ARMISelLowering.cpp revision de2b151dbf125af49717807b9cfc1f6f7a5b9ea6
190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2f71323e297a928af368937089d3ed71239786f86Andreas Huber//
390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber//                     The LLVM Compiler Infrastructure
4f71323e297a928af368937089d3ed71239786f86Andreas Huber//
5f71323e297a928af368937089d3ed71239786f86Andreas Huber// This file is distributed under the University of Illinois Open Source
6f71323e297a928af368937089d3ed71239786f86Andreas Huber// License. See LICENSE.TXT for details.
7f71323e297a928af368937089d3ed71239786f86Andreas Huber//
8f71323e297a928af368937089d3ed71239786f86Andreas Huber//===----------------------------------------------------------------------===//
990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber//
1090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber// This file defines the interfaces that ARM uses to lower LLVM code into a
1190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber// selection DAG.
1290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber//
1390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber//===----------------------------------------------------------------------===//
1490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
1590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#define DEBUG_TYPE "arm-isel"
1690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "ARM.h"
1790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "ARMAddressingModes.h"
1890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "ARMConstantPoolValue.h"
1990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "ARMISelLowering.h"
2090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "ARMMachineFunctionInfo.h"
2190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "ARMPerfectShuffle.h"
2290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "ARMRegisterInfo.h"
2390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "ARMSubtarget.h"
24538f6170b788de7408b06efc6613dc98579aa6a6Andreas Huber#include "ARMTargetMachine.h"
2590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "ARMTargetObjectFile.h"
2690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/CallingConv.h"
2790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/Constants.h"
2890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/Function.h"
2990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/GlobalValue.h"
3090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/Instruction.h"
3190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/Intrinsics.h"
3290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/Type.h"
3390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/CodeGen/CallingConvLower.h"
3490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/CodeGen/MachineBasicBlock.h"
3590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/CodeGen/MachineFrameInfo.h"
3690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/CodeGen/MachineFunction.h"
3790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/CodeGen/MachineInstrBuilder.h"
3890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/CodeGen/MachineRegisterInfo.h"
3990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/CodeGen/PseudoSourceValue.h"
4090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/CodeGen/SelectionDAG.h"
4190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/MC/MCSectionMachO.h"
4290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/Target/TargetOptions.h"
4390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/ADT/VectorExtras.h"
4490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/ADT/Statistic.h"
4590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/Support/CommandLine.h"
4690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/Support/ErrorHandling.h"
4790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/Support/MathExtras.h"
4890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include "llvm/Support/raw_ostream.h"
4990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber#include <sstream>
5090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huberusing namespace llvm;
5190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
5290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas HuberSTATISTIC(NumTailCalls, "Number of tail calls");
5390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
5490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber// This option should go away when Machine LICM is smart enough to hoist a
5590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber// reg-to-reg VDUP.
5690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huberstatic cl::opt<bool>
5790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas HuberEnableARMVDUPsplat("arm-vdup-splat", cl::Hidden,
5890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  cl::desc("Generate VDUP for integer constant splats (TEMPORARY OPTION)."),
5990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  cl::init(false));
6090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
6190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huberstatic cl::opt<bool>
6290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas HuberEnableARMLongCalls("arm-long-calls", cl::Hidden,
63538f6170b788de7408b06efc6613dc98579aa6a6Andreas Huber  cl::desc("Generate calls via indirect call instructions"),
6490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  cl::init(false));
6590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
6690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huberstatic cl::opt<bool>
6790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas HuberARMInterworking("arm-interworking", cl::Hidden,
6890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  cl::desc("Enable / disable ARM interworking (for debugging only)"),
6990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  cl::init(true));
7090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
7190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huberstatic cl::opt<bool>
7290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas HuberEnableARMCodePlacement("arm-code-placement", cl::Hidden,
7390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  cl::desc("Enable code placement pass for ARM"),
7490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  cl::init(false));
7590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
7690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huberstatic bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
7790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                   CCValAssign::LocInfo &LocInfo,
7890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                   ISD::ArgFlagsTy &ArgFlags,
7990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                   CCState &State);
8090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huberstatic bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
8190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                    CCValAssign::LocInfo &LocInfo,
8290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                    ISD::ArgFlagsTy &ArgFlags,
83538f6170b788de7408b06efc6613dc98579aa6a6Andreas Huber                                    CCState &State);
8490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huberstatic bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
8590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                      CCValAssign::LocInfo &LocInfo,
8690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                      ISD::ArgFlagsTy &ArgFlags,
8790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                      CCState &State);
8890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huberstatic bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
8990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                       CCValAssign::LocInfo &LocInfo,
9090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                       ISD::ArgFlagsTy &ArgFlags,
9190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                       CCState &State);
9290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
9390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Hubervoid ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
9490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                                       EVT PromotedBitwiseVT) {
9590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  if (VT != PromotedLdStVT) {
9690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
9790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
9890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                       PromotedLdStVT.getSimpleVT());
9990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
10090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
10190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
10290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                       PromotedLdStVT.getSimpleVT());
10390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  }
10490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
10590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  EVT ElemTy = VT.getVectorElementType();
10690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
10790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
10890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
10990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
11090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  if (ElemTy != MVT::i32) {
111538f6170b788de7408b06efc6613dc98579aa6a6Andreas Huber    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
11290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
11390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
11490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
11590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  }
11690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
11790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
11890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
11990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
12090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
12190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
12290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  if (VT.isInteger()) {
12390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
12490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
12590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
12690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  }
12790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
12890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  // Promote all bit-wise operations.
12990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  if (VT.isInteger() && VT != PromotedBitwiseVT) {
13090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
131538f6170b788de7408b06efc6613dc98579aa6a6Andreas Huber    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
13290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                       PromotedBitwiseVT.getSimpleVT());
13390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
13490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
13590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                       PromotedBitwiseVT.getSimpleVT());
13690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
13790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
13890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber                       PromotedBitwiseVT.getSimpleVT());
13990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  }
14090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
14190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  // Neon does not support vector divide/remainder operations.
14290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
14390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
14490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
14590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
14690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
14790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
14890d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber}
14990d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
15090d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Hubervoid ARMTargetLowering::addDRTypeForNEON(EVT VT) {
15190d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  addRegisterClass(VT, ARM::DPRRegisterClass);
15290d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
15390d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber}
15490d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber
15590d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Hubervoid ARMTargetLowering::addQRTypeForNEON(EVT VT) {
15690d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  addRegisterClass(VT, ARM::QPRRegisterClass);
15790d3ed91ae9228e1c8bab561b6138d4cb8c1e4fdAndreas Huber  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
158}
159
160static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
161  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
162    return new TargetLoweringObjectFileMachO();
163
164  return new ARMElfTargetObjectFile();
165}
166
167ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
168    : TargetLowering(TM, createTLOF(TM)) {
169  Subtarget = &TM.getSubtarget<ARMSubtarget>();
170  RegInfo = TM.getRegisterInfo();
171
172  if (Subtarget->isTargetDarwin()) {
173    // Uses VFP for Thumb libfuncs if available.
174    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
175      // Single-precision floating-point arithmetic.
176      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
177      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
178      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
179      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
180
181      // Double-precision floating-point arithmetic.
182      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
183      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
184      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
185      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
186
187      // Single-precision comparisons.
188      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
189      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
190      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
191      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
192      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
193      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
194      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
195      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
196
197      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
198      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
199      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
200      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
201      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
202      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
204      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
205
206      // Double-precision comparisons.
207      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
208      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
209      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
210      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
211      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
212      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
213      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
214      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
215
216      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
217      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
218      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
219      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
220      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
221      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
222      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
223      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
224
225      // Floating-point to integer conversions.
226      // i64 conversions are done via library routines even when generating VFP
227      // instructions, so use the same ones.
228      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
229      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
230      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
231      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
232
233      // Conversions between floating types.
234      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
235      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
236
237      // Integer to floating-point conversions.
238      // i64 conversions are done via library routines even when generating VFP
239      // instructions, so use the same ones.
240      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
241      // e.g., __floatunsidf vs. __floatunssidfvfp.
242      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
243      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
244      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
245      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
246    }
247  }
248
249  // These libcalls are not available in 32-bit.
250  setLibcallName(RTLIB::SHL_I128, 0);
251  setLibcallName(RTLIB::SRL_I128, 0);
252  setLibcallName(RTLIB::SRA_I128, 0);
253
254  // Libcalls should use the AAPCS base standard ABI, even if hard float
255  // is in effect, as per the ARM RTABI specification, section 4.1.2.
256  if (Subtarget->isAAPCS_ABI()) {
257    for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
258      setLibcallCallingConv(static_cast<RTLIB::Libcall>(i),
259                            CallingConv::ARM_AAPCS);
260    }
261  }
262
263  if (Subtarget->isThumb1Only())
264    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
265  else
266    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
267  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
268    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
269    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
270
271    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
272  }
273
274  if (Subtarget->hasNEON()) {
275    addDRTypeForNEON(MVT::v2f32);
276    addDRTypeForNEON(MVT::v8i8);
277    addDRTypeForNEON(MVT::v4i16);
278    addDRTypeForNEON(MVT::v2i32);
279    addDRTypeForNEON(MVT::v1i64);
280
281    addQRTypeForNEON(MVT::v4f32);
282    addQRTypeForNEON(MVT::v2f64);
283    addQRTypeForNEON(MVT::v16i8);
284    addQRTypeForNEON(MVT::v8i16);
285    addQRTypeForNEON(MVT::v4i32);
286    addQRTypeForNEON(MVT::v2i64);
287
288    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
289    // neither Neon nor VFP support any arithmetic operations on it.
290    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
291    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
292    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
293    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
294    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
295    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
296    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
297    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
298    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
299    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
300    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
301    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
302    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
303    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
304    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
305    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
306    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
307    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
308    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
309    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
310    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
311    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
312    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
313    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
314
315    // Neon does not support some operations on v1i64 and v2i64 types.
316    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
317    setOperationAction(ISD::MUL, MVT::v2i64, Expand);
318    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
319    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
320
321    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
322    setTargetDAGCombine(ISD::SHL);
323    setTargetDAGCombine(ISD::SRL);
324    setTargetDAGCombine(ISD::SRA);
325    setTargetDAGCombine(ISD::SIGN_EXTEND);
326    setTargetDAGCombine(ISD::ZERO_EXTEND);
327    setTargetDAGCombine(ISD::ANY_EXTEND);
328    setTargetDAGCombine(ISD::SELECT_CC);
329  }
330
331  computeRegisterProperties();
332
333  // ARM does not have f32 extending load.
334  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
335
336  // ARM does not have i1 sign extending load.
337  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
338
339  // ARM supports all 4 flavors of integer indexed load / store.
340  if (!Subtarget->isThumb1Only()) {
341    for (unsigned im = (unsigned)ISD::PRE_INC;
342         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
343      setIndexedLoadAction(im,  MVT::i1,  Legal);
344      setIndexedLoadAction(im,  MVT::i8,  Legal);
345      setIndexedLoadAction(im,  MVT::i16, Legal);
346      setIndexedLoadAction(im,  MVT::i32, Legal);
347      setIndexedStoreAction(im, MVT::i1,  Legal);
348      setIndexedStoreAction(im, MVT::i8,  Legal);
349      setIndexedStoreAction(im, MVT::i16, Legal);
350      setIndexedStoreAction(im, MVT::i32, Legal);
351    }
352  }
353
354  // i64 operation support.
355  if (Subtarget->isThumb1Only()) {
356    setOperationAction(ISD::MUL,     MVT::i64, Expand);
357    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
358    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
359    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
360    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
361  } else {
362    setOperationAction(ISD::MUL,     MVT::i64, Expand);
363    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
364    if (!Subtarget->hasV6Ops())
365      setOperationAction(ISD::MULHS, MVT::i32, Expand);
366  }
367  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
368  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
369  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
370  setOperationAction(ISD::SRL,       MVT::i64, Custom);
371  setOperationAction(ISD::SRA,       MVT::i64, Custom);
372
373  // ARM does not have ROTL.
374  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
375  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
376  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
377  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
378    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
379
380  // Only ARMv6 has BSWAP.
381  if (!Subtarget->hasV6Ops())
382    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
383
384  // These are expanded into libcalls.
385  if (!Subtarget->hasDivide()) {
386    // v7M has a hardware divider
387    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
388    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
389  }
390  setOperationAction(ISD::SREM,  MVT::i32, Expand);
391  setOperationAction(ISD::UREM,  MVT::i32, Expand);
392  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
393  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
394
395  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
396  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
397  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
398  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
399  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
400
401  setOperationAction(ISD::TRAP, MVT::Other, Legal);
402
403  // Use the default implementation.
404  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
405  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
406  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
407  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
408  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
409  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
410  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
411  // FIXME: Shouldn't need this, since no register is used, but the legalizer
412  // doesn't yet know how to not do that for SjLj.
413  setExceptionSelectorRegister(ARM::R0);
414  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
415  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
416  // the default expansion.
417  if (Subtarget->hasDataBarrier() ||
418      (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())) {
419    // membarrier needs custom lowering; the rest are legal and handled
420    // normally.
421    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
422  } else {
423    // Set them all for expansion, which will force libcalls.
424    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
425    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
426    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
427    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
428    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
429    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
430    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
431    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
432    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
433    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
434    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
435    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
436    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
437    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
438    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
439    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
440    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
441    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
442    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
443    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
444    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
445    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
446    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
447    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
448    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
449    // Since the libcalls include locking, fold in the fences
450    setShouldFoldAtomicFences(true);
451  }
452  // 64-bit versions are always libcalls (for now)
453  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
454  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
455  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
456  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
457  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
458  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
459  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
460  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
461
462  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
463  if (!Subtarget->hasV6Ops()) {
464    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
465    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
466  }
467  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
468
469  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
470    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
471    // iff target supports vfp2.
472    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
473    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
474  }
475
476  // We want to custom lower some of our intrinsics.
477  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
478  if (Subtarget->isTargetDarwin()) {
479    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
480    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
481  }
482
483  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
484  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
485  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
486  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
487  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
488  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
489  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
490  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
491  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
492
493  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
494  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
495  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
496  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
497  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
498
499  // We don't support sin/cos/fmod/copysign/pow
500  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
501  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
502  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
503  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
504  setOperationAction(ISD::FREM,      MVT::f64, Expand);
505  setOperationAction(ISD::FREM,      MVT::f32, Expand);
506  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
507    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
508    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
509  }
510  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
511  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
512
513  // Various VFP goodness
514  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
515    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
516    if (Subtarget->hasVFP2()) {
517      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
518      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
519      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
520      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
521    }
522    // Special handling for half-precision FP.
523    if (!Subtarget->hasFP16()) {
524      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
525      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
526    }
527  }
528
529  // We have target-specific dag combine patterns for the following nodes:
530  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
531  setTargetDAGCombine(ISD::ADD);
532  setTargetDAGCombine(ISD::SUB);
533  setTargetDAGCombine(ISD::MUL);
534
535  if (Subtarget->hasV6T2Ops())
536    setTargetDAGCombine(ISD::OR);
537
538  setStackPointerRegisterToSaveRestore(ARM::SP);
539
540  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
541    setSchedulingPreference(Sched::RegPressure);
542  else
543    setSchedulingPreference(Sched::Hybrid);
544
545  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
546
547  // On ARM arguments smaller than 4 bytes are extended, so all arguments
548  // are at least 4 bytes aligned.
549  setMinStackArgumentAlignment(4);
550
551  if (EnableARMCodePlacement)
552    benefitFromCodePlacementOpt = true;
553}
554
555std::pair<const TargetRegisterClass*, uint8_t>
556ARMTargetLowering::findRepresentativeClass(EVT VT) const{
557  const TargetRegisterClass *RRC = 0;
558  uint8_t Cost = 1;
559  switch (VT.getSimpleVT().SimpleTy) {
560  default:
561    return TargetLowering::findRepresentativeClass(VT);
562  // Use DPR as representative register class for all floating point
563  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
564  // the cost is 1 for both f32 and f64.
565  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
566  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
567    RRC = ARM::DPRRegisterClass;
568    break;
569  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
570  case MVT::v4f32: case MVT::v2f64:
571    RRC = ARM::DPRRegisterClass;
572    Cost = 2;
573    break;
574  case MVT::v4i64:
575    RRC = ARM::DPRRegisterClass;
576    Cost = 4;
577    break;
578  case MVT::v8i64:
579    RRC = ARM::DPRRegisterClass;
580    Cost = 8;
581    break;
582  }
583  return std::make_pair(RRC, Cost);
584}
585
586const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
587  switch (Opcode) {
588  default: return 0;
589  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
590  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
591  case ARMISD::CALL:          return "ARMISD::CALL";
592  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
593  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
594  case ARMISD::tCALL:         return "ARMISD::tCALL";
595  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
596  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
597  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
598  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
599  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
600  case ARMISD::CMP:           return "ARMISD::CMP";
601  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
602  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
603  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
604  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
605  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
606  case ARMISD::CMOV:          return "ARMISD::CMOV";
607  case ARMISD::CNEG:          return "ARMISD::CNEG";
608
609  case ARMISD::RBIT:          return "ARMISD::RBIT";
610
611  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
612  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
613  case ARMISD::SITOF:         return "ARMISD::SITOF";
614  case ARMISD::UITOF:         return "ARMISD::UITOF";
615
616  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
617  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
618  case ARMISD::RRX:           return "ARMISD::RRX";
619
620  case ARMISD::VMOVRRD:         return "ARMISD::VMOVRRD";
621  case ARMISD::VMOVDRR:         return "ARMISD::VMOVDRR";
622
623  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
624  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
625
626  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
627
628  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
629
630  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
631
632  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
633  case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER";
634
635  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
636  case ARMISD::VCGE:          return "ARMISD::VCGE";
637  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
638  case ARMISD::VCGT:          return "ARMISD::VCGT";
639  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
640  case ARMISD::VTST:          return "ARMISD::VTST";
641
642  case ARMISD::VSHL:          return "ARMISD::VSHL";
643  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
644  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
645  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
646  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
647  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
648  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
649  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
650  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
651  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
652  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
653  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
654  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
655  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
656  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
657  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
658  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
659  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
660  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
661  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
662  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
663  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
664  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
665  case ARMISD::VDUP:          return "ARMISD::VDUP";
666  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
667  case ARMISD::VEXT:          return "ARMISD::VEXT";
668  case ARMISD::VREV64:        return "ARMISD::VREV64";
669  case ARMISD::VREV32:        return "ARMISD::VREV32";
670  case ARMISD::VREV16:        return "ARMISD::VREV16";
671  case ARMISD::VZIP:          return "ARMISD::VZIP";
672  case ARMISD::VUZP:          return "ARMISD::VUZP";
673  case ARMISD::VTRN:          return "ARMISD::VTRN";
674  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
675  case ARMISD::FMAX:          return "ARMISD::FMAX";
676  case ARMISD::FMIN:          return "ARMISD::FMIN";
677  case ARMISD::BFI:           return "ARMISD::BFI";
678  }
679}
680
681/// getRegClassFor - Return the register class that should be used for the
682/// specified value type.
683TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
684  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
685  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
686  // load / store 4 to 8 consecutive D registers.
687  if (Subtarget->hasNEON()) {
688    if (VT == MVT::v4i64)
689      return ARM::QQPRRegisterClass;
690    else if (VT == MVT::v8i64)
691      return ARM::QQQQPRRegisterClass;
692  }
693  return TargetLowering::getRegClassFor(VT);
694}
695
696// Create a fast isel object.
697FastISel *
698ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
699  return ARM::createFastISel(funcInfo);
700}
701
702/// getFunctionAlignment - Return the Log2 alignment of this function.
703unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
704  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
705}
706
707/// getMaximalGlobalOffset - Returns the maximal possible offset which can
708/// be used for loads / stores from the global.
709unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
710  return (Subtarget->isThumb1Only() ? 127 : 4095);
711}
712
713Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
714  unsigned NumVals = N->getNumValues();
715  if (!NumVals)
716    return Sched::RegPressure;
717
718  for (unsigned i = 0; i != NumVals; ++i) {
719    EVT VT = N->getValueType(i);
720    if (VT.isFloatingPoint() || VT.isVector())
721      return Sched::Latency;
722  }
723
724  if (!N->isMachineOpcode())
725    return Sched::RegPressure;
726
727  // Load are scheduled for latency even if there instruction itinerary
728  // is not available.
