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1944      // available.
1945      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1946                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1947      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1948      Flag = Chain.getValue(1);
1949      VA = RVLocs[++i]; // skip ahead to next loc
1950      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1951                               Flag);
1952    } else
1953      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1954
1955    // Guarantee that all emitted copies are
1956    // stuck together, avoiding something bad.
1957    Flag = Chain.getValue(1);
1958  }
1959
1960  SDValue result;
1961  if (Flag.getNode())
1962    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1963  else // Return Void
1964    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1965
1966  return result;
1967}
1968
1969bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1970  if (N->getNumValues() != 1)
1971    return false;
1972  if (!N->hasNUsesOfValue(1, 0))
1973    return false;
1974
1975  SDValue TCChain = Chain;
1976  SDNode *Copy = *N->use_begin();
1977  if (Copy->getOpcode() == ISD::CopyToReg) {
1978    // If the copy has a glue operand, we conservatively assume it isn't safe to
1979    // perform a tail call.
1980    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1981      return false;
1982    TCChain = Copy->getOperand(0);
1983  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
1984    SDNode *VMov = Copy;
1985    // f64 returned in a pair of GPRs.
1986    SmallPtrSet<SDNode*, 2> Copies;
1987    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1988         UI != UE; ++UI) {
1989      if (UI->getOpcode() != ISD::CopyToReg)
1990        return false;
1991      Copies.insert(*UI);
1992    }
1993    if (Copies.size() > 2)
1994      return false;
1995
1996    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
1997         UI != UE; ++UI) {
1998      SDValue UseChain = UI->getOperand(0);
1999      if (Copies.count(UseChain.getNode()))
2000        // Second CopyToReg
2001        Copy = *UI;
2002      else
2003        // First CopyToReg
2004        TCChain = UseChain;
2005    }
2006  } else if (Copy->getOpcode() == ISD::BITCAST) {
2007    // f32 returned in a single GPR.
2008    if (!Copy->hasOneUse())
2009      return false;
2010    Copy = *Copy->use_begin();
2011    if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2012      return false;
2013    Chain = Copy->getOperand(0);
2014  } else {
2015    return false;
2016  }
2017
2018  bool HasRet = false;
2019  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2020       UI != UE; ++UI) {
2021    if (UI->getOpcode() != ARMISD::RET_FLAG)
2022      return false;
2023    HasRet = true;
2024  }
2025
2026  if (!HasRet)
2027    return false;
2028
2029  Chain = TCChain;
2030  return true;
2031}
2032
2033bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2034  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2035    return false;
2036
2037  if (!CI->isTailCall())
2038    return false;
2039
2040  return !Subtarget->isThumb1Only();
2041}
2042
2043// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2044// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2045// one of the above mentioned nodes. It has to be wrapped because otherwise
2046// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2047// be used to form addressing mode. These wrapped nodes will be selected
2048// into MOVi.
2049static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2050  EVT PtrVT = Op.getValueType();
2051  // FIXME there is no actual debug info here
2052  DebugLoc dl = Op.getDebugLoc();
2053  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2054  SDValue Res;
2055  if (CP->isMachineConstantPoolEntry())
2056    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2057                                    CP->getAlignment());
2058  else
2059    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2060                                    CP->getAlignment());
2061  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2062}
2063
2064unsigned ARMTargetLowering::getJumpTableEncoding() const {
2065  return MachineJumpTableInfo::EK_Inline;
2066}
2067
2068SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2069                                             SelectionDAG &DAG) const {
2070  MachineFunction &MF = DAG.getMachineFunction();
2071  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2072  unsigned ARMPCLabelIndex = 0;
2073  DebugLoc DL = Op.getDebugLoc();
2074  EVT PtrVT = getPointerTy();
2075  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2076  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2077  SDValue CPAddr;
2078  if (RelocM == Reloc::Static) {
2079    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2080  } else {
2081    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2082    ARMPCLabelIndex = AFI->createPICLabelUId();
2083    ARMConstantPoolValue *CPV =
2084      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2085                                      ARMCP::CPBlockAddress, PCAdj);
2086    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2087  }
2088  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2089  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2090                               MachinePointerInfo::getConstantPool(),
2091                               false, false, false, 0);
2092  if (RelocM == Reloc::Static)
2093    return Result;
2094  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2095  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2096}
2097
2098// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2099SDValue
2100ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2101                                                 SelectionDAG &DAG) const {
2102  DebugLoc dl = GA->getDebugLoc();
2103  EVT PtrVT = getPointerTy();
2104  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2105  MachineFunction &MF = DAG.getMachineFunction();
2106  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2107  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2108  ARMConstantPoolValue *CPV =
2109    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2110                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2111  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2112  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2113  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2114                         MachinePointerInfo::getConstantPool(),
2115                         false, false, false, 0);
2116  SDValue Chain = Argument.getValue(1);
2117
2118  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2119  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2120
2121  // call __tls_get_addr.
2122  ArgListTy Args;
2123  ArgListEntry Entry;
2124  Entry.Node = Argument;
2125  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2126  Args.push_back(Entry);
2127  // FIXME: is there useful debug info available here?
2128  TargetLowering::CallLoweringInfo CLI(Chain,
2129                (Type *) Type::getInt32Ty(*DAG.getContext()),
2130                false, false, false, false,
2131                0, CallingConv::C, /*isTailCall=*/false,
2132                /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2133                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2134  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2135  return CallResult.first;
2136}
2137
2138// Lower ISD::GlobalTLSAddress using the "initial exec" or
2139// "local exec" model.
2140SDValue
2141ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2142                                        SelectionDAG &DAG,
2143                                        TLSModel::Model model) const {
2144  const GlobalValue *GV = GA->getGlobal();
2145  DebugLoc dl = GA->getDebugLoc();
2146  SDValue Offset;
2147  SDValue Chain = DAG.getEntryNode();
2148  EVT PtrVT = getPointerTy();
2149  // Get the Thread Pointer
2150  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2151
2152  if (model == TLSModel::InitialExec) {
2153    MachineFunction &MF = DAG.getMachineFunction();
2154    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2155    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2156    // Initial exec model.
2157    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2158    ARMConstantPoolValue *CPV =
2159      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2160                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2161                                      true);
2162    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2163    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2164    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2165                         MachinePointerInfo::getConstantPool(),
2166                         false, false, false, 0);
2167    Chain = Offset.getValue(1);
2168
2169    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2170    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2171
2172    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2173                         MachinePointerInfo::getConstantPool(),
2174                         false, false, false, 0);
2175  } else {
2176    // local exec model
2177    assert(model == TLSModel::LocalExec);
2178    ARMConstantPoolValue *CPV =
2179      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2180    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2181    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2182    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2183                         MachinePointerInfo::getConstantPool(),
2184                         false, false, false, 0);
2185  }
2186
2187  // The address of the thread local variable is the add of the thread
2188  // pointer with the offset of the variable.
2189  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2190}
2191
2192SDValue
2193ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2194  // TODO: implement the "local dynamic" model
2195  assert(Subtarget->isTargetELF() &&
2196         "TLS not implemented for non-ELF targets");
2197  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2198
2199  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2200
2201  switch (model) {
2202    case TLSModel::GeneralDynamic:
2203    case TLSModel::LocalDynamic:
2204      return LowerToTLSGeneralDynamicModel(GA, DAG);
2205    case TLSModel::InitialExec:
2206    case TLSModel::LocalExec:
2207      return LowerToTLSExecModels(GA, DAG, model);
2208  }
2209  llvm_unreachable("bogus TLS model");
2210}
2211
2212SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2213                                                 SelectionDAG &DAG) const {
2214  EVT PtrVT = getPointerTy();
2215  DebugLoc dl = Op.getDebugLoc();
2216  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2217  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2218  if (RelocM == Reloc::PIC_) {
2219    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2220    ARMConstantPoolValue *CPV =
2221      ARMConstantPoolConstant::Create(GV,
2222                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2223    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2224    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2225    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2226                                 CPAddr,
2227                                 MachinePointerInfo::getConstantPool(),
2228                                 false, false, false, 0);
2229    SDValue Chain = Result.getValue(1);
2230    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2231    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2232    if (!UseGOTOFF)
2233      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2234                           MachinePointerInfo::getGOT(),
2235                           false, false, false, 0);
2236    return Result;
2237  }
2238
2239  // If we have T2 ops, we can materialize the address directly via movt/movw
2240  // pair. This is always cheaper.
2241  if (Subtarget->useMovt()) {
2242    ++NumMovwMovt;
2243    // FIXME: Once remat is capable of dealing with instructions with register
2244    // operands, expand this into two nodes.
2245    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2246                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2247  } else {
2248    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2249    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2250    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2251                       MachinePointerInfo::getConstantPool(),
2252                       false, false, false, 0);
2253  }
2254}
2255
2256SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2257                                                    SelectionDAG &DAG) const {
2258  EVT PtrVT = getPointerTy();
2259  DebugLoc dl = Op.getDebugLoc();
2260  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2261  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2262  MachineFunction &MF = DAG.getMachineFunction();
2263  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2264
2265  // FIXME: Enable this for static codegen when tool issues are fixed.  Also
2266  // update ARMFastISel::ARMMaterializeGV.
2267  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2268    ++NumMovwMovt;
2269    // FIXME: Once remat is capable of dealing with instructions with register
2270    // operands, expand this into two nodes.
2271    if (RelocM == Reloc::Static)
2272      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2273                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2274
2275    unsigned Wrapper = (RelocM == Reloc::PIC_)
2276      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2277    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2278                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2279    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2280      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2281                           MachinePointerInfo::getGOT(),
2282                           false, false, false, 0);
2283    return Result;
2284  }
2285
2286  unsigned ARMPCLabelIndex = 0;
2287  SDValue CPAddr;
2288  if (RelocM == Reloc::Static) {
2289    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2290  } else {
2291    ARMPCLabelIndex = AFI->createPICLabelUId();
2292    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2293    ARMConstantPoolValue *CPV =
2294      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2295                                      PCAdj);
2296    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2297  }
2298  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2299
2300  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2301                               MachinePointerInfo::getConstantPool(),
2302                               false, false, false, 0);
2303  SDValue Chain = Result.getValue(1);
2304
2305  if (RelocM == Reloc::PIC_) {
2306    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2307    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2308  }
2309
2310  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2311    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2312                         false, false, false, 0);
2313
2314  return Result;
2315}
2316
2317SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2318                                                    SelectionDAG &DAG) const {
2319  assert(Subtarget->isTargetELF() &&
2320         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2321  MachineFunction &MF = DAG.getMachineFunction();
2322  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2323  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2324  EVT PtrVT = getPointerTy();
2325  DebugLoc dl = Op.getDebugLoc();
2326  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2327  ARMConstantPoolValue *CPV =
2328    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2329                                  ARMPCLabelIndex, PCAdj);
2330  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2331  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2332  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2333                               MachinePointerInfo::getConstantPool(),
2334                               false, false, false, 0);
2335  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2336  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2337}
2338
2339SDValue
2340ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2341  DebugLoc dl = Op.getDebugLoc();
2342  SDValue Val = DAG.getConstant(0, MVT::i32);
2343  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2344                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2345                     Op.getOperand(1), Val);
2346}
2347
2348SDValue
2349ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2350  DebugLoc dl = Op.getDebugLoc();
2351  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2352                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2353}
2354
2355SDValue
2356ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2357                                          const ARMSubtarget *Subtarget) const {
2358  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2359  DebugLoc dl = Op.getDebugLoc();
2360  switch (IntNo) {
2361  default: return SDValue();    // Don't custom lower most intrinsics.
2362  case Intrinsic::arm_thread_pointer: {
2363    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2364    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2365  }
2366  case Intrinsic::eh_sjlj_lsda: {
2367    MachineFunction &MF = DAG.getMachineFunction();
2368    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2369    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2370    EVT PtrVT = getPointerTy();
2371    DebugLoc dl = Op.getDebugLoc();
2372    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2373    SDValue CPAddr;
2374    unsigned PCAdj = (RelocM != Reloc::PIC_)
2375      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2376    ARMConstantPoolValue *CPV =
2377      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2378                                      ARMCP::CPLSDA, PCAdj);
2379    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2380    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2381    SDValue Result =
2382      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2383                  MachinePointerInfo::getConstantPool(),
2384                  false, false, false, 0);
2385
2386    if (RelocM == Reloc::PIC_) {
2387      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2388      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2389    }
2390    return Result;
2391  }
2392  case Intrinsic::arm_neon_vmulls:
2393  case Intrinsic::arm_neon_vmullu: {
2394    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2395      ? ARMISD::VMULLs : ARMISD::VMULLu;
2396    return DAG.getNode(NewOpc, Op.getDebugLoc(), Op.getValueType(),
2397                       Op.getOperand(1), Op.getOperand(2));
2398  }
2399  }
2400}
2401
2402static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2403                               const ARMSubtarget *Subtarget) {
2404  DebugLoc dl = Op.getDebugLoc();
2405  if (!Subtarget->hasDataBarrier()) {
2406    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2407    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2408    // here.
2409    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2410           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2411    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2412                       DAG.getConstant(0, MVT::i32));
2413  }
2414
2415  SDValue Op5 = Op.getOperand(5);
2416  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2417  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2418  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2419  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2420
2421  ARM_MB::MemBOpt DMBOpt;
2422  if (isDeviceBarrier)
2423    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2424  else
2425    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2426  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2427                     DAG.getConstant(DMBOpt, MVT::i32));
2428}
2429
2430
2431static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2432                                 const ARMSubtarget *Subtarget) {
2433  // FIXME: handle "fence singlethread" more efficiently.
2434  DebugLoc dl = Op.getDebugLoc();
2435  if (!Subtarget->hasDataBarrier()) {
2436    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2437    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2438    // here.
2439    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2440           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2441    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2442                       DAG.getConstant(0, MVT::i32));
2443  }
2444
2445  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2446                     DAG.getConstant(ARM_MB::ISH, MVT::i32));
2447}
2448
2449static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2450                             const ARMSubtarget *Subtarget) {
2451  // ARM pre v5TE and Thumb1 does not have preload instructions.
2452  if (!(Subtarget->isThumb2() ||
2453        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2454    // Just preserve the chain.
2455    return Op.getOperand(0);
2456
2457  DebugLoc dl = Op.getDebugLoc();
2458  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2459  if (!isRead &&
2460      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2461    // ARMv7 with MP extension has PLDW.
2462    return Op.getOperand(0);
2463
2464  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2465  if (Subtarget->isThumb()) {
2466    // Invert the bits.
2467    isRead = ~isRead & 1;
2468    isData = ~isData & 1;
2469  }
2470
2471  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2472                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2473                     DAG.getConstant(isData, MVT::i32));
2474}
2475
2476static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2477  MachineFunction &MF = DAG.getMachineFunction();
2478  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2479
2480  // vastart just stores the address of the VarArgsFrameIndex slot into the
2481  // memory location argument.
2482  DebugLoc dl = Op.getDebugLoc();
2483  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2484  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2485  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2486  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2487                      MachinePointerInfo(SV), false, false, 0);
2488}
2489
2490SDValue
2491ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2492                                        SDValue &Root, SelectionDAG &DAG,
2493                                        DebugLoc dl) const {
2494  MachineFunction &MF = DAG.getMachineFunction();
2495  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2496
2497  const TargetRegisterClass *RC;
2498  if (AFI->isThumb1OnlyFunction())
2499    RC = &ARM::tGPRRegClass;
2500  else
2501    RC = &ARM::GPRRegClass;
2502
2503  // Transform the arguments stored in physical registers into virtual ones.
2504  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2505  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2506
2507  SDValue ArgValue2;
2508  if (NextVA.isMemLoc()) {
2509    MachineFrameInfo *MFI = MF.getFrameInfo();
2510    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2511
2512    // Create load node to retrieve arguments from the stack.
2513    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2514    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2515                            MachinePointerInfo::getFixedStack(FI),
2516                            false, false, false, 0);
2517  } else {
2518    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2519    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2520  }
2521
2522  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2523}
2524
2525void
2526ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2527                                  unsigned &VARegSize, unsigned &VARegSaveSize)
2528  const {
2529  unsigned NumGPRs;
2530  if (CCInfo.isFirstByValRegValid())
2531    NumGPRs = ARM::R4 - CCInfo.getFirstByValReg();
2532  else {
2533    unsigned int firstUnalloced;
2534    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2535                                                sizeof(GPRArgRegs) /
2536                                                sizeof(GPRArgRegs[0]));
2537    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2538  }
2539
2540  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2541  VARegSize = NumGPRs * 4;
2542  VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2543}
2544
2545// The remaining GPRs hold either the beginning of variable-argument
2546// data, or the beginning of an aggregate passed by value (usuall
2547// byval).  Either way, we allocate stack slots adjacent to the data
2548// provided by our caller, and store the unallocated registers there.
2549// If this is a variadic function, the va_list pointer will begin with
2550// these values; otherwise, this reassembles a (byval) structure that
2551// was split between registers and memory.
2552void
2553ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2554                                        DebugLoc dl, SDValue &Chain,
2555                                        const Value *OrigArg,
2556                                        unsigned OffsetFromOrigArg,
2557                                        unsigned ArgOffset) const {
2558  MachineFunction &MF = DAG.getMachineFunction();
2559  MachineFrameInfo *MFI = MF.getFrameInfo();
2560  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2561  unsigned firstRegToSaveIndex;
2562  if (CCInfo.isFirstByValRegValid())
2563    firstRegToSaveIndex = CCInfo.getFirstByValReg() - ARM::R0;
2564  else {
2565    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2566      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2567  }
2568
2569  unsigned VARegSize, VARegSaveSize;
2570  computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2571  if (VARegSaveSize) {
2572    // If this function is vararg, store any remaining integer argument regs
2573    // to their spots on the stack so that they may be loaded by deferencing
2574    // the result of va_next.
2575    AFI->setVarArgsRegSaveSize(VARegSaveSize);
2576    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(VARegSaveSize,
2577                                                     ArgOffset + VARegSaveSize
2578                                                     - VARegSize,
2579                                                     false));
2580    SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2581                                    getPointerTy());
2582
2583    SmallVector<SDValue, 4> MemOps;
2584    for (unsigned i = 0; firstRegToSaveIndex < 4; ++firstRegToSaveIndex, ++i) {
2585      const TargetRegisterClass *RC;
2586      if (AFI->isThumb1OnlyFunction())
2587        RC = &ARM::tGPRRegClass;
2588      else
2589        RC = &ARM::GPRRegClass;
2590
2591      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2592      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2593      SDValue Store =
2594        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2595                     MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
2596                     false, false, 0);
2597      MemOps.push_back(Store);
2598      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2599                        DAG.getConstant(4, getPointerTy()));
2600    }
2601    if (!MemOps.empty())
2602      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2603                          &MemOps[0], MemOps.size());
2604  } else
2605    // This will point to the next argument passed via stack.
2606    AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2607}
2608
2609SDValue
2610ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2611                                        CallingConv::ID CallConv, bool isVarArg,
2612                                        const SmallVectorImpl<ISD::InputArg>
2613                                          &Ins,
2614                                        DebugLoc dl, SelectionDAG &DAG,
2615                                        SmallVectorImpl<SDValue> &InVals)
2616                                          const {
2617  MachineFunction &MF = DAG.getMachineFunction();
2618  MachineFrameInfo *MFI = MF.getFrameInfo();
2619
2620  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2621
2622  // Assign locations to all of the incoming arguments.
2623  SmallVector<CCValAssign, 16> ArgLocs;
2624  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2625                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2626  CCInfo.AnalyzeFormalArguments(Ins,
2627                                CCAssignFnForNode(CallConv, /* Return*/ false,
2628                                                  isVarArg));
2629
2630  SmallVector<SDValue, 16> ArgValues;
2631  int lastInsIndex = -1;
2632  SDValue ArgValue;
2633  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2634  unsigned CurArgIdx = 0;
2635  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2636    CCValAssign &VA = ArgLocs[i];
2637    std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
2638    CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
2639    // Arguments stored in registers.
2640    if (VA.isRegLoc()) {
2641      EVT RegVT = VA.getLocVT();
2642
2643      if (VA.needsCustom()) {
2644        // f64 and vector types are split up into multiple registers or
2645        // combinations of registers and stack slots.
2646        if (VA.getLocVT() == MVT::v2f64) {
2647          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2648                                                   Chain, DAG, dl);
2649          VA = ArgLocs[++i]; // skip ahead to next loc
2650          SDValue ArgValue2;
2651          if (VA.isMemLoc()) {
2652            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2653            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2654            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2655                                    MachinePointerInfo::getFixedStack(FI),
2656                                    false, false, false, 0);
2657          } else {
2658            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2659                                             Chain, DAG, dl);
2660          }
2661          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2662          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2663                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2664          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2665                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2666        } else
2667          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2668
2669      } else {
2670        const TargetRegisterClass *RC;
2671
2672        if (RegVT == MVT::f32)
2673          RC = &ARM::SPRRegClass;
2674        else if (RegVT == MVT::f64)
2675          RC = &ARM::DPRRegClass;
2676        else if (RegVT == MVT::v2f64)
2677          RC = &ARM::QPRRegClass;
2678        else if (RegVT == MVT::i32)
2679          RC = AFI->isThumb1OnlyFunction() ?
2680            (const TargetRegisterClass*)&ARM::tGPRRegClass :
2681            (const TargetRegisterClass*)&ARM::GPRRegClass;
2682        else
2683          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2684
2685        // Transform the arguments in physical registers into virtual ones.
2686        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2687        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2688      }
2689
2690      // If this is an 8 or 16-bit value, it is really passed promoted
2691      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2692      // truncate to the right size.
2693      switch (VA.getLocInfo()) {
2694      default: llvm_unreachable("Unknown loc info!");
2695      case CCValAssign::Full: break;
2696      case CCValAssign::BCvt:
2697        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2698        break;
2699      case CCValAssign::SExt:
2700        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2701                               DAG.getValueType(VA.getValVT()));
2702        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2703        break;
2704      case CCValAssign::ZExt:
2705        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2706                               DAG.getValueType(VA.getValVT()));
2707        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2708        break;
2709      }
2710
2711      InVals.push_back(ArgValue);
2712
2713    } else { // VA.isRegLoc()
2714
2715      // sanity check
2716      assert(VA.isMemLoc());
2717      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2718
2719      int index = ArgLocs[i].getValNo();
2720
2721      // Some Ins[] entries become multiple ArgLoc[] entries.
2722      // Process them only once.
2723      if (index != lastInsIndex)
2724        {
2725          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2726          // FIXME: For now, all byval parameter objects are marked mutable.
2727          // This can be changed with more analysis.
2728          // In case of tail call optimization mark all arguments mutable.
2729          // Since they could be overwritten by lowering of arguments in case of
2730          // a tail call.
2731          if (Flags.isByVal()) {
2732            unsigned VARegSize, VARegSaveSize;
2733            computeRegArea(CCInfo, MF, VARegSize, VARegSaveSize);
2734            VarArgStyleRegisters(CCInfo, DAG,
2735                                 dl, Chain, CurOrigArg, Ins[VA.getValNo()].PartOffset, 0);
2736            unsigned Bytes = Flags.getByValSize() - VARegSize;
2737            if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2738            int FI = MFI->CreateFixedObject(Bytes,
2739                                            VA.getLocMemOffset(), false);
2740            InVals.push_back(DAG.getFrameIndex(FI, getPointerTy()));
2741          } else {
2742            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2743                                            VA.getLocMemOffset(), true);
2744
2745            // Create load nodes to retrieve arguments from the stack.
2746            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2747            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2748                                         MachinePointerInfo::getFixedStack(FI),
2749                                         false, false, false, 0));
2750          }
2751          lastInsIndex = index;
2752        }
2753    }
2754  }
2755
2756  // varargs
2757  if (isVarArg)
2758    VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 0, 0,
2759                         CCInfo.getNextStackOffset());
2760
2761  return Chain;
2762}
2763
2764/// isFloatingPointZero - Return true if this is +0.0.
2765static bool isFloatingPointZero(SDValue Op) {
2766  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2767    return CFP->getValueAPF().isPosZero();
2768  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2769    // Maybe this has already been legalized into the constant pool?
2770    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2771      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2772      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2773        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2774          return CFP->getValueAPF().isPosZero();
2775    }
2776  }
2777  return false;
2778}
2779
2780/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2781/// the given operands.
2782SDValue
2783ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2784                             SDValue &ARMcc, SelectionDAG &DAG,
2785                             DebugLoc dl) const {
2786  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2787    unsigned C = RHSC->getZExtValue();
2788    if (!isLegalICmpImmediate(C)) {
2789      // Constant does not fit, try adjusting it by one?
2790      switch (CC) {
2791      default: break;
2792      case ISD::SETLT:
2793      case ISD::SETGE:
2794        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2795          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2796          RHS = DAG.getConstant(C-1, MVT::i32);
2797        }
2798        break;
2799      case ISD::SETULT:
2800      case ISD::SETUGE:
2801        if (C != 0 && isLegalICmpImmediate(C-1)) {
2802          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2803          RHS = DAG.getConstant(C-1, MVT::i32);
2804        }
2805        break;
2806      case ISD::SETLE:
2807      case ISD::SETGT:
2808        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2809          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2810          RHS = DAG.getConstant(C+1, MVT::i32);
2811        }
2812        break;
2813      case ISD::SETULE:
2814      case ISD::SETUGT:
2815        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2816          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2817          RHS = DAG.getConstant(C+1, MVT::i32);
2818        }
2819        break;
2820      }
2821    }
2822  }
2823
2824  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2825  ARMISD::NodeType CompareType;
2826  switch (CondCode) {
2827  default:
2828    CompareType = ARMISD::CMP;
2829    break;
2830  case ARMCC::EQ:
2831  case ARMCC::NE:
2832    // Uses only Z Flag
2833    CompareType = ARMISD::CMPZ;
2834    break;
2835  }
2836  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2837  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
2838}
2839
2840/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2841SDValue
2842ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2843                             DebugLoc dl) const {
2844  SDValue Cmp;
2845  if (!isFloatingPointZero(RHS))
2846    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
2847  else
2848    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
2849  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
2850}
2851
2852/// duplicateCmp - Glue values can have only one use, so this function
2853/// duplicates a comparison node.
2854SDValue
2855ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
2856  unsigned Opc = Cmp.getOpcode();
2857  DebugLoc DL = Cmp.getDebugLoc();
2858  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
2859    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2860
2861  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
2862  Cmp = Cmp.getOperand(0);
2863  Opc = Cmp.getOpcode();
2864  if (Opc == ARMISD::CMPFP)
2865    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
2866  else {
2867    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
2868    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
2869  }
2870  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
2871}
2872
2873SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2874  SDValue Cond = Op.getOperand(0);
2875  SDValue SelectTrue = Op.getOperand(1);
2876  SDValue SelectFalse = Op.getOperand(2);
2877  DebugLoc dl = Op.getDebugLoc();
2878
2879  // Convert:
2880  //
2881  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2882  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2883  //
2884  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2885    const ConstantSDNode *CMOVTrue =
2886      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2887    const ConstantSDNode *CMOVFalse =
2888      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2889
2890    if (CMOVTrue && CMOVFalse) {
2891      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2892      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2893
2894      SDValue True;
2895      SDValue False;
2896      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2897        True = SelectTrue;
2898        False = SelectFalse;
2899      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2900        True = SelectFalse;
2901        False = SelectTrue;
2902      }
2903
2904      if (True.getNode() && False.getNode()) {
2905        EVT VT = Op.getValueType();
2906        SDValue ARMcc = Cond.getOperand(2);
2907        SDValue CCR = Cond.getOperand(3);
2908        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
2909        assert(True.getValueType() == VT);
2910        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2911      }
2912    }
2913  }
2914
2915  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
2916  // undefined bits before doing a full-word comparison with zero.
2917  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
2918                     DAG.getConstant(1, Cond.getValueType()));
2919
2920  return DAG.getSelectCC(dl, Cond,
2921                         DAG.getConstant(0, Cond.getValueType()),
2922                         SelectTrue, SelectFalse, ISD::SETNE);
2923}
2924
2925SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2926  EVT VT = Op.getValueType();
2927  SDValue LHS = Op.getOperand(0);
2928  SDValue RHS = Op.getOperand(1);
2929  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2930  SDValue TrueVal = Op.getOperand(2);
2931  SDValue FalseVal = Op.getOperand(3);
2932  DebugLoc dl = Op.getDebugLoc();
2933
2934  if (LHS.getValueType() == MVT::i32) {
2935    SDValue ARMcc;
2936    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2937    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2938    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2939  }
2940
2941  ARMCC::CondCodes CondCode, CondCode2;
2942  FPCCToARMCC(CC, CondCode, CondCode2);
2943
2944  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2945  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2946  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2947  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2948                               ARMcc, CCR, Cmp);
2949  if (CondCode2 != ARMCC::AL) {
2950    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2951    // FIXME: Needs another CMP because flag can have but one use.
2952    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2953    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2954                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2955  }
2956  return Result;
2957}
2958
2959/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2960/// to morph to an integer compare sequence.
2961static bool canChangeToInt(SDValue Op, bool &SeenZero,
2962                           const ARMSubtarget *Subtarget) {
2963  SDNode *N = Op.getNode();
2964  if (!N->hasOneUse())
2965    // Otherwise it requires moving the value from fp to integer registers.
2966    return false;
2967  if (!N->getNumValues())
2968    return false;
2969  EVT VT = Op.getValueType();
2970  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2971    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2972    // vmrs are very slow, e.g. cortex-a8.
2973    return false;
2974
2975  if (isFloatingPointZero(Op)) {
2976    SeenZero = true;
2977    return true;
2978  }
2979  return ISD::isNormalLoad(N);
2980}
2981
2982static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2983  if (isFloatingPointZero(Op))
2984    return DAG.getConstant(0, MVT::i32);
2985
2986  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2987    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2988                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2989                       Ld->isVolatile(), Ld->isNonTemporal(),
2990                       Ld->isInvariant(), Ld->getAlignment());
2991
2992  llvm_unreachable("Unknown VFP cmp argument!");
2993}
2994
2995static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2996                           SDValue &RetVal1, SDValue &RetVal2) {
2997  if (isFloatingPointZero(Op)) {
2998    RetVal1 = DAG.getConstant(0, MVT::i32);
2999    RetVal2 = DAG.getConstant(0, MVT::i32);
3000    return;
3001  }
3002
3003  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3004    SDValue Ptr = Ld->getBasePtr();
3005    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3006                          Ld->getChain(), Ptr,
3007                          Ld->getPointerInfo(),
3008                          Ld->isVolatile(), Ld->isNonTemporal(),
3009                          Ld->isInvariant(), Ld->getAlignment());
3010
3011    EVT PtrType = Ptr.getValueType();
3012    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3013    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
3014                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
3015    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
3016                          Ld->getChain(), NewPtr,
3017                          Ld->getPointerInfo().getWithOffset(4),
3018                          Ld->isVolatile(), Ld->isNonTemporal(),
3019                          Ld->isInvariant(), NewAlign);
3020    return;
3021  }
3022
3023  llvm_unreachable("Unknown VFP cmp argument!");
3024}
3025
3026/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3027/// f32 and even f64 comparisons to integer ones.
3028SDValue
3029ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3030  SDValue Chain = Op.getOperand(0);
3031  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3032  SDValue LHS = Op.getOperand(2);
3033  SDValue RHS = Op.getOperand(3);
3034  SDValue Dest = Op.getOperand(4);
3035  DebugLoc dl = Op.getDebugLoc();
3036
3037  bool LHSSeenZero = false;
3038  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3039  bool RHSSeenZero = false;
3040  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3041  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3042    // If unsafe fp math optimization is enabled and there are no other uses of
3043    // the CMP operands, and the condition code is EQ or NE, we can optimize it
3044    // to an integer comparison.
