ARMISelLowering.cpp revision c9aed19747608b7688a64f2f382a008889f8e57d
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMISelLowering.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMRegisterInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetMachine.h"
25#include "ARMTargetObjectFile.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/GlobalValue.h"
30#include "llvm/Instruction.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Type.h"
33#include "llvm/CodeGen/CallingConvLower.h"
34#include "llvm/CodeGen/MachineBasicBlock.h"
35#include "llvm/CodeGen/MachineFrameInfo.h"
36#include "llvm/CodeGen/MachineFunction.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/PseudoSourceValue.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/MC/MCSectionMachO.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/ADT/VectorExtras.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/Support/CommandLine.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include <sstream>
50using namespace llvm;
51
52STATISTIC(NumTailCalls, "Number of tail calls");
53
54// This option should go away when Machine LICM is smart enough to hoist a
55// reg-to-reg VDUP.
56static cl::opt<bool>
57EnableARMVDUPsplat("arm-vdup-splat", cl::Hidden,
58  cl::desc("Generate VDUP for integer constant splats (TEMPORARY OPTION)."),
59  cl::init(false));
60
61static cl::opt<bool>
62EnableARMLongCalls("arm-long-calls", cl::Hidden,
63  cl::desc("Generate calls via indirect call instructions"),
64  cl::init(false));
65
66static cl::opt<bool>
67ARMInterworking("arm-interworking", cl::Hidden,
68  cl::desc("Enable / disable ARM interworking (for debugging only)"),
69  cl::init(true));
70
71static cl::opt<bool>
72EnableARMCodePlacement("arm-code-placement", cl::Hidden,
73  cl::desc("Enable code placement pass for ARM"),
74  cl::init(false));
75
76static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
77                                   CCValAssign::LocInfo &LocInfo,
78                                   ISD::ArgFlagsTy &ArgFlags,
79                                   CCState &State);
80static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
81                                    CCValAssign::LocInfo &LocInfo,
82                                    ISD::ArgFlagsTy &ArgFlags,
83                                    CCState &State);
84static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
85                                      CCValAssign::LocInfo &LocInfo,
86                                      ISD::ArgFlagsTy &ArgFlags,
87                                      CCState &State);
88static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
89                                       CCValAssign::LocInfo &LocInfo,
90                                       ISD::ArgFlagsTy &ArgFlags,
91                                       CCState &State);
92
93void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
94                                       EVT PromotedBitwiseVT) {
95  if (VT != PromotedLdStVT) {
96    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
97    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
98                       PromotedLdStVT.getSimpleVT());
99
100    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
101    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
102                       PromotedLdStVT.getSimpleVT());
103  }
104
105  EVT ElemTy = VT.getVectorElementType();
106  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
107    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
108  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
109    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
110  if (ElemTy != MVT::i32) {
111    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
112    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
113    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
114    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
115  }
116  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
117  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
118  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
119  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
120  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
121  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
122  if (VT.isInteger()) {
123    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
124    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
125    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
126  }
127
128  // Promote all bit-wise operations.
129  if (VT.isInteger() && VT != PromotedBitwiseVT) {
130    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
131    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
132                       PromotedBitwiseVT.getSimpleVT());
133    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
134    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
135                       PromotedBitwiseVT.getSimpleVT());
136    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
137    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
138                       PromotedBitwiseVT.getSimpleVT());
139  }
140
141  // Neon does not support vector divide/remainder operations.
142  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
143  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
144  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
145  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
146  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
147  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
148}
149
150void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
151  addRegisterClass(VT, ARM::DPRRegisterClass);
152  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
153}
154
155void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
156  addRegisterClass(VT, ARM::QPRRegisterClass);
157  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
158}
159
160static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
161  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
162    return new TargetLoweringObjectFileMachO();
163
164  return new ARMElfTargetObjectFile();
165}
166
167ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
168    : TargetLowering(TM, createTLOF(TM)) {
169  Subtarget = &TM.getSubtarget<ARMSubtarget>();
170  RegInfo = TM.getRegisterInfo();
171
172  if (Subtarget->isTargetDarwin()) {
173    // Uses VFP for Thumb libfuncs if available.
174    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
175      // Single-precision floating-point arithmetic.
176      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
177      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
178      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
179      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
180
181      // Double-precision floating-point arithmetic.
182      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
183      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
184      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
185      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
186
187      // Single-precision comparisons.
188      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
189      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
190      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
191      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
192      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
193      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
194      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
195      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
196
197      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
198      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
199      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
200      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
201      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
202      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
204      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
205
206      // Double-precision comparisons.
207      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
208      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
209      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
210      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
211      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
212      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
213      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
214      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
215
216      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
217      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
218      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
219      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
220      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
221      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
222      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
223      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
224
225      // Floating-point to integer conversions.
226      // i64 conversions are done via library routines even when generating VFP
227      // instructions, so use the same ones.
228      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
229      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
230      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
231      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
232
233      // Conversions between floating types.
234      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
235      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
236
237      // Integer to floating-point conversions.
238      // i64 conversions are done via library routines even when generating VFP
239      // instructions, so use the same ones.
240      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
241      // e.g., __floatunsidf vs. __floatunssidfvfp.
242      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
243      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
244      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
245      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
246    }
247  }
248
249  // These libcalls are not available in 32-bit.
250  setLibcallName(RTLIB::SHL_I128, 0);
251  setLibcallName(RTLIB::SRL_I128, 0);
252  setLibcallName(RTLIB::SRA_I128, 0);
253
254  // Libcalls should use the AAPCS base standard ABI, even if hard float
255  // is in effect, as per the ARM RTABI specification, section 4.1.2.
256  if (Subtarget->isAAPCS_ABI()) {
257    for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
258      setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
259                            CallingConv::ARM_AAPCS);
260    }
261  }
262
263  if (Subtarget->isThumb1Only())
264    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
265  else
266    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
267  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
268    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
269    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
270
271    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
272  }
273
274  if (Subtarget->hasNEON()) {
275    addDRTypeForNEON(MVT::v2f32);
276    addDRTypeForNEON(MVT::v8i8);
277    addDRTypeForNEON(MVT::v4i16);
278    addDRTypeForNEON(MVT::v2i32);
279    addDRTypeForNEON(MVT::v1i64);
280
281    addQRTypeForNEON(MVT::v4f32);
282    addQRTypeForNEON(MVT::v2f64);
283    addQRTypeForNEON(MVT::v16i8);
284    addQRTypeForNEON(MVT::v8i16);
285    addQRTypeForNEON(MVT::v4i32);
286    addQRTypeForNEON(MVT::v2i64);
287
288    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
289    // neither Neon nor VFP support any arithmetic operations on it.
290    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
291    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
292    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
293    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
294    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
295    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
296    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
297    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
298    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
299    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
300    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
301    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
302    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
303    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
304    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
305    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
306    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
307    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
308    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
309    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
310    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
311    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
312    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
313    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
314
315    // Neon does not support some operations on v1i64 and v2i64 types.
316    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
317    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
318    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
319    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
320
321    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
322    setTargetDAGCombine(ISD::SHL);
323    setTargetDAGCombine(ISD::SRL);
324    setTargetDAGCombine(ISD::SRA);
325    setTargetDAGCombine(ISD::SIGN_EXTEND);
326    setTargetDAGCombine(ISD::ZERO_EXTEND);
327    setTargetDAGCombine(ISD::ANY_EXTEND);
328    setTargetDAGCombine(ISD::SELECT_CC);
329  }
330
331  computeRegisterProperties();
332
333  // ARM does not have f32 extending load.
334  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
335
336  // ARM does not have i1 sign extending load.
337  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
338
339  // ARM supports all 4 flavors of integer indexed load / store.
340  if (!Subtarget->isThumb1Only()) {
341    for (unsigned im = (unsigned)ISD::PRE_INC;
342         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
343      setIndexedLoadAction(im,  MVT::i1,  Legal);
344      setIndexedLoadAction(im,  MVT::i8,  Legal);
345      setIndexedLoadAction(im,  MVT::i16, Legal);
346      setIndexedLoadAction(im,  MVT::i32, Legal);
347      setIndexedStoreAction(im, MVT::i1,  Legal);
348      setIndexedStoreAction(im, MVT::i8,  Legal);
349      setIndexedStoreAction(im, MVT::i16, Legal);
350      setIndexedStoreAction(im, MVT::i32, Legal);
351    }
352  }
353
354  // i64 operation support.
355  if (Subtarget->isThumb1Only()) {
356    setOperationAction(ISD::MUL,     MVT::i64, Expand);
357    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
358    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
359    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
360    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
361  } else {
362    setOperationAction(ISD::MUL,     MVT::i64, Expand);
363    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
364    if (!Subtarget->hasV6Ops())
365      setOperationAction(ISD::MULHS, MVT::i32, Expand);
366  }
367  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
368  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
369  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
370  setOperationAction(ISD::SRL,       MVT::i64, Custom);
371  setOperationAction(ISD::SRA,       MVT::i64, Custom);
372
373  // ARM does not have ROTL.
374  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
375  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
376  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
377  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
378    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
379
380  // Only ARMv6 has BSWAP.
381  if (!Subtarget->hasV6Ops())
382    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
383
384  // These are expanded into libcalls.
385  if (!Subtarget->hasDivide()) {
386    // v7M has a hardware divider
387    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
388    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
389  }
390  setOperationAction(ISD::SREM,  MVT::i32, Expand);
391  setOperationAction(ISD::UREM,  MVT::i32, Expand);
392  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
393  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
394
395  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
396  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
397  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
398  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
399  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
400
401  setOperationAction(ISD::TRAP, MVT::Other, Legal);
402
403  // Use the default implementation.
404  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
405  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
406  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
407  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
408  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
409  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
410  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
411  // FIXME: Shouldn't need this, since no register is used, but the legalizer
412  // doesn't yet know how to not do that for SjLj.
413  setExceptionSelectorRegister(ARM::R0);
414  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
415  // Handle atomics directly for ARMv[67] (except for Thumb1), otherwise
416  // use the default expansion.
417  bool canHandleAtomics =
418    (Subtarget->hasV7Ops() ||
419      (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only()));
420  if (canHandleAtomics) {
421    // membarrier needs custom lowering; the rest are legal and handled
422    // normally.
423    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
424  } else {
425    // Set them all for expansion, which will force libcalls.
426    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
427    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
428    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
429    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
430    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
431    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
432    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
433    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
434    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
435    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
436    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
437    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
438    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
439    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
440    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
441    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
442    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
443    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
444    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
445    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
446    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
447    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
448    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
449    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
450    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
451    // Since the libcalls include locking, fold in the fences
452    setShouldFoldAtomicFences(true);
453  }
454  // 64-bit versions are always libcalls (for now)
455  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
456  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
457  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
458  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
459  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
460  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
461  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
462  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
463
464  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
465  if (!Subtarget->hasV6Ops()) {
466    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
467    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
468  }
469  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
470
471  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
472    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
473    // iff target supports vfp2.
474    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
475    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
476  }
477
478  // We want to custom lower some of our intrinsics.
479  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
480  if (Subtarget->isTargetDarwin()) {
481    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
482    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
483  }
484
485  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
486  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
487  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
488  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
489  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
490  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
491  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
492  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
493  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
494
495  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
496  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
497  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
498  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
499  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
500
501  // We don't support sin/cos/fmod/copysign/pow
502  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
503  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
504  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
505  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
506  setOperationAction(ISD::FREM,      MVT::f64, Expand);
507  setOperationAction(ISD::FREM,      MVT::f32, Expand);
508  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
509    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
510    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
511  }
512  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
513  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
514
515  // Various VFP goodness
516  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
517    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
518    if (Subtarget->hasVFP2()) {
519      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
520      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
521      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
522      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
523    }
524    // Special handling for half-precision FP.
525    if (!Subtarget->hasFP16()) {
526      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
527      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
528    }
529  }
530
531  // We have target-specific dag combine patterns for the following nodes:
532  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
533  setTargetDAGCombine(ISD::ADD);
534  setTargetDAGCombine(ISD::SUB);
535  setTargetDAGCombine(ISD::MUL);
536
537  if (Subtarget->hasV6T2Ops())
538    setTargetDAGCombine(ISD::OR);
539
540  setStackPointerRegisterToSaveRestore(ARM::SP);
541
542  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
543    setSchedulingPreference(Sched::RegPressure);
544  else
545    setSchedulingPreference(Sched::Hybrid);
546
547  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
548
549  // On ARM arguments smaller than 4 bytes are extended, so all arguments
550  // are at least 4 bytes aligned.
551  setMinStackArgumentAlignment(4);
552
553  if (EnableARMCodePlacement)
554    benefitFromCodePlacementOpt = true;
555}
556
557std::pair<const TargetRegisterClass*, uint8_t>
558ARMTargetLowering::findRepresentativeClass(EVT VT) const{
559  const TargetRegisterClass *RRC = 0;
560  uint8_t Cost = 1;
561  switch (VT.getSimpleVT().SimpleTy) {
562  default:
563    return TargetLowering::findRepresentativeClass(VT);
564  // Use DPR as representative register class for all floating point
565  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
566  // the cost is 1 for both f32 and f64.
567  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
568  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
569    RRC = ARM::DPRRegisterClass;
570    break;
571  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
572  case MVT::v4f32: case MVT::v2f64:
573    RRC = ARM::DPRRegisterClass;
574    Cost = 2;
575    break;
576  case MVT::v4i64:
577    RRC = ARM::DPRRegisterClass;
578    Cost = 4;
579    break;
580  case MVT::v8i64:
581    RRC = ARM::DPRRegisterClass;
582    Cost = 8;
583    break;
584  }
585  return std::make_pair(RRC, Cost);
586}
587
588const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
589  switch (Opcode) {
590  default: return 0;
591  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
592  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
593  case ARMISD::CALL:          return "ARMISD::CALL";
594  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
595  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
596  case ARMISD::tCALL:         return "ARMISD::tCALL";
597  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
598  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
599  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
600  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
601  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
602  case ARMISD::CMP:           return "ARMISD::CMP";
603  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
604  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
605  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
606  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
607  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
608  case ARMISD::CMOV:          return "ARMISD::CMOV";
609  case ARMISD::CNEG:          return "ARMISD::CNEG";
610
611  case ARMISD::RBIT:          return "ARMISD::RBIT";
612
613  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
614  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
615  case ARMISD::SITOF:         return "ARMISD::SITOF";
616  case ARMISD::UITOF:         return "ARMISD::UITOF";
617
618  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
619  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
620  case ARMISD::RRX:           return "ARMISD::RRX";
621
622  case ARMISD::VMOVRRD:         return "ARMISD::VMOVRRD";
623  case ARMISD::VMOVDRR:         return "ARMISD::VMOVDRR";
624
625  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
626  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
627
628  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
629
630  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
631
632  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
633
634  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
635  case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
636
637  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
638  case ARMISD::VCGE:          return "ARMISD::VCGE";
639  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
640  case ARMISD::VCGT:          return "ARMISD::VCGT";
641  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
642  case ARMISD::VTST:          return "ARMISD::VTST";
643
644  case ARMISD::VSHL:          return "ARMISD::VSHL";
645  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
646  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
647  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
648  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
649  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
650  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
651  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
652  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
653  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
654  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
655  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
656  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
657  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
658  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
659  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
660  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
661  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
662  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
663  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
664  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
665  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
666  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
667  case ARMISD::VDUP:          return "ARMISD::VDUP";
668  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
669  case ARMISD::VEXT:          return "ARMISD::VEXT";
670  case ARMISD::VREV64:        return "ARMISD::VREV64";
671  case ARMISD::VREV32:        return "ARMISD::VREV32";
672  case ARMISD::VREV16:        return "ARMISD::VREV16";
673  case ARMISD::VZIP:          return "ARMISD::VZIP";
674  case ARMISD::VUZP:          return "ARMISD::VUZP";
675  case ARMISD::VTRN:          return "ARMISD::VTRN";
676  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
677  case ARMISD::FMAX:          return "ARMISD::FMAX";
678  case ARMISD::FMIN:          return "ARMISD::FMIN";
679  case ARMISD::BFI:           return "ARMISD::BFI";
680  }
681}
682
683/// getRegClassFor - Return the register class that should be used for the
684/// specified value type.
685TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
686  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
687  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
688  // load / store 4 to 8 consecutive D registers.
689  if (Subtarget->hasNEON()) {
690    if (VT == MVT::v4i64)
691      return ARM::QQPRRegisterClass;
692    else if (VT == MVT::v8i64)
693      return ARM::QQQQPRRegisterClass;
694  }
695  return TargetLowering::getRegClassFor(VT);
696}
697
698// Create a fast isel object.
699FastISel *
700ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
701  return ARM::createFastISel(funcInfo);
702}
703
704/// getFunctionAlignment - Return the Log2 alignment of this function.
705unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
706  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
707}
708
709/// getMaximalGlobalOffset - Returns the maximal possible offset which can
710/// be used for loads / stores from the global.
711unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
712  return (Subtarget->isThumb1Only() ? 127 : 4095);
713}
714
715Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
716  unsigned NumVals = N->getNumValues();
717  if (!NumVals)
718    return Sched::RegPressure;
719
720  for (unsigned i = 0; i != NumVals; ++i) {
721    EVT VT = N->getValueType(i);
722    if (VT.isFloatingPoint() || VT.isVector())
723      return Sched::Latency;
724  }
725
726  if (!N->isMachineOpcode())
727    return Sched::RegPressure;
728
729  // Load are scheduled for latency even if there instruction itinerary
730  // is not available.
731  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
732  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
733  if (TID.mayLoad())
734    return Sched::Latency;
735
736  const InstrItineraryData &Itins = getTargetMachine().getInstrItineraryData();
737  if (!Itins.isEmpty() && Itins.getStageLatency(TID.getSchedClass()) > 2)
738    return Sched::Latency;
739  return Sched::RegPressure;
740}
741
742unsigned
743ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
744                                       MachineFunction &MF) const {
745  switch (RC->getID()) {
746  default:
747    return 0;
748  case ARM::tGPRRegClassID:
749    return RegInfo->hasFP(MF) ? 4 : 5;
750  case ARM::GPRRegClassID: {
751    unsigned FP = RegInfo->hasFP(MF) ? 1 : 0;
752    return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
753  }
754  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
755  case ARM::DPRRegClassID:
756    return 32 - 10;
757  }
758}
759
760//===----------------------------------------------------------------------===//
761// Lowering Code
762//===----------------------------------------------------------------------===//
763
764/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
765static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
766  switch (CC) {
767  default: llvm_unreachable("Unknown condition code!");
768  case ISD::SETNE:  return ARMCC::NE;
769  case ISD::SETEQ:  return ARMCC::EQ;
770  case ISD::SETGT:  return ARMCC::GT;
771  case ISD::SETGE:  return ARMCC::GE;
772  case ISD::SETLT:  return ARMCC::LT;
773  case ISD::SETLE:  return ARMCC::LE;
774  case ISD::SETUGT: return ARMCC::HI;
775  case ISD::SETUGE: return ARMCC::HS;
776  case ISD::SETULT: return ARMCC::LO;
777  case ISD::SETULE: return ARMCC::LS;
778  }
779}
780
781/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
782static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
783                        ARMCC::CondCodes &CondCode2) {
784  CondCode2 = ARMCC::AL;
785  switch (CC) {
786  default: llvm_unreachable("Unknown FP condition!");
787  case ISD::SETEQ:
788  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
789  case ISD::SETGT:
790  case ISD::SETOGT: CondCode = ARMCC::GT; break;
791  case ISD::SETGE:
792  case ISD::SETOGE: CondCode = ARMCC::GE; break;
793  case ISD::SETOLT: CondCode = ARMCC::MI; break;
794  case ISD::SETOLE: CondCode = ARMCC::LS; break;
795  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
796  case ISD::SETO:   CondCode = ARMCC::VC; break;
797  case ISD::SETUO:  CondCode = ARMCC::VS; break;
798  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
799  case ISD::SETUGT: CondCode = ARMCC::HI; break;
800  case ISD::SETUGE: CondCode = ARMCC::PL; break;
801  case ISD::SETLT:
802  case ISD::SETULT: CondCode = ARMCC::LT; break;
803  case ISD::SETLE:
804  case ISD::SETULE: CondCode = ARMCC::LE; break;
805  case ISD::SETNE:
806  case ISD::SETUNE: CondCode = ARMCC::NE; break;
807  }
808}
809
810//===----------------------------------------------------------------------===//
811//                      Calling Convention Implementation
812//===----------------------------------------------------------------------===//
813
814#include "ARMGenCallingConv.inc"
815
816// APCS f64 is in register pairs, possibly split to stack
817static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
818                          CCValAssign::LocInfo &LocInfo,
819                          CCState &State, bool CanFail) {
820  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
821
822  // Try to get the first register.
823  if (unsigned Reg = State.AllocateReg(RegList, 4))
824    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
825  else {
826    // For the 2nd half of a v2f64, do not fail.
827    if (CanFail)
828      return false;
829
830    // Put the whole thing on the stack.
831    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
832                                           State.AllocateStack(8, 4),
833                                           LocVT, LocInfo));
834    return true;
835  }
836
837  // Try to get the second register.
