ARMISelLowering.cpp revision f74a4298163a7d0b500c7f7a818829c153dc942e
1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARM.h"
17#include "ARMAddressingModes.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMISelLowering.h"
21#include "ARMMachineFunctionInfo.h"
22#include "ARMPerfectShuffle.h"
23#include "ARMRegisterInfo.h"
24#include "ARMSubtarget.h"
25#include "ARMTargetMachine.h"
26#include "ARMTargetObjectFile.h"
27#include "llvm/CallingConv.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalValue.h"
31#include "llvm/Instruction.h"
32#include "llvm/Instructions.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/Type.h"
35#include "llvm/CodeGen/CallingConvLower.h"
36#include "llvm/CodeGen/MachineBasicBlock.h"
37#include "llvm/CodeGen/MachineFrameInfo.h"
38#include "llvm/CodeGen/MachineFunction.h"
39#include "llvm/CodeGen/MachineInstrBuilder.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/PseudoSourceValue.h"
42#include "llvm/CodeGen/SelectionDAG.h"
43#include "llvm/MC/MCSectionMachO.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/ADT/Statistic.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51#include <sstream>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// This option should go away when tail calls fully work.
57static cl::opt<bool>
58EnableARMTailCalls("arm-tail-calls", cl::Hidden,
59  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
60  cl::init(false));
61
62static cl::opt<bool>
63EnableARMLongCalls("arm-long-calls", cl::Hidden,
64  cl::desc("Generate calls via indirect call instructions"),
65  cl::init(false));
66
67static cl::opt<bool>
68ARMInterworking("arm-interworking", cl::Hidden,
69  cl::desc("Enable / disable ARM interworking (for debugging only)"),
70  cl::init(true));
71
72void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT,
73                                       EVT PromotedBitwiseVT) {
74  if (VT != PromotedLdStVT) {
75    setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
76    AddPromotedToType (ISD::LOAD, VT.getSimpleVT(),
77                       PromotedLdStVT.getSimpleVT());
78
79    setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
80    AddPromotedToType (ISD::STORE, VT.getSimpleVT(),
81                       PromotedLdStVT.getSimpleVT());
82  }
83
84  EVT ElemTy = VT.getVectorElementType();
85  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
86    setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom);
87  if (ElemTy == MVT::i8 || ElemTy == MVT::i16)
88    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom);
89  if (ElemTy != MVT::i32) {
90    setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand);
91    setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand);
92    setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand);
93    setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand);
94  }
95  setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom);
96  setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom);
97  setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal);
98  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand);
99  setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand);
100  setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand);
101  if (VT.isInteger()) {
102    setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom);
103    setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom);
104    setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom);
105    setLoadExtAction(ISD::SEXTLOAD, VT.getSimpleVT(), Expand);
106    setLoadExtAction(ISD::ZEXTLOAD, VT.getSimpleVT(), Expand);
107  }
108  setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand);
109
110  // Promote all bit-wise operations.
111  if (VT.isInteger() && VT != PromotedBitwiseVT) {
112    setOperationAction(ISD::AND, VT.getSimpleVT(), Promote);
113    AddPromotedToType (ISD::AND, VT.getSimpleVT(),
114                       PromotedBitwiseVT.getSimpleVT());
115    setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote);
116    AddPromotedToType (ISD::OR,  VT.getSimpleVT(),
117                       PromotedBitwiseVT.getSimpleVT());
118    setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote);
119    AddPromotedToType (ISD::XOR, VT.getSimpleVT(),
120                       PromotedBitwiseVT.getSimpleVT());
121  }
122
123  // Neon does not support vector divide/remainder operations.
124  setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand);
125  setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand);
126  setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand);
127  setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand);
128  setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand);
129  setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand);
130}
131
132void ARMTargetLowering::addDRTypeForNEON(EVT VT) {
133  addRegisterClass(VT, ARM::DPRRegisterClass);
134  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
135}
136
137void ARMTargetLowering::addQRTypeForNEON(EVT VT) {
138  addRegisterClass(VT, ARM::QPRRegisterClass);
139  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
140}
141
142static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
143  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
144    return new TargetLoweringObjectFileMachO();
145
146  return new ARMElfTargetObjectFile();
147}
148
149ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
150    : TargetLowering(TM, createTLOF(TM)) {
151  Subtarget = &TM.getSubtarget<ARMSubtarget>();
152  RegInfo = TM.getRegisterInfo();
153  Itins = TM.getInstrItineraryData();
154
155  if (Subtarget->isTargetDarwin()) {
156    // Uses VFP for Thumb libfuncs if available.
157    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
158      // Single-precision floating-point arithmetic.
159      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
160      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
161      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
162      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
163
164      // Double-precision floating-point arithmetic.
165      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
166      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
167      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
168      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
169
170      // Single-precision comparisons.
171      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
172      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
173      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
174      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
175      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
176      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
177      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
178      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
179
180      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
181      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
182      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
183      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
184      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
185      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
186      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
187      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
188
189      // Double-precision comparisons.
190      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
191      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
192      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
193      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
194      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
195      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
196      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
197      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
198
199      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
200      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
201      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
202      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
206      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
207
208      // Floating-point to integer conversions.
209      // i64 conversions are done via library routines even when generating VFP
210      // instructions, so use the same ones.
211      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
212      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
213      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
214      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
215
216      // Conversions between floating types.
217      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
218      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
219
220      // Integer to floating-point conversions.
221      // i64 conversions are done via library routines even when generating VFP
222      // instructions, so use the same ones.
223      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
224      // e.g., __floatunsidf vs. __floatunssidfvfp.
225      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
226      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
227      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
228      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
229    }
230  }
231
232  // These libcalls are not available in 32-bit.