3045    if (CC == ISD::SETOEQ)
3046      CC = ISD::SETEQ;
3047    else if (CC == ISD::SETUNE)
3048      CC = ISD::SETNE;
3049
3050    SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3051    SDValue ARMcc;
3052    if (LHS.getValueType() == MVT::f32) {
3053      LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3054                        bitcastf32Toi32(LHS, DAG), Mask);
3055      RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3056                        bitcastf32Toi32(RHS, DAG), Mask);
3057      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3058      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3059      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3060                         Chain, Dest, ARMcc, CCR, Cmp);
3061    }
3062
3063    SDValue LHS1, LHS2;
3064    SDValue RHS1, RHS2;
3065    expandf64Toi32(LHS, DAG, LHS1, LHS2);
3066    expandf64Toi32(RHS, DAG, RHS1, RHS2);
3067    LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3068    RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3069    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3070    ARMcc = DAG.getConstant(CondCode, MVT::i32);
3071    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3072    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3073    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3074  }
3075
3076  return SDValue();
3077}
3078
3079SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3080  SDValue Chain = Op.getOperand(0);
3081  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3082  SDValue LHS = Op.getOperand(2);
3083  SDValue RHS = Op.getOperand(3);
3084  SDValue Dest = Op.getOperand(4);
3085  DebugLoc dl = Op.getDebugLoc();
3086
3087  if (LHS.getValueType() == MVT::i32) {
3088    SDValue ARMcc;
3089    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3090    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3091    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3092                       Chain, Dest, ARMcc, CCR, Cmp);
3093  }
3094
3095  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3096
3097  if (getTargetMachine().Options.UnsafeFPMath &&
3098      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3099       CC == ISD::SETNE || CC == ISD::SETUNE)) {
3100    SDValue Result = OptimizeVFPBrcond(Op, DAG);
3101    if (Result.getNode())
3102      return Result;
3103  }
3104
3105  ARMCC::CondCodes CondCode, CondCode2;
3106  FPCCToARMCC(CC, CondCode, CondCode2);
3107
3108  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3109  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3110  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3111  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3112  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3113  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3114  if (CondCode2 != ARMCC::AL) {
3115    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3116    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3117    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3118  }
3119  return Res;
3120}
3121
3122SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3123  SDValue Chain = Op.getOperand(0);
3124  SDValue Table = Op.getOperand(1);
3125  SDValue Index = Op.getOperand(2);
3126  DebugLoc dl = Op.getDebugLoc();
3127
3128  EVT PTy = getPointerTy();
3129  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3130  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3131  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3132  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3133  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3134  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3135  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3136  if (Subtarget->isThumb2()) {
3137    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3138    // which does another jump to the destination. This also makes it easier
3139    // to translate it to TBB / TBH later.
3140    // FIXME: This might not work if the function is extremely large.
3141    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3142                       Addr, Op.getOperand(2), JTI, UId);
3143  }
3144  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3145    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3146                       MachinePointerInfo::getJumpTable(),
3147                       false, false, false, 0);
3148    Chain = Addr.getValue(1);
3149    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3150    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3151  } else {
3152    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3153                       MachinePointerInfo::getJumpTable(),
3154                       false, false, false, 0);
3155    Chain = Addr.getValue(1);
3156    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3157  }
3158}
3159
3160static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3161  EVT VT = Op.getValueType();
3162  DebugLoc dl = Op.getDebugLoc();
3163
3164  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3165    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3166      return Op;
3167    return DAG.UnrollVectorOp(Op.getNode());
3168  }
3169
3170  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3171         "Invalid type for custom lowering!");
3172  if (VT != MVT::v4i16)
3173    return DAG.UnrollVectorOp(Op.getNode());
3174
3175  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3176  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3177}
3178
3179static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3180  EVT VT = Op.getValueType();
3181  if (VT.isVector())
3182    return LowerVectorFP_TO_INT(Op, DAG);
3183
3184  DebugLoc dl = Op.getDebugLoc();
3185  unsigned Opc;
3186
3187  switch (Op.getOpcode()) {
3188  default: llvm_unreachable("Invalid opcode!");
3189  case ISD::FP_TO_SINT:
3190    Opc = ARMISD::FTOSI;
3191    break;
3192  case ISD::FP_TO_UINT:
3193    Opc = ARMISD::FTOUI;
3194    break;
3195  }
3196  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3197  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3198}
3199
3200static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3201  EVT VT = Op.getValueType();
3202  DebugLoc dl = Op.getDebugLoc();
3203
3204  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3205    if (VT.getVectorElementType() == MVT::f32)
3206      return Op;
3207    return DAG.UnrollVectorOp(Op.getNode());
3208  }
3209
3210  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3211         "Invalid type for custom lowering!");
3212  if (VT != MVT::v4f32)
3213    return DAG.UnrollVectorOp(Op.getNode());
3214
3215  unsigned CastOpc;
3216  unsigned Opc;
3217  switch (Op.getOpcode()) {
3218  default: llvm_unreachable("Invalid opcode!");
3219  case ISD::SINT_TO_FP:
3220    CastOpc = ISD::SIGN_EXTEND;
3221    Opc = ISD::SINT_TO_FP;
3222    break;
3223  case ISD::UINT_TO_FP:
3224    CastOpc = ISD::ZERO_EXTEND;
3225    Opc = ISD::UINT_TO_FP;
3226    break;
3227  }
3228
3229  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3230  return DAG.getNode(Opc, dl, VT, Op);
3231}
3232
3233static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3234  EVT VT = Op.getValueType();
3235  if (VT.isVector())
3236    return LowerVectorINT_TO_FP(Op, DAG);
3237
3238  DebugLoc dl = Op.getDebugLoc();
3239  unsigned Opc;
3240
3241  switch (Op.getOpcode()) {
3242  default: llvm_unreachable("Invalid opcode!");
3243  case ISD::SINT_TO_FP:
3244    Opc = ARMISD::SITOF;
3245    break;
3246  case ISD::UINT_TO_FP:
3247    Opc = ARMISD::UITOF;
3248    break;
3249  }
3250
3251  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3252  return DAG.getNode(Opc, dl, VT, Op);
3253}
3254
3255SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3256  // Implement fcopysign with a fabs and a conditional fneg.
3257  SDValue Tmp0 = Op.getOperand(0);
3258  SDValue Tmp1 = Op.getOperand(1);
3259  DebugLoc dl = Op.getDebugLoc();
3260  EVT VT = Op.getValueType();
3261  EVT SrcVT = Tmp1.getValueType();
3262  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3263    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3264  bool UseNEON = !InGPR && Subtarget->hasNEON();
3265
3266  if (UseNEON) {
3267    // Use VBSL to copy the sign bit.
3268    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3269    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3270                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3271    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3272    if (VT == MVT::f64)
3273      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3274                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3275                         DAG.getConstant(32, MVT::i32));
3276    else /*if (VT == MVT::f32)*/
3277      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3278    if (SrcVT == MVT::f32) {
3279      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3280      if (VT == MVT::f64)
3281        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3282                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3283                           DAG.getConstant(32, MVT::i32));
3284    } else if (VT == MVT::f32)
3285      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3286                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3287                         DAG.getConstant(32, MVT::i32));
3288    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3289    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3290
3291    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3292                                            MVT::i32);
3293    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3294    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3295                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3296
3297    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3298                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3299                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3300    if (VT == MVT::f32) {
3301      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3302      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3303                        DAG.getConstant(0, MVT::i32));
3304    } else {
3305      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3306    }
3307
3308    return Res;
3309  }
3310
3311  // Bitcast operand 1 to i32.
3312  if (SrcVT == MVT::f64)
3313    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3314                       &Tmp1, 1).getValue(1);
3315  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3316
3317  // Or in the signbit with integer operations.
3318  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3319  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3320  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3321  if (VT == MVT::f32) {
3322    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3323                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3324    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3325                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3326  }
3327
3328  // f64: Or the high part with signbit and then combine two parts.
3329  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3330                     &Tmp0, 1);
3331  SDValue Lo = Tmp0.getValue(0);
3332  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3333  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3334  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3335}
3336
3337SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3338  MachineFunction &MF = DAG.getMachineFunction();
3339  MachineFrameInfo *MFI = MF.getFrameInfo();
3340  MFI->setReturnAddressIsTaken(true);
3341
3342  EVT VT = Op.getValueType();
3343  DebugLoc dl = Op.getDebugLoc();
3344  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3345  if (Depth) {
3346    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3347    SDValue Offset = DAG.getConstant(4, MVT::i32);
3348    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3349                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3350                       MachinePointerInfo(), false, false, false, 0);
3351  }
3352
3353  // Return LR, which contains the return address. Mark it an implicit live-in.
3354  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3355  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3356}
3357
3358SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3359  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3360  MFI->setFrameAddressIsTaken(true);
3361
3362  EVT VT = Op.getValueType();
3363  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
3364  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3365  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3366    ? ARM::R7 : ARM::R11;
3367  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3368  while (Depth--)
3369    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3370                            MachinePointerInfo(),
3371                            false, false, false, 0);
3372  return FrameAddr;
3373}
3374
3375/// ExpandBITCAST - If the target supports VFP, this function is called to
3376/// expand a bit convert where either the source or destination type is i64 to
3377/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3378/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3379/// vectors), since the legalizer won't know what to do with that.
3380static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3381  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3382  DebugLoc dl = N->getDebugLoc();
3383  SDValue Op = N->getOperand(0);
3384
3385  // This function is only supposed to be called for i64 types, either as the
3386  // source or destination of the bit convert.
3387  EVT SrcVT = Op.getValueType();
3388  EVT DstVT = N->getValueType(0);
3389  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3390         "ExpandBITCAST called for non-i64 type");
3391
3392  // Turn i64->f64 into VMOVDRR.
3393  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3394    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3395                             DAG.getConstant(0, MVT::i32));
3396    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3397                             DAG.getConstant(1, MVT::i32));
3398    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3399                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3400  }
3401
3402  // Turn f64->i64 into VMOVRRD.
3403  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3404    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3405                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3406    // Merge the pieces into a single i64 value.
3407    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3408  }
3409
3410  return SDValue();
3411}
3412
3413/// getZeroVector - Returns a vector of specified type with all zero elements.
3414/// Zero vectors are used to represent vector negation and in those cases
3415/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3416/// not support i64 elements, so sometimes the zero vectors will need to be
3417/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3418/// zero vector.
3419static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3420  assert(VT.isVector() && "Expected a vector type");
3421  // The canonical modified immediate encoding of a zero vector is....0!
3422  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3423  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3424  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3425  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3426}
3427
3428/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3429/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3430SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3431                                                SelectionDAG &DAG) const {
3432  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3433  EVT VT = Op.getValueType();
3434  unsigned VTBits = VT.getSizeInBits();
3435  DebugLoc dl = Op.getDebugLoc();
3436  SDValue ShOpLo = Op.getOperand(0);
3437  SDValue ShOpHi = Op.getOperand(1);
3438  SDValue ShAmt  = Op.getOperand(2);
3439  SDValue ARMcc;
3440  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3441
3442  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3443
3444  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3445                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3446  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3447  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3448                                   DAG.getConstant(VTBits, MVT::i32));
3449  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3450  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3451  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3452
3453  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3454  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3455                          ARMcc, DAG, dl);
3456  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3457  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3458                           CCR, Cmp);
3459
3460  SDValue Ops[2] = { Lo, Hi };
3461  return DAG.getMergeValues(Ops, 2, dl);
3462}
3463
3464/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3465/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3466SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3467                                               SelectionDAG &DAG) const {
3468  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3469  EVT VT = Op.getValueType();
3470  unsigned VTBits = VT.getSizeInBits();
3471  DebugLoc dl = Op.getDebugLoc();
3472  SDValue ShOpLo = Op.getOperand(0);
3473  SDValue ShOpHi = Op.getOperand(1);
3474  SDValue ShAmt  = Op.getOperand(2);
3475  SDValue ARMcc;
3476
3477  assert(Op.getOpcode() == ISD::SHL_PARTS);
3478  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3479                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3480  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3481  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3482                                   DAG.getConstant(VTBits, MVT::i32));
3483  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3484  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3485
3486  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3487  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3488  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3489                          ARMcc, DAG, dl);
3490  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3491  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3492                           CCR, Cmp);
3493
3494  SDValue Ops[2] = { Lo, Hi };
3495  return DAG.getMergeValues(Ops, 2, dl);
3496}
3497
3498SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3499                                            SelectionDAG &DAG) const {
3500  // The rounding mode is in bits 23:22 of the FPSCR.
3501  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3502  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3503  // so that the shift + and get folded into a bitfield extract.
3504  DebugLoc dl = Op.getDebugLoc();
3505  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3506                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3507                                              MVT::i32));
3508  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3509                                  DAG.getConstant(1U << 22, MVT::i32));
3510  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3511                              DAG.getConstant(22, MVT::i32));
3512  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3513                     DAG.getConstant(3, MVT::i32));
3514}
3515
3516static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3517                         const ARMSubtarget *ST) {
3518  EVT VT = N->getValueType(0);
3519  DebugLoc dl = N->getDebugLoc();
3520
3521  if (!ST->hasV6T2Ops())
3522    return SDValue();
3523
3524  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3525  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3526}
3527
3528static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3529                          const ARMSubtarget *ST) {
3530  EVT VT = N->getValueType(0);
3531  DebugLoc dl = N->getDebugLoc();
3532
3533  if (!VT.isVector())
3534    return SDValue();
3535
3536  // Lower vector shifts on NEON to use VSHL.
3537  assert(ST->hasNEON() && "unexpected vector shift");
3538
3539  // Left shifts translate directly to the vshiftu intrinsic.
3540  if (N->getOpcode() == ISD::SHL)
3541    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3542                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3543                       N->getOperand(0), N->getOperand(1));
3544
3545  assert((N->getOpcode() == ISD::SRA ||
3546          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3547
3548  // NEON uses the same intrinsics for both left and right shifts.  For
3549  // right shifts, the shift amounts are negative, so negate the vector of
3550  // shift amounts.
3551  EVT ShiftVT = N->getOperand(1).getValueType();
3552  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3553                                     getZeroVector(ShiftVT, DAG, dl),
3554                                     N->getOperand(1));
3555  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3556                             Intrinsic::arm_neon_vshifts :
3557                             Intrinsic::arm_neon_vshiftu);
3558  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3559                     DAG.getConstant(vshiftInt, MVT::i32),
3560                     N->getOperand(0), NegatedCount);
3561}
3562
3563static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3564                                const ARMSubtarget *ST) {
3565  EVT VT = N->getValueType(0);
3566  DebugLoc dl = N->getDebugLoc();
3567
3568  // We can get here for a node like i32 = ISD::SHL i32, i64
3569  if (VT != MVT::i64)
3570    return SDValue();
3571
3572  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3573         "Unknown shift to lower!");
3574
3575  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3576  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3577      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3578    return SDValue();
3579
3580  // If we are in thumb mode, we don't have RRX.
3581  if (ST->isThumb1Only()) return SDValue();
3582
3583  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3584  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3585                           DAG.getConstant(0, MVT::i32));
3586  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3587                           DAG.getConstant(1, MVT::i32));
3588
3589  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3590  // captures the result into a carry flag.
3591  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3592  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3593
3594  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3595  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
3596
3597  // Merge the pieces into a single i64 value.
3598 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
3599}
3600
3601static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
3602  SDValue TmpOp0, TmpOp1;
3603  bool Invert = false;
3604  bool Swap = false;
3605  unsigned Opc = 0;
3606
3607  SDValue Op0 = Op.getOperand(0);
3608  SDValue Op1 = Op.getOperand(1);
3609  SDValue CC = Op.getOperand(2);
3610  EVT VT = Op.getValueType();
3611  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3612  DebugLoc dl = Op.getDebugLoc();
3613
3614  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
3615    switch (SetCCOpcode) {
3616    default: llvm_unreachable("Illegal FP comparison");
3617    case ISD::SETUNE:
3618    case ISD::SETNE:  Invert = true; // Fallthrough
3619    case ISD::SETOEQ:
3620    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3621    case ISD::SETOLT:
3622    case ISD::SETLT: Swap = true; // Fallthrough
3623    case ISD::SETOGT:
3624    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3625    case ISD::SETOLE:
3626    case ISD::SETLE:  Swap = true; // Fallthrough
3627    case ISD::SETOGE:
3628    case ISD::SETGE: Opc = ARMISD::VCGE; break;
3629    case ISD::SETUGE: Swap = true; // Fallthrough
3630    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
3631    case ISD::SETUGT: Swap = true; // Fallthrough
3632    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
3633    case ISD::SETUEQ: Invert = true; // Fallthrough
3634    case ISD::SETONE:
3635      // Expand this to (OLT | OGT).
3636      TmpOp0 = Op0;
3637      TmpOp1 = Op1;
3638      Opc = ISD::OR;
3639      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3640      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
3641      break;
3642    case ISD::SETUO: Invert = true; // Fallthrough
3643    case ISD::SETO:
3644      // Expand this to (OLT | OGE).
3645      TmpOp0 = Op0;
3646      TmpOp1 = Op1;
3647      Opc = ISD::OR;
3648      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
3649      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
3650      break;
3651    }
3652  } else {
3653    // Integer comparisons.
3654    switch (SetCCOpcode) {
3655    default: llvm_unreachable("Illegal integer comparison");
3656    case ISD::SETNE:  Invert = true;
3657    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3658    case ISD::SETLT:  Swap = true;
3659    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3660    case ISD::SETLE:  Swap = true;
3661    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3662    case ISD::SETULT: Swap = true;
3663    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3664    case ISD::SETULE: Swap = true;
3665    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3666    }
3667
3668    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3669    if (Opc == ARMISD::VCEQ) {
3670
3671      SDValue AndOp;
3672      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3673        AndOp = Op0;
3674      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3675        AndOp = Op1;
3676
3677      // Ignore bitconvert.
3678      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
3679        AndOp = AndOp.getOperand(0);
3680
3681      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3682        Opc = ARMISD::VTST;
3683        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
3684        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
3685        Invert = !Invert;
3686      }
3687    }
3688  }
3689
3690  if (Swap)
3691    std::swap(Op0, Op1);
3692
3693  // If one of the operands is a constant vector zero, attempt to fold the
3694  // comparison to a specialized compare-against-zero form.
3695  SDValue SingleOp;
3696  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3697    SingleOp = Op0;
3698  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
3699    if (Opc == ARMISD::VCGE)
3700      Opc = ARMISD::VCLEZ;
3701    else if (Opc == ARMISD::VCGT)
3702      Opc = ARMISD::VCLTZ;
3703    SingleOp = Op1;
3704  }
3705
3706  SDValue Result;
3707  if (SingleOp.getNode()) {
3708    switch (Opc) {
3709    case ARMISD::VCEQ:
3710      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
3711    case ARMISD::VCGE:
3712      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
3713    case ARMISD::VCLEZ:
3714      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
3715    case ARMISD::VCGT:
3716      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
3717    case ARMISD::VCLTZ:
3718      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
3719    default:
3720      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3721    }
3722  } else {
3723     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3724  }
3725
3726  if (Invert)
3727    Result = DAG.getNOT(dl, Result, VT);
3728
3729  return Result;
3730}
3731
3732/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3733/// valid vector constant for a NEON instruction with a "modified immediate"
3734/// operand (e.g., VMOV).  If so, return the encoded value.
3735static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3736                                 unsigned SplatBitSize, SelectionDAG &DAG,
3737                                 EVT &VT, bool is128Bits, NEONModImmType type) {
3738  unsigned OpCmode, Imm;
3739
3740  // SplatBitSize is set to the smallest size that splats the vector, so a
3741  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3742  // immediate instructions others than VMOV do not support the 8-bit encoding
3743  // of a zero vector, and the default encoding of zero is supposed to be the
3744  // 32-bit version.
3745  if (SplatBits == 0)
3746    SplatBitSize = 32;
3747
3748  switch (SplatBitSize) {
3749  case 8:
3750    if (type != VMOVModImm)
3751      return SDValue();
3752    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3753    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3754    OpCmode = 0xe;
3755    Imm = SplatBits;
3756    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3757    break;
3758
3759  case 16:
3760    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3761    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3762    if ((SplatBits & ~0xff) == 0) {
3763      // Value = 0x00nn: Op=x, Cmode=100x.
3764      OpCmode = 0x8;
3765      Imm = SplatBits;
3766      break;
3767    }
3768    if ((SplatBits & ~0xff00) == 0) {
3769      // Value = 0xnn00: Op=x, Cmode=101x.
3770      OpCmode = 0xa;
3771      Imm = SplatBits >> 8;
3772      break;
3773    }
3774    return SDValue();
3775
3776  case 32:
3777    // NEON's 32-bit VMOV supports splat values where:
3778    // * only one byte is nonzero, or
3779    // * the least significant byte is 0xff and the second byte is nonzero, or
3780    // * the least significant 2 bytes are 0xff and the third is nonzero.
3781    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3782    if ((SplatBits & ~0xff) == 0) {
3783      // Value = 0x000000nn: Op=x, Cmode=000x.
3784      OpCmode = 0;
3785      Imm = SplatBits;
3786      break;
3787    }
3788    if ((SplatBits & ~0xff00) == 0) {
3789      // Value = 0x0000nn00: Op=x, Cmode=001x.
3790      OpCmode = 0x2;
3791      Imm = SplatBits >> 8;
3792      break;
3793    }
3794    if ((SplatBits & ~0xff0000) == 0) {
3795      // Value = 0x00nn0000: Op=x, Cmode=010x.
3796      OpCmode = 0x4;
3797      Imm = SplatBits >> 16;
3798      break;
3799    }
3800    if ((SplatBits & ~0xff000000) == 0) {
3801      // Value = 0xnn000000: Op=x, Cmode=011x.
3802      OpCmode = 0x6;
3803      Imm = SplatBits >> 24;
3804      break;
3805    }
3806
3807    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
3808    if (type == OtherModImm) return SDValue();
3809
3810    if ((SplatBits & ~0xffff) == 0 &&
3811        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3812      // Value = 0x0000nnff: Op=x, Cmode=1100.
3813      OpCmode = 0xc;
3814      Imm = SplatBits >> 8;
3815      SplatBits |= 0xff;
3816      break;
3817    }
3818
3819    if ((SplatBits & ~0xffffff) == 0 &&
3820        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3821      // Value = 0x00nnffff: Op=x, Cmode=1101.
3822      OpCmode = 0xd;
3823      Imm = SplatBits >> 16;
3824      SplatBits |= 0xffff;
3825      break;
3826    }
3827
3828    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3829    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3830    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3831    // and fall through here to test for a valid 64-bit splat.  But, then the
3832    // caller would also need to check and handle the change in size.
3833    return SDValue();
3834
3835  case 64: {
3836    if (type != VMOVModImm)
3837      return SDValue();
3838    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3839    uint64_t BitMask = 0xff;
3840    uint64_t Val = 0;
3841    unsigned ImmMask = 1;
3842    Imm = 0;
3843    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3844      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3845        Val |= BitMask;
3846        Imm |= ImmMask;
3847      } else if ((SplatBits & BitMask) != 0) {
3848        return SDValue();
3849      }
3850      BitMask <<= 8;
3851      ImmMask <<= 1;
3852    }
3853    // Op=1, Cmode=1110.
3854    OpCmode = 0x1e;
3855    SplatBits = Val;
3856    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3857    break;
3858  }
3859
3860  default:
3861    llvm_unreachable("unexpected size for isNEONModifiedImm");
3862  }
3863
3864  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3865  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3866}
3867
3868SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
3869                                           const ARMSubtarget *ST) const {
3870  if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
3871    return SDValue();
3872
3873  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
3874  assert(Op.getValueType() == MVT::f32 &&
3875         "ConstantFP custom lowering should only occur for f32.");
3876
3877  // Try splatting with a VMOV.f32...
3878  APFloat FPVal = CFP->getValueAPF();
3879  int ImmVal = ARM_AM::getFP32Imm(FPVal);
3880  if (ImmVal != -1) {
3881    DebugLoc DL = Op.getDebugLoc();
3882    SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
3883    SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
3884                                      NewVal);
3885    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
3886                       DAG.getConstant(0, MVT::i32));
3887  }
3888
3889  // If that fails, try a VMOV.i32
3890  EVT VMovVT;
3891  unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
3892  SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
3893                                     VMOVModImm);
3894  if (NewVal != SDValue()) {
3895    DebugLoc DL = Op.getDebugLoc();
3896    SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
3897                                      NewVal);
3898    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3899                                       VecConstant);
3900    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3901                       DAG.getConstant(0, MVT::i32));
3902  }
3903
3904  // Finally, try a VMVN.i32
3905  NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
3906                             VMVNModImm);
3907  if (NewVal != SDValue()) {
3908    DebugLoc DL = Op.getDebugLoc();
3909    SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
3910    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
3911                                       VecConstant);
3912    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
3913                       DAG.getConstant(0, MVT::i32));
3914  }
3915
3916  return SDValue();
3917}
3918
3919
3920static bool isVEXTMask(ArrayRef<int> M, EVT VT,
3921                       bool &ReverseVEXT, unsigned &Imm) {
3922  unsigned NumElts = VT.getVectorNumElements();
3923  ReverseVEXT = false;
3924
3925  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3926  if (M[0] < 0)
3927    return false;
3928
3929  Imm = M[0];
3930
3931  // If this is a VEXT shuffle, the immediate value is the index of the first
3932  // element.  The other shuffle indices must be the successive elements after
3933  // the first one.
3934  unsigned ExpectedElt = Imm;
3935  for (unsigned i = 1; i < NumElts; ++i) {
3936    // Increment the expected index.  If it wraps around, it may still be
3937    // a VEXT but the source vectors must be swapped.
3938    ExpectedElt += 1;
3939    if (ExpectedElt == NumElts * 2) {
3940      ExpectedElt = 0;
3941      ReverseVEXT = true;
3942    }
3943
3944    if (M[i] < 0) continue; // ignore UNDEF indices
3945    if (ExpectedElt != static_cast<unsigned>(M[i]))
3946      return false;
3947  }
3948
3949  // Adjust the index value if the source operands will be swapped.
3950  if (ReverseVEXT)
3951    Imm -= NumElts;
3952
3953  return true;
3954}
3955
3956/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3957/// instruction with the specified blocksize.  (The order of the elements
3958/// within each block of the vector is reversed.)
3959static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
3960  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3961         "Only possible block sizes for VREV are: 16, 32, 64");
3962
3963  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3964  if (EltSz == 64)
3965    return false;
3966
3967  unsigned NumElts = VT.getVectorNumElements();
3968  unsigned BlockElts = M[0] + 1;
3969  // If the first shuffle index is UNDEF, be optimistic.
3970  if (M[0] < 0)
3971    BlockElts = BlockSize / EltSz;
3972
3973  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3974    return false;
3975
3976  for (unsigned i = 0; i < NumElts; ++i) {
3977    if (M[i] < 0) continue; // ignore UNDEF indices
3978    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3979      return false;
3980  }
3981
3982  return true;
3983}
3984
3985static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
3986  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
3987  // range, then 0 is placed into the resulting vector. So pretty much any mask
3988  // of 8 elements can work here.
3989  return VT == MVT::v8i8 && M.size() == 8;
3990}
3991
3992static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
3993  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3994  if (EltSz == 64)
3995    return false;
3996
3997  unsigned NumElts = VT.getVectorNumElements();
3998  WhichResult = (M[0] == 0 ? 0 : 1);
3999  for (unsigned i = 0; i < NumElts; i += 2) {
4000    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4001        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
4002      return false;
4003  }
4004  return true;
4005}
4006
4007/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
4008/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4009/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4010static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4011  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4012  if (EltSz == 64)
4013    return false;
4014
4015  unsigned NumElts = VT.getVectorNumElements();
4016  WhichResult = (M[0] == 0 ? 0 : 1);
4017  for (unsigned i = 0; i < NumElts; i += 2) {
4018    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4019        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
4020      return false;
4021  }
4022  return true;
4023}
4024
4025static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4026  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4027  if (EltSz == 64)
4028    return false;
4029
4030  unsigned NumElts = VT.getVectorNumElements();
4031  WhichResult = (M[0] == 0 ? 0 : 1);
4032  for (unsigned i = 0; i != NumElts; ++i) {
4033    if (M[i] < 0) continue; // ignore UNDEF indices
4034    if ((unsigned) M[i] != 2 * i + WhichResult)
4035      return false;
4036  }
4037
4038  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4039  if (VT.is64BitVector() && EltSz == 32)
4040    return false;
4041
4042  return true;
4043}
4044
4045/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4046/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4047/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4048static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4049  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4050  if (EltSz == 64)
4051    return false;
4052
4053  unsigned Half = VT.getVectorNumElements() / 2;
4054  WhichResult = (M[0] == 0 ? 0 : 1);
4055  for (unsigned j = 0; j != 2; ++j) {
4056    unsigned Idx = WhichResult;
4057    for (unsigned i = 0; i != Half; ++i) {
4058      int MIdx = M[i + j * Half];
4059      if (MIdx >= 0 && (unsigned) MIdx != Idx)
4060        return false;
4061      Idx += 2;
4062    }
4063  }
4064
4065  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4066  if (VT.is64BitVector() && EltSz == 32)
4067    return false;
4068
4069  return true;
4070}
4071
4072static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4073  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4074  if (EltSz == 64)
4075    return false;
4076
4077  unsigned NumElts = VT.getVectorNumElements();
4078  WhichResult = (M[0] == 0 ? 0 : 1);
4079  unsigned Idx = WhichResult * NumElts / 2;
4080  for (unsigned i = 0; i != NumElts; i += 2) {
4081    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4082        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4083      return false;
4084    Idx += 1;
4085  }
4086
4087  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4088  if (VT.is64BitVector() && EltSz == 32)
4089    return false;
4090
4091  return true;
4092}
4093
4094/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4095/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4096/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4097static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4098  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4099  if (EltSz == 64)
4100    return false;
4101
4102  unsigned NumElts = VT.getVectorNumElements();
4103  WhichResult = (M[0] == 0 ? 0 : 1);
4104  unsigned Idx = WhichResult * NumElts / 2;
4105  for (unsigned i = 0; i != NumElts; i += 2) {
4106    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4107        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4108      return false;
4109    Idx += 1;
4110  }
4111
4112  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4113  if (VT.is64BitVector() && EltSz == 32)
4114    return false;
4115
4116  return true;
4117}
4118
4119// If N is an integer constant that can be moved into a register in one
4120// instruction, return an SDValue of such a constant (will become a MOV
4121// instruction).  Otherwise return null.
4122static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4123                                     const ARMSubtarget *ST, DebugLoc dl) {
4124  uint64_t Val;
4125  if (!isa<ConstantSDNode>(N))
4126    return SDValue();
4127  Val = cast<ConstantSDNode>(N)->getZExtValue();
4128
4129  if (ST->isThumb1Only()) {
4130    if (Val <= 255 || ~Val <= 255)
4131      return DAG.getConstant(Val, MVT::i32);
4132  } else {
4133    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4134      return DAG.getConstant(Val, MVT::i32);
4135  }
4136  return SDValue();
4137}
4138
4139// If this is a case we can't handle, return null and let the default
4140// expansion code take care of it.
4141SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4142                                             const ARMSubtarget *ST) const {
4143  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4144  DebugLoc dl = Op.getDebugLoc();
4145  EVT VT = Op.getValueType();
4146
4147  APInt SplatBits, SplatUndef;
4148  unsigned SplatBitSize;
4149  bool HasAnyUndefs;
4150  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4151    if (SplatBitSize <= 64) {
4152      // Check if an immediate VMOV works.
