ARMISelLowering.cpp revision f26e03bc7e30162197641406e37e662a15d80f7e
1014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch//
3014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch//                     The LLVM Compiler Infrastructure
4014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch//
5014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch// This file is distributed under the University of Illinois Open Source
6014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch// License. See LICENSE.TXT for details.
7014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch//
8342c50ce1624b485728b9a4fc41d8bbf37eb46cfBen Murdoch//===----------------------------------------------------------------------===//
9014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch//
10014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch// This file defines the interfaces that ARM uses to lower LLVM code into a
11014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch// selection DAG.
12014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch//
13014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch//===----------------------------------------------------------------------===//
14014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch
15014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "ARM.h"
16014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "ARMAddressingModes.h"
17014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "ARMConstantPoolValue.h"
18014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "ARMISelLowering.h"
19014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "ARMMachineFunctionInfo.h"
20014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "ARMRegisterInfo.h"
21014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "ARMSubtarget.h"
22014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "ARMTargetMachine.h"
23014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/CallingConv.h"
24014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/Constants.h"
25014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/Function.h"
26014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/Instruction.h"
27014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/Intrinsics.h"
28014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/GlobalValue.h"
29014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/CodeGen/CallingConvLower.h"
30014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/CodeGen/MachineBasicBlock.h"
31014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/CodeGen/MachineFrameInfo.h"
32014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/CodeGen/MachineFunction.h"
33014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/CodeGen/MachineInstrBuilder.h"
34014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/CodeGen/MachineRegisterInfo.h"
35014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/CodeGen/PseudoSourceValue.h"
36014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/CodeGen/SelectionDAG.h"
37014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/Target/TargetLoweringObjectFile.h"
38014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/Target/TargetOptions.h"
39014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/ADT/VectorExtras.h"
40342c50ce1624b485728b9a4fc41d8bbf37eb46cfBen Murdoch#include "llvm/Support/ErrorHandling.h"
41014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch#include "llvm/Support/MathExtras.h"
42014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdochusing namespace llvm;
43014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch
44014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdochstatic bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
45014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                   CCValAssign::LocInfo &LocInfo,
46014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                   ISD::ArgFlagsTy &ArgFlags,
47014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                   CCState &State);
48014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdochstatic bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
49014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                    CCValAssign::LocInfo &LocInfo,
50014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                    ISD::ArgFlagsTy &ArgFlags,
51014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                    CCState &State);
52342c50ce1624b485728b9a4fc41d8bbf37eb46cfBen Murdochstatic bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
53014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                      CCValAssign::LocInfo &LocInfo,
54014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                      ISD::ArgFlagsTy &ArgFlags,
55014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                      CCState &State);
56014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdochstatic bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
57014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                       CCValAssign::LocInfo &LocInfo,
58014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                       ISD::ArgFlagsTy &ArgFlags,
59014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                       CCState &State);
60014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch
61014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdochvoid ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
62014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch                                       MVT PromotedBitwiseVT) {
63014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  if (VT != PromotedLdStVT) {
64014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    setOperationAction(ISD::LOAD, VT, Promote);
65014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
66014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch
67014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    setOperationAction(ISD::STORE, VT, Promote);
68014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
69014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  }
70014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch
71014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  MVT ElemTy = VT.getVectorElementType();
72014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
73014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    setOperationAction(ISD::VSETCC, VT, Custom);
74014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
75014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
76014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
77014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
78014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
79014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
80014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  if (VT.isInteger()) {
81014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    setOperationAction(ISD::SHL, VT, Custom);
82014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    setOperationAction(ISD::SRA, VT, Custom);
83014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    setOperationAction(ISD::SRL, VT, Custom);
84014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  }
85014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch
86014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  // Promote all bit-wise operations.
87014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  if (VT.isInteger() && VT != PromotedBitwiseVT) {
88014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    setOperationAction(ISD::AND, VT, Promote);
89014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
90014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch    setOperationAction(ISD::OR,  VT, Promote);
91342c50ce1624b485728b9a4fc41d8bbf37eb46cfBen Murdoch    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
92342c50ce1624b485728b9a4fc41d8bbf37eb46cfBen Murdoch    setOperationAction(ISD::XOR, VT, Promote);
93342c50ce1624b485728b9a4fc41d8bbf37eb46cfBen Murdoch    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
94014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  }
95014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch}
96014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch
97014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdochvoid ARMTargetLowering::addDRTypeForNEON(MVT VT) {
98014dc512cdd3e367bee49a713fdc5ed92584a3e5Ben Murdoch  addRegisterClass(VT, ARM::DPRRegisterClass);
99  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
100}
101
102void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
103  addRegisterClass(VT, ARM::QPRRegisterClass);
104  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
105}
106
107static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
108  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
109    return new TargetLoweringObjectFileMachO();
110  return new TargetLoweringObjectFileELF(true);
111}
112
113ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
114    : TargetLowering(TM, createTLOF(TM)), ARMPCLabelIndex(0) {
115  Subtarget = &TM.getSubtarget<ARMSubtarget>();
116
117  if (Subtarget->isTargetDarwin()) {
118    // Uses VFP for Thumb libfuncs if available.
119    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
120      // Single-precision floating-point arithmetic.
121      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
122      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
123      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
124      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
125
126      // Double-precision floating-point arithmetic.
127      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
128      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
129      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
130      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
131
132      // Single-precision comparisons.
133      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
134      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
135      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
136      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
137      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
138      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
139      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
140      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
141
142      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
143      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
144      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
145      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
146      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
147      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
148      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
149      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
150
151      // Double-precision comparisons.
152      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
153      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
154      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
155      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
156      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
157      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
158      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
159      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
160
161      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
162      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
163      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
164      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
165      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
166      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
167      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
168      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
169
170      // Floating-point to integer conversions.
171      // i64 conversions are done via library routines even when generating VFP
172      // instructions, so use the same ones.
173      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
174      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
175      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
176      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
177
178      // Conversions between floating types.
179      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
180      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
181
182      // Integer to floating-point conversions.
183      // i64 conversions are done via library routines even when generating VFP
184      // instructions, so use the same ones.
185      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
186      // e.g., __floatunsidf vs. __floatunssidfvfp.
187      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
188      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
189      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
190      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
191    }
192  }
193
194  // These libcalls are not available in 32-bit.
195  setLibcallName(RTLIB::SHL_I128, 0);
196  setLibcallName(RTLIB::SRL_I128, 0);
197  setLibcallName(RTLIB::SRA_I128, 0);
198
199  if (Subtarget->isThumb1Only())
200    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
201  else
202    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
203  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
204    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
205    addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
206
207    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
208  }
209
210  if (Subtarget->hasNEON()) {
211    addDRTypeForNEON(MVT::v2f32);
212    addDRTypeForNEON(MVT::v8i8);
213    addDRTypeForNEON(MVT::v4i16);
214    addDRTypeForNEON(MVT::v2i32);
215    addDRTypeForNEON(MVT::v1i64);
216
217    addQRTypeForNEON(MVT::v4f32);
218    addQRTypeForNEON(MVT::v2f64);
219    addQRTypeForNEON(MVT::v16i8);
220    addQRTypeForNEON(MVT::v8i16);
221    addQRTypeForNEON(MVT::v4i32);
222    addQRTypeForNEON(MVT::v2i64);
223
224    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
225    setTargetDAGCombine(ISD::SHL);
226    setTargetDAGCombine(ISD::SRL);
227    setTargetDAGCombine(ISD::SRA);
228    setTargetDAGCombine(ISD::SIGN_EXTEND);
229    setTargetDAGCombine(ISD::ZERO_EXTEND);
230    setTargetDAGCombine(ISD::ANY_EXTEND);
231  }
232
233  computeRegisterProperties();
234
235  // ARM does not have f32 extending load.
236  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
237
238  // ARM does not have i1 sign extending load.
239  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
240
241  // ARM supports all 4 flavors of integer indexed load / store.
242  if (!Subtarget->isThumb1Only()) {
243    for (unsigned im = (unsigned)ISD::PRE_INC;
244         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
245      setIndexedLoadAction(im,  MVT::i1,  Legal);
246      setIndexedLoadAction(im,  MVT::i8,  Legal);
247      setIndexedLoadAction(im,  MVT::i16, Legal);
248      setIndexedLoadAction(im,  MVT::i32, Legal);
249      setIndexedStoreAction(im, MVT::i1,  Legal);
250      setIndexedStoreAction(im, MVT::i8,  Legal);
251      setIndexedStoreAction(im, MVT::i16, Legal);
252      setIndexedStoreAction(im, MVT::i32, Legal);
253    }
254  }
255
256  // i64 operation support.
257  if (Subtarget->isThumb1Only()) {
258    setOperationAction(ISD::MUL,     MVT::i64, Expand);
259    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
260    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
261    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
262    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
263  } else {
264    setOperationAction(ISD::MUL,     MVT::i64, Expand);
265    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
266    if (!Subtarget->isThumb1Only() && !Subtarget->hasV6Ops())
267      setOperationAction(ISD::MULHS, MVT::i32, Expand);
268  }
269  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
270  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
271  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
272  setOperationAction(ISD::SRL,       MVT::i64, Custom);
273  setOperationAction(ISD::SRA,       MVT::i64, Custom);
274
275  // ARM does not have ROTL.
276  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
277  setOperationAction(ISD::CTTZ,  MVT::i32, Expand);
278  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
279  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
280    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
281
282  // Only ARMv6 has BSWAP.
283  if (!Subtarget->hasV6Ops())
284    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
285
286  // These are expanded into libcalls.
287  setOperationAction(ISD::SDIV,  MVT::i32, Expand);
288  setOperationAction(ISD::UDIV,  MVT::i32, Expand);
289  setOperationAction(ISD::SREM,  MVT::i32, Expand);
290  setOperationAction(ISD::UREM,  MVT::i32, Expand);
291  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
292  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
293
294  // Support label based line numbers.
295  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
296  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
297
298  setOperationAction(ISD::RET,           MVT::Other, Custom);
299  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
300  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
301  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
302  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
303
304  // Use the default implementation.
305  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
306  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
307  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
308  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
309  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
310  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
311  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32,   Expand);
312  setOperationAction(ISD::MEMBARRIER,         MVT::Other, Expand);
313
314  if (!Subtarget->hasV6Ops() && !Subtarget->isThumb2()) {
315    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
316    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
317  }
318  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
319
320  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only())
321    // Turn f64->i64 into FMRRD, i64 -> f64 to FMDRR iff target supports vfp2.
322    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
323
324  // We want to custom lower some of our intrinsics.
325  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
326
327  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
328  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
329  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
330  setOperationAction(ISD::SELECT,    MVT::i32, Expand);
331  setOperationAction(ISD::SELECT,    MVT::f32, Expand);
332  setOperationAction(ISD::SELECT,    MVT::f64, Expand);
333  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
334  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
335  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
336
337  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
338  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
339  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
340  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
341  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
342
343  // We don't support sin/cos/fmod/copysign/pow
344  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
345  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
346  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
347  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
348  setOperationAction(ISD::FREM,      MVT::f64, Expand);
349  setOperationAction(ISD::FREM,      MVT::f32, Expand);
350  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
351    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
352    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
353  }
354  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
355  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
356
357  // int <-> fp are custom expanded into bit_convert + ARMISD ops.
358  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
359    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
360    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
361    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
362    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
363  }
364
365  // We have target-specific dag combine patterns for the following nodes:
366  // ARMISD::FMRRD  - No need to call setTargetDAGCombine
367  setTargetDAGCombine(ISD::ADD);
368  setTargetDAGCombine(ISD::SUB);
369
370  setStackPointerRegisterToSaveRestore(ARM::SP);
371  setSchedulingPreference(SchedulingForRegPressure);
372  setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10);
373  setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2);
374
375  if (!Subtarget->isThumb()) {
376    // Use branch latency information to determine if-conversion limits.
377    // FIXME: If-converter should use instruction latency of the branch being
378    // eliminated to compute the threshold. For ARMv6, the branch "latency"
379    // varies depending on whether it's dynamically or statically predicted
380    // and on whether the destination is in the prefetch buffer.
381    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
382    const InstrItineraryData &InstrItins = Subtarget->getInstrItineraryData();
383    unsigned Latency= InstrItins.getLatency(TII->get(ARM::Bcc).getSchedClass());
384    if (Latency > 1) {
385      setIfCvtBlockSizeLimit(Latency-1);
386      if (Latency > 2)
387        setIfCvtDupBlockSizeLimit(Latency-2);
388    } else {
389      setIfCvtBlockSizeLimit(10);
390      setIfCvtDupBlockSizeLimit(2);
391    }
392  }
393
394  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
395  // Do not enable CodePlacementOpt for now: it currently runs after the
396  // ARMConstantIslandPass and messes up branch relaxation and placement
397  // of constant islands.
398  // benefitFromCodePlacementOpt = true;
399}
400
401const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
402  switch (Opcode) {
403  default: return 0;
404  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
405  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
406  case ARMISD::CALL:          return "ARMISD::CALL";
407  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
408  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
409  case ARMISD::tCALL:         return "ARMISD::tCALL";
410  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
411  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
412  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
413  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
414  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
415  case ARMISD::CMP:           return "ARMISD::CMP";
416  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
417  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
418  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
419  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
420  case ARMISD::CMOV:          return "ARMISD::CMOV";
421  case ARMISD::CNEG:          return "ARMISD::CNEG";
422
423  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
424  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
425  case ARMISD::SITOF:         return "ARMISD::SITOF";
426  case ARMISD::UITOF:         return "ARMISD::UITOF";
427
428  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
429  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
430  case ARMISD::RRX:           return "ARMISD::RRX";
431
432  case ARMISD::FMRRD:         return "ARMISD::FMRRD";
433  case ARMISD::FMDRR:         return "ARMISD::FMDRR";
434
435  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
436
437  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
438  case ARMISD::VCGE:          return "ARMISD::VCGE";
439  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
440  case ARMISD::VCGT:          return "ARMISD::VCGT";
441  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
442  case ARMISD::VTST:          return "ARMISD::VTST";
443
444  case ARMISD::VSHL:          return "ARMISD::VSHL";
445  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
446  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
447  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
448  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
449  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
450  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
451  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
452  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
453  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
454  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
455  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
456  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
457  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
458  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
459  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
460  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
461  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
462  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
463  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
464  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
465  case ARMISD::VDUPLANEQ:     return "ARMISD::VDUPLANEQ";
466  }
467}
468
469/// getFunctionAlignment - Return the Log2 alignment of this function.
470unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
471  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
472}
473
474//===----------------------------------------------------------------------===//
475// Lowering Code
476//===----------------------------------------------------------------------===//
477
478/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
479static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
480  switch (CC) {
481  default: llvm_unreachable("Unknown condition code!");
482  case ISD::SETNE:  return ARMCC::NE;
483  case ISD::SETEQ:  return ARMCC::EQ;
484  case ISD::SETGT:  return ARMCC::GT;
485  case ISD::SETGE:  return ARMCC::GE;
486  case ISD::SETLT:  return ARMCC::LT;
487  case ISD::SETLE:  return ARMCC::LE;
488  case ISD::SETUGT: return ARMCC::HI;
489  case ISD::SETUGE: return ARMCC::HS;
490  case ISD::SETULT: return ARMCC::LO;
491  case ISD::SETULE: return ARMCC::LS;
492  }
493}
494
495/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It
496/// returns true if the operands should be inverted to form the proper
497/// comparison.
498static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
499                        ARMCC::CondCodes &CondCode2) {
500  bool Invert = false;
501  CondCode2 = ARMCC::AL;
502  switch (CC) {
503  default: llvm_unreachable("Unknown FP condition!");
504  case ISD::SETEQ:
505  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
506  case ISD::SETGT:
507  case ISD::SETOGT: CondCode = ARMCC::GT; break;
508  case ISD::SETGE:
509  case ISD::SETOGE: CondCode = ARMCC::GE; break;
510  case ISD::SETOLT: CondCode = ARMCC::MI; break;
511  case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break;
512  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
513  case ISD::SETO:   CondCode = ARMCC::VC; break;
514  case ISD::SETUO:  CondCode = ARMCC::VS; break;
515  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
516  case ISD::SETUGT: CondCode = ARMCC::HI; break;
517  case ISD::SETUGE: CondCode = ARMCC::PL; break;
518  case ISD::SETLT:
519  case ISD::SETULT: CondCode = ARMCC::LT; break;
520  case ISD::SETLE:
521  case ISD::SETULE: CondCode = ARMCC::LE; break;
522  case ISD::SETNE:
523  case ISD::SETUNE: CondCode = ARMCC::NE; break;
524  }
525  return Invert;
526}
527
528//===----------------------------------------------------------------------===//
529//                      Calling Convention Implementation
530//
531//  The lower operations present on calling convention works on this order:
532//      LowerCALL (virt regs --> phys regs, virt regs --> stack)
533//      LowerFORMAL_ARGUMENTS (phys --> virt regs, stack --> virt regs)
534//      LowerRET (virt regs --> phys regs)
535//      LowerCALL (phys regs --> virt regs)
536//
537//===----------------------------------------------------------------------===//
538
539#include "ARMGenCallingConv.inc"
540
541// APCS f64 is in register pairs, possibly split to stack
542static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
543                          CCValAssign::LocInfo &LocInfo,
544                          CCState &State, bool CanFail) {
545  static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
546
547  // Try to get the first register.
548  if (unsigned Reg = State.AllocateReg(RegList, 4))
549    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
550  else {
551    // For the 2nd half of a v2f64, do not fail.
552    if (CanFail)
553      return false;
554
555    // Put the whole thing on the stack.
556    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
557                                           State.AllocateStack(8, 4),
558                                           LocVT, LocInfo));
559    return true;
560  }
561
562  // Try to get the second register.
563  if (unsigned Reg = State.AllocateReg(RegList, 4))
564    State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
565  else
566    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
567                                           State.AllocateStack(4, 4),
568                                           LocVT, LocInfo));
569  return true;
570}
571
572static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
573                                   CCValAssign::LocInfo &LocInfo,
574                                   ISD::ArgFlagsTy &ArgFlags,
575                                   CCState &State) {
576  if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
577    return false;
578  if (LocVT == MVT::v2f64 &&
579      !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
580    return false;
581  return true;  // we handled it
582}
583
584// AAPCS f64 is in aligned register pairs
585static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
586                           CCValAssign::LocInfo &LocInfo,
587                           CCState &State, bool CanFail) {
588  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
589  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
590
591  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
592  if (Reg == 0) {
593    // For the 2nd half of a v2f64, do not just fail.
594    if (CanFail)
595      return false;
596
597    // Put the whole thing on the stack.
598    State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
599                                           State.AllocateStack(8, 8),
600                                           LocVT, LocInfo));
601    return true;
602  }
603
604  unsigned i;
605  for (i = 0; i < 2; ++i)
606    if (HiRegList[i] == Reg)
607      break;
608
609  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
610  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
611                                         LocVT, LocInfo));
612  return true;
613}
614
615static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
616                                    CCValAssign::LocInfo &LocInfo,
617                                    ISD::ArgFlagsTy &ArgFlags,
618                                    CCState &State) {
619  if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
620    return false;
621  if (LocVT == MVT::v2f64 &&
622      !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
623    return false;
624  return true;  // we handled it
625}
626
627static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
628                         CCValAssign::LocInfo &LocInfo, CCState &State) {
629  static const unsigned HiRegList[] = { ARM::R0, ARM::R2 };
630  static const unsigned LoRegList[] = { ARM::R1, ARM::R3 };
631
632  unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2);
633  if (Reg == 0)
634    return false; // we didn't handle it
635
636  unsigned i;
637  for (i = 0; i < 2; ++i)
638    if (HiRegList[i] == Reg)
639      break;
640
641  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
642  State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
643                                         LocVT, LocInfo));
644  return true;
645}
646
647static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
648                                      CCValAssign::LocInfo &LocInfo,
649                                      ISD::ArgFlagsTy &ArgFlags,
650                                      CCState &State) {
651  if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
652    return false;
653  if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
654    return false;
655  return true;  // we handled it
656}
657
658static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
659                                       CCValAssign::LocInfo &LocInfo,
660                                       ISD::ArgFlagsTy &ArgFlags,
661                                       CCState &State) {
662  return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
663                                   State);
664}
665
666/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
667/// given CallingConvention value.
668CCAssignFn *ARMTargetLowering::CCAssignFnForNode(unsigned CC,
669                                                 bool Return) const {
670  switch (CC) {
671  default:
672   llvm_unreachable("Unsupported calling convention");
673  case CallingConv::C:
674  case CallingConv::Fast:
675   // Use target triple & subtarget features to do actual dispatch.
676   if (Subtarget->isAAPCS_ABI()) {
677     if (Subtarget->hasVFP2() &&
678         FloatABIType == FloatABI::Hard)
679       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
680     else
681       return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
682   } else
683     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
684  case CallingConv::ARM_AAPCS_VFP:
685   return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
686  case CallingConv::ARM_AAPCS:
687   return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
688  case CallingConv::ARM_APCS:
689   return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
690  }
691}
692
693/// LowerCallResult - Lower the result values of an ISD::CALL into the
694/// appropriate copies out of appropriate physical registers.  This assumes that
695/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
696/// being lowered.  The returns a SDNode with the same number of values as the
697/// ISD::CALL.
698SDNode *ARMTargetLowering::
699LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
700                unsigned CallingConv, SelectionDAG &DAG) {
701
702  DebugLoc dl = TheCall->getDebugLoc();
703  // Assign locations to each value returned by this call.
704  SmallVector<CCValAssign, 16> RVLocs;
705  bool isVarArg = TheCall->isVarArg();
706  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(),
707                 RVLocs, *DAG.getContext());
708  CCInfo.AnalyzeCallResult(TheCall,
709                           CCAssignFnForNode(CallingConv, /* Return*/ true));
710
711  SmallVector<SDValue, 8> ResultVals;
712
713  // Copy all of the result registers out of their specified physreg.
714  for (unsigned i = 0; i != RVLocs.size(); ++i) {
715    CCValAssign VA = RVLocs[i];
716
717    SDValue Val;
718    if (VA.needsCustom()) {
719      // Handle f64 or half of a v2f64.
720      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
721                                      InFlag);
722      Chain = Lo.getValue(1);
723      InFlag = Lo.getValue(2);
724      VA = RVLocs[++i]; // skip ahead to next loc
725      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
726                                      InFlag);
727      Chain = Hi.getValue(1);
728      InFlag = Hi.getValue(2);
729      Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
730
731      if (VA.getLocVT() == MVT::v2f64) {
732        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
733        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
734                          DAG.getConstant(0, MVT::i32));
735
736        VA = RVLocs[++i]; // skip ahead to next loc
737        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
738        Chain = Lo.getValue(1);
739        InFlag = Lo.getValue(2);
740        VA = RVLocs[++i]; // skip ahead to next loc
741        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
742        Chain = Hi.getValue(1);
743        InFlag = Hi.getValue(2);
744        Val = DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
745        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
746                          DAG.getConstant(1, MVT::i32));
747      }
748    } else {
749      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
750                               InFlag);
751      Chain = Val.getValue(1);
752      InFlag = Val.getValue(2);
753    }
754
755    switch (VA.getLocInfo()) {
756    default: llvm_unreachable("Unknown loc info!");
757    case CCValAssign::Full: break;
758    case CCValAssign::BCvt:
759      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
760      break;
761    }
762
763    ResultVals.push_back(Val);
764  }
765
766  // Merge everything together with a MERGE_VALUES node.
767  ResultVals.push_back(Chain);
768  return DAG.getNode(ISD::MERGE_VALUES, dl, TheCall->getVTList(),
769                     &ResultVals[0], ResultVals.size()).getNode();
770}
771
772/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
773/// by "Src" to address "Dst" of size "Size".  Alignment information is
774/// specified by the specific parameter attribute.  The copy will be passed as
775/// a byval function parameter.
776/// Sometimes what we are copying is the end of a larger object, the part that
777/// does not fit in registers.
778static SDValue
779CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
780                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
781                          DebugLoc dl) {
782  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
783  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
784                       /*AlwaysInline=*/false, NULL, 0, NULL, 0);
785}
786
787/// LowerMemOpCallTo - Store the argument to the stack.
788SDValue
789ARMTargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
790                                    const SDValue &StackPtr,
791                                    const CCValAssign &VA, SDValue Chain,
792                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
793  DebugLoc dl = TheCall->getDebugLoc();
794  unsigned LocMemOffset = VA.getLocMemOffset();
795  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
796  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
797  if (Flags.isByVal()) {
798    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
799  }
800  return DAG.getStore(Chain, dl, Arg, PtrOff,
801                      PseudoSourceValue::getStack(), LocMemOffset);
802}
803
804void ARMTargetLowering::PassF64ArgInRegs(CallSDNode *TheCall, SelectionDAG &DAG,
805                                         SDValue Chain, SDValue &Arg,
806                                         RegsToPassVector &RegsToPass,
807                                         CCValAssign &VA, CCValAssign &NextVA,
808                                         SDValue &StackPtr,
809                                         SmallVector<SDValue, 8> &MemOpChains,
810                                         ISD::ArgFlagsTy Flags) {
811  DebugLoc dl = TheCall->getDebugLoc();
812
813  SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
814                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
815  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
816
817  if (NextVA.isRegLoc())
818    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
819  else {
820    assert(NextVA.isMemLoc());
821    if (StackPtr.getNode() == 0)
822      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
823
824    MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, NextVA,
825                                           Chain, fmrrd.getValue(1), Flags));
826  }
827}
828
829/// LowerCALL - Lowering a ISD::CALL node into a callseq_start <-
830/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
831/// nodes.
832SDValue ARMTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
833  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
834  MVT RetVT           = TheCall->getRetValType(0);
835  SDValue Chain       = TheCall->getChain();
836  unsigned CC         = TheCall->getCallingConv();
837  bool isVarArg       = TheCall->isVarArg();
838  SDValue Callee      = TheCall->getCallee();
839  DebugLoc dl         = TheCall->getDebugLoc();
840
841  // Analyze operands of the call, assigning locations to each operand.
842  SmallVector<CCValAssign, 16> ArgLocs;
843  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
844  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC, /* Return*/ false));
845
846  // Get a count of how many bytes are to be pushed on the stack.
847  unsigned NumBytes = CCInfo.getNextStackOffset();
848
849  // Adjust the stack pointer for the new arguments...
850  // These operations are automatically eliminated by the prolog/epilog pass
851  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
852
853  SDValue StackPtr = DAG.getRegister(ARM::SP, MVT::i32);
854
855  RegsToPassVector RegsToPass;
856  SmallVector<SDValue, 8> MemOpChains;
857
858  // Walk the register/memloc assignments, inserting copies/loads.  In the case
859  // of tail call optimization, arguments are handled later.
860  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
861       i != e;
862       ++i, ++realArgIdx) {
863    CCValAssign &VA = ArgLocs[i];
864    SDValue Arg = TheCall->getArg(realArgIdx);
865    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(realArgIdx);
866
867    // Promote the value if needed.