233  setLibcallName(RTLIB::SHL_I128, 0);
234  setLibcallName(RTLIB::SRL_I128, 0);
235  setLibcallName(RTLIB::SRA_I128, 0);
236
237  if (Subtarget->isAAPCS_ABI()) {
238    // Double-precision floating-point arithmetic helper functions
239    // RTABI chapter 4.1.2, Table 2
240    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
241    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
242    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
243    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
244    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
245    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
246    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
247    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
248
249    // Double-precision floating-point comparison helper functions
250    // RTABI chapter 4.1.2, Table 3
251    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
252    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
253    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
254    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
255    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
256    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
257    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
258    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
259    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
260    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
261    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
262    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
263    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
264    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
265    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
266    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
267    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
268    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
269    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
270    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
271    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
272    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
273    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
274    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
275
276    // Single-precision floating-point arithmetic helper functions
277    // RTABI chapter 4.1.2, Table 4
278    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
279    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
280    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
281    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
282    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
283    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
284    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
285    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
286
287    // Single-precision floating-point comparison helper functions
288    // RTABI chapter 4.1.2, Table 5
289    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
290    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
291    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
292    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
293    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
294    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
295    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
296    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
297    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
298    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
299    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
300    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
301    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
302    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
303    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
304    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
305    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
306    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
307    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
308    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
309    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
310    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
311    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
312    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
313
314    // Floating-point to integer conversions.
315    // RTABI chapter 4.1.2, Table 6
316    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
317    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
318    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
319    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
320    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
321    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
322    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
323    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
324    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
325    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
326    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
327    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
332
333    // Conversions between floating types.
334    // RTABI chapter 4.1.2, Table 7
335    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
336    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
337    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
338    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
339
340    // Integer to floating-point conversions.
341    // RTABI chapter 4.1.2, Table 8
342    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
343    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
344    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
345    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
346    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
347    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
348    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
349    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
350    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
354    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
355    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
356    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
357    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
358
359    // Long long helper functions
360    // RTABI chapter 4.2, Table 9
361    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
362    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
363    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
364    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
365    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
366    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
367    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
368    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
369    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
370    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
371    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
372    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
373
374    // Integer division functions
375    // RTABI chapter 4.3.1
376    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
377    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
378    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
379    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
380    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
381    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
382    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
383    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
384    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
385    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
386    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
387    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
388  }
389
390  if (Subtarget->isThumb1Only())
391    addRegisterClass(MVT::i32, ARM::tGPRRegisterClass);
392  else
393    addRegisterClass(MVT::i32, ARM::GPRRegisterClass);
394  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
395    addRegisterClass(MVT::f32, ARM::SPRRegisterClass);
396    if (!Subtarget->isFPOnlySP())
397      addRegisterClass(MVT::f64, ARM::DPRRegisterClass);
398
399    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
400  }
401
402  if (Subtarget->hasNEON()) {
403    addDRTypeForNEON(MVT::v2f32);
404    addDRTypeForNEON(MVT::v8i8);
405    addDRTypeForNEON(MVT::v4i16);
406    addDRTypeForNEON(MVT::v2i32);
407    addDRTypeForNEON(MVT::v1i64);
408
409    addQRTypeForNEON(MVT::v4f32);
410    addQRTypeForNEON(MVT::v2f64);
411    addQRTypeForNEON(MVT::v16i8);
412    addQRTypeForNEON(MVT::v8i16);
413    addQRTypeForNEON(MVT::v4i32);
414    addQRTypeForNEON(MVT::v2i64);
415
416    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
417    // neither Neon nor VFP support any arithmetic operations on it.
418    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
419    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
420    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
421    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
422    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
423    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
424    setOperationAction(ISD::VSETCC, MVT::v2f64, Expand);
425    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
426    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
427    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
428    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
429    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
430    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
431    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
432    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
433    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
434    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
435    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
436    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
437    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
438    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
439    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
440    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
441    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
442
443    setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
444
445    // Neon does not support some operations on v1i64 and v2i64 types.
446    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
447    // Custom handling for some quad-vector types to detect VMULL.
448    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
449    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
450    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
451    setOperationAction(ISD::VSETCC, MVT::v1i64, Expand);
452    setOperationAction(ISD::VSETCC, MVT::v2i64, Expand);
453
454    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
455    setTargetDAGCombine(ISD::SHL);
456    setTargetDAGCombine(ISD::SRL);
457    setTargetDAGCombine(ISD::SRA);
458    setTargetDAGCombine(ISD::SIGN_EXTEND);
459    setTargetDAGCombine(ISD::ZERO_EXTEND);
460    setTargetDAGCombine(ISD::ANY_EXTEND);
461    setTargetDAGCombine(ISD::SELECT_CC);
462    setTargetDAGCombine(ISD::BUILD_VECTOR);
463    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
464  }
465
466  computeRegisterProperties();
467
468  // ARM does not have f32 extending load.
469  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
470
471  // ARM does not have i1 sign extending load.
472  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
473
474  // ARM supports all 4 flavors of integer indexed load / store.
475  if (!Subtarget->isThumb1Only()) {
476    for (unsigned im = (unsigned)ISD::PRE_INC;
477         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
478      setIndexedLoadAction(im,  MVT::i1,  Legal);
479      setIndexedLoadAction(im,  MVT::i8,  Legal);
480      setIndexedLoadAction(im,  MVT::i16, Legal);
481      setIndexedLoadAction(im,  MVT::i32, Legal);
482      setIndexedStoreAction(im, MVT::i1,  Legal);
483      setIndexedStoreAction(im, MVT::i8,  Legal);
484      setIndexedStoreAction(im, MVT::i16, Legal);
485      setIndexedStoreAction(im, MVT::i32, Legal);
486    }
487  }
488
489  // i64 operation support.
490  if (Subtarget->isThumb1Only()) {
491    setOperationAction(ISD::MUL,     MVT::i64, Expand);
492    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
493    setOperationAction(ISD::MULHS,   MVT::i32, Expand);
494    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
495    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
496  } else {
497    setOperationAction(ISD::MUL,     MVT::i64, Expand);
498    setOperationAction(ISD::MULHU,   MVT::i32, Expand);
499    if (!Subtarget->hasV6Ops())
500      setOperationAction(ISD::MULHS, MVT::i32, Expand);
501  }
502  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
503  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
504  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
505  setOperationAction(ISD::SRL,       MVT::i64, Custom);
506  setOperationAction(ISD::SRA,       MVT::i64, Custom);
507
508  // ARM does not have ROTL.