729  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
730  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
731  if (TID.mayLoad())
732    return Sched::Latency;
733
734  const InstrItineraryData &Itins = getTargetMachine().getInstrItineraryData();
735  if (!Itins.isEmpty() && Itins.getStageLatency(TID.getSchedClass()) > 2)
736    return Sched::Latency;
737  return Sched::RegPressure;
738}
739
740unsigned
741ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
742                                       MachineFunction &MF) const {
743  switch (RC->getID()) {
744  default:
745    return 0;
746  case ARM::tGPRRegClassID:
747    return RegInfo->hasFP(MF) ? 4 : 5;
748  case ARM::GPRRegClassID: {
749    unsigned FP = RegInfo->hasFP(MF) ? 1 : 0;
750    return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
751  }
752  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
753  case ARM::DPRRegClassID:
754    return 32 - 10;
755  }
756}
757
758//===----------------------------------------------------------------------===//
759// Lowering Code
760//===----------------------------------------------------------------------===//
761
762/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
763static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
764  switch (CC) {
765  default: llvm_unreachable("Unknown condition code!");
766  case ISD::SETNE:  return ARMCC::NE;
767  case ISD::SETEQ:  return ARMCC::EQ;
768  case ISD::SETGT:  return ARMCC::GT;
769  case ISD::SETGE:  return ARMCC::GE;
770  case ISD::SETLT:  return ARMCC::LT;
771  case ISD::SETLE:  return ARMCC::LE;
772  case ISD::SETUGT: return ARMCC::HI;
773  case ISD::SETUGE: return ARMCC::HS;
774  case ISD::SETULT: return ARMCC::LO;
775  case ISD::SETULE: return ARMCC::LS;
776  }
777}
778
779/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
780static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
781                        ARMCC::CondCodes &CondCode2) {
782  CondCode2 = ARMCC::AL;
783  switch (CC) {
784  default: llvm_unreachable("Unknown FP condition!");
785  case ISD::SETEQ:
786  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
787  case ISD::SETGT:
788  case ISD::SETOGT: CondCode = ARMCC::GT; break;
789  case ISD::SETGE:
790  case ISD::SETOGE: CondCode = ARMCC::GE; break;
791  case ISD::SETOLT: CondCode = ARMCC::MI; break;
792  case ISD::SETOLE: CondCode = ARMCC::LS; break;
793  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
794  case ISD::SETO:   CondCode = ARMCC::VC; break;
795  case ISD::SETUO:  CondCode = ARMCC::VS; break;
796  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
797  case ISD::SETUGT: CondCode = ARMCC::HI; break;
798  case ISD::SETUGE: CondCode = ARMCC::PL; break;
799  case ISD::SETLT:
800  case ISD::SETULT: CondCode = ARMCC::LT; break;
801  case ISD::SETLE:
802  case ISD::SETULE: CondCode = ARMCC::LE; break;
803  case ISD::SETNE:
804  case ISD::SETUNE: CondCode = ARMCC::NE; break;
805  }
806}
807
808//===----------------------------------------------------------------------===//
809//                      Calling Convention Implementation
810//===----------------------------------------------------------------------===//
811
812#include "ARMGenCallingConv.inc"
813
814// APCS f64 is in register pairs, possibly split to stack
815static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
816                          CCValAssign::LocInfo &LocInfo,
817                          CCState &State, bool CanFail) {
818  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
819
820  // Try to get the first register.
821  if (unsigned Reg = State.AllocateReg(RegList, 4))
822    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
823  else {
824    // For the 2nd half of a v2f64, do not fail.
825    if (CanFail)
826      return false;
827
828    // Put the whole thing on the stack.
829    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
830                                           State.AllocateStack(8, 4),
831                                           LocVT, LocInfo));
832    return true;
833  }
834
835  // Try to get the second register.
836  if (unsigned Reg = State.AllocateReg(RegList, 4))
837    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
838  else
839    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
840                                           State.AllocateStack(4, 4),
841                                           LocVT, LocInfo));
842  return true;
843}
844
845static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
846                                   CCValAssign::LocInfo &LocInfo,
847                                   ISD::ArgFlagsTy &ArgFlags,
848                                   CCState &State) {
849  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
850    return false;
851  if (LocVT == MVT::v2f64 &&
852      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
853    return false;
854  return true;  // we handled it
855}
856
857// AAPCS f64 is in aligned register pairs
858static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
859                           CCValAssign::LocInfo &LocInfo,
860                           CCState &State, bool CanFail) {
861  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
862  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
863  static const unsigned ShadowRegList[] = { ARM::R0, ARM::R1 };
864
865  unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList, 2);
866  if (Reg == 0) {
867    // For the 2nd half of a v2f64, do not just fail.
868    if (CanFail)
869      return false;
870
871    // Put the whole thing on the stack.
872    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
873                                           State.AllocateStack(8, 8),
874                                           LocVT, LocInfo));
875    return true;
876  }
877
878  unsigned i;
879  for (i = 0; i < 2; ++i)
880    if (HiRegList[i] == Reg)
881      break;
882
883  unsigned T = State.AllocateReg(LoRegList[i]);
884  (void)T;
885  assert(T == LoRegList[i] && "Could not allocate register");
886
887  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
888  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
889                                         LocVT, LocInfo));
890  return true;
891}
892
893static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
894                                    CCValAssign::LocInfo &LocInfo,
895                                    ISD::ArgFlagsTy &ArgFlags,
896                                    CCState &State) {
897  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
898    return false;
899  if (LocVT == MVT::v2f64 &&
900      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
901    return false;
902  return true;  // we handled it
903}
904
905static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
906                         CCValAssign::LocInfo &LocInfo, CCState &State) {
907  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
908  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
909
910  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
911  if (Reg == 0)
912    return false; // we didn't handle it
913
914  unsigned i;
915  for (i = 0; i < 2; ++i)
916    if (HiRegList[i] == Reg)
917      break;
918
919  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
920  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
921                                         LocVT, LocInfo));
922  return true;
923}
924
925static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
926                                      CCValAssign::LocInfo &LocInfo,
927                                      ISD::ArgFlagsTy &ArgFlags,
928                                      CCState &State) {
929  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
930    return false;
931  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
932    return false;
933  return true;  // we handled it
934}
935
936static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
937                                       CCValAssign::LocInfo &LocInfo,
938                                       ISD::ArgFlagsTy &ArgFlags,
939                                       CCState &State) {
940  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
941                                   State);
942}
943
944/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
945/// given CallingConvention value.
946CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
947                                                 bool Return,
948                                                 bool isVarArg) const {
949  switch (CC) {
950  default:
951    llvm_unreachable("Unsupported calling convention");
952  case CallingConv::C:
953  case CallingConv::Fast:
954    // Use target triple & subtarget features to do actual dispatch.
955    if (Subtarget->isAAPCS_ABI()) {
956      if (Subtarget->hasVFP2() &&
957          FloatABIType == FloatABI::Hard && !isVarArg)
958        return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
959      else
960        return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
961    } else
962        return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
963  case CallingConv::ARM_AAPCS_VFP:
964    return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
965  case CallingConv::ARM_AAPCS:
966    return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
967  case CallingConv::ARM_APCS:
968    return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
969  }
970}
971
972/// LowerCallResult - Lower the result values of a call into the
973/// appropriate copies out of appropriate physical registers.
974SDValue
975ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
976                                   CallingConv::ID CallConv, bool isVarArg,
977                                   const SmallVectorImpl<ISD::InputArg> &Ins,
978                                   DebugLoc dl, SelectionDAG &DAG,
979                                   SmallVectorImpl<SDValue> &InVals) const {
980
981  // Assign locations to each value returned by this call.
982  SmallVector<CCValAssign, 16> RVLocs;
983  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
984                 RVLocs, *DAG.getContext());
985  CCInfo.AnalyzeCallResult(Ins,
986                           CCAssignFnForNode(CallConv, /* Return*/ true,
987                                             isVarArg));
988
989  // Copy all of the result registers out of their specified physreg.
990  for (unsigned i = 0; i != RVLocs.size(); ++i) {
991    CCValAssign VA = RVLocs[i];
992
993    SDValue Val;
994    if (VA.needsCustom()) {
995      // Handle f64 or half of a v2f64.
996      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
997                                      InFlag);
998      Chain = Lo.getValue(1);
999      InFlag = Lo.getValue(2);
1000      VA = RVLocs[++i]; // skip ahead to next loc
1001      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1002                                      InFlag);
1003      Chain = Hi.getValue(1);
1004      InFlag = Hi.getValue(2);
1005      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1006
1007      if (VA.getLocVT() == MVT::v2f64) {
1008        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1009        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1010                          DAG.getConstant(0, MVT::i32));
1011
1012        VA = RVLocs[++i]; // skip ahead to next loc
1013        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1014        Chain = Lo.getValue(1);
1015        InFlag = Lo.getValue(2);
1016        VA = RVLocs[++i]; // skip ahead to next loc
1017        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1018        Chain = Hi.getValue(1);
1019        InFlag = Hi.getValue(2);
1020        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1021        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1022                          DAG.getConstant(1, MVT::i32));
1023      }
1024    } else {
1025      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1026                               InFlag);
1027      Chain = Val.getValue(1);
1028      InFlag = Val.getValue(2);
1029    }
1030
1031    switch (VA.getLocInfo()) {
1032    default: llvm_unreachable("Unknown loc info!");
1033    case CCValAssign::Full: break;
1034    case CCValAssign::BCvt:
1035      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
1036      break;
1037    }
1038
1039    InVals.push_back(Val);
1040  }
1041
1042  return Chain;
1043}
1044
1045/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1046/// by "Src" to address "Dst" of size "Size".  Alignment information is
1047/// specified by the specific parameter attribute.  The copy will be passed as
1048/// a byval function parameter.
1049/// Sometimes what we are copying is the end of a larger object, the part that
1050/// does not fit in registers.
1051static SDValue
1052CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1053                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1054                          DebugLoc dl) {
1055  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1056  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1057                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1058                       NULL, 0, NULL, 0);
1059}
1060
1061/// LowerMemOpCallTo - Store the argument to the stack.
1062SDValue
1063ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1064                                    SDValue StackPtr, SDValue Arg,
1065                                    DebugLoc dl, SelectionDAG &DAG,
1066                                    const CCValAssign &VA,
1067                                    ISD::ArgFlagsTy Flags) const {
1068  unsigned LocMemOffset = VA.getLocMemOffset();
1069  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1070  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1071  if (Flags.isByVal()) {
1072    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1073  }
1074  return DAG.getStore(Chain, dl, Arg, PtrOff,
1075                      PseudoSourceValue::getStack(), LocMemOffset,
1076                      false, false, 0);
1077}
1078
1079void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1080                                         SDValue Chain, SDValue &Arg,
1081                                         RegsToPassVector &RegsToPass,
1082                                         CCValAssign &VA, CCValAssign &NextVA,
1083                                         SDValue &StackPtr,
1084                                         SmallVector<SDValue, 8> &MemOpChains,
1085                                         ISD::ArgFlagsTy Flags) const {
1086
1087  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1088                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1089  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1090
1091  if (NextVA.isRegLoc())
1092    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1093  else {
1094    assert(NextVA.isMemLoc());
1095    if (StackPtr.getNode() == 0)
1096      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1097
1098    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1099                                           dl, DAG, NextVA,
1100                                           Flags));
1101  }
1102}
1103
1104/// LowerCall - Lowering a call into a callseq_start <-
1105/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1106/// nodes.
1107SDValue
1108ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1109                             CallingConv::ID CallConv, bool isVarArg,
1110                             bool &isTailCall,
1111                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1112                             const SmallVectorImpl<SDValue> &OutVals,
1113                             const SmallVectorImpl<ISD::InputArg> &Ins,
1114                             DebugLoc dl, SelectionDAG &DAG,
1115                             SmallVectorImpl<SDValue> &InVals) const {
1116  MachineFunction &MF = DAG.getMachineFunction();
1117  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1118  bool IsSibCall = false;
1119  if (isTailCall) {
1120    // Check if it's really possible to do a tail call.
1121    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1122                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1123                                                   Outs, OutVals, Ins, DAG);
1124    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1125    // detected sibcalls.
1126    if (isTailCall) {
1127      ++NumTailCalls;
1128      IsSibCall = true;
1129    }
1130  }
1131
1132  // Analyze operands of the call, assigning locations to each operand.
1133  SmallVector<CCValAssign, 16> ArgLocs;
1134  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1135                 *DAG.getContext());
1136  CCInfo.AnalyzeCallOperands(Outs,
1137                             CCAssignFnForNode(CallConv, /* Return*/ false,
1138                                               isVarArg));
1139
1140  // Get a count of how many bytes are to be pushed on the stack.
1141  unsigned NumBytes = CCInfo.getNextStackOffset();
1142
1143  // For tail calls, memory operands are available in our caller's stack.
1144  if (IsSibCall)
1145    NumBytes = 0;
1146
1147  // Adjust the stack pointer for the new arguments...
1148  // These operations are automatically eliminated by the prolog/epilog pass
1149  if (!IsSibCall)
1150    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1151
1152  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1153
1154  RegsToPassVector RegsToPass;
1155  SmallVector<SDValue, 8> MemOpChains;
1156
1157  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1158  // of tail call optimization, arguments are handled later.
1159  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1160       i != e;
1161       ++i, ++realArgIdx) {
1162    CCValAssign &VA = ArgLocs[i];
1163    SDValue Arg = OutVals[realArgIdx];
1164    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1165
1166    // Promote the value if needed.
1167    switch (VA.getLocInfo()) {
1168    default: llvm_unreachable("Unknown loc info!");
1169    case CCValAssign::Full: break;
1170    case CCValAssign::SExt:
1171      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1172      break;
1173    case CCValAssign::ZExt:
1174      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1175      break;
1176    case CCValAssign::AExt:
1177      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1178      break;
1179    case CCValAssign::BCvt:
1180      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1181      break;
1182    }
1183
1184    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1185    if (VA.needsCustom()) {
1186      if (VA.getLocVT() == MVT::v2f64) {
1187        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1188                                  DAG.getConstant(0, MVT::i32));
1189        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1190                                  DAG.getConstant(1, MVT::i32));
1191
1192        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1193                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1194
1195        VA = ArgLocs[++i]; // skip ahead to next loc
1196        if (VA.isRegLoc()) {
1197          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1198                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1199        } else {
1200          assert(VA.isMemLoc());
1201
1202          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1203                                                 dl, DAG, VA, Flags));
1204        }
1205      } else {
1206        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1207                         StackPtr, MemOpChains, Flags);
1208      }
1209    } else if (VA.isRegLoc()) {
1210      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1211    } else if (!IsSibCall) {
1212      assert(VA.isMemLoc());
1213
1214      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1215                                             dl, DAG, VA, Flags));
1216    }
1217  }
1218
1219  if (!MemOpChains.empty())
1220    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1221                        &MemOpChains[0], MemOpChains.size());
1222
1223  // Build a sequence of copy-to-reg nodes chained together with token chain
1224  // and flag operands which copy the outgoing args into the appropriate regs.
1225  SDValue InFlag;
1226  // Tail call byval lowering might overwrite argument registers so in case of
1227  // tail call optimization the copies to registers are lowered later.
1228  if (!isTailCall)
1229    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1230      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1231                               RegsToPass[i].second, InFlag);
1232      InFlag = Chain.getValue(1);
1233    }
1234
1235  // For tail calls lower the arguments to the 'real' stack slot.
1236  if (isTailCall) {
1237    // Force all the incoming stack arguments to be loaded from the stack
1238    // before any new outgoing arguments are stored to the stack, because the
1239    // outgoing stack slots may alias the incoming argument stack slots, and
1240    // the alias isn't otherwise explicit. This is slightly more conservative
1241    // than necessary, because it means that each store effectively depends
1242    // on every argument instead of just those arguments it would clobber.
1243
1244    // Do not flag preceeding copytoreg stuff together with the following stuff.
1245    InFlag = SDValue();
1246    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1247      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1248                               RegsToPass[i].second, InFlag);
1249      InFlag = Chain.getValue(1);
1250    }
1251    InFlag =SDValue();
1252  }
1253
1254  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1255  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1256  // node so that legalize doesn't hack it.
1257  bool isDirect = false;
1258  bool isARMFunc = false;
1259  bool isLocalARMFunc = false;
1260  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1261
1262  if (EnableARMLongCalls) {
1263    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1264            && "long-calls with non-static relocation model!");
1265    // Handle a global address or an external symbol. If it's not one of
1266    // those, the target's already in a register, so we don't need to do
1267    // anything extra.
1268    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1269      const GlobalValue *GV = G->getGlobal();
1270      // Create a constant pool entry for the callee address
1271      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1272      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1273                                                           ARMPCLabelIndex,
1274                                                           ARMCP::CPValue, 0);
1275      // Get the address of the callee into a register
1276      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1277      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1278      Callee = DAG.getLoad(getPointerTy(), dl,
1279                           DAG.getEntryNode(), CPAddr,
1280                           PseudoSourceValue::getConstantPool(), 0,
1281                           false, false, 0);
1282    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1283      const char *Sym = S->getSymbol();
1284
1285      // Create a constant pool entry for the callee address
1286      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1287      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1288                                                       Sym, ARMPCLabelIndex, 0);
1289      // Get the address of the callee into a register
1290      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1291      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1292      Callee = DAG.getLoad(getPointerTy(), dl,
1293                           DAG.getEntryNode(), CPAddr,
1294                           PseudoSourceValue::getConstantPool(), 0,
1295                           false, false, 0);
1296    }
1297  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1298    const GlobalValue *GV = G->getGlobal();
1299    isDirect = true;
1300    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1301    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1302                   getTargetMachine().getRelocationModel() != Reloc::Static;
1303    isARMFunc = !Subtarget->isThumb() || isStub;
1304    // ARM call to a local ARM function is predicable.
1305    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1306    // tBX takes a register source operand.
1307    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1308      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1309      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1310                                                           ARMPCLabelIndex,
1311                                                           ARMCP::CPValue, 4);
1312      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1313      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1314      Callee = DAG.getLoad(getPointerTy(), dl,
1315                           DAG.getEntryNode(), CPAddr,
1316                           PseudoSourceValue::getConstantPool(), 0,
1317                           false, false, 0);
1318      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1319      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1320                           getPointerTy(), Callee, PICLabel);
1321    } else
1322      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1323  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1324    isDirect = true;
1325    bool isStub = Subtarget->isTargetDarwin() &&
1326                  getTargetMachine().getRelocationModel() != Reloc::Static;
1327    isARMFunc = !Subtarget->isThumb() || isStub;
1328    // tBX takes a register source operand.
1329    const char *Sym = S->getSymbol();
1330    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1331      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1332      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1333                                                       Sym, ARMPCLabelIndex, 4);
1334      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1335      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1336      Callee = DAG.getLoad(getPointerTy(), dl,
1337                           DAG.getEntryNode(), CPAddr,
1338                           PseudoSourceValue::getConstantPool(), 0,
1339                           false, false, 0);
1340      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1341      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1342                           getPointerTy(), Callee, PICLabel);
1343    } else
1344      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1345  }
1346
1347  // FIXME: handle tail calls differently.
1348  unsigned CallOpc;
1349  if (Subtarget->isThumb()) {
1350    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1351      CallOpc = ARMISD::CALL_NOLINK;
1352    else
1353      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1354  } else {
1355    CallOpc = (isDirect || Subtarget->hasV5TOps())
1356      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1357      : ARMISD::CALL_NOLINK;
1358  }
1359
1360  std::vector<SDValue> Ops;
1361  Ops.push_back(Chain);
1362  Ops.push_back(Callee);
1363
1364  // Add argument registers to the end of the list so that they are known live
1365  // into the call.
1366  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1367    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1368                                  RegsToPass[i].second.getValueType()));
1369
1370  if (InFlag.getNode())
1371    Ops.push_back(InFlag);
1372
1373  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1374  if (isTailCall)
1375    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1376
1377  // Returns a chain and a flag for retval copy to use.
1378  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1379  InFlag = Chain.getValue(1);
1380
1381  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1382                             DAG.getIntPtrConstant(0, true), InFlag);
1383  if (!Ins.empty())
1384    InFlag = Chain.getValue(1);
1385
1386  // Handle result values, copying them out of physregs into vregs that we
1387  // return.
1388  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1389                         dl, DAG, InVals);
1390}
1391
1392/// MatchingStackOffset - Return true if the given stack call argument is
1393/// already available in the same position (relatively) of the caller's
1394/// incoming argument stack.
1395static
1396bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1397                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1398                         const ARMInstrInfo *TII) {
1399  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1400  int FI = INT_MAX;
1401  if (Arg.getOpcode() == ISD::CopyFromReg) {
1402    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1403    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
1404      return false;
1405    MachineInstr *Def = MRI->getVRegDef(VR);
1406    if (!Def)
1407      return false;
1408    if (!Flags.isByVal()) {
1409      if (!TII->isLoadFromStackSlot(Def, FI))
1410        return false;
1411    } else {
1412      return false;
1413    }
1414  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1415    if (Flags.isByVal())
1416      // ByVal argument is passed in as a pointer but it's now being
1417      // dereferenced. e.g.
1418      // define @foo(%struct.X* %A) {
1419      //   tail call @bar(%struct.X* byval %A)
1420      // }
1421      return false;
1422    SDValue Ptr = Ld->getBasePtr();
1423    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1424    if (!FINode)
1425      return false;
1426    FI = FINode->getIndex();
1427  } else
1428    return false;
1429
1430  assert(FI != INT_MAX);
1431  if (!MFI->isFixedObjectIndex(FI))
1432    return false;
1433  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1434}
1435
1436/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1437/// for tail call optimization. Targets which want to do tail call
1438/// optimization should implement this function.
1439bool
1440ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1441                                                     CallingConv::ID CalleeCC,
1442                                                     bool isVarArg,
1443                                                     bool isCalleeStructRet,
1444                                                     bool isCallerStructRet,
1445                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1446                                    const SmallVectorImpl<SDValue> &OutVals,
1447                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1448                                                     SelectionDAG& DAG) const {
1449  const Function *CallerF = DAG.getMachineFunction().getFunction();
1450  CallingConv::ID CallerCC = CallerF->getCallingConv();
1451  bool CCMatch = CallerCC == CalleeCC;
1452
1453  // Look for obvious safe cases to perform tail call optimization that do not
1454  // require ABI changes. This is what gcc calls sibcall.