868    switch (VA.getLocInfo()) {
869    default: llvm_unreachable("Unknown loc info!");
870    case CCValAssign::Full: break;
871    case CCValAssign::SExt:
872      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
873      break;
874    case CCValAssign::ZExt:
875      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
876      break;
877    case CCValAssign::AExt:
878      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
879      break;
880    case CCValAssign::BCvt:
881      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
882      break;
883    }
884
885    // f64 and v2f64 are passed in i32 pairs and must be split into pieces
886    if (VA.needsCustom()) {
887      if (VA.getLocVT() == MVT::v2f64) {
888        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
889                                  DAG.getConstant(0, MVT::i32));
890        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
891                                  DAG.getConstant(1, MVT::i32));
892
893        PassF64ArgInRegs(TheCall, DAG, Chain, Op0, RegsToPass,
894                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
895
896        VA = ArgLocs[++i]; // skip ahead to next loc
897        if (VA.isRegLoc()) {
898          PassF64ArgInRegs(TheCall, DAG, Chain, Op1, RegsToPass,
899                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
900        } else {
901          assert(VA.isMemLoc());
902          if (StackPtr.getNode() == 0)
903            StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
904
905          MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
906                                                 Chain, Op1, Flags));
907        }
908      } else {
909        PassF64ArgInRegs(TheCall, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
910                         StackPtr, MemOpChains, Flags);
911      }
912    } else if (VA.isRegLoc()) {
913      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
914    } else {
915      assert(VA.isMemLoc());
916      if (StackPtr.getNode() == 0)
917        StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
918
919      MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
920                                             Chain, Arg, Flags));
921    }
922  }
923
924  if (!MemOpChains.empty())
925    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
926                        &MemOpChains[0], MemOpChains.size());
927
928  // Build a sequence of copy-to-reg nodes chained together with token chain
929  // and flag operands which copy the outgoing args into the appropriate regs.
930  SDValue InFlag;
931  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
932    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
933                             RegsToPass[i].second, InFlag);
934    InFlag = Chain.getValue(1);
935  }
936
937  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
938  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
939  // node so that legalize doesn't hack it.
940  bool isDirect = false;
941  bool isARMFunc = false;
942  bool isLocalARMFunc = false;
943  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
944    GlobalValue *GV = G->getGlobal();
945    isDirect = true;
946    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
947    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
948                   getTargetMachine().getRelocationModel() != Reloc::Static;
949    isARMFunc = !Subtarget->isThumb() || isStub;
950    // ARM call to a local ARM function is predicable.
951    isLocalARMFunc = !Subtarget->isThumb() && !isExt;
952    // tBX takes a register source operand.
953    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
954      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
955                                                           ARMCP::CPStub, 4);
956      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
957      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
958      Callee = DAG.getLoad(getPointerTy(), dl,
959                           DAG.getEntryNode(), CPAddr, NULL, 0);
960      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
961      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
962                           getPointerTy(), Callee, PICLabel);
963   } else
964      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy());
965  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
966    isDirect = true;
967    bool isStub = Subtarget->isTargetDarwin() &&
968                  getTargetMachine().getRelocationModel() != Reloc::Static;
969    isARMFunc = !Subtarget->isThumb() || isStub;
970    // tBX takes a register source operand.
971    const char *Sym = S->getSymbol();
972    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
973      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex,
974                                                           ARMCP::CPStub, 4);
975      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
976      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
977      Callee = DAG.getLoad(getPointerTy(), dl,
978                           DAG.getEntryNode(), CPAddr, NULL, 0);
979      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
980      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
981                           getPointerTy(), Callee, PICLabel);
982    } else
983      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
984  }
985
986  // FIXME: handle tail calls differently.
987  unsigned CallOpc;
988  if (Subtarget->isThumb1Only()) {
989    if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc))
990      CallOpc = ARMISD::CALL_NOLINK;
991    else
992      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
993  } else {
994    CallOpc = (isDirect || Subtarget->hasV5TOps())
995      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
996      : ARMISD::CALL_NOLINK;
997  }
998  if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) {
999    // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK
1000    Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag);
1001    InFlag = Chain.getValue(1);
1002  }
1003
1004  std::vector<SDValue> Ops;
1005  Ops.push_back(Chain);
1006  Ops.push_back(Callee);
1007
1008  // Add argument registers to the end of the list so that they are known live
1009  // into the call.
1010  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1011    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1012                                  RegsToPass[i].second.getValueType()));
1013
1014  if (InFlag.getNode())
1015    Ops.push_back(InFlag);
1016  // Returns a chain and a flag for retval copy to use.
1017  Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag),
1018                      &Ops[0], Ops.size());
1019  InFlag = Chain.getValue(1);
1020
1021  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1022                             DAG.getIntPtrConstant(0, true), InFlag);
1023  if (RetVT != MVT::Other)
1024    InFlag = Chain.getValue(1);
1025
1026  // Handle result values, copying them out of physregs into vregs that we
1027  // return.
1028  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1029                                 Op.getResNo());
1030}
1031
1032SDValue ARMTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
1033  // The chain is always operand #0
1034  SDValue Chain = Op.getOperand(0);
1035  DebugLoc dl = Op.getDebugLoc();
1036
1037  // CCValAssign - represent the assignment of the return value to a location.
1038  SmallVector<CCValAssign, 16> RVLocs;
1039  unsigned CC   = DAG.getMachineFunction().getFunction()->getCallingConv();
1040  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1041
1042  // CCState - Info about the registers and stack slots.
1043  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs, *DAG.getContext());
1044
1045  // Analyze return values of ISD::RET.
1046  CCInfo.AnalyzeReturn(Op.getNode(), CCAssignFnForNode(CC, /* Return */ true));
1047
1048  // If this is the first return lowered for this function, add
1049  // the regs to the liveout set for the function.
1050  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1051    for (unsigned i = 0; i != RVLocs.size(); ++i)
1052      if (RVLocs[i].isRegLoc())
1053        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1054  }
1055
1056  SDValue Flag;
1057
1058  // Copy the result values into the output registers.
1059  for (unsigned i = 0, realRVLocIdx = 0;
1060       i != RVLocs.size();
1061       ++i, ++realRVLocIdx) {
1062    CCValAssign &VA = RVLocs[i];
1063    assert(VA.isRegLoc() && "Can only return in registers!");
1064
1065    // ISD::RET => ret chain, (regnum1,val1), ...
1066    // So i*2+1 index only the regnums
1067    SDValue Arg = Op.getOperand(realRVLocIdx*2+1);
1068
1069    switch (VA.getLocInfo()) {
1070    default: llvm_unreachable("Unknown loc info!");
1071    case CCValAssign::Full: break;
1072    case CCValAssign::BCvt:
1073      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1074      break;
1075    }
1076
1077    if (VA.needsCustom()) {
1078      if (VA.getLocVT() == MVT::v2f64) {
1079        // Extract the first half and return it in two registers.
1080        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1081                                   DAG.getConstant(0, MVT::i32));
1082        SDValue HalfGPRs = DAG.getNode(ARMISD::FMRRD, dl,
1083                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1084
1085        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1086        Flag = Chain.getValue(1);
1087        VA = RVLocs[++i]; // skip ahead to next loc
1088        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1089                                 HalfGPRs.getValue(1), Flag);
1090        Flag = Chain.getValue(1);
1091        VA = RVLocs[++i]; // skip ahead to next loc
1092
1093        // Extract the 2nd half and fall through to handle it as an f64 value.
1094        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1095                          DAG.getConstant(1, MVT::i32));
1096      }
1097      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1098      // available.
1099      SDValue fmrrd = DAG.getNode(ARMISD::FMRRD, dl,
1100                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1101      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1102      Flag = Chain.getValue(1);
1103      VA = RVLocs[++i]; // skip ahead to next loc
1104      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1105                               Flag);
1106    } else
1107      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1108
1109    // Guarantee that all emitted copies are
1110    // stuck together, avoiding something bad.
1111    Flag = Chain.getValue(1);
1112  }
1113
1114  SDValue result;
1115  if (Flag.getNode())
1116    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1117  else // Return Void
1118    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1119
1120  return result;
1121}
1122
1123// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1124// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1125// one of the above mentioned nodes. It has to be wrapped because otherwise
1126// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1127// be used to form addressing mode. These wrapped nodes will be selected
1128// into MOVi.
1129static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1130  MVT PtrVT = Op.getValueType();
1131  // FIXME there is no actual debug info here
1132  DebugLoc dl = Op.getDebugLoc();
1133  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1134  SDValue Res;
1135  if (CP->isMachineConstantPoolEntry())
1136    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1137                                    CP->getAlignment());
1138  else
1139    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1140                                    CP->getAlignment());
1141  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1142}
1143
1144// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1145SDValue
1146ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1147                                                 SelectionDAG &DAG) {
1148  DebugLoc dl = GA->getDebugLoc();
1149  MVT PtrVT = getPointerTy();
1150  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1151  ARMConstantPoolValue *CPV =
1152    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1153                             PCAdj, "tlsgd", true);
1154  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1155  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1156  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, NULL, 0);
1157  SDValue Chain = Argument.getValue(1);
1158
1159  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1160  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1161
1162  // call __tls_get_addr.
1163  ArgListTy Args;
1164  ArgListEntry Entry;
1165  Entry.Node = Argument;
1166  Entry.Ty = (const Type *) Type::Int32Ty;
1167  Args.push_back(Entry);
1168  // FIXME: is there useful debug info available here?
1169  std::pair<SDValue, SDValue> CallResult =
1170    LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false, false, false,
1171                0, CallingConv::C, false,
1172                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1173  return CallResult.first;
1174}
1175
1176// Lower ISD::GlobalTLSAddress using the "initial exec" or
1177// "local exec" model.
1178SDValue
1179ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1180                                        SelectionDAG &DAG) {
1181  GlobalValue *GV = GA->getGlobal();
1182  DebugLoc dl = GA->getDebugLoc();
1183  SDValue Offset;
1184  SDValue Chain = DAG.getEntryNode();
1185  MVT PtrVT = getPointerTy();
1186  // Get the Thread Pointer
1187  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1188
1189  if (GV->isDeclaration()) {
1190    // initial exec model
1191    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1192    ARMConstantPoolValue *CPV =
1193      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue,
1194                               PCAdj, "gottpoff", true);
1195    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1196    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1197    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1198    Chain = Offset.getValue(1);
1199
1200    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1201    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1202
1203    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1204  } else {
1205    // local exec model
1206    ARMConstantPoolValue *CPV =
1207      new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff");
1208    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1209    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1210    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, NULL, 0);
1211  }
1212
1213  // The address of the thread local variable is the add of the thread
1214  // pointer with the offset of the variable.
1215  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1216}
1217
1218SDValue
1219ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
1220  // TODO: implement the "local dynamic" model
1221  assert(Subtarget->isTargetELF() &&
1222         "TLS not implemented for non-ELF targets");
1223  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1224  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1225  // otherwise use the "Local Exec" TLS Model
1226  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1227    return LowerToTLSGeneralDynamicModel(GA, DAG);
1228  else
1229    return LowerToTLSExecModels(GA, DAG);
1230}
1231
1232SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1233                                                 SelectionDAG &DAG) {
1234  MVT PtrVT = getPointerTy();
1235  DebugLoc dl = Op.getDebugLoc();
1236  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1237  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1238  if (RelocM == Reloc::PIC_) {
1239    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1240    ARMConstantPoolValue *CPV =
1241      new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT");
1242    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1243    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1244    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1245                                 CPAddr, NULL, 0);
1246    SDValue Chain = Result.getValue(1);
1247    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1248    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1249    if (!UseGOTOFF)
1250      Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1251    return Result;
1252  } else {
1253    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1254    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1255    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1256  }
1257}
1258
1259/// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol
1260/// even in non-static mode.
1261static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) {
1262  // If symbol visibility is hidden, the extra load is not needed if
1263  // the symbol is definitely defined in the current translation unit.
1264  bool isDecl = GV->isDeclaration() || GV->hasAvailableExternallyLinkage();
1265  if (GV->hasHiddenVisibility() && (!isDecl && !GV->hasCommonLinkage()))
1266    return false;
1267  return RelocM != Reloc::Static && (isDecl || GV->isWeakForLinker());
1268}
1269
1270SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1271                                                    SelectionDAG &DAG) {
1272  MVT PtrVT = getPointerTy();
1273  DebugLoc dl = Op.getDebugLoc();
1274  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1275  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1276  bool IsIndirect = GVIsIndirectSymbol(GV, RelocM);
1277  SDValue CPAddr;
1278  if (RelocM == Reloc::Static)
1279    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1280  else {
1281    unsigned PCAdj = (RelocM != Reloc::PIC_)
1282      ? 0 : (Subtarget->isThumb() ? 4 : 8);
1283    ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr
1284      : ARMCP::CPValue;
1285    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex,
1286                                                         Kind, PCAdj);
1287    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1288  }
1289  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1290
1291  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1292  SDValue Chain = Result.getValue(1);
1293
1294  if (RelocM == Reloc::PIC_) {
1295    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1296    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1297  }
1298  if (IsIndirect)
1299    Result = DAG.getLoad(PtrVT, dl, Chain, Result, NULL, 0);
1300
1301  return Result;
1302}
1303
1304SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1305                                                    SelectionDAG &DAG){
1306  assert(Subtarget->isTargetELF() &&
1307         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1308  MVT PtrVT = getPointerTy();
1309  DebugLoc dl = Op.getDebugLoc();
1310  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1311  ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_",
1312                                                       ARMPCLabelIndex,
1313                                                       ARMCP::CPValue, PCAdj);
1314  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1315  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1316  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, NULL, 0);
1317  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32);
1318  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1319}
1320
1321SDValue
1322ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
1323  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1324  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1325  DebugLoc dl = Op.getDebugLoc();
1326  switch (IntNo) {
1327  default: return SDValue();    // Don't custom lower most intrinsics.
1328  case Intrinsic::arm_thread_pointer:
1329      return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1330  case Intrinsic::eh_sjlj_setjmp:
1331      SDValue Res = DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32,
1332                         Op.getOperand(1));
1333      return Res;
1334  }
1335}
1336
1337static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
1338                            unsigned VarArgsFrameIndex) {
1339  // vastart just stores the address of the VarArgsFrameIndex slot into the
1340  // memory location argument.