838  if (unsigned Reg = State.AllocateReg(RegList, 4))
839    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
840  else
841    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
842                                           State.AllocateStack(4, 4),
843                                           LocVT, LocInfo));
844  return true;
845}
846
847static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
848                                   CCValAssign::LocInfo &LocInfo,
849                                   ISD::ArgFlagsTy &ArgFlags,
850                                   CCState &State) {
851  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
852    return false;
853  if (LocVT == MVT::v2f64 &&
854      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
855    return false;
856  return true;  // we handled it
857}
858
859// AAPCS f64 is in aligned register pairs
860static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
861                           CCValAssign::LocInfo &LocInfo,
862                           CCState &State, bool CanFail) {
863  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
864  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
865  static const unsigned ShadowRegList[] = { ARM::R0, ARM::R1 };
866
867  unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList, 2);
868  if (Reg == 0) {
869    // For the 2nd half of a v2f64, do not just fail.
870    if (CanFail)
871      return false;
872
873    // Put the whole thing on the stack.
874    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
875                                           State.AllocateStack(8, 8),
876                                           LocVT, LocInfo));
877    return true;
878  }
879
880  unsigned i;
881  for (i = 0; i < 2; ++i)
882    if (HiRegList[i] == Reg)
883      break;
884
885  unsigned T = State.AllocateReg(LoRegList[i]);
886  (void)T;
887  assert(T == LoRegList[i] && "Could not allocate register");
888
889  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
890  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
891                                         LocVT, LocInfo));
892  return true;
893}
894
895static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
896                                    CCValAssign::LocInfo &LocInfo,
897                                    ISD::ArgFlagsTy &ArgFlags,
898                                    CCState &State) {
899  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
900    return false;
901  if (LocVT == MVT::v2f64 &&
902      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
903    return false;
904  return true;  // we handled it
905}
906
907static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
908                         CCValAssign::LocInfo &LocInfo, CCState &State) {
909  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
910  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
911
912  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
913  if (Reg == 0)
914    return false; // we didn't handle it
915
916  unsigned i;
917  for (i = 0; i < 2; ++i)
918    if (HiRegList[i] == Reg)
919      break;
920
921  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
922  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
923                                         LocVT, LocInfo));
924  return true;
925}
926
927static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
928                                      CCValAssign::LocInfo &LocInfo,
929                                      ISD::ArgFlagsTy &ArgFlags,
930                                      CCState &State) {
931  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
932    return false;
933  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
934    return false;
935  return true;  // we handled it
936}
937
938static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
939                                       CCValAssign::LocInfo &LocInfo,
940                                       ISD::ArgFlagsTy &ArgFlags,
941                                       CCState &State) {
942  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
943                                   State);
944}
945
946/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
947/// given CallingConvention value.
948CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
949                                                 bool Return,
950                                                 bool isVarArg) const {
951  switch (CC) {
952  default:
953    llvm_unreachable("Unsupported calling convention");
954  case CallingConv::C:
955  case CallingConv::Fast:
956    // Use target triple & subtarget features to do actual dispatch.
957    if (Subtarget->isAAPCS_ABI()) {
958      if (Subtarget->hasVFP2() &&
959          FloatABIType == FloatABI::Hard && !isVarArg)
960        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
961      else
962        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
963    } else
964        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
965  case CallingConv::ARM_AAPCS_VFP:
966    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
967  case CallingConv::ARM_AAPCS:
968    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
969  case CallingConv::ARM_APCS:
970    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
971  }
972}
973
974/// LowerCallResult - Lower the result values of a call into the
975/// appropriate copies out of appropriate physical registers.
976SDValue
977ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
978                                   CallingConv::ID CallConv, bool isVarArg,
979                                   const SmallVectorImpl<ISD::InputArg> &Ins,
980                                   DebugLoc dl, SelectionDAG &DAG,
981                                   SmallVectorImpl<SDValue> &InVals) const {
982
983  // Assign locations to each value returned by this call.
984  SmallVector<CCValAssign, 16> RVLocs;
985  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
986                 RVLocs, *DAG.getContext());
987  CCInfo.AnalyzeCallResult(Ins,
988                           CCAssignFnForNode(CallConv, /* Return*/ true,
989                                             isVarArg));
990
991  // Copy all of the result registers out of their specified physreg.
992  for (unsigned i = 0; i != RVLocs.size(); ++i) {
993    CCValAssign VA = RVLocs[i];
994
995    SDValue Val;
996    if (VA.needsCustom()) {
997      // Handle f64 or half of a v2f64.
998      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
999                                      InFlag);
1000      Chain = Lo.getValue(1);
1001      InFlag = Lo.getValue(2);
1002      VA = RVLocs[++i]; // skip ahead to next loc
1003      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1004                                      InFlag);
1005      Chain = Hi.getValue(1);
1006      InFlag = Hi.getValue(2);
1007      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1008
1009      if (VA.getLocVT() == MVT::v2f64) {
1010        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1011        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1012                          DAG.getConstant(0, MVT::i32));
1013
1014        VA = RVLocs[++i]; // skip ahead to next loc
1015        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1016        Chain = Lo.getValue(1);
1017        InFlag = Lo.getValue(2);
1018        VA = RVLocs[++i]; // skip ahead to next loc
1019        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1020        Chain = Hi.getValue(1);
1021        InFlag = Hi.getValue(2);
1022        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1023        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1024                          DAG.getConstant(1, MVT::i32));
1025      }
1026    } else {
1027      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1028                               InFlag);
1029      Chain = Val.getValue(1);
1030      InFlag = Val.getValue(2);
1031    }
1032
1033    switch (VA.getLocInfo()) {
1034    default: llvm_unreachable("Unknown loc info!");
1035    case CCValAssign::Full: break;
1036    case CCValAssign::BCvt:
1037      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
1038      break;
1039    }
1040
1041    InVals.push_back(Val);
1042  }
1043
1044  return Chain;
1045}
1046
1047/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1048/// by "Src" to address "Dst" of size "Size".  Alignment information is
1049/// specified by the specific parameter attribute.  The copy will be passed as
1050/// a byval function parameter.
1051/// Sometimes what we are copying is the end of a larger object, the part that
1052/// does not fit in registers.
1053static SDValue
1054CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1055                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1056                          DebugLoc dl) {
1057  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1058  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1059                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1060                       NULL, 0, NULL, 0);
1061}
1062
1063/// LowerMemOpCallTo - Store the argument to the stack.
1064SDValue
1065ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1066                                    SDValue StackPtr, SDValue Arg,
1067                                    DebugLoc dl, SelectionDAG &DAG,
1068                                    const CCValAssign &VA,
1069                                    ISD::ArgFlagsTy Flags) const {
1070  unsigned LocMemOffset = VA.getLocMemOffset();
1071  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1072  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1073  if (Flags.isByVal()) {
1074    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1075  }
1076  return DAG.getStore(Chain, dl, Arg, PtrOff,
1077                      PseudoSourceValue::getStack(), LocMemOffset,
1078                      false, false, 0);
1079}
1080
1081void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1082                                         SDValue Chain, SDValue &Arg,
1083                                         RegsToPassVector &RegsToPass,
1084                                         CCValAssign &VA, CCValAssign &NextVA,
1085                                         SDValue &StackPtr,
1086                                         SmallVector<SDValue, 8> &MemOpChains,
1087                                         ISD::ArgFlagsTy Flags) const {
1088
1089  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1090                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1091  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1092
1093  if (NextVA.isRegLoc())
1094    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1095  else {
1096    assert(NextVA.isMemLoc());
1097    if (StackPtr.getNode() == 0)
1098      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1099
1100    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1101                                           dl, DAG, NextVA,
1102                                           Flags));
1103  }
1104}
1105
1106/// LowerCall - Lowering a call into a callseq_start <-
1107/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1108/// nodes.
1109SDValue
1110ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1111                             CallingConv::ID CallConv, bool isVarArg,
1112                             bool &isTailCall,
1113                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1114                             const SmallVectorImpl<SDValue> &OutVals,
1115                             const SmallVectorImpl<ISD::InputArg> &Ins,
1116                             DebugLoc dl, SelectionDAG &DAG,
1117                             SmallVectorImpl<SDValue> &InVals) const {
1118  MachineFunction &MF = DAG.getMachineFunction();
1119  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1120  bool IsSibCall = false;
1121  if (isTailCall) {
1122    // Check if it's really possible to do a tail call.
1123    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1124                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1125                                                   Outs, OutVals, Ins, DAG);
1126    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1127    // detected sibcalls.
1128    if (isTailCall) {
1129      ++NumTailCalls;
1130      IsSibCall = true;
1131    }
1132  }
1133
1134  // Analyze operands of the call, assigning locations to each operand.
1135  SmallVector<CCValAssign, 16> ArgLocs;
1136  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1137                 *DAG.getContext());
1138  CCInfo.AnalyzeCallOperands(Outs,
1139                             CCAssignFnForNode(CallConv, /* Return*/ false,
1140                                               isVarArg));
1141
1142  // Get a count of how many bytes are to be pushed on the stack.
1143  unsigned NumBytes = CCInfo.getNextStackOffset();
1144
1145  // For tail calls, memory operands are available in our caller's stack.
1146  if (IsSibCall)
1147    NumBytes = 0;
1148
1149  // Adjust the stack pointer for the new arguments...
1150  // These operations are automatically eliminated by the prolog/epilog pass
1151  if (!IsSibCall)
1152    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1153
1154  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1155
1156  RegsToPassVector RegsToPass;
1157  SmallVector<SDValue, 8> MemOpChains;
1158
1159  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1160  // of tail call optimization, arguments are handled later.
1161  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1162       i != e;
1163       ++i, ++realArgIdx) {
1164    CCValAssign &VA = ArgLocs[i];
1165    SDValue Arg = OutVals[realArgIdx];
1166    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1167
1168    // Promote the value if needed.
1169    switch (VA.getLocInfo()) {
1170    default: llvm_unreachable("Unknown loc info!");
1171    case CCValAssign::Full: break;
1172    case CCValAssign::SExt:
1173      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1174      break;
1175    case CCValAssign::ZExt:
1176      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1177      break;
1178    case CCValAssign::AExt:
1179      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1180      break;
1181    case CCValAssign::BCvt:
1182      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1183      break;
1184    }
1185
1186    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1187    if (VA.needsCustom()) {
1188      if (VA.getLocVT() == MVT::v2f64) {
1189        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1190                                  DAG.getConstant(0, MVT::i32));
1191        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1192                                  DAG.getConstant(1, MVT::i32));
1193
1194        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1195                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1196
1197        VA = ArgLocs[++i]; // skip ahead to next loc
1198        if (VA.isRegLoc()) {
1199          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1200                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1201        } else {
1202          assert(VA.isMemLoc());
1203
1204          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1205                                                 dl, DAG, VA, Flags));
1206        }
1207      } else {
1208        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1209                         StackPtr, MemOpChains, Flags);
1210      }
1211    } else if (VA.isRegLoc()) {
1212      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1213    } else if (!IsSibCall) {
1214      assert(VA.isMemLoc());
1215
1216      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1217                                             dl, DAG, VA, Flags));
1218    }
1219  }
1220
1221  if (!MemOpChains.empty())
1222    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1223                        &MemOpChains[0], MemOpChains.size());
1224
1225  // Build a sequence of copy-to-reg nodes chained together with token chain
1226  // and flag operands which copy the outgoing args into the appropriate regs.
1227  SDValue InFlag;
1228  // Tail call byval lowering might overwrite argument registers so in case of
1229  // tail call optimization the copies to registers are lowered later.
1230  if (!isTailCall)
1231    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1232      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1233                               RegsToPass[i].second, InFlag);
1234      InFlag = Chain.getValue(1);
1235    }
1236
1237  // For tail calls lower the arguments to the 'real' stack slot.
1238  if (isTailCall) {
1239    // Force all the incoming stack arguments to be loaded from the stack
1240    // before any new outgoing arguments are stored to the stack, because the
1241    // outgoing stack slots may alias the incoming argument stack slots, and
1242    // the alias isn't otherwise explicit. This is slightly more conservative
1243    // than necessary, because it means that each store effectively depends
1244    // on every argument instead of just those arguments it would clobber.
1245
1246    // Do not flag preceeding copytoreg stuff together with the following stuff.
1247    InFlag = SDValue();
1248    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1249      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1250                               RegsToPass[i].second, InFlag);
1251      InFlag = Chain.getValue(1);
1252    }
1253    InFlag =SDValue();
1254  }
1255
1256  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1257  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1258  // node so that legalize doesn't hack it.
1259  bool isDirect = false;
1260  bool isARMFunc = false;
1261  bool isLocalARMFunc = false;
1262  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1263
1264  if (EnableARMLongCalls) {
1265    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1266            && "long-calls with non-static relocation model!");
1267    // Handle a global address or an external symbol. If it's not one of
1268    // those, the target's already in a register, so we don't need to do
1269    // anything extra.
1270    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1271      const GlobalValue *GV = G->getGlobal();
1272      // Create a constant pool entry for the callee address
1273      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1274      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1275                                                           ARMPCLabelIndex,
1276                                                           ARMCP::CPValue, 0);
1277      // Get the address of the callee into a register
1278      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1279      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1280      Callee = DAG.getLoad(getPointerTy(), dl,
1281                           DAG.getEntryNode(), CPAddr,
1282                           PseudoSourceValue::getConstantPool(), 0,
1283                           false, false, 0);
1284    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1285      const char *Sym = S->getSymbol();
1286
1287      // Create a constant pool entry for the callee address
1288      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1289      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1290                                                       Sym, ARMPCLabelIndex, 0);
1291      // Get the address of the callee into a register
1292      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1293      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1294      Callee = DAG.getLoad(getPointerTy(), dl,
1295                           DAG.getEntryNode(), CPAddr,
1296                           PseudoSourceValue::getConstantPool(), 0,
1297                           false, false, 0);
1298    }
1299  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1300    const GlobalValue *GV = G->getGlobal();
1301    isDirect = true;
1302    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1303    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1304                   getTargetMachine().getRelocationModel() != Reloc::Static;
1305    isARMFunc = !Subtarget->isThumb() || isStub;
1306    // ARM call to a local ARM function is predicable.
1307    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1308    // tBX takes a register source operand.
1309    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1310      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1311      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1312                                                           ARMPCLabelIndex,
1313                                                           ARMCP::CPValue, 4);
1314      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1315      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1316      Callee = DAG.getLoad(getPointerTy(), dl,
1317                           DAG.getEntryNode(), CPAddr,
1318                           PseudoSourceValue::getConstantPool(), 0,
1319                           false, false, 0);
1320      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1321      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1322                           getPointerTy(), Callee, PICLabel);
1323    } else
1324      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1325  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1326    isDirect = true;
1327    bool isStub = Subtarget->isTargetDarwin() &&
1328                  getTargetMachine().getRelocationModel() != Reloc::Static;
1329    isARMFunc = !Subtarget->isThumb() || isStub;
1330    // tBX takes a register source operand.
1331    const char *Sym = S->getSymbol();
1332    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1333      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1334      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1335                                                       Sym, ARMPCLabelIndex, 4);
1336      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1337      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1338      Callee = DAG.getLoad(getPointerTy(), dl,
1339                           DAG.getEntryNode(), CPAddr,
1340                           PseudoSourceValue::getConstantPool(), 0,
1341                           false, false, 0);
1342      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1343      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1344                           getPointerTy(), Callee, PICLabel);
1345    } else
1346      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1347  }
1348
1349  // FIXME: handle tail calls differently.
1350  unsigned CallOpc;
1351  if (Subtarget->isThumb()) {
1352    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1353      CallOpc = ARMISD::CALL_NOLINK;
1354    else
1355      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1356  } else {
1357    CallOpc = (isDirect || Subtarget->hasV5TOps())
1358      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1359      : ARMISD::CALL_NOLINK;
1360  }
1361
1362  std::vector<SDValue> Ops;
1363  Ops.push_back(Chain);
1364  Ops.push_back(Callee);
1365
1366  // Add argument registers to the end of the list so that they are known live
1367  // into the call.
1368  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1369    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1370                                  RegsToPass[i].second.getValueType()));
1371
1372  if (InFlag.getNode())
1373    Ops.push_back(InFlag);
1374
1375  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1376  if (isTailCall)
1377    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1378
1379  // Returns a chain and a flag for retval copy to use.
1380  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1381  InFlag = Chain.getValue(1);
1382
1383  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1384                             DAG.getIntPtrConstant(0, true), InFlag);
1385  if (!Ins.empty())
1386    InFlag = Chain.getValue(1);
1387
1388  // Handle result values, copying them out of physregs into vregs that we
1389  // return.
1390  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1391                         dl, DAG, InVals);
1392}
1393
1394/// MatchingStackOffset - Return true if the given stack call argument is
1395/// already available in the same position (relatively) of the caller's
1396/// incoming argument stack.
1397static
1398bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1399                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1400                         const ARMInstrInfo *TII) {
1401  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1402  int FI = INT_MAX;
1403  if (Arg.getOpcode() == ISD::CopyFromReg) {
1404    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1405    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
1406      return false;
1407    MachineInstr *Def = MRI->getVRegDef(VR);
1408    if (!Def)
1409      return false;
1410    if (!Flags.isByVal()) {
1411      if (!TII->isLoadFromStackSlot(Def, FI))
1412        return false;
1413    } else {
1414      return false;
1415    }
1416  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1417    if (Flags.isByVal())
1418      // ByVal argument is passed in as a pointer but it's now being
1419      // dereferenced. e.g.
1420      // define @foo(%struct.X* %A) {
1421      //   tail call @bar(%struct.X* byval %A)
1422      // }
1423      return false;
1424    SDValue Ptr = Ld->getBasePtr();
1425    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1426    if (!FINode)
1427      return false;
1428    FI = FINode->getIndex();
1429  } else
1430    return false;
1431
1432  assert(FI != INT_MAX);
1433  if (!MFI->isFixedObjectIndex(FI))
1434    return false;
1435  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1436}
1437
1438/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1439/// for tail call optimization. Targets which want to do tail call
1440/// optimization should implement this function.
1441bool
1442ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1443                                                     CallingConv::ID CalleeCC,
1444                                                     bool isVarArg,
1445                                                     bool isCalleeStructRet,
1446                                                     bool isCallerStructRet,
1447                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1448                                    const SmallVectorImpl<SDValue> &OutVals,
1449                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1450                                                     SelectionDAG& DAG) const {
1451  const Function *CallerF = DAG.getMachineFunction().getFunction();
1452  CallingConv::ID CallerCC = CallerF->getCallingConv();
1453  bool CCMatch = CallerCC == CalleeCC;
1454
1455  // Look for obvious safe cases to perform tail call optimization that do not
1456  // require ABI changes. This is what gcc calls sibcall.
1457
1458  // Do not sibcall optimize vararg calls unless the call site is not passing
1459  // any arguments.
1460  if (isVarArg && !Outs.empty())
1461    return false;
1462
1463  // Also avoid sibcall optimization if either caller or callee uses struct
1464  // return semantics.
1465  if (isCalleeStructRet || isCallerStructRet)
1466    return false;
1467
1468  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1469  // emitEpilogue is not ready for them.
1470  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1471  // LR.  This means if we need to reload LR, it takes an extra instructions,
1472  // which outweighs the value of the tail call; but here we don't know yet
1473  // whether LR is going to be used.  Probably the right approach is to
1474  // generate the tail call here and turn it back into CALL/RET in
1475  // emitEpilogue if LR is used.
1476  if (Subtarget->isThumb1Only())
1477    return false;
1478
1479  // For the moment, we can only do this to functions defined in this
1480  // compilation, or to indirect calls.  A Thumb B to an ARM function,
1481  // or vice versa, is not easily fixed up in the linker unlike BL.
1482  // (We could do this by loading the address of the callee into a register;
1483  // that is an extra instruction over the direct call and burns a register
1484  // as well, so is not likely to be a win.)
1485
1486  // It might be safe to remove this restriction on non-Darwin.
1487
1488  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1489  // but we need to make sure there are enough registers; the only valid
1490  // registers are the 4 used for parameters.  We don't currently do this
1491  // case.
1492  if (isa<ExternalSymbolSDNode>(Callee))
1493      return false;
1494
1495  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1496    const GlobalValue *GV = G->getGlobal();
1497    if (GV->isDeclaration() || GV->isWeakForLinker())
1498      return false;
1499  }
1500
1501  // If the calling conventions do not match, then we'd better make sure the
1502  // results are returned in the same way as what the caller expects.
1503  if (!CCMatch) {
1504    SmallVector<CCValAssign, 16> RVLocs1;
1505    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1506                    RVLocs1, *DAG.getContext());
1507    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1508
1509    SmallVector<CCValAssign, 16> RVLocs2;
1510    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1511                    RVLocs2, *DAG.getContext());
1512    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1513
1514    if (RVLocs1.size() != RVLocs2.size())
1515      return false;
1516    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1517      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1518        return false;
1519      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1520        return false;
1521      if (RVLocs1[i].isRegLoc()) {
1522        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1523          return false;
1524      } else {
1525        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1526          return false;
1527      }
1528    }
1529  }
1530
1531  // If the callee takes no arguments then go on to check the results of the
1532  // call.