1455
1456  // Do not sibcall optimize vararg calls unless the call site is not passing
1457  // any arguments.
1458  if (isVarArg && !Outs.empty())
1459    return false;
1460
1461  // Also avoid sibcall optimization if either caller or callee uses struct
1462  // return semantics.
1463  if (isCalleeStructRet || isCallerStructRet)
1464    return false;
1465
1466  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1467  // emitEpilogue is not ready for them.
1468  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1469  // LR.  This means if we need to reload LR, it takes an extra instructions,
1470  // which outweighs the value of the tail call; but here we don't know yet
1471  // whether LR is going to be used.  Probably the right approach is to
1472  // generate the tail call here and turn it back into CALL/RET in
1473  // emitEpilogue if LR is used.
1474  if (Subtarget->isThumb1Only())
1475    return false;
1476
1477  // For the moment, we can only do this to functions defined in this
1478  // compilation, or to indirect calls.  A Thumb B to an ARM function,
1479  // or vice versa, is not easily fixed up in the linker unlike BL.
1480  // (We could do this by loading the address of the callee into a register;
1481  // that is an extra instruction over the direct call and burns a register
1482  // as well, so is not likely to be a win.)
1483
1484  // It might be safe to remove this restriction on non-Darwin.
1485
1486  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1487  // but we need to make sure there are enough registers; the only valid
1488  // registers are the 4 used for parameters.  We don't currently do this
1489  // case.
1490  if (isa<ExternalSymbolSDNode>(Callee))
1491      return false;
1492
1493  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1494    const GlobalValue *GV = G->getGlobal();
1495    if (GV->isDeclaration() || GV->isWeakForLinker())
1496      return false;
1497  }
1498
1499  // If the calling conventions do not match, then we'd better make sure the
1500  // results are returned in the same way as what the caller expects.
1501  if (!CCMatch) {
1502    SmallVector<CCValAssign, 16> RVLocs1;
1503    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1504                    RVLocs1, *DAG.getContext());
1505    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1506
1507    SmallVector<CCValAssign, 16> RVLocs2;
1508    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1509                    RVLocs2, *DAG.getContext());
1510    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1511
1512    if (RVLocs1.size() != RVLocs2.size())
1513      return false;
1514    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1515      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1516        return false;
1517      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1518        return false;
1519      if (RVLocs1[i].isRegLoc()) {
1520        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1521          return false;
1522      } else {
1523        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1524          return false;
1525      }
1526    }
1527  }
1528
1529  // If the callee takes no arguments then go on to check the results of the
1530  // call.
1531  if (!Outs.empty()) {
1532    // Check if stack adjustment is needed. For now, do not do this if any
1533    // argument is passed on the stack.
1534    SmallVector<CCValAssign, 16> ArgLocs;
1535    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1536                   ArgLocs, *DAG.getContext());
1537    CCInfo.AnalyzeCallOperands(Outs,
1538                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1539    if (CCInfo.getNextStackOffset()) {
1540      MachineFunction &MF = DAG.getMachineFunction();
1541
1542      // Check if the arguments are already laid out in the right way as
1543      // the caller's fixed stack objects.
1544      MachineFrameInfo *MFI = MF.getFrameInfo();
1545      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1546      const ARMInstrInfo *TII =
1547        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1548      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1549           i != e;
1550           ++i, ++realArgIdx) {
1551        CCValAssign &VA = ArgLocs[i];
1552        EVT RegVT = VA.getLocVT();
1553        SDValue Arg = OutVals[realArgIdx];
1554        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1555        if (VA.getLocInfo() == CCValAssign::Indirect)
1556          return false;
1557        if (VA.needsCustom()) {
1558          // f64 and vector types are split into multiple registers or
1559          // register/stack-slot combinations.  The types will not match
1560          // the registers; give up on memory f64 refs until we figure
1561          // out what to do about this.
1562          if (!VA.isRegLoc())
1563            return false;
1564          if (!ArgLocs[++i].isRegLoc())
1565            return false;
1566          if (RegVT == MVT::v2f64) {
1567            if (!ArgLocs[++i].isRegLoc())
1568              return false;
1569            if (!ArgLocs[++i].isRegLoc())
1570              return false;
1571          }
1572        } else if (!VA.isRegLoc()) {
1573          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1574                                   MFI, MRI, TII))
1575            return false;
1576        }
1577      }
1578    }
1579  }
1580
1581  return true;
1582}
1583
1584SDValue
1585ARMTargetLowering::LowerReturn(SDValue Chain,
1586                               CallingConv::ID CallConv, bool isVarArg,
1587                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1588                               const SmallVectorImpl<SDValue> &OutVals,
1589                               DebugLoc dl, SelectionDAG &DAG) const {
1590
1591  // CCValAssign - represent the assignment of the return value to a location.
1592  SmallVector<CCValAssign, 16> RVLocs;
1593
1594  // CCState - Info about the registers and stack slots.
1595  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1596                 *DAG.getContext());
1597
1598  // Analyze outgoing return values.
1599  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1600                                               isVarArg));
1601
1602  // If this is the first return lowered for this function, add
1603  // the regs to the liveout set for the function.
1604  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1605    for (unsigned i = 0; i != RVLocs.size(); ++i)
1606      if (RVLocs[i].isRegLoc())
1607        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1608  }
1609
1610  SDValue Flag;
1611
1612  // Copy the result values into the output registers.
1613  for (unsigned i = 0, realRVLocIdx = 0;
1614       i != RVLocs.size();
1615       ++i, ++realRVLocIdx) {
1616    CCValAssign &VA = RVLocs[i];
1617    assert(VA.isRegLoc() && "Can only return in registers!");
1618
1619    SDValue Arg = OutVals[realRVLocIdx];
1620
1621    switch (VA.getLocInfo()) {
1622    default: llvm_unreachable("Unknown loc info!");
1623    case CCValAssign::Full: break;
1624    case CCValAssign::BCvt:
1625      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1626      break;
1627    }
1628
1629    if (VA.needsCustom()) {
1630      if (VA.getLocVT() == MVT::v2f64) {
1631        // Extract the first half and return it in two registers.
1632        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1633                                   DAG.getConstant(0, MVT::i32));
1634        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1635                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1636
1637        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1638        Flag = Chain.getValue(1);
1639        VA = RVLocs[++i]; // skip ahead to next loc
1640        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1641                                 HalfGPRs.getValue(1), Flag);
1642        Flag = Chain.getValue(1);
1643        VA = RVLocs[++i]; // skip ahead to next loc
1644
1645        // Extract the 2nd half and fall through to handle it as an f64 value.
1646        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1647                          DAG.getConstant(1, MVT::i32));
1648      }
1649      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1650      // available.
1651      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1652                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1653      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1654      Flag = Chain.getValue(1);
1655      VA = RVLocs[++i]; // skip ahead to next loc
1656      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1657                               Flag);
1658    } else
1659      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1660
1661    // Guarantee that all emitted copies are
1662    // stuck together, avoiding something bad.
1663    Flag = Chain.getValue(1);
1664  }
1665
1666  SDValue result;
1667  if (Flag.getNode())
1668    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1669  else // Return Void
1670    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1671
1672  return result;
1673}
1674
1675// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1676// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1677// one of the above mentioned nodes. It has to be wrapped because otherwise
1678// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1679// be used to form addressing mode. These wrapped nodes will be selected
1680// into MOVi.
1681static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1682  EVT PtrVT = Op.getValueType();
1683  // FIXME there is no actual debug info here
1684  DebugLoc dl = Op.getDebugLoc();
1685  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1686  SDValue Res;
1687  if (CP->isMachineConstantPoolEntry())
1688    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1689                                    CP->getAlignment());
1690  else
1691    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1692                                    CP->getAlignment());
1693  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1694}
1695
1696unsigned ARMTargetLowering::getJumpTableEncoding() const {
1697  return MachineJumpTableInfo::EK_Inline;
1698}
1699
1700SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1701                                             SelectionDAG &DAG) const {
1702  MachineFunction &MF = DAG.getMachineFunction();
1703  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1704  unsigned ARMPCLabelIndex = 0;
1705  DebugLoc DL = Op.getDebugLoc();
1706  EVT PtrVT = getPointerTy();
1707  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1708  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1709  SDValue CPAddr;
1710  if (RelocM == Reloc::Static) {
1711    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1712  } else {
1713    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1714    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1715    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1716                                                         ARMCP::CPBlockAddress,
1717                                                         PCAdj);
1718    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1719  }
1720  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1721  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1722                               PseudoSourceValue::getConstantPool(), 0,
1723                               false, false, 0);
1724  if (RelocM == Reloc::Static)
1725    return Result;
1726  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1727  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1728}
1729
1730// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1731SDValue
1732ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1733                                                 SelectionDAG &DAG) const {
1734  DebugLoc dl = GA->getDebugLoc();
1735  EVT PtrVT = getPointerTy();
1736  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1737  MachineFunction &MF = DAG.getMachineFunction();
1738  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1739  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1740  ARMConstantPoolValue *CPV =
1741    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1742                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1743  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1744  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1745  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1746                         PseudoSourceValue::getConstantPool(), 0,
1747                         false, false, 0);
1748  SDValue Chain = Argument.getValue(1);
1749
1750  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1751  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1752
1753  // call __tls_get_addr.
1754  ArgListTy Args;
1755  ArgListEntry Entry;
1756  Entry.Node = Argument;
1757  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1758  Args.push_back(Entry);
1759  // FIXME: is there useful debug info available here?
1760  std::pair<SDValue, SDValue> CallResult =
1761    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1762                false, false, false, false,
1763                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1764                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1765  return CallResult.first;
1766}
1767
1768// Lower ISD::GlobalTLSAddress using the "initial exec" or
1769// "local exec" model.
1770SDValue
1771ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1772                                        SelectionDAG &DAG) const {
1773  const GlobalValue *GV = GA->getGlobal();
1774  DebugLoc dl = GA->getDebugLoc();
1775  SDValue Offset;
1776  SDValue Chain = DAG.getEntryNode();
1777  EVT PtrVT = getPointerTy();
1778  // Get the Thread Pointer
1779  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1780
1781  if (GV->isDeclaration()) {
1782    MachineFunction &MF = DAG.getMachineFunction();
1783    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1784    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1785    // Initial exec model.
1786    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1787    ARMConstantPoolValue *CPV =
1788      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1789                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1790    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1791    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1792    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1793                         PseudoSourceValue::getConstantPool(), 0,
1794                         false, false, 0);
1795    Chain = Offset.getValue(1);
1796
1797    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1798    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1799
1800    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1801                         PseudoSourceValue::getConstantPool(), 0,
1802                         false, false, 0);
1803  } else {
1804    // local exec model
1805    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1806    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1807    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1808    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1809                         PseudoSourceValue::getConstantPool(), 0,
1810                         false, false, 0);
1811  }
1812
1813  // The address of the thread local variable is the add of the thread
1814  // pointer with the offset of the variable.
1815  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1816}
1817
1818SDValue
1819ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1820  // TODO: implement the "local dynamic" model
1821  assert(Subtarget->isTargetELF() &&
1822         "TLS not implemented for non-ELF targets");
1823  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1824  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1825  // otherwise use the "Local Exec" TLS Model
1826  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1827    return LowerToTLSGeneralDynamicModel(GA, DAG);
1828  else
1829    return LowerToTLSExecModels(GA, DAG);
1830}
1831
1832SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1833                                                 SelectionDAG &DAG) const {
1834  EVT PtrVT = getPointerTy();
1835  DebugLoc dl = Op.getDebugLoc();
1836  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1837  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1838  if (RelocM == Reloc::PIC_) {
1839    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1840    ARMConstantPoolValue *CPV =
1841      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1842    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1843    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1844    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1845                                 CPAddr,
1846                                 PseudoSourceValue::getConstantPool(), 0,
1847                                 false, false, 0);
1848    SDValue Chain = Result.getValue(1);
1849    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1850    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1851    if (!UseGOTOFF)
1852      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1853                           PseudoSourceValue::getGOT(), 0,
1854                           false, false, 0);
1855    return Result;
1856  } else {
1857    // If we have T2 ops, we can materialize the address directly via movt/movw
1858    // pair. This is always cheaper.
1859    if (Subtarget->useMovt()) {
1860      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1861                         DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1862    } else {
1863      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1864      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1865      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1866                         PseudoSourceValue::getConstantPool(), 0,
1867                         false, false, 0);
1868    }
1869  }
1870}
1871
1872SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1873                                                    SelectionDAG &DAG) const {
1874  MachineFunction &MF = DAG.getMachineFunction();
1875  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1876  unsigned ARMPCLabelIndex = 0;
1877  EVT PtrVT = getPointerTy();
1878  DebugLoc dl = Op.getDebugLoc();
1879  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1880  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1881  SDValue CPAddr;
1882  if (RelocM == Reloc::Static)
1883    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1884  else {
1885    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1886    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1887    ARMConstantPoolValue *CPV =
1888      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1889    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1890  }
1891  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1892
1893  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1894                               PseudoSourceValue::getConstantPool(), 0,
1895                               false, false, 0);
1896  SDValue Chain = Result.getValue(1);
1897
1898  if (RelocM == Reloc::PIC_) {
1899    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1900    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1901  }
1902
1903  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1904    Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1905                         PseudoSourceValue::getGOT(), 0,
1906                         false, false, 0);
1907
1908  return Result;
1909}
1910
1911SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1912                                                    SelectionDAG &DAG) const {
1913  assert(Subtarget->isTargetELF() &&
1914         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1915  MachineFunction &MF = DAG.getMachineFunction();
1916  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1917  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1918  EVT PtrVT = getPointerTy();
1919  DebugLoc dl = Op.getDebugLoc();
1920  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1921  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1922                                                       "_GLOBAL_OFFSET_TABLE_",
1923                                                       ARMPCLabelIndex, PCAdj);
1924  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1925  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1926  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1927                               PseudoSourceValue::getConstantPool(), 0,
1928                               false, false, 0);
1929  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1930  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1931}
1932
1933SDValue
1934ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
1935  DebugLoc dl = Op.getDebugLoc();
1936  SDValue Val = DAG.getConstant(0, MVT::i32);
1937  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
1938                     Op.getOperand(1), Val);
1939}
1940
1941SDValue
1942ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
1943  DebugLoc dl = Op.getDebugLoc();
1944  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
1945                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
1946}
1947
1948SDValue
1949ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
1950                                          const ARMSubtarget *Subtarget) const {
1951  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1952  DebugLoc dl = Op.getDebugLoc();
1953  switch (IntNo) {
1954  default: return SDValue();    // Don't custom lower most intrinsics.
1955  case Intrinsic::arm_thread_pointer: {
1956    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1957    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1958  }
1959  case Intrinsic::eh_sjlj_lsda: {
1960    MachineFunction &MF = DAG.getMachineFunction();
1961    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1962    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1963    EVT PtrVT = getPointerTy();
1964    DebugLoc dl = Op.getDebugLoc();
1965    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1966    SDValue CPAddr;
1967    unsigned PCAdj = (RelocM != Reloc::PIC_)
1968      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1969    ARMConstantPoolValue *CPV =
1970      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
1971                               ARMCP::CPLSDA, PCAdj);
1972    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1973    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1974    SDValue Result =
1975      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1976                  PseudoSourceValue::getConstantPool(), 0,
1977                  false, false, 0);
1978
1979    if (RelocM == Reloc::PIC_) {
1980      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1981      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1982    }
1983    return Result;
1984  }
1985  }
1986}
1987
1988static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
1989                               const ARMSubtarget *Subtarget) {
1990  DebugLoc dl = Op.getDebugLoc();
1991  SDValue Op5 = Op.getOperand(5);
1992  unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue();
1993  // Some subtargets which have dmb and dsb instructions can handle barriers
1994  // directly. Some ARMv6 cpus can support them with the help of mcr
1995  // instruction. Thumb1 and pre-v6 ARM mode use a libcall instead and should
1996  // never get here.
1997  unsigned Opc = isDeviceBarrier ? ARMISD::SYNCBARRIER : ARMISD::MEMBARRIER;
1998  if (Subtarget->hasDataBarrier())
1999    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0));
2000  else {
2001    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb1Only() &&
2002           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2003    return DAG.getNode(Opc, dl, MVT::Other, Op.getOperand(0),
2004                       DAG.getConstant(0, MVT::i32));
2005  }
2006}
2007
2008static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2009  MachineFunction &MF = DAG.getMachineFunction();
2010  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2011
2012  // vastart just stores the address of the VarArgsFrameIndex slot into the
2013  // memory location argument.
2014  DebugLoc dl = Op.getDebugLoc();
2015  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2016  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2017  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2018  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
2019                      false, false, 0);
2020}
2021
2022SDValue
2023ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2024                                        SDValue &Root, SelectionDAG &DAG,
2025                                        DebugLoc dl) const {
2026  MachineFunction &MF = DAG.getMachineFunction();
2027  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2028
2029  TargetRegisterClass *RC;
2030  if (AFI->isThumb1OnlyFunction())
2031    RC = ARM::tGPRRegisterClass;
2032  else
2033    RC = ARM::GPRRegisterClass;
2034
2035  // Transform the arguments stored in physical registers into virtual ones.
2036  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2037  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2038
2039  SDValue ArgValue2;
2040  if (NextVA.isMemLoc()) {
2041    MachineFrameInfo *MFI = MF.getFrameInfo();
2042    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2043
2044    // Create load node to retrieve arguments from the stack.
2045    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2046    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2047                            PseudoSourceValue::getFixedStack(FI), 0,
2048                            false, false, 0);
2049  } else {
2050    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2051    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2052  }
2053
2054  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2055}
2056
2057SDValue
2058ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2059                                        CallingConv::ID CallConv, bool isVarArg,
2060                                        const SmallVectorImpl<ISD::InputArg>
2061                                          &Ins,
2062                                        DebugLoc dl, SelectionDAG &DAG,
2063                                        SmallVectorImpl<SDValue> &InVals)
2064                                          const {
2065
2066  MachineFunction &MF = DAG.getMachineFunction();
2067  MachineFrameInfo *MFI = MF.getFrameInfo();
2068
2069  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2070
2071  // Assign locations to all of the incoming arguments.
2072  SmallVector<CCValAssign, 16> ArgLocs;
2073  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2074                 *DAG.getContext());
2075  CCInfo.AnalyzeFormalArguments(Ins,
2076                                CCAssignFnForNode(CallConv, /* Return*/ false,
2077                                                  isVarArg));
2078
2079  SmallVector<SDValue, 16> ArgValues;
2080
2081  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2082    CCValAssign &VA = ArgLocs[i];
2083
2084    // Arguments stored in registers.
2085    if (VA.isRegLoc()) {
2086      EVT RegVT = VA.getLocVT();
2087
2088      SDValue ArgValue;
2089      if (VA.needsCustom()) {
2090        // f64 and vector types are split up into multiple registers or
2091        // combinations of registers and stack slots.
2092        if (VA.getLocVT() == MVT::v2f64) {
2093          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2094                                                   Chain, DAG, dl);
2095          VA = ArgLocs[++i]; // skip ahead to next loc
2096          SDValue ArgValue2;
2097          if (VA.isMemLoc()) {
2098            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2099            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2100            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2101                                    PseudoSourceValue::getFixedStack(FI), 0,
2102                                    false, false, 0);
2103          } else {
2104            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2105                                             Chain, DAG, dl);
2106          }
2107          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2108          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2109                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2110          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2111                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2112        } else
2113          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2114
2115      } else {
2116        TargetRegisterClass *RC;
2117
2118        if (RegVT == MVT::f32)
2119          RC = ARM::SPRRegisterClass;
2120        else if (RegVT == MVT::f64)
2121          RC = ARM::DPRRegisterClass;
2122        else if (RegVT == MVT::v2f64)
2123          RC = ARM::QPRRegisterClass;
2124        else if (RegVT == MVT::i32)
2125          RC = (AFI->isThumb1OnlyFunction() ?
2126                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2127        else
2128          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2129
2130        // Transform the arguments in physical registers into virtual ones.
2131        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2132        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2133      }
2134
2135      // If this is an 8 or 16-bit value, it is really passed promoted
2136      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2137      // truncate to the right size.
2138      switch (VA.getLocInfo()) {
2139      default: llvm_unreachable("Unknown loc info!");
2140      case CCValAssign::Full: break;
2141      case CCValAssign::BCvt:
2142        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
2143        break;
2144      case CCValAssign::SExt:
2145        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2146                               DAG.getValueType(VA.getValVT()));
2147        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2148        break;
2149      case CCValAssign::ZExt:
2150        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2151                               DAG.getValueType(VA.getValVT()));
2152        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2153        break;
2154      }
2155
2156      InVals.push_back(ArgValue);
2157
2158    } else { // VA.isRegLoc()
2159
2160      // sanity check
2161      assert(VA.isMemLoc());
2162      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2163
2164      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2165      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2166
2167      // Create load nodes to retrieve arguments from the stack.