1341  DebugLoc dl = Op.getDebugLoc();
1342  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1343  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1344  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1345  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1346}
1347
1348SDValue
1349ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
1350                                        SDValue &Root, SelectionDAG &DAG,
1351                                        DebugLoc dl) {
1352  MachineFunction &MF = DAG.getMachineFunction();
1353  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1354
1355  TargetRegisterClass *RC;
1356  if (AFI->isThumb1OnlyFunction())
1357    RC = ARM::tGPRRegisterClass;
1358  else
1359    RC = ARM::GPRRegisterClass;
1360
1361  // Transform the arguments stored in physical registers into virtual ones.
1362  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1363  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1364
1365  SDValue ArgValue2;
1366  if (NextVA.isMemLoc()) {
1367    unsigned ArgSize = NextVA.getLocVT().getSizeInBits()/8;
1368    MachineFrameInfo *MFI = MF.getFrameInfo();
1369    int FI = MFI->CreateFixedObject(ArgSize, NextVA.getLocMemOffset());
1370
1371    // Create load node to retrieve arguments from the stack.
1372    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1373    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, NULL, 0);
1374  } else {
1375    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
1376    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
1377  }
1378
1379  return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, ArgValue, ArgValue2);
1380}
1381
1382SDValue
1383ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1384  MachineFunction &MF = DAG.getMachineFunction();
1385  MachineFrameInfo *MFI = MF.getFrameInfo();
1386
1387  SDValue Root = Op.getOperand(0);
1388  DebugLoc dl = Op.getDebugLoc();
1389  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1390  unsigned CC = MF.getFunction()->getCallingConv();
1391  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1392
1393  // Assign locations to all of the incoming arguments.
1394  SmallVector<CCValAssign, 16> ArgLocs;
1395  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs, *DAG.getContext());
1396  CCInfo.AnalyzeFormalArguments(Op.getNode(),
1397                                CCAssignFnForNode(CC, /* Return*/ false));
1398
1399  SmallVector<SDValue, 16> ArgValues;
1400
1401  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1402    CCValAssign &VA = ArgLocs[i];
1403
1404    // Arguments stored in registers.
1405    if (VA.isRegLoc()) {
1406      MVT RegVT = VA.getLocVT();
1407
1408      SDValue ArgValue;
1409      if (VA.needsCustom()) {
1410        // f64 and vector types are split up into multiple registers or
1411        // combinations of registers and stack slots.
1412        RegVT = MVT::i32;
1413
1414        if (VA.getLocVT() == MVT::v2f64) {
1415          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
1416                                                   Root, DAG, dl);
1417          VA = ArgLocs[++i]; // skip ahead to next loc
1418          SDValue ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
1419                                                   Root, DAG, dl);
1420          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1421          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1422                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
1423          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
1424                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
1425        } else
1426          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Root, DAG, dl);
1427
1428      } else {
1429        TargetRegisterClass *RC;
1430        if (FloatABIType == FloatABI::Hard && RegVT == MVT::f32)
1431          RC = ARM::SPRRegisterClass;
1432        else if (FloatABIType == FloatABI::Hard && RegVT == MVT::f64)
1433          RC = ARM::DPRRegisterClass;
1434        else if (AFI->isThumb1OnlyFunction())
1435          RC = ARM::tGPRRegisterClass;
1436        else
1437          RC = ARM::GPRRegisterClass;
1438
1439        assert((RegVT == MVT::i32 || RegVT == MVT::f32 ||
1440                (FloatABIType == FloatABI::Hard && RegVT == MVT::f64)) &&
1441               "RegVT not supported by FORMAL_ARGUMENTS Lowering");
1442
1443        // Transform the arguments in physical registers into virtual ones.
1444        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1445        ArgValue = DAG.getCopyFromReg(Root, dl, Reg, RegVT);
1446      }
1447
1448      // If this is an 8 or 16-bit value, it is really passed promoted
1449      // to 32 bits.  Insert an assert[sz]ext to capture this, then
1450      // truncate to the right size.
1451      switch (VA.getLocInfo()) {
1452      default: llvm_unreachable("Unknown loc info!");
1453      case CCValAssign::Full: break;
1454      case CCValAssign::BCvt:
1455        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1456        break;
1457      case CCValAssign::SExt:
1458        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1459                               DAG.getValueType(VA.getValVT()));
1460        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1461        break;
1462      case CCValAssign::ZExt:
1463        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1464                               DAG.getValueType(VA.getValVT()));
1465        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1466        break;
1467      }
1468
1469      ArgValues.push_back(ArgValue);
1470
1471    } else { // VA.isRegLoc()
1472
1473      // sanity check
1474      assert(VA.isMemLoc());
1475      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
1476
1477      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
1478      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset());
1479
1480      // Create load nodes to retrieve arguments from the stack.
1481      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1482      ArgValues.push_back(DAG.getLoad(VA.getValVT(), dl, Root, FIN, NULL, 0));
1483    }
1484  }
1485
1486  // varargs
1487  if (isVarArg) {
1488    static const unsigned GPRArgRegs[] = {
1489      ARM::R0, ARM::R1, ARM::R2, ARM::R3
1490    };
1491
1492    unsigned NumGPRs = CCInfo.getFirstUnallocated
1493      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
1494
1495    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
1496    unsigned VARegSize = (4 - NumGPRs) * 4;
1497    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
1498    unsigned ArgOffset = 0;
1499    if (VARegSaveSize) {
1500      // If this function is vararg, store any remaining integer argument regs
1501      // to their spots on the stack so that they may be loaded by deferencing
1502      // the result of va_next.
1503      AFI->setVarArgsRegSaveSize(VARegSaveSize);
1504      ArgOffset = CCInfo.getNextStackOffset();
1505      VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset +
1506                                                 VARegSaveSize - VARegSize);
1507      SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
1508
1509      SmallVector<SDValue, 4> MemOps;
1510      for (; NumGPRs < 4; ++NumGPRs) {
1511        TargetRegisterClass *RC;
1512        if (AFI->isThumb1OnlyFunction())
1513          RC = ARM::tGPRRegisterClass;
1514        else
1515          RC = ARM::GPRRegisterClass;
1516
1517        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
1518        SDValue Val = DAG.getCopyFromReg(Root, dl, VReg, MVT::i32);
1519        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1520        MemOps.push_back(Store);
1521        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
1522                          DAG.getConstant(4, getPointerTy()));
1523      }
1524      if (!MemOps.empty())
1525        Root = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1526                           &MemOps[0], MemOps.size());
1527    } else
1528      // This will point to the next argument passed via stack.
1529      VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1530  }
1531
1532  ArgValues.push_back(Root);
1533
1534  // Return the new list of results.
1535  return DAG.getNode(ISD::MERGE_VALUES, dl, Op.getNode()->getVTList(),
1536                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1537}
1538
1539/// isFloatingPointZero - Return true if this is +0.0.
1540static bool isFloatingPointZero(SDValue Op) {
1541  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1542    return CFP->getValueAPF().isPosZero();
1543  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1544    // Maybe this has already been legalized into the constant pool?
1545    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
1546      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
1547      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
1548        if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1549          return CFP->getValueAPF().isPosZero();
1550    }
1551  }
1552  return false;
1553}
1554
1555static bool isLegalCmpImmediate(unsigned C, bool isThumb1Only) {
1556  return ( isThumb1Only && (C & ~255U) == 0) ||
1557         (!isThumb1Only && ARM_AM::getSOImmVal(C) != -1);
1558}
1559
1560/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
1561/// the given operands.
1562static SDValue getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
1563                         SDValue &ARMCC, SelectionDAG &DAG, bool isThumb1Only,
1564                         DebugLoc dl) {
1565  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1566    unsigned C = RHSC->getZExtValue();
1567    if (!isLegalCmpImmediate(C, isThumb1Only)) {
1568      // Constant does not fit, try adjusting it by one?
1569      switch (CC) {
1570      default: break;
1571      case ISD::SETLT:
1572      case ISD::SETGE:
1573        if (isLegalCmpImmediate(C-1, isThumb1Only)) {
1574          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1575          RHS = DAG.getConstant(C-1, MVT::i32);
1576        }
1577        break;
1578      case ISD::SETULT:
1579      case ISD::SETUGE:
1580        if (C > 0 && isLegalCmpImmediate(C-1, isThumb1Only)) {
1581          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1582          RHS = DAG.getConstant(C-1, MVT::i32);
1583        }
1584        break;
1585      case ISD::SETLE:
1586      case ISD::SETGT:
1587        if (isLegalCmpImmediate(C+1, isThumb1Only)) {
1588          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1589          RHS = DAG.getConstant(C+1, MVT::i32);
1590        }
1591        break;
1592      case ISD::SETULE:
1593      case ISD::SETUGT:
1594        if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb1Only)) {
1595          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1596          RHS = DAG.getConstant(C+1, MVT::i32);
1597        }
1598        break;
1599      }
1600    }
1601  }
1602
1603  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
1604  ARMISD::NodeType CompareType;
1605  switch (CondCode) {
1606  default:
1607    CompareType = ARMISD::CMP;
1608    break;
1609  case ARMCC::EQ:
1610  case ARMCC::NE:
1611    // Uses only Z Flag
1612    CompareType = ARMISD::CMPZ;
1613    break;
1614  }
1615  ARMCC = DAG.getConstant(CondCode, MVT::i32);
1616  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
1617}
1618
1619/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
1620static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
1621                         DebugLoc dl) {
1622  SDValue Cmp;
1623  if (!isFloatingPointZero(RHS))
1624    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
1625  else
1626    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
1627  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
1628}
1629
1630static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG,
1631                              const ARMSubtarget *ST) {
1632  MVT VT = Op.getValueType();
1633  SDValue LHS = Op.getOperand(0);
1634  SDValue RHS = Op.getOperand(1);
1635  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1636  SDValue TrueVal = Op.getOperand(2);
1637  SDValue FalseVal = Op.getOperand(3);
1638  DebugLoc dl = Op.getDebugLoc();
1639
1640  if (LHS.getValueType() == MVT::i32) {
1641    SDValue ARMCC;
1642    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1643    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1644    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp);
1645  }
1646
1647  ARMCC::CondCodes CondCode, CondCode2;
1648  if (FPCCToARMCC(CC, CondCode, CondCode2))
1649    std::swap(TrueVal, FalseVal);
1650
1651  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1652  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1653  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1654  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
1655                                 ARMCC, CCR, Cmp);
1656  if (CondCode2 != ARMCC::AL) {
1657    SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32);
1658    // FIXME: Needs another CMP because flag can have but one use.
1659    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
1660    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
1661                         Result, TrueVal, ARMCC2, CCR, Cmp2);
1662  }
1663  return Result;
1664}
1665
1666static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG,
1667                          const ARMSubtarget *ST) {
1668  SDValue  Chain = Op.getOperand(0);
1669  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1670  SDValue    LHS = Op.getOperand(2);
1671  SDValue    RHS = Op.getOperand(3);
1672  SDValue   Dest = Op.getOperand(4);
1673  DebugLoc dl = Op.getDebugLoc();
1674
1675  if (LHS.getValueType() == MVT::i32) {
1676    SDValue ARMCC;
1677    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1678    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb1Only(), dl);
1679    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
1680                       Chain, Dest, ARMCC, CCR,Cmp);
1681  }
1682
1683  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
1684  ARMCC::CondCodes CondCode, CondCode2;
1685  if (FPCCToARMCC(CC, CondCode, CondCode2))
1686    // Swap the LHS/RHS of the comparison if needed.
1687    std::swap(LHS, RHS);
1688
1689  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
1690  SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32);
1691  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1692  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
1693  SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp };
1694  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1695  if (CondCode2 != ARMCC::AL) {
1696    ARMCC = DAG.getConstant(CondCode2, MVT::i32);
1697    SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) };
1698    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
1699  }
1700  return Res;
1701}
1702
1703SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) {
1704  SDValue Chain = Op.getOperand(0);
1705  SDValue Table = Op.getOperand(1);
1706  SDValue Index = Op.getOperand(2);
1707  DebugLoc dl = Op.getDebugLoc();
1708
1709  MVT PTy = getPointerTy();
1710  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
1711  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
1712  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
1713  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
1714  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
1715  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
1716  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
1717  if (Subtarget->isThumb2()) {
1718    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
1719    // which does another jump to the destination. This also makes it easier
1720    // to translate it to TBB / TBH later.
1721    // FIXME: This might not work if the function is extremely large.
1722    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
1723                       Addr, Op.getOperand(2), JTI, UId);
1724  }
1725  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
1726    Addr = DAG.getLoad((MVT)MVT::i32, dl, Chain, Addr, NULL, 0);
1727    Chain = Addr.getValue(1);
1728    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
1729    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1730  } else {
1731    Addr = DAG.getLoad(PTy, dl, Chain, Addr, NULL, 0);
1732    Chain = Addr.getValue(1);
1733    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
1734  }
1735}
1736
1737static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
1738  DebugLoc dl = Op.getDebugLoc();
1739  unsigned Opc =
1740    Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI;
1741  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
1742  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
1743}
1744
1745static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
1746  MVT VT = Op.getValueType();
1747  DebugLoc dl = Op.getDebugLoc();
1748  unsigned Opc =
1749    Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF;
1750
1751  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
1752  return DAG.getNode(Opc, dl, VT, Op);
1753}
1754
1755static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
1756  // Implement fcopysign with a fabs and a conditional fneg.
1757  SDValue Tmp0 = Op.getOperand(0);
1758  SDValue Tmp1 = Op.getOperand(1);
1759  DebugLoc dl = Op.getDebugLoc();
1760  MVT VT = Op.getValueType();
1761  MVT SrcVT = Tmp1.getValueType();
1762  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
1763  SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl);
1764  SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32);
1765  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
1766  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp);
1767}
1768
1769SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
1770  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
1771  MFI->setFrameAddressIsTaken(true);
1772  MVT VT = Op.getValueType();
1773  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
1774  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1775  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
1776    ? ARM::R7 : ARM::R11;
1777  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
1778  while (Depth--)
1779    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
1780  return FrameAddr;
1781}
1782
1783SDValue
1784ARMTargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
1785                                           SDValue Chain,
1786                                           SDValue Dst, SDValue Src,
1787                                           SDValue Size, unsigned Align,
1788                                           bool AlwaysInline,
1789                                         const Value *DstSV, uint64_t DstSVOff,
1790                                         const Value *SrcSV, uint64_t SrcSVOff){
1791  // Do repeated 4-byte loads and stores. To be improved.