1533  if (!Outs.empty()) {
1534    // Check if stack adjustment is needed. For now, do not do this if any
1535    // argument is passed on the stack.
1536    SmallVector<CCValAssign, 16> ArgLocs;
1537    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1538                   ArgLocs, *DAG.getContext());
1539    CCInfo.AnalyzeCallOperands(Outs,
1540                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1541    if (CCInfo.getNextStackOffset()) {
1542      MachineFunction &MF = DAG.getMachineFunction();
1543
1544      // Check if the arguments are already laid out in the right way as
1545      // the caller's fixed stack objects.
1546      MachineFrameInfo *MFI = MF.getFrameInfo();
1547      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1548      const ARMInstrInfo *TII =
1549        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1550      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1551           i != e;
1552           ++i, ++realArgIdx) {
1553        CCValAssign &VA = ArgLocs[i];
1554        EVT RegVT = VA.getLocVT();
1555        SDValue Arg = OutVals[realArgIdx];
1556        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1557        if (VA.getLocInfo() == CCValAssign::Indirect)
1558          return false;
1559        if (VA.needsCustom()) {
1560          // f64 and vector types are split into multiple registers or
1561          // register/stack-slot combinations.  The types will not match
1562          // the registers; give up on memory f64 refs until we figure
1563          // out what to do about this.
1564          if (!VA.isRegLoc())
1565            return false;
1566          if (!ArgLocs[++i].isRegLoc())
1567            return false;
1568          if (RegVT == MVT::v2f64) {
1569            if (!ArgLocs[++i].isRegLoc())
1570              return false;
1571            if (!ArgLocs[++i].isRegLoc())
1572              return false;
1573          }
1574        } else if (!VA.isRegLoc()) {
1575          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1576                                   MFI, MRI, TII))
1577            return false;
1578        }
1579      }
1580    }
1581  }
1582
1583  return true;
1584}
1585
1586SDValue
1587ARMTargetLowering::LowerReturn(SDValue Chain,
1588                               CallingConv::ID CallConv, bool isVarArg,
1589                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1590                               const SmallVectorImpl<SDValue> &OutVals,
1591                               DebugLoc dl, SelectionDAG &DAG) const {
1592
1593  // CCValAssign - represent the assignment of the return value to a location.
1594  SmallVector<CCValAssign, 16> RVLocs;
1595
1596  // CCState - Info about the registers and stack slots.
1597  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1598                 *DAG.getContext());
1599
1600  // Analyze outgoing return values.
1601  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1602                                               isVarArg));
1603
1604  // If this is the first return lowered for this function, add
1605  // the regs to the liveout set for the function.
1606  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1607    for (unsigned i = 0; i != RVLocs.size(); ++i)
1608      if (RVLocs[i].isRegLoc())
1609        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1610  }
1611
1612  SDValue Flag;
1613
1614  // Copy the result values into the output registers.
1615  for (unsigned i = 0, realRVLocIdx = 0;
1616       i != RVLocs.size();
1617       ++i, ++realRVLocIdx) {
1618    CCValAssign &VA = RVLocs[i];
1619    assert(VA.isRegLoc() && "Can only return in registers!");
1620
1621    SDValue Arg = OutVals[realRVLocIdx];
1622
1623    switch (VA.getLocInfo()) {
1624    default: llvm_unreachable("Unknown loc info!");
1625    case CCValAssign::Full: break;
1626    case CCValAssign::BCvt:
1627      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1628      break;
1629    }
1630
1631    if (VA.needsCustom()) {
1632      if (VA.getLocVT() == MVT::v2f64) {
1633        // Extract the first half and return it in two registers.
1634        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1635                                   DAG.getConstant(0, MVT::i32));
1636        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1637                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1638
1639        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1640        Flag = Chain.getValue(1);
1641        VA = RVLocs[++i]; // skip ahead to next loc
1642        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1643                                 HalfGPRs.getValue(1), Flag);
1644        Flag = Chain.getValue(1);
1645        VA = RVLocs[++i]; // skip ahead to next loc
1646
1647        // Extract the 2nd half and fall through to handle it as an f64 value.
1648        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1649                          DAG.getConstant(1, MVT::i32));
1650      }
1651      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1652      // available.
1653      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1654                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1655      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1656      Flag = Chain.getValue(1);
1657      VA = RVLocs[++i]; // skip ahead to next loc
1658      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1659                               Flag);
1660    } else
1661      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1662
1663    // Guarantee that all emitted copies are
1664    // stuck together, avoiding something bad.
1665    Flag = Chain.getValue(1);
1666  }
1667
1668  SDValue result;
1669  if (Flag.getNode())
1670    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1671  else // Return Void
1672    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1673
1674  return result;
1675}
1676
1677// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1678// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1679// one of the above mentioned nodes. It has to be wrapped because otherwise
1680// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1681// be used to form addressing mode. These wrapped nodes will be selected
1682// into MOVi.
1683static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1684  EVT PtrVT = Op.getValueType();
1685  // FIXME there is no actual debug info here
1686  DebugLoc dl = Op.getDebugLoc();
1687  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1688  SDValue Res;
1689  if (CP->isMachineConstantPoolEntry())
1690    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1691                                    CP->getAlignment());
1692  else
1693    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1694                                    CP->getAlignment());
1695  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1696}
1697
1698unsigned ARMTargetLowering::getJumpTableEncoding() const {
1699  return MachineJumpTableInfo::EK_Inline;
1700}
1701
1702SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1703                                             SelectionDAG &DAG) const {
1704  MachineFunction &MF = DAG.getMachineFunction();
1705  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1706  unsigned ARMPCLabelIndex = 0;
1707  DebugLoc DL = Op.getDebugLoc();
1708  EVT PtrVT = getPointerTy();
1709  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1710  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1711  SDValue CPAddr;
1712  if (RelocM == Reloc::Static) {
1713    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1714  } else {
1715    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1716    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1717    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1718                                                         ARMCP::CPBlockAddress,
1719                                                         PCAdj);
1720    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1721  }
1722  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1723  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1724                               PseudoSourceValue::getConstantPool(), 0,
1725                               false, false, 0);
1726  if (RelocM == Reloc::Static)
1727    return Result;
1728  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1729  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1730}
1731
1732// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1733SDValue
1734ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1735                                                 SelectionDAG &DAG) const {
1736  DebugLoc dl = GA->getDebugLoc();
1737  EVT PtrVT = getPointerTy();
1738  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1739  MachineFunction &MF = DAG.getMachineFunction();
1740  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1741  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1742  ARMConstantPoolValue *CPV =
1743    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1744                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1745  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1746  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1747  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1748                         PseudoSourceValue::getConstantPool(), 0,
1749                         false, false, 0);
1750  SDValue Chain = Argument.getValue(1);
1751
1752  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1753  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1754
1755  // call __tls_get_addr.
1756  ArgListTy Args;
1757  ArgListEntry Entry;
1758  Entry.Node = Argument;
1759  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1760  Args.push_back(Entry);
1761  // FIXME: is there useful debug info available here?
1762  std::pair<SDValue, SDValue> CallResult =
1763    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1764                false, false, false, false,
1765                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1766                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1767  return CallResult.first;
1768}
1769
1770// Lower ISD::GlobalTLSAddress using the "initial exec" or
1771// "local exec" model.
1772SDValue
1773ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1774                                        SelectionDAG &DAG) const {
1775  const GlobalValue *GV = GA->getGlobal();
1776  DebugLoc dl = GA->getDebugLoc();
1777  SDValue Offset;
1778  SDValue Chain = DAG.getEntryNode();
1779  EVT PtrVT = getPointerTy();
1780  // Get the Thread Pointer
1781  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1782
1783  if (GV->isDeclaration()) {
1784    MachineFunction &MF = DAG.getMachineFunction();
1785    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1786    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1787    // Initial exec model.
1788    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1789    ARMConstantPoolValue *CPV =
1790      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1791                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1792    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1793    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1794    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1795                         PseudoSourceValue::getConstantPool(), 0,
1796                         false, false, 0);
1797    Chain = Offset.getValue(1);
1798
1799    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1800    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1801
1802    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1803                         PseudoSourceValue::getConstantPool(), 0,
1804                         false, false, 0);
1805  } else {
1806    // local exec model
1807    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1808    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1809    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1810    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1811                         PseudoSourceValue::getConstantPool(), 0,
1812                         false, false, 0);
1813  }
1814
1815  // The address of the thread local variable is the add of the thread
1816  // pointer with the offset of the variable.
1817  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1818}
1819
1820SDValue
1821ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1822  // TODO: implement the "local dynamic" model
1823  assert(Subtarget->isTargetELF() &&
1824         "TLS not implemented for non-ELF targets");
1825  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1826  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1827  // otherwise use the "Local Exec" TLS Model
1828  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1829    return LowerToTLSGeneralDynamicModel(GA, DAG);
1830  else
1831    return LowerToTLSExecModels(GA, DAG);
1832}
1833
1834SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1835                                                 SelectionDAG &DAG) const {
1836  EVT PtrVT = getPointerTy();
1837  DebugLoc dl = Op.getDebugLoc();
1838  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1839  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1840  if (RelocM == Reloc::PIC_) {
1841    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1842    ARMConstantPoolValue *CPV =
1843      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1844    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1845    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1846    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1847                                 CPAddr,
1848                                 PseudoSourceValue::getConstantPool(), 0,
1849                                 false, false, 0);
1850    SDValue Chain = Result.getValue(1);
1851    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1852    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1853    if (!UseGOTOFF)
1854      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1855                           PseudoSourceValue::getGOT(), 0,
1856                           false, false, 0);
1857    return Result;
1858  } else {
1859    // If we have T2 ops, we can materialize the address directly via movt/movw
1860    // pair. This is always cheaper.
1861    if (Subtarget->useMovt()) {
1862      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1863                         DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1864    } else {
1865      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1866      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1867      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1868                         PseudoSourceValue::getConstantPool(), 0,
1869                         false, false, 0);
1870    }
1871  }
1872}
1873
1874SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1875                                                    SelectionDAG &DAG) const {
1876  MachineFunction &MF = DAG.getMachineFunction();
1877  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1878  unsigned ARMPCLabelIndex = 0;
1879  EVT PtrVT = getPointerTy();
1880  DebugLoc dl = Op.getDebugLoc();
1881  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1882  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1883  SDValue CPAddr;
1884  if (RelocM == Reloc::Static)
1885    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1886  else {
1887    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1888    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1889    ARMConstantPoolValue *CPV =
1890      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1891    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1892  }
1893  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1894
1895  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1896                               PseudoSourceValue::getConstantPool(), 0,
1897                               false, false, 0);
1898  SDValue Chain = Result.getValue(1);
1899
1900  if (RelocM == Reloc::PIC_) {
1901    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1902    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1903  }
1904
1905  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1906    Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1907                         PseudoSourceValue::getGOT(), 0,
1908                         false, false, 0);
1909
1910  return Result;
1911}
1912
1913SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1914                                                    SelectionDAG &DAG) const {
1915  assert(Subtarget->isTargetELF() &&
1916         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1917  MachineFunction &MF = DAG.getMachineFunction();
1918  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1919  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1920  EVT PtrVT = getPointerTy();
1921  DebugLoc dl = Op.getDebugLoc();
1922  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1923  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1924                                                       "_GLOBAL_OFFSET_TABLE_",
1925                                                       ARMPCLabelIndex, PCAdj);
1926  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1927  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1928  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1929                               PseudoSourceValue::getConstantPool(), 0,
1930                               false, false, 0);
1931  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1932  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1933}
1934
1935SDValue
1936ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
1937  DebugLoc dl = Op.getDebugLoc();
1938  SDValue Val = DAG.getConstant(0, MVT::i32);
1939  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
1940                     Op.getOperand(1), Val);
1941}
1942
1943SDValue
1944ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
1945  DebugLoc dl = Op.getDebugLoc();
1946  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
1947                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
1948}
1949
1950SDValue
1951ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
1952                                          const ARMSubtarget *Subtarget) const {
1953  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1954  DebugLoc dl = Op.getDebugLoc();
1955  switch (IntNo) {
1956  default: return SDValue();    // Don't custom lower most intrinsics.
1957  case Intrinsic::arm_thread_pointer: {
1958    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1959    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1960  }
1961  case Intrinsic::eh_sjlj_lsda: {
1962    MachineFunction &MF = DAG.getMachineFunction();
1963    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1964    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1965    EVT PtrVT = getPointerTy();
1966    DebugLoc dl = Op.getDebugLoc();
1967    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1968    SDValue CPAddr;
1969    unsigned PCAdj = (RelocM != Reloc::PIC_)
1970      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1971    ARMConstantPoolValue *CPV =
1972      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
1973                               ARMCP::CPLSDA, PCAdj);
1974    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1975    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1976    SDValue Result =
1977      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1978                  PseudoSourceValue::getConstantPool(), 0,
1979                  false, false, 0);
1980
1981    if (RelocM == Reloc::PIC_) {
1982      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1983      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1984    }
1985    return Result;
1986  }
1987  }
1988}
1989
1990static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
1991                               const ARMSubtarget *Subtarget) {
1992  DebugLoc dl = Op.getDebugLoc();
1993  SDValue Op5 = Op.getOperand(5);
1994  unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
1995  // v6 and v7 can both handle barriers directly, but need handled a bit
1996  // differently. Thumb1 and pre-v6 ARM mode use a libcall instead and should
1997  // never get here.
1998  unsigned Opc = isDeviceBarrier ? ARMISD::SYNCBARRIER : ARMISD::MEMBARRIER;
1999  if (Subtarget->hasV7Ops())
2000    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0));
2001  else if (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())
2002    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0),
2003                       DAG.getConstant(0, MVT::i32));
2004  assert(0 && "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2005  return SDValue();
2006}
2007
2008static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2009  MachineFunction &MF = DAG.getMachineFunction();
2010  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2011
2012  // vastart just stores the address of the VarArgsFrameIndex slot into the
2013  // memory location argument.
2014  DebugLoc dl = Op.getDebugLoc();
2015  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2016  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2017  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2018  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
2019                      false, false, 0);
2020}
2021
2022SDValue
2023ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2024                                        SDValue &Root, SelectionDAG &DAG,
2025                                        DebugLoc dl) const {
2026  MachineFunction &MF = DAG.getMachineFunction();
2027  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2028
2029  TargetRegisterClass *RC;
2030  if (AFI->isThumb1OnlyFunction())
2031    RC = ARM::tGPRRegisterClass;
2032  else
2033    RC = ARM::GPRRegisterClass;
2034
2035  // Transform the arguments stored in physical registers into virtual ones.
2036  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2037  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2038
2039  SDValue ArgValue2;
2040  if (NextVA.isMemLoc()) {
2041    MachineFrameInfo *MFI = MF.getFrameInfo();
2042    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2043
2044    // Create load node to retrieve arguments from the stack.
2045    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2046    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2047                            PseudoSourceValue::getFixedStack(FI), 0,
2048                            false, false, 0);
2049  } else {
2050    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2051    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2052  }
2053
2054  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2055}
2056
2057SDValue
2058ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2059                                        CallingConv::ID CallConv, bool isVarArg,
2060                                        const SmallVectorImpl<ISD::InputArg>
2061                                          &Ins,
2062                                        DebugLoc dl, SelectionDAG &DAG,
2063                                        SmallVectorImpl<SDValue> &InVals)
2064                                          const {
2065
2066  MachineFunction &MF = DAG.getMachineFunction();
2067  MachineFrameInfo *MFI = MF.getFrameInfo();
2068
2069  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2070
2071  // Assign locations to all of the incoming arguments.
2072  SmallVector<CCValAssign, 16> ArgLocs;
2073  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2074                 *DAG.getContext());
2075  CCInfo.AnalyzeFormalArguments(Ins,
2076                                CCAssignFnForNode(CallConv, /* Return*/ false,
2077                                                  isVarArg));
2078
2079  SmallVector<SDValue, 16> ArgValues;
2080
2081  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2082    CCValAssign &VA = ArgLocs[i];
2083
2084    // Arguments stored in registers.
2085    if (VA.isRegLoc()) {
2086      EVT RegVT = VA.getLocVT();
2087
2088      SDValue ArgValue;
2089      if (VA.needsCustom()) {
2090        // f64 and vector types are split up into multiple registers or
2091        // combinations of registers and stack slots.
2092        if (VA.getLocVT() == MVT::v2f64) {
2093          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2094                                                   Chain, DAG, dl);
2095          VA = ArgLocs[++i]; // skip ahead to next loc
2096          SDValue ArgValue2;
2097          if (VA.isMemLoc()) {
2098            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2099            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2100            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2101                                    PseudoSourceValue::getFixedStack(FI), 0,
2102                                    false, false, 0);
2103          } else {
2104            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2105                                             Chain, DAG, dl);
2106          }
2107          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2108          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2109                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2110          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2111                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2112        } else
2113          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2114
2115      } else {
2116        TargetRegisterClass *RC;
2117
2118        if (RegVT == MVT::f32)
2119          RC = ARM::SPRRegisterClass;
2120        else if (RegVT == MVT::f64)
2121          RC = ARM::DPRRegisterClass;
2122        else if (RegVT == MVT::v2f64)
2123          RC = ARM::QPRRegisterClass;
2124        else if (RegVT == MVT::i32)
2125          RC = (AFI->isThumb1OnlyFunction() ?
2126                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2127        else
2128          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2129
2130        // Transform the arguments in physical registers into virtual ones.
2131        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2132        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2133      }
2134
2135      // If this is an 8 or 16-bit value, it is really passed promoted
2136      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2137      // truncate to the right size.
2138      switch (VA.getLocInfo()) {
2139      default: llvm_unreachable("Unknown loc info!");
2140      case CCValAssign::Full: break;
2141      case CCValAssign::BCvt:
2142        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
2143        break;
2144      case CCValAssign::SExt:
2145        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2146                               DAG.getValueType(VA.getValVT()));
2147        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2148        break;
2149      case CCValAssign::ZExt:
2150        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2151                               DAG.getValueType(VA.getValVT()));
2152        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2153        break;
2154      }
2155
2156      InVals.push_back(ArgValue);
2157
2158    } else { // VA.isRegLoc()
2159
2160      // sanity check
2161      assert(VA.isMemLoc());
2162      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2163
2164      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2165      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2166
2167      // Create load nodes to retrieve arguments from the stack.
2168      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2169      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2170                                   PseudoSourceValue::getFixedStack(FI), 0,
2171                                   false, false, 0));
2172    }
2173  }
2174
2175  // varargs
2176  if (isVarArg) {
2177    static const unsigned GPRArgRegs[] = {
2178      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2179    };
2180
2181    unsigned NumGPRs = CCInfo.getFirstUnallocated
2182      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2183
2184    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
2185    unsigned VARegSize = (4 - NumGPRs) * 4;
2186    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2187    unsigned ArgOffset = CCInfo.getNextStackOffset();
2188    if (VARegSaveSize) {
2189      // If this function is vararg, store any remaining integer argument regs
2190      // to their spots on the stack so that they may be loaded by deferencing
2191      // the result of va_next.
2192      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2193      AFI->setVarArgsFrameIndex(
2194        MFI->CreateFixedObject(VARegSaveSize,
2195                               ArgOffset + VARegSaveSize - VARegSize,
2196                               true));
2197      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2198                                      getPointerTy());
2199
2200      SmallVector<SDValue, 4> MemOps;
2201      for (; NumGPRs < 4; ++NumGPRs) {
2202        TargetRegisterClass *RC;
2203        if (AFI->isThumb1OnlyFunction())
2204          RC = ARM::tGPRRegisterClass;
2205        else
2206          RC = ARM::GPRRegisterClass;
2207
2208        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2209        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2210        SDValue Store =
2211          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2212               PseudoSourceValue::getFixedStack(AFI->getVarArgsFrameIndex()),
2213               0, false, false, 0);
2214        MemOps.push_back(Store);
2215        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2216                          DAG.getConstant(4, getPointerTy()));
2217      }
2218      if (!MemOps.empty())
2219        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2220                            &MemOps[0], MemOps.size());
2221    } else
2222      // This will point to the next argument passed via stack.
2223      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2224  }
2225
2226  return Chain;
2227}
2228
2229/// isFloatingPointZero - Return true if this is +0.0.
2230static bool isFloatingPointZero(SDValue Op) {
2231  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2232    return CFP->getValueAPF().isPosZero();
2233  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2234    // Maybe this has already been legalized into the constant pool?
2235    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2236      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2237      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2238        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2239          return CFP->getValueAPF().isPosZero();
2240    }
2241  }
2242  return false;
2243}
2244
2245/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2246/// the given operands.
2247SDValue
2248ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2249                             SDValue &ARMcc, SelectionDAG &DAG,
2250                             DebugLoc dl) const {
2251  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2252    unsigned C = RHSC->getZExtValue();
2253    if (!isLegalICmpImmediate(C)) {
2254      // Constant does not fit, try adjusting it by one?