2168      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2169      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2170                                   PseudoSourceValue::getFixedStack(FI), 0,
2171                                   false, false, 0));
2172    }
2173  }
2174
2175  // varargs
2176  if (isVarArg) {
2177    static const unsigned GPRArgRegs[] = {
2178      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2179    };
2180
2181    unsigned NumGPRs = CCInfo.getFirstUnallocated
2182      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2183
2184    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
2185    unsigned VARegSize = (4 - NumGPRs) * 4;
2186    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2187    unsigned ArgOffset = CCInfo.getNextStackOffset();
2188    if (VARegSaveSize) {
2189      // If this function is vararg, store any remaining integer argument regs
2190      // to their spots on the stack so that they may be loaded by deferencing
2191      // the result of va_next.
2192      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2193      AFI->setVarArgsFrameIndex(
2194        MFI->CreateFixedObject(VARegSaveSize,
2195                               ArgOffset + VARegSaveSize - VARegSize,
2196                               true));
2197      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2198                                      getPointerTy());
2199
2200      SmallVector<SDValue, 4> MemOps;
2201      for (; NumGPRs < 4; ++NumGPRs) {
2202        TargetRegisterClass *RC;
2203        if (AFI->isThumb1OnlyFunction())
2204          RC = ARM::tGPRRegisterClass;
2205        else
2206          RC = ARM::GPRRegisterClass;
2207
2208        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2209        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2210        SDValue Store =
2211          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2212               PseudoSourceValue::getFixedStack(AFI->getVarArgsFrameIndex()),
2213               0, false, false, 0);
2214        MemOps.push_back(Store);
2215        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2216                          DAG.getConstant(4, getPointerTy()));
2217      }
2218      if (!MemOps.empty())
2219        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2220                            &MemOps[0], MemOps.size());
2221    } else
2222      // This will point to the next argument passed via stack.
2223      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2224  }
2225
2226  return Chain;
2227}
2228
2229/// isFloatingPointZero - Return true if this is +0.0.
2230static bool isFloatingPointZero(SDValue Op) {
2231  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2232    return CFP->getValueAPF().isPosZero();
2233  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2234    // Maybe this has already been legalized into the constant pool?
2235    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2236      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2237      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2238        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2239          return CFP->getValueAPF().isPosZero();
2240    }
2241  }
2242  return false;
2243}
2244
2245/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2246/// the given operands.
2247SDValue
2248ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2249                             SDValue &ARMcc, SelectionDAG &DAG,
2250                             DebugLoc dl) const {
2251  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2252    unsigned C = RHSC->getZExtValue();
2253    if (!isLegalICmpImmediate(C)) {
2254      // Constant does not fit, try adjusting it by one?
2255      switch (CC) {
2256      default: break;
2257      case ISD::SETLT:
2258      case ISD::SETGE:
2259        if (isLegalICmpImmediate(C-1)) {
2260          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2261          RHS = DAG.getConstant(C-1, MVT::i32);
2262        }
2263        break;
2264      case ISD::SETULT:
2265      case ISD::SETUGE:
2266        if (C > 0 && isLegalICmpImmediate(C-1)) {
2267          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2268          RHS = DAG.getConstant(C-1, MVT::i32);
2269        }
2270        break;
2271      case ISD::SETLE:
2272      case ISD::SETGT:
2273        if (isLegalICmpImmediate(C+1)) {
2274          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2275          RHS = DAG.getConstant(C+1, MVT::i32);
2276        }
2277        break;
2278      case ISD::SETULE:
2279      case ISD::SETUGT:
2280        if (C < 0xffffffff && isLegalICmpImmediate(C+1)) {
2281          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2282          RHS = DAG.getConstant(C+1, MVT::i32);
2283        }
2284        break;
2285      }
2286    }
2287  }
2288
2289  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2290  ARMISD::NodeType CompareType;
2291  switch (CondCode) {
2292  default:
2293    CompareType = ARMISD::CMP;
2294    break;
2295  case ARMCC::EQ:
2296  case ARMCC::NE:
2297    // Uses only Z Flag
2298    CompareType = ARMISD::CMPZ;
2299    break;
2300  }
2301  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2302  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
2303}
2304
2305/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2306SDValue
2307ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2308                             DebugLoc dl) const {
2309  SDValue Cmp;
2310  if (!isFloatingPointZero(RHS))
2311    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
2312  else
2313    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
2314  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
2315}
2316
2317SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2318  SDValue Cond = Op.getOperand(0);
2319  SDValue SelectTrue = Op.getOperand(1);
2320  SDValue SelectFalse = Op.getOperand(2);
2321  DebugLoc dl = Op.getDebugLoc();
2322
2323  // Convert:
2324  //
2325  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2326  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2327  //
2328  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2329    const ConstantSDNode *CMOVTrue =
2330      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2331    const ConstantSDNode *CMOVFalse =
2332      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2333
2334    if (CMOVTrue && CMOVFalse) {
2335      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2336      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2337
2338      SDValue True;
2339      SDValue False;
2340      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2341        True = SelectTrue;
2342        False = SelectFalse;
2343      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2344        True = SelectFalse;
2345        False = SelectTrue;
2346      }
2347
2348      if (True.getNode() && False.getNode()) {
2349        EVT VT = Cond.getValueType();
2350        SDValue ARMcc = Cond.getOperand(2);
2351        SDValue CCR = Cond.getOperand(3);
2352        SDValue Cmp = Cond.getOperand(4);
2353        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2354      }
2355    }
2356  }
2357
2358  return DAG.getSelectCC(dl, Cond,
2359                         DAG.getConstant(0, Cond.getValueType()),
2360                         SelectTrue, SelectFalse, ISD::SETNE);
2361}
2362
2363SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2364  EVT VT = Op.getValueType();
2365  SDValue LHS = Op.getOperand(0);
2366  SDValue RHS = Op.getOperand(1);
2367  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2368  SDValue TrueVal = Op.getOperand(2);
2369  SDValue FalseVal = Op.getOperand(3);
2370  DebugLoc dl = Op.getDebugLoc();
2371
2372  if (LHS.getValueType() == MVT::i32) {
2373    SDValue ARMcc;
2374    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2375    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2376    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2377  }
2378
2379  ARMCC::CondCodes CondCode, CondCode2;
2380  FPCCToARMCC(CC, CondCode, CondCode2);
2381
2382  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2383  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2384  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2385  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2386                               ARMcc, CCR, Cmp);
2387  if (CondCode2 != ARMCC::AL) {
2388    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2389    // FIXME: Needs another CMP because flag can have but one use.
2390    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2391    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2392                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2393  }
2394  return Result;
2395}
2396
2397/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2398/// to morph to an integer compare sequence.
2399static bool canChangeToInt(SDValue Op, bool &SeenZero,
2400                           const ARMSubtarget *Subtarget) {
2401  SDNode *N = Op.getNode();
2402  if (!N->hasOneUse())
2403    // Otherwise it requires moving the value from fp to integer registers.
2404    return false;
2405  if (!N->getNumValues())
2406    return false;
2407  EVT VT = Op.getValueType();
2408  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2409    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2410    // vmrs are very slow, e.g. cortex-a8.
2411    return false;
2412
2413  if (isFloatingPointZero(Op)) {
2414    SeenZero = true;
2415    return true;
2416  }
2417  return ISD::isNormalLoad(N);
2418}
2419
2420static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2421  if (isFloatingPointZero(Op))
2422    return DAG.getConstant(0, MVT::i32);
2423
2424  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2425    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2426                       Ld->getChain(), Ld->getBasePtr(),
2427                       Ld->getSrcValue(), Ld->getSrcValueOffset(),
2428                       Ld->isVolatile(), Ld->isNonTemporal(),
2429                       Ld->getAlignment());
2430
2431  llvm_unreachable("Unknown VFP cmp argument!");
2432}
2433
2434static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2435                           SDValue &RetVal1, SDValue &RetVal2) {
2436  if (isFloatingPointZero(Op)) {
2437    RetVal1 = DAG.getConstant(0, MVT::i32);
2438    RetVal2 = DAG.getConstant(0, MVT::i32);
2439    return;
2440  }
2441
2442  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2443    SDValue Ptr = Ld->getBasePtr();
2444    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2445                          Ld->getChain(), Ptr,
2446                          Ld->getSrcValue(), Ld->getSrcValueOffset(),
2447                          Ld->isVolatile(), Ld->isNonTemporal(),
2448                          Ld->getAlignment());
2449
2450    EVT PtrType = Ptr.getValueType();
2451    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2452    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2453                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2454    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2455                          Ld->getChain(), NewPtr,
2456                          Ld->getSrcValue(), Ld->getSrcValueOffset() + 4,
2457                          Ld->isVolatile(), Ld->isNonTemporal(),
2458                          NewAlign);
2459    return;
2460  }
2461
2462  llvm_unreachable("Unknown VFP cmp argument!");
2463}
2464
2465/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2466/// f32 and even f64 comparisons to integer ones.
2467SDValue
2468ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2469  SDValue Chain = Op.getOperand(0);
2470  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2471  SDValue LHS = Op.getOperand(2);
2472  SDValue RHS = Op.getOperand(3);
2473  SDValue Dest = Op.getOperand(4);
2474  DebugLoc dl = Op.getDebugLoc();
2475
2476  bool SeenZero = false;
2477  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2478      canChangeToInt(RHS, SeenZero, Subtarget) &&
2479      // If one of the operand is zero, it's safe to ignore the NaN case since
2480      // we only care about equality comparisons.
2481      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2482    // If unsafe fp math optimization is enabled and there are no othter uses of
2483    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
2484    // to an integer comparison.
2485    if (CC == ISD::SETOEQ)
2486      CC = ISD::SETEQ;
2487    else if (CC == ISD::SETUNE)
2488      CC = ISD::SETNE;
2489
2490    SDValue ARMcc;
2491    if (LHS.getValueType() == MVT::f32) {
2492      LHS = bitcastf32Toi32(LHS, DAG);
2493      RHS = bitcastf32Toi32(RHS, DAG);
2494      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2495      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2496      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2497                         Chain, Dest, ARMcc, CCR, Cmp);
2498    }
2499
2500    SDValue LHS1, LHS2;
2501    SDValue RHS1, RHS2;
2502    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2503    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2504    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2505    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2506    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2507    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2508    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2509  }
2510
2511  return SDValue();
2512}
2513
2514SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2515  SDValue Chain = Op.getOperand(0);
2516  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2517  SDValue LHS = Op.getOperand(2);
2518  SDValue RHS = Op.getOperand(3);
2519  SDValue Dest = Op.getOperand(4);
2520  DebugLoc dl = Op.getDebugLoc();
2521
2522  if (LHS.getValueType() == MVT::i32) {
2523    SDValue ARMcc;
2524    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2525    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2526    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2527                       Chain, Dest, ARMcc, CCR, Cmp);
2528  }
2529
2530  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2531
2532  if (UnsafeFPMath &&
2533      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2534       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2535    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2536    if (Result.getNode())
2537      return Result;
2538  }
2539
2540  ARMCC::CondCodes CondCode, CondCode2;
2541  FPCCToARMCC(CC, CondCode, CondCode2);
2542
2543  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2544  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2545  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2546  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2547  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2548  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2549  if (CondCode2 != ARMCC::AL) {
2550    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2551    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2552    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2553  }
2554  return Res;
2555}
2556
2557SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2558  SDValue Chain = Op.getOperand(0);
2559  SDValue Table = Op.getOperand(1);
2560  SDValue Index = Op.getOperand(2);
2561  DebugLoc dl = Op.getDebugLoc();
2562
2563  EVT PTy = getPointerTy();
2564  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2565  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2566  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2567  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2568  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2569  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2570  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2571  if (Subtarget->isThumb2()) {
2572    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2573    // which does another jump to the destination. This also makes it easier
2574    // to translate it to TBB / TBH later.
2575    // FIXME: This might not work if the function is extremely large.
2576    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2577                       Addr, Op.getOperand(2), JTI, UId);
2578  }
2579  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2580    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2581                       PseudoSourceValue::getJumpTable(), 0,
2582                       false, false, 0);
2583    Chain = Addr.getValue(1);
2584    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2585    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2586  } else {
2587    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2588                       PseudoSourceValue::getJumpTable(), 0, false, false, 0);
2589    Chain = Addr.getValue(1);
2590    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2591  }
2592}
2593
2594static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2595  DebugLoc dl = Op.getDebugLoc();
2596  unsigned Opc;
2597
2598  switch (Op.getOpcode()) {
2599  default:
2600    assert(0 && "Invalid opcode!");
2601  case ISD::FP_TO_SINT:
2602    Opc = ARMISD::FTOSI;
2603    break;
2604  case ISD::FP_TO_UINT:
2605    Opc = ARMISD::FTOUI;
2606    break;
2607  }
2608  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2609  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
2610}
2611
2612static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2613  EVT VT = Op.getValueType();
2614  DebugLoc dl = Op.getDebugLoc();
2615  unsigned Opc;
2616
2617  switch (Op.getOpcode()) {
2618  default:
2619    assert(0 && "Invalid opcode!");
2620  case ISD::SINT_TO_FP:
2621    Opc = ARMISD::SITOF;
2622    break;
2623  case ISD::UINT_TO_FP:
2624    Opc = ARMISD::UITOF;
2625    break;
2626  }
2627
2628  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
2629  return DAG.getNode(Opc, dl, VT, Op);
2630}
2631
2632SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2633  // Implement fcopysign with a fabs and a conditional fneg.
2634  SDValue Tmp0 = Op.getOperand(0);
2635  SDValue Tmp1 = Op.getOperand(1);
2636  DebugLoc dl = Op.getDebugLoc();
2637  EVT VT = Op.getValueType();
2638  EVT SrcVT = Tmp1.getValueType();
2639  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2640  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
2641  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
2642  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
2643  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2644  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
2645}
2646
2647SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2648  MachineFunction &MF = DAG.getMachineFunction();
2649  MachineFrameInfo *MFI = MF.getFrameInfo();
2650  MFI->setReturnAddressIsTaken(true);
2651
2652  EVT VT = Op.getValueType();
2653  DebugLoc dl = Op.getDebugLoc();
2654  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2655  if (Depth) {
2656    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2657    SDValue Offset = DAG.getConstant(4, MVT::i32);
2658    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2659                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2660                       NULL, 0, false, false, 0);
2661  }
2662
2663  // Return LR, which contains the return address. Mark it an implicit live-in.
2664  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
2665  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2666}
2667
2668SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2669  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2670  MFI->setFrameAddressIsTaken(true);
2671
2672  EVT VT = Op.getValueType();
2673  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2674  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2675  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2676    ? ARM::R7 : ARM::R11;
2677  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2678  while (Depth--)
2679    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
2680                            false, false, 0);
2681  return FrameAddr;
2682}
2683
2684/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
2685/// expand a bit convert where either the source or destination type is i64 to
2686/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2687/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2688/// vectors), since the legalizer won't know what to do with that.
2689static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2690  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2691  DebugLoc dl = N->getDebugLoc();
2692  SDValue Op = N->getOperand(0);
2693
2694  // This function is only supposed to be called for i64 types, either as the
2695  // source or destination of the bit convert.
2696  EVT SrcVT = Op.getValueType();
2697  EVT DstVT = N->getValueType(0);
2698  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2699         "ExpandBIT_CONVERT called for non-i64 type");
2700
2701  // Turn i64->f64 into VMOVDRR.
2702  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2703    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2704                             DAG.getConstant(0, MVT::i32));
2705    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2706                             DAG.getConstant(1, MVT::i32));
2707    return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
2708                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2709  }
2710
2711  // Turn f64->i64 into VMOVRRD.
2712  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2713    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2714                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2715    // Merge the pieces into a single i64 value.
2716    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2717  }
2718
2719  return SDValue();
2720}
2721
2722/// getZeroVector - Returns a vector of specified type with all zero elements.
2723/// Zero vectors are used to represent vector negation and in those cases
2724/// will be implemented with the NEON VNEG instruction.  However, VNEG does
2725/// not support i64 elements, so sometimes the zero vectors will need to be
2726/// explicitly constructed.  Regardless, use a canonical VMOV to create the
2727/// zero vector.
2728static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2729  assert(VT.isVector() && "Expected a vector type");
2730  // The canonical modified immediate encoding of a zero vector is....0!
2731  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
2732  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
2733  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
2734  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
2735}
2736
2737/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2738/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2739SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2740                                                SelectionDAG &DAG) const {
2741  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2742  EVT VT = Op.getValueType();
2743  unsigned VTBits = VT.getSizeInBits();
2744  DebugLoc dl = Op.getDebugLoc();
2745  SDValue ShOpLo = Op.getOperand(0);
2746  SDValue ShOpHi = Op.getOperand(1);
2747  SDValue ShAmt  = Op.getOperand(2);
2748  SDValue ARMcc;
2749  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2750
2751  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2752
2753  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2754                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2755  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2756  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2757                                   DAG.getConstant(VTBits, MVT::i32));
2758  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2759  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2760  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2761
2762  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2763  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2764                          ARMcc, DAG, dl);
2765  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2766  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
2767                           CCR, Cmp);
2768
2769  SDValue Ops[2] = { Lo, Hi };
2770  return DAG.getMergeValues(Ops, 2, dl);
2771}
2772
2773/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2774/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2775SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2776                                               SelectionDAG &DAG) const {
2777  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2778  EVT VT = Op.getValueType();
2779  unsigned VTBits = VT.getSizeInBits();
2780  DebugLoc dl = Op.getDebugLoc();
2781  SDValue ShOpLo = Op.getOperand(0);
2782  SDValue ShOpHi = Op.getOperand(1);
2783  SDValue ShAmt  = Op.getOperand(2);
2784  SDValue ARMcc;
2785
2786  assert(Op.getOpcode() == ISD::SHL_PARTS);
2787  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2788                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2789  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2790  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2791                                   DAG.getConstant(VTBits, MVT::i32));
2792  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2793  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2794
2795  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2796  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2797  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2798                          ARMcc, DAG, dl);
2799  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2800  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
2801                           CCR, Cmp);
2802
2803  SDValue Ops[2] = { Lo, Hi };
2804  return DAG.getMergeValues(Ops, 2, dl);
2805}
2806
2807SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2808                                            SelectionDAG &DAG) const {
2809  // The rounding mode is in bits 23:22 of the FPSCR.
2810  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2811  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2812  // so that the shift + and get folded into a bitfield extract.
2813  DebugLoc dl = Op.getDebugLoc();
2814  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
2815                              DAG.getConstant(Intrinsic::arm_get_fpscr,
2816                                              MVT::i32));
2817  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
2818                                  DAG.getConstant(1U << 22, MVT::i32));
2819  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2820                              DAG.getConstant(22, MVT::i32));
2821  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2822                     DAG.getConstant(3, MVT::i32));
2823}
2824
2825static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2826                         const ARMSubtarget *ST) {
2827  EVT VT = N->getValueType(0);
2828  DebugLoc dl = N->getDebugLoc();
2829
2830  if (!ST->hasV6T2Ops())
2831    return SDValue();
2832
2833  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2834  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2835}
2836
2837static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2838                          const ARMSubtarget *ST) {
2839  EVT VT = N->getValueType(0);
2840  DebugLoc dl = N->getDebugLoc();
2841
2842  // Lower vector shifts on NEON to use VSHL.
2843  if (VT.isVector()) {
2844    assert(ST->hasNEON() && "unexpected vector shift");
2845
2846    // Left shifts translate directly to the vshiftu intrinsic.
2847    if (N->getOpcode() == ISD::SHL)
2848      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2849                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2850                         N->getOperand(0), N->getOperand(1));
2851
2852    assert((N->getOpcode() == ISD::SRA ||
2853            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2854
2855    // NEON uses the same intrinsics for both left and right shifts.  For
2856    // right shifts, the shift amounts are negative, so negate the vector of
2857    // shift amounts.
2858    EVT ShiftVT = N->getOperand(1).getValueType();
2859    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2860                                       getZeroVector(ShiftVT, DAG, dl),
2861                                       N->getOperand(1));
2862    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2863                               Intrinsic::arm_neon_vshifts :
2864                               Intrinsic::arm_neon_vshiftu);
2865    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2866                       DAG.getConstant(vshiftInt, MVT::i32),
2867                       N->getOperand(0), NegatedCount);
2868  }
2869
2870  // We can get here for a node like i32 = ISD::SHL i32, i64
2871  if (VT != MVT::i64)
2872    return SDValue();
2873
2874  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2875         "Unknown shift to lower!");
2876
2877  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2878  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2879      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2880    return SDValue();
2881
2882  // If we are in thumb mode, we don't have RRX.
2883  if (ST->isThumb1Only()) return SDValue();
2884
2885  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2886  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2887                           DAG.getConstant(0, MVT::i32));
2888  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2889                           DAG.getConstant(1, MVT::i32));
2890
2891  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2892  // captures the result into a carry flag.
2893  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2894  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2895
2896  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2897  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2898
2899  // Merge the pieces into a single i64 value.