509  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
510  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
511  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
512  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
513    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
514
515  // Only ARMv6 has BSWAP.
516  if (!Subtarget->hasV6Ops())
517    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
518
519  // These are expanded into libcalls.
520  if (!Subtarget->hasDivide()) {
521    // v7M has a hardware divider
522    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
523    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
524  }
525  setOperationAction(ISD::SREM,  MVT::i32, Expand);
526  setOperationAction(ISD::UREM,  MVT::i32, Expand);
527  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
528  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
529
530  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
531  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
532  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
533  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
534  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
535
536  setOperationAction(ISD::TRAP, MVT::Other, Legal);
537
538  // Use the default implementation.
539  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
540  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
541  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
542  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
543  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
544  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
545  setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand);
546  // FIXME: Shouldn't need this, since no register is used, but the legalizer
547  // doesn't yet know how to not do that for SjLj.
548  setExceptionSelectorRegister(ARM::R0);
549  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
550  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
551  // the default expansion.
552  if (Subtarget->hasDataBarrier() ||
553      (Subtarget->hasV6Ops() && !Subtarget->isThumb1Only())) {
554    // membarrier needs custom lowering; the rest are legal and handled
555    // normally.
556    setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
557  } else {
558    // Set them all for expansion, which will force libcalls.
559    setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
560    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i8,  Expand);
561    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i16, Expand);
562    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
563    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i8,  Expand);
564    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i16, Expand);
565    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
566    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i8,  Expand);
567    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i16, Expand);
568    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
569    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i8,  Expand);
570    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i16, Expand);
571    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
572    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i8,  Expand);
573    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i16, Expand);
574    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
575    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i8,  Expand);
576    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i16, Expand);
577    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
578    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i8,  Expand);
579    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i16, Expand);
580    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
581    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i8,  Expand);
582    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i16, Expand);
583    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
584    // Since the libcalls include locking, fold in the fences
585    setShouldFoldAtomicFences(true);
586  }
587  // 64-bit versions are always libcalls (for now)
588  setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Expand);
589  setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Expand);
590  setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Expand);
591  setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Expand);
592  setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Expand);
593  setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Expand);
594  setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Expand);
595  setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Expand);
596
597  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
598  if (!Subtarget->hasV6Ops()) {
599    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
600    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
601  }
602  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
603
604  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
605    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
606    // iff target supports vfp2.
607    setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom);
608    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
609  }
610
611  // We want to custom lower some of our intrinsics.
612  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
613  if (Subtarget->isTargetDarwin()) {
614    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
615    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
616    setOperationAction(ISD::EH_SJLJ_DISPATCHSETUP, MVT::Other, Custom);
617  }
618
619  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
620  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
621  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
622  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
623  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
624  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
625  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
626  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
627  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
628
629  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
630  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
631  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
632  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
633  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
634
635  // We don't support sin/cos/fmod/copysign/pow
636  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
637  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
638  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
639  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
640  setOperationAction(ISD::FREM,      MVT::f64, Expand);
641  setOperationAction(ISD::FREM,      MVT::f32, Expand);
642  if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) {
643    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
644    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
645  }
646  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
647  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
648
649  // Various VFP goodness
650  if (!UseSoftFloat && !Subtarget->isThumb1Only()) {
651    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
652    if (Subtarget->hasVFP2()) {
653      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
654      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
655      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
656      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
657    }
658    // Special handling for half-precision FP.
659    if (!Subtarget->hasFP16()) {
660      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
661      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
662    }
663  }
664
665  // We have target-specific dag combine patterns for the following nodes:
666  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
667  setTargetDAGCombine(ISD::ADD);
668  setTargetDAGCombine(ISD::SUB);
669  setTargetDAGCombine(ISD::MUL);
670
671  if (Subtarget->hasV6T2Ops())
672    setTargetDAGCombine(ISD::OR);
673
674  setStackPointerRegisterToSaveRestore(ARM::SP);
675
676  if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2())
677    setSchedulingPreference(Sched::RegPressure);
678  else
679    setSchedulingPreference(Sched::Hybrid);
680
681  maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type
682
683  // On ARM arguments smaller than 4 bytes are extended, so all arguments
684  // are at least 4 bytes aligned.
685  setMinStackArgumentAlignment(4);
686
687  benefitFromCodePlacementOpt = true;
688}
689
690std::pair<const TargetRegisterClass*, uint8_t>
691ARMTargetLowering::findRepresentativeClass(EVT VT) const{
692  const TargetRegisterClass *RRC = 0;
693  uint8_t Cost = 1;
694  switch (VT.getSimpleVT().SimpleTy) {
695  default:
696    return TargetLowering::findRepresentativeClass(VT);
697  // Use DPR as representative register class for all floating point
698  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
699  // the cost is 1 for both f32 and f64.