4153      EVT VmovVT;
4154      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4155                                      SplatUndef.getZExtValue(), SplatBitSize,
4156                                      DAG, VmovVT, VT.is128BitVector(),
4157                                      VMOVModImm);
4158      if (Val.getNode()) {
4159        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4160        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4161      }
4162
4163      // Try an immediate VMVN.
4164      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4165      Val = isNEONModifiedImm(NegatedImm,
4166                                      SplatUndef.getZExtValue(), SplatBitSize,
4167                                      DAG, VmovVT, VT.is128BitVector(),
4168                                      VMVNModImm);
4169      if (Val.getNode()) {
4170        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4171        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4172      }
4173
4174      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4175      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4176        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4177        if (ImmVal != -1) {
4178          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4179          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4180        }
4181      }
4182    }
4183  }
4184
4185  // Scan through the operands to see if only one value is used.
4186  //
4187  // As an optimisation, even if more than one value is used it may be more
4188  // profitable to splat with one value then change some lanes.
4189  //
4190  // Heuristically we decide to do this if the vector has a "dominant" value,
4191  // defined as splatted to more than half of the lanes.
4192  unsigned NumElts = VT.getVectorNumElements();
4193  bool isOnlyLowElement = true;
4194  bool usesOnlyOneValue = true;
4195  bool hasDominantValue = false;
4196  bool isConstant = true;
4197
4198  // Map of the number of times a particular SDValue appears in the
4199  // element list.
4200  DenseMap<SDValue, unsigned> ValueCounts;
4201  SDValue Value;
4202  for (unsigned i = 0; i < NumElts; ++i) {
4203    SDValue V = Op.getOperand(i);
4204    if (V.getOpcode() == ISD::UNDEF)
4205      continue;
4206    if (i > 0)
4207      isOnlyLowElement = false;
4208    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4209      isConstant = false;
4210
4211    ValueCounts.insert(std::make_pair(V, 0));
4212    unsigned &Count = ValueCounts[V];
4213
4214    // Is this value dominant? (takes up more than half of the lanes)
4215    if (++Count > (NumElts / 2)) {
4216      hasDominantValue = true;
4217      Value = V;
4218    }
4219  }
4220  if (ValueCounts.size() != 1)
4221    usesOnlyOneValue = false;
4222  if (!Value.getNode() && ValueCounts.size() > 0)
4223    Value = ValueCounts.begin()->first;
4224
4225  if (ValueCounts.size() == 0)
4226    return DAG.getUNDEF(VT);
4227
4228  if (isOnlyLowElement)
4229    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4230
4231  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4232
4233  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4234  // i32 and try again.
4235  if (hasDominantValue && EltSize <= 32) {
4236    if (!isConstant) {
4237      SDValue N;
4238
4239      // If we are VDUPing a value that comes directly from a vector, that will
4240      // cause an unnecessary move to and from a GPR, where instead we could
4241      // just use VDUPLANE.
4242      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4243        // We need to create a new undef vector to use for the VDUPLANE if the
4244        // size of the vector from which we get the value is different than the
4245        // size of the vector that we need to create. We will insert the element
4246        // such that the register coalescer will remove unnecessary copies.
4247        if (VT != Value->getOperand(0).getValueType()) {
4248          ConstantSDNode *constIndex;
4249          constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
4250          assert(constIndex && "The index is not a constant!");
4251          unsigned index = constIndex->getAPIntValue().getLimitedValue() %
4252                             VT.getVectorNumElements();
4253          N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4254                 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
4255                        Value, DAG.getConstant(index, MVT::i32)),
4256                           DAG.getConstant(index, MVT::i32));
4257        } else {
4258          N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4259                        Value->getOperand(0), Value->getOperand(1));
4260        }
4261      }
4262      else
4263        N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4264
4265      if (!usesOnlyOneValue) {
4266        // The dominant value was splatted as 'N', but we now have to insert
4267        // all differing elements.
4268        for (unsigned I = 0; I < NumElts; ++I) {
4269          if (Op.getOperand(I) == Value)
4270            continue;
4271          SmallVector<SDValue, 3> Ops;
4272          Ops.push_back(N);
4273          Ops.push_back(Op.getOperand(I));
4274          Ops.push_back(DAG.getConstant(I, MVT::i32));
4275          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
4276        }
4277      }
4278      return N;
4279    }
4280    if (VT.getVectorElementType().isFloatingPoint()) {
4281      SmallVector<SDValue, 8> Ops;
4282      for (unsigned i = 0; i < NumElts; ++i)
4283        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4284                                  Op.getOperand(i)));
4285      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4286      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4287      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4288      if (Val.getNode())
4289        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4290    }
4291    if (usesOnlyOneValue) {
4292      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4293      if (isConstant && Val.getNode())
4294        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4295    }
4296  }
4297
4298  // If all elements are constants and the case above didn't get hit, fall back
4299  // to the default expansion, which will generate a load from the constant
4300  // pool.
4301  if (isConstant)
4302    return SDValue();
4303
4304  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4305  if (NumElts >= 4) {
4306    SDValue shuffle = ReconstructShuffle(Op, DAG);
4307    if (shuffle != SDValue())
4308      return shuffle;
4309  }
4310
4311  // Vectors with 32- or 64-bit elements can be built by directly assigning
4312  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4313  // will be legalized.
4314  if (EltSize >= 32) {
4315    // Do the expansion with floating-point types, since that is what the VFP
4316    // registers are defined to use, and since i64 is not legal.
4317    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4318    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4319    SmallVector<SDValue, 8> Ops;
4320    for (unsigned i = 0; i < NumElts; ++i)
4321      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4322    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4323    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4324  }
4325
4326  return SDValue();
4327}
4328
4329// Gather data to see if the operation can be modelled as a
4330// shuffle in combination with VEXTs.
4331SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4332                                              SelectionDAG &DAG) const {
4333  DebugLoc dl = Op.getDebugLoc();
4334  EVT VT = Op.getValueType();
4335  unsigned NumElts = VT.getVectorNumElements();
4336
4337  SmallVector<SDValue, 2> SourceVecs;
4338  SmallVector<unsigned, 2> MinElts;
4339  SmallVector<unsigned, 2> MaxElts;
4340
4341  for (unsigned i = 0; i < NumElts; ++i) {
4342    SDValue V = Op.getOperand(i);
4343    if (V.getOpcode() == ISD::UNDEF)
4344      continue;
4345    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4346      // A shuffle can only come from building a vector from various
4347      // elements of other vectors.
4348      return SDValue();
4349    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4350               VT.getVectorElementType()) {
4351      // This code doesn't know how to handle shuffles where the vector
4352      // element types do not match (this happens because type legalization
4353      // promotes the return type of EXTRACT_VECTOR_ELT).
4354      // FIXME: It might be appropriate to extend this code to handle
4355      // mismatched types.
4356      return SDValue();
4357    }
4358
4359    // Record this extraction against the appropriate vector if possible...
4360    SDValue SourceVec = V.getOperand(0);
4361    // If the element number isn't a constant, we can't effectively
4362    // analyze what's going on.
4363    if (!isa<ConstantSDNode>(V.getOperand(1)))
4364      return SDValue();
4365    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4366    bool FoundSource = false;
4367    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4368      if (SourceVecs[j] == SourceVec) {
4369        if (MinElts[j] > EltNo)
4370          MinElts[j] = EltNo;
4371        if (MaxElts[j] < EltNo)
4372          MaxElts[j] = EltNo;
4373        FoundSource = true;
4374        break;
4375      }
4376    }
4377
4378    // Or record a new source if not...
4379    if (!FoundSource) {
4380      SourceVecs.push_back(SourceVec);
4381      MinElts.push_back(EltNo);
4382      MaxElts.push_back(EltNo);
4383    }
4384  }
4385
4386  // Currently only do something sane when at most two source vectors
4387  // involved.
4388  if (SourceVecs.size() > 2)
4389    return SDValue();
4390
4391  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4392  int VEXTOffsets[2] = {0, 0};
4393
4394  // This loop extracts the usage patterns of the source vectors
4395  // and prepares appropriate SDValues for a shuffle if possible.
4396  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4397    if (SourceVecs[i].getValueType() == VT) {
4398      // No VEXT necessary
4399      ShuffleSrcs[i] = SourceVecs[i];
4400      VEXTOffsets[i] = 0;
4401      continue;
4402    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4403      // It probably isn't worth padding out a smaller vector just to
4404      // break it down again in a shuffle.
4405      return SDValue();
4406    }
4407
4408    // Since only 64-bit and 128-bit vectors are legal on ARM and
4409    // we've eliminated the other cases...
4410    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4411           "unexpected vector sizes in ReconstructShuffle");
4412
4413    if (MaxElts[i] - MinElts[i] >= NumElts) {
4414      // Span too large for a VEXT to cope
4415      return SDValue();
4416    }
4417
4418    if (MinElts[i] >= NumElts) {
4419      // The extraction can just take the second half
4420      VEXTOffsets[i] = NumElts;
4421      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4422                                   SourceVecs[i],
4423                                   DAG.getIntPtrConstant(NumElts));
4424    } else if (MaxElts[i] < NumElts) {
4425      // The extraction can just take the first half
4426      VEXTOffsets[i] = 0;
4427      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4428                                   SourceVecs[i],
4429                                   DAG.getIntPtrConstant(0));
4430    } else {
4431      // An actual VEXT is needed
4432      VEXTOffsets[i] = MinElts[i];
4433      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4434                                     SourceVecs[i],
4435                                     DAG.getIntPtrConstant(0));
4436      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4437                                     SourceVecs[i],
4438                                     DAG.getIntPtrConstant(NumElts));
4439      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4440                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4441    }
4442  }
4443
4444  SmallVector<int, 8> Mask;
4445
4446  for (unsigned i = 0; i < NumElts; ++i) {
4447    SDValue Entry = Op.getOperand(i);
4448    if (Entry.getOpcode() == ISD::UNDEF) {
4449      Mask.push_back(-1);
4450      continue;
4451    }
4452
4453    SDValue ExtractVec = Entry.getOperand(0);
4454    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4455                                          .getOperand(1))->getSExtValue();
4456    if (ExtractVec == SourceVecs[0]) {
4457      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4458    } else {
4459      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4460    }
4461  }
4462
4463  // Final check before we try to produce nonsense...
4464  if (isShuffleMaskLegal(Mask, VT))
4465    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4466                                &Mask[0]);
4467
4468  return SDValue();
4469}
4470
4471/// isShuffleMaskLegal - Targets can use this to indicate that they only
4472/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4473/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4474/// are assumed to be legal.
4475bool
4476ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4477                                      EVT VT) const {
4478  if (VT.getVectorNumElements() == 4 &&
4479      (VT.is128BitVector() || VT.is64BitVector())) {
4480    unsigned PFIndexes[4];
4481    for (unsigned i = 0; i != 4; ++i) {
4482      if (M[i] < 0)
4483        PFIndexes[i] = 8;
4484      else
4485        PFIndexes[i] = M[i];
4486    }
4487
4488    // Compute the index in the perfect shuffle table.
4489    unsigned PFTableIndex =
4490      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4491    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4492    unsigned Cost = (PFEntry >> 30);
4493
4494    if (Cost <= 4)
4495      return true;
4496  }
4497
4498  bool ReverseVEXT;
4499  unsigned Imm, WhichResult;
4500
4501  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4502  return (EltSize >= 32 ||
4503          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4504          isVREVMask(M, VT, 64) ||
4505          isVREVMask(M, VT, 32) ||
4506          isVREVMask(M, VT, 16) ||
4507          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4508          isVTBLMask(M, VT) ||
4509          isVTRNMask(M, VT, WhichResult) ||
4510          isVUZPMask(M, VT, WhichResult) ||
4511          isVZIPMask(M, VT, WhichResult) ||
4512          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4513          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4514          isVZIP_v_undef_Mask(M, VT, WhichResult));
4515}
4516
4517/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4518/// the specified operations to build the shuffle.
4519static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4520                                      SDValue RHS, SelectionDAG &DAG,
4521                                      DebugLoc dl) {
4522  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4523  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4524  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4525
4526  enum {
4527    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4528    OP_VREV,
4529    OP_VDUP0,
4530    OP_VDUP1,
4531    OP_VDUP2,
4532    OP_VDUP3,
4533    OP_VEXT1,
4534    OP_VEXT2,
4535    OP_VEXT3,
4536    OP_VUZPL, // VUZP, left result
4537    OP_VUZPR, // VUZP, right result
4538    OP_VZIPL, // VZIP, left result
4539    OP_VZIPR, // VZIP, right result
4540    OP_VTRNL, // VTRN, left result
4541    OP_VTRNR  // VTRN, right result
4542  };
4543
4544  if (OpNum == OP_COPY) {
4545    if (LHSID == (1*9+2)*9+3) return LHS;
4546    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4547    return RHS;
4548  }
4549
4550  SDValue OpLHS, OpRHS;
4551  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4552  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4553  EVT VT = OpLHS.getValueType();
4554
4555  switch (OpNum) {
4556  default: llvm_unreachable("Unknown shuffle opcode!");
4557  case OP_VREV:
4558    // VREV divides the vector in half and swaps within the half.
4559    if (VT.getVectorElementType() == MVT::i32 ||
4560        VT.getVectorElementType() == MVT::f32)
4561      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
4562    // vrev <4 x i16> -> VREV32
4563    if (VT.getVectorElementType() == MVT::i16)
4564      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
4565    // vrev <4 x i8> -> VREV16
4566    assert(VT.getVectorElementType() == MVT::i8);
4567    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
4568  case OP_VDUP0:
4569  case OP_VDUP1:
4570  case OP_VDUP2:
4571  case OP_VDUP3:
4572    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4573                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
4574  case OP_VEXT1:
4575  case OP_VEXT2:
4576  case OP_VEXT3:
4577    return DAG.getNode(ARMISD::VEXT, dl, VT,
4578                       OpLHS, OpRHS,
4579                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
4580  case OP_VUZPL:
4581  case OP_VUZPR:
4582    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4583                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
4584  case OP_VZIPL:
4585  case OP_VZIPR:
4586    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4587                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
4588  case OP_VTRNL:
4589  case OP_VTRNR:
4590    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4591                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
4592  }
4593}
4594
4595static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
4596                                       ArrayRef<int> ShuffleMask,
4597                                       SelectionDAG &DAG) {
4598  // Check to see if we can use the VTBL instruction.
4599  SDValue V1 = Op.getOperand(0);
4600  SDValue V2 = Op.getOperand(1);
4601  DebugLoc DL = Op.getDebugLoc();
4602
4603  SmallVector<SDValue, 8> VTBLMask;
4604  for (ArrayRef<int>::iterator
4605         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
4606    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
4607
4608  if (V2.getNode()->getOpcode() == ISD::UNDEF)
4609    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
4610                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4611                                   &VTBLMask[0], 8));
4612
4613  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
4614                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
4615                                 &VTBLMask[0], 8));
4616}
4617
4618static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4619  SDValue V1 = Op.getOperand(0);
4620  SDValue V2 = Op.getOperand(1);
4621  DebugLoc dl = Op.getDebugLoc();
4622  EVT VT = Op.getValueType();
4623  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
4624
4625  // Convert shuffles that are directly supported on NEON to target-specific
4626  // DAG nodes, instead of keeping them as shuffles and matching them again
4627  // during code selection.  This is more efficient and avoids the possibility
4628  // of inconsistencies between legalization and selection.
4629  // FIXME: floating-point vectors should be canonicalized to integer vectors
4630  // of the same time so that they get CSEd properly.
4631  ArrayRef<int> ShuffleMask = SVN->getMask();
4632
4633  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4634  if (EltSize <= 32) {
4635    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
4636      int Lane = SVN->getSplatIndex();
4637      // If this is undef splat, generate it via "just" vdup, if possible.
4638      if (Lane == -1) Lane = 0;
4639
4640      // Test if V1 is a SCALAR_TO_VECTOR.
4641      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4642        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4643      }
4644      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
4645      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
4646      // reaches it).
4647      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
4648          !isa<ConstantSDNode>(V1.getOperand(0))) {
4649        bool IsScalarToVector = true;
4650        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
4651          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
4652            IsScalarToVector = false;
4653            break;
4654          }
4655        if (IsScalarToVector)
4656          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
4657      }
4658      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
4659                         DAG.getConstant(Lane, MVT::i32));
4660    }
4661
4662    bool ReverseVEXT;
4663    unsigned Imm;
4664    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
4665      if (ReverseVEXT)
4666        std::swap(V1, V2);
4667      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
4668                         DAG.getConstant(Imm, MVT::i32));
4669    }
4670
4671    if (isVREVMask(ShuffleMask, VT, 64))
4672      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
4673    if (isVREVMask(ShuffleMask, VT, 32))
4674      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
4675    if (isVREVMask(ShuffleMask, VT, 16))
4676      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
4677
4678    // Check for Neon shuffles that modify both input vectors in place.
4679    // If both results are used, i.e., if there are two shuffles with the same
4680    // source operands and with masks corresponding to both results of one of
4681    // these operations, DAG memoization will ensure that a single node is
4682    // used for both shuffles.
4683    unsigned WhichResult;
4684    if (isVTRNMask(ShuffleMask, VT, WhichResult))
4685      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4686                         V1, V2).getValue(WhichResult);
4687    if (isVUZPMask(ShuffleMask, VT, WhichResult))
4688      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4689                         V1, V2).getValue(WhichResult);
4690    if (isVZIPMask(ShuffleMask, VT, WhichResult))
4691      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4692                         V1, V2).getValue(WhichResult);
4693
4694    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
4695      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
4696                         V1, V1).getValue(WhichResult);
4697    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4698      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
4699                         V1, V1).getValue(WhichResult);
4700    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
4701      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
4702                         V1, V1).getValue(WhichResult);
4703  }
4704
4705  // If the shuffle is not directly supported and it has 4 elements, use
4706  // the PerfectShuffle-generated table to synthesize it from other shuffles.
4707  unsigned NumElts = VT.getVectorNumElements();
4708  if (NumElts == 4) {
4709    unsigned PFIndexes[4];
4710    for (unsigned i = 0; i != 4; ++i) {
4711      if (ShuffleMask[i] < 0)
4712        PFIndexes[i] = 8;
4713      else
4714        PFIndexes[i] = ShuffleMask[i];
4715    }
4716
4717    // Compute the index in the perfect shuffle table.
4718    unsigned PFTableIndex =
4719      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4720    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4721    unsigned Cost = (PFEntry >> 30);
4722
4723    if (Cost <= 4)
4724      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4725  }
4726
4727  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
4728  if (EltSize >= 32) {
4729    // Do the expansion with floating-point types, since that is what the VFP
4730    // registers are defined to use, and since i64 is not legal.
4731    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4732    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4733    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
4734    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
4735    SmallVector<SDValue, 8> Ops;
4736    for (unsigned i = 0; i < NumElts; ++i) {
4737      if (ShuffleMask[i] < 0)
4738        Ops.push_back(DAG.getUNDEF(EltVT));
4739      else
4740        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
4741                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
4742                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
4743                                                  MVT::i32)));
4744    }
4745    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4746    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4747  }
4748
4749  if (VT == MVT::v8i8) {
4750    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
4751    if (NewOp.getNode())
4752      return NewOp;
4753  }
4754
4755  return SDValue();
4756}
4757
4758static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4759  // INSERT_VECTOR_ELT is legal only for immediate indexes.
4760  SDValue Lane = Op.getOperand(2);
4761  if (!isa<ConstantSDNode>(Lane))
4762    return SDValue();
4763
4764  return Op;
4765}
4766
4767static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4768  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
4769  SDValue Lane = Op.getOperand(1);
4770  if (!isa<ConstantSDNode>(Lane))
4771    return SDValue();
4772
4773  SDValue Vec = Op.getOperand(0);
4774  if (Op.getValueType() == MVT::i32 &&
4775      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
4776    DebugLoc dl = Op.getDebugLoc();
4777    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
4778  }
4779
4780  return Op;
4781}
4782
4783static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
4784  // The only time a CONCAT_VECTORS operation can have legal types is when
4785  // two 64-bit vectors are concatenated to a 128-bit vector.
4786  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
4787         "unexpected CONCAT_VECTORS");
4788  DebugLoc dl = Op.getDebugLoc();
4789  SDValue Val = DAG.getUNDEF(MVT::v2f64);
4790  SDValue Op0 = Op.getOperand(0);
4791  SDValue Op1 = Op.getOperand(1);
4792  if (Op0.getOpcode() != ISD::UNDEF)
4793    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4794                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
4795                      DAG.getIntPtrConstant(0));
4796  if (Op1.getOpcode() != ISD::UNDEF)
4797    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
4798                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
4799                      DAG.getIntPtrConstant(1));
4800  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
4801}
4802
4803/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
4804/// element has been zero/sign-extended, depending on the isSigned parameter,
4805/// from an integer type half its size.
4806static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
4807                                   bool isSigned) {
4808  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
4809  EVT VT = N->getValueType(0);
4810  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
4811    SDNode *BVN = N->getOperand(0).getNode();
4812    if (BVN->getValueType(0) != MVT::v4i32 ||
4813        BVN->getOpcode() != ISD::BUILD_VECTOR)
4814      return false;
4815    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4816    unsigned HiElt = 1 - LoElt;
4817    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
4818    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
4819    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
4820    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
4821    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
4822      return false;
4823    if (isSigned) {
4824      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
4825          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
4826        return true;
4827    } else {
4828      if (Hi0->isNullValue() && Hi1->isNullValue())
4829        return true;
4830    }
4831    return false;
4832  }
4833
4834  if (N->getOpcode() != ISD::BUILD_VECTOR)
4835    return false;
4836
4837  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
4838    SDNode *Elt = N->getOperand(i).getNode();
4839    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
4840      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4841      unsigned HalfSize = EltSize / 2;
4842      if (isSigned) {
4843        if (!isIntN(HalfSize, C->getSExtValue()))
4844          return false;
4845      } else {
4846        if (!isUIntN(HalfSize, C->getZExtValue()))
4847          return false;
4848      }
4849      continue;
4850    }
4851    return false;
4852  }
4853
4854  return true;
4855}
4856
4857/// isSignExtended - Check if a node is a vector value that is sign-extended
4858/// or a constant BUILD_VECTOR with sign-extended elements.
4859static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
4860  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
4861    return true;
4862  if (isExtendedBUILD_VECTOR(N, DAG, true))
4863    return true;
4864  return false;
4865}
4866
4867/// isZeroExtended - Check if a node is a vector value that is zero-extended
4868/// or a constant BUILD_VECTOR with zero-extended elements.
4869static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
4870  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
4871    return true;
4872  if (isExtendedBUILD_VECTOR(N, DAG, false))
4873    return true;
4874  return false;
4875}
4876
4877/// SkipExtension - For a node that is a SIGN_EXTEND, ZERO_EXTEND, extending
4878/// load, or BUILD_VECTOR with extended elements, return the unextended value.
4879static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
4880  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
4881    return N->getOperand(0);
4882  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
4883    return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
4884                       LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
4885                       LD->isNonTemporal(), LD->isInvariant(),
4886                       LD->getAlignment());
4887  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
4888  // have been legalized as a BITCAST from v4i32.
4889  if (N->getOpcode() == ISD::BITCAST) {
4890    SDNode *BVN = N->getOperand(0).getNode();
4891    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
4892           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
4893    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
4894    return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(), MVT::v2i32,
4895                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
4896  }
4897  // Construct a new BUILD_VECTOR with elements truncated to half the size.
4898  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
4899  EVT VT = N->getValueType(0);
4900  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
4901  unsigned NumElts = VT.getVectorNumElements();
4902  MVT TruncVT = MVT::getIntegerVT(EltSize);
4903  SmallVector<SDValue, 8> Ops;
4904  for (unsigned i = 0; i != NumElts; ++i) {
4905    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
4906    const APInt &CInt = C->getAPIntValue();
4907    // Element types smaller than 32 bits are not legal, so use i32 elements.
4908    // The values are implicitly truncated so sext vs. zext doesn't matter.
4909    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
4910  }
4911  return DAG.getNode(ISD::BUILD_VECTOR, N->getDebugLoc(),
4912                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
4913}
4914
4915static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
4916  unsigned Opcode = N->getOpcode();
4917  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4918    SDNode *N0 = N->getOperand(0).getNode();
4919    SDNode *N1 = N->getOperand(1).getNode();
4920    return N0->hasOneUse() && N1->hasOneUse() &&
4921      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
4922  }
4923  return false;
4924}
4925
4926static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
4927  unsigned Opcode = N->getOpcode();
4928  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
4929    SDNode *N0 = N->getOperand(0).getNode();
4930    SDNode *N1 = N->getOperand(1).getNode();
4931    return N0->hasOneUse() && N1->hasOneUse() &&
4932      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
4933  }
4934  return false;
4935}
4936
4937static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
4938  // Multiplications are only custom-lowered for 128-bit vectors so that
4939  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
4940  EVT VT = Op.getValueType();
4941  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
4942  SDNode *N0 = Op.getOperand(0).getNode();
4943  SDNode *N1 = Op.getOperand(1).getNode();
4944  unsigned NewOpc = 0;
4945  bool isMLA = false;
4946  bool isN0SExt = isSignExtended(N0, DAG);
4947  bool isN1SExt = isSignExtended(N1, DAG);
4948  if (isN0SExt && isN1SExt)
4949    NewOpc = ARMISD::VMULLs;
4950  else {
4951    bool isN0ZExt = isZeroExtended(N0, DAG);
4952    bool isN1ZExt = isZeroExtended(N1, DAG);
4953    if (isN0ZExt && isN1ZExt)
4954      NewOpc = ARMISD::VMULLu;
4955    else if (isN1SExt || isN1ZExt) {
4956      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
4957      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
4958      if (isN1SExt && isAddSubSExt(N0, DAG)) {
4959        NewOpc = ARMISD::VMULLs;
4960        isMLA = true;
4961      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
4962        NewOpc = ARMISD::VMULLu;
4963        isMLA = true;
4964      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
4965        std::swap(N0, N1);
4966        NewOpc = ARMISD::VMULLu;
4967        isMLA = true;
4968      }
4969    }
4970
4971    if (!NewOpc) {
4972      if (VT == MVT::v2i64)
4973        // Fall through to expand this.  It is not legal.
4974        return SDValue();
4975      else
4976        // Other vector multiplications are legal.
4977        return Op;
4978    }
4979  }
4980
4981  // Legalize to a VMULL instruction.
4982  DebugLoc DL = Op.getDebugLoc();
4983  SDValue Op0;
4984  SDValue Op1 = SkipExtension(N1, DAG);
4985  if (!isMLA) {
4986    Op0 = SkipExtension(N0, DAG);
4987    assert(Op0.getValueType().is64BitVector() &&
4988           Op1.getValueType().is64BitVector() &&
4989           "unexpected types for extended operands to VMULL");
4990    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
4991  }
4992
4993  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
4994  // isel lowering to take advantage of no-stall back to back vmul + vmla.
4995  //   vmull q0, d4, d6
4996  //   vmlal q0, d5, d6
4997  // is faster than
4998  //   vaddl q0, d4, d5
4999  //   vmovl q1, d6
5000  //   vmul  q0, q0, q1
5001  SDValue N00 = SkipExtension(N0->getOperand(0).getNode(), DAG);
5002  SDValue N01 = SkipExtension(N0->getOperand(1).getNode(), DAG);
5003  EVT Op1VT = Op1.getValueType();
5004  return DAG.getNode(N0->getOpcode(), DL, VT,
5005                     DAG.getNode(NewOpc, DL, VT,
5006                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
5007                     DAG.getNode(NewOpc, DL, VT,
5008                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
5009}
5010
5011static SDValue
5012LowerSDIV_v4i8(SDValue X, SDValue Y, DebugLoc dl, SelectionDAG &DAG) {
5013  // Convert to float
5014  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
5015  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
5016  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
5017  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
5018  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
5019  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
5020  // Get reciprocal estimate.
5021  // float4 recip = vrecpeq_f32(yf);
5022  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5023                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
5024  // Because char has a smaller range than uchar, we can actually get away
5025  // without any newton steps.  This requires that we use a weird bias
5026  // of 0xb000, however (again, this has been exhaustively tested).
5027  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
5028  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
5029  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
5030  Y = DAG.getConstant(0xb000, MVT::i32);
5031  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
5032  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
5033  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
5034  // Convert back to short.
5035  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
5036  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
5037  return X;
5038}
5039
5040static SDValue
5041LowerSDIV_v4i16(SDValue N0, SDValue N1, DebugLoc dl, SelectionDAG &DAG) {
5042  SDValue N2;
5043  // Convert to float.
5044  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
5045  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
5046  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
5047  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
5048  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5049  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5050
5051  // Use reciprocal estimate and one refinement step.
5052  // float4 recip = vrecpeq_f32(yf);
5053  // recip *= vrecpsq_f32(yf, recip);
5054  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5055                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
5056  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5057                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5058                   N1, N2);
5059  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5060  // Because short has a smaller range than ushort, we can actually get away
5061  // with only a single newton step.  This requires that we use a weird bias
5062  // of 89, however (again, this has been exhaustively tested).
5063  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
5064  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5065  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5066  N1 = DAG.getConstant(0x89, MVT::i32);
5067  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5068  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5069  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5070  // Convert back to integer and return.
5071  // return vmovn_s32(vcvt_s32_f32(result));
5072  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5073  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5074  return N0;
5075}
5076
5077static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
5078  EVT VT = Op.getValueType();
5079  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5080         "unexpected type for custom-lowering ISD::SDIV");
5081
5082  DebugLoc dl = Op.getDebugLoc();
5083  SDValue N0 = Op.getOperand(0);
5084  SDValue N1 = Op.getOperand(1);
5085  SDValue N2, N3;
5086
5087  if (VT == MVT::v8i8) {
5088    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
5089    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
5090
5091    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5092                     DAG.getIntPtrConstant(4));
5093    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5094                     DAG.getIntPtrConstant(4));
5095    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5096                     DAG.getIntPtrConstant(0));
5097    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5098                     DAG.getIntPtrConstant(0));
5099
5100    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5101    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5102
5103    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5104    N0 = LowerCONCAT_VECTORS(N0, DAG);
5105
5106    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5107    return N0;
5108  }
5109  return LowerSDIV_v4i16(N0, N1, dl, DAG);
5110}
5111
5112static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
5113  EVT VT = Op.getValueType();
5114  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5115         "unexpected type for custom-lowering ISD::UDIV");
5116
5117  DebugLoc dl = Op.getDebugLoc();
5118  SDValue N0 = Op.getOperand(0);
5119  SDValue N1 = Op.getOperand(1);
5120  SDValue N2, N3;
5121
5122  if (VT == MVT::v8i8) {
5123    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5124    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5125
5126    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5127                     DAG.getIntPtrConstant(4));
5128    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5129                     DAG.getIntPtrConstant(4));
5130    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5131                     DAG.getIntPtrConstant(0));
5132    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5133                     DAG.getIntPtrConstant(0));
5134
5135    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5136    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5137
5138    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5139    N0 = LowerCONCAT_VECTORS(N0, DAG);
5140
5141    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5142                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5143                     N0);
5144    return N0;
5145  }
5146
5147  // v4i16 sdiv ... Convert to float.
5148  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5149  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5150  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5151  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5152  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5153  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5154
5155  // Use reciprocal estimate and two refinement steps.