2900 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2901}
2902
2903static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2904  SDValue TmpOp0, TmpOp1;
2905  bool Invert = false;
2906  bool Swap = false;
2907  unsigned Opc = 0;
2908
2909  SDValue Op0 = Op.getOperand(0);
2910  SDValue Op1 = Op.getOperand(1);
2911  SDValue CC = Op.getOperand(2);
2912  EVT VT = Op.getValueType();
2913  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2914  DebugLoc dl = Op.getDebugLoc();
2915
2916  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2917    switch (SetCCOpcode) {
2918    default: llvm_unreachable("Illegal FP comparison"); break;
2919    case ISD::SETUNE:
2920    case ISD::SETNE:  Invert = true; // Fallthrough
2921    case ISD::SETOEQ:
2922    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2923    case ISD::SETOLT:
2924    case ISD::SETLT: Swap = true; // Fallthrough
2925    case ISD::SETOGT:
2926    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2927    case ISD::SETOLE:
2928    case ISD::SETLE:  Swap = true; // Fallthrough
2929    case ISD::SETOGE:
2930    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2931    case ISD::SETUGE: Swap = true; // Fallthrough
2932    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2933    case ISD::SETUGT: Swap = true; // Fallthrough
2934    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2935    case ISD::SETUEQ: Invert = true; // Fallthrough
2936    case ISD::SETONE:
2937      // Expand this to (OLT | OGT).
2938      TmpOp0 = Op0;
2939      TmpOp1 = Op1;
2940      Opc = ISD::OR;
2941      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2942      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2943      break;
2944    case ISD::SETUO: Invert = true; // Fallthrough
2945    case ISD::SETO:
2946      // Expand this to (OLT | OGE).
2947      TmpOp0 = Op0;
2948      TmpOp1 = Op1;
2949      Opc = ISD::OR;
2950      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2951      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2952      break;
2953    }
2954  } else {
2955    // Integer comparisons.
2956    switch (SetCCOpcode) {
2957    default: llvm_unreachable("Illegal integer comparison"); break;
2958    case ISD::SETNE:  Invert = true;
2959    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2960    case ISD::SETLT:  Swap = true;
2961    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2962    case ISD::SETLE:  Swap = true;
2963    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2964    case ISD::SETULT: Swap = true;
2965    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2966    case ISD::SETULE: Swap = true;
2967    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2968    }
2969
2970    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2971    if (Opc == ARMISD::VCEQ) {
2972
2973      SDValue AndOp;
2974      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2975        AndOp = Op0;
2976      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2977        AndOp = Op1;
2978
2979      // Ignore bitconvert.
2980      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2981        AndOp = AndOp.getOperand(0);
2982
2983      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2984        Opc = ARMISD::VTST;
2985        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2986        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2987        Invert = !Invert;
2988      }
2989    }
2990  }
2991
2992  if (Swap)
2993    std::swap(Op0, Op1);
2994
2995  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2996
2997  if (Invert)
2998    Result = DAG.getNOT(dl, Result, VT);
2999
3000  return Result;
3001}
3002
3003/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3004/// valid vector constant for a NEON instruction with a "modified immediate"
3005/// operand (e.g., VMOV).  If so, return the encoded value.
3006static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3007                                 unsigned SplatBitSize, SelectionDAG &DAG,
3008                                 EVT &VT, bool is128Bits, bool isVMOV) {
3009  unsigned OpCmode, Imm;
3010
3011  // SplatBitSize is set to the smallest size that splats the vector, so a
3012  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3013  // immediate instructions others than VMOV do not support the 8-bit encoding
3014  // of a zero vector, and the default encoding of zero is supposed to be the
3015  // 32-bit version.
3016  if (SplatBits == 0)
3017    SplatBitSize = 32;
3018
3019  switch (SplatBitSize) {
3020  case 8:
3021    if (!isVMOV)
3022      return SDValue();
3023    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3024    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3025    OpCmode = 0xe;
3026    Imm = SplatBits;
3027    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3028    break;
3029
3030  case 16:
3031    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3032    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3033    if ((SplatBits & ~0xff) == 0) {
3034      // Value = 0x00nn: Op=x, Cmode=100x.
3035      OpCmode = 0x8;
3036      Imm = SplatBits;
3037      break;
3038    }
3039    if ((SplatBits & ~0xff00) == 0) {
3040      // Value = 0xnn00: Op=x, Cmode=101x.
3041      OpCmode = 0xa;
3042      Imm = SplatBits >> 8;
3043      break;
3044    }
3045    return SDValue();
3046
3047  case 32:
3048    // NEON's 32-bit VMOV supports splat values where:
3049    // * only one byte is nonzero, or
3050    // * the least significant byte is 0xff and the second byte is nonzero, or
3051    // * the least significant 2 bytes are 0xff and the third is nonzero.
3052    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3053    if ((SplatBits & ~0xff) == 0) {
3054      // Value = 0x000000nn: Op=x, Cmode=000x.
3055      OpCmode = 0;
3056      Imm = SplatBits;
3057      break;
3058    }
3059    if ((SplatBits & ~0xff00) == 0) {
3060      // Value = 0x0000nn00: Op=x, Cmode=001x.
3061      OpCmode = 0x2;
3062      Imm = SplatBits >> 8;
3063      break;
3064    }
3065    if ((SplatBits & ~0xff0000) == 0) {
3066      // Value = 0x00nn0000: Op=x, Cmode=010x.
3067      OpCmode = 0x4;
3068      Imm = SplatBits >> 16;
3069      break;
3070    }
3071    if ((SplatBits & ~0xff000000) == 0) {
3072      // Value = 0xnn000000: Op=x, Cmode=011x.
3073      OpCmode = 0x6;
3074      Imm = SplatBits >> 24;
3075      break;
3076    }
3077
3078    if ((SplatBits & ~0xffff) == 0 &&
3079        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3080      // Value = 0x0000nnff: Op=x, Cmode=1100.
3081      OpCmode = 0xc;
3082      Imm = SplatBits >> 8;
3083      SplatBits |= 0xff;
3084      break;
3085    }
3086
3087    if ((SplatBits & ~0xffffff) == 0 &&
3088        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3089      // Value = 0x00nnffff: Op=x, Cmode=1101.
3090      OpCmode = 0xd;
3091      Imm = SplatBits >> 16;
3092      SplatBits |= 0xffff;
3093      break;
3094    }
3095
3096    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3097    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3098    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3099    // and fall through here to test for a valid 64-bit splat.  But, then the
3100    // caller would also need to check and handle the change in size.
3101    return SDValue();
3102
3103  case 64: {
3104    if (!isVMOV)
3105      return SDValue();
3106    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3107    uint64_t BitMask = 0xff;
3108    uint64_t Val = 0;
3109    unsigned ImmMask = 1;
3110    Imm = 0;
3111    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3112      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3113        Val |= BitMask;
3114        Imm |= ImmMask;
3115      } else if ((SplatBits & BitMask) != 0) {
3116        return SDValue();
3117      }
3118      BitMask <<= 8;
3119      ImmMask <<= 1;
3120    }
3121    // Op=1, Cmode=1110.
3122    OpCmode = 0x1e;
3123    SplatBits = Val;
3124    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3125    break;
3126  }
3127
3128  default:
3129    llvm_unreachable("unexpected size for isNEONModifiedImm");
3130    return SDValue();
3131  }
3132
3133  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3134  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3135}
3136
3137static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3138                       bool &ReverseVEXT, unsigned &Imm) {
3139  unsigned NumElts = VT.getVectorNumElements();
3140  ReverseVEXT = false;
3141  Imm = M[0];
3142
3143  // If this is a VEXT shuffle, the immediate value is the index of the first
3144  // element.  The other shuffle indices must be the successive elements after
3145  // the first one.
3146  unsigned ExpectedElt = Imm;
3147  for (unsigned i = 1; i < NumElts; ++i) {
3148    // Increment the expected index.  If it wraps around, it may still be
3149    // a VEXT but the source vectors must be swapped.
3150    ExpectedElt += 1;
3151    if (ExpectedElt == NumElts * 2) {
3152      ExpectedElt = 0;
3153      ReverseVEXT = true;
3154    }
3155
3156    if (ExpectedElt != static_cast<unsigned>(M[i]))
3157      return false;
3158  }
3159
3160  // Adjust the index value if the source operands will be swapped.
3161  if (ReverseVEXT)
3162    Imm -= NumElts;
3163
3164  return true;
3165}
3166
3167/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3168/// instruction with the specified blocksize.  (The order of the elements
3169/// within each block of the vector is reversed.)
3170static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3171                       unsigned BlockSize) {
3172  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3173         "Only possible block sizes for VREV are: 16, 32, 64");
3174
3175  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3176  if (EltSz == 64)
3177    return false;
3178
3179  unsigned NumElts = VT.getVectorNumElements();
3180  unsigned BlockElts = M[0] + 1;
3181
3182  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3183    return false;
3184
3185  for (unsigned i = 0; i < NumElts; ++i) {
3186    if ((unsigned) M[i] !=
3187        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3188      return false;
3189  }
3190
3191  return true;
3192}
3193
3194static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3195                       unsigned &WhichResult) {
3196  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3197  if (EltSz == 64)
3198    return false;
3199
3200  unsigned NumElts = VT.getVectorNumElements();
3201  WhichResult = (M[0] == 0 ? 0 : 1);
3202  for (unsigned i = 0; i < NumElts; i += 2) {
3203    if ((unsigned) M[i] != i + WhichResult ||
3204        (unsigned) M[i+1] != i + NumElts + WhichResult)
3205      return false;
3206  }
3207  return true;
3208}
3209
3210/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3211/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3212/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3213static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3214                                unsigned &WhichResult) {
3215  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3216  if (EltSz == 64)
3217    return false;
3218
3219  unsigned NumElts = VT.getVectorNumElements();
3220  WhichResult = (M[0] == 0 ? 0 : 1);
3221  for (unsigned i = 0; i < NumElts; i += 2) {
3222    if ((unsigned) M[i] != i + WhichResult ||
3223        (unsigned) M[i+1] != i + WhichResult)
3224      return false;
3225  }
3226  return true;
3227}
3228
3229static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3230                       unsigned &WhichResult) {
3231  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3232  if (EltSz == 64)
3233    return false;
3234
3235  unsigned NumElts = VT.getVectorNumElements();
3236  WhichResult = (M[0] == 0 ? 0 : 1);
3237  for (unsigned i = 0; i != NumElts; ++i) {
3238    if ((unsigned) M[i] != 2 * i + WhichResult)
3239      return false;
3240  }
3241
3242  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3243  if (VT.is64BitVector() && EltSz == 32)
3244    return false;
3245
3246  return true;
3247}
3248
3249/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3250/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3251/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3252static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3253                                unsigned &WhichResult) {
3254  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3255  if (EltSz == 64)
3256    return false;
3257
3258  unsigned Half = VT.getVectorNumElements() / 2;
3259  WhichResult = (M[0] == 0 ? 0 : 1);
3260  for (unsigned j = 0; j != 2; ++j) {
3261    unsigned Idx = WhichResult;
3262    for (unsigned i = 0; i != Half; ++i) {
3263      if ((unsigned) M[i + j * Half] != Idx)
3264        return false;
3265      Idx += 2;
3266    }
3267  }
3268
3269  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3270  if (VT.is64BitVector() && EltSz == 32)
3271    return false;
3272
3273  return true;
3274}
3275
3276static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3277                       unsigned &WhichResult) {
3278  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3279  if (EltSz == 64)
3280    return false;
3281
3282  unsigned NumElts = VT.getVectorNumElements();
3283  WhichResult = (M[0] == 0 ? 0 : 1);
3284  unsigned Idx = WhichResult * NumElts / 2;
3285  for (unsigned i = 0; i != NumElts; i += 2) {
3286    if ((unsigned) M[i] != Idx ||
3287        (unsigned) M[i+1] != Idx + NumElts)
3288      return false;
3289    Idx += 1;
3290  }
3291
3292  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3293  if (VT.is64BitVector() && EltSz == 32)
3294    return false;
3295
3296  return true;
3297}
3298
3299/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3300/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3301/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3302static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3303                                unsigned &WhichResult) {
3304  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3305  if (EltSz == 64)
3306    return false;
3307
3308  unsigned NumElts = VT.getVectorNumElements();
3309  WhichResult = (M[0] == 0 ? 0 : 1);
3310  unsigned Idx = WhichResult * NumElts / 2;
3311  for (unsigned i = 0; i != NumElts; i += 2) {
3312    if ((unsigned) M[i] != Idx ||
3313        (unsigned) M[i+1] != Idx)
3314      return false;
3315    Idx += 1;
3316  }
3317
3318  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3319  if (VT.is64BitVector() && EltSz == 32)
3320    return false;
3321
3322  return true;
3323}
3324
3325// If N is an integer constant that can be moved into a register in one
3326// instruction, return an SDValue of such a constant (will become a MOV
3327// instruction).  Otherwise return null.
3328static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3329                                     const ARMSubtarget *ST, DebugLoc dl) {
3330  uint64_t Val;
3331  if (!isa<ConstantSDNode>(N))
3332    return SDValue();
3333  Val = cast<ConstantSDNode>(N)->getZExtValue();
3334
3335  if (ST->isThumb1Only()) {
3336    if (Val <= 255 || ~Val <= 255)
3337      return DAG.getConstant(Val, MVT::i32);
3338  } else {
3339    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3340      return DAG.getConstant(Val, MVT::i32);
3341  }
3342  return SDValue();
3343}
3344
3345// If this is a case we can't handle, return null and let the default
3346// expansion code take care of it.
3347static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3348                                 const ARMSubtarget *ST) {
3349  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3350  DebugLoc dl = Op.getDebugLoc();
3351  EVT VT = Op.getValueType();
3352
3353  APInt SplatBits, SplatUndef;
3354  unsigned SplatBitSize;
3355  bool HasAnyUndefs;
3356  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3357    if (SplatBitSize <= 64) {
3358      // Check if an immediate VMOV works.
3359      EVT VmovVT;
3360      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3361                                      SplatUndef.getZExtValue(), SplatBitSize,
3362                                      DAG, VmovVT, VT.is128BitVector(), true);
3363      if (Val.getNode()) {
3364        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3365        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3366      }
3367
3368      // Try an immediate VMVN.
3369      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3370                             ((1LL << SplatBitSize) - 1));
3371      Val = isNEONModifiedImm(NegatedImm,
3372                                      SplatUndef.getZExtValue(), SplatBitSize,
3373                                      DAG, VmovVT, VT.is128BitVector(), false);
3374      if (Val.getNode()) {
3375        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3376        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3377      }
3378    }
3379  }
3380
3381  // Scan through the operands to see if only one value is used.
3382  unsigned NumElts = VT.getVectorNumElements();
3383  bool isOnlyLowElement = true;
3384  bool usesOnlyOneValue = true;
3385  bool isConstant = true;
3386  SDValue Value;
3387  for (unsigned i = 0; i < NumElts; ++i) {
3388    SDValue V = Op.getOperand(i);
3389    if (V.getOpcode() == ISD::UNDEF)
3390      continue;
3391    if (i > 0)
3392      isOnlyLowElement = false;
3393    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3394      isConstant = false;
3395
3396    if (!Value.getNode())
3397      Value = V;
3398    else if (V != Value)
3399      usesOnlyOneValue = false;
3400  }
3401
3402  if (!Value.getNode())
3403    return DAG.getUNDEF(VT);
3404
3405  if (isOnlyLowElement)
3406    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3407
3408  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3409
3410  if (EnableARMVDUPsplat) {
3411    // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3412    // i32 and try again.
3413    if (usesOnlyOneValue && EltSize <= 32) {
3414      if (!isConstant)
3415        return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3416      if (VT.getVectorElementType().isFloatingPoint()) {
3417        SmallVector<SDValue, 8> Ops;
3418        for (unsigned i = 0; i < NumElts; ++i)
3419          Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
3420                                    Op.getOperand(i)));
3421        SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &Ops[0],
3422                                  NumElts);
3423        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3424                           LowerBUILD_VECTOR(Val, DAG, ST));
3425      }
3426      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3427      if (Val.getNode())
3428        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3429    }
3430  }
3431
3432  // If all elements are constants and the case above didn't get hit, fall back
3433  // to the default expansion, which will generate a load from the constant
3434  // pool.
3435  if (isConstant)
3436    return SDValue();
3437
3438  if (!EnableARMVDUPsplat) {
3439    // Use VDUP for non-constant splats.
3440    if (usesOnlyOneValue && EltSize <= 32)
3441      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3442  }
3443
3444  // Vectors with 32- or 64-bit elements can be built by directly assigning
3445  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3446  // will be legalized.
3447  if (EltSize >= 32) {
3448    // Do the expansion with floating-point types, since that is what the VFP
3449    // registers are defined to use, and since i64 is not legal.
3450    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3451    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3452    SmallVector<SDValue, 8> Ops;
3453    for (unsigned i = 0; i < NumElts; ++i)
3454      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
3455    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3456    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3457  }
3458
3459  return SDValue();
3460}
3461
3462/// isShuffleMaskLegal - Targets can use this to indicate that they only
3463/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3464/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3465/// are assumed to be legal.
3466bool
3467ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3468                                      EVT VT) const {
3469  if (VT.getVectorNumElements() == 4 &&
3470      (VT.is128BitVector() || VT.is64BitVector())) {
3471    unsigned PFIndexes[4];
3472    for (unsigned i = 0; i != 4; ++i) {
3473      if (M[i] < 0)
3474        PFIndexes[i] = 8;
3475      else
3476        PFIndexes[i] = M[i];
3477    }
3478
3479    // Compute the index in the perfect shuffle table.
3480    unsigned PFTableIndex =
3481      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3482    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3483    unsigned Cost = (PFEntry >> 30);
3484
3485    if (Cost <= 4)
3486      return true;
3487  }
3488
3489  bool ReverseVEXT;
3490  unsigned Imm, WhichResult;
3491
3492  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3493  return (EltSize >= 32 ||
3494          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3495          isVREVMask(M, VT, 64) ||
3496          isVREVMask(M, VT, 32) ||
3497          isVREVMask(M, VT, 16) ||
3498          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3499          isVTRNMask(M, VT, WhichResult) ||
3500          isVUZPMask(M, VT, WhichResult) ||
3501          isVZIPMask(M, VT, WhichResult) ||
3502          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3503          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3504          isVZIP_v_undef_Mask(M, VT, WhichResult));
3505}
3506
3507/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3508/// the specified operations to build the shuffle.
3509static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3510                                      SDValue RHS, SelectionDAG &DAG,
3511                                      DebugLoc dl) {
3512  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3513  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3514  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3515
3516  enum {
3517    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3518    OP_VREV,
3519    OP_VDUP0,
3520    OP_VDUP1,
3521    OP_VDUP2,
3522    OP_VDUP3,
3523    OP_VEXT1,
3524    OP_VEXT2,
3525    OP_VEXT3,
3526    OP_VUZPL, // VUZP, left result
3527    OP_VUZPR, // VUZP, right result
3528    OP_VZIPL, // VZIP, left result
3529    OP_VZIPR, // VZIP, right result
3530    OP_VTRNL, // VTRN, left result
3531    OP_VTRNR  // VTRN, right result
3532  };
3533
3534  if (OpNum == OP_COPY) {
3535    if (LHSID == (1*9+2)*9+3) return LHS;
3536    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3537    return RHS;
3538  }
3539
3540  SDValue OpLHS, OpRHS;
3541  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3542  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3543  EVT VT = OpLHS.getValueType();
3544
3545  switch (OpNum) {
3546  default: llvm_unreachable("Unknown shuffle opcode!");
3547  case OP_VREV:
3548    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3549  case OP_VDUP0:
3550  case OP_VDUP1:
3551  case OP_VDUP2:
3552  case OP_VDUP3:
3553    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3554                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3555  case OP_VEXT1:
3556  case OP_VEXT2:
3557  case OP_VEXT3:
3558    return DAG.getNode(ARMISD::VEXT, dl, VT,
3559                       OpLHS, OpRHS,
3560                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3561  case OP_VUZPL:
3562  case OP_VUZPR:
3563    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3564                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3565  case OP_VZIPL:
3566  case OP_VZIPR:
3567    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3568                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3569  case OP_VTRNL:
3570  case OP_VTRNR:
3571    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3572                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3573  }
3574}
3575
3576static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3577  SDValue V1 = Op.getOperand(0);
3578  SDValue V2 = Op.getOperand(1);
3579  DebugLoc dl = Op.getDebugLoc();
3580  EVT VT = Op.getValueType();
3581  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3582  SmallVector<int, 8> ShuffleMask;
3583
3584  // Convert shuffles that are directly supported on NEON to target-specific
3585  // DAG nodes, instead of keeping them as shuffles and matching them again
3586  // during code selection.  This is more efficient and avoids the possibility
3587  // of inconsistencies between legalization and selection.
3588  // FIXME: floating-point vectors should be canonicalized to integer vectors
3589  // of the same time so that they get CSEd properly.
3590  SVN->getMask(ShuffleMask);
3591
3592  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3593  if (EltSize <= 32) {
3594    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3595      int Lane = SVN->getSplatIndex();
3596      // If this is undef splat, generate it via "just" vdup, if possible.
3597      if (Lane == -1) Lane = 0;
3598
3599      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3600        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3601      }
3602      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3603                         DAG.getConstant(Lane, MVT::i32));
3604    }
3605
3606    bool ReverseVEXT;
3607    unsigned Imm;
3608    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3609      if (ReverseVEXT)
3610        std::swap(V1, V2);
3611      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3612                         DAG.getConstant(Imm, MVT::i32));
3613    }
3614
3615    if (isVREVMask(ShuffleMask, VT, 64))
3616      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3617    if (isVREVMask(ShuffleMask, VT, 32))
3618      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3619    if (isVREVMask(ShuffleMask, VT, 16))
3620      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3621
3622    // Check for Neon shuffles that modify both input vectors in place.