700  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
701  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
702    RRC = ARM::DPRRegisterClass;
703    break;
704  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
705  case MVT::v4f32: case MVT::v2f64:
706    RRC = ARM::DPRRegisterClass;
707    Cost = 2;
708    break;
709  case MVT::v4i64:
710    RRC = ARM::DPRRegisterClass;
711    Cost = 4;
712    break;
713  case MVT::v8i64:
714    RRC = ARM::DPRRegisterClass;
715    Cost = 8;
716    break;
717  }
718  return std::make_pair(RRC, Cost);
719}
720
721const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
722  switch (Opcode) {
723  default: return 0;
724  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
725  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
726  case ARMISD::CALL:          return "ARMISD::CALL";
727  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
728  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
729  case ARMISD::tCALL:         return "ARMISD::tCALL";
730  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
731  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
732  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
733  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
734  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
735  case ARMISD::CMP:           return "ARMISD::CMP";
736  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
737  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
738  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
739  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
740  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
741  case ARMISD::CMOV:          return "ARMISD::CMOV";
742  case ARMISD::CNEG:          return "ARMISD::CNEG";
743
744  case ARMISD::RBIT:          return "ARMISD::RBIT";
745
746  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
747  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
748  case ARMISD::SITOF:         return "ARMISD::SITOF";
749  case ARMISD::UITOF:         return "ARMISD::UITOF";
750
751  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
752  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
753  case ARMISD::RRX:           return "ARMISD::RRX";
754
755  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
756  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
757
758  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
759  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
760  case ARMISD::EH_SJLJ_DISPATCHSETUP:return "ARMISD::EH_SJLJ_DISPATCHSETUP";
761
762  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
763
764  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
765
766  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
767
768  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
769  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
770
771  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
772  case ARMISD::VCGE:          return "ARMISD::VCGE";
773  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
774  case ARMISD::VCGT:          return "ARMISD::VCGT";
775  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
776  case ARMISD::VTST:          return "ARMISD::VTST";
777
778  case ARMISD::VSHL:          return "ARMISD::VSHL";
779  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
780  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
781  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
782  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
783  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
784  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
785  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
786  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
787  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
788  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
789  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
790  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
791  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
792  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
793  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
794  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
795  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
796  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
797  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
798  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
799  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
800  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
801  case ARMISD::VDUP:          return "ARMISD::VDUP";
802  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
803  case ARMISD::VEXT:          return "ARMISD::VEXT";
804  case ARMISD::VREV64:        return "ARMISD::VREV64";
805  case ARMISD::VREV32:        return "ARMISD::VREV32";
806  case ARMISD::VREV16:        return "ARMISD::VREV16";
807  case ARMISD::VZIP:          return "ARMISD::VZIP";
808  case ARMISD::VUZP:          return "ARMISD::VUZP";
809  case ARMISD::VTRN:          return "ARMISD::VTRN";
810  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
811  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
812  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
813  case ARMISD::FMAX:          return "ARMISD::FMAX";
814  case ARMISD::FMIN:          return "ARMISD::FMIN";
815  case ARMISD::BFI:           return "ARMISD::BFI";
816  }
817}
818
819/// getRegClassFor - Return the register class that should be used for the
820/// specified value type.
821TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const {
822  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
823  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
824  // load / store 4 to 8 consecutive D registers.
825  if (Subtarget->hasNEON()) {
826    if (VT == MVT::v4i64)
827      return ARM::QQPRRegisterClass;
828    else if (VT == MVT::v8i64)
829      return ARM::QQQQPRRegisterClass;
830  }
831  return TargetLowering::getRegClassFor(VT);
832}
833
834// Create a fast isel object.
835FastISel *
836ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
837  return ARM::createFastISel(funcInfo);
838}
839
840/// getFunctionAlignment - Return the Log2 alignment of this function.
841unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const {
842  return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 1 : 2;
843}
844
845/// getMaximalGlobalOffset - Returns the maximal possible offset which can
846/// be used for loads / stores from the global.
847unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
848  return (Subtarget->isThumb1Only() ? 127 : 4095);
849}
850
851Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
852  unsigned NumVals = N->getNumValues();
853  if (!NumVals)
854    return Sched::RegPressure;
855
856  for (unsigned i = 0; i != NumVals; ++i) {
857    EVT VT = N->getValueType(i);
858    if (VT == MVT::Flag || VT == MVT::Other)
859      continue;
860    if (VT.isFloatingPoint() || VT.isVector())
861      return Sched::Latency;
862  }
863
864  if (!N->isMachineOpcode())
865    return Sched::RegPressure;
866
867  // Load are scheduled for latency even if there instruction itinerary
868  // is not available.
869  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
870  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
871
872  if (TID.getNumDefs() == 0)
873    return Sched::RegPressure;
874  if (!Itins->isEmpty() &&
875      Itins->getOperandCycle(TID.getSchedClass(), 0) > 2)
876    return Sched::Latency;
877
878  return Sched::RegPressure;
879}
880
881unsigned
882ARMTargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
883                                       MachineFunction &MF) const {
884  switch (RC->getID()) {
885  default:
886    return 0;
887  case ARM::tGPRRegClassID:
888    return RegInfo->hasFP(MF) ? 4 : 5;
889  case ARM::GPRRegClassID: {
890    unsigned FP = RegInfo->hasFP(MF) ? 1 : 0;
891    return 10 - FP - (Subtarget->isR9Reserved() ? 1 : 0);
892  }
893  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
894  case ARM::DPRRegClassID:
895    return 32 - 10;
896  }
897}
898
899//===----------------------------------------------------------------------===//
900// Lowering Code
901//===----------------------------------------------------------------------===//
902
903/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
904static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
905  switch (CC) {
906  default: llvm_unreachable("Unknown condition code!");
907  case ISD::SETNE:  return ARMCC::NE;
908  case ISD::SETEQ:  return ARMCC::EQ;
909  case ISD::SETGT:  return ARMCC::GT;
910  case ISD::SETGE:  return ARMCC::GE;
911  case ISD::SETLT:  return ARMCC::LT;
912  case ISD::SETLE:  return ARMCC::LE;
913  case ISD::SETUGT: return ARMCC::HI;
914  case ISD::SETUGE: return ARMCC::HS;
915  case ISD::SETULT: return ARMCC::LO;
916  case ISD::SETULE: return ARMCC::LS;
917  }
918}
919
920/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
921static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
922                        ARMCC::CondCodes &CondCode2) {
923  CondCode2 = ARMCC::AL;
924  switch (CC) {
925  default: llvm_unreachable("Unknown FP condition!");
926  case ISD::SETEQ:
927  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
928  case ISD::SETGT:
929  case ISD::SETOGT: CondCode = ARMCC::GT; break;
930  case ISD::SETGE:
931  case ISD::SETOGE: CondCode = ARMCC::GE; break;
932  case ISD::SETOLT: CondCode = ARMCC::MI; break;
933  case ISD::SETOLE: CondCode = ARMCC::LS; break;
934  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
935  case ISD::SETO:   CondCode = ARMCC::VC; break;
936  case ISD::SETUO:  CondCode = ARMCC::VS; break;
937  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
938  case ISD::SETUGT: CondCode = ARMCC::HI; break;
939  case ISD::SETUGE: CondCode = ARMCC::PL; break;
940  case ISD::SETLT:
941  case ISD::SETULT: CondCode = ARMCC::LT; break;
942  case ISD::SETLE:
943  case ISD::SETULE: CondCode = ARMCC::LE; break;
944  case ISD::SETNE:
945  case ISD::SETUNE: CondCode = ARMCC::NE; break;
946  }
947}
948
949//===----------------------------------------------------------------------===//
950//                      Calling Convention Implementation
951//===----------------------------------------------------------------------===//
952
953#include "ARMGenCallingConv.inc"
954
955/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
956/// given CallingConvention value.
957CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
958                                                 bool Return,
959                                                 bool isVarArg) const {
960  switch (CC) {
961  default:
962    llvm_unreachable("Unsupported calling convention");
963  case CallingConv::Fast:
964    if (Subtarget->hasVFP2() && !isVarArg) {
965      if (!Subtarget->isAAPCS_ABI())
966        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
967      // For AAPCS ABI targets, just use VFP variant of the calling convention.
968      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
969    }
970    // Fallthrough
971  case CallingConv::C: {
972    // Use target triple & subtarget features to do actual dispatch.
973    if (!Subtarget->isAAPCS_ABI())
974      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
975    else if (Subtarget->hasVFP2() &&
976             FloatABIType == FloatABI::Hard && !isVarArg)
977      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
978    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
979  }
980  case CallingConv::ARM_AAPCS_VFP:
981    return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
982  case CallingConv::ARM_AAPCS:
983    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
984  case CallingConv::ARM_APCS:
985    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
986  }
987}
988
989/// LowerCallResult - Lower the result values of a call into the
990/// appropriate copies out of appropriate physical registers.
991SDValue
992ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
993                                   CallingConv::ID CallConv, bool isVarArg,
994                                   const SmallVectorImpl<ISD::InputArg> &Ins,
995                                   DebugLoc dl, SelectionDAG &DAG,
996                                   SmallVectorImpl<SDValue> &InVals) const {
997
998  // Assign locations to each value returned by this call.
999  SmallVector<CCValAssign, 16> RVLocs;
1000  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1001                 RVLocs, *DAG.getContext());
1002  CCInfo.AnalyzeCallResult(Ins,
1003                           CCAssignFnForNode(CallConv, /* Return*/ true,
1004                                             isVarArg));
1005
1006  // Copy all of the result registers out of their specified physreg.
1007  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1008    CCValAssign VA = RVLocs[i];
1009
1010    SDValue Val;
1011    if (VA.needsCustom()) {
1012      // Handle f64 or half of a v2f64.
1013      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1014                                      InFlag);
1015      Chain = Lo.getValue(1);
1016      InFlag = Lo.getValue(2);
1017      VA = RVLocs[++i]; // skip ahead to next loc
1018      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1019                                      InFlag);
1020      Chain = Hi.getValue(1);
1021      InFlag = Hi.getValue(2);
1022      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1023
1024      if (VA.getLocVT() == MVT::v2f64) {
1025        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1026        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1027                          DAG.getConstant(0, MVT::i32));
1028
1029        VA = RVLocs[++i]; // skip ahead to next loc
1030        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1031        Chain = Lo.getValue(1);
1032        InFlag = Lo.getValue(2);
1033        VA = RVLocs[++i]; // skip ahead to next loc
1034        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1035        Chain = Hi.getValue(1);
1036        InFlag = Hi.getValue(2);
1037        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1038        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1039                          DAG.getConstant(1, MVT::i32));
1040      }
1041    } else {
1042      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1043                               InFlag);
1044      Chain = Val.getValue(1);
1045      InFlag = Val.getValue(2);
1046    }
1047
1048    switch (VA.getLocInfo()) {
1049    default: llvm_unreachable("Unknown loc info!");
1050    case CCValAssign::Full: break;
1051    case CCValAssign::BCvt:
1052      Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val);
1053      break;
1054    }
1055
1056    InVals.push_back(Val);
1057  }
1058
1059  return Chain;
1060}
1061
1062/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1063/// by "Src" to address "Dst" of size "Size".  Alignment information is
1064/// specified by the specific parameter attribute.  The copy will be passed as
1065/// a byval function parameter.
1066/// Sometimes what we are copying is the end of a larger object, the part that
1067/// does not fit in registers.
1068static SDValue
1069CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1070                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1071                          DebugLoc dl) {
1072  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1073  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1074                       /*isVolatile=*/false, /*AlwaysInline=*/false,
1075                       MachinePointerInfo(0), MachinePointerInfo(0));
1076}
1077
1078/// LowerMemOpCallTo - Store the argument to the stack.
1079SDValue
1080ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1081                                    SDValue StackPtr, SDValue Arg,
1082                                    DebugLoc dl, SelectionDAG &DAG,
1083                                    const CCValAssign &VA,
1084                                    ISD::ArgFlagsTy Flags) const {
1085  unsigned LocMemOffset = VA.getLocMemOffset();
1086  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1087  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1088  if (Flags.isByVal())
1089    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1090
1091  return DAG.getStore(Chain, dl, Arg, PtrOff,
1092                      MachinePointerInfo::getStack(LocMemOffset),
1093                      false, false, 0);
1094}
1095
1096void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG,
1097                                         SDValue Chain, SDValue &Arg,
1098                                         RegsToPassVector &RegsToPass,
1099                                         CCValAssign &VA, CCValAssign &NextVA,
1100                                         SDValue &StackPtr,
1101                                         SmallVector<SDValue, 8> &MemOpChains,
1102                                         ISD::ArgFlagsTy Flags) const {
1103
1104  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1105                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1106  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1107
1108  if (NextVA.isRegLoc())
1109    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1110  else {
1111    assert(NextVA.isMemLoc());
1112    if (StackPtr.getNode() == 0)
1113      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1114
1115    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1116                                           dl, DAG, NextVA,
1117                                           Flags));
1118  }
1119}
1120
1121/// LowerCall - Lowering a call into a callseq_start <-
1122/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1123/// nodes.