2255      switch (CC) {
2256      default: break;
2257      case ISD::SETLT:
2258      case ISD::SETGE:
2259        if (isLegalICmpImmediate(C-1)) {
2260          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2261          RHS = DAG.getConstant(C-1, MVT::i32);
2262        }
2263        break;
2264      case ISD::SETULT:
2265      case ISD::SETUGE:
2266        if (C > 0 && isLegalICmpImmediate(C-1)) {
2267          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2268          RHS = DAG.getConstant(C-1, MVT::i32);
2269        }
2270        break;
2271      case ISD::SETLE:
2272      case ISD::SETGT:
2273        if (isLegalICmpImmediate(C+1)) {
2274          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2275          RHS = DAG.getConstant(C+1, MVT::i32);
2276        }
2277        break;
2278      case ISD::SETULE:
2279      case ISD::SETUGT:
2280        if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
2281          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2282          RHS = DAG.getConstant(C+1, MVT::i32);
2283        }
2284        break;
2285      }
2286    }
2287  }
2288
2289  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2290  ARMISD::NodeType CompareType;
2291  switch (CondCode) {
2292  default:
2293    CompareType = ARMISD::CMP;
2294    break;
2295  case ARMCC::EQ:
2296  case ARMCC::NE:
2297    // Uses only Z Flag
2298    CompareType = ARMISD::CMPZ;
2299    break;
2300  }
2301  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2302  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
2303}
2304
2305/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2306SDValue
2307ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2308                             DebugLoc dl) const {
2309  SDValue Cmp;
2310  if (!isFloatingPointZero(RHS))
2311    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
2312  else
2313    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
2314  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
2315}
2316
2317SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2318  EVT VT = Op.getValueType();
2319  SDValue LHS = Op.getOperand(0);
2320  SDValue RHS = Op.getOperand(1);
2321  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2322  SDValue TrueVal = Op.getOperand(2);
2323  SDValue FalseVal = Op.getOperand(3);
2324  DebugLoc dl = Op.getDebugLoc();
2325
2326  if (LHS.getValueType() == MVT::i32) {
2327    SDValue ARMcc;
2328    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2329    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2330    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2331  }
2332
2333  ARMCC::CondCodes CondCode, CondCode2;
2334  FPCCToARMCC(CC, CondCode, CondCode2);
2335
2336  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2337  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2338  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2339  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2340                               ARMcc, CCR, Cmp);
2341  if (CondCode2 != ARMCC::AL) {
2342    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2343    // FIXME: Needs another CMP because flag can have but one use.
2344    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2345    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2346                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2347  }
2348  return Result;
2349}
2350
2351/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2352/// to morph to an integer compare sequence.
2353static bool canChangeToInt(SDValue Op, bool &SeenZero,
2354                           const ARMSubtarget *Subtarget) {
2355  SDNode *N = Op.getNode();
2356  if (!N->hasOneUse())
2357    // Otherwise it requires moving the value from fp to integer registers.
2358    return false;
2359  if (!N->getNumValues())
2360    return false;
2361  EVT VT = Op.getValueType();
2362  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2363    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2364    // vmrs are very slow, e.g. cortex-a8.
2365    return false;
2366
2367  if (isFloatingPointZero(Op)) {
2368    SeenZero = true;
2369    return true;
2370  }
2371  return ISD::isNormalLoad(N);
2372}
2373
2374static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2375  if (isFloatingPointZero(Op))
2376    return DAG.getConstant(0, MVT::i32);
2377
2378  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2379    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2380                       Ld->getChain(), Ld->getBasePtr(),
2381                       Ld->getSrcValue(), Ld->getSrcValueOffset(),
2382                       Ld->isVolatile(), Ld->isNonTemporal(),
2383                       Ld->getAlignment());
2384
2385  llvm_unreachable("Unknown VFP cmp argument!");
2386}
2387
2388static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2389                           SDValue &RetVal1, SDValue &RetVal2) {
2390  if (isFloatingPointZero(Op)) {
2391    RetVal1 = DAG.getConstant(0, MVT::i32);
2392    RetVal2 = DAG.getConstant(0, MVT::i32);
2393    return;
2394  }
2395
2396  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2397    SDValue Ptr = Ld->getBasePtr();
2398    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2399                          Ld->getChain(), Ptr,
2400                          Ld->getSrcValue(), Ld->getSrcValueOffset(),
2401                          Ld->isVolatile(), Ld->isNonTemporal(),
2402                          Ld->getAlignment());
2403
2404    EVT PtrType = Ptr.getValueType();
2405    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2406    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2407                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2408    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2409                          Ld->getChain(), NewPtr,
2410                          Ld->getSrcValue(), Ld->getSrcValueOffset() + 4,
2411                          Ld->isVolatile(), Ld->isNonTemporal(),
2412                          NewAlign);
2413    return;
2414  }
2415
2416  llvm_unreachable("Unknown VFP cmp argument!");
2417}
2418
2419/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2420/// f32 and even f64 comparisons to integer ones.
2421SDValue
2422ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2423  SDValue Chain = Op.getOperand(0);
2424  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2425  SDValue LHS = Op.getOperand(2);
2426  SDValue RHS = Op.getOperand(3);
2427  SDValue Dest = Op.getOperand(4);
2428  DebugLoc dl = Op.getDebugLoc();
2429
2430  bool SeenZero = false;
2431  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2432      canChangeToInt(RHS, SeenZero, Subtarget) &&
2433      // If one of the operand is zero, it's safe to ignore the NaN case since
2434      // we only care about equality comparisons.
2435      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2436    // If unsafe fp math optimization is enabled and there are no othter uses of
2437    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
2438    // to an integer comparison.
2439    if (CC == ISD::SETOEQ)
2440      CC = ISD::SETEQ;
2441    else if (CC == ISD::SETUNE)
2442      CC = ISD::SETNE;
2443
2444    SDValue ARMcc;
2445    if (LHS.getValueType() == MVT::f32) {
2446      LHS = bitcastf32Toi32(LHS, DAG);
2447      RHS = bitcastf32Toi32(RHS, DAG);
2448      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2449      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2450      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2451                         Chain, Dest, ARMcc, CCR, Cmp);
2452    }
2453
2454    SDValue LHS1, LHS2;
2455    SDValue RHS1, RHS2;
2456    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2457    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2458    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2459    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2460    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2461    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2462    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2463  }
2464
2465  return SDValue();
2466}
2467
2468SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2469  SDValue Chain = Op.getOperand(0);
2470  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2471  SDValue LHS = Op.getOperand(2);
2472  SDValue RHS = Op.getOperand(3);
2473  SDValue Dest = Op.getOperand(4);
2474  DebugLoc dl = Op.getDebugLoc();
2475
2476  if (LHS.getValueType() == MVT::i32) {
2477    SDValue ARMcc;
2478    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2479    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2480    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2481                       Chain, Dest, ARMcc, CCR, Cmp);
2482  }
2483
2484  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2485
2486  if (UnsafeFPMath &&
2487      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2488       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2489    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2490    if (Result.getNode())
2491      return Result;
2492  }
2493
2494  ARMCC::CondCodes CondCode, CondCode2;
2495  FPCCToARMCC(CC, CondCode, CondCode2);
2496
2497  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2498  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2499  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2500  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2501  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2502  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2503  if (CondCode2 != ARMCC::AL) {
2504    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2505    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2506    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2507  }
2508  return Res;
2509}
2510
2511SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2512  SDValue Chain = Op.getOperand(0);
2513  SDValue Table = Op.getOperand(1);
2514  SDValue Index = Op.getOperand(2);
2515  DebugLoc dl = Op.getDebugLoc();
2516
2517  EVT PTy = getPointerTy();
2518  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2519  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2520  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2521  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2522  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2523  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2524  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2525  if (Subtarget->isThumb2()) {
2526    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2527    // which does another jump to the destination. This also makes it easier
2528    // to translate it to TBB / TBH later.
2529    // FIXME: This might not work if the function is extremely large.
2530    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2531                       Addr, Op.getOperand(2), JTI, UId);
2532  }
2533  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2534    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2535                       PseudoSourceValue::getJumpTable(), 0,
2536                       false, false, 0);
2537    Chain = Addr.getValue(1);
2538    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2539    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2540  } else {
2541    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2542                       PseudoSourceValue::getJumpTable(), 0, false, false, 0);
2543    Chain = Addr.getValue(1);
2544    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2545  }
2546}
2547
2548static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2549  DebugLoc dl = Op.getDebugLoc();
2550  unsigned Opc;
2551
2552  switch (Op.getOpcode()) {
2553  default:
2554    assert(0 && "Invalid opcode!");
2555  case ISD::FP_TO_SINT:
2556    Opc = ARMISD::FTOSI;
2557    break;
2558  case ISD::FP_TO_UINT:
2559    Opc = ARMISD::FTOUI;
2560    break;
2561  }
2562  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2563  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
2564}
2565
2566static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2567  EVT VT = Op.getValueType();
2568  DebugLoc dl = Op.getDebugLoc();
2569  unsigned Opc;
2570
2571  switch (Op.getOpcode()) {
2572  default:
2573    assert(0 && "Invalid opcode!");
2574  case ISD::SINT_TO_FP:
2575    Opc = ARMISD::SITOF;
2576    break;
2577  case ISD::UINT_TO_FP:
2578    Opc = ARMISD::UITOF;
2579    break;
2580  }
2581
2582  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
2583  return DAG.getNode(Opc, dl, VT, Op);
2584}
2585
2586SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2587  // Implement fcopysign with a fabs and a conditional fneg.
2588  SDValue Tmp0 = Op.getOperand(0);
2589  SDValue Tmp1 = Op.getOperand(1);
2590  DebugLoc dl = Op.getDebugLoc();
2591  EVT VT = Op.getValueType();
2592  EVT SrcVT = Tmp1.getValueType();
2593  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2594  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
2595  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
2596  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
2597  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2598  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
2599}
2600
2601SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2602  MachineFunction &MF = DAG.getMachineFunction();
2603  MachineFrameInfo *MFI = MF.getFrameInfo();
2604  MFI->setReturnAddressIsTaken(true);
2605
2606  EVT VT = Op.getValueType();
2607  DebugLoc dl = Op.getDebugLoc();
2608  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2609  if (Depth) {
2610    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2611    SDValue Offset = DAG.getConstant(4, MVT::i32);
2612    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2613                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2614                       NULL, 0, false, false, 0);
2615  }
2616
2617  // Return LR, which contains the return address. Mark it an implicit live-in.
2618  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
2619  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2620}
2621
2622SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2623  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2624  MFI->setFrameAddressIsTaken(true);
2625
2626  EVT VT = Op.getValueType();
2627  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2628  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2629  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2630    ? ARM::R7 : ARM::R11;
2631  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2632  while (Depth--)
2633    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
2634                            false, false, 0);
2635  return FrameAddr;
2636}
2637
2638/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
2639/// expand a bit convert where either the source or destination type is i64 to
2640/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2641/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2642/// vectors), since the legalizer won't know what to do with that.
2643static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2644  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2645  DebugLoc dl = N->getDebugLoc();
2646  SDValue Op = N->getOperand(0);
2647
2648  // This function is only supposed to be called for i64 types, either as the
2649  // source or destination of the bit convert.
2650  EVT SrcVT = Op.getValueType();
2651  EVT DstVT = N->getValueType(0);
2652  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2653         "ExpandBIT_CONVERT called for non-i64 type");
2654
2655  // Turn i64->f64 into VMOVDRR.
2656  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2657    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2658                             DAG.getConstant(0, MVT::i32));
2659    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2660                             DAG.getConstant(1, MVT::i32));
2661    return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
2662                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2663  }
2664
2665  // Turn f64->i64 into VMOVRRD.
2666  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2667    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2668                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2669    // Merge the pieces into a single i64 value.
2670    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2671  }
2672
2673  return SDValue();
2674}
2675
2676/// getZeroVector - Returns a vector of specified type with all zero elements.
2677/// Zero vectors are used to represent vector negation and in those cases
2678/// will be implemented with the NEON VNEG instruction.  However, VNEG does
2679/// not support i64 elements, so sometimes the zero vectors will need to be
2680/// explicitly constructed.  Regardless, use a canonical VMOV to create the
2681/// zero vector.
2682static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2683  assert(VT.isVector() && "Expected a vector type");
2684  // The canonical modified immediate encoding of a zero vector is....0!
2685  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
2686  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
2687  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
2688  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
2689}
2690
2691/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2692/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2693SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2694                                                SelectionDAG &DAG) const {
2695  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2696  EVT VT = Op.getValueType();
2697  unsigned VTBits = VT.getSizeInBits();
2698  DebugLoc dl = Op.getDebugLoc();
2699  SDValue ShOpLo = Op.getOperand(0);
2700  SDValue ShOpHi = Op.getOperand(1);
2701  SDValue ShAmt  = Op.getOperand(2);
2702  SDValue ARMcc;
2703  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2704
2705  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2706
2707  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2708                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2709  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2710  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2711                                   DAG.getConstant(VTBits, MVT::i32));
2712  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2713  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2714  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2715
2716  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2717  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2718                          ARMcc, DAG, dl);
2719  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2720  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
2721                           CCR, Cmp);
2722
2723  SDValue Ops[2] = { Lo, Hi };
2724  return DAG.getMergeValues(Ops, 2, dl);
2725}
2726
2727/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2728/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2729SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2730                                               SelectionDAG &DAG) const {
2731  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2732  EVT VT = Op.getValueType();
2733  unsigned VTBits = VT.getSizeInBits();
2734  DebugLoc dl = Op.getDebugLoc();
2735  SDValue ShOpLo = Op.getOperand(0);
2736  SDValue ShOpHi = Op.getOperand(1);
2737  SDValue ShAmt  = Op.getOperand(2);
2738  SDValue ARMcc;
2739
2740  assert(Op.getOpcode() == ISD::SHL_PARTS);
2741  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2742                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2743  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2744  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2745                                   DAG.getConstant(VTBits, MVT::i32));
2746  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2747  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2748
2749  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2750  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2751  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2752                          ARMcc, DAG, dl);
2753  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2754  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
2755                           CCR, Cmp);
2756
2757  SDValue Ops[2] = { Lo, Hi };
2758  return DAG.getMergeValues(Ops, 2, dl);
2759}
2760
2761SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2762                                            SelectionDAG &DAG) const {
2763  // The rounding mode is in bits 23:22 of the FPSCR.
2764  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2765  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2766  // so that the shift + and get folded into a bitfield extract.
2767  DebugLoc dl = Op.getDebugLoc();
2768  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
2769                              DAG.getConstant(Intrinsic::arm_get_fpscr,
2770                                              MVT::i32));
2771  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
2772                                  DAG.getConstant(1U << 22, MVT::i32));
2773  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2774                              DAG.getConstant(22, MVT::i32));
2775  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2776                     DAG.getConstant(3, MVT::i32));
2777}
2778
2779static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2780                         const ARMSubtarget *ST) {
2781  EVT VT = N->getValueType(0);
2782  DebugLoc dl = N->getDebugLoc();
2783
2784  if (!ST->hasV6T2Ops())
2785    return SDValue();
2786
2787  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2788  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2789}
2790
2791static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2792                          const ARMSubtarget *ST) {
2793  EVT VT = N->getValueType(0);
2794  DebugLoc dl = N->getDebugLoc();
2795
2796  // Lower vector shifts on NEON to use VSHL.
2797  if (VT.isVector()) {
2798    assert(ST->hasNEON() && "unexpected vector shift");
2799
2800    // Left shifts translate directly to the vshiftu intrinsic.
2801    if (N->getOpcode() == ISD::SHL)
2802      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2803                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2804                         N->getOperand(0), N->getOperand(1));
2805
2806    assert((N->getOpcode() == ISD::SRA ||
2807            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2808
2809    // NEON uses the same intrinsics for both left and right shifts.  For
2810    // right shifts, the shift amounts are negative, so negate the vector of
2811    // shift amounts.
2812    EVT ShiftVT = N->getOperand(1).getValueType();
2813    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2814                                       getZeroVector(ShiftVT, DAG, dl),
2815                                       N->getOperand(1));
2816    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2817                               Intrinsic::arm_neon_vshifts :
2818                               Intrinsic::arm_neon_vshiftu);
2819    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2820                       DAG.getConstant(vshiftInt, MVT::i32),
2821                       N->getOperand(0), NegatedCount);
2822  }
2823
2824  // We can get here for a node like i32 = ISD::SHL i32, i64
2825  if (VT != MVT::i64)
2826    return SDValue();
2827
2828  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2829         "Unknown shift to lower!");
2830
2831  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2832  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2833      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2834    return SDValue();
2835
2836  // If we are in thumb mode, we don't have RRX.
2837  if (ST->isThumb1Only()) return SDValue();
2838
2839  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2840  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2841                           DAG.getConstant(0, MVT::i32));
2842  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2843                           DAG.getConstant(1, MVT::i32));
2844
2845  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2846  // captures the result into a carry flag.
2847  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2848  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2849
2850  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2851  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2852
2853  // Merge the pieces into a single i64 value.
2854 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2855}
2856
2857static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2858  SDValue TmpOp0, TmpOp1;
2859  bool Invert = false;
2860  bool Swap = false;
2861  unsigned Opc = 0;
2862
2863  SDValue Op0 = Op.getOperand(0);
2864  SDValue Op1 = Op.getOperand(1);
2865  SDValue CC = Op.getOperand(2);
2866  EVT VT = Op.getValueType();
2867  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2868  DebugLoc dl = Op.getDebugLoc();
2869
2870  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2871    switch (SetCCOpcode) {
2872    default: llvm_unreachable("Illegal FP comparison"); break;
2873    case ISD::SETUNE:
2874    case ISD::SETNE:  Invert = true; // Fallthrough
2875    case ISD::SETOEQ:
2876    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2877    case ISD::SETOLT:
2878    case ISD::SETLT: Swap = true; // Fallthrough
2879    case ISD::SETOGT:
2880    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2881    case ISD::SETOLE:
2882    case ISD::SETLE:  Swap = true; // Fallthrough
2883    case ISD::SETOGE:
2884    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2885    case ISD::SETUGE: Swap = true; // Fallthrough
2886    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2887    case ISD::SETUGT: Swap = true; // Fallthrough
2888    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2889    case ISD::SETUEQ: Invert = true; // Fallthrough
2890    case ISD::SETONE:
2891      // Expand this to (OLT | OGT).
2892      TmpOp0 = Op0;
2893      TmpOp1 = Op1;
2894      Opc = ISD::OR;
2895      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2896      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2897      break;
2898    case ISD::SETUO: Invert = true; // Fallthrough
2899    case ISD::SETO:
2900      // Expand this to (OLT | OGE).
2901      TmpOp0 = Op0;
2902      TmpOp1 = Op1;
2903      Opc = ISD::OR;
2904      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2905      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2906      break;
2907    }
2908  } else {
2909    // Integer comparisons.
2910    switch (SetCCOpcode) {
2911    default: llvm_unreachable("Illegal integer comparison"); break;
2912    case ISD::SETNE:  Invert = true;
2913    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2914    case ISD::SETLT:  Swap = true;
2915    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2916    case ISD::SETLE:  Swap = true;
2917    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2918    case ISD::SETULT: Swap = true;
2919    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2920    case ISD::SETULE: Swap = true;
2921    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2922    }
2923
2924    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2925    if (Opc == ARMISD::VCEQ) {
2926
2927      SDValue AndOp;
2928      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2929        AndOp = Op0;
2930      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2931        AndOp = Op1;
2932
2933      // Ignore bitconvert.
2934      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2935        AndOp = AndOp.getOperand(0);
2936
2937      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2938        Opc = ARMISD::VTST;
2939        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2940        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2941        Invert = !Invert;
2942      }
2943    }
2944  }
2945
2946  if (Swap)
2947    std::swap(Op0, Op1);
2948
2949  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2950
2951  if (Invert)
2952    Result = DAG.getNOT(dl, Result, VT);
2953
2954  return Result;
2955}
2956
2957/// isNEONModifiedImm - Check if the specified splat value corresponds to a
2958/// valid vector constant for a NEON instruction with a "modified immediate"
2959/// operand (e.g., VMOV).  If so, return the encoded value.
2960static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
2961                                 unsigned SplatBitSize, SelectionDAG &DAG,
2962                                 EVT &VT, bool is128Bits, bool isVMOV) {
2963  unsigned OpCmode, Imm;
2964
2965  // SplatBitSize is set to the smallest size that splats the vector, so a
2966  // zero vector will always have SplatBitSize == 8.  However, NEON modified
2967  // immediate instructions others than VMOV do not support the 8-bit encoding
2968  // of a zero vector, and the default encoding of zero is supposed to be the
2969  // 32-bit version.
2970  if (SplatBits == 0)
2971    SplatBitSize = 32;
2972
2973  switch (SplatBitSize) {
2974  case 8:
2975    if (!isVMOV)
2976      return SDValue();
2977    // Any 1-byte value is OK.  Op=0, Cmode=1110.
2978    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2979    OpCmode = 0xe;
2980    Imm = SplatBits;
2981    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
2982    break;
2983
2984  case 16:
2985    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2986    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
2987    if ((SplatBits & ~0xff) == 0) {
2988      // Value = 0x00nn: Op=x, Cmode=100x.