5156  // float4 recip = vrecpeq_f32(yf);
5157  // recip *= vrecpsq_f32(yf, recip);
5158  // recip *= vrecpsq_f32(yf, recip);
5159  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5160                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5161  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5162                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5163                   BN1, N2);
5164  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5165  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5166                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5167                   BN1, N2);
5168  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5169  // Simply multiplying by the reciprocal estimate can leave us a few ulps
5170  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5171  // and that it will never cause us to return an answer too large).
5172  // float4 result = as_float4(as_int4(xf*recip) + 2);
5173  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5174  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5175  N1 = DAG.getConstant(2, MVT::i32);
5176  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5177  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5178  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5179  // Convert back to integer and return.
5180  // return vmovn_u32(vcvt_s32_f32(result));
5181  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5182  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5183  return N0;
5184}
5185
5186static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
5187  EVT VT = Op.getNode()->getValueType(0);
5188  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5189
5190  unsigned Opc;
5191  bool ExtraOp = false;
5192  switch (Op.getOpcode()) {
5193  default: llvm_unreachable("Invalid code");
5194  case ISD::ADDC: Opc = ARMISD::ADDC; break;
5195  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5196  case ISD::SUBC: Opc = ARMISD::SUBC; break;
5197  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5198  }
5199
5200  if (!ExtraOp)
5201    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5202                       Op.getOperand(1));
5203  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
5204                     Op.getOperand(1), Op.getOperand(2));
5205}
5206
5207static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5208  // Monotonic load/store is legal for all targets
5209  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5210    return Op;
5211
5212  // Aquire/Release load/store is not legal for targets without a
5213  // dmb or equivalent available.
5214  return SDValue();
5215}
5216
5217
5218static void
5219ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5220                    SelectionDAG &DAG, unsigned NewOp) {
5221  DebugLoc dl = Node->getDebugLoc();
5222  assert (Node->getValueType(0) == MVT::i64 &&
5223          "Only know how to expand i64 atomics");
5224
5225  SmallVector<SDValue, 6> Ops;
5226  Ops.push_back(Node->getOperand(0)); // Chain
5227  Ops.push_back(Node->getOperand(1)); // Ptr
5228  // Low part of Val1
5229  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5230                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
5231  // High part of Val1
5232  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5233                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
5234  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5235    // High part of Val1
5236    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5237                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5238    // High part of Val2
5239    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5240                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5241  }
5242  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5243  SDValue Result =
5244    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5245                            cast<MemSDNode>(Node)->getMemOperand());
5246  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5247  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5248  Results.push_back(Result.getValue(2));
5249}
5250
5251SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5252  switch (Op.getOpcode()) {
5253  default: llvm_unreachable("Don't know how to custom lower this!");
5254  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5255  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5256  case ISD::GlobalAddress:
5257    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5258      LowerGlobalAddressELF(Op, DAG);
5259  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5260  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5261  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5262  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5263  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5264  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5265  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
5266  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5267  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5268  case ISD::SINT_TO_FP:
5269  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5270  case ISD::FP_TO_SINT:
5271  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5272  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5273  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5274  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5275  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5276  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5277  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5278  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5279                                                               Subtarget);
5280  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5281  case ISD::SHL:
5282  case ISD::SRL:
5283  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5284  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5285  case ISD::SRL_PARTS:
5286  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5287  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5288  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5289  case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
5290  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5291  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5292  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5293  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5294  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5295  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5296  case ISD::MUL:           return LowerMUL(Op, DAG);
5297  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5298  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5299  case ISD::ADDC:
5300  case ISD::ADDE:
5301  case ISD::SUBC:
5302  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5303  case ISD::ATOMIC_LOAD:
5304  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5305  }
5306}
5307
5308/// ReplaceNodeResults - Replace the results of node with an illegal result
5309/// type with new values built out of custom code.
5310void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5311                                           SmallVectorImpl<SDValue>&Results,
5312                                           SelectionDAG &DAG) const {
5313  SDValue Res;
5314  switch (N->getOpcode()) {
5315  default:
5316    llvm_unreachable("Don't know how to custom expand this!");
5317  case ISD::BITCAST:
5318    Res = ExpandBITCAST(N, DAG);
5319    break;
5320  case ISD::SRL:
5321  case ISD::SRA:
5322    Res = Expand64BitShift(N, DAG, Subtarget);
5323    break;
5324  case ISD::ATOMIC_LOAD_ADD:
5325    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5326    return;
5327  case ISD::ATOMIC_LOAD_AND:
5328    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5329    return;
5330  case ISD::ATOMIC_LOAD_NAND:
5331    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5332    return;
5333  case ISD::ATOMIC_LOAD_OR:
5334    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5335    return;
5336  case ISD::ATOMIC_LOAD_SUB:
5337    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5338    return;
5339  case ISD::ATOMIC_LOAD_XOR:
5340    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5341    return;
5342  case ISD::ATOMIC_SWAP:
5343    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5344    return;
5345  case ISD::ATOMIC_CMP_SWAP:
5346    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5347    return;
5348  }
5349  if (Res.getNode())
5350    Results.push_back(Res);
5351}
5352
5353//===----------------------------------------------------------------------===//
5354//                           ARM Scheduler Hooks
5355//===----------------------------------------------------------------------===//
5356
5357MachineBasicBlock *
5358ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5359                                     MachineBasicBlock *BB,
5360                                     unsigned Size) const {
5361  unsigned dest    = MI->getOperand(0).getReg();
5362  unsigned ptr     = MI->getOperand(1).getReg();
5363  unsigned oldval  = MI->getOperand(2).getReg();
5364  unsigned newval  = MI->getOperand(3).getReg();
5365  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5366  DebugLoc dl = MI->getDebugLoc();
5367  bool isThumb2 = Subtarget->isThumb2();
5368
5369  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5370  unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
5371    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5372    (const TargetRegisterClass*)&ARM::GPRRegClass);
5373
5374  if (isThumb2) {
5375    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5376    MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
5377    MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
5378  }
5379
5380  unsigned ldrOpc, strOpc;
5381  switch (Size) {
5382  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5383  case 1:
5384    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5385    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5386    break;
5387  case 2:
5388    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5389    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5390    break;
5391  case 4:
5392    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5393    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5394    break;
5395  }
5396
5397  MachineFunction *MF = BB->getParent();
5398  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5399  MachineFunction::iterator It = BB;
5400  ++It; // insert the new blocks after the current block
5401
5402  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5403  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
5404  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5405  MF->insert(It, loop1MBB);
5406  MF->insert(It, loop2MBB);
5407  MF->insert(It, exitMBB);
5408
5409  // Transfer the remainder of BB and its successor edges to exitMBB.
5410  exitMBB->splice(exitMBB->begin(), BB,
5411                  llvm::next(MachineBasicBlock::iterator(MI)),
5412                  BB->end());
5413  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5414
5415  //  thisMBB:
5416  //   ...
5417  //   fallthrough --> loop1MBB
5418  BB->addSuccessor(loop1MBB);
5419
5420  // loop1MBB:
5421  //   ldrex dest, [ptr]
5422  //   cmp dest, oldval
5423  //   bne exitMBB
5424  BB = loop1MBB;
5425  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5426  if (ldrOpc == ARM::t2LDREX)
5427    MIB.addImm(0);
5428  AddDefaultPred(MIB);
5429  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5430                 .addReg(dest).addReg(oldval));
5431  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5432    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5433  BB->addSuccessor(loop2MBB);
5434  BB->addSuccessor(exitMBB);
5435
5436  // loop2MBB:
5437  //   strex scratch, newval, [ptr]
5438  //   cmp scratch, #0
5439  //   bne loop1MBB
5440  BB = loop2MBB;
5441  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
5442  if (strOpc == ARM::t2STREX)
5443    MIB.addImm(0);
5444  AddDefaultPred(MIB);
5445  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5446                 .addReg(scratch).addImm(0));
5447  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5448    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5449  BB->addSuccessor(loop1MBB);
5450  BB->addSuccessor(exitMBB);
5451
5452  //  exitMBB:
5453  //   ...
5454  BB = exitMBB;
5455
5456  MI->eraseFromParent();   // The instruction is gone now.
5457
5458  return BB;
5459}
5460
5461MachineBasicBlock *
5462ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5463                                    unsigned Size, unsigned BinOpcode) const {
5464  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5465  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5466
5467  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5468  MachineFunction *MF = BB->getParent();
5469  MachineFunction::iterator It = BB;
5470  ++It;
5471
5472  unsigned dest = MI->getOperand(0).getReg();
5473  unsigned ptr = MI->getOperand(1).getReg();
5474  unsigned incr = MI->getOperand(2).getReg();
5475  DebugLoc dl = MI->getDebugLoc();
5476  bool isThumb2 = Subtarget->isThumb2();
5477
5478  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5479  if (isThumb2) {
5480    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5481    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5482  }
5483
5484  unsigned ldrOpc, strOpc;
5485  switch (Size) {
5486  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5487  case 1:
5488    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5489    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5490    break;
5491  case 2:
5492    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5493    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5494    break;
5495  case 4:
5496    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5497    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5498    break;
5499  }
5500
5501  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5502  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5503  MF->insert(It, loopMBB);
5504  MF->insert(It, exitMBB);
5505
5506  // Transfer the remainder of BB and its successor edges to exitMBB.
5507  exitMBB->splice(exitMBB->begin(), BB,
5508                  llvm::next(MachineBasicBlock::iterator(MI)),
5509                  BB->end());
5510  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5511
5512  const TargetRegisterClass *TRC = isThumb2 ?
5513    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5514    (const TargetRegisterClass*)&ARM::GPRRegClass;
5515  unsigned scratch = MRI.createVirtualRegister(TRC);
5516  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
5517
5518  //  thisMBB:
5519  //   ...
5520  //   fallthrough --> loopMBB
5521  BB->addSuccessor(loopMBB);
5522
5523  //  loopMBB:
5524  //   ldrex dest, ptr
5525  //   <binop> scratch2, dest, incr
5526  //   strex scratch, scratch2, ptr
5527  //   cmp scratch, #0
5528  //   bne- loopMBB
5529  //   fallthrough --> exitMBB
5530  BB = loopMBB;
5531  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5532  if (ldrOpc == ARM::t2LDREX)
5533    MIB.addImm(0);
5534  AddDefaultPred(MIB);
5535  if (BinOpcode) {
5536    // operand order needs to go the other way for NAND
5537    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
5538      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5539                     addReg(incr).addReg(dest)).addReg(0);
5540    else
5541      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
5542                     addReg(dest).addReg(incr)).addReg(0);
5543  }
5544
5545  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5546  if (strOpc == ARM::t2STREX)
5547    MIB.addImm(0);
5548  AddDefaultPred(MIB);
5549  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5550                 .addReg(scratch).addImm(0));
5551  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5552    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5553
5554  BB->addSuccessor(loopMBB);
5555  BB->addSuccessor(exitMBB);
5556
5557  //  exitMBB:
5558  //   ...
5559  BB = exitMBB;
5560
5561  MI->eraseFromParent();   // The instruction is gone now.
5562
5563  return BB;
5564}
5565
5566MachineBasicBlock *
5567ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
5568                                          MachineBasicBlock *BB,
5569                                          unsigned Size,
5570                                          bool signExtend,
5571                                          ARMCC::CondCodes Cond) const {
5572  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5573
5574  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5575  MachineFunction *MF = BB->getParent();
5576  MachineFunction::iterator It = BB;
5577  ++It;
5578
5579  unsigned dest = MI->getOperand(0).getReg();
5580  unsigned ptr = MI->getOperand(1).getReg();
5581  unsigned incr = MI->getOperand(2).getReg();
5582  unsigned oldval = dest;
5583  DebugLoc dl = MI->getDebugLoc();
5584  bool isThumb2 = Subtarget->isThumb2();
5585
5586  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5587  if (isThumb2) {
5588    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5589    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5590  }
5591
5592  unsigned ldrOpc, strOpc, extendOpc;
5593  switch (Size) {
5594  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
5595  case 1:
5596    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
5597    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
5598    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
5599    break;
5600  case 2:
5601    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
5602    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
5603    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
5604    break;
5605  case 4:
5606    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
5607    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
5608    extendOpc = 0;
5609    break;
5610  }
5611
5612  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5613  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5614  MF->insert(It, loopMBB);
5615  MF->insert(It, exitMBB);
5616
5617  // Transfer the remainder of BB and its successor edges to exitMBB.
5618  exitMBB->splice(exitMBB->begin(), BB,
5619                  llvm::next(MachineBasicBlock::iterator(MI)),
5620                  BB->end());
5621  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5622
5623  const TargetRegisterClass *TRC = isThumb2 ?
5624    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5625    (const TargetRegisterClass*)&ARM::GPRRegClass;
5626  unsigned scratch = MRI.createVirtualRegister(TRC);
5627  unsigned scratch2 = MRI.createVirtualRegister(TRC);
5628
5629  //  thisMBB:
5630  //   ...
5631  //   fallthrough --> loopMBB
5632  BB->addSuccessor(loopMBB);
5633
5634  //  loopMBB:
5635  //   ldrex dest, ptr
5636  //   (sign extend dest, if required)
5637  //   cmp dest, incr
5638  //   cmov.cond scratch2, incr, dest
5639  //   strex scratch, scratch2, ptr
5640  //   cmp scratch, #0
5641  //   bne- loopMBB
5642  //   fallthrough --> exitMBB
5643  BB = loopMBB;
5644  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
5645  if (ldrOpc == ARM::t2LDREX)
5646    MIB.addImm(0);
5647  AddDefaultPred(MIB);
5648
5649  // Sign extend the value, if necessary.
5650  if (signExtend && extendOpc) {
5651    oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
5652    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
5653                     .addReg(dest)
5654                     .addImm(0));
5655  }
5656
5657  // Build compare and cmov instructions.
5658  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
5659                 .addReg(oldval).addReg(incr));
5660  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
5661         .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR);
5662
5663  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
5664  if (strOpc == ARM::t2STREX)
5665    MIB.addImm(0);
5666  AddDefaultPred(MIB);
5667  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5668                 .addReg(scratch).addImm(0));
5669  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5670    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5671
5672  BB->addSuccessor(loopMBB);
5673  BB->addSuccessor(exitMBB);
5674
5675  //  exitMBB:
5676  //   ...
5677  BB = exitMBB;
5678
5679  MI->eraseFromParent();   // The instruction is gone now.
5680
5681  return BB;
5682}
5683
5684MachineBasicBlock *
5685ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
5686                                      unsigned Op1, unsigned Op2,
5687                                      bool NeedsCarry, bool IsCmpxchg) const {
5688  // This also handles ATOMIC_SWAP, indicated by Op1==0.
5689  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5690
5691  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5692  MachineFunction *MF = BB->getParent();
5693  MachineFunction::iterator It = BB;
5694  ++It;
5695
5696  unsigned destlo = MI->getOperand(0).getReg();
5697  unsigned desthi = MI->getOperand(1).getReg();
5698  unsigned ptr = MI->getOperand(2).getReg();
5699  unsigned vallo = MI->getOperand(3).getReg();
5700  unsigned valhi = MI->getOperand(4).getReg();
5701  DebugLoc dl = MI->getDebugLoc();
5702  bool isThumb2 = Subtarget->isThumb2();
5703
5704  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5705  if (isThumb2) {
5706    MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
5707    MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
5708    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
5709  }
5710
5711  unsigned ldrOpc = isThumb2 ? ARM::t2LDREXD : ARM::LDREXD;
5712  unsigned strOpc = isThumb2 ? ARM::t2STREXD : ARM::STREXD;
5713
5714  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5715  MachineBasicBlock *contBB = 0, *cont2BB = 0;
5716  if (IsCmpxchg) {
5717    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
5718    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
5719  }
5720  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
5721  MF->insert(It, loopMBB);
5722  if (IsCmpxchg) {
5723    MF->insert(It, contBB);
5724    MF->insert(It, cont2BB);
5725  }
5726  MF->insert(It, exitMBB);
5727
5728  // Transfer the remainder of BB and its successor edges to exitMBB.
5729  exitMBB->splice(exitMBB->begin(), BB,
5730                  llvm::next(MachineBasicBlock::iterator(MI)),
5731                  BB->end());
5732  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5733
5734  const TargetRegisterClass *TRC = isThumb2 ?
5735    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5736    (const TargetRegisterClass*)&ARM::GPRRegClass;
5737  unsigned storesuccess = MRI.createVirtualRegister(TRC);
5738
5739  //  thisMBB:
5740  //   ...
5741  //   fallthrough --> loopMBB
5742  BB->addSuccessor(loopMBB);
5743
5744  //  loopMBB:
5745  //   ldrexd r2, r3, ptr
5746  //   <binopa> r0, r2, incr
5747  //   <binopb> r1, r3, incr
5748  //   strexd storesuccess, r0, r1, ptr
5749  //   cmp storesuccess, #0
5750  //   bne- loopMBB
5751  //   fallthrough --> exitMBB
5752  //
5753  // Note that the registers are explicitly specified because there is not any
5754  // way to force the register allocator to allocate a register pair.
5755  //
5756  // FIXME: The hardcoded registers are not necessary for Thumb2, but we
5757  // need to properly enforce the restriction that the two output registers
5758  // for ldrexd must be different.
5759  BB = loopMBB;
5760  // Load
5761  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc))
5762                 .addReg(ARM::R2, RegState::Define)
5763                 .addReg(ARM::R3, RegState::Define).addReg(ptr));
5764  // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
5765  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo).addReg(ARM::R2);
5766  BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi).addReg(ARM::R3);
5767
5768  if (IsCmpxchg) {
5769    // Add early exit
5770    for (unsigned i = 0; i < 2; i++) {
5771      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
5772                                                         ARM::CMPrr))
5773                     .addReg(i == 0 ? destlo : desthi)
5774                     .addReg(i == 0 ? vallo : valhi));
5775      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5776        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5777      BB->addSuccessor(exitMBB);
5778      BB->addSuccessor(i == 0 ? contBB : cont2BB);
5779      BB = (i == 0 ? contBB : cont2BB);
5780    }
5781
5782    // Copy to physregs for strexd
5783    unsigned setlo = MI->getOperand(5).getReg();
5784    unsigned sethi = MI->getOperand(6).getReg();
5785    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(setlo);
5786    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(sethi);
5787  } else if (Op1) {
5788    // Perform binary operation
5789    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), ARM::R0)
5790                   .addReg(destlo).addReg(vallo))
5791        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
5792    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), ARM::R1)
5793                   .addReg(desthi).addReg(valhi)).addReg(0);
5794  } else {
5795    // Copy to physregs for strexd
5796    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R0).addReg(vallo);
5797    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), ARM::R1).addReg(valhi);
5798  }
5799
5800  // Store
5801  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), storesuccess)
5802                 .addReg(ARM::R0).addReg(ARM::R1).addReg(ptr));
5803  // Cmp+jump
5804  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
5805                 .addReg(storesuccess).addImm(0));
5806  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
5807    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
5808
5809  BB->addSuccessor(loopMBB);
5810  BB->addSuccessor(exitMBB);
5811
5812  //  exitMBB:
5813  //   ...
5814  BB = exitMBB;
5815
5816  MI->eraseFromParent();   // The instruction is gone now.
5817
5818  return BB;
5819}
5820
5821/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
5822/// registers the function context.
5823void ARMTargetLowering::
5824SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
5825                       MachineBasicBlock *DispatchBB, int FI) const {
5826  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5827  DebugLoc dl = MI->getDebugLoc();
5828  MachineFunction *MF = MBB->getParent();
5829  MachineRegisterInfo *MRI = &MF->getRegInfo();
5830  MachineConstantPool *MCP = MF->getConstantPool();
5831  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5832  const Function *F = MF->getFunction();
5833
5834  bool isThumb = Subtarget->isThumb();
5835  bool isThumb2 = Subtarget->isThumb2();
5836
5837  unsigned PCLabelId = AFI->createPICLabelUId();
5838  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
5839  ARMConstantPoolValue *CPV =
5840    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
5841  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
5842
5843  const TargetRegisterClass *TRC = isThumb ?
5844    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5845    (const TargetRegisterClass*)&ARM::GPRRegClass;
5846
5847  // Grab constant pool and fixed stack memory operands.
5848  MachineMemOperand *CPMMO =
5849    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
5850                             MachineMemOperand::MOLoad, 4, 4);
5851
5852  MachineMemOperand *FIMMOSt =
5853    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
5854                             MachineMemOperand::MOStore, 4, 4);
5855
5856  // Load the address of the dispatch MBB into the jump buffer.
5857  if (isThumb2) {
5858    // Incoming value: jbuf
5859    //   ldr.n  r5, LCPI1_1
5860    //   orr    r5, r5, #1
5861    //   add    r5, pc
5862    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
5863    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5864    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
5865                   .addConstantPoolIndex(CPI)
5866                   .addMemOperand(CPMMO));
5867    // Set the low bit because of thumb mode.
5868    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5869    AddDefaultCC(
5870      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
5871                     .addReg(NewVReg1, RegState::Kill)
5872                     .addImm(0x01)));
5873    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5874    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
5875      .addReg(NewVReg2, RegState::Kill)
5876      .addImm(PCLabelId);
5877    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
5878                   .addReg(NewVReg3, RegState::Kill)
5879                   .addFrameIndex(FI)
5880                   .addImm(36)  // &jbuf[1] :: pc
5881                   .addMemOperand(FIMMOSt));
5882  } else if (isThumb) {
5883    // Incoming value: jbuf
5884    //   ldr.n  r1, LCPI1_4
5885    //   add    r1, pc
5886    //   mov    r2, #1
5887    //   orrs   r1, r2
5888    //   add    r2, $jbuf, #+4 ; &jbuf[1]
5889    //   str    r1, [r2]
5890    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5891    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
5892                   .addConstantPoolIndex(CPI)
5893                   .addMemOperand(CPMMO));
5894    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5895    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
5896      .addReg(NewVReg1, RegState::Kill)
5897      .addImm(PCLabelId);
5898    // Set the low bit because of thumb mode.
5899    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
5900    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
5901                   .addReg(ARM::CPSR, RegState::Define)
5902                   .addImm(1));
5903    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
5904    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
5905                   .addReg(ARM::CPSR, RegState::Define)
5906                   .addReg(NewVReg2, RegState::Kill)
5907                   .addReg(NewVReg3, RegState::Kill));
5908    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
5909    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
5910                   .addFrameIndex(FI)
5911                   .addImm(36)); // &jbuf[1] :: pc
5912    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
5913                   .addReg(NewVReg4, RegState::Kill)
5914                   .addReg(NewVReg5, RegState::Kill)
5915                   .addImm(0)
5916                   .addMemOperand(FIMMOSt));
5917  } else {
5918    // Incoming value: jbuf
5919    //   ldr  r1, LCPI1_1
5920    //   add  r1, pc, r1
5921    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
5922    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
5923    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
5924                   .addConstantPoolIndex(CPI)
5925                   .addImm(0)
5926                   .addMemOperand(CPMMO));
5927    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
5928    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
5929                   .addReg(NewVReg1, RegState::Kill)
5930                   .addImm(PCLabelId));
5931    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
5932                   .addReg(NewVReg2, RegState::Kill)
5933                   .addFrameIndex(FI)
5934                   .addImm(36)  // &jbuf[1] :: pc
5935                   .addMemOperand(FIMMOSt));
5936  }
5937}
5938
5939MachineBasicBlock *ARMTargetLowering::
5940EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
5941  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5942  DebugLoc dl = MI->getDebugLoc();
5943  MachineFunction *MF = MBB->getParent();
5944  MachineRegisterInfo *MRI = &MF->getRegInfo();
5945  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
5946  MachineFrameInfo *MFI = MF->getFrameInfo();
5947  int FI = MFI->getFunctionContextIndex();
5948
5949  const TargetRegisterClass *TRC = Subtarget->isThumb() ?
5950    (const TargetRegisterClass*)&ARM::tGPRRegClass :
5951    (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
5952
5953  // Get a mapping of the call site numbers to all of the landing pads they're
5954  // associated with.
5955  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
5956  unsigned MaxCSNum = 0;
5957  MachineModuleInfo &MMI = MF->getMMI();
5958  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
5959       ++BB) {
5960    if (!BB->isLandingPad()) continue;
5961
5962    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
5963    // pad.
5964    for (MachineBasicBlock::iterator
5965           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
5966      if (!II->isEHLabel()) continue;
5967
5968      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
5969      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
5970
5971      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
5972      for (SmallVectorImpl<unsigned>::iterator
5973             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
5974           CSI != CSE; ++CSI) {
5975        CallSiteNumToLPad[*CSI].push_back(BB);
5976        MaxCSNum = std::max(MaxCSNum, *CSI);
5977      }
5978      break;
5979    }
5980  }
5981
5982  // Get an ordered list of the machine basic blocks for the jump table.
5983  std::vector<MachineBasicBlock*> LPadList;
5984  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
5985  LPadList.reserve(CallSiteNumToLPad.size());
5986  for (unsigned I = 1; I <= MaxCSNum; ++I) {
5987    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
5988    for (SmallVectorImpl<MachineBasicBlock*>::iterator
5989           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
5990      LPadList.push_back(*II);
5991      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
5992    }
5993  }
5994
5995  assert(!LPadList.empty() &&
5996         "No landing pad destinations for the dispatch jump table!");
5997
5998  // Create the jump table and associated information.
5999  MachineJumpTableInfo *JTI =
6000    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
6001  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
6002  unsigned UId = AFI->createJumpTableUId();
6003
6004  // Create the MBBs for the dispatch code.
6005
6006  // Shove the dispatch's address into the return slot in the function context.
6007  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
6008  DispatchBB->setIsLandingPad();
6009
6010  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
6011  BuildMI(TrapBB, dl, TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
6012  DispatchBB->addSuccessor(TrapBB);
6013
6014  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
6015  DispatchBB->addSuccessor(DispContBB);
6016
6017  // Insert and MBBs.
6018  MF->insert(MF->end(), DispatchBB);
6019  MF->insert(MF->end(), DispContBB);
6020  MF->insert(MF->end(), TrapBB);
6021
6022  // Insert code into the entry block that creates and registers the function
6023  // context.
6024  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
6025
6026  MachineMemOperand *FIMMOLd =
6027    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6028                             MachineMemOperand::MOLoad |
6029                             MachineMemOperand::MOVolatile, 4, 4);
6030
6031  if (AFI->isThumb1OnlyFunction())
6032    BuildMI(DispatchBB, dl, TII->get(ARM::tInt_eh_sjlj_dispatchsetup));
6033  else if (!Subtarget->hasVFP2())
6034    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup_nofp));
6035  else
6036    BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
6037
6038  unsigned NumLPads = LPadList.size();
6039  if (Subtarget->isThumb2()) {
6040    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6041    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6042                   .addFrameIndex(FI)
6043                   .addImm(4)
6044                   .addMemOperand(FIMMOLd));
6045
6046    if (NumLPads < 256) {
6047      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6048                     .addReg(NewVReg1)
6049                     .addImm(LPadList.size()));
6050    } else {
6051      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6052      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6053                     .addImm(NumLPads & 0xFFFF));
6054
6055      unsigned VReg2 = VReg1;
6056      if ((NumLPads & 0xFFFF0000) != 0) {
6057        VReg2 = MRI->createVirtualRegister(TRC);
6058        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6059                       .addReg(VReg1)
6060                       .addImm(NumLPads >> 16));
6061      }
6062
6063      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6064                     .addReg(NewVReg1)
6065                     .addReg(VReg2));
6066    }
6067
6068    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
6069      .addMBB(TrapBB)
6070      .addImm(ARMCC::HI)
6071      .addReg(ARM::CPSR);
6072
6073    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6074    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
6075                   .addJumpTableIndex(MJTI)
6076                   .addImm(UId));
6077
6078    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6079    AddDefaultCC(
6080      AddDefaultPred(
6081        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
6082        .addReg(NewVReg3, RegState::Kill)
6083        .addReg(NewVReg1)
6084        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6085
6086    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
6087      .addReg(NewVReg4, RegState::Kill)
6088      .addReg(NewVReg1)
6089      .addJumpTableIndex(MJTI)
6090      .addImm(UId);
6091  } else if (Subtarget->isThumb()) {
6092    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6093    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6094                   .addFrameIndex(FI)
6095                   .addImm(1)
6096                   .addMemOperand(FIMMOLd));
6097
6098    if (NumLPads < 256) {
6099      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6100                     .addReg(NewVReg1)
6101                     .addImm(NumLPads));
6102    } else {
6103      MachineConstantPool *ConstantPool = MF->getConstantPool();
6104      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6105      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6106
6107      // MachineConstantPool wants an explicit alignment.
6108      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6109      if (Align == 0)
6110        Align = getDataLayout()->getTypeAllocSize(C->getType());
6111      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6112
6113      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6114      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6115                     .addReg(VReg1, RegState::Define)
6116                     .addConstantPoolIndex(Idx));
6117      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6118                     .addReg(NewVReg1)
6119                     .addReg(VReg1));
6120    }
6121
6122    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6123      .addMBB(TrapBB)
6124      .addImm(ARMCC::HI)
6125      .addReg(ARM::CPSR);
6126
6127    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6128    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6129                   .addReg(ARM::CPSR, RegState::Define)
6130                   .addReg(NewVReg1)
6131                   .addImm(2));
6132
6133    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6134    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6135                   .addJumpTableIndex(MJTI)
6136                   .addImm(UId));
6137
6138    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6139    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6140                   .addReg(ARM::CPSR, RegState::Define)
6141                   .addReg(NewVReg2, RegState::Kill)
6142                   .addReg(NewVReg3));
6143
6144    MachineMemOperand *JTMMOLd =
6145      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6146                               MachineMemOperand::MOLoad, 4, 4);
6147
6148    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6149    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6150                   .addReg(NewVReg4, RegState::Kill)
6151                   .addImm(0)
6152                   .addMemOperand(JTMMOLd));
6153
6154    unsigned NewVReg6 = MRI->createVirtualRegister(TRC);
6155    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6156                   .addReg(ARM::CPSR, RegState::Define)
6157                   .addReg(NewVReg5, RegState::Kill)
6158                   .addReg(NewVReg3));
6159
6160    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6161      .addReg(NewVReg6, RegState::Kill)
6162      .addJumpTableIndex(MJTI)
6163      .addImm(UId);
6164  } else {
6165    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6166    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6167                   .addFrameIndex(FI)
6168                   .addImm(4)
6169                   .addMemOperand(FIMMOLd));
6170
6171    if (NumLPads < 256) {
6172      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6173                     .addReg(NewVReg1)
6174                     .addImm(NumLPads));
6175    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6176      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6177      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6178                     .addImm(NumLPads & 0xFFFF));
6179
6180      unsigned VReg2 = VReg1;
6181      if ((NumLPads & 0xFFFF0000) != 0) {
6182        VReg2 = MRI->createVirtualRegister(TRC);
6183        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6184                       .addReg(VReg1)
6185                       .addImm(NumLPads >> 16));
6186      }
6187
6188      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6189                     .addReg(NewVReg1)
6190                     .addReg(VReg2));
6191    } else {
6192      MachineConstantPool *ConstantPool = MF->getConstantPool();
6193      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6194      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6195
6196      // MachineConstantPool wants an explicit alignment.