3623    // If both results are used, i.e., if there are two shuffles with the same
3624    // source operands and with masks corresponding to both results of one of
3625    // these operations, DAG memoization will ensure that a single node is
3626    // used for both shuffles.
3627    unsigned WhichResult;
3628    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3629      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3630                         V1, V2).getValue(WhichResult);
3631    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3632      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3633                         V1, V2).getValue(WhichResult);
3634    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3635      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3636                         V1, V2).getValue(WhichResult);
3637
3638    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3639      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3640                         V1, V1).getValue(WhichResult);
3641    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3642      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3643                         V1, V1).getValue(WhichResult);
3644    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3645      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3646                         V1, V1).getValue(WhichResult);
3647  }
3648
3649  // If the shuffle is not directly supported and it has 4 elements, use
3650  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3651  unsigned NumElts = VT.getVectorNumElements();
3652  if (NumElts == 4) {
3653    unsigned PFIndexes[4];
3654    for (unsigned i = 0; i != 4; ++i) {
3655      if (ShuffleMask[i] < 0)
3656        PFIndexes[i] = 8;
3657      else
3658        PFIndexes[i] = ShuffleMask[i];
3659    }
3660
3661    // Compute the index in the perfect shuffle table.
3662    unsigned PFTableIndex =
3663      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3664    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3665    unsigned Cost = (PFEntry >> 30);
3666
3667    if (Cost <= 4)
3668      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3669  }
3670
3671  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
3672  if (EltSize >= 32) {
3673    // Do the expansion with floating-point types, since that is what the VFP
3674    // registers are defined to use, and since i64 is not legal.
3675    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3676    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3677    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
3678    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
3679    SmallVector<SDValue, 8> Ops;
3680    for (unsigned i = 0; i < NumElts; ++i) {
3681      if (ShuffleMask[i] < 0)
3682        Ops.push_back(DAG.getUNDEF(EltVT));
3683      else
3684        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3685                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
3686                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
3687                                                  MVT::i32)));
3688    }
3689    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3690    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3691  }
3692
3693  return SDValue();
3694}
3695
3696static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3697  EVT VT = Op.getValueType();
3698  DebugLoc dl = Op.getDebugLoc();
3699  SDValue Vec = Op.getOperand(0);
3700  SDValue Lane = Op.getOperand(1);
3701  assert(VT == MVT::i32 &&
3702         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
3703         "unexpected type for custom-lowering vector extract");
3704  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3705}
3706
3707static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3708  // The only time a CONCAT_VECTORS operation can have legal types is when
3709  // two 64-bit vectors are concatenated to a 128-bit vector.
3710  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3711         "unexpected CONCAT_VECTORS");
3712  DebugLoc dl = Op.getDebugLoc();
3713  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3714  SDValue Op0 = Op.getOperand(0);
3715  SDValue Op1 = Op.getOperand(1);
3716  if (Op0.getOpcode() != ISD::UNDEF)
3717    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3718                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
3719                      DAG.getIntPtrConstant(0));
3720  if (Op1.getOpcode() != ISD::UNDEF)
3721    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3722                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
3723                      DAG.getIntPtrConstant(1));
3724  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
3725}
3726
3727SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3728  switch (Op.getOpcode()) {
3729  default: llvm_unreachable("Don't know how to custom lower this!");
3730  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
3731  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
3732  case ISD::GlobalAddress:
3733    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
3734      LowerGlobalAddressELF(Op, DAG);
3735  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3736  case ISD::SELECT:        return LowerSELECT(Op, DAG);
3737  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
3738  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
3739  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
3740  case ISD::VASTART:       return LowerVASTART(Op, DAG);
3741  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3742  case ISD::SINT_TO_FP:
3743  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3744  case ISD::FP_TO_SINT:
3745  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3746  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3747  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
3748  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3749  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3750  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
3751  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
3752  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
3753                                                               Subtarget);
3754  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3755  case ISD::SHL:
3756  case ISD::SRL:
3757  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3758  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3759  case ISD::SRL_PARTS:
3760  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3761  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
3762  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3763  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
3764  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3765  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3766  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3767  case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
3768  }
3769  return SDValue();
3770}
3771
3772/// ReplaceNodeResults - Replace the results of node with an illegal result
3773/// type with new values built out of custom code.
3774void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3775                                           SmallVectorImpl<SDValue>&Results,
3776                                           SelectionDAG &DAG) const {
3777  SDValue Res;
3778  switch (N->getOpcode()) {
3779  default:
3780    llvm_unreachable("Don't know how to custom expand this!");
3781    break;
3782  case ISD::BIT_CONVERT:
3783    Res = ExpandBIT_CONVERT(N, DAG);
3784    break;
3785  case ISD::SRL:
3786  case ISD::SRA:
3787    Res = LowerShift(N, DAG, Subtarget);
3788    break;
3789  }
3790  if (Res.getNode())
3791    Results.push_back(Res);
3792}
3793
3794//===----------------------------------------------------------------------===//
3795//                           ARM Scheduler Hooks
3796//===----------------------------------------------------------------------===//
3797
3798MachineBasicBlock *
3799ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3800                                     MachineBasicBlock *BB,
3801                                     unsigned Size) const {
3802  unsigned dest    = MI->getOperand(0).getReg();
3803  unsigned ptr     = MI->getOperand(1).getReg();
3804  unsigned oldval  = MI->getOperand(2).getReg();
3805  unsigned newval  = MI->getOperand(3).getReg();
3806  unsigned scratch = BB->getParent()->getRegInfo()
3807    .createVirtualRegister(ARM::GPRRegisterClass);
3808  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3809  DebugLoc dl = MI->getDebugLoc();
3810  bool isThumb2 = Subtarget->isThumb2();
3811
3812  unsigned ldrOpc, strOpc;
3813  switch (Size) {
3814  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3815  case 1:
3816    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3817    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3818    break;
3819  case 2:
3820    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3821    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3822    break;
3823  case 4:
3824    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3825    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3826    break;
3827  }
3828
3829  MachineFunction *MF = BB->getParent();
3830  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3831  MachineFunction::iterator It = BB;
3832  ++It; // insert the new blocks after the current block
3833
3834  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3835  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3836  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3837  MF->insert(It, loop1MBB);
3838  MF->insert(It, loop2MBB);
3839  MF->insert(It, exitMBB);
3840
3841  // Transfer the remainder of BB and its successor edges to exitMBB.
3842  exitMBB->splice(exitMBB->begin(), BB,
3843                  llvm::next(MachineBasicBlock::iterator(MI)),
3844                  BB->end());
3845  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3846
3847  //  thisMBB:
3848  //   ...
3849  //   fallthrough --> loop1MBB
3850  BB->addSuccessor(loop1MBB);
3851
3852  // loop1MBB:
3853  //   ldrex dest, [ptr]
3854  //   cmp dest, oldval
3855  //   bne exitMBB
3856  BB = loop1MBB;
3857  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3858  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
3859                 .addReg(dest).addReg(oldval));
3860  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3861    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3862  BB->addSuccessor(loop2MBB);
3863  BB->addSuccessor(exitMBB);
3864
3865  // loop2MBB:
3866  //   strex scratch, newval, [ptr]
3867  //   cmp scratch, #0
3868  //   bne loop1MBB
3869  BB = loop2MBB;
3870  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
3871                 .addReg(ptr));
3872  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3873                 .addReg(scratch).addImm(0));
3874  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3875    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3876  BB->addSuccessor(loop1MBB);
3877  BB->addSuccessor(exitMBB);
3878
3879  //  exitMBB:
3880  //   ...
3881  BB = exitMBB;
3882
3883  MI->eraseFromParent();   // The instruction is gone now.
3884
3885  return BB;
3886}
3887
3888MachineBasicBlock *
3889ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3890                                    unsigned Size, unsigned BinOpcode) const {
3891  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3892  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3893
3894  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3895  MachineFunction *MF = BB->getParent();
3896  MachineFunction::iterator It = BB;
3897  ++It;
3898
3899  unsigned dest = MI->getOperand(0).getReg();
3900  unsigned ptr = MI->getOperand(1).getReg();
3901  unsigned incr = MI->getOperand(2).getReg();
3902  DebugLoc dl = MI->getDebugLoc();
3903
3904  bool isThumb2 = Subtarget->isThumb2();
3905  unsigned ldrOpc, strOpc;
3906  switch (Size) {
3907  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3908  case 1:
3909    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3910    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
3911    break;
3912  case 2:
3913    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3914    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3915    break;
3916  case 4:
3917    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3918    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3919    break;
3920  }
3921
3922  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3923  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3924  MF->insert(It, loopMBB);
3925  MF->insert(It, exitMBB);
3926
3927  // Transfer the remainder of BB and its successor edges to exitMBB.
3928  exitMBB->splice(exitMBB->begin(), BB,
3929                  llvm::next(MachineBasicBlock::iterator(MI)),
3930                  BB->end());
3931  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3932
3933  MachineRegisterInfo &RegInfo = MF->getRegInfo();
3934  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3935  unsigned scratch2 = (!BinOpcode) ? incr :
3936    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
3937
3938  //  thisMBB:
3939  //   ...
3940  //   fallthrough --> loopMBB
3941  BB->addSuccessor(loopMBB);
3942
3943  //  loopMBB:
3944  //   ldrex dest, ptr
3945  //   <binop> scratch2, dest, incr
3946  //   strex scratch, scratch2, ptr
3947  //   cmp scratch, #0
3948  //   bne- loopMBB
3949  //   fallthrough --> exitMBB
3950  BB = loopMBB;
3951  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3952  if (BinOpcode) {
3953    // operand order needs to go the other way for NAND
3954    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
3955      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3956                     addReg(incr).addReg(dest)).addReg(0);
3957    else
3958      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
3959                     addReg(dest).addReg(incr)).addReg(0);
3960  }
3961
3962  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
3963                 .addReg(ptr));
3964  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3965                 .addReg(scratch).addImm(0));
3966  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3967    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3968
3969  BB->addSuccessor(loopMBB);
3970  BB->addSuccessor(exitMBB);
3971
3972  //  exitMBB:
3973  //   ...
3974  BB = exitMBB;
3975
3976  MI->eraseFromParent();   // The instruction is gone now.
3977
3978  return BB;
3979}
3980
3981static
3982MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
3983  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
3984       E = MBB->succ_end(); I != E; ++I)
3985    if (*I != Succ)
3986      return *I;
3987  llvm_unreachable("Expecting a BB with two successors!");
3988}
3989
3990MachineBasicBlock *
3991ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3992                                               MachineBasicBlock *BB) const {
3993  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3994  DebugLoc dl = MI->getDebugLoc();
3995  bool isThumb2 = Subtarget->isThumb2();
3996  switch (MI->getOpcode()) {
3997  default:
3998    MI->dump();
3999    llvm_unreachable("Unexpected instr type to insert");
4000
4001  case ARM::ATOMIC_LOAD_ADD_I8:
4002     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4003  case ARM::ATOMIC_LOAD_ADD_I16:
4004     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4005  case ARM::ATOMIC_LOAD_ADD_I32:
4006     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4007
4008  case ARM::ATOMIC_LOAD_AND_I8:
4009     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4010  case ARM::ATOMIC_LOAD_AND_I16:
4011     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4012  case ARM::ATOMIC_LOAD_AND_I32:
4013     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4014
4015  case ARM::ATOMIC_LOAD_OR_I8:
4016     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4017  case ARM::ATOMIC_LOAD_OR_I16:
4018     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4019  case ARM::ATOMIC_LOAD_OR_I32:
4020     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4021
4022  case ARM::ATOMIC_LOAD_XOR_I8:
4023     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4024  case ARM::ATOMIC_LOAD_XOR_I16:
4025     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4026  case ARM::ATOMIC_LOAD_XOR_I32:
4027     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4028
4029  case ARM::ATOMIC_LOAD_NAND_I8:
4030     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4031  case ARM::ATOMIC_LOAD_NAND_I16:
4032     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4033  case ARM::ATOMIC_LOAD_NAND_I32:
4034     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4035
4036  case ARM::ATOMIC_LOAD_SUB_I8:
4037     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4038  case ARM::ATOMIC_LOAD_SUB_I16:
4039     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4040  case ARM::ATOMIC_LOAD_SUB_I32:
4041     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4042
4043  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
4044  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
4045  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
4046
4047  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
4048  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
4049  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
4050
4051  case ARM::tMOVCCr_pseudo: {
4052    // To "insert" a SELECT_CC instruction, we actually have to insert the
4053    // diamond control-flow pattern.  The incoming instruction knows the
4054    // destination vreg to set, the condition code register to branch on, the
4055    // true/false values to select between, and a branch opcode to use.
4056    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4057    MachineFunction::iterator It = BB;
4058    ++It;
4059
4060    //  thisMBB:
4061    //  ...
4062    //   TrueVal = ...
4063    //   cmpTY ccX, r1, r2
4064    //   bCC copy1MBB
4065    //   fallthrough --> copy0MBB
4066    MachineBasicBlock *thisMBB  = BB;
4067    MachineFunction *F = BB->getParent();
4068    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4069    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4070    F->insert(It, copy0MBB);
4071    F->insert(It, sinkMBB);
4072
4073    // Transfer the remainder of BB and its successor edges to sinkMBB.
4074    sinkMBB->splice(sinkMBB->begin(), BB,
4075                    llvm::next(MachineBasicBlock::iterator(MI)),
4076                    BB->end());
4077    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4078
4079    BB->addSuccessor(copy0MBB);
4080    BB->addSuccessor(sinkMBB);
4081
4082    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
4083      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
4084
4085    //  copy0MBB:
4086    //   %FalseValue = ...
4087    //   # fallthrough to sinkMBB
4088    BB = copy0MBB;
4089
4090    // Update machine-CFG edges
4091    BB->addSuccessor(sinkMBB);
4092
4093    //  sinkMBB:
4094    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4095    //  ...
4096    BB = sinkMBB;
4097    BuildMI(*BB, BB->begin(), dl,
4098            TII->get(ARM::PHI), MI->getOperand(0).getReg())
4099      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4100      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4101
4102    MI->eraseFromParent();   // The pseudo instruction is gone now.
4103    return BB;
4104  }
4105
4106  case ARM::BCCi64:
4107  case ARM::BCCZi64: {
4108    // Compare both parts that make up the double comparison separately for
4109    // equality.
4110    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
4111
4112    unsigned LHS1 = MI->getOperand(1).getReg();
4113    unsigned LHS2 = MI->getOperand(2).getReg();
4114    if (RHSisZero) {
4115      AddDefaultPred(BuildMI(BB, dl,
4116                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4117                     .addReg(LHS1).addImm(0));
4118      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4119        .addReg(LHS2).addImm(0)
4120        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4121    } else {
4122      unsigned RHS1 = MI->getOperand(3).getReg();
4123      unsigned RHS2 = MI->getOperand(4).getReg();
4124      AddDefaultPred(BuildMI(BB, dl,
4125                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4126                     .addReg(LHS1).addReg(RHS1));
4127      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4128        .addReg(LHS2).addReg(RHS2)
4129        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4130    }
4131
4132    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
4133    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
4134    if (MI->getOperand(0).getImm() == ARMCC::NE)
4135      std::swap(destMBB, exitMBB);
4136
4137    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4138      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
4139    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
4140      .addMBB(exitMBB);
4141
4142    MI->eraseFromParent();   // The pseudo instruction is gone now.
4143    return BB;
4144  }
4145  }
4146}
4147
4148//===----------------------------------------------------------------------===//
4149//                           ARM Optimization Hooks
4150//===----------------------------------------------------------------------===//
4151
4152static
4153SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
4154                            TargetLowering::DAGCombinerInfo &DCI) {
4155  SelectionDAG &DAG = DCI.DAG;
4156  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4157  EVT VT = N->getValueType(0);
4158  unsigned Opc = N->getOpcode();
4159  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
4160  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
4161  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
4162  ISD::CondCode CC = ISD::SETCC_INVALID;
4163
4164  if (isSlctCC) {
4165    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
4166  } else {
4167    SDValue CCOp = Slct.getOperand(0);
4168    if (CCOp.getOpcode() == ISD::SETCC)
4169      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
4170  }
4171
4172  bool DoXform = false;
4173  bool InvCC = false;
4174  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
4175          "Bad input!");
4176
4177  if (LHS.getOpcode() == ISD::Constant &&
4178      cast<ConstantSDNode>(LHS)->isNullValue()) {
4179    DoXform = true;
4180  } else if (CC != ISD::SETCC_INVALID &&
4181             RHS.getOpcode() == ISD::Constant &&
4182             cast<ConstantSDNode>(RHS)->isNullValue()) {
4183    std::swap(LHS, RHS);
4184    SDValue Op0 = Slct.getOperand(0);
4185    EVT OpVT = isSlctCC ? Op0.getValueType() :
4186                          Op0.getOperand(0).getValueType();
4187    bool isInt = OpVT.isInteger();
4188    CC = ISD::getSetCCInverse(CC, isInt);
4189
4190    if (!TLI.isCondCodeLegal(CC, OpVT))
4191      return SDValue();         // Inverse operator isn't legal.
4192
4193    DoXform = true;
4194    InvCC = true;
4195  }
4196
4197  if (DoXform) {
4198    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4199    if (isSlctCC)
4200      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4201                             Slct.getOperand(0), Slct.getOperand(1), CC);
4202    SDValue CCOp = Slct.getOperand(0);
4203    if (InvCC)
4204      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4205                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4206    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4207                       CCOp, OtherOp, Result);
4208  }
4209  return SDValue();
4210}
4211
4212/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4213/// operands N0 and N1.  This is a helper for PerformADDCombine that is
4214/// called with the default operands, and if that fails, with commuted
4215/// operands.
4216static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4217                                         TargetLowering::DAGCombinerInfo &DCI) {
4218  SelectionDAG &DAG = DCI.DAG;
4219
4220  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4221  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4222    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4223    if (Result.getNode()) return Result;
4224  }
4225
4226  // fold (add (arm_neon_vabd a, b) c) -> (arm_neon_vaba c, a, b)
4227  EVT VT = N->getValueType(0);
4228  if (N0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && VT.isInteger()) {
4229    unsigned IntNo = cast<ConstantSDNode>(N0.getOperand(0))->getZExtValue();
4230    if (IntNo == Intrinsic::arm_neon_vabds)
4231      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(), VT,
4232                         DAG.getConstant(Intrinsic::arm_neon_vabas, MVT::i32),
4233                         N1, N0.getOperand(1), N0.getOperand(2));
4234    if (IntNo == Intrinsic::arm_neon_vabdu)
4235      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, N->getDebugLoc(), VT,
4236                         DAG.getConstant(Intrinsic::arm_neon_vabau, MVT::i32),
4237                         N1, N0.getOperand(1), N0.getOperand(2));
4238  }
4239
4240  return SDValue();
4241}
4242
4243/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4244///
4245static SDValue PerformADDCombine(SDNode *N,
4246                                 TargetLowering::DAGCombinerInfo &DCI) {
4247  SDValue N0 = N->getOperand(0);
4248  SDValue N1 = N->getOperand(1);
4249
4250  // First try with the default operand order.
4251  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
4252  if (Result.getNode())
4253    return Result;
4254
4255  // If that didn't work, try again with the operands commuted.
4256  return PerformADDCombineWithOperands(N, N1, N0, DCI);
4257}
4258
4259/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4260///
4261static SDValue PerformSUBCombine(SDNode *N,
4262                                 TargetLowering::DAGCombinerInfo &DCI) {
4263  SDValue N0 = N->getOperand(0);
4264  SDValue N1 = N->getOperand(1);
4265
4266  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4267  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4268    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4269    if (Result.getNode()) return Result;
4270  }
4271
4272  return SDValue();
4273}
4274
4275static SDValue PerformMULCombine(SDNode *N,
4276                                 TargetLowering::DAGCombinerInfo &DCI,
4277                                 const ARMSubtarget *Subtarget) {
4278  SelectionDAG &DAG = DCI.DAG;
4279
4280  if (Subtarget->isThumb1Only())
4281    return SDValue();
4282
4283  if (DAG.getMachineFunction().
4284      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
4285    return SDValue();
4286
4287  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4288    return SDValue();
4289
4290  EVT VT = N->getValueType(0);
4291  if (VT != MVT::i32)
4292    return SDValue();
4293
4294  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4295  if (!C)
4296    return SDValue();
4297
4298  uint64_t MulAmt = C->getZExtValue();
4299  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4300  ShiftAmt = ShiftAmt & (32 - 1);
4301  SDValue V = N->getOperand(0);
4302  DebugLoc DL = N->getDebugLoc();
4303
4304  SDValue Res;
4305  MulAmt >>= ShiftAmt;
4306  if (isPowerOf2_32(MulAmt - 1)) {
4307    // (mul x, 2^N + 1) => (add (shl x, N), x)
4308    Res = DAG.getNode(ISD::ADD, DL, VT,
4309                      V, DAG.getNode(ISD::SHL, DL, VT,
4310                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4311                                                        MVT::i32)));
4312  } else if (isPowerOf2_32(MulAmt + 1)) {
4313    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4314    Res = DAG.getNode(ISD::SUB, DL, VT,
4315                      DAG.getNode(ISD::SHL, DL, VT,
4316                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4317                                                     MVT::i32)),
4318                                                     V);
4319  } else
4320    return SDValue();
4321
4322  if (ShiftAmt != 0)
4323    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4324                      DAG.getConstant(ShiftAmt, MVT::i32));
4325
4326  // Do not add new nodes to DAG combiner worklist.