1124SDValue
1125ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1126                             CallingConv::ID CallConv, bool isVarArg,
1127                             bool &isTailCall,
1128                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1129                             const SmallVectorImpl<SDValue> &OutVals,
1130                             const SmallVectorImpl<ISD::InputArg> &Ins,
1131                             DebugLoc dl, SelectionDAG &DAG,
1132                             SmallVectorImpl<SDValue> &InVals) const {
1133  MachineFunction &MF = DAG.getMachineFunction();
1134  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1135  bool IsSibCall = false;
1136  // Temporarily disable tail calls so things don't break.
1137  if (!EnableARMTailCalls)
1138    isTailCall = false;
1139  if (isTailCall) {
1140    // Check if it's really possible to do a tail call.
1141    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1142                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1143                                                   Outs, OutVals, Ins, DAG);
1144    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1145    // detected sibcalls.
1146    if (isTailCall) {
1147      ++NumTailCalls;
1148      IsSibCall = true;
1149    }
1150  }
1151
1152  // Analyze operands of the call, assigning locations to each operand.
1153  SmallVector<CCValAssign, 16> ArgLocs;
1154  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1155                 *DAG.getContext());
1156  CCInfo.AnalyzeCallOperands(Outs,
1157                             CCAssignFnForNode(CallConv, /* Return*/ false,
1158                                               isVarArg));
1159
1160  // Get a count of how many bytes are to be pushed on the stack.
1161  unsigned NumBytes = CCInfo.getNextStackOffset();
1162
1163  // For tail calls, memory operands are available in our caller's stack.
1164  if (IsSibCall)
1165    NumBytes = 0;
1166
1167  // Adjust the stack pointer for the new arguments...
1168  // These operations are automatically eliminated by the prolog/epilog pass
1169  if (!IsSibCall)
1170    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1171
1172  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1173
1174  RegsToPassVector RegsToPass;
1175  SmallVector<SDValue, 8> MemOpChains;
1176
1177  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1178  // of tail call optimization, arguments are handled later.
1179  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1180       i != e;
1181       ++i, ++realArgIdx) {
1182    CCValAssign &VA = ArgLocs[i];
1183    SDValue Arg = OutVals[realArgIdx];
1184    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1185
1186    // Promote the value if needed.
1187    switch (VA.getLocInfo()) {
1188    default: llvm_unreachable("Unknown loc info!");
1189    case CCValAssign::Full: break;
1190    case CCValAssign::SExt:
1191      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1192      break;
1193    case CCValAssign::ZExt:
1194      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1195      break;
1196    case CCValAssign::AExt:
1197      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1198      break;
1199    case CCValAssign::BCvt:
1200      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1201      break;
1202    }
1203
1204    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1205    if (VA.needsCustom()) {
1206      if (VA.getLocVT() == MVT::v2f64) {
1207        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1208                                  DAG.getConstant(0, MVT::i32));
1209        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1210                                  DAG.getConstant(1, MVT::i32));
1211
1212        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1213                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1214
1215        VA = ArgLocs[++i]; // skip ahead to next loc
1216        if (VA.isRegLoc()) {
1217          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1218                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1219        } else {
1220          assert(VA.isMemLoc());
1221
1222          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1223                                                 dl, DAG, VA, Flags));
1224        }
1225      } else {
1226        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1227                         StackPtr, MemOpChains, Flags);
1228      }
1229    } else if (VA.isRegLoc()) {
1230      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1231    } else if (!IsSibCall) {
1232      assert(VA.isMemLoc());
1233
1234      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1235                                             dl, DAG, VA, Flags));
1236    }
1237  }
1238
1239  if (!MemOpChains.empty())
1240    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1241                        &MemOpChains[0], MemOpChains.size());
1242
1243  // Build a sequence of copy-to-reg nodes chained together with token chain
1244  // and flag operands which copy the outgoing args into the appropriate regs.
1245  SDValue InFlag;
1246  // Tail call byval lowering might overwrite argument registers so in case of
1247  // tail call optimization the copies to registers are lowered later.
1248  if (!isTailCall)
1249    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1250      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1251                               RegsToPass[i].second, InFlag);
1252      InFlag = Chain.getValue(1);
1253    }
1254
1255  // For tail calls lower the arguments to the 'real' stack slot.
1256  if (isTailCall) {
1257    // Force all the incoming stack arguments to be loaded from the stack
1258    // before any new outgoing arguments are stored to the stack, because the
1259    // outgoing stack slots may alias the incoming argument stack slots, and
1260    // the alias isn't otherwise explicit. This is slightly more conservative
1261    // than necessary, because it means that each store effectively depends
1262    // on every argument instead of just those arguments it would clobber.
1263
1264    // Do not flag preceeding copytoreg stuff together with the following stuff.
1265    InFlag = SDValue();
1266    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1267      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1268                               RegsToPass[i].second, InFlag);
1269      InFlag = Chain.getValue(1);
1270    }
1271    InFlag =SDValue();
1272  }
1273
1274  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1275  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1276  // node so that legalize doesn't hack it.
1277  bool isDirect = false;
1278  bool isARMFunc = false;
1279  bool isLocalARMFunc = false;
1280  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1281
1282  if (EnableARMLongCalls) {
1283    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1284            && "long-calls with non-static relocation model!");
1285    // Handle a global address or an external symbol. If it's not one of
1286    // those, the target's already in a register, so we don't need to do
1287    // anything extra.