1792  // This requires 4-byte alignment.
1793  if ((Align & 3) != 0)
1794    return SDValue();
1795  // This requires the copy size to be a constant, preferrably
1796  // within a subtarget-specific limit.
1797  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
1798  if (!ConstantSize)
1799    return SDValue();
1800  uint64_t SizeVal = ConstantSize->getZExtValue();
1801  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
1802    return SDValue();
1803
1804  unsigned BytesLeft = SizeVal & 3;
1805  unsigned NumMemOps = SizeVal >> 2;
1806  unsigned EmittedNumMemOps = 0;
1807  MVT VT = MVT::i32;
1808  unsigned VTSize = 4;
1809  unsigned i = 0;
1810  const unsigned MAX_LOADS_IN_LDM = 6;
1811  SDValue TFOps[MAX_LOADS_IN_LDM];
1812  SDValue Loads[MAX_LOADS_IN_LDM];
1813  uint64_t SrcOff = 0, DstOff = 0;
1814
1815  // Emit up to MAX_LOADS_IN_LDM loads, then a TokenFactor barrier, then the
1816  // same number of stores.  The loads and stores will get combined into
1817  // ldm/stm later on.
1818  while (EmittedNumMemOps < NumMemOps) {
1819    for (i = 0;
1820         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1821      Loads[i] = DAG.getLoad(VT, dl, Chain,
1822                             DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1823                                         DAG.getConstant(SrcOff, MVT::i32)),
1824                             SrcSV, SrcSVOff + SrcOff);
1825      TFOps[i] = Loads[i].getValue(1);
1826      SrcOff += VTSize;
1827    }
1828    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1829
1830    for (i = 0;
1831         i < MAX_LOADS_IN_LDM && EmittedNumMemOps + i < NumMemOps; ++i) {
1832      TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1833                           DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1834                                       DAG.getConstant(DstOff, MVT::i32)),
1835                           DstSV, DstSVOff + DstOff);
1836      DstOff += VTSize;
1837    }
1838    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1839
1840    EmittedNumMemOps += i;
1841  }
1842
1843  if (BytesLeft == 0)
1844    return Chain;
1845
1846  // Issue loads / stores for the trailing (1 - 3) bytes.
1847  unsigned BytesLeftSave = BytesLeft;
1848  i = 0;
1849  while (BytesLeft) {
1850    if (BytesLeft >= 2) {
1851      VT = MVT::i16;
1852      VTSize = 2;
1853    } else {
1854      VT = MVT::i8;
1855      VTSize = 1;
1856    }
1857
1858    Loads[i] = DAG.getLoad(VT, dl, Chain,
1859                           DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
1860                                       DAG.getConstant(SrcOff, MVT::i32)),
1861                           SrcSV, SrcSVOff + SrcOff);
1862    TFOps[i] = Loads[i].getValue(1);
1863    ++i;
1864    SrcOff += VTSize;
1865    BytesLeft -= VTSize;
1866  }
1867  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1868
1869  i = 0;
1870  BytesLeft = BytesLeftSave;
1871  while (BytesLeft) {
1872    if (BytesLeft >= 2) {
1873      VT = MVT::i16;
1874      VTSize = 2;
1875    } else {
1876      VT = MVT::i8;
1877      VTSize = 1;
1878    }
1879
1880    TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
1881                            DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
1882                                        DAG.getConstant(DstOff, MVT::i32)),
1883                            DstSV, DstSVOff + DstOff);
1884    ++i;
1885    DstOff += VTSize;
1886    BytesLeft -= VTSize;
1887  }
1888  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &TFOps[0], i);
1889}
1890
1891static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
1892  SDValue Op = N->getOperand(0);
1893  DebugLoc dl = N->getDebugLoc();
1894  if (N->getValueType(0) == MVT::f64) {
1895    // Turn i64->f64 into FMDRR.
1896    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
1897                             DAG.getConstant(0, MVT::i32));
1898    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
1899                             DAG.getConstant(1, MVT::i32));
1900    return DAG.getNode(ARMISD::FMDRR, dl, MVT::f64, Lo, Hi);
1901  }
1902
1903  // Turn f64->i64 into FMRRD.
1904  SDValue Cvt = DAG.getNode(ARMISD::FMRRD, dl,
1905                            DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
1906
1907  // Merge the pieces into a single i64 value.
1908  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
1909}
1910
1911/// getZeroVector - Returns a vector of specified type with all zero elements.
1912///
1913static SDValue getZeroVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
1914  assert(VT.isVector() && "Expected a vector type");
1915
1916  // Zero vectors are used to represent vector negation and in those cases
1917  // will be implemented with the NEON VNEG instruction.  However, VNEG does
1918  // not support i64 elements, so sometimes the zero vectors will need to be
1919  // explicitly constructed.  For those cases, and potentially other uses in
1920  // the future, always build zero vectors as <4 x i32> or <2 x i32> bitcasted
1921  // to their dest type.  This ensures they get CSE'd.
1922  SDValue Vec;
1923  SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
1924  if (VT.getSizeInBits() == 64)
1925    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
1926  else
1927    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
1928
1929  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
1930}
1931
1932/// getOnesVector - Returns a vector of specified type with all bits set.
1933///
1934static SDValue getOnesVector(MVT VT, SelectionDAG &DAG, DebugLoc dl) {
1935  assert(VT.isVector() && "Expected a vector type");
1936
1937  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
1938  // type.  This ensures they get CSE'd.
1939  SDValue Vec;
1940  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
1941  if (VT.getSizeInBits() == 64)
1942    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
1943  else
1944    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
1945
1946  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
1947}
1948
1949static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
1950                          const ARMSubtarget *ST) {
1951  MVT VT = N->getValueType(0);
1952  DebugLoc dl = N->getDebugLoc();
1953
1954  // Lower vector shifts on NEON to use VSHL.
1955  if (VT.isVector()) {
1956    assert(ST->hasNEON() && "unexpected vector shift");
1957
1958    // Left shifts translate directly to the vshiftu intrinsic.
1959    if (N->getOpcode() == ISD::SHL)
1960      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
1961                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
1962                         N->getOperand(0), N->getOperand(1));
1963
1964    assert((N->getOpcode() == ISD::SRA ||
1965            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
1966
1967    // NEON uses the same intrinsics for both left and right shifts.  For
1968    // right shifts, the shift amounts are negative, so negate the vector of
1969    // shift amounts.
1970    MVT ShiftVT = N->getOperand(1).getValueType();
1971    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
1972                                       getZeroVector(ShiftVT, DAG, dl),
1973                                       N->getOperand(1));
1974    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
1975                               Intrinsic::arm_neon_vshifts :
1976                               Intrinsic::arm_neon_vshiftu);
1977    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
1978                       DAG.getConstant(vshiftInt, MVT::i32),
1979                       N->getOperand(0), NegatedCount);
1980  }
1981
1982  assert(VT == MVT::i64 &&
1983         (N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
1984         "Unknown shift to lower!");
1985
1986  // We only lower SRA, SRL of 1 here, all others use generic lowering.
1987  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
1988      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
1989    return SDValue();
1990
1991  // If we are in thumb mode, we don't have RRX.
1992  if (ST->isThumb1Only()) return SDValue();
1993
1994  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
1995  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
1996                             DAG.getConstant(0, MVT::i32));
1997  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
1998                             DAG.getConstant(1, MVT::i32));
1999
2000  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2001  // captures the result into a carry flag.
2002  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2003  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2004
2005  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2006  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2007
2008  // Merge the pieces into a single i64 value.
2009 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2010}
2011
2012static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2013  SDValue TmpOp0, TmpOp1;
2014  bool Invert = false;
2015  bool Swap = false;
2016  unsigned Opc = 0;
2017
2018  SDValue Op0 = Op.getOperand(0);
2019  SDValue Op1 = Op.getOperand(1);
2020  SDValue CC = Op.getOperand(2);
2021  MVT VT = Op.getValueType();
2022  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2023  DebugLoc dl = Op.getDebugLoc();
2024
2025  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2026    switch (SetCCOpcode) {
2027    default: llvm_unreachable("Illegal FP comparison"); break;
2028    case ISD::SETUNE:
2029    case ISD::SETNE:  Invert = true; // Fallthrough
2030    case ISD::SETOEQ:
2031    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2032    case ISD::SETOLT:
2033    case ISD::SETLT: Swap = true; // Fallthrough
2034    case ISD::SETOGT:
2035    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2036    case ISD::SETOLE:
2037    case ISD::SETLE:  Swap = true; // Fallthrough
2038    case ISD::SETOGE:
2039    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2040    case ISD::SETUGE: Swap = true; // Fallthrough
2041    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2042    case ISD::SETUGT: Swap = true; // Fallthrough
2043    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2044    case ISD::SETUEQ: Invert = true; // Fallthrough
2045    case ISD::SETONE:
2046      // Expand this to (OLT | OGT).
2047      TmpOp0 = Op0;
2048      TmpOp1 = Op1;
2049      Opc = ISD::OR;
2050      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2051      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2052      break;
2053    case ISD::SETUO: Invert = true; // Fallthrough
2054    case ISD::SETO:
2055      // Expand this to (OLT | OGE).
2056      TmpOp0 = Op0;
2057      TmpOp1 = Op1;
2058      Opc = ISD::OR;
2059      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2060      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2061      break;
2062    }
2063  } else {
2064    // Integer comparisons.
2065    switch (SetCCOpcode) {
2066    default: llvm_unreachable("Illegal integer comparison"); break;
2067    case ISD::SETNE:  Invert = true;
2068    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2069    case ISD::SETLT:  Swap = true;
2070    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2071    case ISD::SETLE:  Swap = true;
2072    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
2073    case ISD::SETULT: Swap = true;
2074    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
2075    case ISD::SETULE: Swap = true;
2076    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
2077    }
2078
2079    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
2080    if (Opc == ARMISD::VCEQ) {
2081
2082      SDValue AndOp;
2083      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
2084        AndOp = Op0;
2085      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
2086        AndOp = Op1;
2087
2088      // Ignore bitconvert.
2089      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
2090        AndOp = AndOp.getOperand(0);
2091
2092      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
2093        Opc = ARMISD::VTST;
2094        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
2095        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
2096        Invert = !Invert;
2097      }
2098    }
2099  }
2100
2101  if (Swap)
2102    std::swap(Op0, Op1);
2103
2104  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
2105
2106  if (Invert)
2107    Result = DAG.getNOT(dl, Result, VT);
2108
2109  return Result;
2110}
2111
2112/// isVMOVSplat - Check if the specified splat value corresponds to an immediate
2113/// VMOV instruction, and if so, return the constant being splatted.
2114static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef,
2115                           unsigned SplatBitSize, SelectionDAG &DAG) {
2116  switch (SplatBitSize) {
2117  case 8:
2118    // Any 1-byte value is OK.
2119    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2120    return DAG.getTargetConstant(SplatBits, MVT::i8);
2121
2122  case 16:
2123    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
2124    if ((SplatBits & ~0xff) == 0 ||
2125        (SplatBits & ~0xff00) == 0)
2126      return DAG.getTargetConstant(SplatBits, MVT::i16);
2127    break;
2128
2129  case 32:
2130    // NEON's 32-bit VMOV supports splat values where:
2131    // * only one byte is nonzero, or
2132    // * the least significant byte is 0xff and the second byte is nonzero, or
2133    // * the least significant 2 bytes are 0xff and the third is nonzero.
2134    if ((SplatBits & ~0xff) == 0 ||
2135        (SplatBits & ~0xff00) == 0 ||
2136        (SplatBits & ~0xff0000) == 0 ||
2137        (SplatBits & ~0xff000000) == 0)
2138      return DAG.getTargetConstant(SplatBits, MVT::i32);
2139
2140    if ((SplatBits & ~0xffff) == 0 &&
2141        ((SplatBits | SplatUndef) & 0xff) == 0xff)
2142      return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32);
2143
2144    if ((SplatBits & ~0xffffff) == 0 &&
2145        ((SplatBits | SplatUndef) & 0xffff) == 0xffff)
2146      return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32);
2147
2148    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
2149    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
2150    // VMOV.I32.  A (very) minor optimization would be to replicate the value
2151    // and fall through here to test for a valid 64-bit splat.  But, then the
2152    // caller would also need to check and handle the change in size.
2153    break;
2154
2155  case 64: {
2156    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
2157    uint64_t BitMask = 0xff;
2158    uint64_t Val = 0;
2159    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2160      if (((SplatBits | SplatUndef) & BitMask) == BitMask)
2161        Val |= BitMask;
2162      else if ((SplatBits & BitMask) != 0)
2163        return SDValue();
2164      BitMask <<= 8;
2165    }
2166    return DAG.getTargetConstant(Val, MVT::i64);
2167  }
2168
2169  default:
2170    llvm_unreachable("unexpected size for isVMOVSplat");
2171    break;
2172  }
2173
2174  return SDValue();
2175}
2176
2177/// getVMOVImm - If this is a build_vector of constants which can be
2178/// formed by using a VMOV instruction of the specified element size,
2179/// return the constant being splatted.  The ByteSize field indicates the
2180/// number of bytes of each element [1248].
2181SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2182  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
2183  APInt SplatBits, SplatUndef;
2184  unsigned SplatBitSize;
2185  bool HasAnyUndefs;
2186  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2187                                      HasAnyUndefs, ByteSize * 8))
2188    return SDValue();
2189
2190  if (SplatBitSize > ByteSize * 8)
2191    return SDValue();
2192
2193  return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
2194                     SplatBitSize, DAG);
2195}
2196
2197/// isVREVMask - Check if a vector shuffle corresponds to a VREV
2198/// instruction with the specified blocksize.  (The order of the elements
2199/// within each block of the vector is reversed.)