2989      OpCmode = 0x8;
2990      Imm = SplatBits;
2991      break;
2992    }
2993    if ((SplatBits & ~0xff00) == 0) {
2994      // Value = 0xnn00: Op=x, Cmode=101x.
2995      OpCmode = 0xa;
2996      Imm = SplatBits >> 8;
2997      break;
2998    }
2999    return SDValue();
3000
3001  case 32:
3002    // NEON's 32-bit VMOV supports splat values where:
3003    // * only one byte is nonzero, or
3004    // * the least significant byte is 0xff and the second byte is nonzero, or
3005    // * the least significant 2 bytes are 0xff and the third is nonzero.
3006    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3007    if ((SplatBits & ~0xff) == 0) {
3008      // Value = 0x000000nn: Op=x, Cmode=000x.
3009      OpCmode = 0;
3010      Imm = SplatBits;
3011      break;
3012    }
3013    if ((SplatBits & ~0xff00) == 0) {
3014      // Value = 0x0000nn00: Op=x, Cmode=001x.
3015      OpCmode = 0x2;
3016      Imm = SplatBits >> 8;
3017      break;
3018    }
3019    if ((SplatBits & ~0xff0000) == 0) {
3020      // Value = 0x00nn0000: Op=x, Cmode=010x.
3021      OpCmode = 0x4;
3022      Imm = SplatBits >> 16;
3023      break;
3024    }
3025    if ((SplatBits & ~0xff000000) == 0) {
3026      // Value = 0xnn000000: Op=x, Cmode=011x.
3027      OpCmode = 0x6;
3028      Imm = SplatBits >> 24;
3029      break;
3030    }
3031
3032    if ((SplatBits & ~0xffff) == 0 &&
3033        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3034      // Value = 0x0000nnff: Op=x, Cmode=1100.
3035      OpCmode = 0xc;
3036      Imm = SplatBits >> 8;
3037      SplatBits |= 0xff;
3038      break;
3039    }
3040
3041    if ((SplatBits & ~0xffffff) == 0 &&
3042        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3043      // Value = 0x00nnffff: Op=x, Cmode=1101.
3044      OpCmode = 0xd;
3045      Imm = SplatBits >> 16;
3046      SplatBits |= 0xffff;
3047      break;
3048    }
3049
3050    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3051    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3052    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3053    // and fall through here to test for a valid 64-bit splat.  But, then the
3054    // caller would also need to check and handle the change in size.
3055    return SDValue();
3056
3057  case 64: {
3058    if (!isVMOV)
3059      return SDValue();
3060    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3061    uint64_t BitMask = 0xff;
3062    uint64_t Val = 0;
3063    unsigned ImmMask = 1;
3064    Imm = 0;
3065    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3066      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3067        Val |= BitMask;
3068        Imm |= ImmMask;
3069      } else if ((SplatBits & BitMask) != 0) {
3070        return SDValue();
3071      }
3072      BitMask <<= 8;
3073      ImmMask <<= 1;
3074    }
3075    // Op=1, Cmode=1110.
3076    OpCmode = 0x1e;
3077    SplatBits = Val;
3078    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3079    break;
3080  }
3081
3082  default:
3083    llvm_unreachable("unexpected size for isNEONModifiedImm");
3084    return SDValue();
3085  }
3086
3087  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3088  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3089}
3090
3091static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3092                       bool &ReverseVEXT, unsigned &Imm) {
3093  unsigned NumElts = VT.getVectorNumElements();
3094  ReverseVEXT = false;
3095  Imm = M[0];
3096
3097  // If this is a VEXT shuffle, the immediate value is the index of the first
3098  // element.  The other shuffle indices must be the successive elements after
3099  // the first one.
3100  unsigned ExpectedElt = Imm;
3101  for (unsigned i = 1; i < NumElts; ++i) {
3102    // Increment the expected index.  If it wraps around, it may still be
3103    // a VEXT but the source vectors must be swapped.
3104    ExpectedElt += 1;
3105    if (ExpectedElt == NumElts * 2) {
3106      ExpectedElt = 0;
3107      ReverseVEXT = true;
3108    }
3109
3110    if (ExpectedElt != static_cast<unsigned>(M[i]))
3111      return false;
3112  }
3113
3114  // Adjust the index value if the source operands will be swapped.
3115  if (ReverseVEXT)
3116    Imm -= NumElts;
3117
3118  return true;
3119}
3120
3121/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3122/// instruction with the specified blocksize.  (The order of the elements
3123/// within each block of the vector is reversed.)
3124static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3125                       unsigned BlockSize) {
3126  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3127         "Only possible block sizes for VREV are: 16, 32, 64");
3128
3129  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3130  if (EltSz == 64)
3131    return false;
3132
3133  unsigned NumElts = VT.getVectorNumElements();
3134  unsigned BlockElts = M[0] + 1;
3135
3136  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3137    return false;
3138
3139  for (unsigned i = 0; i < NumElts; ++i) {
3140    if ((unsigned) M[i] !=
3141        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3142      return false;
3143  }
3144
3145  return true;
3146}
3147
3148static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3149                       unsigned &WhichResult) {
3150  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3151  if (EltSz == 64)
3152    return false;
3153
3154  unsigned NumElts = VT.getVectorNumElements();
3155  WhichResult = (M[0] == 0 ? 0 : 1);
3156  for (unsigned i = 0; i < NumElts; i += 2) {
3157    if ((unsigned) M[i] != i + WhichResult ||
3158        (unsigned) M[i+1] != i + NumElts + WhichResult)
3159      return false;
3160  }
3161  return true;
3162}
3163
3164/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3165/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3166/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3167static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3168                                unsigned &WhichResult) {
3169  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3170  if (EltSz == 64)
3171    return false;
3172
3173  unsigned NumElts = VT.getVectorNumElements();
3174  WhichResult = (M[0] == 0 ? 0 : 1);
3175  for (unsigned i = 0; i < NumElts; i += 2) {
3176    if ((unsigned) M[i] != i + WhichResult ||
3177        (unsigned) M[i+1] != i + WhichResult)
3178      return false;
3179  }
3180  return true;
3181}
3182
3183static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3184                       unsigned &WhichResult) {
3185  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3186  if (EltSz == 64)
3187    return false;
3188
3189  unsigned NumElts = VT.getVectorNumElements();
3190  WhichResult = (M[0] == 0 ? 0 : 1);
3191  for (unsigned i = 0; i != NumElts; ++i) {
3192    if ((unsigned) M[i] != 2 * i + WhichResult)
3193      return false;
3194  }
3195
3196  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3197  if (VT.is64BitVector() && EltSz == 32)
3198    return false;
3199
3200  return true;
3201}
3202
3203/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3204/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3205/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3206static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3207                                unsigned &WhichResult) {
3208  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3209  if (EltSz == 64)
3210    return false;
3211
3212  unsigned Half = VT.getVectorNumElements() / 2;
3213  WhichResult = (M[0] == 0 ? 0 : 1);
3214  for (unsigned j = 0; j != 2; ++j) {
3215    unsigned Idx = WhichResult;
3216    for (unsigned i = 0; i != Half; ++i) {
3217      if ((unsigned) M[i + j * Half] != Idx)
3218        return false;
3219      Idx += 2;
3220    }
3221  }
3222
3223  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3224  if (VT.is64BitVector() && EltSz == 32)
3225    return false;
3226
3227  return true;
3228}
3229
3230static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3231                       unsigned &WhichResult) {
3232  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3233  if (EltSz == 64)
3234    return false;
3235
3236  unsigned NumElts = VT.getVectorNumElements();
3237  WhichResult = (M[0] == 0 ? 0 : 1);
3238  unsigned Idx = WhichResult * NumElts / 2;
3239  for (unsigned i = 0; i != NumElts; i += 2) {
3240    if ((unsigned) M[i] != Idx ||
3241        (unsigned) M[i+1] != Idx + NumElts)
3242      return false;
3243    Idx += 1;
3244  }
3245
3246  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3247  if (VT.is64BitVector() && EltSz == 32)
3248    return false;
3249
3250  return true;
3251}
3252
3253/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3254/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3255/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3256static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3257                                unsigned &WhichResult) {
3258  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3259  if (EltSz == 64)
3260    return false;
3261
3262  unsigned NumElts = VT.getVectorNumElements();
3263  WhichResult = (M[0] == 0 ? 0 : 1);
3264  unsigned Idx = WhichResult * NumElts / 2;
3265  for (unsigned i = 0; i != NumElts; i += 2) {
3266    if ((unsigned) M[i] != Idx ||
3267        (unsigned) M[i+1] != Idx)
3268      return false;
3269    Idx += 1;
3270  }
3271
3272  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3273  if (VT.is64BitVector() && EltSz == 32)
3274    return false;
3275
3276  return true;
3277}
3278
3279// If N is an integer constant that can be moved into a register in one
3280// instruction, return an SDValue of such a constant (will become a MOV
3281// instruction).  Otherwise return null.
3282static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3283                                     const ARMSubtarget *ST, DebugLoc dl) {
3284  uint64_t Val;
3285  if (!isa<ConstantSDNode>(N))
3286    return SDValue();
3287  Val = cast<ConstantSDNode>(N)->getZExtValue();
3288
3289  if (ST->isThumb1Only()) {
3290    if (Val <= 255 || ~Val <= 255)
3291      return DAG.getConstant(Val, MVT::i32);
3292  } else {
3293    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3294      return DAG.getConstant(Val, MVT::i32);
3295  }
3296  return SDValue();
3297}
3298
3299// If this is a case we can't handle, return null and let the default
3300// expansion code take care of it.
3301static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3302                                 const ARMSubtarget *ST) {
3303  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3304  DebugLoc dl = Op.getDebugLoc();
3305  EVT VT = Op.getValueType();
3306
3307  APInt SplatBits, SplatUndef;
3308  unsigned SplatBitSize;
3309  bool HasAnyUndefs;
3310  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3311    if (SplatBitSize <= 64) {
3312      // Check if an immediate VMOV works.
3313      EVT VmovVT;
3314      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3315                                      SplatUndef.getZExtValue(), SplatBitSize,
3316                                      DAG, VmovVT, VT.is128BitVector(), true);
3317      if (Val.getNode()) {
3318        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3319        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3320      }
3321
3322      // Try an immediate VMVN.
3323      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3324                             ((1LL << SplatBitSize) - 1));
3325      Val = isNEONModifiedImm(NegatedImm,
3326                                      SplatUndef.getZExtValue(), SplatBitSize,
3327                                      DAG, VmovVT, VT.is128BitVector(), false);
3328      if (Val.getNode()) {
3329        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3330        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3331      }
3332    }
3333  }
3334
3335  // Scan through the operands to see if only one value is used.
3336  unsigned NumElts = VT.getVectorNumElements();
3337  bool isOnlyLowElement = true;
3338  bool usesOnlyOneValue = true;
3339  bool isConstant = true;
3340  SDValue Value;
3341  for (unsigned i = 0; i < NumElts; ++i) {
3342    SDValue V = Op.getOperand(i);
3343    if (V.getOpcode() == ISD::UNDEF)
3344      continue;
3345    if (i > 0)
3346      isOnlyLowElement = false;
3347    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3348      isConstant = false;
3349
3350    if (!Value.getNode())
3351      Value = V;
3352    else if (V != Value)
3353      usesOnlyOneValue = false;
3354  }
3355
3356  if (!Value.getNode())
3357    return DAG.getUNDEF(VT);
3358
3359  if (isOnlyLowElement)
3360    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3361
3362  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3363
3364  if (EnableARMVDUPsplat) {
3365    // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3366    // i32 and try again.
3367    if (usesOnlyOneValue && EltSize <= 32) {
3368      if (!isConstant)
3369        return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3370      if (VT.getVectorElementType().isFloatingPoint()) {
3371        SmallVector<SDValue, 8> Ops;
3372        for (unsigned i = 0; i < NumElts; ++i)
3373          Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
3374                                    Op.getOperand(i)));
3375        SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &Ops[0],
3376                                  NumElts);
3377        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3378                           LowerBUILD_VECTOR(Val, DAG, ST));
3379      }
3380      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3381      if (Val.getNode())
3382        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3383    }
3384  }
3385
3386  // If all elements are constants and the case above didn't get hit, fall back
3387  // to the default expansion, which will generate a load from the constant
3388  // pool.
3389  if (isConstant)
3390    return SDValue();
3391
3392  if (!EnableARMVDUPsplat) {
3393    // Use VDUP for non-constant splats.
3394    if (usesOnlyOneValue && EltSize <= 32)
3395      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3396  }
3397
3398  // Vectors with 32- or 64-bit elements can be built by directly assigning
3399  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3400  // will be legalized.
3401  if (EltSize >= 32) {
3402    // Do the expansion with floating-point types, since that is what the VFP
3403    // registers are defined to use, and since i64 is not legal.
3404    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3405    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3406    SmallVector<SDValue, 8> Ops;
3407    for (unsigned i = 0; i < NumElts; ++i)
3408      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
3409    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3410    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3411  }
3412
3413  return SDValue();
3414}
3415
3416/// isShuffleMaskLegal - Targets can use this to indicate that they only
3417/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3418/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3419/// are assumed to be legal.
3420bool
3421ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3422                                      EVT VT) const {
3423  if (VT.getVectorNumElements() == 4 &&
3424      (VT.is128BitVector() || VT.is64BitVector())) {
3425    unsigned PFIndexes[4];
3426    for (unsigned i = 0; i != 4; ++i) {
3427      if (M[i] < 0)
3428        PFIndexes[i] = 8;
3429      else
3430        PFIndexes[i] = M[i];
3431    }
3432
3433    // Compute the index in the perfect shuffle table.
3434    unsigned PFTableIndex =
3435      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3436    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3437    unsigned Cost = (PFEntry >> 30);
3438
3439    if (Cost <= 4)
3440      return true;
3441  }
3442
3443  bool ReverseVEXT;
3444  unsigned Imm, WhichResult;
3445
3446  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3447  return (EltSize >= 32 ||
3448          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3449          isVREVMask(M, VT, 64) ||
3450          isVREVMask(M, VT, 32) ||
3451          isVREVMask(M, VT, 16) ||
3452          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3453          isVTRNMask(M, VT, WhichResult) ||
3454          isVUZPMask(M, VT, WhichResult) ||
3455          isVZIPMask(M, VT, WhichResult) ||
3456          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3457          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3458          isVZIP_v_undef_Mask(M, VT, WhichResult));
3459}
3460
3461/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3462/// the specified operations to build the shuffle.
3463static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3464                                      SDValue RHS, SelectionDAG &DAG,
3465                                      DebugLoc dl) {
3466  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3467  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3468  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3469
3470  enum {
3471    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3472    OP_VREV,
3473    OP_VDUP0,
3474    OP_VDUP1,
3475    OP_VDUP2,
3476    OP_VDUP3,
3477    OP_VEXT1,
3478    OP_VEXT2,
3479    OP_VEXT3,
3480    OP_VUZPL, // VUZP, left result
3481    OP_VUZPR, // VUZP, right result
3482    OP_VZIPL, // VZIP, left result
3483    OP_VZIPR, // VZIP, right result
3484    OP_VTRNL, // VTRN, left result
3485    OP_VTRNR  // VTRN, right result
3486  };
3487
3488  if (OpNum == OP_COPY) {
3489    if (LHSID == (1*9+2)*9+3) return LHS;
3490    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3491    return RHS;
3492  }
3493
3494  SDValue OpLHS, OpRHS;
3495  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3496  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3497  EVT VT = OpLHS.getValueType();
3498
3499  switch (OpNum) {
3500  default: llvm_unreachable("Unknown shuffle opcode!");
3501  case OP_VREV:
3502    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3503  case OP_VDUP0:
3504  case OP_VDUP1:
3505  case OP_VDUP2:
3506  case OP_VDUP3:
3507    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3508                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3509  case OP_VEXT1:
3510  case OP_VEXT2:
3511  case OP_VEXT3:
3512    return DAG.getNode(ARMISD::VEXT, dl, VT,
3513                       OpLHS, OpRHS,
3514                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3515  case OP_VUZPL:
3516  case OP_VUZPR:
3517    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3518                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3519  case OP_VZIPL:
3520  case OP_VZIPR:
3521    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3522                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3523  case OP_VTRNL:
3524  case OP_VTRNR:
3525    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3526                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3527  }
3528}
3529
3530static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3531  SDValue V1 = Op.getOperand(0);
3532  SDValue V2 = Op.getOperand(1);
3533  DebugLoc dl = Op.getDebugLoc();
3534  EVT VT = Op.getValueType();
3535  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3536  SmallVector<int, 8> ShuffleMask;
3537
3538  // Convert shuffles that are directly supported on NEON to target-specific
3539  // DAG nodes, instead of keeping them as shuffles and matching them again
3540  // during code selection.  This is more efficient and avoids the possibility
3541  // of inconsistencies between legalization and selection.
3542  // FIXME: floating-point vectors should be canonicalized to integer vectors
3543  // of the same time so that they get CSEd properly.
3544  SVN->getMask(ShuffleMask);
3545
3546  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3547  if (EltSize <= 32) {
3548    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3549      int Lane = SVN->getSplatIndex();
3550      // If this is undef splat, generate it via "just" vdup, if possible.
3551      if (Lane == -1) Lane = 0;
3552
3553      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3554        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3555      }
3556      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3557                         DAG.getConstant(Lane, MVT::i32));
3558    }
3559
3560    bool ReverseVEXT;
3561    unsigned Imm;
3562    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3563      if (ReverseVEXT)
3564        std::swap(V1, V2);
3565      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3566                         DAG.getConstant(Imm, MVT::i32));
3567    }
3568
3569    if (isVREVMask(ShuffleMask, VT, 64))
3570      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3571    if (isVREVMask(ShuffleMask, VT, 32))
3572      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3573    if (isVREVMask(ShuffleMask, VT, 16))
3574      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3575
3576    // Check for Neon shuffles that modify both input vectors in place.
3577    // If both results are used, i.e., if there are two shuffles with the same
3578    // source operands and with masks corresponding to both results of one of
3579    // these operations, DAG memoization will ensure that a single node is
3580    // used for both shuffles.
3581    unsigned WhichResult;
3582    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3583      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3584                         V1, V2).getValue(WhichResult);
3585    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3586      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3587                         V1, V2).getValue(WhichResult);
3588    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3589      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3590                         V1, V2).getValue(WhichResult);
3591
3592    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3593      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3594                         V1, V1).getValue(WhichResult);
3595    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3596      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3597                         V1, V1).getValue(WhichResult);
3598    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3599      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3600                         V1, V1).getValue(WhichResult);
3601  }
3602
3603  // If the shuffle is not directly supported and it has 4 elements, use
3604  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3605  unsigned NumElts = VT.getVectorNumElements();
3606  if (NumElts == 4) {
3607    unsigned PFIndexes[4];
3608    for (unsigned i = 0; i != 4; ++i) {
3609      if (ShuffleMask[i] < 0)
3610        PFIndexes[i] = 8;
3611      else
3612        PFIndexes[i] = ShuffleMask[i];
3613    }
3614
3615    // Compute the index in the perfect shuffle table.
3616    unsigned PFTableIndex =
3617      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3618    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3619    unsigned Cost = (PFEntry >> 30);
3620
3621    if (Cost <= 4)
3622      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3623  }
3624
3625  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
3626  if (EltSize >= 32) {
3627    // Do the expansion with floating-point types, since that is what the VFP
3628    // registers are defined to use, and since i64 is not legal.
3629    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3630    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3631    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
3632    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
3633    SmallVector<SDValue, 8> Ops;
3634    for (unsigned i = 0; i < NumElts; ++i) {
3635      if (ShuffleMask[i] < 0)
3636        Ops.push_back(DAG.getUNDEF(EltVT));
3637      else
3638        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3639                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
3640                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
3641                                                  MVT::i32)));
3642    }
3643    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3644    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3645  }
3646
3647  return SDValue();
3648}
3649
3650static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3651  EVT VT = Op.getValueType();
3652  DebugLoc dl = Op.getDebugLoc();
3653  SDValue Vec = Op.getOperand(0);
3654  SDValue Lane = Op.getOperand(1);
3655  assert(VT == MVT::i32 &&
3656         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
3657         "unexpected type for custom-lowering vector extract");
3658  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3659}
3660
3661static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3662  // The only time a CONCAT_VECTORS operation can have legal types is when
3663  // two 64-bit vectors are concatenated to a 128-bit vector.
3664  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3665         "unexpected CONCAT_VECTORS");
3666  DebugLoc dl = Op.getDebugLoc();
3667  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3668  SDValue Op0 = Op.getOperand(0);
3669  SDValue Op1 = Op.getOperand(1);
3670  if (Op0.getOpcode() != ISD::UNDEF)
3671    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3672                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
3673                      DAG.getIntPtrConstant(0));
3674  if (Op1.getOpcode() != ISD::UNDEF)
3675    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3676                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
3677                      DAG.getIntPtrConstant(1));
3678  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
3679}
3680
3681SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3682  switch (Op.getOpcode()) {
3683  default: llvm_unreachable("Don't know how to custom lower this!");
3684  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
3685  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
3686  case ISD::GlobalAddress:
3687    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
3688      LowerGlobalAddressELF(Op, DAG);
3689  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3690  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
3691  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
3692  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
3693  case ISD::VASTART:       return LowerVASTART(Op, DAG);
3694  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3695  case ISD::SINT_TO_FP:
3696  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3697  case ISD::FP_TO_SINT:
3698  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3699  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3700  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
3701  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3702  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3703  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
3704  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
3705  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
3706                                                               Subtarget);
3707  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3708  case ISD::SHL:
3709  case ISD::SRL:
3710  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3711  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3712  case ISD::SRL_PARTS:
3713  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3714  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
3715  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3716  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
3717  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3718  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3719  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3720  case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
3721  }
3722  return SDValue();
3723}
3724
3725/// ReplaceNodeResults - Replace the results of node with an illegal result
3726/// type with new values built out of custom code.