4327  DCI.CombineTo(N, Res, false);
4328  return SDValue();
4329}
4330
4331/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
4332static SDValue PerformORCombine(SDNode *N,
4333                                TargetLowering::DAGCombinerInfo &DCI,
4334                                const ARMSubtarget *Subtarget) {
4335  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
4336  // reasonable.
4337
4338  // BFI is only available on V6T2+
4339  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
4340    return SDValue();
4341
4342  SelectionDAG &DAG = DCI.DAG;
4343  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4344  DebugLoc DL = N->getDebugLoc();
4345  // 1) or (and A, mask), val => ARMbfi A, val, mask
4346  //      iff (val & mask) == val
4347  //
4348  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4349  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
4350  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4351  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
4352  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4353  //  (i.e., copy a bitfield value into another bitfield of the same width)
4354  if (N0.getOpcode() != ISD::AND)
4355    return SDValue();
4356
4357  EVT VT = N->getValueType(0);
4358  if (VT != MVT::i32)
4359    return SDValue();
4360
4361
4362  // The value and the mask need to be constants so we can verify this is
4363  // actually a bitfield set. If the mask is 0xffff, we can do better
4364  // via a movt instruction, so don't use BFI in that case.
4365  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4366  if (!C)
4367    return SDValue();
4368  unsigned Mask = C->getZExtValue();
4369  if (Mask == 0xffff)
4370    return SDValue();
4371  SDValue Res;
4372  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
4373  if ((C = dyn_cast<ConstantSDNode>(N1))) {
4374    unsigned Val = C->getZExtValue();
4375    if (!ARM::isBitFieldInvertedMask(Mask) || (Val & ~Mask) != Val)
4376      return SDValue();
4377    Val >>= CountTrailingZeros_32(~Mask);
4378
4379    Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0),
4380                      DAG.getConstant(Val, MVT::i32),
4381                      DAG.getConstant(Mask, MVT::i32));
4382
4383    // Do not add new nodes to DAG combiner worklist.
4384    DCI.CombineTo(N, Res, false);
4385  } else if (N1.getOpcode() == ISD::AND) {
4386    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4387    C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4388    if (!C)
4389      return SDValue();
4390    unsigned Mask2 = C->getZExtValue();
4391
4392    if (ARM::isBitFieldInvertedMask(Mask) &&
4393        ARM::isBitFieldInvertedMask(~Mask2) &&
4394        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
4395      // The pack halfword instruction works better for masks that fit it,
4396      // so use that when it's available.
4397      if (Subtarget->hasT2ExtractPack() &&
4398          (Mask == 0xffff || Mask == 0xffff0000))
4399        return SDValue();
4400      // 2a
4401      unsigned lsb = CountTrailingZeros_32(Mask2);
4402      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
4403                        DAG.getConstant(lsb, MVT::i32));
4404      Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0), Res,
4405                        DAG.getConstant(Mask, MVT::i32));
4406      // Do not add new nodes to DAG combiner worklist.
4407      DCI.CombineTo(N, Res, false);
4408    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
4409               ARM::isBitFieldInvertedMask(Mask2) &&
4410               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
4411      // The pack halfword instruction works better for masks that fit it,
4412      // so use that when it's available.
4413      if (Subtarget->hasT2ExtractPack() &&
4414          (Mask2 == 0xffff || Mask2 == 0xffff0000))
4415        return SDValue();
4416      // 2b
4417      unsigned lsb = CountTrailingZeros_32(Mask);
4418      Res = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4419                        DAG.getConstant(lsb, MVT::i32));
4420      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
4421                                DAG.getConstant(Mask2, MVT::i32));
4422      // Do not add new nodes to DAG combiner worklist.
4423      DCI.CombineTo(N, Res, false);
4424    }
4425  }
4426
4427  return SDValue();
4428}
4429
4430/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
4431/// ARMISD::VMOVRRD.
4432static SDValue PerformVMOVRRDCombine(SDNode *N,
4433                                   TargetLowering::DAGCombinerInfo &DCI) {
4434  // fmrrd(fmdrr x, y) -> x,y
4435  SDValue InDouble = N->getOperand(0);
4436  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
4437    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
4438  return SDValue();
4439}
4440
4441/// PerformVDUPLANECombine - Target-specific dag combine xforms for
4442/// ARMISD::VDUPLANE.
4443static SDValue PerformVDUPLANECombine(SDNode *N,
4444                                      TargetLowering::DAGCombinerInfo &DCI) {
4445  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
4446  // redundant.
4447  SDValue Op = N->getOperand(0);
4448  EVT VT = N->getValueType(0);
4449
4450  // Ignore bit_converts.
4451  while (Op.getOpcode() == ISD::BIT_CONVERT)
4452    Op = Op.getOperand(0);
4453  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
4454    return SDValue();
4455
4456  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
4457  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
4458  // The canonical VMOV for a zero vector uses a 32-bit element size.
4459  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4460  unsigned EltBits;
4461  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
4462    EltSize = 8;
4463  if (EltSize > VT.getVectorElementType().getSizeInBits())
4464    return SDValue();
4465
4466  SDValue Res = DCI.DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
4467  return DCI.CombineTo(N, Res, false);
4468}
4469
4470/// getVShiftImm - Check if this is a valid build_vector for the immediate
4471/// operand of a vector shift operation, where all the elements of the
4472/// build_vector must have the same constant integer value.
4473static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
4474  // Ignore bit_converts.
4475  while (Op.getOpcode() == ISD::BIT_CONVERT)
4476    Op = Op.getOperand(0);
4477  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4478  APInt SplatBits, SplatUndef;
4479  unsigned SplatBitSize;
4480  bool HasAnyUndefs;
4481  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
4482                                      HasAnyUndefs, ElementBits) ||
4483      SplatBitSize > ElementBits)
4484    return false;
4485  Cnt = SplatBits.getSExtValue();
4486  return true;
4487}
4488
4489/// isVShiftLImm - Check if this is a valid build_vector for the immediate
4490/// operand of a vector shift left operation.  That value must be in the range:
4491///   0 <= Value < ElementBits for a left shift; or
4492///   0 <= Value <= ElementBits for a long left shift.
4493static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
4494  assert(VT.isVector() && "vector shift count is not a vector type");
4495  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4496  if (! getVShiftImm(Op, ElementBits, Cnt))
4497    return false;
4498  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
4499}
4500
4501/// isVShiftRImm - Check if this is a valid build_vector for the immediate
4502/// operand of a vector shift right operation.  For a shift opcode, the value
4503/// is positive, but for an intrinsic the value count must be negative. The
4504/// absolute value must be in the range:
4505///   1 <= |Value| <= ElementBits for a right shift; or
4506///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
4507static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
4508                         int64_t &Cnt) {
4509  assert(VT.isVector() && "vector shift count is not a vector type");
4510  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4511  if (! getVShiftImm(Op, ElementBits, Cnt))
4512    return false;
4513  if (isIntrinsic)
4514    Cnt = -Cnt;
4515  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
4516}
4517
4518/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
4519static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
4520  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4521  switch (IntNo) {
4522  default:
4523    // Don't do anything for most intrinsics.
4524    break;
4525
4526  // Vector shifts: check for immediate versions and lower them.
4527  // Note: This is done during DAG combining instead of DAG legalizing because
4528  // the build_vectors for 64-bit vector element shift counts are generally
4529  // not legal, and it is hard to see their values after they get legalized to
4530  // loads from a constant pool.
4531  case Intrinsic::arm_neon_vshifts:
4532  case Intrinsic::arm_neon_vshiftu:
4533  case Intrinsic::arm_neon_vshiftls:
4534  case Intrinsic::arm_neon_vshiftlu:
4535  case Intrinsic::arm_neon_vshiftn:
4536  case Intrinsic::arm_neon_vrshifts:
4537  case Intrinsic::arm_neon_vrshiftu:
4538  case Intrinsic::arm_neon_vrshiftn:
4539  case Intrinsic::arm_neon_vqshifts:
4540  case Intrinsic::arm_neon_vqshiftu:
4541  case Intrinsic::arm_neon_vqshiftsu:
4542  case Intrinsic::arm_neon_vqshiftns:
4543  case Intrinsic::arm_neon_vqshiftnu:
4544  case Intrinsic::arm_neon_vqshiftnsu:
4545  case Intrinsic::arm_neon_vqrshiftns:
4546  case Intrinsic::arm_neon_vqrshiftnu:
4547  case Intrinsic::arm_neon_vqrshiftnsu: {
4548    EVT VT = N->getOperand(1).getValueType();
4549    int64_t Cnt;
4550    unsigned VShiftOpc = 0;
4551
4552    switch (IntNo) {
4553    case Intrinsic::arm_neon_vshifts:
4554    case Intrinsic::arm_neon_vshiftu:
4555      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
4556        VShiftOpc = ARMISD::VSHL;
4557        break;
4558      }
4559      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
4560        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
4561                     ARMISD::VSHRs : ARMISD::VSHRu);
4562        break;
4563      }
4564      return SDValue();
4565
4566    case Intrinsic::arm_neon_vshiftls:
4567    case Intrinsic::arm_neon_vshiftlu:
4568      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
4569        break;
4570      llvm_unreachable("invalid shift count for vshll intrinsic");
4571
4572    case Intrinsic::arm_neon_vrshifts:
4573    case Intrinsic::arm_neon_vrshiftu:
4574      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
4575        break;
4576      return SDValue();
4577
4578    case Intrinsic::arm_neon_vqshifts:
4579    case Intrinsic::arm_neon_vqshiftu:
4580      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4581        break;
4582      return SDValue();
4583
4584    case Intrinsic::arm_neon_vqshiftsu:
4585      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4586        break;
4587      llvm_unreachable("invalid shift count for vqshlu intrinsic");
4588
4589    case Intrinsic::arm_neon_vshiftn:
4590    case Intrinsic::arm_neon_vrshiftn:
4591    case Intrinsic::arm_neon_vqshiftns:
4592    case Intrinsic::arm_neon_vqshiftnu:
4593    case Intrinsic::arm_neon_vqshiftnsu:
4594    case Intrinsic::arm_neon_vqrshiftns:
4595    case Intrinsic::arm_neon_vqrshiftnu:
4596    case Intrinsic::arm_neon_vqrshiftnsu:
4597      // Narrowing shifts require an immediate right shift.
4598      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
4599        break;
4600      llvm_unreachable("invalid shift count for narrowing vector shift "
4601                       "intrinsic");
4602
4603    default:
4604      llvm_unreachable("unhandled vector shift");
4605    }
4606
4607    switch (IntNo) {
4608    case Intrinsic::arm_neon_vshifts:
4609    case Intrinsic::arm_neon_vshiftu:
4610      // Opcode already set above.
4611      break;
4612    case Intrinsic::arm_neon_vshiftls:
4613    case Intrinsic::arm_neon_vshiftlu:
4614      if (Cnt == VT.getVectorElementType().getSizeInBits())
4615        VShiftOpc = ARMISD::VSHLLi;
4616      else
4617        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
4618                     ARMISD::VSHLLs : ARMISD::VSHLLu);
4619      break;
4620    case Intrinsic::arm_neon_vshiftn:
4621      VShiftOpc = ARMISD::VSHRN; break;
4622    case Intrinsic::arm_neon_vrshifts:
4623      VShiftOpc = ARMISD::VRSHRs; break;
4624    case Intrinsic::arm_neon_vrshiftu:
4625      VShiftOpc = ARMISD::VRSHRu; break;
4626    case Intrinsic::arm_neon_vrshiftn:
4627      VShiftOpc = ARMISD::VRSHRN; break;
4628    case Intrinsic::arm_neon_vqshifts:
4629      VShiftOpc = ARMISD::VQSHLs; break;
4630    case Intrinsic::arm_neon_vqshiftu:
4631      VShiftOpc = ARMISD::VQSHLu; break;
4632    case Intrinsic::arm_neon_vqshiftsu:
4633      VShiftOpc = ARMISD::VQSHLsu; break;
4634    case Intrinsic::arm_neon_vqshiftns:
4635      VShiftOpc = ARMISD::VQSHRNs; break;
4636    case Intrinsic::arm_neon_vqshiftnu:
4637      VShiftOpc = ARMISD::VQSHRNu; break;
4638    case Intrinsic::arm_neon_vqshiftnsu:
4639      VShiftOpc = ARMISD::VQSHRNsu; break;
4640    case Intrinsic::arm_neon_vqrshiftns:
4641      VShiftOpc = ARMISD::VQRSHRNs; break;
4642    case Intrinsic::arm_neon_vqrshiftnu:
4643      VShiftOpc = ARMISD::VQRSHRNu; break;
4644    case Intrinsic::arm_neon_vqrshiftnsu:
4645      VShiftOpc = ARMISD::VQRSHRNsu; break;
4646    }
4647
4648    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4649                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
4650  }
4651
4652  case Intrinsic::arm_neon_vshiftins: {
4653    EVT VT = N->getOperand(1).getValueType();
4654    int64_t Cnt;
4655    unsigned VShiftOpc = 0;
4656
4657    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
4658      VShiftOpc = ARMISD::VSLI;
4659    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
4660      VShiftOpc = ARMISD::VSRI;
4661    else {
4662      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
4663    }
4664
4665    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4666                       N->getOperand(1), N->getOperand(2),
4667                       DAG.getConstant(Cnt, MVT::i32));
4668  }
4669
4670  case Intrinsic::arm_neon_vqrshifts:
4671  case Intrinsic::arm_neon_vqrshiftu:
4672    // No immediate versions of these to check for.
4673    break;
4674  }
4675
4676  return SDValue();
4677}
4678
4679/// PerformShiftCombine - Checks for immediate versions of vector shifts and
4680/// lowers them.  As with the vector shift intrinsics, this is done during DAG
4681/// combining instead of DAG legalizing because the build_vectors for 64-bit
4682/// vector element shift counts are generally not legal, and it is hard to see
4683/// their values after they get legalized to loads from a constant pool.
4684static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
4685                                   const ARMSubtarget *ST) {
4686  EVT VT = N->getValueType(0);
4687
4688  // Nothing to be done for scalar shifts.
4689  if (! VT.isVector())
4690    return SDValue();
4691
4692  assert(ST->hasNEON() && "unexpected vector shift");
4693  int64_t Cnt;
4694
4695  switch (N->getOpcode()) {
4696  default: llvm_unreachable("unexpected shift opcode");
4697
4698  case ISD::SHL:
4699    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
4700      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
4701                         DAG.getConstant(Cnt, MVT::i32));
4702    break;
4703
4704  case ISD::SRA:
4705  case ISD::SRL:
4706    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
4707      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
4708                            ARMISD::VSHRs : ARMISD::VSHRu);
4709      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
4710                         DAG.getConstant(Cnt, MVT::i32));
4711    }
4712  }
4713  return SDValue();
4714}
4715
4716/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
4717/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
4718static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
4719                                    const ARMSubtarget *ST) {
4720  SDValue N0 = N->getOperand(0);
4721
4722  // Check for sign- and zero-extensions of vector extract operations of 8-
4723  // and 16-bit vector elements.  NEON supports these directly.  They are
4724  // handled during DAG combining because type legalization will promote them
4725  // to 32-bit types and it is messy to recognize the operations after that.
4726  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4727    SDValue Vec = N0.getOperand(0);
4728    SDValue Lane = N0.getOperand(1);
4729    EVT VT = N->getValueType(0);
4730    EVT EltVT = N0.getValueType();
4731    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4732
4733    if (VT == MVT::i32 &&
4734        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
4735        TLI.isTypeLegal(Vec.getValueType())) {
4736
4737      unsigned Opc = 0;
4738      switch (N->getOpcode()) {
4739      default: llvm_unreachable("unexpected opcode");
4740      case ISD::SIGN_EXTEND:
4741        Opc = ARMISD::VGETLANEs;
4742        break;
4743      case ISD::ZERO_EXTEND:
4744      case ISD::ANY_EXTEND:
4745        Opc = ARMISD::VGETLANEu;
4746        break;
4747      }
4748      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
4749    }
4750  }
4751
4752  return SDValue();
4753}
4754
4755/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
4756/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
4757static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
4758                                       const ARMSubtarget *ST) {
4759  // If the target supports NEON, try to use vmax/vmin instructions for f32
4760  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
4761  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
4762  // a NaN; only do the transformation when it matches that behavior.
4763
4764  // For now only do this when using NEON for FP operations; if using VFP, it
4765  // is not obvious that the benefit outweighs the cost of switching to the
4766  // NEON pipeline.
4767  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
4768      N->getValueType(0) != MVT::f32)
4769    return SDValue();
4770
4771  SDValue CondLHS = N->getOperand(0);
4772  SDValue CondRHS = N->getOperand(1);
4773  SDValue LHS = N->getOperand(2);
4774  SDValue RHS = N->getOperand(3);
4775  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4776
4777  unsigned Opcode = 0;
4778  bool IsReversed;
4779  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
4780    IsReversed = false; // x CC y ? x : y
4781  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
4782    IsReversed = true ; // x CC y ? y : x
4783  } else {
4784    return SDValue();
4785  }
4786
4787  bool IsUnordered;
4788  switch (CC) {
4789  default: break;
4790  case ISD::SETOLT:
4791  case ISD::SETOLE:
4792  case ISD::SETLT:
4793  case ISD::SETLE:
4794  case ISD::SETULT:
4795  case ISD::SETULE:
4796    // If LHS is NaN, an ordered comparison will be false and the result will
4797    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
4798    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4799    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
4800    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4801      break;
4802    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
4803    // will return -0, so vmin can only be used for unsafe math or if one of
4804    // the operands is known to be nonzero.
4805    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
4806        !UnsafeFPMath &&
4807        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4808      break;
4809    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
4810    break;
4811
4812  case ISD::SETOGT:
4813  case ISD::SETOGE:
4814  case ISD::SETGT:
4815  case ISD::SETGE:
4816  case ISD::SETUGT:
4817  case ISD::SETUGE:
4818    // If LHS is NaN, an ordered comparison will be false and the result will
4819    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
4820    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4821    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
4822    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4823      break;
4824    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
4825    // will return +0, so vmax can only be used for unsafe math or if one of
4826    // the operands is known to be nonzero.
4827    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
4828        !UnsafeFPMath &&
4829        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4830      break;
4831    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
4832    break;
4833  }
4834
4835  if (!Opcode)
4836    return SDValue();
4837  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
4838}
4839
4840SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
4841                                             DAGCombinerInfo &DCI) const {
4842  switch (N->getOpcode()) {
4843  default: break;
4844  case ISD::ADD:        return PerformADDCombine(N, DCI);
4845  case ISD::SUB:        return PerformSUBCombine(N, DCI);
4846  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
4847  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
4848  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
4849  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
4850  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
4851  case ISD::SHL:
4852  case ISD::SRA:
4853  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
4854  case ISD::SIGN_EXTEND:
4855  case ISD::ZERO_EXTEND:
4856  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
4857  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
4858  }
4859  return SDValue();
4860}
4861
4862bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
4863  if (!Subtarget->hasV6Ops())
4864    // Pre-v6 does not support unaligned mem access.
4865    return false;
4866
4867  // v6+ may or may not support unaligned mem access depending on the system
4868  // configuration.
4869  // FIXME: This is pretty conservative. Should we provide cmdline option to
4870  // control the behaviour?
4871  if (!Subtarget->isTargetDarwin())
4872    return false;
4873
4874  switch (VT.getSimpleVT().SimpleTy) {
4875  default:
4876    return false;
4877  case MVT::i8:
4878  case MVT::i16:
4879  case MVT::i32:
4880    return true;
4881  // FIXME: VLD1 etc with standard alignment is legal.
4882  }
4883}
4884
4885static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
4886  if (V < 0)
4887    return false;
4888
4889  unsigned Scale = 1;
4890  switch (VT.getSimpleVT().SimpleTy) {
4891  default: return false;
4892  case MVT::i1:
4893  case MVT::i8:
4894    // Scale == 1;
4895    break;
4896  case MVT::i16:
4897    // Scale == 2;
4898    Scale = 2;
4899    break;
4900  case MVT::i32:
4901    // Scale == 4;
4902    Scale = 4;
4903    break;
4904  }
4905
4906  if ((V & (Scale - 1)) != 0)
4907    return false;
4908  V /= Scale;
4909  return V == (V & ((1LL << 5) - 1));
4910}
4911
4912static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
4913                                      const ARMSubtarget *Subtarget) {
4914  bool isNeg = false;
4915  if (V < 0) {
4916    isNeg = true;
4917    V = - V;
4918  }
4919
4920  switch (VT.getSimpleVT().SimpleTy) {
4921  default: return false;
4922  case MVT::i1:
4923  case MVT::i8:
4924  case MVT::i16:
4925  case MVT::i32:
4926    // + imm12 or - imm8
4927    if (isNeg)
4928      return V == (V & ((1LL << 8) - 1));
4929    return V == (V & ((1LL << 12) - 1));
4930  case MVT::f32:
4931  case MVT::f64:
4932    // Same as ARM mode. FIXME: NEON?