2200bool ARM::isVREVMask(ShuffleVectorSDNode *N, unsigned BlockSize) {
2201  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
2202         "Only possible block sizes for VREV are: 16, 32, 64");
2203
2204  MVT VT = N->getValueType(0);
2205  unsigned NumElts = VT.getVectorNumElements();
2206  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
2207  unsigned BlockElts = N->getMaskElt(0) + 1;
2208
2209  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
2210    return false;
2211
2212  for (unsigned i = 0; i < NumElts; ++i) {
2213    if ((unsigned) N->getMaskElt(i) !=
2214        (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
2215      return false;
2216  }
2217
2218  return true;
2219}
2220
2221static SDValue BuildSplat(SDValue Val, MVT VT, SelectionDAG &DAG, DebugLoc dl) {
2222  // Canonicalize all-zeros and all-ones vectors.
2223  ConstantSDNode *ConstVal = dyn_cast<ConstantSDNode>(Val.getNode());
2224  if (ConstVal->isNullValue())
2225    return getZeroVector(VT, DAG, dl);
2226  if (ConstVal->isAllOnesValue())
2227    return getOnesVector(VT, DAG, dl);
2228
2229  MVT CanonicalVT;
2230  if (VT.is64BitVector()) {
2231    switch (Val.getValueType().getSizeInBits()) {
2232    case 8:  CanonicalVT = MVT::v8i8; break;
2233    case 16: CanonicalVT = MVT::v4i16; break;
2234    case 32: CanonicalVT = MVT::v2i32; break;
2235    case 64: CanonicalVT = MVT::v1i64; break;
2236    default: llvm_unreachable("unexpected splat element type"); break;
2237    }
2238  } else {
2239    assert(VT.is128BitVector() && "unknown splat vector size");
2240    switch (Val.getValueType().getSizeInBits()) {
2241    case 8:  CanonicalVT = MVT::v16i8; break;
2242    case 16: CanonicalVT = MVT::v8i16; break;
2243    case 32: CanonicalVT = MVT::v4i32; break;
2244    case 64: CanonicalVT = MVT::v2i64; break;
2245    default: llvm_unreachable("unexpected splat element type"); break;
2246    }
2247  }
2248
2249  // Build a canonical splat for this value.
2250  SmallVector<SDValue, 8> Ops;
2251  Ops.assign(CanonicalVT.getVectorNumElements(), Val);
2252  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0],
2253                            Ops.size());
2254  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res);
2255}
2256
2257// If this is a case we can't handle, return null and let the default
2258// expansion code take care of it.
2259static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
2260  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
2261  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
2262  DebugLoc dl = Op.getDebugLoc();
2263  MVT VT = Op.getValueType();
2264
2265  APInt SplatBits, SplatUndef;
2266  unsigned SplatBitSize;
2267  bool HasAnyUndefs;
2268  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
2269    SDValue Val = isVMOVSplat(SplatBits.getZExtValue(),
2270                              SplatUndef.getZExtValue(), SplatBitSize, DAG);
2271    if (Val.getNode())
2272      return BuildSplat(Val, VT, DAG, dl);
2273  }
2274
2275  // If there are only 2 elements in a 128-bit vector, insert them into an
2276  // undef vector.  This handles the common case for 128-bit vector argument
2277  // passing, where the insertions should be translated to subreg accesses
2278  // with no real instructions.
2279  if (VT.is128BitVector() && Op.getNumOperands() == 2) {
2280    SDValue Val = DAG.getUNDEF(VT);
2281    SDValue Op0 = Op.getOperand(0);
2282    SDValue Op1 = Op.getOperand(1);
2283    if (Op0.getOpcode() != ISD::UNDEF)
2284      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0,
2285                        DAG.getIntPtrConstant(0));
2286    if (Op1.getOpcode() != ISD::UNDEF)
2287      Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1,
2288                        DAG.getIntPtrConstant(1));
2289    return Val;
2290  }
2291
2292  return SDValue();
2293}
2294
2295static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
2296  return Op;
2297}
2298
2299static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
2300  return Op;
2301}
2302
2303static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
2304  MVT VT = Op.getValueType();
2305  DebugLoc dl = Op.getDebugLoc();
2306  assert((VT == MVT::i8 || VT == MVT::i16) &&
2307         "unexpected type for custom-lowering vector extract");
2308  SDValue Vec = Op.getOperand(0);
2309  SDValue Lane = Op.getOperand(1);
2310  Op = DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
2311  Op = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Op, DAG.getValueType(VT));
2312  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
2313}
2314
2315static SDValue LowerCONCAT_VECTORS(SDValue Op) {
2316  if (Op.getValueType().is128BitVector() && Op.getNumOperands() == 2)
2317    return Op;
2318  return SDValue();
2319}
2320
2321SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
2322  switch (Op.getOpcode()) {
2323  default: llvm_unreachable("Don't know how to custom lower this!");
2324  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
2325  case ISD::GlobalAddress:
2326    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
2327      LowerGlobalAddressELF(Op, DAG);
2328  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
2329  case ISD::CALL:          return LowerCALL(Op, DAG);
2330  case ISD::RET:           return LowerRET(Op, DAG);
2331  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG, Subtarget);
2332  case ISD::BR_CC:         return LowerBR_CC(Op, DAG, Subtarget);
2333  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
2334  case ISD::VASTART:       return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2335  case ISD::SINT_TO_FP:
2336  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
2337  case ISD::FP_TO_SINT:
2338  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
2339  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
2340  case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
2341  case ISD::RETURNADDR:    break;
2342  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
2343  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2344  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2345  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
2346  case ISD::SHL:
2347  case ISD::SRL:
2348  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
2349  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
2350  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG);
2351  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2352  case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
2353  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2354  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op);
2355  }
2356  return SDValue();
2357}
2358
2359/// ReplaceNodeResults - Replace the results of node with an illegal result
2360/// type with new values built out of custom code.
2361void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
2362                                           SmallVectorImpl<SDValue>&Results,
2363                                           SelectionDAG &DAG) {
2364  switch (N->getOpcode()) {
2365  default:
2366    llvm_unreachable("Don't know how to custom expand this!");
2367    return;
2368  case ISD::BIT_CONVERT:
2369    Results.push_back(ExpandBIT_CONVERT(N, DAG));
2370    return;
2371  case ISD::SRL:
2372  case ISD::SRA: {
2373    SDValue Res = LowerShift(N, DAG, Subtarget);
2374    if (Res.getNode())
2375      Results.push_back(Res);
2376    return;
2377  }
2378  }
2379}
2380
2381//===----------------------------------------------------------------------===//
2382//                           ARM Scheduler Hooks
2383//===----------------------------------------------------------------------===//
2384
2385MachineBasicBlock *
2386ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
2387                                               MachineBasicBlock *BB) const {
2388  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2389  DebugLoc dl = MI->getDebugLoc();
2390  switch (MI->getOpcode()) {
2391  default: assert(false && "Unexpected instr type to insert");
2392  case ARM::tMOVCCr: {
2393    // To "insert" a SELECT_CC instruction, we actually have to insert the
2394    // diamond control-flow pattern.  The incoming instruction knows the
2395    // destination vreg to set, the condition code register to branch on, the
2396    // true/false values to select between, and a branch opcode to use.
2397    const BasicBlock *LLVM_BB = BB->getBasicBlock();
2398    MachineFunction::iterator It = BB;
2399    ++It;
2400
2401    //  thisMBB:
2402    //  ...
2403    //   TrueVal = ...
2404    //   cmpTY ccX, r1, r2
2405    //   bCC copy1MBB
2406    //   fallthrough --> copy0MBB
2407    MachineBasicBlock *thisMBB  = BB;
2408    MachineFunction *F = BB->getParent();
2409    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
2410    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
2411    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
2412      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
2413    F->insert(It, copy0MBB);
2414    F->insert(It, sinkMBB);
2415    // Update machine-CFG edges by first adding all successors of the current
2416    // block to the new block which will contain the Phi node for the select.
2417    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2418        e = BB->succ_end(); i != e; ++i)
2419      sinkMBB->addSuccessor(*i);
2420    // Next, remove all successors of the current block, and add the true
2421    // and fallthrough blocks as its successors.
2422    while(!BB->succ_empty())
2423      BB->removeSuccessor(BB->succ_begin());
2424    BB->addSuccessor(copy0MBB);
2425    BB->addSuccessor(sinkMBB);
2426
2427    //  copy0MBB:
2428    //   %FalseValue = ...
2429    //   # fallthrough to sinkMBB
2430    BB = copy0MBB;
2431
2432    // Update machine-CFG edges
2433    BB->addSuccessor(sinkMBB);
2434
2435    //  sinkMBB:
2436    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2437    //  ...
2438    BB = sinkMBB;
2439    BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg())
2440      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
2441      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2442
2443    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
2444    return BB;
2445  }
2446  }
2447}
2448
2449//===----------------------------------------------------------------------===//
2450//                           ARM Optimization Hooks
2451//===----------------------------------------------------------------------===//
2452
2453static
2454SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
2455                            TargetLowering::DAGCombinerInfo &DCI) {
2456  SelectionDAG &DAG = DCI.DAG;
2457  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2458  MVT VT = N->getValueType(0);
2459  unsigned Opc = N->getOpcode();
2460  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
2461  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
2462  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
2463  ISD::CondCode CC = ISD::SETCC_INVALID;
2464
2465  if (isSlctCC) {
2466    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
2467  } else {
2468    SDValue CCOp = Slct.getOperand(0);
2469    if (CCOp.getOpcode() == ISD::SETCC)
2470      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
2471  }
2472
2473  bool DoXform = false;
2474  bool InvCC = false;
2475  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
2476          "Bad input!");
2477
2478  if (LHS.getOpcode() == ISD::Constant &&
2479      cast<ConstantSDNode>(LHS)->isNullValue()) {
2480    DoXform = true;
2481  } else if (CC != ISD::SETCC_INVALID &&
2482             RHS.getOpcode() == ISD::Constant &&
2483             cast<ConstantSDNode>(RHS)->isNullValue()) {
2484    std::swap(LHS, RHS);
2485    SDValue Op0 = Slct.getOperand(0);
2486    MVT OpVT = isSlctCC ? Op0.getValueType() :
2487                          Op0.getOperand(0).getValueType();
2488    bool isInt = OpVT.isInteger();
2489    CC = ISD::getSetCCInverse(CC, isInt);
2490
2491    if (!TLI.isCondCodeLegal(CC, OpVT))
2492      return SDValue();         // Inverse operator isn't legal.
2493
2494    DoXform = true;
2495    InvCC = true;
2496  }
2497
2498  if (DoXform) {
2499    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
2500    if (isSlctCC)
2501      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
2502                             Slct.getOperand(0), Slct.getOperand(1), CC);
2503    SDValue CCOp = Slct.getOperand(0);
2504    if (InvCC)
2505      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
2506                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
2507    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
2508                       CCOp, OtherOp, Result);
2509  }
2510  return SDValue();
2511}
2512
2513/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
2514static SDValue PerformADDCombine(SDNode *N,
2515                                 TargetLowering::DAGCombinerInfo &DCI) {
2516  // added by evan in r37685 with no testcase.
2517  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2518
2519  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
2520  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
2521    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
2522    if (Result.getNode()) return Result;
2523  }
2524  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2525    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2526    if (Result.getNode()) return Result;
2527  }
2528
2529  return SDValue();
2530}
2531
2532/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
2533static SDValue PerformSUBCombine(SDNode *N,
2534                                 TargetLowering::DAGCombinerInfo &DCI) {
2535  // added by evan in r37685 with no testcase.
2536  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
2537
2538  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
2539  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
2540    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
2541    if (Result.getNode()) return Result;
2542  }
2543
2544  return SDValue();
2545}
2546
2547
2548/// PerformFMRRDCombine - Target-specific dag combine xforms for ARMISD::FMRRD.
2549static SDValue PerformFMRRDCombine(SDNode *N,
2550                                   TargetLowering::DAGCombinerInfo &DCI) {
2551  // fmrrd(fmdrr x, y) -> x,y
2552  SDValue InDouble = N->getOperand(0);
2553  if (InDouble.getOpcode() == ARMISD::FMDRR)
2554    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
2555  return SDValue();
2556}
2557
2558/// getVShiftImm - Check if this is a valid build_vector for the immediate
2559/// operand of a vector shift operation, where all the elements of the
2560/// build_vector must have the same constant integer value.
2561static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
2562  // Ignore bit_converts.
2563  while (Op.getOpcode() == ISD::BIT_CONVERT)
2564    Op = Op.getOperand(0);
2565  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
2566  APInt SplatBits, SplatUndef;
2567  unsigned SplatBitSize;
2568  bool HasAnyUndefs;
2569  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
2570                                      HasAnyUndefs, ElementBits) ||
2571      SplatBitSize > ElementBits)
2572    return false;
2573  Cnt = SplatBits.getSExtValue();
2574  return true;
2575}
2576
2577/// isVShiftLImm - Check if this is a valid build_vector for the immediate
2578/// operand of a vector shift left operation.  That value must be in the range:
2579///   0 <= Value < ElementBits for a left shift; or
2580///   0 <= Value <= ElementBits for a long left shift.
2581static bool isVShiftLImm(SDValue Op, MVT VT, bool isLong, int64_t &Cnt) {
2582  assert(VT.isVector() && "vector shift count is not a vector type");
2583  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2584  if (! getVShiftImm(Op, ElementBits, Cnt))
2585    return false;
2586  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
2587}
2588
2589/// isVShiftRImm - Check if this is a valid build_vector for the immediate
2590/// operand of a vector shift right operation.  For a shift opcode, the value
2591/// is positive, but for an intrinsic the value count must be negative. The
2592/// absolute value must be in the range:
2593///   1 <= |Value| <= ElementBits for a right shift; or
2594///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
2595static bool isVShiftRImm(SDValue Op, MVT VT, bool isNarrow, bool isIntrinsic,
2596                         int64_t &Cnt) {
2597  assert(VT.isVector() && "vector shift count is not a vector type");
2598  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
2599  if (! getVShiftImm(Op, ElementBits, Cnt))
2600    return false;
2601  if (isIntrinsic)
2602    Cnt = -Cnt;
2603  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
2604}
2605
2606/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
2607static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
2608  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2609  switch (IntNo) {
2610  default:
2611    // Don't do anything for most intrinsics.