3727void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3728                                           SmallVectorImpl<SDValue>&Results,
3729                                           SelectionDAG &DAG) const {
3730  SDValue Res;
3731  switch (N->getOpcode()) {
3732  default:
3733    llvm_unreachable("Don't know how to custom expand this!");
3734    break;
3735  case ISD::BIT_CONVERT:
3736    Res = ExpandBIT_CONVERT(N, DAG);
3737    break;
3738  case ISD::SRL:
3739  case ISD::SRA:
3740    Res = LowerShift(N, DAG, Subtarget);
3741    break;
3742  }
3743  if (Res.getNode())
3744    Results.push_back(Res);
3745}
3746
3747//===----------------------------------------------------------------------===//
3748//                           ARM Scheduler Hooks
3749//===----------------------------------------------------------------------===//
3750
3751MachineBasicBlock *
3752ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3753                                     MachineBasicBlock *BB,
3754                                     unsigned Size) const {
3755  unsigned dest    = MI->getOperand(0).getReg();
3756  unsigned ptr     = MI->getOperand(1).getReg();
3757  unsigned oldval  = MI->getOperand(2).getReg();
3758  unsigned newval  = MI->getOperand(3).getReg();
3759  unsigned scratch = BB->getParent()->getRegInfo()
3760    .createVirtualRegister(ARM::GPRRegisterClass);
3761  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3762  DebugLoc dl = MI->getDebugLoc();
3763  bool isThumb2 = Subtarget->isThumb2();
3764
3765  unsigned ldrOpc, strOpc;
3766  switch (Size) {
3767  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3768  case 1:
3769    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3770    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3771    break;
3772  case 2:
3773    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3774    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3775    break;
3776  case 4:
3777    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3778    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3779    break;
3780  }
3781
3782  MachineFunction *MF = BB->getParent();
3783  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3784  MachineFunction::iterator It = BB;
3785  ++It; // insert the new blocks after the current block
3786
3787  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3788  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3789  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3790  MF->insert(It, loop1MBB);
3791  MF->insert(It, loop2MBB);
3792  MF->insert(It, exitMBB);
3793
3794  // Transfer the remainder of BB and its successor edges to exitMBB.
3795  exitMBB->splice(exitMBB->begin(), BB,
3796                  llvm::next(MachineBasicBlock::iterator(MI)),
3797                  BB->end());
3798  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3799
3800  //  thisMBB:
3801  //   ...
3802  //   fallthrough --> loop1MBB
3803  BB->addSuccessor(loop1MBB);
3804
3805  // loop1MBB:
3806  //   ldrex dest, [ptr]
3807  //   cmp dest, oldval
3808  //   bne exitMBB
3809  BB = loop1MBB;
3810  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3811  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
3812                 .addReg(dest).addReg(oldval));
3813  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3814    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3815  BB->addSuccessor(loop2MBB);
3816  BB->addSuccessor(exitMBB);
3817
3818  // loop2MBB:
3819  //   strex scratch, newval, [ptr]
3820  //   cmp scratch, #0
3821  //   bne loop1MBB
3822  BB = loop2MBB;
3823  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
3824                 .addReg(ptr));
3825  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3826                 .addReg(scratch).addImm(0));
3827  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3828    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3829  BB->addSuccessor(loop1MBB);
3830  BB->addSuccessor(exitMBB);
3831
3832  //  exitMBB:
3833  //   ...
3834  BB = exitMBB;
3835
3836  MI->eraseFromParent();   // The instruction is gone now.
3837
3838  return BB;
3839}
3840
3841MachineBasicBlock *
3842ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3843                                    unsigned Size, unsigned BinOpcode) const {
3844  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3845  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3846
3847  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3848  MachineFunction *MF = BB->getParent();
3849  MachineFunction::iterator It = BB;
3850  ++It;
3851
3852  unsigned dest = MI->getOperand(0).getReg();
3853  unsigned ptr = MI->getOperand(1).getReg();
3854  unsigned incr = MI->getOperand(2).getReg();
3855  DebugLoc dl = MI->getDebugLoc();
3856
3857  bool isThumb2 = Subtarget->isThumb2();
3858  unsigned ldrOpc, strOpc;
3859  switch (Size) {
3860  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3861  case 1:
3862    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3863    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
3864    break;
3865  case 2:
3866    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3867    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3868    break;
3869  case 4:
3870    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3871    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3872    break;
3873  }
3874
3875  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3876  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3877  MF->insert(It, loopMBB);
3878  MF->insert(It, exitMBB);
3879
3880  // Transfer the remainder of BB and its successor edges to exitMBB.
3881  exitMBB->splice(exitMBB->begin(), BB,
3882                  llvm::next(MachineBasicBlock::iterator(MI)),
3883                  BB->end());
3884  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3885
3886  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3887  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3888  unsigned scratch2 = (!BinOpcode) ? incr :
3889    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3890
3891  //  thisMBB:
3892  //   ...
3893  //   fallthrough --> loopMBB
3894  BB->addSuccessor(loopMBB);
3895
3896  //  loopMBB:
3897  //   ldrex dest, ptr
3898  //   <binop> scratch2, dest, incr
3899  //   strex scratch, scratch2, ptr
3900  //   cmp scratch, #0
3901  //   bne- loopMBB
3902  //   fallthrough --> exitMBB
3903  BB = loopMBB;
3904  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3905  if (BinOpcode) {
3906    // operand order needs to go the other way for NAND
3907    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
3908      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3909                     addReg(incr).addReg(dest)).addReg(0);
3910    else
3911      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3912                     addReg(dest).addReg(incr)).addReg(0);
3913  }
3914
3915  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
3916                 .addReg(ptr));
3917  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3918                 .addReg(scratch).addImm(0));
3919  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3920    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3921
3922  BB->addSuccessor(loopMBB);
3923  BB->addSuccessor(exitMBB);
3924
3925  //  exitMBB:
3926  //   ...
3927  BB = exitMBB;
3928
3929  MI->eraseFromParent();   // The instruction is gone now.
3930
3931  return BB;
3932}
3933
3934static
3935MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
3936  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
3937       E = MBB->succ_end(); I != E; ++I)
3938    if (*I != Succ)
3939      return *I;
3940  llvm_unreachable("Expecting a BB with two successors!");
3941}
3942
3943MachineBasicBlock *
3944ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3945                                               MachineBasicBlock *BB) const {
3946  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3947  DebugLoc dl = MI->getDebugLoc();
3948  bool isThumb2 = Subtarget->isThumb2();
3949  switch (MI->getOpcode()) {
3950  default:
3951    MI->dump();
3952    llvm_unreachable("Unexpected instr type to insert");
3953
3954  case ARM::ATOMIC_LOAD_ADD_I8:
3955     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3956  case ARM::ATOMIC_LOAD_ADD_I16:
3957     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3958  case ARM::ATOMIC_LOAD_ADD_I32:
3959     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
3960
3961  case ARM::ATOMIC_LOAD_AND_I8:
3962     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3963  case ARM::ATOMIC_LOAD_AND_I16:
3964     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3965  case ARM::ATOMIC_LOAD_AND_I32:
3966     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
3967
3968  case ARM::ATOMIC_LOAD_OR_I8:
3969     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3970  case ARM::ATOMIC_LOAD_OR_I16:
3971     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3972  case ARM::ATOMIC_LOAD_OR_I32:
3973     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
3974
3975  case ARM::ATOMIC_LOAD_XOR_I8:
3976     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3977  case ARM::ATOMIC_LOAD_XOR_I16:
3978     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3979  case ARM::ATOMIC_LOAD_XOR_I32:
3980     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
3981
3982  case ARM::ATOMIC_LOAD_NAND_I8:
3983     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3984  case ARM::ATOMIC_LOAD_NAND_I16:
3985     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3986  case ARM::ATOMIC_LOAD_NAND_I32:
3987     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
3988
3989  case ARM::ATOMIC_LOAD_SUB_I8:
3990     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3991  case ARM::ATOMIC_LOAD_SUB_I16:
3992     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3993  case ARM::ATOMIC_LOAD_SUB_I32:
3994     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
3995
3996  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
3997  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
3998  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
3999
4000  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
4001  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
4002  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
4003
4004  case ARM::tMOVCCr_pseudo: {
4005    // To "insert" a SELECT_CC instruction, we actually have to insert the
4006    // diamond control-flow pattern.  The incoming instruction knows the
4007    // destination vreg to set, the condition code register to branch on, the
4008    // true/false values to select between, and a branch opcode to use.
4009    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4010    MachineFunction::iterator It = BB;
4011    ++It;
4012
4013    //  thisMBB:
4014    //  ...
4015    //   TrueVal = ...
4016    //   cmpTY ccX, r1, r2
4017    //   bCC copy1MBB
4018    //   fallthrough --> copy0MBB
4019    MachineBasicBlock *thisMBB  = BB;
4020    MachineFunction *F = BB->getParent();
4021    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4022    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4023    F->insert(It, copy0MBB);
4024    F->insert(It, sinkMBB);
4025
4026    // Transfer the remainder of BB and its successor edges to sinkMBB.
4027    sinkMBB->splice(sinkMBB->begin(), BB,
4028                    llvm::next(MachineBasicBlock::iterator(MI)),
4029                    BB->end());
4030    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4031
4032    BB->addSuccessor(copy0MBB);
4033    BB->addSuccessor(sinkMBB);
4034
4035    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
4036      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
4037
4038    //  copy0MBB:
4039    //   %FalseValue = ...
4040    //   # fallthrough to sinkMBB
4041    BB = copy0MBB;
4042
4043    // Update machine-CFG edges
4044    BB->addSuccessor(sinkMBB);
4045
4046    //  sinkMBB:
4047    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4048    //  ...
4049    BB = sinkMBB;
4050    BuildMI(*BB, BB->begin(), dl,
4051            TII->get(ARM::PHI), MI->getOperand(0).getReg())
4052      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4053      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4054
4055    MI->eraseFromParent();   // The pseudo instruction is gone now.
4056    return BB;
4057  }
4058
4059  case ARM::BCCi64:
4060  case ARM::BCCZi64: {
4061    // Compare both parts that make up the double comparison separately for
4062    // equality.
4063    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
4064
4065    unsigned LHS1 = MI->getOperand(1).getReg();
4066    unsigned LHS2 = MI->getOperand(2).getReg();
4067    if (RHSisZero) {
4068      AddDefaultPred(BuildMI(BB, dl,
4069                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4070                     .addReg(LHS1).addImm(0));
4071      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4072        .addReg(LHS2).addImm(0)
4073        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4074    } else {
4075      unsigned RHS1 = MI->getOperand(3).getReg();
4076      unsigned RHS2 = MI->getOperand(4).getReg();
4077      AddDefaultPred(BuildMI(BB, dl,
4078                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4079                     .addReg(LHS1).addReg(RHS1));
4080      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4081        .addReg(LHS2).addReg(RHS2)
4082        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4083    }
4084
4085    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
4086    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
4087    if (MI->getOperand(0).getImm() == ARMCC::NE)
4088      std::swap(destMBB, exitMBB);
4089
4090    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4091      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
4092    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
4093      .addMBB(exitMBB);
4094
4095    MI->eraseFromParent();   // The pseudo instruction is gone now.
4096    return BB;
4097  }
4098
4099  case ARM::tANDsp:
4100  case ARM::tADDspr_:
4101  case ARM::tSUBspi_:
4102  case ARM::t2SUBrSPi_:
4103  case ARM::t2SUBrSPi12_:
4104  case ARM::t2SUBrSPs_: {
4105    MachineFunction *MF = BB->getParent();
4106    unsigned DstReg = MI->getOperand(0).getReg();
4107    unsigned SrcReg = MI->getOperand(1).getReg();
4108    bool DstIsDead = MI->getOperand(0).isDead();
4109    bool SrcIsKill = MI->getOperand(1).isKill();
4110
4111    if (SrcReg != ARM::SP) {
4112      // Copy the source to SP from virtual register.
4113      const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg);
4114      unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
4115        ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr;
4116      BuildMI(*BB, MI, dl, TII->get(CopyOpc), ARM::SP)
4117        .addReg(SrcReg, getKillRegState(SrcIsKill));
4118    }
4119
4120    unsigned OpOpc = 0;
4121    bool NeedPred = false, NeedCC = false, NeedOp3 = false;
4122    switch (MI->getOpcode()) {
4123    default:
4124      llvm_unreachable("Unexpected pseudo instruction!");
4125    case ARM::tANDsp:
4126      OpOpc = ARM::tAND;
4127      NeedPred = true;
4128      break;
4129    case ARM::tADDspr_:
4130      OpOpc = ARM::tADDspr;
4131      break;
4132    case ARM::tSUBspi_:
4133      OpOpc = ARM::tSUBspi;
4134      break;
4135    case ARM::t2SUBrSPi_:
4136      OpOpc = ARM::t2SUBrSPi;
4137      NeedPred = true; NeedCC = true;
4138      break;
4139    case ARM::t2SUBrSPi12_:
4140      OpOpc = ARM::t2SUBrSPi12;
4141      NeedPred = true;
4142      break;
4143    case ARM::t2SUBrSPs_:
4144      OpOpc = ARM::t2SUBrSPs;
4145      NeedPred = true; NeedCC = true; NeedOp3 = true;
4146      break;
4147    }
4148    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(OpOpc), ARM::SP);
4149    if (OpOpc == ARM::tAND)
4150      AddDefaultT1CC(MIB);
4151    MIB.addReg(ARM::SP);
4152    MIB.addOperand(MI->getOperand(2));
4153    if (NeedOp3)
4154      MIB.addOperand(MI->getOperand(3));
4155    if (NeedPred)
4156      AddDefaultPred(MIB);
4157    if (NeedCC)
4158      AddDefaultCC(MIB);
4159
4160    // Copy the result from SP to virtual register.
4161    const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg);
4162    unsigned CopyOpc = (RC == ARM::tGPRRegisterClass)
4163      ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr;
4164    BuildMI(*BB, MI, dl, TII->get(CopyOpc))
4165      .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead))
4166      .addReg(ARM::SP);
4167    MI->eraseFromParent();   // The pseudo instruction is gone now.
4168    return BB;
4169  }
4170  }
4171}
4172
4173//===----------------------------------------------------------------------===//
4174//                           ARM Optimization Hooks
4175//===----------------------------------------------------------------------===//
4176
4177static
4178SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
4179                            TargetLowering::DAGCombinerInfo &DCI) {
4180  SelectionDAG &DAG = DCI.DAG;
4181  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4182  EVT VT = N->getValueType(0);
4183  unsigned Opc = N->getOpcode();
4184  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
4185  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
4186  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
4187  ISD::CondCode CC = ISD::SETCC_INVALID;
4188
4189  if (isSlctCC) {
4190    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
4191  } else {
4192    SDValue CCOp = Slct.getOperand(0);
4193    if (CCOp.getOpcode() == ISD::SETCC)
4194      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
4195  }
4196
4197  bool DoXform = false;
4198  bool InvCC = false;
4199  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
4200          "Bad input!");
4201
4202  if (LHS.getOpcode() == ISD::Constant &&
4203      cast<ConstantSDNode>(LHS)->isNullValue()) {
4204    DoXform = true;
4205  } else if (CC != ISD::SETCC_INVALID &&
4206             RHS.getOpcode() == ISD::Constant &&
4207             cast<ConstantSDNode>(RHS)->isNullValue()) {
4208    std::swap(LHS, RHS);
4209    SDValue Op0 = Slct.getOperand(0);
4210    EVT OpVT = isSlctCC ? Op0.getValueType() :
4211                          Op0.getOperand(0).getValueType();
4212    bool isInt = OpVT.isInteger();
4213    CC = ISD::getSetCCInverse(CC, isInt);
4214
4215    if (!TLI.isCondCodeLegal(CC, OpVT))
4216      return SDValue();         // Inverse operator isn't legal.
4217
4218    DoXform = true;
4219    InvCC = true;
4220  }
4221
4222  if (DoXform) {
4223    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4224    if (isSlctCC)
4225      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4226                             Slct.getOperand(0), Slct.getOperand(1), CC);
4227    SDValue CCOp = Slct.getOperand(0);
4228    if (InvCC)
4229      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4230                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4231    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4232                       CCOp, OtherOp, Result);
4233  }
4234  return SDValue();
4235}
4236
4237/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4238/// operands N0 and N1.  This is a helper for PerformADDCombine that is
4239/// called with the default operands, and if that fails, with commuted
4240/// operands.
4241static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4242                                         TargetLowering::DAGCombinerInfo &DCI) {
4243  SelectionDAG &DAG = DCI.DAG;
4244
4245  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4246  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4247    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4248    if (Result.getNode()) return Result;
4249  }
4250
4251  // fold (add (arm_neon_vabd a, b) c) -> (arm_neon_vaba c, a, b)
4252  EVT VT = N->getValueType(0);
4253  if (N0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && VT.isInteger()) {
4254    unsigned IntNo = cast<ConstantSDNode>(N0.getOperand(0))->getZExtValue();
4255    if (IntNo == Intrinsic::arm_neon_vabds)
4256      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(), VT,
4257                         DAG.getConstant(Intrinsic::arm_neon_vabas, MVT::i32),
4258                         N1, N0.getOperand(1), N0.getOperand(2));
4259    if (IntNo == Intrinsic::arm_neon_vabdu)
4260      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(), VT,
4261                         DAG.getConstant(Intrinsic::arm_neon_vabau, MVT::i32),
4262                         N1, N0.getOperand(1), N0.getOperand(2));
4263  }
4264
4265  return SDValue();
4266}
4267
4268/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4269///
4270static SDValue PerformADDCombine(SDNode *N,
4271                                 TargetLowering::DAGCombinerInfo &DCI) {
4272  SDValue N0 = N->getOperand(0);
4273  SDValue N1 = N->getOperand(1);
4274
4275  // First try with the default operand order.
4276  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
4277  if (Result.getNode())
4278    return Result;
4279
4280  // If that didn't work, try again with the operands commuted.
4281  return PerformADDCombineWithOperands(N, N1, N0, DCI);
4282}
4283
4284/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4285///
4286static SDValue PerformSUBCombine(SDNode *N,
4287                                 TargetLowering::DAGCombinerInfo &DCI) {
4288  SDValue N0 = N->getOperand(0);
4289  SDValue N1 = N->getOperand(1);
4290
4291  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4292  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4293    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4294    if (Result.getNode()) return Result;
4295  }
4296
4297  return SDValue();
4298}
4299
4300static SDValue PerformMULCombine(SDNode *N,
4301                                 TargetLowering::DAGCombinerInfo &DCI,
4302                                 const ARMSubtarget *Subtarget) {
4303  SelectionDAG &DAG = DCI.DAG;
4304
4305  if (Subtarget->isThumb1Only())
4306    return SDValue();
4307
4308  if (DAG.getMachineFunction().
4309      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
4310    return SDValue();
4311
4312  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4313    return SDValue();
4314
4315  EVT VT = N->getValueType(0);
4316  if (VT != MVT::i32)
4317    return SDValue();
4318
4319  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4320  if (!C)
4321    return SDValue();
4322
4323  uint64_t MulAmt = C->getZExtValue();
4324  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4325  ShiftAmt = ShiftAmt & (32 - 1);
4326  SDValue V = N->getOperand(0);
4327  DebugLoc DL = N->getDebugLoc();
4328
4329  SDValue Res;
4330  MulAmt >>= ShiftAmt;
4331  if (isPowerOf2_32(MulAmt - 1)) {
4332    // (mul x, 2^N + 1) => (add (shl x, N), x)
4333    Res = DAG.getNode(ISD::ADD, DL, VT,
4334                      V, DAG.getNode(ISD::SHL, DL, VT,
4335                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4336                                                        MVT::i32)));
4337  } else if (isPowerOf2_32(MulAmt + 1)) {
4338    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4339    Res = DAG.getNode(ISD::SUB, DL, VT,
4340                      DAG.getNode(ISD::SHL, DL, VT,
4341                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4342                                                     MVT::i32)),
4343                                                     V);
4344  } else
4345    return SDValue();
4346
4347  if (ShiftAmt != 0)
4348    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4349                      DAG.getConstant(ShiftAmt, MVT::i32));
4350
4351  // Do not add new nodes to DAG combiner worklist.