6197      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6198      if (Align == 0)
6199        Align = getDataLayout()->getTypeAllocSize(C->getType());
6200      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6201
6202      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6203      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6204                     .addReg(VReg1, RegState::Define)
6205                     .addConstantPoolIndex(Idx)
6206                     .addImm(0));
6207      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6208                     .addReg(NewVReg1)
6209                     .addReg(VReg1, RegState::Kill));
6210    }
6211
6212    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6213      .addMBB(TrapBB)
6214      .addImm(ARMCC::HI)
6215      .addReg(ARM::CPSR);
6216
6217    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6218    AddDefaultCC(
6219      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6220                     .addReg(NewVReg1)
6221                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6222    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6223    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6224                   .addJumpTableIndex(MJTI)
6225                   .addImm(UId));
6226
6227    MachineMemOperand *JTMMOLd =
6228      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6229                               MachineMemOperand::MOLoad, 4, 4);
6230    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6231    AddDefaultPred(
6232      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6233      .addReg(NewVReg3, RegState::Kill)
6234      .addReg(NewVReg4)
6235      .addImm(0)
6236      .addMemOperand(JTMMOLd));
6237
6238    BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6239      .addReg(NewVReg5, RegState::Kill)
6240      .addReg(NewVReg4)
6241      .addJumpTableIndex(MJTI)
6242      .addImm(UId);
6243  }
6244
6245  // Add the jump table entries as successors to the MBB.
6246  SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
6247  for (std::vector<MachineBasicBlock*>::iterator
6248         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6249    MachineBasicBlock *CurMBB = *I;
6250    if (SeenMBBs.insert(CurMBB))
6251      DispContBB->addSuccessor(CurMBB);
6252  }
6253
6254  // N.B. the order the invoke BBs are processed in doesn't matter here.
6255  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6256  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6257  const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
6258  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6259  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6260         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6261    MachineBasicBlock *BB = *I;
6262
6263    // Remove the landing pad successor from the invoke block and replace it
6264    // with the new dispatch block.
6265    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6266                                                  BB->succ_end());
6267    while (!Successors.empty()) {
6268      MachineBasicBlock *SMBB = Successors.pop_back_val();
6269      if (SMBB->isLandingPad()) {
6270        BB->removeSuccessor(SMBB);
6271        MBBLPads.push_back(SMBB);
6272      }
6273    }
6274
6275    BB->addSuccessor(DispatchBB);
6276
6277    // Find the invoke call and mark all of the callee-saved registers as
6278    // 'implicit defined' so that they're spilled. This prevents code from
6279    // moving instructions to before the EH block, where they will never be
6280    // executed.
6281    for (MachineBasicBlock::reverse_iterator
6282           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6283      if (!II->isCall()) continue;
6284
6285      DenseMap<unsigned, bool> DefRegs;
6286      for (MachineInstr::mop_iterator
6287             OI = II->operands_begin(), OE = II->operands_end();
6288           OI != OE; ++OI) {
6289        if (!OI->isReg()) continue;
6290        DefRegs[OI->getReg()] = true;
6291      }
6292
6293      MachineInstrBuilder MIB(&*II);
6294
6295      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6296        unsigned Reg = SavedRegs[i];
6297        if (Subtarget->isThumb2() &&
6298            !ARM::tGPRRegClass.contains(Reg) &&
6299            !ARM::hGPRRegClass.contains(Reg))
6300          continue;
6301        if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6302          continue;
6303        if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6304          continue;
6305        if (!DefRegs[Reg])
6306          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6307      }
6308
6309      break;
6310    }
6311  }
6312
6313  // Mark all former landing pads as non-landing pads. The dispatch is the only
6314  // landing pad now.
6315  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6316         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6317    (*I)->setIsLandingPad(false);
6318
6319  // The instruction is gone now.
6320  MI->eraseFromParent();
6321
6322  return MBB;
6323}
6324
6325static
6326MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
6327  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
6328       E = MBB->succ_end(); I != E; ++I)
6329    if (*I != Succ)
6330      return *I;
6331  llvm_unreachable("Expecting a BB with two successors!");
6332}
6333
6334MachineBasicBlock *ARMTargetLowering::
6335EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
6336  // This pseudo instruction has 3 operands: dst, src, size
6337  // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
6338  // Otherwise, we will generate unrolled scalar copies.
6339  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6340  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6341  MachineFunction::iterator It = BB;
6342  ++It;
6343
6344  unsigned dest = MI->getOperand(0).getReg();
6345  unsigned src = MI->getOperand(1).getReg();
6346  unsigned SizeVal = MI->getOperand(2).getImm();
6347  unsigned Align = MI->getOperand(3).getImm();
6348  DebugLoc dl = MI->getDebugLoc();
6349
6350  bool isThumb2 = Subtarget->isThumb2();
6351  MachineFunction *MF = BB->getParent();
6352  MachineRegisterInfo &MRI = MF->getRegInfo();
6353  unsigned ldrOpc, strOpc, UnitSize = 0;
6354
6355  const TargetRegisterClass *TRC = isThumb2 ?
6356    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6357    (const TargetRegisterClass*)&ARM::GPRRegClass;
6358  const TargetRegisterClass *TRC_Vec = 0;
6359
6360  if (Align & 1) {
6361    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6362    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6363    UnitSize = 1;
6364  } else if (Align & 2) {
6365    ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
6366    strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
6367    UnitSize = 2;
6368  } else {
6369    // Check whether we can use NEON instructions.
6370    if (!MF->getFunction()->getFnAttributes().
6371          hasAttribute(Attributes::NoImplicitFloat) &&
6372        Subtarget->hasNEON()) {
6373      if ((Align % 16 == 0) && SizeVal >= 16) {
6374        ldrOpc = ARM::VLD1q32wb_fixed;
6375        strOpc = ARM::VST1q32wb_fixed;
6376        UnitSize = 16;
6377        TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
6378      }
6379      else if ((Align % 8 == 0) && SizeVal >= 8) {
6380        ldrOpc = ARM::VLD1d32wb_fixed;
6381        strOpc = ARM::VST1d32wb_fixed;
6382        UnitSize = 8;
6383        TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
6384      }
6385    }
6386    // Can't use NEON instructions.
6387    if (UnitSize == 0) {
6388      ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6389      strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
6390      UnitSize = 4;
6391    }
6392  }
6393
6394  unsigned BytesLeft = SizeVal % UnitSize;
6395  unsigned LoopSize = SizeVal - BytesLeft;
6396
6397  if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
6398    // Use LDR and STR to copy.
6399    // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
6400    // [destOut] = STR_POST(scratch, destIn, UnitSize)
6401    unsigned srcIn = src;
6402    unsigned destIn = dest;
6403    for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
6404      unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6405      unsigned srcOut = MRI.createVirtualRegister(TRC);
6406      unsigned destOut = MRI.createVirtualRegister(TRC);
6407      if (UnitSize >= 8) {
6408        AddDefaultPred(BuildMI(*BB, MI, dl,
6409          TII->get(ldrOpc), scratch)
6410          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
6411
6412        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6413          .addReg(destIn).addImm(0).addReg(scratch));
6414      } else if (isThumb2) {
6415        AddDefaultPred(BuildMI(*BB, MI, dl,
6416          TII->get(ldrOpc), scratch)
6417          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
6418
6419        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6420          .addReg(scratch).addReg(destIn)
6421          .addImm(UnitSize));
6422      } else {
6423        AddDefaultPred(BuildMI(*BB, MI, dl,
6424          TII->get(ldrOpc), scratch)
6425          .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
6426          .addImm(UnitSize));
6427
6428        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6429          .addReg(scratch).addReg(destIn)
6430          .addReg(0).addImm(UnitSize));
6431      }
6432      srcIn = srcOut;
6433      destIn = destOut;
6434    }
6435
6436    // Handle the leftover bytes with LDRB and STRB.
6437    // [scratch, srcOut] = LDRB_POST(srcIn, 1)
6438    // [destOut] = STRB_POST(scratch, destIn, 1)
6439    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6440    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6441    for (unsigned i = 0; i < BytesLeft; i++) {
6442      unsigned scratch = MRI.createVirtualRegister(TRC);
6443      unsigned srcOut = MRI.createVirtualRegister(TRC);
6444      unsigned destOut = MRI.createVirtualRegister(TRC);
6445      if (isThumb2) {
6446        AddDefaultPred(BuildMI(*BB, MI, dl,
6447          TII->get(ldrOpc),scratch)
6448          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6449
6450        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6451          .addReg(scratch).addReg(destIn)
6452          .addReg(0).addImm(1));
6453      } else {
6454        AddDefaultPred(BuildMI(*BB, MI, dl,
6455          TII->get(ldrOpc),scratch)
6456          .addReg(srcOut, RegState::Define).addReg(srcIn)
6457          .addReg(0).addImm(1));
6458
6459        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
6460          .addReg(scratch).addReg(destIn)
6461          .addReg(0).addImm(1));
6462      }
6463      srcIn = srcOut;
6464      destIn = destOut;
6465    }
6466    MI->eraseFromParent();   // The instruction is gone now.
6467    return BB;
6468  }
6469
6470  // Expand the pseudo op to a loop.
6471  // thisMBB:
6472  //   ...
6473  //   movw varEnd, # --> with thumb2
6474  //   movt varEnd, #
6475  //   ldrcp varEnd, idx --> without thumb2
6476  //   fallthrough --> loopMBB
6477  // loopMBB:
6478  //   PHI varPhi, varEnd, varLoop
6479  //   PHI srcPhi, src, srcLoop
6480  //   PHI destPhi, dst, destLoop
6481  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6482  //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
6483  //   subs varLoop, varPhi, #UnitSize
6484  //   bne loopMBB
6485  //   fallthrough --> exitMBB
6486  // exitMBB:
6487  //   epilogue to handle left-over bytes
6488  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6489  //   [destOut] = STRB_POST(scratch, destLoop, 1)
6490  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6491  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6492  MF->insert(It, loopMBB);
6493  MF->insert(It, exitMBB);
6494
6495  // Transfer the remainder of BB and its successor edges to exitMBB.
6496  exitMBB->splice(exitMBB->begin(), BB,
6497                  llvm::next(MachineBasicBlock::iterator(MI)),
6498                  BB->end());
6499  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6500
6501  // Load an immediate to varEnd.
6502  unsigned varEnd = MRI.createVirtualRegister(TRC);
6503  if (isThumb2) {
6504    unsigned VReg1 = varEnd;
6505    if ((LoopSize & 0xFFFF0000) != 0)
6506      VReg1 = MRI.createVirtualRegister(TRC);
6507    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
6508                   .addImm(LoopSize & 0xFFFF));
6509
6510    if ((LoopSize & 0xFFFF0000) != 0)
6511      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
6512                     .addReg(VReg1)
6513                     .addImm(LoopSize >> 16));
6514  } else {
6515    MachineConstantPool *ConstantPool = MF->getConstantPool();
6516    Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6517    const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
6518
6519    // MachineConstantPool wants an explicit alignment.
6520    unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6521    if (Align == 0)
6522      Align = getDataLayout()->getTypeAllocSize(C->getType());
6523    unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6524
6525    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
6526                   .addReg(varEnd, RegState::Define)
6527                   .addConstantPoolIndex(Idx)
6528                   .addImm(0));
6529  }
6530  BB->addSuccessor(loopMBB);
6531
6532  // Generate the loop body:
6533  //   varPhi = PHI(varLoop, varEnd)
6534  //   srcPhi = PHI(srcLoop, src)
6535  //   destPhi = PHI(destLoop, dst)
6536  MachineBasicBlock *entryBB = BB;
6537  BB = loopMBB;
6538  unsigned varLoop = MRI.createVirtualRegister(TRC);
6539  unsigned varPhi = MRI.createVirtualRegister(TRC);
6540  unsigned srcLoop = MRI.createVirtualRegister(TRC);
6541  unsigned srcPhi = MRI.createVirtualRegister(TRC);
6542  unsigned destLoop = MRI.createVirtualRegister(TRC);
6543  unsigned destPhi = MRI.createVirtualRegister(TRC);
6544
6545  BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
6546    .addReg(varLoop).addMBB(loopMBB)
6547    .addReg(varEnd).addMBB(entryBB);
6548  BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
6549    .addReg(srcLoop).addMBB(loopMBB)
6550    .addReg(src).addMBB(entryBB);
6551  BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
6552    .addReg(destLoop).addMBB(loopMBB)
6553    .addReg(dest).addMBB(entryBB);
6554
6555  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
6556  //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
6557  unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
6558  if (UnitSize >= 8) {
6559    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6560      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
6561
6562    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6563      .addReg(destPhi).addImm(0).addReg(scratch));
6564  } else if (isThumb2) {
6565    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6566      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
6567
6568    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6569      .addReg(scratch).addReg(destPhi)
6570      .addImm(UnitSize));
6571  } else {
6572    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
6573      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
6574      .addImm(UnitSize));
6575
6576    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
6577      .addReg(scratch).addReg(destPhi)
6578      .addReg(0).addImm(UnitSize));
6579  }
6580
6581  // Decrement loop variable by UnitSize.
6582  MachineInstrBuilder MIB = BuildMI(BB, dl,
6583    TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
6584  AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
6585  MIB->getOperand(5).setReg(ARM::CPSR);
6586  MIB->getOperand(5).setIsDef(true);
6587
6588  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6589    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6590
6591  // loopMBB can loop back to loopMBB or fall through to exitMBB.
6592  BB->addSuccessor(loopMBB);
6593  BB->addSuccessor(exitMBB);
6594
6595  // Add epilogue to handle BytesLeft.
6596  BB = exitMBB;
6597  MachineInstr *StartOfExit = exitMBB->begin();
6598  ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
6599  strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
6600
6601  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
6602  //   [destOut] = STRB_POST(scratch, destLoop, 1)
6603  unsigned srcIn = srcLoop;
6604  unsigned destIn = destLoop;
6605  for (unsigned i = 0; i < BytesLeft; i++) {
6606    unsigned scratch = MRI.createVirtualRegister(TRC);
6607    unsigned srcOut = MRI.createVirtualRegister(TRC);
6608    unsigned destOut = MRI.createVirtualRegister(TRC);
6609    if (isThumb2) {
6610      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6611        TII->get(ldrOpc),scratch)
6612        .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
6613
6614      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6615        .addReg(scratch).addReg(destIn)
6616        .addImm(1));
6617    } else {
6618      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
6619        TII->get(ldrOpc),scratch)
6620        .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
6621
6622      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
6623        .addReg(scratch).addReg(destIn)
6624        .addReg(0).addImm(1));
6625    }
6626    srcIn = srcOut;
6627    destIn = destOut;
6628  }
6629
6630  MI->eraseFromParent();   // The instruction is gone now.
6631  return BB;
6632}
6633
6634MachineBasicBlock *
6635ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6636                                               MachineBasicBlock *BB) const {
6637  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6638  DebugLoc dl = MI->getDebugLoc();
6639  bool isThumb2 = Subtarget->isThumb2();
6640  switch (MI->getOpcode()) {
6641  default: {
6642    MI->dump();
6643    llvm_unreachable("Unexpected instr type to insert");
6644  }
6645  // The Thumb2 pre-indexed stores have the same MI operands, they just
6646  // define them differently in the .td files from the isel patterns, so
6647  // they need pseudos.
6648  case ARM::t2STR_preidx:
6649    MI->setDesc(TII->get(ARM::t2STR_PRE));
6650    return BB;
6651  case ARM::t2STRB_preidx:
6652    MI->setDesc(TII->get(ARM::t2STRB_PRE));
6653    return BB;
6654  case ARM::t2STRH_preidx:
6655    MI->setDesc(TII->get(ARM::t2STRH_PRE));
6656    return BB;
6657
6658  case ARM::STRi_preidx:
6659  case ARM::STRBi_preidx: {
6660    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
6661      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
6662    // Decode the offset.
6663    unsigned Offset = MI->getOperand(4).getImm();
6664    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
6665    Offset = ARM_AM::getAM2Offset(Offset);
6666    if (isSub)
6667      Offset = -Offset;
6668
6669    MachineMemOperand *MMO = *MI->memoperands_begin();
6670    BuildMI(*BB, MI, dl, TII->get(NewOpc))
6671      .addOperand(MI->getOperand(0))  // Rn_wb
6672      .addOperand(MI->getOperand(1))  // Rt
6673      .addOperand(MI->getOperand(2))  // Rn
6674      .addImm(Offset)                 // offset (skip GPR==zero_reg)
6675      .addOperand(MI->getOperand(5))  // pred
6676      .addOperand(MI->getOperand(6))
6677      .addMemOperand(MMO);
6678    MI->eraseFromParent();
6679    return BB;
6680  }
6681  case ARM::STRr_preidx:
6682  case ARM::STRBr_preidx:
6683  case ARM::STRH_preidx: {
6684    unsigned NewOpc;
6685    switch (MI->getOpcode()) {
6686    default: llvm_unreachable("unexpected opcode!");
6687    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
6688    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
6689    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
6690    }
6691    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
6692    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
6693      MIB.addOperand(MI->getOperand(i));
6694    MI->eraseFromParent();
6695    return BB;
6696  }
6697  case ARM::ATOMIC_LOAD_ADD_I8:
6698     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6699  case ARM::ATOMIC_LOAD_ADD_I16:
6700     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6701  case ARM::ATOMIC_LOAD_ADD_I32:
6702     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
6703
6704  case ARM::ATOMIC_LOAD_AND_I8:
6705     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6706  case ARM::ATOMIC_LOAD_AND_I16:
6707     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6708  case ARM::ATOMIC_LOAD_AND_I32:
6709     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6710
6711  case ARM::ATOMIC_LOAD_OR_I8:
6712     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6713  case ARM::ATOMIC_LOAD_OR_I16:
6714     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6715  case ARM::ATOMIC_LOAD_OR_I32:
6716     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6717
6718  case ARM::ATOMIC_LOAD_XOR_I8:
6719     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6720  case ARM::ATOMIC_LOAD_XOR_I16:
6721     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6722  case ARM::ATOMIC_LOAD_XOR_I32:
6723     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6724
6725  case ARM::ATOMIC_LOAD_NAND_I8:
6726     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6727  case ARM::ATOMIC_LOAD_NAND_I16:
6728     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6729  case ARM::ATOMIC_LOAD_NAND_I32:
6730     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
6731
6732  case ARM::ATOMIC_LOAD_SUB_I8:
6733     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6734  case ARM::ATOMIC_LOAD_SUB_I16:
6735     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6736  case ARM::ATOMIC_LOAD_SUB_I32:
6737     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
6738
6739  case ARM::ATOMIC_LOAD_MIN_I8:
6740     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
6741  case ARM::ATOMIC_LOAD_MIN_I16:
6742     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
6743  case ARM::ATOMIC_LOAD_MIN_I32:
6744     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
6745
6746  case ARM::ATOMIC_LOAD_MAX_I8:
6747     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
6748  case ARM::ATOMIC_LOAD_MAX_I16:
6749     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
6750  case ARM::ATOMIC_LOAD_MAX_I32:
6751     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
6752
6753  case ARM::ATOMIC_LOAD_UMIN_I8:
6754     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
6755  case ARM::ATOMIC_LOAD_UMIN_I16:
6756     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
6757  case ARM::ATOMIC_LOAD_UMIN_I32:
6758     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
6759
6760  case ARM::ATOMIC_LOAD_UMAX_I8:
6761     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
6762  case ARM::ATOMIC_LOAD_UMAX_I16:
6763     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
6764  case ARM::ATOMIC_LOAD_UMAX_I32:
6765     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
6766
6767  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
6768  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
6769  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
6770
6771  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
6772  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
6773  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
6774
6775
6776  case ARM::ATOMADD6432:
6777    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
6778                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
6779                              /*NeedsCarry*/ true);
6780  case ARM::ATOMSUB6432:
6781    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6782                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6783                              /*NeedsCarry*/ true);
6784  case ARM::ATOMOR6432:
6785    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
6786                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
6787  case ARM::ATOMXOR6432:
6788    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
6789                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
6790  case ARM::ATOMAND6432:
6791    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
6792                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
6793  case ARM::ATOMSWAP6432:
6794    return EmitAtomicBinary64(MI, BB, 0, 0, false);
6795  case ARM::ATOMCMPXCHG6432:
6796    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
6797                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
6798                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
6799
6800  case ARM::tMOVCCr_pseudo: {
6801    // To "insert" a SELECT_CC instruction, we actually have to insert the
6802    // diamond control-flow pattern.  The incoming instruction knows the
6803    // destination vreg to set, the condition code register to branch on, the
6804    // true/false values to select between, and a branch opcode to use.
6805    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6806    MachineFunction::iterator It = BB;
6807    ++It;
6808
6809    //  thisMBB:
6810    //  ...
6811    //   TrueVal = ...
6812    //   cmpTY ccX, r1, r2
6813    //   bCC copy1MBB
6814    //   fallthrough --> copy0MBB
6815    MachineBasicBlock *thisMBB  = BB;
6816    MachineFunction *F = BB->getParent();
6817    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6818    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
6819    F->insert(It, copy0MBB);
6820    F->insert(It, sinkMBB);
6821
6822    // Transfer the remainder of BB and its successor edges to sinkMBB.
6823    sinkMBB->splice(sinkMBB->begin(), BB,
6824                    llvm::next(MachineBasicBlock::iterator(MI)),
6825                    BB->end());
6826    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6827
6828    BB->addSuccessor(copy0MBB);
6829    BB->addSuccessor(sinkMBB);
6830
6831    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
6832      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
6833
6834    //  copy0MBB:
6835    //   %FalseValue = ...
6836    //   # fallthrough to sinkMBB
6837    BB = copy0MBB;
6838
6839    // Update machine-CFG edges
6840    BB->addSuccessor(sinkMBB);
6841
6842    //  sinkMBB:
6843    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6844    //  ...
6845    BB = sinkMBB;
6846    BuildMI(*BB, BB->begin(), dl,
6847            TII->get(ARM::PHI), MI->getOperand(0).getReg())
6848      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6849      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6850
6851    MI->eraseFromParent();   // The pseudo instruction is gone now.
6852    return BB;
6853  }
6854
6855  case ARM::BCCi64:
6856  case ARM::BCCZi64: {
6857    // If there is an unconditional branch to the other successor, remove it.
6858    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
6859
6860    // Compare both parts that make up the double comparison separately for
6861    // equality.
6862    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
6863
6864    unsigned LHS1 = MI->getOperand(1).getReg();
6865    unsigned LHS2 = MI->getOperand(2).getReg();
6866    if (RHSisZero) {
6867      AddDefaultPred(BuildMI(BB, dl,
6868                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6869                     .addReg(LHS1).addImm(0));
6870      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6871        .addReg(LHS2).addImm(0)
6872        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6873    } else {
6874      unsigned RHS1 = MI->getOperand(3).getReg();
6875      unsigned RHS2 = MI->getOperand(4).getReg();
6876      AddDefaultPred(BuildMI(BB, dl,
6877                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6878                     .addReg(LHS1).addReg(RHS1));
6879      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6880        .addReg(LHS2).addReg(RHS2)
6881        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
6882    }
6883
6884    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
6885    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
6886    if (MI->getOperand(0).getImm() == ARMCC::NE)
6887      std::swap(destMBB, exitMBB);
6888
6889    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6890      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
6891    if (isThumb2)
6892      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
6893    else
6894      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
6895
6896    MI->eraseFromParent();   // The pseudo instruction is gone now.
6897    return BB;
6898  }
6899
6900  case ARM::Int_eh_sjlj_setjmp:
6901  case ARM::Int_eh_sjlj_setjmp_nofp:
6902  case ARM::tInt_eh_sjlj_setjmp:
6903  case ARM::t2Int_eh_sjlj_setjmp:
6904  case ARM::t2Int_eh_sjlj_setjmp_nofp:
6905    EmitSjLjDispatchBlock(MI, BB);
6906    return BB;
6907
6908  case ARM::ABS:
6909  case ARM::t2ABS: {
6910    // To insert an ABS instruction, we have to insert the
6911    // diamond control-flow pattern.  The incoming instruction knows the
6912    // source vreg to test against 0, the destination vreg to set,
6913    // the condition code register to branch on, the
6914    // true/false values to select between, and a branch opcode to use.
6915    // It transforms
6916    //     V1 = ABS V0
6917    // into
6918    //     V2 = MOVS V0
6919    //     BCC                      (branch to SinkBB if V0 >= 0)
6920    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
6921    //     SinkBB: V1 = PHI(V2, V3)
6922    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6923    MachineFunction::iterator BBI = BB;
6924    ++BBI;
6925    MachineFunction *Fn = BB->getParent();
6926    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
6927    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
6928    Fn->insert(BBI, RSBBB);
6929    Fn->insert(BBI, SinkBB);
6930
6931    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
6932    unsigned int ABSDstReg = MI->getOperand(0).getReg();
6933    bool isThumb2 = Subtarget->isThumb2();
6934    MachineRegisterInfo &MRI = Fn->getRegInfo();
6935    // In Thumb mode S must not be specified if source register is the SP or
6936    // PC and if destination register is the SP, so restrict register class
6937    unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
6938      (const TargetRegisterClass*)&ARM::rGPRRegClass :
6939      (const TargetRegisterClass*)&ARM::GPRRegClass);
6940
6941    // Transfer the remainder of BB and its successor edges to sinkMBB.
6942    SinkBB->splice(SinkBB->begin(), BB,
6943      llvm::next(MachineBasicBlock::iterator(MI)),
6944      BB->end());
6945    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
6946
6947    BB->addSuccessor(RSBBB);
6948    BB->addSuccessor(SinkBB);
6949
6950    // fall through to SinkMBB
6951    RSBBB->addSuccessor(SinkBB);
6952
6953    // insert a cmp at the end of BB
6954    AddDefaultPred(BuildMI(BB, dl,
6955                           TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6956                   .addReg(ABSSrcReg).addImm(0));
6957
6958    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
6959    BuildMI(BB, dl,
6960      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
6961      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
6962
6963    // insert rsbri in RSBBB
6964    // Note: BCC and rsbri will be converted into predicated rsbmi
6965    // by if-conversion pass
6966    BuildMI(*RSBBB, RSBBB->begin(), dl,
6967      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
6968      .addReg(ABSSrcReg, RegState::Kill)
6969      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
6970
6971    // insert PHI in SinkBB,
6972    // reuse ABSDstReg to not change uses of ABS instruction
6973    BuildMI(*SinkBB, SinkBB->begin(), dl,
6974      TII->get(ARM::PHI), ABSDstReg)
6975      .addReg(NewRsbDstReg).addMBB(RSBBB)
6976      .addReg(ABSSrcReg).addMBB(BB);
6977
6978    // remove ABS instruction
6979    MI->eraseFromParent();
6980
6981    // return last added BB
6982    return SinkBB;
6983  }
6984  case ARM::COPY_STRUCT_BYVAL_I32:
6985    ++NumLoopByVals;
6986    return EmitStructByval(MI, BB);
6987  }
6988}
6989
6990void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
6991                                                      SDNode *Node) const {
6992  if (!MI->hasPostISelHook()) {
6993    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
6994           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
6995    return;
6996  }
6997
6998  const MCInstrDesc *MCID = &MI->getDesc();
6999  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
7000  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
7001  // operand is still set to noreg. If needed, set the optional operand's
7002  // register to CPSR, and remove the redundant implicit def.
7003  //
7004  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
7005
7006  // Rename pseudo opcodes.
7007  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
7008  if (NewOpc) {
7009    const ARMBaseInstrInfo *TII =
7010      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
7011    MCID = &TII->get(NewOpc);
7012
7013    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
7014           "converted opcode should be the same except for cc_out");
7015
7016    MI->setDesc(*MCID);
7017
7018    // Add the optional cc_out operand
7019    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
7020  }
7021  unsigned ccOutIdx = MCID->getNumOperands() - 1;
7022
7023  // Any ARM instruction that sets the 's' bit should specify an optional
7024  // "cc_out" operand in the last operand position.
7025  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
7026    assert(!NewOpc && "Optional cc_out operand required");
7027    return;
7028  }
7029  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
7030  // since we already have an optional CPSR def.
7031  bool definesCPSR = false;
7032  bool deadCPSR = false;
7033  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
7034       i != e; ++i) {
7035    const MachineOperand &MO = MI->getOperand(i);
7036    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
7037      definesCPSR = true;
7038      if (MO.isDead())
7039        deadCPSR = true;
7040      MI->RemoveOperand(i);
7041      break;
7042    }
7043  }
7044  if (!definesCPSR) {
7045    assert(!NewOpc && "Optional cc_out operand required");
7046    return;
7047  }
7048  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
7049  if (deadCPSR) {
7050    assert(!MI->getOperand(ccOutIdx).getReg() &&
7051           "expect uninitialized optional cc_out operand");
7052    return;
7053  }
7054
7055  // If this instruction was defined with an optional CPSR def and its dag node
7056  // had a live implicit CPSR def, then activate the optional CPSR def.
7057  MachineOperand &MO = MI->getOperand(ccOutIdx);
7058  MO.setReg(ARM::CPSR);
7059  MO.setIsDef(true);
7060}
7061
7062//===----------------------------------------------------------------------===//
7063//                           ARM Optimization Hooks
7064//===----------------------------------------------------------------------===//
7065
7066// Helper function that checks if N is a null or all ones constant.
7067static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
7068  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
7069  if (!C)
7070    return false;
7071  return AllOnes ? C->isAllOnesValue() : C->isNullValue();
7072}
7073
7074// Return true if N is conditionally 0 or all ones.
7075// Detects these expressions where cc is an i1 value:
7076//
7077//   (select cc 0, y)   [AllOnes=0]
7078//   (select cc y, 0)   [AllOnes=0]
7079//   (zext cc)          [AllOnes=0]
7080//   (sext cc)          [AllOnes=0/1]
7081//   (select cc -1, y)  [AllOnes=1]
7082//   (select cc y, -1)  [AllOnes=1]
7083//
7084// Invert is set when N is the null/all ones constant when CC is false.
7085// OtherOp is set to the alternative value of N.
7086static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
7087                                       SDValue &CC, bool &Invert,
7088                                       SDValue &OtherOp,
7089                                       SelectionDAG &DAG) {
7090  switch (N->getOpcode()) {
7091  default: return false;
7092  case ISD::SELECT: {
7093    CC = N->getOperand(0);
7094    SDValue N1 = N->getOperand(1);
7095    SDValue N2 = N->getOperand(2);
7096    if (isZeroOrAllOnes(N1, AllOnes)) {
7097      Invert = false;
7098      OtherOp = N2;
7099      return true;
7100    }
7101    if (isZeroOrAllOnes(N2, AllOnes)) {
7102      Invert = true;
7103      OtherOp = N1;
7104      return true;
7105    }
7106    return false;
7107  }
7108  case ISD::ZERO_EXTEND:
7109    // (zext cc) can never be the all ones value.
7110    if (AllOnes)
7111      return false;
7112    // Fall through.
7113  case ISD::SIGN_EXTEND: {
7114    EVT VT = N->getValueType(0);
7115    CC = N->getOperand(0);
7116    if (CC.getValueType() != MVT::i1)
7117      return false;
7118    Invert = !AllOnes;
7119    if (AllOnes)
7120      // When looking for an AllOnes constant, N is an sext, and the 'other'
7121      // value is 0.
7122      OtherOp = DAG.getConstant(0, VT);
7123    else if (N->getOpcode() == ISD::ZERO_EXTEND)
7124      // When looking for a 0 constant, N can be zext or sext.
7125      OtherOp = DAG.getConstant(1, VT);
7126    else
7127      OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
7128    return true;
7129  }
7130  }
7131}
7132
7133// Combine a constant select operand into its use:
7134//
7135//   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
7136//   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
7137//   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
7138//   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
7139//   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
7140//
7141// The transform is rejected if the select doesn't have a constant operand that
7142// is null, or all ones when AllOnes is set.
7143//
7144// Also recognize sext/zext from i1:
7145//
7146//   (add (zext cc), x) -> (select cc (add x, 1), x)
7147//   (add (sext cc), x) -> (select cc (add x, -1), x)
7148//
7149// These transformations eventually create predicated instructions.
7150//
7151// @param N       The node to transform.
7152// @param Slct    The N operand that is a select.