1288    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1289      const GlobalValue *GV = G->getGlobal();
1290      // Create a constant pool entry for the callee address
1291      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1292      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1293                                                           ARMPCLabelIndex,
1294                                                           ARMCP::CPValue, 0);
1295      // Get the address of the callee into a register
1296      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1297      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1298      Callee = DAG.getLoad(getPointerTy(), dl,
1299                           DAG.getEntryNode(), CPAddr,
1300                           MachinePointerInfo::getConstantPool(),
1301                           false, false, 0);
1302    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1303      const char *Sym = S->getSymbol();
1304
1305      // Create a constant pool entry for the callee address
1306      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1307      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1308                                                       Sym, ARMPCLabelIndex, 0);
1309      // Get the address of the callee into a register
1310      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1311      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1312      Callee = DAG.getLoad(getPointerTy(), dl,
1313                           DAG.getEntryNode(), CPAddr,
1314                           MachinePointerInfo::getConstantPool(),
1315                           false, false, 0);
1316    }
1317  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1318    const GlobalValue *GV = G->getGlobal();
1319    isDirect = true;
1320    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1321    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1322                   getTargetMachine().getRelocationModel() != Reloc::Static;
1323    isARMFunc = !Subtarget->isThumb() || isStub;
1324    // ARM call to a local ARM function is predicable.
1325    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1326    // tBX takes a register source operand.
1327    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1328      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1329      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV,
1330                                                           ARMPCLabelIndex,
1331                                                           ARMCP::CPValue, 4);
1332      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1333      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1334      Callee = DAG.getLoad(getPointerTy(), dl,
1335                           DAG.getEntryNode(), CPAddr,
1336                           MachinePointerInfo::getConstantPool(),
1337                           false, false, 0);
1338      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1339      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1340                           getPointerTy(), Callee, PICLabel);
1341    } else {
1342      // On ELF targets for PIC code, direct calls should go through the PLT
1343      unsigned OpFlags = 0;
1344      if (Subtarget->isTargetELF() &&
1345                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1346        OpFlags = ARMII::MO_PLT;
1347      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1348    }
1349  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1350    isDirect = true;
1351    bool isStub = Subtarget->isTargetDarwin() &&
1352                  getTargetMachine().getRelocationModel() != Reloc::Static;
1353    isARMFunc = !Subtarget->isThumb() || isStub;
1354    // tBX takes a register source operand.
1355    const char *Sym = S->getSymbol();
1356    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1357      unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1358      ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1359                                                       Sym, ARMPCLabelIndex, 4);
1360      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1361      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1362      Callee = DAG.getLoad(getPointerTy(), dl,
1363                           DAG.getEntryNode(), CPAddr,
1364                           MachinePointerInfo::getConstantPool(),
1365                           false, false, 0);
1366      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1367      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1368                           getPointerTy(), Callee, PICLabel);
1369    } else {
1370      unsigned OpFlags = 0;
1371      // On ELF targets for PIC code, direct calls should go through the PLT
1372      if (Subtarget->isTargetELF() &&
1373                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1374        OpFlags = ARMII::MO_PLT;
1375      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1376    }
1377  }
1378
1379  // FIXME: handle tail calls differently.
1380  unsigned CallOpc;
1381  if (Subtarget->isThumb()) {
1382    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1383      CallOpc = ARMISD::CALL_NOLINK;
1384    else
1385      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1386  } else {
1387    CallOpc = (isDirect || Subtarget->hasV5TOps())
1388      ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL)
1389      : ARMISD::CALL_NOLINK;
1390  }
1391
1392  std::vector<SDValue> Ops;
1393  Ops.push_back(Chain);
1394  Ops.push_back(Callee);
1395
1396  // Add argument registers to the end of the list so that they are known live
1397  // into the call.
1398  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1399    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1400                                  RegsToPass[i].second.getValueType()));
1401
1402  if (InFlag.getNode())
1403    Ops.push_back(InFlag);
1404
1405  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1406  if (isTailCall)
1407    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1408
1409  // Returns a chain and a flag for retval copy to use.
1410  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1411  InFlag = Chain.getValue(1);
1412
1413  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1414                             DAG.getIntPtrConstant(0, true), InFlag);
1415  if (!Ins.empty())
1416    InFlag = Chain.getValue(1);
1417
1418  // Handle result values, copying them out of physregs into vregs that we
1419  // return.
1420  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins,
1421                         dl, DAG, InVals);
1422}
1423
1424/// MatchingStackOffset - Return true if the given stack call argument is
1425/// already available in the same position (relatively) of the caller's
1426/// incoming argument stack.
1427static
1428bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1429                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1430                         const ARMInstrInfo *TII) {
1431  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1432  int FI = INT_MAX;
1433  if (Arg.getOpcode() == ISD::CopyFromReg) {
1434    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1435    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
1436      return false;
1437    MachineInstr *Def = MRI->getVRegDef(VR);
1438    if (!Def)
1439      return false;
1440    if (!Flags.isByVal()) {
1441      if (!TII->isLoadFromStackSlot(Def, FI))
1442        return false;
1443    } else {
1444      return false;
1445    }
1446  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1447    if (Flags.isByVal())
1448      // ByVal argument is passed in as a pointer but it's now being
1449      // dereferenced. e.g.
1450      // define @foo(%struct.X* %A) {
1451      //   tail call @bar(%struct.X* byval %A)
1452      // }
1453      return false;
1454    SDValue Ptr = Ld->getBasePtr();
1455    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1456    if (!FINode)
1457      return false;
1458    FI = FINode->getIndex();
1459  } else
1460    return false;
1461
1462  assert(FI != INT_MAX);
1463  if (!MFI->isFixedObjectIndex(FI))
1464    return false;
1465  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1466}
1467
1468/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1469/// for tail call optimization. Targets which want to do tail call
1470/// optimization should implement this function.
1471bool
1472ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1473                                                     CallingConv::ID CalleeCC,
1474                                                     bool isVarArg,
1475                                                     bool isCalleeStructRet,
1476                                                     bool isCallerStructRet,
1477                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1478                                    const SmallVectorImpl<SDValue> &OutVals,
1479                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1480                                                     SelectionDAG& DAG) const {
1481  const Function *CallerF = DAG.getMachineFunction().getFunction();
1482  CallingConv::ID CallerCC = CallerF->getCallingConv();
1483  bool CCMatch = CallerCC == CalleeCC;
1484
1485  // Look for obvious safe cases to perform tail call optimization that do not
1486  // require ABI changes. This is what gcc calls sibcall.