4352  DCI.CombineTo(N, Res, false);
4353  return SDValue();
4354}
4355
4356/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
4357static SDValue PerformORCombine(SDNode *N,
4358                                TargetLowering::DAGCombinerInfo &DCI,
4359                                const ARMSubtarget *Subtarget) {
4360  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
4361  // reasonable.
4362
4363  // BFI is only available on V6T2+
4364  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
4365    return SDValue();
4366
4367  SelectionDAG &DAG = DCI.DAG;
4368  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4369  DebugLoc DL = N->getDebugLoc();
4370  // 1) or (and A, mask), val => ARMbfi A, val, mask
4371  //      iff (val & mask) == val
4372  //
4373  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4374  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
4375  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4376  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
4377  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4378  //  (i.e., copy a bitfield value into another bitfield of the same width)
4379  if (N0.getOpcode() != ISD::AND)
4380    return SDValue();
4381
4382  EVT VT = N->getValueType(0);
4383  if (VT != MVT::i32)
4384    return SDValue();
4385
4386
4387  // The value and the mask need to be constants so we can verify this is
4388  // actually a bitfield set. If the mask is 0xffff, we can do better
4389  // via a movt instruction, so don't use BFI in that case.
4390  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4391  if (!C)
4392    return SDValue();
4393  unsigned Mask = C->getZExtValue();
4394  if (Mask == 0xffff)
4395    return SDValue();
4396  SDValue Res;
4397  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
4398  if ((C = dyn_cast<ConstantSDNode>(N1))) {
4399    unsigned Val = C->getZExtValue();
4400    if (!ARM::isBitFieldInvertedMask(Mask) || (Val & ~Mask) != Val)
4401      return SDValue();
4402    Val >>= CountTrailingZeros_32(~Mask);
4403
4404    Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0),
4405                      DAG.getConstant(Val, MVT::i32),
4406                      DAG.getConstant(Mask, MVT::i32));
4407
4408    // Do not add new nodes to DAG combiner worklist.
4409    DCI.CombineTo(N, Res, false);
4410  } else if (N1.getOpcode() == ISD::AND) {
4411    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4412    C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4413    if (!C)
4414      return SDValue();
4415    unsigned Mask2 = C->getZExtValue();
4416
4417    if (ARM::isBitFieldInvertedMask(Mask) &&
4418        ARM::isBitFieldInvertedMask(~Mask2) &&
4419        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
4420      // The pack halfword instruction works better for masks that fit it,
4421      // so use that when it's available.
4422      if (Subtarget->hasT2ExtractPack() &&
4423          (Mask == 0xffff || Mask == 0xffff0000))
4424        return SDValue();
4425      // 2a
4426      unsigned lsb = CountTrailingZeros_32(Mask2);
4427      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
4428                        DAG.getConstant(lsb, MVT::i32));
4429      Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0), Res,
4430                        DAG.getConstant(Mask, MVT::i32));
4431      // Do not add new nodes to DAG combiner worklist.
4432      DCI.CombineTo(N, Res, false);
4433    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
4434               ARM::isBitFieldInvertedMask(Mask2) &&
4435               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
4436      // The pack halfword instruction works better for masks that fit it,
4437      // so use that when it's available.
4438      if (Subtarget->hasT2ExtractPack() &&
4439          (Mask2 == 0xffff || Mask2 == 0xffff0000))
4440        return SDValue();
4441      // 2b
4442      unsigned lsb = CountTrailingZeros_32(Mask);
4443      Res = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4444                        DAG.getConstant(lsb, MVT::i32));
4445      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
4446                                DAG.getConstant(Mask2, MVT::i32));
4447      // Do not add new nodes to DAG combiner worklist.
4448      DCI.CombineTo(N, Res, false);
4449    }
4450  }
4451
4452  return SDValue();
4453}
4454
4455/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
4456/// ARMISD::VMOVRRD.
4457static SDValue PerformVMOVRRDCombine(SDNode *N,
4458                                   TargetLowering::DAGCombinerInfo &DCI) {
4459  // fmrrd(fmdrr x, y) -> x,y
4460  SDValue InDouble = N->getOperand(0);
4461  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
4462    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
4463  return SDValue();
4464}
4465
4466/// PerformVDUPLANECombine - Target-specific dag combine xforms for
4467/// ARMISD::VDUPLANE.
4468static SDValue PerformVDUPLANECombine(SDNode *N,
4469                                      TargetLowering::DAGCombinerInfo &DCI) {
4470  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
4471  // redundant.
4472  SDValue Op = N->getOperand(0);
4473  EVT VT = N->getValueType(0);
4474
4475  // Ignore bit_converts.
4476  while (Op.getOpcode() == ISD::BIT_CONVERT)
4477    Op = Op.getOperand(0);
4478  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
4479    return SDValue();
4480
4481  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
4482  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
4483  // The canonical VMOV for a zero vector uses a 32-bit element size.
4484  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4485  unsigned EltBits;
4486  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
4487    EltSize = 8;
4488  if (EltSize > VT.getVectorElementType().getSizeInBits())
4489    return SDValue();
4490
4491  SDValue Res = DCI.DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
4492  return DCI.CombineTo(N, Res, false);
4493}
4494
4495/// getVShiftImm - Check if this is a valid build_vector for the immediate
4496/// operand of a vector shift operation, where all the elements of the
4497/// build_vector must have the same constant integer value.
4498static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
4499  // Ignore bit_converts.
4500  while (Op.getOpcode() == ISD::BIT_CONVERT)
4501    Op = Op.getOperand(0);
4502  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4503  APInt SplatBits, SplatUndef;
4504  unsigned SplatBitSize;
4505  bool HasAnyUndefs;
4506  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
4507                                      HasAnyUndefs, ElementBits) ||
4508      SplatBitSize > ElementBits)
4509    return false;
4510  Cnt = SplatBits.getSExtValue();
4511  return true;
4512}
4513
4514/// isVShiftLImm - Check if this is a valid build_vector for the immediate
4515/// operand of a vector shift left operation.  That value must be in the range:
4516///   0 <= Value < ElementBits for a left shift; or
4517///   0 <= Value <= ElementBits for a long left shift.
4518static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
4519  assert(VT.isVector() && "vector shift count is not a vector type");
4520  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4521  if (! getVShiftImm(Op, ElementBits, Cnt))
4522    return false;
4523  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
4524}
4525
4526/// isVShiftRImm - Check if this is a valid build_vector for the immediate
4527/// operand of a vector shift right operation.  For a shift opcode, the value
4528/// is positive, but for an intrinsic the value count must be negative. The
4529/// absolute value must be in the range:
4530///   1 <= |Value| <= ElementBits for a right shift; or
4531///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
4532static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
4533                         int64_t &Cnt) {
4534  assert(VT.isVector() && "vector shift count is not a vector type");
4535  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4536  if (! getVShiftImm(Op, ElementBits, Cnt))
4537    return false;
4538  if (isIntrinsic)
4539    Cnt = -Cnt;
4540  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
4541}
4542
4543/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
4544static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
4545  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4546  switch (IntNo) {
4547  default:
4548    // Don't do anything for most intrinsics.
4549    break;
4550
4551  // Vector shifts: check for immediate versions and lower them.
4552  // Note: This is done during DAG combining instead of DAG legalizing because
4553  // the build_vectors for 64-bit vector element shift counts are generally
4554  // not legal, and it is hard to see their values after they get legalized to
4555  // loads from a constant pool.
4556  case Intrinsic::arm_neon_vshifts:
4557  case Intrinsic::arm_neon_vshiftu:
4558  case Intrinsic::arm_neon_vshiftls:
4559  case Intrinsic::arm_neon_vshiftlu:
4560  case Intrinsic::arm_neon_vshiftn:
4561  case Intrinsic::arm_neon_vrshifts:
4562  case Intrinsic::arm_neon_vrshiftu:
4563  case Intrinsic::arm_neon_vrshiftn:
4564  case Intrinsic::arm_neon_vqshifts:
4565  case Intrinsic::arm_neon_vqshiftu:
4566  case Intrinsic::arm_neon_vqshiftsu:
4567  case Intrinsic::arm_neon_vqshiftns:
4568  case Intrinsic::arm_neon_vqshiftnu:
4569  case Intrinsic::arm_neon_vqshiftnsu:
4570  case Intrinsic::arm_neon_vqrshiftns:
4571  case Intrinsic::arm_neon_vqrshiftnu:
4572  case Intrinsic::arm_neon_vqrshiftnsu: {
4573    EVT VT = N->getOperand(1).getValueType();
4574    int64_t Cnt;
4575    unsigned VShiftOpc = 0;
4576
4577    switch (IntNo) {
4578    case Intrinsic::arm_neon_vshifts:
4579    case Intrinsic::arm_neon_vshiftu:
4580      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
4581        VShiftOpc = ARMISD::VSHL;
4582        break;
4583      }
4584      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
4585        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
4586                     ARMISD::VSHRs : ARMISD::VSHRu);
4587        break;
4588      }
4589      return SDValue();
4590
4591    case Intrinsic::arm_neon_vshiftls:
4592    case Intrinsic::arm_neon_vshiftlu:
4593      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
4594        break;
4595      llvm_unreachable("invalid shift count for vshll intrinsic");
4596
4597    case Intrinsic::arm_neon_vrshifts:
4598    case Intrinsic::arm_neon_vrshiftu:
4599      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
4600        break;
4601      return SDValue();
4602
4603    case Intrinsic::arm_neon_vqshifts:
4604    case Intrinsic::arm_neon_vqshiftu:
4605      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4606        break;
4607      return SDValue();
4608
4609    case Intrinsic::arm_neon_vqshiftsu:
4610      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4611        break;
4612      llvm_unreachable("invalid shift count for vqshlu intrinsic");
4613
4614    case Intrinsic::arm_neon_vshiftn:
4615    case Intrinsic::arm_neon_vrshiftn:
4616    case Intrinsic::arm_neon_vqshiftns:
4617    case Intrinsic::arm_neon_vqshiftnu:
4618    case Intrinsic::arm_neon_vqshiftnsu:
4619    case Intrinsic::arm_neon_vqrshiftns:
4620    case Intrinsic::arm_neon_vqrshiftnu:
4621    case Intrinsic::arm_neon_vqrshiftnsu:
4622      // Narrowing shifts require an immediate right shift.
4623      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
4624        break;
4625      llvm_unreachable("invalid shift count for narrowing vector shift "
4626                       "intrinsic");
4627
4628    default:
4629      llvm_unreachable("unhandled vector shift");
4630    }
4631
4632    switch (IntNo) {
4633    case Intrinsic::arm_neon_vshifts:
4634    case Intrinsic::arm_neon_vshiftu:
4635      // Opcode already set above.
4636      break;
4637    case Intrinsic::arm_neon_vshiftls:
4638    case Intrinsic::arm_neon_vshiftlu:
4639      if (Cnt == VT.getVectorElementType().getSizeInBits())
4640        VShiftOpc = ARMISD::VSHLLi;
4641      else
4642        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
4643                     ARMISD::VSHLLs : ARMISD::VSHLLu);
4644      break;
4645    case Intrinsic::arm_neon_vshiftn:
4646      VShiftOpc = ARMISD::VSHRN; break;
4647    case Intrinsic::arm_neon_vrshifts:
4648      VShiftOpc = ARMISD::VRSHRs; break;
4649    case Intrinsic::arm_neon_vrshiftu:
4650      VShiftOpc = ARMISD::VRSHRu; break;
4651    case Intrinsic::arm_neon_vrshiftn:
4652      VShiftOpc = ARMISD::VRSHRN; break;
4653    case Intrinsic::arm_neon_vqshifts:
4654      VShiftOpc = ARMISD::VQSHLs; break;
4655    case Intrinsic::arm_neon_vqshiftu:
4656      VShiftOpc = ARMISD::VQSHLu; break;
4657    case Intrinsic::arm_neon_vqshiftsu:
4658      VShiftOpc = ARMISD::VQSHLsu; break;
4659    case Intrinsic::arm_neon_vqshiftns:
4660      VShiftOpc = ARMISD::VQSHRNs; break;
4661    case Intrinsic::arm_neon_vqshiftnu:
4662      VShiftOpc = ARMISD::VQSHRNu; break;
4663    case Intrinsic::arm_neon_vqshiftnsu:
4664      VShiftOpc = ARMISD::VQSHRNsu; break;
4665    case Intrinsic::arm_neon_vqrshiftns:
4666      VShiftOpc = ARMISD::VQRSHRNs; break;
4667    case Intrinsic::arm_neon_vqrshiftnu:
4668      VShiftOpc = ARMISD::VQRSHRNu; break;
4669    case Intrinsic::arm_neon_vqrshiftnsu:
4670      VShiftOpc = ARMISD::VQRSHRNsu; break;
4671    }
4672
4673    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4674                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
4675  }
4676
4677  case Intrinsic::arm_neon_vshiftins: {
4678    EVT VT = N->getOperand(1).getValueType();
4679    int64_t Cnt;
4680    unsigned VShiftOpc = 0;
4681
4682    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
4683      VShiftOpc = ARMISD::VSLI;
4684    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
4685      VShiftOpc = ARMISD::VSRI;
4686    else {
4687      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
4688    }
4689
4690    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4691                       N->getOperand(1), N->getOperand(2),
4692                       DAG.getConstant(Cnt, MVT::i32));
4693  }
4694
4695  case Intrinsic::arm_neon_vqrshifts:
4696  case Intrinsic::arm_neon_vqrshiftu:
4697    // No immediate versions of these to check for.
4698    break;
4699  }
4700
4701  return SDValue();
4702}
4703
4704/// PerformShiftCombine - Checks for immediate versions of vector shifts and
4705/// lowers them.  As with the vector shift intrinsics, this is done during DAG
4706/// combining instead of DAG legalizing because the build_vectors for 64-bit
4707/// vector element shift counts are generally not legal, and it is hard to see
4708/// their values after they get legalized to loads from a constant pool.
4709static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
4710                                   const ARMSubtarget *ST) {
4711  EVT VT = N->getValueType(0);
4712
4713  // Nothing to be done for scalar shifts.
4714  if (! VT.isVector())
4715    return SDValue();
4716
4717  assert(ST->hasNEON() && "unexpected vector shift");
4718  int64_t Cnt;
4719
4720  switch (N->getOpcode()) {
4721  default: llvm_unreachable("unexpected shift opcode");
4722
4723  case ISD::SHL:
4724    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
4725      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
4726                         DAG.getConstant(Cnt, MVT::i32));
4727    break;
4728
4729  case ISD::SRA:
4730  case ISD::SRL:
4731    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
4732      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
4733                            ARMISD::VSHRs : ARMISD::VSHRu);
4734      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
4735                         DAG.getConstant(Cnt, MVT::i32));
4736    }
4737  }
4738  return SDValue();
4739}
4740
4741/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
4742/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
4743static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
4744                                    const ARMSubtarget *ST) {
4745  SDValue N0 = N->getOperand(0);
4746
4747  // Check for sign- and zero-extensions of vector extract operations of 8-
4748  // and 16-bit vector elements.  NEON supports these directly.  They are
4749  // handled during DAG combining because type legalization will promote them
4750  // to 32-bit types and it is messy to recognize the operations after that.
4751  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4752    SDValue Vec = N0.getOperand(0);
4753    SDValue Lane = N0.getOperand(1);
4754    EVT VT = N->getValueType(0);
4755    EVT EltVT = N0.getValueType();
4756    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4757
4758    if (VT == MVT::i32 &&
4759        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
4760        TLI.isTypeLegal(Vec.getValueType())) {
4761
4762      unsigned Opc = 0;
4763      switch (N->getOpcode()) {
4764      default: llvm_unreachable("unexpected opcode");
4765      case ISD::SIGN_EXTEND:
4766        Opc = ARMISD::VGETLANEs;
4767        break;
4768      case ISD::ZERO_EXTEND:
4769      case ISD::ANY_EXTEND:
4770        Opc = ARMISD::VGETLANEu;
4771        break;
4772      }
4773      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
4774    }
4775  }
4776
4777  return SDValue();
4778}
4779
4780/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
4781/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
4782static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
4783                                       const ARMSubtarget *ST) {
4784  // If the target supports NEON, try to use vmax/vmin instructions for f32
4785  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
4786  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
4787  // a NaN; only do the transformation when it matches that behavior.
4788
4789  // For now only do this when using NEON for FP operations; if using VFP, it
4790  // is not obvious that the benefit outweighs the cost of switching to the
4791  // NEON pipeline.
4792  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
4793      N->getValueType(0) != MVT::f32)
4794    return SDValue();
4795
4796  SDValue CondLHS = N->getOperand(0);
4797  SDValue CondRHS = N->getOperand(1);
4798  SDValue LHS = N->getOperand(2);
4799  SDValue RHS = N->getOperand(3);
4800  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4801
4802  unsigned Opcode = 0;
4803  bool IsReversed;
4804  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
4805    IsReversed = false; // x CC y ? x : y
4806  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
4807    IsReversed = true ; // x CC y ? y : x
4808  } else {
4809    return SDValue();
4810  }
4811
4812  bool IsUnordered;
4813  switch (CC) {
4814  default: break;
4815  case ISD::SETOLT:
4816  case ISD::SETOLE:
4817  case ISD::SETLT:
4818  case ISD::SETLE:
4819  case ISD::SETULT:
4820  case ISD::SETULE:
4821    // If LHS is NaN, an ordered comparison will be false and the result will
4822    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
4823    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4824    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
4825    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4826      break;
4827    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
4828    // will return -0, so vmin can only be used for unsafe math or if one of
4829    // the operands is known to be nonzero.
4830    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
4831        !UnsafeFPMath &&
4832        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4833      break;
4834    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
4835    break;
4836
4837  case ISD::SETOGT:
4838  case ISD::SETOGE:
4839  case ISD::SETGT:
4840  case ISD::SETGE:
4841  case ISD::SETUGT:
4842  case ISD::SETUGE:
4843    // If LHS is NaN, an ordered comparison will be false and the result will
4844    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
4845    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4846    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
4847    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4848      break;
4849    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
4850    // will return +0, so vmax can only be used for unsafe math or if one of
4851    // the operands is known to be nonzero.
4852    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
4853        !UnsafeFPMath &&
4854        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4855      break;
4856    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
4857    break;
4858  }
4859
4860  if (!Opcode)
4861    return SDValue();
4862  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
4863}
4864
4865SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
4866                                             DAGCombinerInfo &DCI) const {
4867  switch (N->getOpcode()) {
4868  default: break;
4869  case ISD::ADD:        return PerformADDCombine(N, DCI);
4870  case ISD::SUB:        return PerformSUBCombine(N, DCI);
4871  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
4872  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
4873  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
4874  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
4875  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
4876  case ISD::SHL:
4877  case ISD::SRA:
4878  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
4879  case ISD::SIGN_EXTEND:
4880  case ISD::ZERO_EXTEND:
4881  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
4882  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
4883  }
4884  return SDValue();
4885}
4886
4887bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
4888  if (!Subtarget->hasV6Ops())
4889    // Pre-v6 does not support unaligned mem access.
4890    return false;
4891
4892  // v6+ may or may not support unaligned mem access depending on the system
4893  // configuration.
4894  // FIXME: This is pretty conservative. Should we provide cmdline option to
4895  // control the behaviour?
4896  if (!Subtarget->isTargetDarwin())
4897    return false;
4898
4899  switch (VT.getSimpleVT().SimpleTy) {
4900  default:
4901    return false;
4902  case MVT::i8:
4903  case MVT::i16:
4904  case MVT::i32:
4905    return true;
4906  // FIXME: VLD1 etc with standard alignment is legal.
4907  }
4908}
4909
4910static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
4911  if (V < 0)
4912    return false;
4913
4914  unsigned Scale = 1;
4915  switch (VT.getSimpleVT().SimpleTy) {
4916  default: return false;
4917  case MVT::i1:
4918  case MVT::i8:
4919    // Scale == 1;
4920    break;
4921  case MVT::i16:
4922    // Scale == 2;
4923    Scale = 2;
4924    break;
4925  case MVT::i32:
4926    // Scale == 4;
4927    Scale = 4;
4928    break;
4929  }
4930
4931  if ((V & (Scale - 1)) != 0)
4932    return false;
4933  V /= Scale;
4934  return V == (V & ((1LL << 5) - 1));
4935}
4936
4937static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
4938                                      const ARMSubtarget *Subtarget) {
4939  bool isNeg = false;
4940  if (V < 0) {
4941    isNeg = true;
4942    V = - V;
4943  }
4944
4945  switch (VT.getSimpleVT().SimpleTy) {
4946  default: return false;
4947  case MVT::i1:
4948  case MVT::i8:
4949  case MVT::i16:
4950  case MVT::i32:
4951    // + imm12 or - imm8
4952    if (isNeg)
4953      return V == (V & ((1LL << 8) - 1));
4954    return V == (V & ((1LL << 12) - 1));
4955  case MVT::f32:
4956  case MVT::f64:
4957    // Same as ARM mode. FIXME: NEON?
4958    if (!Subtarget->hasVFP2())
4959      return false;
4960    if ((V & 3) != 0)
4961      return false;
4962    V >>= 2;
4963    return V == (V & ((1LL << 8) - 1));
4964  }
4965}
4966
4967/// isLegalAddressImmediate - Return true if the integer value can be used
4968/// as the offset of the target addressing mode for load / store of the
4969/// given type.