7153// @param OtherOp The other N operand (x above).
7154// @param DCI     Context.
7155// @param AllOnes Require the select constant to be all ones instead of null.
7156// @returns The new node, or SDValue() on failure.
7157static
7158SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7159                            TargetLowering::DAGCombinerInfo &DCI,
7160                            bool AllOnes = false) {
7161  SelectionDAG &DAG = DCI.DAG;
7162  EVT VT = N->getValueType(0);
7163  SDValue NonConstantVal;
7164  SDValue CCOp;
7165  bool SwapSelectOps;
7166  if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
7167                                  NonConstantVal, DAG))
7168    return SDValue();
7169
7170  // Slct is now know to be the desired identity constant when CC is true.
7171  SDValue TrueVal = OtherOp;
7172  SDValue FalseVal = DAG.getNode(N->getOpcode(), N->getDebugLoc(), VT,
7173                                 OtherOp, NonConstantVal);
7174  // Unless SwapSelectOps says CC should be false.
7175  if (SwapSelectOps)
7176    std::swap(TrueVal, FalseVal);
7177
7178  return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
7179                     CCOp, TrueVal, FalseVal);
7180}
7181
7182// Attempt combineSelectAndUse on each operand of a commutative operator N.
7183static
7184SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
7185                                       TargetLowering::DAGCombinerInfo &DCI) {
7186  SDValue N0 = N->getOperand(0);
7187  SDValue N1 = N->getOperand(1);
7188  if (N0.getNode()->hasOneUse()) {
7189    SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
7190    if (Result.getNode())
7191      return Result;
7192  }
7193  if (N1.getNode()->hasOneUse()) {
7194    SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
7195    if (Result.getNode())
7196      return Result;
7197  }
7198  return SDValue();
7199}
7200
7201// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
7202// (only after legalization).
7203static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
7204                                 TargetLowering::DAGCombinerInfo &DCI,
7205                                 const ARMSubtarget *Subtarget) {
7206
7207  // Only perform optimization if after legalize, and if NEON is available. We
7208  // also expected both operands to be BUILD_VECTORs.
7209  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
7210      || N0.getOpcode() != ISD::BUILD_VECTOR
7211      || N1.getOpcode() != ISD::BUILD_VECTOR)
7212    return SDValue();
7213
7214  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
7215  EVT VT = N->getValueType(0);
7216  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
7217    return SDValue();
7218
7219  // Check that the vector operands are of the right form.
7220  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
7221  // operands, where N is the size of the formed vector.
7222  // Each EXTRACT_VECTOR should have the same input vector and odd or even
7223  // index such that we have a pair wise add pattern.
7224
7225  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
7226  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7227    return SDValue();
7228  SDValue Vec = N0->getOperand(0)->getOperand(0);
7229  SDNode *V = Vec.getNode();
7230  unsigned nextIndex = 0;
7231
7232  // For each operands to the ADD which are BUILD_VECTORs,
7233  // check to see if each of their operands are an EXTRACT_VECTOR with
7234  // the same vector and appropriate index.
7235  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
7236    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
7237        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7238
7239      SDValue ExtVec0 = N0->getOperand(i);
7240      SDValue ExtVec1 = N1->getOperand(i);
7241
7242      // First operand is the vector, verify its the same.
7243      if (V != ExtVec0->getOperand(0).getNode() ||
7244          V != ExtVec1->getOperand(0).getNode())
7245        return SDValue();
7246
7247      // Second is the constant, verify its correct.
7248      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
7249      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
7250
7251      // For the constant, we want to see all the even or all the odd.
7252      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
7253          || C1->getZExtValue() != nextIndex+1)
7254        return SDValue();
7255
7256      // Increment index.
7257      nextIndex+=2;
7258    } else
7259      return SDValue();
7260  }
7261
7262  // Create VPADDL node.
7263  SelectionDAG &DAG = DCI.DAG;
7264  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7265
7266  // Build operand list.
7267  SmallVector<SDValue, 8> Ops;
7268  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
7269                                TLI.getPointerTy()));
7270
7271  // Input is the vector.
7272  Ops.push_back(Vec);
7273
7274  // Get widened type and narrowed type.
7275  MVT widenType;
7276  unsigned numElem = VT.getVectorNumElements();
7277  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
7278    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
7279    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
7280    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
7281    default:
7282      llvm_unreachable("Invalid vector element type for padd optimization.");
7283  }
7284
7285  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
7286                            widenType, &Ops[0], Ops.size());
7287  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), VT, tmp);
7288}
7289
7290static SDValue findMUL_LOHI(SDValue V) {
7291  if (V->getOpcode() == ISD::UMUL_LOHI ||
7292      V->getOpcode() == ISD::SMUL_LOHI)
7293    return V;
7294  return SDValue();
7295}
7296
7297static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
7298                                     TargetLowering::DAGCombinerInfo &DCI,
7299                                     const ARMSubtarget *Subtarget) {
7300
7301  if (Subtarget->isThumb1Only()) return SDValue();
7302
7303  // Only perform the checks after legalize when the pattern is available.
7304  if (DCI.isBeforeLegalize()) return SDValue();
7305
7306  // Look for multiply add opportunities.
7307  // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
7308  // each add nodes consumes a value from ISD::UMUL_LOHI and there is
7309  // a glue link from the first add to the second add.
7310  // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
7311  // a S/UMLAL instruction.
7312  //          loAdd   UMUL_LOHI
7313  //            \    / :lo    \ :hi
7314  //             \  /          \          [no multiline comment]
7315  //              ADDC         |  hiAdd
7316  //                 \ :glue  /  /
7317  //                  \      /  /
7318  //                    ADDE
7319  //
7320  assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
7321  SDValue AddcOp0 = AddcNode->getOperand(0);
7322  SDValue AddcOp1 = AddcNode->getOperand(1);
7323
7324  // Check if the two operands are from the same mul_lohi node.
7325  if (AddcOp0.getNode() == AddcOp1.getNode())
7326    return SDValue();
7327
7328  assert(AddcNode->getNumValues() == 2 &&
7329         AddcNode->getValueType(0) == MVT::i32 &&
7330         AddcNode->getValueType(1) == MVT::Glue &&
7331         "Expect ADDC with two result values: i32, glue");
7332
7333  // Check that the ADDC adds the low result of the S/UMUL_LOHI.
7334  if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
7335      AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
7336      AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
7337      AddcOp1->getOpcode() != ISD::SMUL_LOHI)
7338    return SDValue();
7339
7340  // Look for the glued ADDE.
7341  SDNode* AddeNode = AddcNode->getGluedUser();
7342  if (AddeNode == NULL)
7343    return SDValue();
7344
7345  // Make sure it is really an ADDE.
7346  if (AddeNode->getOpcode() != ISD::ADDE)
7347    return SDValue();
7348
7349  assert(AddeNode->getNumOperands() == 3 &&
7350         AddeNode->getOperand(2).getValueType() == MVT::Glue &&
7351         "ADDE node has the wrong inputs");
7352
7353  // Check for the triangle shape.
7354  SDValue AddeOp0 = AddeNode->getOperand(0);
7355  SDValue AddeOp1 = AddeNode->getOperand(1);
7356
7357  // Make sure that the ADDE operands are not coming from the same node.
7358  if (AddeOp0.getNode() == AddeOp1.getNode())
7359    return SDValue();
7360
7361  // Find the MUL_LOHI node walking up ADDE's operands.
7362  bool IsLeftOperandMUL = false;
7363  SDValue MULOp = findMUL_LOHI(AddeOp0);
7364  if (MULOp == SDValue())
7365   MULOp = findMUL_LOHI(AddeOp1);
7366  else
7367    IsLeftOperandMUL = true;
7368  if (MULOp == SDValue())
7369     return SDValue();
7370
7371  // Figure out the right opcode.
7372  unsigned Opc = MULOp->getOpcode();
7373  unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
7374
7375  // Figure out the high and low input values to the MLAL node.
7376  SDValue* HiMul = &MULOp;
7377  SDValue* HiAdd = NULL;
7378  SDValue* LoMul = NULL;
7379  SDValue* LowAdd = NULL;
7380
7381  if (IsLeftOperandMUL)
7382    HiAdd = &AddeOp1;
7383  else
7384    HiAdd = &AddeOp0;
7385
7386
7387  if (AddcOp0->getOpcode() == Opc) {
7388    LoMul = &AddcOp0;
7389    LowAdd = &AddcOp1;
7390  }
7391  if (AddcOp1->getOpcode() == Opc) {
7392    LoMul = &AddcOp1;
7393    LowAdd = &AddcOp0;
7394  }
7395
7396  if (LoMul == NULL)
7397    return SDValue();
7398
7399  if (LoMul->getNode() != HiMul->getNode())
7400    return SDValue();
7401
7402  // Create the merged node.
7403  SelectionDAG &DAG = DCI.DAG;
7404
7405  // Build operand list.
7406  SmallVector<SDValue, 8> Ops;
7407  Ops.push_back(LoMul->getOperand(0));
7408  Ops.push_back(LoMul->getOperand(1));
7409  Ops.push_back(*LowAdd);
7410  Ops.push_back(*HiAdd);
7411
7412  SDValue MLALNode =  DAG.getNode(FinalOpc, AddcNode->getDebugLoc(),
7413                                 DAG.getVTList(MVT::i32, MVT::i32),
7414                                 &Ops[0], Ops.size());
7415
7416  // Replace the ADDs' nodes uses by the MLA node's values.
7417  SDValue HiMLALResult(MLALNode.getNode(), 1);
7418  DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
7419
7420  SDValue LoMLALResult(MLALNode.getNode(), 0);
7421  DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
7422
7423  // Return original node to notify the driver to stop replacing.
7424  SDValue resNode(AddcNode, 0);
7425  return resNode;
7426}
7427
7428/// PerformADDCCombine - Target-specific dag combine transform from
7429/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
7430static SDValue PerformADDCCombine(SDNode *N,
7431                                 TargetLowering::DAGCombinerInfo &DCI,
7432                                 const ARMSubtarget *Subtarget) {
7433
7434  return AddCombineTo64bitMLAL(N, DCI, Subtarget);
7435
7436}
7437
7438/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
7439/// operands N0 and N1.  This is a helper for PerformADDCombine that is
7440/// called with the default operands, and if that fails, with commuted
7441/// operands.
7442static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
7443                                          TargetLowering::DAGCombinerInfo &DCI,
7444                                          const ARMSubtarget *Subtarget){
7445
7446  // Attempt to create vpaddl for this add.
7447  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
7448  if (Result.getNode())
7449    return Result;
7450
7451  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
7452  if (N0.getNode()->hasOneUse()) {
7453    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
7454    if (Result.getNode()) return Result;
7455  }
7456  return SDValue();
7457}
7458
7459/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
7460///
7461static SDValue PerformADDCombine(SDNode *N,
7462                                 TargetLowering::DAGCombinerInfo &DCI,
7463                                 const ARMSubtarget *Subtarget) {
7464  SDValue N0 = N->getOperand(0);
7465  SDValue N1 = N->getOperand(1);
7466
7467  // First try with the default operand order.
7468  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
7469  if (Result.getNode())
7470    return Result;
7471
7472  // If that didn't work, try again with the operands commuted.
7473  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
7474}
7475
7476/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
7477///
7478static SDValue PerformSUBCombine(SDNode *N,
7479                                 TargetLowering::DAGCombinerInfo &DCI) {
7480  SDValue N0 = N->getOperand(0);
7481  SDValue N1 = N->getOperand(1);
7482
7483  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
7484  if (N1.getNode()->hasOneUse()) {
7485    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
7486    if (Result.getNode()) return Result;
7487  }
7488
7489  return SDValue();
7490}
7491
7492/// PerformVMULCombine
7493/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
7494/// special multiplier accumulator forwarding.
7495///   vmul d3, d0, d2
7496///   vmla d3, d1, d2
7497/// is faster than
7498///   vadd d3, d0, d1
7499///   vmul d3, d3, d2
7500static SDValue PerformVMULCombine(SDNode *N,
7501                                  TargetLowering::DAGCombinerInfo &DCI,
7502                                  const ARMSubtarget *Subtarget) {
7503  if (!Subtarget->hasVMLxForwarding())
7504    return SDValue();
7505
7506  SelectionDAG &DAG = DCI.DAG;
7507  SDValue N0 = N->getOperand(0);
7508  SDValue N1 = N->getOperand(1);
7509  unsigned Opcode = N0.getOpcode();
7510  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7511      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
7512    Opcode = N1.getOpcode();
7513    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
7514        Opcode != ISD::FADD && Opcode != ISD::FSUB)
7515      return SDValue();
7516    std::swap(N0, N1);
7517  }
7518
7519  EVT VT = N->getValueType(0);
7520  DebugLoc DL = N->getDebugLoc();
7521  SDValue N00 = N0->getOperand(0);
7522  SDValue N01 = N0->getOperand(1);
7523  return DAG.getNode(Opcode, DL, VT,
7524                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
7525                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
7526}
7527
7528static SDValue PerformMULCombine(SDNode *N,
7529                                 TargetLowering::DAGCombinerInfo &DCI,
7530                                 const ARMSubtarget *Subtarget) {
7531  SelectionDAG &DAG = DCI.DAG;
7532
7533  if (Subtarget->isThumb1Only())
7534    return SDValue();
7535
7536  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
7537    return SDValue();
7538
7539  EVT VT = N->getValueType(0);
7540  if (VT.is64BitVector() || VT.is128BitVector())
7541    return PerformVMULCombine(N, DCI, Subtarget);
7542  if (VT != MVT::i32)
7543    return SDValue();
7544
7545  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
7546  if (!C)
7547    return SDValue();
7548
7549  int64_t MulAmt = C->getSExtValue();
7550  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
7551
7552  ShiftAmt = ShiftAmt & (32 - 1);
7553  SDValue V = N->getOperand(0);
7554  DebugLoc DL = N->getDebugLoc();
7555
7556  SDValue Res;
7557  MulAmt >>= ShiftAmt;
7558
7559  if (MulAmt >= 0) {
7560    if (isPowerOf2_32(MulAmt - 1)) {
7561      // (mul x, 2^N + 1) => (add (shl x, N), x)
7562      Res = DAG.getNode(ISD::ADD, DL, VT,
7563                        V,
7564                        DAG.getNode(ISD::SHL, DL, VT,
7565                                    V,
7566                                    DAG.getConstant(Log2_32(MulAmt - 1),
7567                                                    MVT::i32)));
7568    } else if (isPowerOf2_32(MulAmt + 1)) {
7569      // (mul x, 2^N - 1) => (sub (shl x, N), x)
7570      Res = DAG.getNode(ISD::SUB, DL, VT,
7571                        DAG.getNode(ISD::SHL, DL, VT,
7572                                    V,
7573                                    DAG.getConstant(Log2_32(MulAmt + 1),
7574                                                    MVT::i32)),
7575                        V);
7576    } else
7577      return SDValue();
7578  } else {
7579    uint64_t MulAmtAbs = -MulAmt;
7580    if (isPowerOf2_32(MulAmtAbs + 1)) {
7581      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
7582      Res = DAG.getNode(ISD::SUB, DL, VT,
7583                        V,
7584                        DAG.getNode(ISD::SHL, DL, VT,
7585                                    V,
7586                                    DAG.getConstant(Log2_32(MulAmtAbs + 1),
7587                                                    MVT::i32)));
7588    } else if (isPowerOf2_32(MulAmtAbs - 1)) {
7589      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
7590      Res = DAG.getNode(ISD::ADD, DL, VT,
7591                        V,
7592                        DAG.getNode(ISD::SHL, DL, VT,
7593                                    V,
7594                                    DAG.getConstant(Log2_32(MulAmtAbs-1),
7595                                                    MVT::i32)));
7596      Res = DAG.getNode(ISD::SUB, DL, VT,
7597                        DAG.getConstant(0, MVT::i32),Res);
7598
7599    } else
7600      return SDValue();
7601  }
7602
7603  if (ShiftAmt != 0)
7604    Res = DAG.getNode(ISD::SHL, DL, VT,
7605                      Res, DAG.getConstant(ShiftAmt, MVT::i32));
7606
7607  // Do not add new nodes to DAG combiner worklist.
7608  DCI.CombineTo(N, Res, false);
7609  return SDValue();
7610}
7611
7612static SDValue PerformANDCombine(SDNode *N,
7613                                 TargetLowering::DAGCombinerInfo &DCI,
7614                                 const ARMSubtarget *Subtarget) {
7615
7616  // Attempt to use immediate-form VBIC
7617  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7618  DebugLoc dl = N->getDebugLoc();
7619  EVT VT = N->getValueType(0);
7620  SelectionDAG &DAG = DCI.DAG;
7621
7622  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7623    return SDValue();
7624
7625  APInt SplatBits, SplatUndef;
7626  unsigned SplatBitSize;
7627  bool HasAnyUndefs;
7628  if (BVN &&
7629      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7630    if (SplatBitSize <= 64) {
7631      EVT VbicVT;
7632      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
7633                                      SplatUndef.getZExtValue(), SplatBitSize,
7634                                      DAG, VbicVT, VT.is128BitVector(),
7635                                      OtherModImm);
7636      if (Val.getNode()) {
7637        SDValue Input =
7638          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
7639        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
7640        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
7641      }
7642    }
7643  }
7644
7645  if (!Subtarget->isThumb1Only()) {
7646    // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
7647    SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
7648    if (Result.getNode())
7649      return Result;
7650  }
7651
7652  return SDValue();
7653}
7654
7655/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
7656static SDValue PerformORCombine(SDNode *N,
7657                                TargetLowering::DAGCombinerInfo &DCI,
7658                                const ARMSubtarget *Subtarget) {
7659  // Attempt to use immediate-form VORR
7660  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
7661  DebugLoc dl = N->getDebugLoc();
7662  EVT VT = N->getValueType(0);
7663  SelectionDAG &DAG = DCI.DAG;
7664
7665  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7666    return SDValue();
7667
7668  APInt SplatBits, SplatUndef;
7669  unsigned SplatBitSize;
7670  bool HasAnyUndefs;
7671  if (BVN && Subtarget->hasNEON() &&
7672      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7673    if (SplatBitSize <= 64) {
7674      EVT VorrVT;
7675      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
7676                                      SplatUndef.getZExtValue(), SplatBitSize,
7677                                      DAG, VorrVT, VT.is128BitVector(),
7678                                      OtherModImm);
7679      if (Val.getNode()) {
7680        SDValue Input =
7681          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
7682        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
7683        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
7684      }
7685    }
7686  }
7687
7688  if (!Subtarget->isThumb1Only()) {
7689    // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
7690    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
7691    if (Result.getNode())
7692      return Result;
7693  }
7694
7695  // The code below optimizes (or (and X, Y), Z).
7696  // The AND operand needs to have a single user to make these optimizations
7697  // profitable.
7698  SDValue N0 = N->getOperand(0);
7699  if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
7700    return SDValue();
7701  SDValue N1 = N->getOperand(1);
7702
7703  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
7704  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
7705      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
7706    APInt SplatUndef;
7707    unsigned SplatBitSize;
7708    bool HasAnyUndefs;
7709
7710    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
7711    APInt SplatBits0;
7712    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
7713                                  HasAnyUndefs) && !HasAnyUndefs) {
7714      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
7715      APInt SplatBits1;
7716      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
7717                                    HasAnyUndefs) && !HasAnyUndefs &&
7718          SplatBits0 == ~SplatBits1) {
7719        // Canonicalize the vector type to make instruction selection simpler.
7720        EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
7721        SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
7722                                     N0->getOperand(1), N0->getOperand(0),
7723                                     N1->getOperand(0));
7724        return DAG.getNode(ISD::BITCAST, dl, VT, Result);
7725      }
7726    }
7727  }
7728
7729  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
7730  // reasonable.
7731
7732  // BFI is only available on V6T2+
7733  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
7734    return SDValue();
7735
7736  DebugLoc DL = N->getDebugLoc();
7737  // 1) or (and A, mask), val => ARMbfi A, val, mask
7738  //      iff (val & mask) == val
7739  //
7740  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7741  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
7742  //          && mask == ~mask2
7743  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
7744  //          && ~mask == mask2
7745  //  (i.e., copy a bitfield value into another bitfield of the same width)
7746
7747  if (VT != MVT::i32)
7748    return SDValue();
7749
7750  SDValue N00 = N0.getOperand(0);
7751
7752  // The value and the mask need to be constants so we can verify this is
7753  // actually a bitfield set. If the mask is 0xffff, we can do better
7754  // via a movt instruction, so don't use BFI in that case.
7755  SDValue MaskOp = N0.getOperand(1);
7756  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
7757  if (!MaskC)
7758    return SDValue();
7759  unsigned Mask = MaskC->getZExtValue();
7760  if (Mask == 0xffff)
7761    return SDValue();
7762  SDValue Res;
7763  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
7764  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
7765  if (N1C) {
7766    unsigned Val = N1C->getZExtValue();
7767    if ((Val & ~Mask) != Val)
7768      return SDValue();
7769
7770    if (ARM::isBitFieldInvertedMask(Mask)) {
7771      Val >>= CountTrailingZeros_32(~Mask);
7772
7773      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
7774                        DAG.getConstant(Val, MVT::i32),
7775                        DAG.getConstant(Mask, MVT::i32));
7776
7777      // Do not add new nodes to DAG combiner worklist.
7778      DCI.CombineTo(N, Res, false);
7779      return SDValue();
7780    }
7781  } else if (N1.getOpcode() == ISD::AND) {
7782    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
7783    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7784    if (!N11C)
7785      return SDValue();
7786    unsigned Mask2 = N11C->getZExtValue();
7787
7788    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
7789    // as is to match.
7790    if (ARM::isBitFieldInvertedMask(Mask) &&
7791        (Mask == ~Mask2)) {
7792      // The pack halfword instruction works better for masks that fit it,
7793      // so use that when it's available.
7794      if (Subtarget->hasT2ExtractPack() &&
7795          (Mask == 0xffff || Mask == 0xffff0000))
7796        return SDValue();
7797      // 2a
7798      unsigned amt = CountTrailingZeros_32(Mask2);
7799      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
7800                        DAG.getConstant(amt, MVT::i32));
7801      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
7802                        DAG.getConstant(Mask, MVT::i32));
7803      // Do not add new nodes to DAG combiner worklist.
7804      DCI.CombineTo(N, Res, false);
7805      return SDValue();
7806    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
7807               (~Mask == Mask2)) {
7808      // The pack halfword instruction works better for masks that fit it,
7809      // so use that when it's available.
7810      if (Subtarget->hasT2ExtractPack() &&
7811          (Mask2 == 0xffff || Mask2 == 0xffff0000))
7812        return SDValue();
7813      // 2b
7814      unsigned lsb = CountTrailingZeros_32(Mask);
7815      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
7816                        DAG.getConstant(lsb, MVT::i32));
7817      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
7818                        DAG.getConstant(Mask2, MVT::i32));
7819      // Do not add new nodes to DAG combiner worklist.
7820      DCI.CombineTo(N, Res, false);
7821      return SDValue();
7822    }
7823  }
7824
7825  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
7826      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
7827      ARM::isBitFieldInvertedMask(~Mask)) {
7828    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
7829    // where lsb(mask) == #shamt and masked bits of B are known zero.
7830    SDValue ShAmt = N00.getOperand(1);
7831    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
7832    unsigned LSB = CountTrailingZeros_32(Mask);
7833    if (ShAmtC != LSB)
7834      return SDValue();
7835
7836    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
7837                      DAG.getConstant(~Mask, MVT::i32));
7838
7839    // Do not add new nodes to DAG combiner worklist.
7840    DCI.CombineTo(N, Res, false);
7841  }
7842
7843  return SDValue();
7844}
7845
7846static SDValue PerformXORCombine(SDNode *N,
7847                                 TargetLowering::DAGCombinerInfo &DCI,
7848                                 const ARMSubtarget *Subtarget) {
7849  EVT VT = N->getValueType(0);
7850  SelectionDAG &DAG = DCI.DAG;
7851
7852  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
7853    return SDValue();
7854
7855  if (!Subtarget->isThumb1Only()) {
7856    // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
7857    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
7858    if (Result.getNode())
7859      return Result;
7860  }
7861
7862  return SDValue();
7863}
7864
7865/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
7866/// the bits being cleared by the AND are not demanded by the BFI.
7867static SDValue PerformBFICombine(SDNode *N,
7868                                 TargetLowering::DAGCombinerInfo &DCI) {
7869  SDValue N1 = N->getOperand(1);
7870  if (N1.getOpcode() == ISD::AND) {
7871    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7872    if (!N11C)
7873      return SDValue();
7874    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
7875    unsigned LSB = CountTrailingZeros_32(~InvMask);
7876    unsigned Width = (32 - CountLeadingZeros_32(~InvMask)) - LSB;
7877    unsigned Mask = (1 << Width)-1;
7878    unsigned Mask2 = N11C->getZExtValue();
7879    if ((Mask & (~Mask2)) == 0)
7880      return DCI.DAG.getNode(ARMISD::BFI, N->getDebugLoc(), N->getValueType(0),
7881                             N->getOperand(0), N1.getOperand(0),
7882                             N->getOperand(2));
7883  }
7884  return SDValue();
7885}
7886
7887/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
7888/// ARMISD::VMOVRRD.
7889static SDValue PerformVMOVRRDCombine(SDNode *N,
7890                                     TargetLowering::DAGCombinerInfo &DCI) {
7891  // vmovrrd(vmovdrr x, y) -> x,y
7892  SDValue InDouble = N->getOperand(0);
7893  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
7894    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
7895
7896  // vmovrrd(load f64) -> (load i32), (load i32)
7897  SDNode *InNode = InDouble.getNode();
7898  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
7899      InNode->getValueType(0) == MVT::f64 &&
7900      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
7901      !cast<LoadSDNode>(InNode)->isVolatile()) {
7902    // TODO: Should this be done for non-FrameIndex operands?
7903    LoadSDNode *LD = cast<LoadSDNode>(InNode);
7904
7905    SelectionDAG &DAG = DCI.DAG;
7906    DebugLoc DL = LD->getDebugLoc();
7907    SDValue BasePtr = LD->getBasePtr();
7908    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
7909                                 LD->getPointerInfo(), LD->isVolatile(),
7910                                 LD->isNonTemporal(), LD->isInvariant(),
7911                                 LD->getAlignment());
7912
7913    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
7914                                    DAG.getConstant(4, MVT::i32));
7915    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
7916                                 LD->getPointerInfo(), LD->isVolatile(),
7917                                 LD->isNonTemporal(), LD->isInvariant(),
7918                                 std::min(4U, LD->getAlignment() / 2));
7919
7920    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
7921    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
7922    DCI.RemoveFromWorklist(LD);
7923    DAG.DeleteNode(LD);
7924    return Result;
7925  }
7926
7927  return SDValue();
7928}
7929
7930/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
7931/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
7932static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
7933  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
7934  SDValue Op0 = N->getOperand(0);
7935  SDValue Op1 = N->getOperand(1);
7936  if (Op0.getOpcode() == ISD::BITCAST)
7937    Op0 = Op0.getOperand(0);
7938  if (Op1.getOpcode() == ISD::BITCAST)
7939    Op1 = Op1.getOperand(0);
7940  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
7941      Op0.getNode() == Op1.getNode() &&
7942      Op0.getResNo() == 0 && Op1.getResNo() == 1)
7943    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(),
7944                       N->getValueType(0), Op0.getOperand(0));
7945  return SDValue();
7946}
7947
7948/// PerformSTORECombine - Target-specific dag combine xforms for
7949/// ISD::STORE.
7950static SDValue PerformSTORECombine(SDNode *N,
7951                                   TargetLowering::DAGCombinerInfo &DCI) {
7952  StoreSDNode *St = cast<StoreSDNode>(N);
7953  if (St->isVolatile())
7954    return SDValue();
7955
7956  // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
7957  // pack all of the elements in one place.  Next, store to memory in fewer
7958  // chunks.
7959  SDValue StVal = St->getValue();
7960  EVT VT = StVal.getValueType();
7961  if (St->isTruncatingStore() && VT.isVector()) {
7962    SelectionDAG &DAG = DCI.DAG;
7963    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7964    EVT StVT = St->getMemoryVT();
7965    unsigned NumElems = VT.getVectorNumElements();
7966    assert(StVT != VT && "Cannot truncate to the same type");
7967    unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
7968    unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
7969
7970    // From, To sizes and ElemCount must be pow of two
7971    if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
7972
7973    // We are going to use the original vector elt for storing.
7974    // Accumulated smaller vector elements must be a multiple of the store size.
7975    if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
7976
7977    unsigned SizeRatio  = FromEltSz / ToEltSz;
7978    assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
7979
7980    // Create a type on which we perform the shuffle.
7981    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
7982                                     NumElems*SizeRatio);
7983    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
7984
7985    DebugLoc DL = St->getDebugLoc();
7986    SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
7987    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
7988    for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
7989
7990    // Can't shuffle using an illegal type.
7991    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
7992
7993    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
7994                                DAG.getUNDEF(WideVec.getValueType()),
7995                                ShuffleVec.data());
7996    // At this point all of the data is stored at the bottom of the
7997    // register. We now need to save it to mem.
7998
7999    // Find the largest store unit
8000    MVT StoreType = MVT::i8;
8001    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
8002         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
8003      MVT Tp = (MVT::SimpleValueType)tp;
8004      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
8005        StoreType = Tp;
8006    }
8007    // Didn't find a legal store type.
8008    if (!TLI.isTypeLegal(StoreType))
8009      return SDValue();
8010
8011    // Bitcast the original vector into a vector of store-size units
8012    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
8013            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
8014    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
8015    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
8016    SmallVector<SDValue, 8> Chains;
8017    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
8018                                        TLI.getPointerTy());
8019    SDValue BasePtr = St->getBasePtr();
8020
8021    // Perform one or more big stores into memory.
8022    unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
8023    for (unsigned I = 0; I < E; I++) {
8024      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
8025                                   StoreType, ShuffWide,
8026                                   DAG.getIntPtrConstant(I));
8027      SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
8028                                St->getPointerInfo(), St->isVolatile(),
8029                                St->isNonTemporal(), St->getAlignment());
8030      BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
8031                            Increment);
8032      Chains.push_back(Ch);
8033    }
8034    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
8035                       Chains.size());
8036  }
8037
8038  if (!ISD::isNormalStore(St))
8039    return SDValue();
8040
8041  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
8042  // ARM stores of arguments in the same cache line.
8043  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
8044      StVal.getNode()->hasOneUse()) {
8045    SelectionDAG  &DAG = DCI.DAG;
8046    DebugLoc DL = St->getDebugLoc();
8047    SDValue BasePtr = St->getBasePtr();
8048    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
8049                                  StVal.getNode()->getOperand(0), BasePtr,
8050                                  St->getPointerInfo(), St->isVolatile(),
8051                                  St->isNonTemporal(), St->getAlignment());
8052
8053    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8054                                    DAG.getConstant(4, MVT::i32));
8055    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
8056                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
8057                        St->isNonTemporal(),
8058                        std::min(4U, St->getAlignment() / 2));
8059  }
8060
8061  if (StVal.getValueType() != MVT::i64 ||
8062      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8063    return SDValue();
8064
8065  // Bitcast an i64 store extracted from a vector to f64.
8066  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8067  SelectionDAG &DAG = DCI.DAG;
8068  DebugLoc dl = StVal.getDebugLoc();
8069  SDValue IntVec = StVal.getOperand(0);
8070  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8071                                 IntVec.getValueType().getVectorNumElements());
8072  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
8073  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8074                               Vec, StVal.getOperand(1));
8075  dl = N->getDebugLoc();
8076  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
8077  // Make the DAGCombiner fold the bitcasts.