4933    if (!Subtarget->hasVFP2())
4934      return false;
4935    if ((V & 3) != 0)
4936      return false;
4937    V >>= 2;
4938    return V == (V & ((1LL << 8) - 1));
4939  }
4940}
4941
4942/// isLegalAddressImmediate - Return true if the integer value can be used
4943/// as the offset of the target addressing mode for load / store of the
4944/// given type.
4945static bool isLegalAddressImmediate(int64_t V, EVT VT,
4946                                    const ARMSubtarget *Subtarget) {
4947  if (V == 0)
4948    return true;
4949
4950  if (!VT.isSimple())
4951    return false;
4952
4953  if (Subtarget->isThumb1Only())
4954    return isLegalT1AddressImmediate(V, VT);
4955  else if (Subtarget->isThumb2())
4956    return isLegalT2AddressImmediate(V, VT, Subtarget);
4957
4958  // ARM mode.
4959  if (V < 0)
4960    V = - V;
4961  switch (VT.getSimpleVT().SimpleTy) {
4962  default: return false;
4963  case MVT::i1:
4964  case MVT::i8:
4965  case MVT::i32:
4966    // +- imm12
4967    return V == (V & ((1LL << 12) - 1));
4968  case MVT::i16:
4969    // +- imm8
4970    return V == (V & ((1LL << 8) - 1));
4971  case MVT::f32:
4972  case MVT::f64:
4973    if (!Subtarget->hasVFP2()) // FIXME: NEON?
4974      return false;
4975    if ((V & 3) != 0)
4976      return false;
4977    V >>= 2;
4978    return V == (V & ((1LL << 8) - 1));
4979  }
4980}
4981
4982bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
4983                                                      EVT VT) const {
4984  int Scale = AM.Scale;
4985  if (Scale < 0)
4986    return false;
4987
4988  switch (VT.getSimpleVT().SimpleTy) {
4989  default: return false;
4990  case MVT::i1:
4991  case MVT::i8:
4992  case MVT::i16:
4993  case MVT::i32:
4994    if (Scale == 1)
4995      return true;
4996    // r + r << imm
4997    Scale = Scale & ~1;
4998    return Scale == 2 || Scale == 4 || Scale == 8;
4999  case MVT::i64:
5000    // r + r
5001    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5002      return true;
5003    return false;
5004  case MVT::isVoid:
5005    // Note, we allow "void" uses (basically, uses that aren't loads or
5006    // stores), because arm allows folding a scale into many arithmetic
5007    // operations.  This should be made more precise and revisited later.
5008
5009    // Allow r << imm, but the imm has to be a multiple of two.
5010    if (Scale & 1) return false;
5011    return isPowerOf2_32(Scale);
5012  }
5013}
5014
5015/// isLegalAddressingMode - Return true if the addressing mode represented
5016/// by AM is legal for this target, for a load/store of the specified type.
5017bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5018                                              const Type *Ty) const {
5019  EVT VT = getValueType(Ty, true);
5020  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
5021    return false;
5022
5023  // Can never fold addr of global into load/store.
5024  if (AM.BaseGV)
5025    return false;
5026
5027  switch (AM.Scale) {
5028  case 0:  // no scale reg, must be "r+i" or "r", or "i".
5029    break;
5030  case 1:
5031    if (Subtarget->isThumb1Only())
5032      return false;
5033    // FALL THROUGH.
5034  default:
5035    // ARM doesn't support any R+R*scale+imm addr modes.
5036    if (AM.BaseOffs)
5037      return false;
5038
5039    if (!VT.isSimple())
5040      return false;
5041
5042    if (Subtarget->isThumb2())
5043      return isLegalT2ScaledAddressingMode(AM, VT);
5044
5045    int Scale = AM.Scale;
5046    switch (VT.getSimpleVT().SimpleTy) {
5047    default: return false;
5048    case MVT::i1:
5049    case MVT::i8:
5050    case MVT::i32:
5051      if (Scale < 0) Scale = -Scale;
5052      if (Scale == 1)
5053        return true;
5054      // r + r << imm
5055      return isPowerOf2_32(Scale & ~1);
5056    case MVT::i16:
5057    case MVT::i64:
5058      // r + r
5059      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5060        return true;
5061      return false;
5062
5063    case MVT::isVoid:
5064      // Note, we allow "void" uses (basically, uses that aren't loads or
5065      // stores), because arm allows folding a scale into many arithmetic
5066      // operations.  This should be made more precise and revisited later.
5067
5068      // Allow r << imm, but the imm has to be a multiple of two.
5069      if (Scale & 1) return false;
5070      return isPowerOf2_32(Scale);
5071    }
5072    break;
5073  }
5074  return true;
5075}
5076
5077/// isLegalICmpImmediate - Return true if the specified immediate is legal
5078/// icmp immediate, that is the target has icmp instructions which can compare
5079/// a register against the immediate without having to materialize the
5080/// immediate into a register.
5081bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
5082  if (!Subtarget->isThumb())
5083    return ARM_AM::getSOImmVal(Imm) != -1;
5084  if (Subtarget->isThumb2())
5085    return ARM_AM::getT2SOImmVal(Imm) != -1;
5086  return Imm >= 0 && Imm <= 255;
5087}
5088
5089static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
5090                                      bool isSEXTLoad, SDValue &Base,
5091                                      SDValue &Offset, bool &isInc,
5092                                      SelectionDAG &DAG) {
5093  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5094    return false;
5095
5096  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
5097    // AddressingMode 3
5098    Base = Ptr->getOperand(0);
5099    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5100      int RHSC = (int)RHS->getZExtValue();
5101      if (RHSC < 0 && RHSC > -256) {
5102        assert(Ptr->getOpcode() == ISD::ADD);
5103        isInc = false;
5104        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5105        return true;
5106      }
5107    }
5108    isInc = (Ptr->getOpcode() == ISD::ADD);
5109    Offset = Ptr->getOperand(1);
5110    return true;
5111  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
5112    // AddressingMode 2
5113    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5114      int RHSC = (int)RHS->getZExtValue();
5115      if (RHSC < 0 && RHSC > -0x1000) {
5116        assert(Ptr->getOpcode() == ISD::ADD);
5117        isInc = false;
5118        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5119        Base = Ptr->getOperand(0);
5120        return true;
5121      }
5122    }
5123
5124    if (Ptr->getOpcode() == ISD::ADD) {
5125      isInc = true;
5126      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
5127      if (ShOpcVal != ARM_AM::no_shift) {
5128        Base = Ptr->getOperand(1);
5129        Offset = Ptr->getOperand(0);
5130      } else {
5131        Base = Ptr->getOperand(0);
5132        Offset = Ptr->getOperand(1);
5133      }
5134      return true;
5135    }
5136
5137    isInc = (Ptr->getOpcode() == ISD::ADD);
5138    Base = Ptr->getOperand(0);
5139    Offset = Ptr->getOperand(1);
5140    return true;
5141  }
5142
5143  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
5144  return false;
5145}
5146
5147static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
5148                                     bool isSEXTLoad, SDValue &Base,
5149                                     SDValue &Offset, bool &isInc,
5150                                     SelectionDAG &DAG) {
5151  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5152    return false;
5153
5154  Base = Ptr->getOperand(0);
5155  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5156    int RHSC = (int)RHS->getZExtValue();
5157    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
5158      assert(Ptr->getOpcode() == ISD::ADD);
5159      isInc = false;
5160      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5161      return true;
5162    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
5163      isInc = Ptr->getOpcode() == ISD::ADD;
5164      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
5165      return true;
5166    }
5167  }
5168
5169  return false;
5170}
5171
5172/// getPreIndexedAddressParts - returns true by value, base pointer and
5173/// offset pointer and addressing mode by reference if the node's address
5174/// can be legally represented as pre-indexed load / store address.
5175bool
5176ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
5177                                             SDValue &Offset,
5178                                             ISD::MemIndexedMode &AM,
5179                                             SelectionDAG &DAG) const {
5180  if (Subtarget->isThumb1Only())
5181    return false;
5182
5183  EVT VT;
5184  SDValue Ptr;
5185  bool isSEXTLoad = false;
5186  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5187    Ptr = LD->getBasePtr();
5188    VT  = LD->getMemoryVT();
5189    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5190  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5191    Ptr = ST->getBasePtr();
5192    VT  = ST->getMemoryVT();
5193  } else
5194    return false;
5195
5196  bool isInc;
5197  bool isLegal = false;
5198  if (Subtarget->isThumb2())
5199    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5200                                       Offset, isInc, DAG);
5201  else
5202    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5203                                        Offset, isInc, DAG);
5204  if (!isLegal)
5205    return false;
5206
5207  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
5208  return true;
5209}
5210
5211/// getPostIndexedAddressParts - returns true by value, base pointer and
5212/// offset pointer and addressing mode by reference if this node can be
5213/// combined with a load / store to form a post-indexed load / store.
5214bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
5215                                                   SDValue &Base,
5216                                                   SDValue &Offset,
5217                                                   ISD::MemIndexedMode &AM,
5218                                                   SelectionDAG &DAG) const {
5219  if (Subtarget->isThumb1Only())
5220    return false;
5221
5222  EVT VT;
5223  SDValue Ptr;
5224  bool isSEXTLoad = false;
5225  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5226    VT  = LD->getMemoryVT();
5227    Ptr = LD->getBasePtr();
5228    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5229  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5230    VT  = ST->getMemoryVT();
5231    Ptr = ST->getBasePtr();
5232  } else
5233    return false;
5234
5235  bool isInc;
5236  bool isLegal = false;
5237  if (Subtarget->isThumb2())
5238    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5239                                       isInc, DAG);
5240  else
5241    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5242                                        isInc, DAG);
5243  if (!isLegal)
5244    return false;
5245
5246  if (Ptr != Base) {
5247    // Swap base ptr and offset to catch more post-index load / store when
5248    // it's legal. In Thumb2 mode, offset must be an immediate.
5249    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
5250        !Subtarget->isThumb2())
5251      std::swap(Base, Offset);
5252
5253    // Post-indexed load / store update the base pointer.
5254    if (Ptr != Base)
5255      return false;
5256  }
5257
5258  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
5259  return true;
5260}
5261
5262void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5263                                                       const APInt &Mask,
5264                                                       APInt &KnownZero,
5265                                                       APInt &KnownOne,
5266                                                       const SelectionDAG &DAG,
5267                                                       unsigned Depth) const {
5268  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5269  switch (Op.getOpcode()) {
5270  default: break;
5271  case ARMISD::CMOV: {
5272    // Bits are known zero/one if known on the LHS and RHS.
5273    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
5274    if (KnownZero == 0 && KnownOne == 0) return;
5275
5276    APInt KnownZeroRHS, KnownOneRHS;
5277    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
5278                          KnownZeroRHS, KnownOneRHS, Depth+1);
5279    KnownZero &= KnownZeroRHS;
5280    KnownOne  &= KnownOneRHS;
5281    return;
5282  }
5283  }
5284}
5285
5286//===----------------------------------------------------------------------===//
5287//                           ARM Inline Assembly Support
5288//===----------------------------------------------------------------------===//
5289
5290/// getConstraintType - Given a constraint letter, return the type of
5291/// constraint it is for this target.
5292ARMTargetLowering::ConstraintType
5293ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
5294  if (Constraint.size() == 1) {
5295    switch (Constraint[0]) {
5296    default:  break;
5297    case 'l': return C_RegisterClass;
5298    case 'w': return C_RegisterClass;
5299    }
5300  }
5301  return TargetLowering::getConstraintType(Constraint);
5302}
5303
5304std::pair<unsigned, const TargetRegisterClass*>
5305ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5306                                                EVT VT) const {
5307  if (Constraint.size() == 1) {
5308    // GCC ARM Constraint Letters
5309    switch (Constraint[0]) {
5310    case 'l':
5311      if (Subtarget->isThumb())
5312        return std::make_pair(0U, ARM::tGPRRegisterClass);
5313      else
5314        return std::make_pair(0U, ARM::GPRRegisterClass);
5315    case 'r':
5316      return std::make_pair(0U, ARM::GPRRegisterClass);
5317    case 'w':
5318      if (VT == MVT::f32)
5319        return std::make_pair(0U, ARM::SPRRegisterClass);
5320      if (VT.getSizeInBits() == 64)
5321        return std::make_pair(0U, ARM::DPRRegisterClass);
5322      if (VT.getSizeInBits() == 128)
5323        return std::make_pair(0U, ARM::QPRRegisterClass);
5324      break;
5325    }
5326  }
5327  if (StringRef("{cc}").equals_lower(Constraint))
5328    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
5329
5330  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5331}
5332
5333std::vector<unsigned> ARMTargetLowering::
5334getRegClassForInlineAsmConstraint(const std::string &Constraint,
5335                                  EVT VT) const {
5336  if (Constraint.size() != 1)
5337    return std::vector<unsigned>();
5338
5339  switch (Constraint[0]) {      // GCC ARM Constraint Letters
5340  default: break;
5341  case 'l':
5342    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5343                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5344                                 0);
5345  case 'r':
5346    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5347                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5348                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
5349                                 ARM::R12, ARM::LR, 0);
5350  case 'w':
5351    if (VT == MVT::f32)
5352      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
5353                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
5354                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
5355                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
5356                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
5357                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
5358                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
5359                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
5360    if (VT.getSizeInBits() == 64)
5361      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
5362                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
5363                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
5364                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
5365    if (VT.getSizeInBits() == 128)
5366      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
5367                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
5368      break;
5369  }
5370
5371  return std::vector<unsigned>();
5372}
5373
5374/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5375/// vector.  If it is invalid, don't add anything to Ops.
5376void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5377                                                     char Constraint,
5378                                                     std::vector<SDValue>&Ops,
5379                                                     SelectionDAG &DAG) const {
5380  SDValue Result(0, 0);
5381
5382  switch (Constraint) {
5383  default: break;
5384  case 'I': case 'J': case 'K': case 'L':
5385  case 'M': case 'N': case 'O':
5386    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5387    if (!C)
5388      return;
5389
5390    int64_t CVal64 = C->getSExtValue();
5391    int CVal = (int) CVal64;
5392    // None of these constraints allow values larger than 32 bits.  Check
5393    // that the value fits in an int.
5394    if (CVal != CVal64)
5395      return;
5396
5397    switch (Constraint) {
5398      case 'I':
5399        if (Subtarget->isThumb1Only()) {
5400          // This must be a constant between 0 and 255, for ADD
5401          // immediates.
5402          if (CVal >= 0 && CVal <= 255)
5403            break;
5404        } else if (Subtarget->isThumb2()) {
5405          // A constant that can be used as an immediate value in a
5406          // data-processing instruction.
5407          if (ARM_AM::getT2SOImmVal(CVal) != -1)
5408            break;
5409        } else {
5410          // A constant that can be used as an immediate value in a
5411          // data-processing instruction.
5412          if (ARM_AM::getSOImmVal(CVal) != -1)
5413            break;
5414        }
5415        return;
5416
5417      case 'J':
5418        if (Subtarget->isThumb()) {  // FIXME thumb2
5419          // This must be a constant between -255 and -1, for negated ADD
5420          // immediates. This can be used in GCC with an "n" modifier that
5421          // prints the negated value, for use with SUB instructions. It is
5422          // not useful otherwise but is implemented for compatibility.
5423          if (CVal >= -255 && CVal <= -1)
5424            break;
5425        } else {
5426          // This must be a constant between -4095 and 4095. It is not clear
5427          // what this constraint is intended for. Implemented for
5428          // compatibility with GCC.
5429          if (CVal >= -4095 && CVal <= 4095)
5430            break;
5431        }
5432        return;
5433
5434      case 'K':
5435        if (Subtarget->isThumb1Only()) {
5436          // A 32-bit value where only one byte has a nonzero value. Exclude
5437          // zero to match GCC. This constraint is used by GCC internally for
5438          // constants that can be loaded with a move/shift combination.
5439          // It is not useful otherwise but is implemented for compatibility.
5440          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
5441            break;
5442        } else if (Subtarget->isThumb2()) {
5443          // A constant whose bitwise inverse can be used as an immediate
5444          // value in a data-processing instruction. This can be used in GCC
5445          // with a "B" modifier that prints the inverted value, for use with
5446          // BIC and MVN instructions. It is not useful otherwise but is
5447          // implemented for compatibility.
5448          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
5449            break;
5450        } else {
5451          // A constant whose bitwise inverse can be used as an immediate
5452          // value in a data-processing instruction. This can be used in GCC
5453          // with a "B" modifier that prints the inverted value, for use with
5454          // BIC and MVN instructions. It is not useful otherwise but is
5455          // implemented for compatibility.
5456          if (ARM_AM::getSOImmVal(~CVal) != -1)
5457            break;
5458        }
5459        return;
5460
5461      case 'L':
5462        if (Subtarget->isThumb1Only()) {
5463          // This must be a constant between -7 and 7,
5464          // for 3-operand ADD/SUB immediate instructions.
5465          if (CVal >= -7 && CVal < 7)
5466            break;
5467        } else if (Subtarget->isThumb2()) {
5468          // A constant whose negation can be used as an immediate value in a
5469          // data-processing instruction. This can be used in GCC with an "n"
5470          // modifier that prints the negated value, for use with SUB
5471          // instructions. It is not useful otherwise but is implemented for
5472          // compatibility.
5473          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
5474            break;
5475        } else {
5476          // A constant whose negation can be used as an immediate value in a
5477          // data-processing instruction. This can be used in GCC with an "n"
5478          // modifier that prints the negated value, for use with SUB
5479          // instructions. It is not useful otherwise but is implemented for
5480          // compatibility.
5481          if (ARM_AM::getSOImmVal(-CVal) != -1)
5482            break;
5483        }
5484        return;
5485
5486      case 'M':
5487        if (Subtarget->isThumb()) { // FIXME thumb2
5488          // This must be a multiple of 4 between 0 and 1020, for
5489          // ADD sp + immediate.
5490          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
5491            break;
5492        } else {
5493          // A power of two or a constant between 0 and 32.  This is used in
5494          // GCC for the shift amount on shifted register operands, but it is
5495          // useful in general for any shift amounts.
5496          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
5497            break;
5498        }
5499        return;
5500
5501      case 'N':
5502        if (Subtarget->isThumb()) {  // FIXME thumb2
5503          // This must be a constant between 0 and 31, for shift amounts.
5504          if (CVal >= 0 && CVal <= 31)
5505            break;
5506        }
5507        return;
5508
5509      case 'O':
5510        if (Subtarget->isThumb()) {  // FIXME thumb2
5511          // This must be a multiple of 4 between -508 and 508, for
5512          // ADD/SUB sp = sp + immediate.
5513          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
5514            break;
5515        }
5516        return;
5517    }
5518    Result = DAG.getTargetConstant(CVal, Op.getValueType());
5519    break;
5520  }
5521
5522  if (Result.getNode()) {
5523    Ops.push_back(Result);
5524    return;
5525  }
5526  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5527}
5528
5529bool
5530ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5531  // The ARM target isn't yet aware of offsets.
5532  return false;
5533}
5534
5535int ARM::getVFPf32Imm(const APFloat &FPImm) {
5536  APInt Imm = FPImm.bitcastToAPInt();
5537  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
5538  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
5539  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
5540
5541  // We can handle 4 bits of mantissa.
5542  // mantissa = (16+UInt(e:f:g:h))/16.
5543  if (Mantissa & 0x7ffff)
5544    return -1;
5545  Mantissa >>= 19;
5546  if ((Mantissa & 0xf) != Mantissa)
5547    return -1;
5548
5549  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5550  if (Exp < -3 || Exp > 4)
5551    return -1;
5552  Exp = ((Exp+3) & 0x7) ^ 4;
5553
5554  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5555}
5556
5557int ARM::getVFPf64Imm(const APFloat &FPImm) {
5558  APInt Imm = FPImm.bitcastToAPInt();
5559  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
5560  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
5561  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
5562
5563  // We can handle 4 bits of mantissa.
5564  // mantissa = (16+UInt(e:f:g:h))/16.
5565  if (Mantissa & 0xffffffffffffLL)
5566    return -1;
5567  Mantissa >>= 48;
5568  if ((Mantissa & 0xf) != Mantissa)
5569    return -1;
5570
5571  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5572  if (Exp < -3 || Exp > 4)
5573    return -1;
5574  Exp = ((Exp+3) & 0x7) ^ 4;
5575
5576  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5577}
5578
5579bool ARM::isBitFieldInvertedMask(unsigned v) {
5580  if (v == 0xffffffff)
5581    return 0;
5582  // there can be 1's on either or both "outsides", all the "inside"
5583  // bits must be 0's
5584  unsigned int lsb = 0, msb = 31;
5585  while (v & (1 << msb)) --msb;
5586  while (v & (1 << lsb)) ++lsb;
5587  for (unsigned int i = lsb; i <= msb; ++i) {
5588    if (v & (1 << i))
5589      return 0;
5590  }
5591  return 1;
5592}
5593
5594/// isFPImmLegal - Returns true if the target can instruction select the
5595/// specified FP immediate natively. If false, the legalizer will
5596/// materialize the FP immediate as a load from a constant pool.
5597bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5598  if (!Subtarget->hasVFP3())
5599    return false;
5600  if (VT == MVT::f32)
5601    return ARM::getVFPf32Imm(Imm) != -1;
5602  if (VT == MVT::f64)
5603    return ARM::getVFPf64Imm(Imm) != -1;
5604  return false;
5605}
5606