4970static bool isLegalAddressImmediate(int64_t V, EVT VT,
4971                                    const ARMSubtarget *Subtarget) {
4972  if (V == 0)
4973    return true;
4974
4975  if (!VT.isSimple())
4976    return false;
4977
4978  if (Subtarget->isThumb1Only())
4979    return isLegalT1AddressImmediate(V, VT);
4980  else if (Subtarget->isThumb2())
4981    return isLegalT2AddressImmediate(V, VT, Subtarget);
4982
4983  // ARM mode.
4984  if (V < 0)
4985    V = - V;
4986  switch (VT.getSimpleVT().SimpleTy) {
4987  default: return false;
4988  case MVT::i1:
4989  case MVT::i8:
4990  case MVT::i32:
4991    // +- imm12
4992    return V == (V & ((1LL << 12) - 1));
4993  case MVT::i16:
4994    // +- imm8
4995    return V == (V & ((1LL << 8) - 1));
4996  case MVT::f32:
4997  case MVT::f64:
4998    if (!Subtarget->hasVFP2()) // FIXME: NEON?
4999      return false;
5000    if ((V & 3) != 0)
5001      return false;
5002    V >>= 2;
5003    return V == (V & ((1LL << 8) - 1));
5004  }
5005}
5006
5007bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
5008                                                      EVT VT) const {
5009  int Scale = AM.Scale;
5010  if (Scale < 0)
5011    return false;
5012
5013  switch (VT.getSimpleVT().SimpleTy) {
5014  default: return false;
5015  case MVT::i1:
5016  case MVT::i8:
5017  case MVT::i16:
5018  case MVT::i32:
5019    if (Scale == 1)
5020      return true;
5021    // r + r << imm
5022    Scale = Scale & ~1;
5023    return Scale == 2 || Scale == 4 || Scale == 8;
5024  case MVT::i64:
5025    // r + r
5026    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5027      return true;
5028    return false;
5029  case MVT::isVoid:
5030    // Note, we allow "void" uses (basically, uses that aren't loads or
5031    // stores), because arm allows folding a scale into many arithmetic
5032    // operations.  This should be made more precise and revisited later.
5033
5034    // Allow r << imm, but the imm has to be a multiple of two.
5035    if (Scale & 1) return false;
5036    return isPowerOf2_32(Scale);
5037  }
5038}
5039
5040/// isLegalAddressingMode - Return true if the addressing mode represented
5041/// by AM is legal for this target, for a load/store of the specified type.
5042bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5043                                              const Type *Ty) const {
5044  EVT VT = getValueType(Ty, true);
5045  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
5046    return false;
5047
5048  // Can never fold addr of global into load/store.
5049  if (AM.BaseGV)
5050    return false;
5051
5052  switch (AM.Scale) {
5053  case 0:  // no scale reg, must be "r+i" or "r", or "i".
5054    break;
5055  case 1:
5056    if (Subtarget->isThumb1Only())
5057      return false;
5058    // FALL THROUGH.
5059  default:
5060    // ARM doesn't support any R+R*scale+imm addr modes.
5061    if (AM.BaseOffs)
5062      return false;
5063
5064    if (!VT.isSimple())
5065      return false;
5066
5067    if (Subtarget->isThumb2())
5068      return isLegalT2ScaledAddressingMode(AM, VT);
5069
5070    int Scale = AM.Scale;
5071    switch (VT.getSimpleVT().SimpleTy) {
5072    default: return false;
5073    case MVT::i1:
5074    case MVT::i8:
5075    case MVT::i32:
5076      if (Scale < 0) Scale = -Scale;
5077      if (Scale == 1)
5078        return true;
5079      // r + r << imm
5080      return isPowerOf2_32(Scale & ~1);
5081    case MVT::i16:
5082    case MVT::i64:
5083      // r + r
5084      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5085        return true;
5086      return false;
5087
5088    case MVT::isVoid:
5089      // Note, we allow "void" uses (basically, uses that aren't loads or
5090      // stores), because arm allows folding a scale into many arithmetic
5091      // operations.  This should be made more precise and revisited later.
5092
5093      // Allow r << imm, but the imm has to be a multiple of two.
5094      if (Scale & 1) return false;
5095      return isPowerOf2_32(Scale);
5096    }
5097    break;
5098  }
5099  return true;
5100}
5101
5102/// isLegalICmpImmediate - Return true if the specified immediate is legal
5103/// icmp immediate, that is the target has icmp instructions which can compare
5104/// a register against the immediate without having to materialize the
5105/// immediate into a register.
5106bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
5107  if (!Subtarget->isThumb())
5108    return ARM_AM::getSOImmVal(Imm) != -1;
5109  if (Subtarget->isThumb2())
5110    return ARM_AM::getT2SOImmVal(Imm) != -1;
5111  return Imm >= 0 && Imm <= 255;
5112}
5113
5114static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
5115                                      bool isSEXTLoad, SDValue &Base,
5116                                      SDValue &Offset, bool &isInc,
5117                                      SelectionDAG &DAG) {
5118  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5119    return false;
5120
5121  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
5122    // AddressingMode 3
5123    Base = Ptr->getOperand(0);
5124    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5125      int RHSC = (int)RHS->getZExtValue();
5126      if (RHSC < 0 && RHSC > -256) {
5127        assert(Ptr->getOpcode() == ISD::ADD);
5128        isInc = false;
5129        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5130        return true;
5131      }
5132    }
5133    isInc = (Ptr->getOpcode() == ISD::ADD);
5134    Offset = Ptr->getOperand(1);
5135    return true;
5136  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
5137    // AddressingMode 2
5138    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5139      int RHSC = (int)RHS->getZExtValue();
5140      if (RHSC < 0 && RHSC > -0x1000) {
5141        assert(Ptr->getOpcode() == ISD::ADD);
5142        isInc = false;
5143        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5144        Base = Ptr->getOperand(0);
5145        return true;
5146      }
5147    }
5148
5149    if (Ptr->getOpcode() == ISD::ADD) {
5150      isInc = true;
5151      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
5152      if (ShOpcVal != ARM_AM::no_shift) {
5153        Base = Ptr->getOperand(1);
5154        Offset = Ptr->getOperand(0);
5155      } else {
5156        Base = Ptr->getOperand(0);
5157        Offset = Ptr->getOperand(1);
5158      }
5159      return true;
5160    }
5161
5162    isInc = (Ptr->getOpcode() == ISD::ADD);
5163    Base = Ptr->getOperand(0);
5164    Offset = Ptr->getOperand(1);
5165    return true;
5166  }
5167
5168  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
5169  return false;
5170}
5171
5172static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
5173                                     bool isSEXTLoad, SDValue &Base,
5174                                     SDValue &Offset, bool &isInc,
5175                                     SelectionDAG &DAG) {
5176  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5177    return false;
5178
5179  Base = Ptr->getOperand(0);
5180  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5181    int RHSC = (int)RHS->getZExtValue();
5182    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
5183      assert(Ptr->getOpcode() == ISD::ADD);
5184      isInc = false;
5185      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5186      return true;
5187    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
5188      isInc = Ptr->getOpcode() == ISD::ADD;
5189      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
5190      return true;
5191    }
5192  }
5193
5194  return false;
5195}
5196
5197/// getPreIndexedAddressParts - returns true by value, base pointer and
5198/// offset pointer and addressing mode by reference if the node's address
5199/// can be legally represented as pre-indexed load / store address.
5200bool
5201ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
5202                                             SDValue &Offset,
5203                                             ISD::MemIndexedMode &AM,
5204                                             SelectionDAG &DAG) const {
5205  if (Subtarget->isThumb1Only())
5206    return false;
5207
5208  EVT VT;
5209  SDValue Ptr;
5210  bool isSEXTLoad = false;
5211  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5212    Ptr = LD->getBasePtr();
5213    VT  = LD->getMemoryVT();
5214    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5215  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5216    Ptr = ST->getBasePtr();
5217    VT  = ST->getMemoryVT();
5218  } else
5219    return false;
5220
5221  bool isInc;
5222  bool isLegal = false;
5223  if (Subtarget->isThumb2())
5224    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5225                                       Offset, isInc, DAG);
5226  else
5227    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5228                                        Offset, isInc, DAG);
5229  if (!isLegal)
5230    return false;
5231
5232  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
5233  return true;
5234}
5235
5236/// getPostIndexedAddressParts - returns true by value, base pointer and
5237/// offset pointer and addressing mode by reference if this node can be
5238/// combined with a load / store to form a post-indexed load / store.
5239bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
5240                                                   SDValue &Base,
5241                                                   SDValue &Offset,
5242                                                   ISD::MemIndexedMode &AM,
5243                                                   SelectionDAG &DAG) const {
5244  if (Subtarget->isThumb1Only())
5245    return false;
5246
5247  EVT VT;
5248  SDValue Ptr;
5249  bool isSEXTLoad = false;
5250  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5251    VT  = LD->getMemoryVT();
5252    Ptr = LD->getBasePtr();
5253    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5254  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5255    VT  = ST->getMemoryVT();
5256    Ptr = ST->getBasePtr();
5257  } else
5258    return false;
5259
5260  bool isInc;
5261  bool isLegal = false;
5262  if (Subtarget->isThumb2())
5263    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5264                                       isInc, DAG);
5265  else
5266    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5267                                        isInc, DAG);
5268  if (!isLegal)
5269    return false;
5270
5271  if (Ptr != Base) {
5272    // Swap base ptr and offset to catch more post-index load / store when
5273    // it's legal. In Thumb2 mode, offset must be an immediate.
5274    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
5275        !Subtarget->isThumb2())
5276      std::swap(Base, Offset);
5277
5278    // Post-indexed load / store update the base pointer.
5279    if (Ptr != Base)
5280      return false;
5281  }
5282
5283  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
5284  return true;
5285}
5286
5287void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5288                                                       const APInt &Mask,
5289                                                       APInt &KnownZero,
5290                                                       APInt &KnownOne,
5291                                                       const SelectionDAG &DAG,
5292                                                       unsigned Depth) const {
5293  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5294  switch (Op.getOpcode()) {
5295  default: break;
5296  case ARMISD::CMOV: {
5297    // Bits are known zero/one if known on the LHS and RHS.
5298    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
5299    if (KnownZero == 0 && KnownOne == 0) return;
5300
5301    APInt KnownZeroRHS, KnownOneRHS;
5302    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
5303                          KnownZeroRHS, KnownOneRHS, Depth+1);
5304    KnownZero &= KnownZeroRHS;
5305    KnownOne  &= KnownOneRHS;
5306    return;
5307  }
5308  }
5309}
5310
5311//===----------------------------------------------------------------------===//
5312//                           ARM Inline Assembly Support
5313//===----------------------------------------------------------------------===//
5314
5315/// getConstraintType - Given a constraint letter, return the type of
5316/// constraint it is for this target.
5317ARMTargetLowering::ConstraintType
5318ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
5319  if (Constraint.size() == 1) {
5320    switch (Constraint[0]) {
5321    default:  break;
5322    case 'l': return C_RegisterClass;
5323    case 'w': return C_RegisterClass;
5324    }
5325  }
5326  return TargetLowering::getConstraintType(Constraint);
5327}
5328
5329std::pair<unsigned, const TargetRegisterClass*>
5330ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5331                                                EVT VT) const {
5332  if (Constraint.size() == 1) {
5333    // GCC ARM Constraint Letters
5334    switch (Constraint[0]) {
5335    case 'l':
5336      if (Subtarget->isThumb())
5337        return std::make_pair(0U, ARM::tGPRRegisterClass);
5338      else
5339        return std::make_pair(0U, ARM::GPRRegisterClass);
5340    case 'r':
5341      return std::make_pair(0U, ARM::GPRRegisterClass);
5342    case 'w':
5343      if (VT == MVT::f32)
5344        return std::make_pair(0U, ARM::SPRRegisterClass);
5345      if (VT.getSizeInBits() == 64)
5346        return std::make_pair(0U, ARM::DPRRegisterClass);
5347      if (VT.getSizeInBits() == 128)
5348        return std::make_pair(0U, ARM::QPRRegisterClass);
5349      break;
5350    }
5351  }
5352  if (StringRef("{cc}").equals_lower(Constraint))
5353    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
5354
5355  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5356}
5357
5358std::vector<unsigned> ARMTargetLowering::
5359getRegClassForInlineAsmConstraint(const std::string &Constraint,
5360                                  EVT VT) const {
5361  if (Constraint.size() != 1)
5362    return std::vector<unsigned>();
5363
5364  switch (Constraint[0]) {      // GCC ARM Constraint Letters
5365  default: break;
5366  case 'l':
5367    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5368                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5369                                 0);
5370  case 'r':
5371    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5372                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5373                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
5374                                 ARM::R12, ARM::LR, 0);
5375  case 'w':
5376    if (VT == MVT::f32)
5377      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
5378                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
5379                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
5380                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
5381                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
5382                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
5383                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
5384                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
5385    if (VT.getSizeInBits() == 64)
5386      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
5387                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
5388                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
5389                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
5390    if (VT.getSizeInBits() == 128)
5391      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
5392                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
5393      break;
5394  }
5395
5396  return std::vector<unsigned>();
5397}
5398
5399/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5400/// vector.  If it is invalid, don't add anything to Ops.
5401void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5402                                                     char Constraint,
5403                                                     std::vector<SDValue>&Ops,
5404                                                     SelectionDAG &DAG) const {
5405  SDValue Result(0, 0);
5406
5407  switch (Constraint) {
5408  default: break;
5409  case 'I': case 'J': case 'K': case 'L':
5410  case 'M': case 'N': case 'O':
5411    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5412    if (!C)
5413      return;
5414
5415    int64_t CVal64 = C->getSExtValue();
5416    int CVal = (int) CVal64;
5417    // None of these constraints allow values larger than 32 bits.  Check
5418    // that the value fits in an int.
5419    if (CVal != CVal64)
5420      return;
5421
5422    switch (Constraint) {
5423      case 'I':
5424        if (Subtarget->isThumb1Only()) {
5425          // This must be a constant between 0 and 255, for ADD
5426          // immediates.
5427          if (CVal >= 0 && CVal <= 255)
5428            break;
5429        } else if (Subtarget->isThumb2()) {
5430          // A constant that can be used as an immediate value in a
5431          // data-processing instruction.
5432          if (ARM_AM::getT2SOImmVal(CVal) != -1)
5433            break;
5434        } else {
5435          // A constant that can be used as an immediate value in a
5436          // data-processing instruction.
5437          if (ARM_AM::getSOImmVal(CVal) != -1)
5438            break;
5439        }
5440        return;
5441
5442      case 'J':
5443        if (Subtarget->isThumb()) {  // FIXME thumb2
5444          // This must be a constant between -255 and -1, for negated ADD
5445          // immediates. This can be used in GCC with an "n" modifier that
5446          // prints the negated value, for use with SUB instructions. It is
5447          // not useful otherwise but is implemented for compatibility.
5448          if (CVal >= -255 && CVal <= -1)
5449            break;
5450        } else {
5451          // This must be a constant between -4095 and 4095. It is not clear
5452          // what this constraint is intended for. Implemented for
5453          // compatibility with GCC.
5454          if (CVal >= -4095 && CVal <= 4095)
5455            break;
5456        }
5457        return;
5458
5459      case 'K':
5460        if (Subtarget->isThumb1Only()) {
5461          // A 32-bit value where only one byte has a nonzero value. Exclude
5462          // zero to match GCC. This constraint is used by GCC internally for
5463          // constants that can be loaded with a move/shift combination.
5464          // It is not useful otherwise but is implemented for compatibility.
5465          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
5466            break;
5467        } else if (Subtarget->isThumb2()) {
5468          // A constant whose bitwise inverse can be used as an immediate
5469          // value in a data-processing instruction. This can be used in GCC
5470          // with a "B" modifier that prints the inverted value, for use with
5471          // BIC and MVN instructions. It is not useful otherwise but is
5472          // implemented for compatibility.
5473          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
5474            break;
5475        } else {
5476          // A constant whose bitwise inverse can be used as an immediate
5477          // value in a data-processing instruction. This can be used in GCC
5478          // with a "B" modifier that prints the inverted value, for use with
5479          // BIC and MVN instructions. It is not useful otherwise but is
5480          // implemented for compatibility.
5481          if (ARM_AM::getSOImmVal(~CVal) != -1)
5482            break;
5483        }
5484        return;
5485
5486      case 'L':
5487        if (Subtarget->isThumb1Only()) {
5488          // This must be a constant between -7 and 7,
5489          // for 3-operand ADD/SUB immediate instructions.
5490          if (CVal >= -7 && CVal < 7)
5491            break;
5492        } else if (Subtarget->isThumb2()) {
5493          // A constant whose negation can be used as an immediate value in a
5494          // data-processing instruction. This can be used in GCC with an "n"
5495          // modifier that prints the negated value, for use with SUB
5496          // instructions. It is not useful otherwise but is implemented for
5497          // compatibility.
5498          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
5499            break;
5500        } else {
5501          // A constant whose negation can be used as an immediate value in a
5502          // data-processing instruction. This can be used in GCC with an "n"
5503          // modifier that prints the negated value, for use with SUB
5504          // instructions. It is not useful otherwise but is implemented for
5505          // compatibility.
5506          if (ARM_AM::getSOImmVal(-CVal) != -1)
5507            break;
5508        }
5509        return;
5510
5511      case 'M':
5512        if (Subtarget->isThumb()) { // FIXME thumb2
5513          // This must be a multiple of 4 between 0 and 1020, for
5514          // ADD sp + immediate.
5515          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
5516            break;
5517        } else {
5518          // A power of two or a constant between 0 and 32.  This is used in
5519          // GCC for the shift amount on shifted register operands, but it is
5520          // useful in general for any shift amounts.
5521          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
5522            break;
5523        }
5524        return;
5525
5526      case 'N':
5527        if (Subtarget->isThumb()) {  // FIXME thumb2
5528          // This must be a constant between 0 and 31, for shift amounts.
5529          if (CVal >= 0 && CVal <= 31)
5530            break;
5531        }
5532        return;
5533
5534      case 'O':
5535        if (Subtarget->isThumb()) {  // FIXME thumb2
5536          // This must be a multiple of 4 between -508 and 508, for
5537          // ADD/SUB sp = sp + immediate.
5538          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
5539            break;
5540        }
5541        return;
5542    }
5543    Result = DAG.getTargetConstant(CVal, Op.getValueType());
5544    break;
5545  }
5546
5547  if (Result.getNode()) {
5548    Ops.push_back(Result);
5549    return;
5550  }
5551  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5552}
5553
5554bool
5555ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5556  // The ARM target isn't yet aware of offsets.
5557  return false;
5558}
5559
5560int ARM::getVFPf32Imm(const APFloat &FPImm) {
5561  APInt Imm = FPImm.bitcastToAPInt();
5562  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
5563  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
5564  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
5565
5566  // We can handle 4 bits of mantissa.
5567  // mantissa = (16+UInt(e:f:g:h))/16.
5568  if (Mantissa & 0x7ffff)
5569    return -1;
5570  Mantissa >>= 19;
5571  if ((Mantissa & 0xf) != Mantissa)
5572    return -1;
5573
5574  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5575  if (Exp < -3 || Exp > 4)
5576    return -1;
5577  Exp = ((Exp+3) & 0x7) ^ 4;
5578
5579  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5580}
5581
5582int ARM::getVFPf64Imm(const APFloat &FPImm) {
5583  APInt Imm = FPImm.bitcastToAPInt();
5584  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
5585  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
5586  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
5587
5588  // We can handle 4 bits of mantissa.
5589  // mantissa = (16+UInt(e:f:g:h))/16.
5590  if (Mantissa & 0xffffffffffffLL)
5591    return -1;
5592  Mantissa >>= 48;
5593  if ((Mantissa & 0xf) != Mantissa)
5594    return -1;
5595
5596  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5597  if (Exp < -3 || Exp > 4)
5598    return -1;
5599  Exp = ((Exp+3) & 0x7) ^ 4;
5600
5601  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5602}
5603
5604bool ARM::isBitFieldInvertedMask(unsigned v) {
5605  if (v == 0xffffffff)
5606    return 0;
5607  // there can be 1's on either or both "outsides", all the "inside"
5608  // bits must be 0's
5609  unsigned int lsb = 0, msb = 31;
5610  while (v & (1 << msb)) --msb;
5611  while (v & (1 << lsb)) ++lsb;
5612  for (unsigned int i = lsb; i <= msb; ++i) {
5613    if (v & (1 << i))
5614      return 0;
5615  }
5616  return 1;
5617}
5618
5619/// isFPImmLegal - Returns true if the target can instruction select the
5620/// specified FP immediate natively. If false, the legalizer will
5621/// materialize the FP immediate as a load from a constant pool.
5622bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5623  if (!Subtarget->hasVFP3())
5624    return false;
5625  if (VT == MVT::f32)
5626    return ARM::getVFPf32Imm(Imm) != -1;
5627  if (VT == MVT::f64)
5628    return ARM::getVFPf64Imm(Imm) != -1;
5629  return false;
5630}
5631