2612    break;
2613
2614  // Vector shifts: check for immediate versions and lower them.
2615  // Note: This is done during DAG combining instead of DAG legalizing because
2616  // the build_vectors for 64-bit vector element shift counts are generally
2617  // not legal, and it is hard to see their values after they get legalized to
2618  // loads from a constant pool.
2619  case Intrinsic::arm_neon_vshifts:
2620  case Intrinsic::arm_neon_vshiftu:
2621  case Intrinsic::arm_neon_vshiftls:
2622  case Intrinsic::arm_neon_vshiftlu:
2623  case Intrinsic::arm_neon_vshiftn:
2624  case Intrinsic::arm_neon_vrshifts:
2625  case Intrinsic::arm_neon_vrshiftu:
2626  case Intrinsic::arm_neon_vrshiftn:
2627  case Intrinsic::arm_neon_vqshifts:
2628  case Intrinsic::arm_neon_vqshiftu:
2629  case Intrinsic::arm_neon_vqshiftsu:
2630  case Intrinsic::arm_neon_vqshiftns:
2631  case Intrinsic::arm_neon_vqshiftnu:
2632  case Intrinsic::arm_neon_vqshiftnsu:
2633  case Intrinsic::arm_neon_vqrshiftns:
2634  case Intrinsic::arm_neon_vqrshiftnu:
2635  case Intrinsic::arm_neon_vqrshiftnsu: {
2636    MVT VT = N->getOperand(1).getValueType();
2637    int64_t Cnt;
2638    unsigned VShiftOpc = 0;
2639
2640    switch (IntNo) {
2641    case Intrinsic::arm_neon_vshifts:
2642    case Intrinsic::arm_neon_vshiftu:
2643      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
2644        VShiftOpc = ARMISD::VSHL;
2645        break;
2646      }
2647      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
2648        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
2649                     ARMISD::VSHRs : ARMISD::VSHRu);
2650        break;
2651      }
2652      return SDValue();
2653
2654    case Intrinsic::arm_neon_vshiftls:
2655    case Intrinsic::arm_neon_vshiftlu:
2656      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
2657        break;
2658      llvm_unreachable("invalid shift count for vshll intrinsic");
2659
2660    case Intrinsic::arm_neon_vrshifts:
2661    case Intrinsic::arm_neon_vrshiftu:
2662      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
2663        break;
2664      return SDValue();
2665
2666    case Intrinsic::arm_neon_vqshifts:
2667    case Intrinsic::arm_neon_vqshiftu:
2668      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2669        break;
2670      return SDValue();
2671
2672    case Intrinsic::arm_neon_vqshiftsu:
2673      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
2674        break;
2675      llvm_unreachable("invalid shift count for vqshlu intrinsic");
2676
2677    case Intrinsic::arm_neon_vshiftn:
2678    case Intrinsic::arm_neon_vrshiftn:
2679    case Intrinsic::arm_neon_vqshiftns:
2680    case Intrinsic::arm_neon_vqshiftnu:
2681    case Intrinsic::arm_neon_vqshiftnsu:
2682    case Intrinsic::arm_neon_vqrshiftns:
2683    case Intrinsic::arm_neon_vqrshiftnu:
2684    case Intrinsic::arm_neon_vqrshiftnsu:
2685      // Narrowing shifts require an immediate right shift.
2686      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
2687        break;
2688      llvm_unreachable("invalid shift count for narrowing vector shift intrinsic");
2689
2690    default:
2691      llvm_unreachable("unhandled vector shift");
2692    }
2693
2694    switch (IntNo) {
2695    case Intrinsic::arm_neon_vshifts:
2696    case Intrinsic::arm_neon_vshiftu:
2697      // Opcode already set above.
2698      break;
2699    case Intrinsic::arm_neon_vshiftls:
2700    case Intrinsic::arm_neon_vshiftlu:
2701      if (Cnt == VT.getVectorElementType().getSizeInBits())
2702        VShiftOpc = ARMISD::VSHLLi;
2703      else
2704        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
2705                     ARMISD::VSHLLs : ARMISD::VSHLLu);
2706      break;
2707    case Intrinsic::arm_neon_vshiftn:
2708      VShiftOpc = ARMISD::VSHRN; break;
2709    case Intrinsic::arm_neon_vrshifts:
2710      VShiftOpc = ARMISD::VRSHRs; break;
2711    case Intrinsic::arm_neon_vrshiftu:
2712      VShiftOpc = ARMISD::VRSHRu; break;
2713    case Intrinsic::arm_neon_vrshiftn:
2714      VShiftOpc = ARMISD::VRSHRN; break;
2715    case Intrinsic::arm_neon_vqshifts:
2716      VShiftOpc = ARMISD::VQSHLs; break;
2717    case Intrinsic::arm_neon_vqshiftu:
2718      VShiftOpc = ARMISD::VQSHLu; break;
2719    case Intrinsic::arm_neon_vqshiftsu:
2720      VShiftOpc = ARMISD::VQSHLsu; break;
2721    case Intrinsic::arm_neon_vqshiftns:
2722      VShiftOpc = ARMISD::VQSHRNs; break;
2723    case Intrinsic::arm_neon_vqshiftnu:
2724      VShiftOpc = ARMISD::VQSHRNu; break;
2725    case Intrinsic::arm_neon_vqshiftnsu:
2726      VShiftOpc = ARMISD::VQSHRNsu; break;
2727    case Intrinsic::arm_neon_vqrshiftns:
2728      VShiftOpc = ARMISD::VQRSHRNs; break;
2729    case Intrinsic::arm_neon_vqrshiftnu:
2730      VShiftOpc = ARMISD::VQRSHRNu; break;
2731    case Intrinsic::arm_neon_vqrshiftnsu:
2732      VShiftOpc = ARMISD::VQRSHRNsu; break;
2733    }
2734
2735    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
2736                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
2737  }
2738
2739  case Intrinsic::arm_neon_vshiftins: {
2740    MVT VT = N->getOperand(1).getValueType();
2741    int64_t Cnt;
2742    unsigned VShiftOpc = 0;
2743
2744    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
2745      VShiftOpc = ARMISD::VSLI;
2746    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
2747      VShiftOpc = ARMISD::VSRI;
2748    else {
2749      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
2750    }
2751
2752    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
2753                       N->getOperand(1), N->getOperand(2),
2754                       DAG.getConstant(Cnt, MVT::i32));
2755  }
2756
2757  case Intrinsic::arm_neon_vqrshifts:
2758  case Intrinsic::arm_neon_vqrshiftu:
2759    // No immediate versions of these to check for.
2760    break;
2761  }
2762
2763  return SDValue();
2764}
2765
2766/// PerformShiftCombine - Checks for immediate versions of vector shifts and
2767/// lowers them.  As with the vector shift intrinsics, this is done during DAG
2768/// combining instead of DAG legalizing because the build_vectors for 64-bit
2769/// vector element shift counts are generally not legal, and it is hard to see
2770/// their values after they get legalized to loads from a constant pool.
2771static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
2772                                   const ARMSubtarget *ST) {
2773  MVT VT = N->getValueType(0);
2774
2775  // Nothing to be done for scalar shifts.
2776  if (! VT.isVector())
2777    return SDValue();
2778
2779  assert(ST->hasNEON() && "unexpected vector shift");
2780  int64_t Cnt;
2781
2782  switch (N->getOpcode()) {
2783  default: llvm_unreachable("unexpected shift opcode");
2784
2785  case ISD::SHL:
2786    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
2787      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
2788                         DAG.getConstant(Cnt, MVT::i32));
2789    break;
2790
2791  case ISD::SRA:
2792  case ISD::SRL:
2793    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
2794      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
2795                            ARMISD::VSHRs : ARMISD::VSHRu);
2796      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
2797                         DAG.getConstant(Cnt, MVT::i32));
2798    }
2799  }
2800  return SDValue();
2801}
2802
2803/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
2804/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
2805static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
2806                                    const ARMSubtarget *ST) {
2807  SDValue N0 = N->getOperand(0);
2808
2809  // Check for sign- and zero-extensions of vector extract operations of 8-
2810  // and 16-bit vector elements.  NEON supports these directly.  They are
2811  // handled during DAG combining because type legalization will promote them
2812  // to 32-bit types and it is messy to recognize the operations after that.
2813  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2814    SDValue Vec = N0.getOperand(0);
2815    SDValue Lane = N0.getOperand(1);
2816    MVT VT = N->getValueType(0);
2817    MVT EltVT = N0.getValueType();
2818    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2819
2820    if (VT == MVT::i32 &&
2821        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
2822        TLI.isTypeLegal(Vec.getValueType())) {
2823
2824      unsigned Opc = 0;
2825      switch (N->getOpcode()) {
2826      default: llvm_unreachable("unexpected opcode");
2827      case ISD::SIGN_EXTEND:
2828        Opc = ARMISD::VGETLANEs;
2829        break;
2830      case ISD::ZERO_EXTEND:
2831      case ISD::ANY_EXTEND:
2832        Opc = ARMISD::VGETLANEu;
2833        break;
2834      }
2835      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
2836    }
2837  }
2838
2839  return SDValue();
2840}
2841
2842SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
2843                                             DAGCombinerInfo &DCI) const {
2844  switch (N->getOpcode()) {
2845  default: break;
2846  case ISD::ADD:      return PerformADDCombine(N, DCI);
2847  case ISD::SUB:      return PerformSUBCombine(N, DCI);
2848  case ARMISD::FMRRD: return PerformFMRRDCombine(N, DCI);
2849  case ISD::INTRINSIC_WO_CHAIN:
2850    return PerformIntrinsicCombine(N, DCI.DAG);
2851  case ISD::SHL:
2852  case ISD::SRA:
2853  case ISD::SRL:
2854    return PerformShiftCombine(N, DCI.DAG, Subtarget);
2855  case ISD::SIGN_EXTEND:
2856  case ISD::ZERO_EXTEND:
2857  case ISD::ANY_EXTEND:
2858    return PerformExtendCombine(N, DCI.DAG, Subtarget);
2859  }
2860  return SDValue();
2861}
2862
2863/// isLegalAddressImmediate - Return true if the integer value can be used
2864/// as the offset of the target addressing mode for load / store of the
2865/// given type.
2866static bool isLegalAddressImmediate(int64_t V, MVT VT,
2867                                    const ARMSubtarget *Subtarget) {
2868  if (V == 0)
2869    return true;
2870
2871  if (!VT.isSimple())
2872    return false;
2873
2874  if (Subtarget->isThumb()) { // FIXME for thumb2
2875    if (V < 0)
2876      return false;
2877
2878    unsigned Scale = 1;
2879    switch (VT.getSimpleVT()) {
2880    default: return false;
2881    case MVT::i1:
2882    case MVT::i8:
2883      // Scale == 1;
2884      break;
2885    case MVT::i16:
2886      // Scale == 2;
2887      Scale = 2;
2888      break;
2889    case MVT::i32:
2890      // Scale == 4;
2891      Scale = 4;
2892      break;
2893    }
2894
2895    if ((V & (Scale - 1)) != 0)
2896      return false;
2897    V /= Scale;
2898    return V == (V & ((1LL << 5) - 1));
2899  }
2900
2901  if (V < 0)
2902    V = - V;
2903  switch (VT.getSimpleVT()) {
2904  default: return false;
2905  case MVT::i1:
2906  case MVT::i8:
2907  case MVT::i32:
2908    // +- imm12
2909    return V == (V & ((1LL << 12) - 1));
2910  case MVT::i16:
2911    // +- imm8
2912    return V == (V & ((1LL << 8) - 1));
2913  case MVT::f32:
2914  case MVT::f64:
2915    if (!Subtarget->hasVFP2())
2916      return false;
2917    if ((V & 3) != 0)
2918      return false;
2919    V >>= 2;
2920    return V == (V & ((1LL << 8) - 1));
2921  }
2922}
2923
2924/// isLegalAddressingMode - Return true if the addressing mode represented
2925/// by AM is legal for this target, for a load/store of the specified type.
2926bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
2927                                              const Type *Ty) const {
2928  MVT VT = getValueType(Ty, true);
2929  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
2930    return false;
2931
2932  // Can never fold addr of global into load/store.
2933  if (AM.BaseGV)
2934    return false;
2935
2936  switch (AM.Scale) {
2937  case 0:  // no scale reg, must be "r+i" or "r", or "i".
2938    break;
2939  case 1:
2940    if (Subtarget->isThumb())  // FIXME for thumb2
2941      return false;
2942    // FALL THROUGH.
2943  default:
2944    // ARM doesn't support any R+R*scale+imm addr modes.
2945    if (AM.BaseOffs)
2946      return false;
2947
2948    if (!VT.isSimple())
2949      return false;
2950
2951    int Scale = AM.Scale;
2952    switch (VT.getSimpleVT()) {
2953    default: return false;
2954    case MVT::i1:
2955    case MVT::i8:
2956    case MVT::i32:
2957    case MVT::i64:
2958      // This assumes i64 is legalized to a pair of i32. If not (i.e.
2959      // ldrd / strd are used, then its address mode is same as i16.
2960      // r + r
2961      if (Scale < 0) Scale = -Scale;
2962      if (Scale == 1)
2963        return true;
2964      // r + r << imm
2965      return isPowerOf2_32(Scale & ~1);
2966    case MVT::i16:
2967      // r + r
2968      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
2969        return true;
2970      return false;
2971
2972    case MVT::isVoid:
2973      // Note, we allow "void" uses (basically, uses that aren't loads or
2974      // stores), because arm allows folding a scale into many arithmetic
2975      // operations.  This should be made more precise and revisited later.