8078  DCI.AddToWorklist(Vec.getNode());
8079  DCI.AddToWorklist(ExtElt.getNode());
8080  DCI.AddToWorklist(V.getNode());
8081  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
8082                      St->getPointerInfo(), St->isVolatile(),
8083                      St->isNonTemporal(), St->getAlignment(),
8084                      St->getTBAAInfo());
8085}
8086
8087/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
8088/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
8089/// i64 vector to have f64 elements, since the value can then be loaded
8090/// directly into a VFP register.
8091static bool hasNormalLoadOperand(SDNode *N) {
8092  unsigned NumElts = N->getValueType(0).getVectorNumElements();
8093  for (unsigned i = 0; i < NumElts; ++i) {
8094    SDNode *Elt = N->getOperand(i).getNode();
8095    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
8096      return true;
8097  }
8098  return false;
8099}
8100
8101/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
8102/// ISD::BUILD_VECTOR.
8103static SDValue PerformBUILD_VECTORCombine(SDNode *N,
8104                                          TargetLowering::DAGCombinerInfo &DCI){
8105  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
8106  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
8107  // into a pair of GPRs, which is fine when the value is used as a scalar,
8108  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
8109  SelectionDAG &DAG = DCI.DAG;
8110  if (N->getNumOperands() == 2) {
8111    SDValue RV = PerformVMOVDRRCombine(N, DAG);
8112    if (RV.getNode())
8113      return RV;
8114  }
8115
8116  // Load i64 elements as f64 values so that type legalization does not split
8117  // them up into i32 values.
8118  EVT VT = N->getValueType(0);
8119  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
8120    return SDValue();
8121  DebugLoc dl = N->getDebugLoc();
8122  SmallVector<SDValue, 8> Ops;
8123  unsigned NumElts = VT.getVectorNumElements();
8124  for (unsigned i = 0; i < NumElts; ++i) {
8125    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
8126    Ops.push_back(V);
8127    // Make the DAGCombiner fold the bitcast.
8128    DCI.AddToWorklist(V.getNode());
8129  }
8130  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
8131  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
8132  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8133}
8134
8135/// PerformInsertEltCombine - Target-specific dag combine xforms for
8136/// ISD::INSERT_VECTOR_ELT.
8137static SDValue PerformInsertEltCombine(SDNode *N,
8138                                       TargetLowering::DAGCombinerInfo &DCI) {
8139  // Bitcast an i64 load inserted into a vector to f64.
8140  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8141  EVT VT = N->getValueType(0);
8142  SDNode *Elt = N->getOperand(1).getNode();
8143  if (VT.getVectorElementType() != MVT::i64 ||
8144      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
8145    return SDValue();
8146
8147  SelectionDAG &DAG = DCI.DAG;
8148  DebugLoc dl = N->getDebugLoc();
8149  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8150                                 VT.getVectorNumElements());
8151  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
8152  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
8153  // Make the DAGCombiner fold the bitcasts.
8154  DCI.AddToWorklist(Vec.getNode());
8155  DCI.AddToWorklist(V.getNode());
8156  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
8157                               Vec, V, N->getOperand(2));
8158  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
8159}
8160
8161/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
8162/// ISD::VECTOR_SHUFFLE.
8163static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
8164  // The LLVM shufflevector instruction does not require the shuffle mask
8165  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
8166  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
8167  // operands do not match the mask length, they are extended by concatenating
8168  // them with undef vectors.  That is probably the right thing for other
8169  // targets, but for NEON it is better to concatenate two double-register
8170  // size vector operands into a single quad-register size vector.  Do that
8171  // transformation here:
8172  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
8173  //   shuffle(concat(v1, v2), undef)
8174  SDValue Op0 = N->getOperand(0);
8175  SDValue Op1 = N->getOperand(1);
8176  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
8177      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
8178      Op0.getNumOperands() != 2 ||
8179      Op1.getNumOperands() != 2)
8180    return SDValue();
8181  SDValue Concat0Op1 = Op0.getOperand(1);
8182  SDValue Concat1Op1 = Op1.getOperand(1);
8183  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
8184      Concat1Op1.getOpcode() != ISD::UNDEF)
8185    return SDValue();
8186  // Skip the transformation if any of the types are illegal.
8187  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8188  EVT VT = N->getValueType(0);
8189  if (!TLI.isTypeLegal(VT) ||
8190      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
8191      !TLI.isTypeLegal(Concat1Op1.getValueType()))
8192    return SDValue();
8193
8194  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
8195                                  Op0.getOperand(0), Op1.getOperand(0));
8196  // Translate the shuffle mask.
8197  SmallVector<int, 16> NewMask;
8198  unsigned NumElts = VT.getVectorNumElements();
8199  unsigned HalfElts = NumElts/2;
8200  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8201  for (unsigned n = 0; n < NumElts; ++n) {
8202    int MaskElt = SVN->getMaskElt(n);
8203    int NewElt = -1;
8204    if (MaskElt < (int)HalfElts)
8205      NewElt = MaskElt;
8206    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
8207      NewElt = HalfElts + MaskElt - NumElts;
8208    NewMask.push_back(NewElt);
8209  }
8210  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
8211                              DAG.getUNDEF(VT), NewMask.data());
8212}
8213
8214/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
8215/// NEON load/store intrinsics to merge base address updates.
8216static SDValue CombineBaseUpdate(SDNode *N,
8217                                 TargetLowering::DAGCombinerInfo &DCI) {
8218  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8219    return SDValue();
8220
8221  SelectionDAG &DAG = DCI.DAG;
8222  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
8223                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
8224  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
8225  SDValue Addr = N->getOperand(AddrOpIdx);
8226
8227  // Search for a use of the address operand that is an increment.
8228  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
8229         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
8230    SDNode *User = *UI;
8231    if (User->getOpcode() != ISD::ADD ||
8232        UI.getUse().getResNo() != Addr.getResNo())
8233      continue;
8234
8235    // Check that the add is independent of the load/store.  Otherwise, folding
8236    // it would create a cycle.
8237    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
8238      continue;
8239
8240    // Find the new opcode for the updating load/store.
8241    bool isLoad = true;
8242    bool isLaneOp = false;
8243    unsigned NewOpc = 0;
8244    unsigned NumVecs = 0;
8245    if (isIntrinsic) {
8246      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
8247      switch (IntNo) {
8248      default: llvm_unreachable("unexpected intrinsic for Neon base update");
8249      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
8250        NumVecs = 1; break;
8251      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
8252        NumVecs = 2; break;
8253      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
8254        NumVecs = 3; break;
8255      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
8256        NumVecs = 4; break;
8257      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
8258        NumVecs = 2; isLaneOp = true; break;
8259      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
8260        NumVecs = 3; isLaneOp = true; break;
8261      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
8262        NumVecs = 4; isLaneOp = true; break;
8263      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
8264        NumVecs = 1; isLoad = false; break;
8265      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
8266        NumVecs = 2; isLoad = false; break;
8267      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
8268        NumVecs = 3; isLoad = false; break;
8269      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
8270        NumVecs = 4; isLoad = false; break;
8271      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
8272        NumVecs = 2; isLoad = false; isLaneOp = true; break;
8273      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
8274        NumVecs = 3; isLoad = false; isLaneOp = true; break;
8275      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
8276        NumVecs = 4; isLoad = false; isLaneOp = true; break;
8277      }
8278    } else {
8279      isLaneOp = true;
8280      switch (N->getOpcode()) {
8281      default: llvm_unreachable("unexpected opcode for Neon base update");
8282      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
8283      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
8284      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
8285      }
8286    }
8287
8288    // Find the size of memory referenced by the load/store.
8289    EVT VecTy;
8290    if (isLoad)
8291      VecTy = N->getValueType(0);
8292    else
8293      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
8294    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
8295    if (isLaneOp)
8296      NumBytes /= VecTy.getVectorNumElements();
8297
8298    // If the increment is a constant, it must match the memory ref size.
8299    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
8300    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
8301      uint64_t IncVal = CInc->getZExtValue();
8302      if (IncVal != NumBytes)
8303        continue;
8304    } else if (NumBytes >= 3 * 16) {
8305      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
8306      // separate instructions that make it harder to use a non-constant update.
8307      continue;
8308    }
8309
8310    // Create the new updating load/store node.
8311    EVT Tys[6];
8312    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
8313    unsigned n;
8314    for (n = 0; n < NumResultVecs; ++n)
8315      Tys[n] = VecTy;
8316    Tys[n++] = MVT::i32;
8317    Tys[n] = MVT::Other;
8318    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
8319    SmallVector<SDValue, 8> Ops;
8320    Ops.push_back(N->getOperand(0)); // incoming chain
8321    Ops.push_back(N->getOperand(AddrOpIdx));
8322    Ops.push_back(Inc);
8323    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
8324      Ops.push_back(N->getOperand(i));
8325    }
8326    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
8327    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, N->getDebugLoc(), SDTys,
8328                                           Ops.data(), Ops.size(),
8329                                           MemInt->getMemoryVT(),
8330                                           MemInt->getMemOperand());
8331
8332    // Update the uses.
8333    std::vector<SDValue> NewResults;
8334    for (unsigned i = 0; i < NumResultVecs; ++i) {
8335      NewResults.push_back(SDValue(UpdN.getNode(), i));
8336    }
8337    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
8338    DCI.CombineTo(N, NewResults);
8339    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
8340
8341    break;
8342  }
8343  return SDValue();
8344}
8345
8346/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
8347/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
8348/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
8349/// return true.
8350static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8351  SelectionDAG &DAG = DCI.DAG;
8352  EVT VT = N->getValueType(0);
8353  // vldN-dup instructions only support 64-bit vectors for N > 1.
8354  if (!VT.is64BitVector())
8355    return false;
8356
8357  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
8358  SDNode *VLD = N->getOperand(0).getNode();
8359  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
8360    return false;
8361  unsigned NumVecs = 0;
8362  unsigned NewOpc = 0;
8363  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
8364  if (IntNo == Intrinsic::arm_neon_vld2lane) {
8365    NumVecs = 2;
8366    NewOpc = ARMISD::VLD2DUP;
8367  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
8368    NumVecs = 3;
8369    NewOpc = ARMISD::VLD3DUP;
8370  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
8371    NumVecs = 4;
8372    NewOpc = ARMISD::VLD4DUP;
8373  } else {
8374    return false;
8375  }
8376
8377  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
8378  // numbers match the load.
8379  unsigned VLDLaneNo =
8380    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
8381  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8382       UI != UE; ++UI) {
8383    // Ignore uses of the chain result.
8384    if (UI.getUse().getResNo() == NumVecs)
8385      continue;
8386    SDNode *User = *UI;
8387    if (User->getOpcode() != ARMISD::VDUPLANE ||
8388        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
8389      return false;
8390  }
8391
8392  // Create the vldN-dup node.
8393  EVT Tys[5];
8394  unsigned n;
8395  for (n = 0; n < NumVecs; ++n)
8396    Tys[n] = VT;
8397  Tys[n] = MVT::Other;
8398  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
8399  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
8400  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
8401  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, VLD->getDebugLoc(), SDTys,
8402                                           Ops, 2, VLDMemInt->getMemoryVT(),
8403                                           VLDMemInt->getMemOperand());
8404
8405  // Update the uses.
8406  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
8407       UI != UE; ++UI) {
8408    unsigned ResNo = UI.getUse().getResNo();
8409    // Ignore uses of the chain result.
8410    if (ResNo == NumVecs)
8411      continue;
8412    SDNode *User = *UI;
8413    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
8414  }
8415
8416  // Now the vldN-lane intrinsic is dead except for its chain result.
8417  // Update uses of the chain.
8418  std::vector<SDValue> VLDDupResults;
8419  for (unsigned n = 0; n < NumVecs; ++n)
8420    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
8421  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
8422  DCI.CombineTo(VLD, VLDDupResults);
8423
8424  return true;
8425}
8426
8427/// PerformVDUPLANECombine - Target-specific dag combine xforms for
8428/// ARMISD::VDUPLANE.
8429static SDValue PerformVDUPLANECombine(SDNode *N,
8430                                      TargetLowering::DAGCombinerInfo &DCI) {
8431  SDValue Op = N->getOperand(0);
8432
8433  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
8434  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
8435  if (CombineVLDDUP(N, DCI))
8436    return SDValue(N, 0);
8437
8438  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
8439  // redundant.  Ignore bit_converts for now; element sizes are checked below.
8440  while (Op.getOpcode() == ISD::BITCAST)
8441    Op = Op.getOperand(0);
8442  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
8443    return SDValue();
8444
8445  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
8446  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
8447  // The canonical VMOV for a zero vector uses a 32-bit element size.
8448  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8449  unsigned EltBits;
8450  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
8451    EltSize = 8;
8452  EVT VT = N->getValueType(0);
8453  if (EltSize > VT.getVectorElementType().getSizeInBits())
8454    return SDValue();
8455
8456  return DCI.DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
8457}
8458
8459// isConstVecPow2 - Return true if each vector element is a power of 2, all
8460// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
8461static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
8462{
8463  integerPart cN;
8464  integerPart c0 = 0;
8465  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
8466       I != E; I++) {
8467    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
8468    if (!C)
8469      return false;
8470
8471    bool isExact;
8472    APFloat APF = C->getValueAPF();
8473    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
8474        != APFloat::opOK || !isExact)
8475      return false;
8476
8477    c0 = (I == 0) ? cN : c0;
8478    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
8479      return false;
8480  }
8481  C = c0;
8482  return true;
8483}
8484
8485/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
8486/// can replace combinations of VMUL and VCVT (floating-point to integer)
8487/// when the VMUL has a constant operand that is a power of 2.
8488///
8489/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8490///  vmul.f32        d16, d17, d16
8491///  vcvt.s32.f32    d16, d16
8492/// becomes:
8493///  vcvt.s32.f32    d16, d16, #3
8494static SDValue PerformVCVTCombine(SDNode *N,
8495                                  TargetLowering::DAGCombinerInfo &DCI,
8496                                  const ARMSubtarget *Subtarget) {
8497  SelectionDAG &DAG = DCI.DAG;
8498  SDValue Op = N->getOperand(0);
8499
8500  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
8501      Op.getOpcode() != ISD::FMUL)
8502    return SDValue();
8503
8504  uint64_t C;
8505  SDValue N0 = Op->getOperand(0);
8506  SDValue ConstVec = Op->getOperand(1);
8507  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
8508
8509  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8510      !isConstVecPow2(ConstVec, isSigned, C))
8511    return SDValue();
8512
8513  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
8514    Intrinsic::arm_neon_vcvtfp2fxu;
8515  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8516                     N->getValueType(0),
8517                     DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
8518                     DAG.getConstant(Log2_64(C), MVT::i32));
8519}
8520
8521/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
8522/// can replace combinations of VCVT (integer to floating-point) and VDIV
8523/// when the VDIV has a constant operand that is a power of 2.
8524///
8525/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
8526///  vcvt.f32.s32    d16, d16
8527///  vdiv.f32        d16, d17, d16
8528/// becomes:
8529///  vcvt.f32.s32    d16, d16, #3
8530static SDValue PerformVDIVCombine(SDNode *N,
8531                                  TargetLowering::DAGCombinerInfo &DCI,
8532                                  const ARMSubtarget *Subtarget) {
8533  SelectionDAG &DAG = DCI.DAG;
8534  SDValue Op = N->getOperand(0);
8535  unsigned OpOpcode = Op.getNode()->getOpcode();
8536
8537  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
8538      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
8539    return SDValue();
8540
8541  uint64_t C;
8542  SDValue ConstVec = N->getOperand(1);
8543  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
8544
8545  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
8546      !isConstVecPow2(ConstVec, isSigned, C))
8547    return SDValue();
8548
8549  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
8550    Intrinsic::arm_neon_vcvtfxu2fp;
8551  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(),
8552                     Op.getValueType(),
8553                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
8554                     Op.getOperand(0), DAG.getConstant(Log2_64(C), MVT::i32));
8555}
8556
8557/// Getvshiftimm - Check if this is a valid build_vector for the immediate
8558/// operand of a vector shift operation, where all the elements of the
8559/// build_vector must have the same constant integer value.
8560static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
8561  // Ignore bit_converts.
8562  while (Op.getOpcode() == ISD::BITCAST)
8563    Op = Op.getOperand(0);
8564  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8565  APInt SplatBits, SplatUndef;
8566  unsigned SplatBitSize;
8567  bool HasAnyUndefs;
8568  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
8569                                      HasAnyUndefs, ElementBits) ||
8570      SplatBitSize > ElementBits)
8571    return false;
8572  Cnt = SplatBits.getSExtValue();
8573  return true;
8574}
8575
8576/// isVShiftLImm - Check if this is a valid build_vector for the immediate
8577/// operand of a vector shift left operation.  That value must be in the range:
8578///   0 <= Value < ElementBits for a left shift; or
8579///   0 <= Value <= ElementBits for a long left shift.
8580static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
8581  assert(VT.isVector() && "vector shift count is not a vector type");
8582  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8583  if (! getVShiftImm(Op, ElementBits, Cnt))
8584    return false;
8585  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
8586}
8587
8588/// isVShiftRImm - Check if this is a valid build_vector for the immediate
8589/// operand of a vector shift right operation.  For a shift opcode, the value
8590/// is positive, but for an intrinsic the value count must be negative. The
8591/// absolute value must be in the range:
8592///   1 <= |Value| <= ElementBits for a right shift; or
8593///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
8594static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
8595                         int64_t &Cnt) {
8596  assert(VT.isVector() && "vector shift count is not a vector type");
8597  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
8598  if (! getVShiftImm(Op, ElementBits, Cnt))
8599    return false;
8600  if (isIntrinsic)
8601    Cnt = -Cnt;
8602  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
8603}
8604
8605/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
8606static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
8607  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8608  switch (IntNo) {
8609  default:
8610    // Don't do anything for most intrinsics.
8611    break;
8612
8613  // Vector shifts: check for immediate versions and lower them.
8614  // Note: This is done during DAG combining instead of DAG legalizing because
8615  // the build_vectors for 64-bit vector element shift counts are generally
8616  // not legal, and it is hard to see their values after they get legalized to
8617  // loads from a constant pool.
8618  case Intrinsic::arm_neon_vshifts:
8619  case Intrinsic::arm_neon_vshiftu:
8620  case Intrinsic::arm_neon_vshiftls:
8621  case Intrinsic::arm_neon_vshiftlu:
8622  case Intrinsic::arm_neon_vshiftn:
8623  case Intrinsic::arm_neon_vrshifts:
8624  case Intrinsic::arm_neon_vrshiftu:
8625  case Intrinsic::arm_neon_vrshiftn:
8626  case Intrinsic::arm_neon_vqshifts:
8627  case Intrinsic::arm_neon_vqshiftu:
8628  case Intrinsic::arm_neon_vqshiftsu:
8629  case Intrinsic::arm_neon_vqshiftns:
8630  case Intrinsic::arm_neon_vqshiftnu:
8631  case Intrinsic::arm_neon_vqshiftnsu:
8632  case Intrinsic::arm_neon_vqrshiftns:
8633  case Intrinsic::arm_neon_vqrshiftnu:
8634  case Intrinsic::arm_neon_vqrshiftnsu: {
8635    EVT VT = N->getOperand(1).getValueType();
8636    int64_t Cnt;
8637    unsigned VShiftOpc = 0;
8638
8639    switch (IntNo) {
8640    case Intrinsic::arm_neon_vshifts:
8641    case Intrinsic::arm_neon_vshiftu:
8642      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
8643        VShiftOpc = ARMISD::VSHL;
8644        break;
8645      }
8646      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
8647        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
8648                     ARMISD::VSHRs : ARMISD::VSHRu);
8649        break;
8650      }
8651      return SDValue();
8652
8653    case Intrinsic::arm_neon_vshiftls:
8654    case Intrinsic::arm_neon_vshiftlu:
8655      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
8656        break;
8657      llvm_unreachable("invalid shift count for vshll intrinsic");
8658
8659    case Intrinsic::arm_neon_vrshifts:
8660    case Intrinsic::arm_neon_vrshiftu:
8661      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
8662        break;
8663      return SDValue();
8664
8665    case Intrinsic::arm_neon_vqshifts:
8666    case Intrinsic::arm_neon_vqshiftu:
8667      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8668        break;
8669      return SDValue();
8670
8671    case Intrinsic::arm_neon_vqshiftsu:
8672      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
8673        break;
8674      llvm_unreachable("invalid shift count for vqshlu intrinsic");
8675
8676    case Intrinsic::arm_neon_vshiftn:
8677    case Intrinsic::arm_neon_vrshiftn:
8678    case Intrinsic::arm_neon_vqshiftns:
8679    case Intrinsic::arm_neon_vqshiftnu:
8680    case Intrinsic::arm_neon_vqshiftnsu:
8681    case Intrinsic::arm_neon_vqrshiftns:
8682    case Intrinsic::arm_neon_vqrshiftnu:
8683    case Intrinsic::arm_neon_vqrshiftnsu:
8684      // Narrowing shifts require an immediate right shift.
8685      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
8686        break;
8687      llvm_unreachable("invalid shift count for narrowing vector shift "
8688                       "intrinsic");
8689
8690    default:
8691      llvm_unreachable("unhandled vector shift");
8692    }
8693
8694    switch (IntNo) {
8695    case Intrinsic::arm_neon_vshifts:
8696    case Intrinsic::arm_neon_vshiftu:
8697      // Opcode already set above.
8698      break;
8699    case Intrinsic::arm_neon_vshiftls:
8700    case Intrinsic::arm_neon_vshiftlu:
8701      if (Cnt == VT.getVectorElementType().getSizeInBits())
8702        VShiftOpc = ARMISD::VSHLLi;
8703      else
8704        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
8705                     ARMISD::VSHLLs : ARMISD::VSHLLu);
8706      break;
8707    case Intrinsic::arm_neon_vshiftn:
8708      VShiftOpc = ARMISD::VSHRN; break;
8709    case Intrinsic::arm_neon_vrshifts:
8710      VShiftOpc = ARMISD::VRSHRs; break;
8711    case Intrinsic::arm_neon_vrshiftu:
8712      VShiftOpc = ARMISD::VRSHRu; break;
8713    case Intrinsic::arm_neon_vrshiftn:
8714      VShiftOpc = ARMISD::VRSHRN; break;
8715    case Intrinsic::arm_neon_vqshifts:
8716      VShiftOpc = ARMISD::VQSHLs; break;
8717    case Intrinsic::arm_neon_vqshiftu:
8718      VShiftOpc = ARMISD::VQSHLu; break;
8719    case Intrinsic::arm_neon_vqshiftsu:
8720      VShiftOpc = ARMISD::VQSHLsu; break;
8721    case Intrinsic::arm_neon_vqshiftns:
8722      VShiftOpc = ARMISD::VQSHRNs; break;
8723    case Intrinsic::arm_neon_vqshiftnu:
8724      VShiftOpc = ARMISD::VQSHRNu; break;
8725    case Intrinsic::arm_neon_vqshiftnsu:
8726      VShiftOpc = ARMISD::VQSHRNsu; break;
8727    case Intrinsic::arm_neon_vqrshiftns:
8728      VShiftOpc = ARMISD::VQRSHRNs; break;
8729    case Intrinsic::arm_neon_vqrshiftnu:
8730      VShiftOpc = ARMISD::VQRSHRNu; break;
8731    case Intrinsic::arm_neon_vqrshiftnsu:
8732      VShiftOpc = ARMISD::VQRSHRNsu; break;
8733    }
8734
8735    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8736                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
8737  }
8738
8739  case Intrinsic::arm_neon_vshiftins: {
8740    EVT VT = N->getOperand(1).getValueType();
8741    int64_t Cnt;
8742    unsigned VShiftOpc = 0;
8743
8744    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
8745      VShiftOpc = ARMISD::VSLI;
8746    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
8747      VShiftOpc = ARMISD::VSRI;
8748    else {
8749      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
8750    }
8751
8752    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
8753                       N->getOperand(1), N->getOperand(2),
8754                       DAG.getConstant(Cnt, MVT::i32));
8755  }
8756
8757  case Intrinsic::arm_neon_vqrshifts:
8758  case Intrinsic::arm_neon_vqrshiftu:
8759    // No immediate versions of these to check for.
8760    break;
8761  }
8762
8763  return SDValue();
8764}
8765
8766/// PerformShiftCombine - Checks for immediate versions of vector shifts and
8767/// lowers them.  As with the vector shift intrinsics, this is done during DAG
8768/// combining instead of DAG legalizing because the build_vectors for 64-bit
8769/// vector element shift counts are generally not legal, and it is hard to see
8770/// their values after they get legalized to loads from a constant pool.
8771static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
8772                                   const ARMSubtarget *ST) {
8773  EVT VT = N->getValueType(0);
8774  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
8775    // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
8776    // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
8777    SDValue N1 = N->getOperand(1);
8778    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
8779      SDValue N0 = N->getOperand(0);
8780      if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
8781          DAG.MaskedValueIsZero(N0.getOperand(0),
8782                                APInt::getHighBitsSet(32, 16)))
8783        return DAG.getNode(ISD::ROTR, N->getDebugLoc(), VT, N0, N1);
8784    }
8785  }
8786
8787  // Nothing to be done for scalar shifts.
8788  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8789  if (!VT.isVector() || !TLI.isTypeLegal(VT))
8790    return SDValue();
8791
8792  assert(ST->hasNEON() && "unexpected vector shift");
8793  int64_t Cnt;
8794
8795  switch (N->getOpcode()) {
8796  default: llvm_unreachable("unexpected shift opcode");
8797
8798  case ISD::SHL:
8799    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
8800      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
8801                         DAG.getConstant(Cnt, MVT::i32));
8802    break;
8803
8804  case ISD::SRA:
8805  case ISD::SRL:
8806    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
8807      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
8808                            ARMISD::VSHRs : ARMISD::VSHRu);
8809      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
8810                         DAG.getConstant(Cnt, MVT::i32));
8811    }
8812  }
8813  return SDValue();
8814}
8815
8816/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
8817/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
8818static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
8819                                    const ARMSubtarget *ST) {
8820  SDValue N0 = N->getOperand(0);
8821
8822  // Check for sign- and zero-extensions of vector extract operations of 8-
8823  // and 16-bit vector elements.  NEON supports these directly.  They are
8824  // handled during DAG combining because type legalization will promote them
8825  // to 32-bit types and it is messy to recognize the operations after that.
8826  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8827    SDValue Vec = N0.getOperand(0);
8828    SDValue Lane = N0.getOperand(1);
8829    EVT VT = N->getValueType(0);
8830    EVT EltVT = N0.getValueType();
8831    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8832
8833    if (VT == MVT::i32 &&
8834        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
8835        TLI.isTypeLegal(Vec.getValueType()) &&
8836        isa<ConstantSDNode>(Lane)) {
8837
8838      unsigned Opc = 0;
8839      switch (N->getOpcode()) {
8840      default: llvm_unreachable("unexpected opcode");
8841      case ISD::SIGN_EXTEND:
8842        Opc = ARMISD::VGETLANEs;
8843        break;
8844      case ISD::ZERO_EXTEND:
8845      case ISD::ANY_EXTEND:
8846        Opc = ARMISD::VGETLANEu;
8847        break;
8848      }
8849      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
8850    }
8851  }
8852
8853  return SDValue();
8854}
8855
8856/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
8857/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
8858static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
8859                                       const ARMSubtarget *ST) {
8860  // If the target supports NEON, try to use vmax/vmin instructions for f32
8861  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
8862  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
8863  // a NaN; only do the transformation when it matches that behavior.
8864
8865  // For now only do this when using NEON for FP operations; if using VFP, it
8866  // is not obvious that the benefit outweighs the cost of switching to the
8867  // NEON pipeline.
8868  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
8869      N->getValueType(0) != MVT::f32)
8870    return SDValue();
8871
8872  SDValue CondLHS = N->getOperand(0);
8873  SDValue CondRHS = N->getOperand(1);
8874  SDValue LHS = N->getOperand(2);
8875  SDValue RHS = N->getOperand(3);
8876  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
8877
8878  unsigned Opcode = 0;
8879  bool IsReversed;
8880  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
8881    IsReversed = false; // x CC y ? x : y
8882  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
8883    IsReversed = true ; // x CC y ? y : x
8884  } else {
8885    return SDValue();
8886  }
8887
8888  bool IsUnordered;
8889  switch (CC) {
8890  default: break;
8891  case ISD::SETOLT:
8892  case ISD::SETOLE:
8893  case ISD::SETLT:
8894  case ISD::SETLE:
8895  case ISD::SETULT:
8896  case ISD::SETULE:
8897    // If LHS is NaN, an ordered comparison will be false and the result will
8898    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
8899    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
8900    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
8901    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8902      break;
8903    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
8904    // will return -0, so vmin can only be used for unsafe math or if one of
8905    // the operands is known to be nonzero.
8906    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
8907        !DAG.getTarget().Options.UnsafeFPMath &&
8908        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8909      break;
8910    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
8911    break;
8912
8913  case ISD::SETOGT:
8914  case ISD::SETOGE:
8915  case ISD::SETGT:
8916  case ISD::SETGE:
8917  case ISD::SETUGT:
8918  case ISD::SETUGE:
8919    // If LHS is NaN, an ordered comparison will be false and the result will
8920    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
8921    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
8922    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
8923    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
8924      break;
8925    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
8926    // will return +0, so vmax can only be used for unsafe math or if one of
8927    // the operands is known to be nonzero.
8928    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
8929        !DAG.getTarget().Options.UnsafeFPMath &&
8930        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
8931      break;
8932    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
8933    break;
8934  }
8935
8936  if (!Opcode)
8937    return SDValue();
8938  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
8939}
8940
8941/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
8942SDValue
8943ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
8944  SDValue Cmp = N->getOperand(4);
8945  if (Cmp.getOpcode() != ARMISD::CMPZ)
8946    // Only looking at EQ and NE cases.
8947    return SDValue();
8948
8949  EVT VT = N->getValueType(0);
8950  DebugLoc dl = N->getDebugLoc();
8951  SDValue LHS = Cmp.getOperand(0);
8952  SDValue RHS = Cmp.getOperand(1);
8953  SDValue FalseVal = N->getOperand(0);
8954  SDValue TrueVal = N->getOperand(1);
8955  SDValue ARMcc = N->getOperand(2);
8956  ARMCC::CondCodes CC =
8957    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
8958
8959  // Simplify
8960  //   mov     r1, r0
8961  //   cmp     r1, x
8962  //   mov     r0, y
8963  //   moveq   r0, x
8964  // to
8965  //   cmp     r0, x
8966  //   movne   r0, y
8967  //
8968  //   mov     r1, r0
8969  //   cmp     r1, x
8970  //   mov     r0, x
8971  //   movne   r0, y
8972  // to
8973  //   cmp     r0, x
8974  //   movne   r0, y
8975  /// FIXME: Turn this into a target neutral optimization?
8976  SDValue Res;
8977  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
8978    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
8979                      N->getOperand(3), Cmp);
8980  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
8981    SDValue ARMcc;
8982    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
8983    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
8984                      N->getOperand(3), NewCmp);
8985  }
8986
8987  if (Res.getNode()) {
8988    APInt KnownZero, KnownOne;
8989    DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
8990    // Capture demanded bits information that would be otherwise lost.