2976
2977      // Allow r << imm, but the imm has to be a multiple of two.
2978      if (AM.Scale & 1) return false;
2979      return isPowerOf2_32(AM.Scale);
2980    }
2981    break;
2982  }
2983  return true;
2984}
2985
2986static bool getARMIndexedAddressParts(SDNode *Ptr, MVT VT,
2987                                      bool isSEXTLoad, SDValue &Base,
2988                                      SDValue &Offset, bool &isInc,
2989                                      SelectionDAG &DAG) {
2990  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
2991    return false;
2992
2993  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
2994    // AddressingMode 3
2995    Base = Ptr->getOperand(0);
2996    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
2997      int RHSC = (int)RHS->getZExtValue();
2998      if (RHSC < 0 && RHSC > -256) {
2999        assert(Ptr->getOpcode() == ISD::ADD);
3000        isInc = false;
3001        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3002        return true;
3003      }
3004    }
3005    isInc = (Ptr->getOpcode() == ISD::ADD);
3006    Offset = Ptr->getOperand(1);
3007    return true;
3008  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
3009    // AddressingMode 2
3010    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3011      int RHSC = (int)RHS->getZExtValue();
3012      if (RHSC < 0 && RHSC > -0x1000) {
3013        assert(Ptr->getOpcode() == ISD::ADD);
3014        isInc = false;
3015        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3016        Base = Ptr->getOperand(0);
3017        return true;
3018      }
3019    }
3020
3021    if (Ptr->getOpcode() == ISD::ADD) {
3022      isInc = true;
3023      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
3024      if (ShOpcVal != ARM_AM::no_shift) {
3025        Base = Ptr->getOperand(1);
3026        Offset = Ptr->getOperand(0);
3027      } else {
3028        Base = Ptr->getOperand(0);
3029        Offset = Ptr->getOperand(1);
3030      }
3031      return true;
3032    }
3033
3034    isInc = (Ptr->getOpcode() == ISD::ADD);
3035    Base = Ptr->getOperand(0);
3036    Offset = Ptr->getOperand(1);
3037    return true;
3038  }
3039
3040  // FIXME: Use FLDM / FSTM to emulate indexed FP load / store.
3041  return false;
3042}
3043
3044static bool getT2IndexedAddressParts(SDNode *Ptr, MVT VT,
3045                                     bool isSEXTLoad, SDValue &Base,
3046                                     SDValue &Offset, bool &isInc,
3047                                     SelectionDAG &DAG) {
3048  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
3049    return false;
3050
3051  Base = Ptr->getOperand(0);
3052  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
3053    int RHSC = (int)RHS->getZExtValue();
3054    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
3055      assert(Ptr->getOpcode() == ISD::ADD);
3056      isInc = false;
3057      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
3058      return true;
3059    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
3060      isInc = Ptr->getOpcode() == ISD::ADD;
3061      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
3062      return true;
3063    }
3064  }
3065
3066  return false;
3067}
3068
3069/// getPreIndexedAddressParts - returns true by value, base pointer and
3070/// offset pointer and addressing mode by reference if the node's address
3071/// can be legally represented as pre-indexed load / store address.
3072bool
3073ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
3074                                             SDValue &Offset,
3075                                             ISD::MemIndexedMode &AM,
3076                                             SelectionDAG &DAG) const {
3077  if (Subtarget->isThumb1Only())
3078    return false;
3079
3080  MVT VT;
3081  SDValue Ptr;
3082  bool isSEXTLoad = false;
3083  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3084    Ptr = LD->getBasePtr();
3085    VT  = LD->getMemoryVT();
3086    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3087  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3088    Ptr = ST->getBasePtr();
3089    VT  = ST->getMemoryVT();
3090  } else
3091    return false;
3092
3093  bool isInc;
3094  bool isLegal = false;
3095  if (Subtarget->isThumb() && Subtarget->hasThumb2())
3096    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3097                                       Offset, isInc, DAG);
3098  else
3099    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
3100                                        Offset, isInc, DAG);
3101  if (!isLegal)
3102    return false;
3103
3104  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
3105  return true;
3106}
3107
3108/// getPostIndexedAddressParts - returns true by value, base pointer and
3109/// offset pointer and addressing mode by reference if this node can be
3110/// combined with a load / store to form a post-indexed load / store.
3111bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
3112                                                   SDValue &Base,
3113                                                   SDValue &Offset,
3114                                                   ISD::MemIndexedMode &AM,
3115                                                   SelectionDAG &DAG) const {
3116  if (Subtarget->isThumb1Only())
3117    return false;
3118
3119  MVT VT;
3120  SDValue Ptr;
3121  bool isSEXTLoad = false;
3122  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3123    VT  = LD->getMemoryVT();
3124    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
3125  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3126    VT  = ST->getMemoryVT();
3127  } else
3128    return false;
3129
3130  bool isInc;
3131  bool isLegal = false;
3132  if (Subtarget->isThumb() && Subtarget->hasThumb2())
3133    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3134                                        isInc, DAG);
3135  else
3136    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
3137                                        isInc, DAG);
3138  if (!isLegal)
3139    return false;
3140
3141  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
3142  return true;
3143}
3144
3145void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
3146                                                       const APInt &Mask,
3147                                                       APInt &KnownZero,
3148                                                       APInt &KnownOne,
3149                                                       const SelectionDAG &DAG,
3150                                                       unsigned Depth) const {
3151  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
3152  switch (Op.getOpcode()) {
3153  default: break;
3154  case ARMISD::CMOV: {
3155    // Bits are known zero/one if known on the LHS and RHS.
3156    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
3157    if (KnownZero == 0 && KnownOne == 0) return;
3158
3159    APInt KnownZeroRHS, KnownOneRHS;
3160    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
3161                          KnownZeroRHS, KnownOneRHS, Depth+1);
3162    KnownZero &= KnownZeroRHS;
3163    KnownOne  &= KnownOneRHS;
3164    return;
3165  }
3166  }
3167}
3168
3169//===----------------------------------------------------------------------===//
3170//                           ARM Inline Assembly Support
3171//===----------------------------------------------------------------------===//
3172
3173/// getConstraintType - Given a constraint letter, return the type of
3174/// constraint it is for this target.
3175ARMTargetLowering::ConstraintType
3176ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
3177  if (Constraint.size() == 1) {
3178    switch (Constraint[0]) {
3179    default:  break;
3180    case 'l': return C_RegisterClass;
3181    case 'w': return C_RegisterClass;
3182    }
3183  }
3184  return TargetLowering::getConstraintType(Constraint);
3185}
3186
3187std::pair<unsigned, const TargetRegisterClass*>
3188ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3189                                                MVT VT) const {
3190  if (Constraint.size() == 1) {
3191    // GCC RS6000 Constraint Letters
3192    switch (Constraint[0]) {
3193    case 'l':
3194      if (Subtarget->isThumb1Only())
3195        return std::make_pair(0U, ARM::tGPRRegisterClass);
3196      else
3197        return std::make_pair(0U, ARM::GPRRegisterClass);
3198    case 'r':
3199      return std::make_pair(0U, ARM::GPRRegisterClass);
3200    case 'w':
3201      if (VT == MVT::f32)
3202        return std::make_pair(0U, ARM::SPRRegisterClass);
3203      if (VT == MVT::f64)
3204        return std::make_pair(0U, ARM::DPRRegisterClass);
3205      break;
3206    }
3207  }
3208  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3209}
3210
3211std::vector<unsigned> ARMTargetLowering::
3212getRegClassForInlineAsmConstraint(const std::string &Constraint,
3213                                  MVT VT) const {
3214  if (Constraint.size() != 1)
3215    return std::vector<unsigned>();
3216
3217  switch (Constraint[0]) {      // GCC ARM Constraint Letters
3218  default: break;
3219  case 'l':
3220    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3221                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3222                                 0);
3223  case 'r':
3224    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
3225                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
3226                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
3227                                 ARM::R12, ARM::LR, 0);
3228  case 'w':
3229    if (VT == MVT::f32)
3230      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
3231                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
3232                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
3233                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
3234                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
3235                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
3236                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
3237                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
3238    if (VT == MVT::f64)
3239      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
3240                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
3241                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
3242                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
3243      break;
3244  }
3245
3246  return std::vector<unsigned>();
3247}
3248
3249/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3250/// vector.  If it is invalid, don't add anything to Ops.
3251void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3252                                                     char Constraint,
3253                                                     bool hasMemory,
3254                                                     std::vector<SDValue>&Ops,
3255                                                     SelectionDAG &DAG) const {
3256  SDValue Result(0, 0);
3257
3258  switch (Constraint) {
3259  default: break;
3260  case 'I': case 'J': case 'K': case 'L':
3261  case 'M': case 'N': case 'O':
3262    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3263    if (!C)
3264      return;
3265
3266    int64_t CVal64 = C->getSExtValue();
3267    int CVal = (int) CVal64;
3268    // None of these constraints allow values larger than 32 bits.  Check
3269    // that the value fits in an int.
3270    if (CVal != CVal64)
3271      return;
3272
3273    switch (Constraint) {
3274      case 'I':
3275        if (Subtarget->isThumb1Only()) {
3276          // This must be a constant between 0 and 255, for ADD
3277          // immediates.
3278          if (CVal >= 0 && CVal <= 255)
3279            break;
3280        } else if (Subtarget->isThumb2()) {
3281          // A constant that can be used as an immediate value in a
3282          // data-processing instruction.
3283          if (ARM_AM::getT2SOImmVal(CVal) != -1)
3284            break;
3285        } else {
3286          // A constant that can be used as an immediate value in a
3287          // data-processing instruction.
3288          if (ARM_AM::getSOImmVal(CVal) != -1)
3289            break;
3290        }
3291        return;
3292
3293      case 'J':
3294        if (Subtarget->isThumb()) {  // FIXME thumb2
3295          // This must be a constant between -255 and -1, for negated ADD
3296          // immediates. This can be used in GCC with an "n" modifier that
3297          // prints the negated value, for use with SUB instructions. It is
3298          // not useful otherwise but is implemented for compatibility.
3299          if (CVal >= -255 && CVal <= -1)
3300            break;
3301        } else {
3302          // This must be a constant between -4095 and 4095. It is not clear
3303          // what this constraint is intended for. Implemented for
3304          // compatibility with GCC.
3305          if (CVal >= -4095 && CVal <= 4095)
3306            break;
3307        }
3308        return;
3309
3310      case 'K':
3311        if (Subtarget->isThumb1Only()) {
3312          // A 32-bit value where only one byte has a nonzero value. Exclude
3313          // zero to match GCC. This constraint is used by GCC internally for
3314          // constants that can be loaded with a move/shift combination.
3315          // It is not useful otherwise but is implemented for compatibility.
3316          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
3317            break;
3318        } else if (Subtarget->isThumb2()) {
3319          // A constant whose bitwise inverse can be used as an immediate
3320          // value in a data-processing instruction. This can be used in GCC
3321          // with a "B" modifier that prints the inverted value, for use with
3322          // BIC and MVN instructions. It is not useful otherwise but is
3323          // implemented for compatibility.
3324          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
3325            break;
3326        } else {
3327          // A constant whose bitwise inverse can be used as an immediate
3328          // value in a data-processing instruction. This can be used in GCC
3329          // with a "B" modifier that prints the inverted value, for use with
3330          // BIC and MVN instructions. It is not useful otherwise but is
3331          // implemented for compatibility.
3332          if (ARM_AM::getSOImmVal(~CVal) != -1)
3333            break;
3334        }
3335        return;
3336
3337      case 'L':
3338        if (Subtarget->isThumb1Only()) {
3339          // This must be a constant between -7 and 7,
3340          // for 3-operand ADD/SUB immediate instructions.
3341          if (CVal >= -7 && CVal < 7)
3342            break;
3343        } else if (Subtarget->isThumb2()) {
3344          // A constant whose negation can be used as an immediate value in a
3345          // data-processing instruction. This can be used in GCC with an "n"
3346          // modifier that prints the negated value, for use with SUB
3347          // instructions. It is not useful otherwise but is implemented for
3348          // compatibility.
3349          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
3350            break;
3351        } else {
3352          // A constant whose negation can be used as an immediate value in a
3353          // data-processing instruction. This can be used in GCC with an "n"
3354          // modifier that prints the negated value, for use with SUB
3355          // instructions. It is not useful otherwise but is implemented for
3356          // compatibility.
3357          if (ARM_AM::getSOImmVal(-CVal) != -1)
3358            break;
3359        }
3360        return;
3361
3362      case 'M':
3363        if (Subtarget->isThumb()) { // FIXME thumb2
3364          // This must be a multiple of 4 between 0 and 1020, for
3365          // ADD sp + immediate.
3366          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
3367            break;
3368        } else {
3369          // A power of two or a constant between 0 and 32.  This is used in
3370          // GCC for the shift amount on shifted register operands, but it is
3371          // useful in general for any shift amounts.
3372          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
3373            break;
3374        }
3375        return;
3376
3377      case 'N':
3378        if (Subtarget->isThumb()) {  // FIXME thumb2
3379          // This must be a constant between 0 and 31, for shift amounts.
3380          if (CVal >= 0 && CVal <= 31)
3381            break;
3382        }
3383        return;
3384
3385      case 'O':
3386        if (Subtarget->isThumb()) {  // FIXME thumb2
3387          // This must be a multiple of 4 between -508 and 508, for
3388          // ADD/SUB sp = sp + immediate.
3389          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
3390            break;
3391        }
3392        return;
3393    }
3394    Result = DAG.getTargetConstant(CVal, Op.getValueType());
3395    break;
3396  }
3397
3398  if (Result.getNode()) {
3399    Ops.push_back(Result);
3400    return;
3401  }
3402  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
3403                                                      Ops, DAG);
3404}
3405