8991    if (KnownZero == 0xfffffffe)
8992      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8993                        DAG.getValueType(MVT::i1));
8994    else if (KnownZero == 0xffffff00)
8995      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8996                        DAG.getValueType(MVT::i8));
8997    else if (KnownZero == 0xffff0000)
8998      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
8999                        DAG.getValueType(MVT::i16));
9000  }
9001
9002  return Res;
9003}
9004
9005SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
9006                                             DAGCombinerInfo &DCI) const {
9007  switch (N->getOpcode()) {
9008  default: break;
9009  case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
9010  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
9011  case ISD::SUB:        return PerformSUBCombine(N, DCI);
9012  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
9013  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
9014  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
9015  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
9016  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
9017  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
9018  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
9019  case ISD::STORE:      return PerformSTORECombine(N, DCI);
9020  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
9021  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
9022  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
9023  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
9024  case ISD::FP_TO_SINT:
9025  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
9026  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
9027  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
9028  case ISD::SHL:
9029  case ISD::SRA:
9030  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
9031  case ISD::SIGN_EXTEND:
9032  case ISD::ZERO_EXTEND:
9033  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
9034  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
9035  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
9036  case ARMISD::VLD2DUP:
9037  case ARMISD::VLD3DUP:
9038  case ARMISD::VLD4DUP:
9039    return CombineBaseUpdate(N, DCI);
9040  case ISD::INTRINSIC_VOID:
9041  case ISD::INTRINSIC_W_CHAIN:
9042    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9043    case Intrinsic::arm_neon_vld1:
9044    case Intrinsic::arm_neon_vld2:
9045    case Intrinsic::arm_neon_vld3:
9046    case Intrinsic::arm_neon_vld4:
9047    case Intrinsic::arm_neon_vld2lane:
9048    case Intrinsic::arm_neon_vld3lane:
9049    case Intrinsic::arm_neon_vld4lane:
9050    case Intrinsic::arm_neon_vst1:
9051    case Intrinsic::arm_neon_vst2:
9052    case Intrinsic::arm_neon_vst3:
9053    case Intrinsic::arm_neon_vst4:
9054    case Intrinsic::arm_neon_vst2lane:
9055    case Intrinsic::arm_neon_vst3lane:
9056    case Intrinsic::arm_neon_vst4lane:
9057      return CombineBaseUpdate(N, DCI);
9058    default: break;
9059    }
9060    break;
9061  }
9062  return SDValue();
9063}
9064
9065bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
9066                                                          EVT VT) const {
9067  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
9068}
9069
9070bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
9071  // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
9072  bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
9073
9074  switch (VT.getSimpleVT().SimpleTy) {
9075  default:
9076    return false;
9077  case MVT::i8:
9078  case MVT::i16:
9079  case MVT::i32:
9080    // Unaligned access can use (for example) LRDB, LRDH, LDR
9081    return AllowsUnaligned;
9082  case MVT::f64:
9083  case MVT::v2f64:
9084    // For any little-endian targets with neon, we can support unaligned ld/st
9085    // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
9086    // A big-endian target may also explictly support unaligned accesses
9087    return Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian());
9088  }
9089}
9090
9091static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9092                       unsigned AlignCheck) {
9093  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9094          (DstAlign == 0 || DstAlign % AlignCheck == 0));
9095}
9096
9097EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
9098                                           unsigned DstAlign, unsigned SrcAlign,
9099                                           bool IsZeroVal,
9100                                           bool MemcpyStrSrc,
9101                                           MachineFunction &MF) const {
9102  const Function *F = MF.getFunction();
9103
9104  // See if we can use NEON instructions for this...
9105  if (IsZeroVal &&
9106      !F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat) &&
9107      Subtarget->hasNEON()) {
9108    if (memOpAlign(SrcAlign, DstAlign, 16) && Size >= 16) {
9109      return MVT::v4i32;
9110    } else if (memOpAlign(SrcAlign, DstAlign, 8) && Size >= 8) {
9111      return MVT::v2i32;
9112    }
9113  }
9114
9115  // Lowering to i32/i16 if the size permits.
9116  if (Size >= 4) {
9117    return MVT::i32;
9118  } else if (Size >= 2) {
9119    return MVT::i16;
9120  }
9121
9122  // Let the target-independent logic figure it out.
9123  return MVT::Other;
9124}
9125
9126static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
9127  if (V < 0)
9128    return false;
9129
9130  unsigned Scale = 1;
9131  switch (VT.getSimpleVT().SimpleTy) {
9132  default: return false;
9133  case MVT::i1:
9134  case MVT::i8:
9135    // Scale == 1;
9136    break;
9137  case MVT::i16:
9138    // Scale == 2;
9139    Scale = 2;
9140    break;
9141  case MVT::i32:
9142    // Scale == 4;
9143    Scale = 4;
9144    break;
9145  }
9146
9147  if ((V & (Scale - 1)) != 0)
9148    return false;
9149  V /= Scale;
9150  return V == (V & ((1LL << 5) - 1));
9151}
9152
9153static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
9154                                      const ARMSubtarget *Subtarget) {
9155  bool isNeg = false;
9156  if (V < 0) {
9157    isNeg = true;
9158    V = - V;
9159  }
9160
9161  switch (VT.getSimpleVT().SimpleTy) {
9162  default: return false;
9163  case MVT::i1:
9164  case MVT::i8:
9165  case MVT::i16:
9166  case MVT::i32:
9167    // + imm12 or - imm8
9168    if (isNeg)
9169      return V == (V & ((1LL << 8) - 1));
9170    return V == (V & ((1LL << 12) - 1));
9171  case MVT::f32:
9172  case MVT::f64:
9173    // Same as ARM mode. FIXME: NEON?
9174    if (!Subtarget->hasVFP2())
9175      return false;
9176    if ((V & 3) != 0)
9177      return false;
9178    V >>= 2;
9179    return V == (V & ((1LL << 8) - 1));
9180  }
9181}
9182
9183/// isLegalAddressImmediate - Return true if the integer value can be used
9184/// as the offset of the target addressing mode for load / store of the
9185/// given type.
9186static bool isLegalAddressImmediate(int64_t V, EVT VT,
9187                                    const ARMSubtarget *Subtarget) {
9188  if (V == 0)
9189    return true;
9190
9191  if (!VT.isSimple())
9192    return false;
9193
9194  if (Subtarget->isThumb1Only())
9195    return isLegalT1AddressImmediate(V, VT);
9196  else if (Subtarget->isThumb2())
9197    return isLegalT2AddressImmediate(V, VT, Subtarget);
9198
9199  // ARM mode.
9200  if (V < 0)
9201    V = - V;
9202  switch (VT.getSimpleVT().SimpleTy) {
9203  default: return false;
9204  case MVT::i1:
9205  case MVT::i8:
9206  case MVT::i32:
9207    // +- imm12
9208    return V == (V & ((1LL << 12) - 1));
9209  case MVT::i16:
9210    // +- imm8
9211    return V == (V & ((1LL << 8) - 1));
9212  case MVT::f32:
9213  case MVT::f64:
9214    if (!Subtarget->hasVFP2()) // FIXME: NEON?
9215      return false;
9216    if ((V & 3) != 0)
9217      return false;
9218    V >>= 2;
9219    return V == (V & ((1LL << 8) - 1));
9220  }
9221}
9222
9223bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
9224                                                      EVT VT) const {
9225  int Scale = AM.Scale;
9226  if (Scale < 0)
9227    return false;
9228
9229  switch (VT.getSimpleVT().SimpleTy) {
9230  default: return false;
9231  case MVT::i1:
9232  case MVT::i8:
9233  case MVT::i16:
9234  case MVT::i32:
9235    if (Scale == 1)
9236      return true;
9237    // r + r << imm
9238    Scale = Scale & ~1;
9239    return Scale == 2 || Scale == 4 || Scale == 8;
9240  case MVT::i64:
9241    // r + r
9242    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9243      return true;
9244    return false;
9245  case MVT::isVoid:
9246    // Note, we allow "void" uses (basically, uses that aren't loads or
9247    // stores), because arm allows folding a scale into many arithmetic
9248    // operations.  This should be made more precise and revisited later.
9249
9250    // Allow r << imm, but the imm has to be a multiple of two.
9251    if (Scale & 1) return false;
9252    return isPowerOf2_32(Scale);
9253  }
9254}
9255
9256/// isLegalAddressingMode - Return true if the addressing mode represented
9257/// by AM is legal for this target, for a load/store of the specified type.
9258bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
9259                                              Type *Ty) const {
9260  EVT VT = getValueType(Ty, true);
9261  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
9262    return false;
9263
9264  // Can never fold addr of global into load/store.
9265  if (AM.BaseGV)
9266    return false;
9267
9268  switch (AM.Scale) {
9269  case 0:  // no scale reg, must be "r+i" or "r", or "i".
9270    break;
9271  case 1:
9272    if (Subtarget->isThumb1Only())
9273      return false;
9274    // FALL THROUGH.
9275  default:
9276    // ARM doesn't support any R+R*scale+imm addr modes.
9277    if (AM.BaseOffs)
9278      return false;
9279
9280    if (!VT.isSimple())
9281      return false;
9282
9283    if (Subtarget->isThumb2())
9284      return isLegalT2ScaledAddressingMode(AM, VT);
9285
9286    int Scale = AM.Scale;
9287    switch (VT.getSimpleVT().SimpleTy) {
9288    default: return false;
9289    case MVT::i1:
9290    case MVT::i8:
9291    case MVT::i32:
9292      if (Scale < 0) Scale = -Scale;
9293      if (Scale == 1)
9294        return true;
9295      // r + r << imm
9296      return isPowerOf2_32(Scale & ~1);
9297    case MVT::i16:
9298    case MVT::i64:
9299      // r + r
9300      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
9301        return true;
9302      return false;
9303
9304    case MVT::isVoid:
9305      // Note, we allow "void" uses (basically, uses that aren't loads or
9306      // stores), because arm allows folding a scale into many arithmetic
9307      // operations.  This should be made more precise and revisited later.
9308
9309      // Allow r << imm, but the imm has to be a multiple of two.
9310      if (Scale & 1) return false;
9311      return isPowerOf2_32(Scale);
9312    }
9313  }
9314  return true;
9315}
9316
9317/// isLegalICmpImmediate - Return true if the specified immediate is legal
9318/// icmp immediate, that is the target has icmp instructions which can compare
9319/// a register against the immediate without having to materialize the
9320/// immediate into a register.
9321bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
9322  // Thumb2 and ARM modes can use cmn for negative immediates.
9323  if (!Subtarget->isThumb())
9324    return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
9325  if (Subtarget->isThumb2())
9326    return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
9327  // Thumb1 doesn't have cmn, and only 8-bit immediates.
9328  return Imm >= 0 && Imm <= 255;
9329}
9330
9331/// isLegalAddImmediate - Return true if the specified immediate is a legal add
9332/// *or sub* immediate, that is the target has add or sub instructions which can
9333/// add a register with the immediate without having to materialize the
9334/// immediate into a register.
9335bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
9336  // Same encoding for add/sub, just flip the sign.
9337  int64_t AbsImm = llvm::abs64(Imm);
9338  if (!Subtarget->isThumb())
9339    return ARM_AM::getSOImmVal(AbsImm) != -1;
9340  if (Subtarget->isThumb2())
9341    return ARM_AM::getT2SOImmVal(AbsImm) != -1;
9342  // Thumb1 only has 8-bit unsigned immediate.
9343  return AbsImm >= 0 && AbsImm <= 255;
9344}
9345
9346static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
9347                                      bool isSEXTLoad, SDValue &Base,
9348                                      SDValue &Offset, bool &isInc,
9349                                      SelectionDAG &DAG) {
9350  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9351    return false;
9352
9353  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
9354    // AddressingMode 3
9355    Base = Ptr->getOperand(0);
9356    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9357      int RHSC = (int)RHS->getZExtValue();
9358      if (RHSC < 0 && RHSC > -256) {
9359        assert(Ptr->getOpcode() == ISD::ADD);
9360        isInc = false;
9361        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9362        return true;
9363      }
9364    }
9365    isInc = (Ptr->getOpcode() == ISD::ADD);
9366    Offset = Ptr->getOperand(1);
9367    return true;
9368  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
9369    // AddressingMode 2
9370    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9371      int RHSC = (int)RHS->getZExtValue();
9372      if (RHSC < 0 && RHSC > -0x1000) {
9373        assert(Ptr->getOpcode() == ISD::ADD);
9374        isInc = false;
9375        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9376        Base = Ptr->getOperand(0);
9377        return true;
9378      }
9379    }
9380
9381    if (Ptr->getOpcode() == ISD::ADD) {
9382      isInc = true;
9383      ARM_AM::ShiftOpc ShOpcVal=
9384        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
9385      if (ShOpcVal != ARM_AM::no_shift) {
9386        Base = Ptr->getOperand(1);
9387        Offset = Ptr->getOperand(0);
9388      } else {
9389        Base = Ptr->getOperand(0);
9390        Offset = Ptr->getOperand(1);
9391      }
9392      return true;
9393    }
9394
9395    isInc = (Ptr->getOpcode() == ISD::ADD);
9396    Base = Ptr->getOperand(0);
9397    Offset = Ptr->getOperand(1);
9398    return true;
9399  }
9400
9401  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
9402  return false;
9403}
9404
9405static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
9406                                     bool isSEXTLoad, SDValue &Base,
9407                                     SDValue &Offset, bool &isInc,
9408                                     SelectionDAG &DAG) {
9409  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
9410    return false;
9411
9412  Base = Ptr->getOperand(0);
9413  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
9414    int RHSC = (int)RHS->getZExtValue();
9415    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
9416      assert(Ptr->getOpcode() == ISD::ADD);
9417      isInc = false;
9418      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
9419      return true;
9420    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
9421      isInc = Ptr->getOpcode() == ISD::ADD;
9422      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
9423      return true;
9424    }
9425  }
9426
9427  return false;
9428}
9429
9430/// getPreIndexedAddressParts - returns true by value, base pointer and
9431/// offset pointer and addressing mode by reference if the node's address
9432/// can be legally represented as pre-indexed load / store address.
9433bool
9434ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
9435                                             SDValue &Offset,
9436                                             ISD::MemIndexedMode &AM,
9437                                             SelectionDAG &DAG) const {
9438  if (Subtarget->isThumb1Only())
9439    return false;
9440
9441  EVT VT;
9442  SDValue Ptr;
9443  bool isSEXTLoad = false;
9444  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9445    Ptr = LD->getBasePtr();
9446    VT  = LD->getMemoryVT();
9447    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9448  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9449    Ptr = ST->getBasePtr();
9450    VT  = ST->getMemoryVT();
9451  } else
9452    return false;
9453
9454  bool isInc;
9455  bool isLegal = false;
9456  if (Subtarget->isThumb2())
9457    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9458                                       Offset, isInc, DAG);
9459  else
9460    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
9461                                        Offset, isInc, DAG);
9462  if (!isLegal)
9463    return false;
9464
9465  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
9466  return true;
9467}
9468
9469/// getPostIndexedAddressParts - returns true by value, base pointer and
9470/// offset pointer and addressing mode by reference if this node can be
9471/// combined with a load / store to form a post-indexed load / store.
9472bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
9473                                                   SDValue &Base,
9474                                                   SDValue &Offset,
9475                                                   ISD::MemIndexedMode &AM,
9476                                                   SelectionDAG &DAG) const {
9477  if (Subtarget->isThumb1Only())
9478    return false;
9479
9480  EVT VT;
9481  SDValue Ptr;
9482  bool isSEXTLoad = false;
9483  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9484    VT  = LD->getMemoryVT();
9485    Ptr = LD->getBasePtr();
9486    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
9487  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
9488    VT  = ST->getMemoryVT();
9489    Ptr = ST->getBasePtr();
9490  } else
9491    return false;
9492
9493  bool isInc;
9494  bool isLegal = false;
9495  if (Subtarget->isThumb2())
9496    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9497                                       isInc, DAG);
9498  else
9499    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
9500                                        isInc, DAG);
9501  if (!isLegal)
9502    return false;
9503
9504  if (Ptr != Base) {
9505    // Swap base ptr and offset to catch more post-index load / store when
9506    // it's legal. In Thumb2 mode, offset must be an immediate.
9507    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
9508        !Subtarget->isThumb2())
9509      std::swap(Base, Offset);
9510
9511    // Post-indexed load / store update the base pointer.
9512    if (Ptr != Base)
9513      return false;
9514  }
9515
9516  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
9517  return true;
9518}
9519
9520void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9521                                                       APInt &KnownZero,
9522                                                       APInt &KnownOne,
9523                                                       const SelectionDAG &DAG,
9524                                                       unsigned Depth) const {
9525  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
9526  switch (Op.getOpcode()) {
9527  default: break;
9528  case ARMISD::CMOV: {
9529    // Bits are known zero/one if known on the LHS and RHS.
9530    DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
9531    if (KnownZero == 0 && KnownOne == 0) return;
9532
9533    APInt KnownZeroRHS, KnownOneRHS;
9534    DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
9535    KnownZero &= KnownZeroRHS;
9536    KnownOne  &= KnownOneRHS;
9537    return;
9538  }
9539  }
9540}
9541
9542//===----------------------------------------------------------------------===//
9543//                           ARM Inline Assembly Support
9544//===----------------------------------------------------------------------===//
9545
9546bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
9547  // Looking for "rev" which is V6+.
9548  if (!Subtarget->hasV6Ops())
9549    return false;
9550
9551  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9552  std::string AsmStr = IA->getAsmString();
9553  SmallVector<StringRef, 4> AsmPieces;
9554  SplitString(AsmStr, AsmPieces, ";\n");
9555
9556  switch (AsmPieces.size()) {
9557  default: return false;
9558  case 1:
9559    AsmStr = AsmPieces[0];
9560    AsmPieces.clear();
9561    SplitString(AsmStr, AsmPieces, " \t,");
9562
9563    // rev $0, $1
9564    if (AsmPieces.size() == 3 &&
9565        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
9566        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
9567      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9568      if (Ty && Ty->getBitWidth() == 32)
9569        return IntrinsicLowering::LowerToByteSwap(CI);
9570    }
9571    break;
9572  }
9573
9574  return false;
9575}
9576
9577/// getConstraintType - Given a constraint letter, return the type of
9578/// constraint it is for this target.
9579ARMTargetLowering::ConstraintType
9580ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
9581  if (Constraint.size() == 1) {
9582    switch (Constraint[0]) {
9583    default:  break;
9584    case 'l': return C_RegisterClass;
9585    case 'w': return C_RegisterClass;
9586    case 'h': return C_RegisterClass;
9587    case 'x': return C_RegisterClass;
9588    case 't': return C_RegisterClass;
9589    case 'j': return C_Other; // Constant for movw.
9590      // An address with a single base register. Due to the way we
9591      // currently handle addresses it is the same as an 'r' memory constraint.
9592    case 'Q': return C_Memory;
9593    }
9594  } else if (Constraint.size() == 2) {
9595    switch (Constraint[0]) {
9596    default: break;
9597    // All 'U+' constraints are addresses.
9598    case 'U': return C_Memory;
9599    }
9600  }
9601  return TargetLowering::getConstraintType(Constraint);
9602}
9603
9604/// Examine constraint type and operand type and determine a weight value.
9605/// This object must already have been set up with the operand type
9606/// and the current alternative constraint selected.
9607TargetLowering::ConstraintWeight
9608ARMTargetLowering::getSingleConstraintMatchWeight(
9609    AsmOperandInfo &info, const char *constraint) const {
9610  ConstraintWeight weight = CW_Invalid;
9611  Value *CallOperandVal = info.CallOperandVal;
9612    // If we don't have a value, we can't do a match,
9613    // but allow it at the lowest weight.
9614  if (CallOperandVal == NULL)
9615    return CW_Default;
9616  Type *type = CallOperandVal->getType();
9617  // Look at the constraint type.
9618  switch (*constraint) {
9619  default:
9620    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
9621    break;
9622  case 'l':
9623    if (type->isIntegerTy()) {
9624      if (Subtarget->isThumb())
9625        weight = CW_SpecificReg;
9626      else
9627        weight = CW_Register;
9628    }
9629    break;
9630  case 'w':
9631    if (type->isFloatingPointTy())
9632      weight = CW_Register;
9633    break;
9634  }
9635  return weight;
9636}
9637
9638typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
9639RCPair
9640ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
9641                                                EVT VT) const {
9642  if (Constraint.size() == 1) {
9643    // GCC ARM Constraint Letters
9644    switch (Constraint[0]) {
9645    case 'l': // Low regs or general regs.
9646      if (Subtarget->isThumb())
9647        return RCPair(0U, &ARM::tGPRRegClass);
9648      return RCPair(0U, &ARM::GPRRegClass);
9649    case 'h': // High regs or no regs.
9650      if (Subtarget->isThumb())
9651        return RCPair(0U, &ARM::hGPRRegClass);
9652      break;
9653    case 'r':
9654      return RCPair(0U, &ARM::GPRRegClass);
9655    case 'w':
9656      if (VT == MVT::f32)
9657        return RCPair(0U, &ARM::SPRRegClass);
9658      if (VT.getSizeInBits() == 64)
9659        return RCPair(0U, &ARM::DPRRegClass);
9660      if (VT.getSizeInBits() == 128)
9661        return RCPair(0U, &ARM::QPRRegClass);
9662      break;
9663    case 'x':
9664      if (VT == MVT::f32)
9665        return RCPair(0U, &ARM::SPR_8RegClass);
9666      if (VT.getSizeInBits() == 64)
9667        return RCPair(0U, &ARM::DPR_8RegClass);
9668      if (VT.getSizeInBits() == 128)
9669        return RCPair(0U, &ARM::QPR_8RegClass);
9670      break;
9671    case 't':
9672      if (VT == MVT::f32)
9673        return RCPair(0U, &ARM::SPRRegClass);
9674      break;
9675    }
9676  }
9677  if (StringRef("{cc}").equals_lower(Constraint))
9678    return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
9679
9680  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
9681}
9682
9683/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9684/// vector.  If it is invalid, don't add anything to Ops.
9685void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9686                                                     std::string &Constraint,
9687                                                     std::vector<SDValue>&Ops,
9688                                                     SelectionDAG &DAG) const {
9689  SDValue Result(0, 0);
9690
9691  // Currently only support length 1 constraints.
9692  if (Constraint.length() != 1) return;
9693
9694  char ConstraintLetter = Constraint[0];
9695  switch (ConstraintLetter) {
9696  default: break;
9697  case 'j':
9698  case 'I': case 'J': case 'K': case 'L':
9699  case 'M': case 'N': case 'O':
9700    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
9701    if (!C)
9702      return;
9703
9704    int64_t CVal64 = C->getSExtValue();
9705    int CVal = (int) CVal64;
9706    // None of these constraints allow values larger than 32 bits.  Check
9707    // that the value fits in an int.
9708    if (CVal != CVal64)
9709      return;
9710
9711    switch (ConstraintLetter) {
9712      case 'j':
9713        // Constant suitable for movw, must be between 0 and
9714        // 65535.
9715        if (Subtarget->hasV6T2Ops())
9716          if (CVal >= 0 && CVal <= 65535)
9717            break;
9718        return;
9719      case 'I':
9720        if (Subtarget->isThumb1Only()) {
9721          // This must be a constant between 0 and 255, for ADD
9722          // immediates.
9723          if (CVal >= 0 && CVal <= 255)
9724            break;
9725        } else if (Subtarget->isThumb2()) {
9726          // A constant that can be used as an immediate value in a
9727          // data-processing instruction.
9728          if (ARM_AM::getT2SOImmVal(CVal) != -1)
9729            break;
9730        } else {
9731          // A constant that can be used as an immediate value in a
9732          // data-processing instruction.
9733          if (ARM_AM::getSOImmVal(CVal) != -1)
9734            break;
9735        }
9736        return;
9737
9738      case 'J':
9739        if (Subtarget->isThumb()) {  // FIXME thumb2
9740          // This must be a constant between -255 and -1, for negated ADD
9741          // immediates. This can be used in GCC with an "n" modifier that
9742          // prints the negated value, for use with SUB instructions. It is
9743          // not useful otherwise but is implemented for compatibility.
9744          if (CVal >= -255 && CVal <= -1)
9745            break;
9746        } else {
9747          // This must be a constant between -4095 and 4095. It is not clear
9748          // what this constraint is intended for. Implemented for
9749          // compatibility with GCC.
9750          if (CVal >= -4095 && CVal <= 4095)
9751            break;
9752        }
9753        return;
9754
9755      case 'K':
9756        if (Subtarget->isThumb1Only()) {
9757          // A 32-bit value where only one byte has a nonzero value. Exclude
9758          // zero to match GCC. This constraint is used by GCC internally for
9759          // constants that can be loaded with a move/shift combination.
9760          // It is not useful otherwise but is implemented for compatibility.
9761          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
9762            break;
9763        } else if (Subtarget->isThumb2()) {
9764          // A constant whose bitwise inverse can be used as an immediate
9765          // value in a data-processing instruction. This can be used in GCC
9766          // with a "B" modifier that prints the inverted value, for use with
9767          // BIC and MVN instructions. It is not useful otherwise but is
9768          // implemented for compatibility.
9769          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
9770            break;
9771        } else {
9772          // A constant whose bitwise inverse can be used as an immediate
9773          // value in a data-processing instruction. This can be used in GCC
9774          // with a "B" modifier that prints the inverted value, for use with
9775          // BIC and MVN instructions. It is not useful otherwise but is
9776          // implemented for compatibility.
9777          if (ARM_AM::getSOImmVal(~CVal) != -1)
9778            break;
9779        }
9780        return;
9781
9782      case 'L':
9783        if (Subtarget->isThumb1Only()) {
9784          // This must be a constant between -7 and 7,
9785          // for 3-operand ADD/SUB immediate instructions.
9786          if (CVal >= -7 && CVal < 7)
9787            break;
9788        } else if (Subtarget->isThumb2()) {
9789          // A constant whose negation can be used as an immediate value in a
9790          // data-processing instruction. This can be used in GCC with an "n"
9791          // modifier that prints the negated value, for use with SUB
9792          // instructions. It is not useful otherwise but is implemented for
9793          // compatibility.
9794          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
9795            break;
9796        } else {
9797          // A constant whose negation can be used as an immediate value in a
9798          // data-processing instruction. This can be used in GCC with an "n"
9799          // modifier that prints the negated value, for use with SUB
9800          // instructions. It is not useful otherwise but is implemented for
9801          // compatibility.
9802          if (ARM_AM::getSOImmVal(-CVal) != -1)
9803            break;
9804        }
9805        return;
9806
9807      case 'M':
9808        if (Subtarget->isThumb()) { // FIXME thumb2
9809          // This must be a multiple of 4 between 0 and 1020, for
9810          // ADD sp + immediate.
9811          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
9812            break;
9813        } else {
9814          // A power of two or a constant between 0 and 32.  This is used in
9815          // GCC for the shift amount on shifted register operands, but it is
9816          // useful in general for any shift amounts.
9817          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
9818            break;
9819        }
9820        return;
9821
9822      case 'N':
9823        if (Subtarget->isThumb()) {  // FIXME thumb2
9824          // This must be a constant between 0 and 31, for shift amounts.
9825          if (CVal >= 0 && CVal <= 31)
9826            break;
9827        }
9828        return;
9829
9830      case 'O':
9831        if (Subtarget->isThumb()) {  // FIXME thumb2
9832          // This must be a multiple of 4 between -508 and 508, for
9833          // ADD/SUB sp = sp + immediate.
9834          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
9835            break;
9836        }
9837        return;
9838    }
9839    Result = DAG.getTargetConstant(CVal, Op.getValueType());
9840    break;
9841  }
9842
9843  if (Result.getNode()) {
9844    Ops.push_back(Result);
9845    return;
9846  }
9847  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
9848}
9849
9850bool
9851ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
9852  // The ARM target isn't yet aware of offsets.
9853  return false;
9854}
9855
9856bool ARM::isBitFieldInvertedMask(unsigned v) {
9857  if (v == 0xffffffff)
9858    return 0;
9859  // there can be 1's on either or both "outsides", all the "inside"
9860  // bits must be 0's
9861  unsigned int lsb = 0, msb = 31;
9862  while (v & (1 << msb)) --msb;
9863  while (v & (1 << lsb)) ++lsb;
9864  for (unsigned int i = lsb; i <= msb; ++i) {
9865    if (v & (1 << i))
9866      return 0;
9867  }
9868  return 1;
9869}
9870
9871/// isFPImmLegal - Returns true if the target can instruction select the
9872/// specified FP immediate natively. If false, the legalizer will
9873/// materialize the FP immediate as a load from a constant pool.
9874bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
9875  if (!Subtarget->hasVFP3())
9876    return false;
9877  if (VT == MVT::f32)
9878    return ARM_AM::getFP32Imm(Imm) != -1;
9879  if (VT == MVT::f64)
9880    return ARM_AM::getFP64Imm(Imm) != -1;
9881  return false;
9882}
9883
9884/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
9885/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
9886/// specified in the intrinsic calls.
9887bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
9888                                           const CallInst &I,
9889                                           unsigned Intrinsic) const {
9890  switch (Intrinsic) {
9891  case Intrinsic::arm_neon_vld1:
9892  case Intrinsic::arm_neon_vld2:
9893  case Intrinsic::arm_neon_vld3:
9894  case Intrinsic::arm_neon_vld4:
9895  case Intrinsic::arm_neon_vld2lane:
9896  case Intrinsic::arm_neon_vld3lane:
9897  case Intrinsic::arm_neon_vld4lane: {
9898    Info.opc = ISD::INTRINSIC_W_CHAIN;
9899    // Conservatively set memVT to the entire set of vectors loaded.
9900    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
9901    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9902    Info.ptrVal = I.getArgOperand(0);
9903    Info.offset = 0;
9904    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9905    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9906    Info.vol = false; // volatile loads with NEON intrinsics not supported
9907    Info.readMem = true;
9908    Info.writeMem = false;
9909    return true;
9910  }
9911  case Intrinsic::arm_neon_vst1:
9912  case Intrinsic::arm_neon_vst2:
9913  case Intrinsic::arm_neon_vst3:
9914  case Intrinsic::arm_neon_vst4:
9915  case Intrinsic::arm_neon_vst2lane:
9916  case Intrinsic::arm_neon_vst3lane:
9917  case Intrinsic::arm_neon_vst4lane: {
9918    Info.opc = ISD::INTRINSIC_VOID;
9919    // Conservatively set memVT to the entire set of vectors stored.
9920    unsigned NumElts = 0;
9921    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
9922      Type *ArgTy = I.getArgOperand(ArgI)->getType();
9923      if (!ArgTy->isVectorTy())
9924        break;
9925      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
9926    }
9927    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
9928    Info.ptrVal = I.getArgOperand(0);
9929    Info.offset = 0;
9930    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
9931    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
9932    Info.vol = false; // volatile stores with NEON intrinsics not supported
9933    Info.readMem = false;
9934    Info.writeMem = true;
9935    return true;
9936  }
9937  case Intrinsic::arm_strexd: {
9938    Info.opc = ISD::INTRINSIC_W_CHAIN;
9939    Info.memVT = MVT::i64;
9940    Info.ptrVal = I.getArgOperand(2);
9941    Info.offset = 0;
9942    Info.align = 8;
9943    Info.vol = true;
9944    Info.readMem = false;
9945    Info.writeMem = true;
9946    return true;
9947  }
9948  case Intrinsic::arm_ldrexd: {
9949    Info.opc = ISD::INTRINSIC_W_CHAIN;
9950    Info.memVT = MVT::i64;
9951    Info.ptrVal = I.getArgOperand(0);
9952    Info.offset = 0;
9953    Info.align = 8;
9954    Info.vol = true;
9955    Info.readMem = true;
9956    Info.writeMem = false;
9957    return true;
9958  }
9959  default:
9960    break;
9961  }
9962
9963  return false;
9964}
9965