1487
1488  // Do not sibcall optimize vararg calls unless the call site is not passing
1489  // any arguments.
1490  if (isVarArg && !Outs.empty())
1491    return false;
1492
1493  // Also avoid sibcall optimization if either caller or callee uses struct
1494  // return semantics.
1495  if (isCalleeStructRet || isCallerStructRet)
1496    return false;
1497
1498  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1499  // emitEpilogue is not ready for them.
1500  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1501  // LR.  This means if we need to reload LR, it takes an extra instructions,
1502  // which outweighs the value of the tail call; but here we don't know yet
1503  // whether LR is going to be used.  Probably the right approach is to
1504  // generate the tail call here and turn it back into CALL/RET in
1505  // emitEpilogue if LR is used.
1506  if (Subtarget->isThumb1Only())
1507    return false;
1508
1509  // For the moment, we can only do this to functions defined in this
1510  // compilation, or to indirect calls.  A Thumb B to an ARM function,
1511  // or vice versa, is not easily fixed up in the linker unlike BL.
1512  // (We could do this by loading the address of the callee into a register;
1513  // that is an extra instruction over the direct call and burns a register
1514  // as well, so is not likely to be a win.)
1515
1516  // It might be safe to remove this restriction on non-Darwin.
1517
1518  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1519  // but we need to make sure there are enough registers; the only valid
1520  // registers are the 4 used for parameters.  We don't currently do this
1521  // case.
1522  if (isa<ExternalSymbolSDNode>(Callee))
1523      return false;
1524
1525  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1526    const GlobalValue *GV = G->getGlobal();
1527    if (GV->isDeclaration() || GV->isWeakForLinker())
1528      return false;
1529  }
1530
1531  // If the calling conventions do not match, then we'd better make sure the
1532  // results are returned in the same way as what the caller expects.
1533  if (!CCMatch) {
1534    SmallVector<CCValAssign, 16> RVLocs1;
1535    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
1536                    RVLocs1, *DAG.getContext());
1537    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1538
1539    SmallVector<CCValAssign, 16> RVLocs2;
1540    CCState CCInfo2(CallerCC, false, getTargetMachine(),
1541                    RVLocs2, *DAG.getContext());
1542    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1543
1544    if (RVLocs1.size() != RVLocs2.size())
1545      return false;
1546    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1547      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1548        return false;
1549      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1550        return false;
1551      if (RVLocs1[i].isRegLoc()) {
1552        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1553          return false;
1554      } else {
1555        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1556          return false;
1557      }
1558    }
1559  }
1560
1561  // If the callee takes no arguments then go on to check the results of the
1562  // call.
1563  if (!Outs.empty()) {
1564    // Check if stack adjustment is needed. For now, do not do this if any
1565    // argument is passed on the stack.
1566    SmallVector<CCValAssign, 16> ArgLocs;
1567    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
1568                   ArgLocs, *DAG.getContext());
1569    CCInfo.AnalyzeCallOperands(Outs,
1570                               CCAssignFnForNode(CalleeCC, false, isVarArg));
1571    if (CCInfo.getNextStackOffset()) {
1572      MachineFunction &MF = DAG.getMachineFunction();
1573
1574      // Check if the arguments are already laid out in the right way as
1575      // the caller's fixed stack objects.
1576      MachineFrameInfo *MFI = MF.getFrameInfo();
1577      const MachineRegisterInfo *MRI = &MF.getRegInfo();
1578      const ARMInstrInfo *TII =
1579        ((ARMTargetMachine&)getTargetMachine()).getInstrInfo();
1580      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1581           i != e;
1582           ++i, ++realArgIdx) {
1583        CCValAssign &VA = ArgLocs[i];
1584        EVT RegVT = VA.getLocVT();
1585        SDValue Arg = OutVals[realArgIdx];
1586        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1587        if (VA.getLocInfo() == CCValAssign::Indirect)
1588          return false;
1589        if (VA.needsCustom()) {
1590          // f64 and vector types are split into multiple registers or
1591          // register/stack-slot combinations.  The types will not match
1592          // the registers; give up on memory f64 refs until we figure
1593          // out what to do about this.
1594          if (!VA.isRegLoc())
1595            return false;
1596          if (!ArgLocs[++i].isRegLoc())
1597            return false;
1598          if (RegVT == MVT::v2f64) {
1599            if (!ArgLocs[++i].isRegLoc())
1600              return false;
1601            if (!ArgLocs[++i].isRegLoc())
1602              return false;
1603          }
1604        } else if (!VA.isRegLoc()) {
1605          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
1606                                   MFI, MRI, TII))
1607            return false;
1608        }
1609      }
1610    }
1611  }
1612
1613  return true;
1614}
1615
1616SDValue
1617ARMTargetLowering::LowerReturn(SDValue Chain,
1618                               CallingConv::ID CallConv, bool isVarArg,
1619                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1620                               const SmallVectorImpl<SDValue> &OutVals,
1621                               DebugLoc dl, SelectionDAG &DAG) const {
1622
1623  // CCValAssign - represent the assignment of the return value to a location.
1624  SmallVector<CCValAssign, 16> RVLocs;
1625
1626  // CCState - Info about the registers and stack slots.
1627  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
1628                 *DAG.getContext());
1629
1630  // Analyze outgoing return values.
1631  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
1632                                               isVarArg));
1633
1634  // If this is the first return lowered for this function, add
1635  // the regs to the liveout set for the function.
1636  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1637    for (unsigned i = 0; i != RVLocs.size(); ++i)
1638      if (RVLocs[i].isRegLoc())
1639        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1640  }
1641
1642  SDValue Flag;
1643
1644  // Copy the result values into the output registers.
1645  for (unsigned i = 0, realRVLocIdx = 0;
1646       i != RVLocs.size();
1647       ++i, ++realRVLocIdx) {
1648    CCValAssign &VA = RVLocs[i];
1649    assert(VA.isRegLoc() && "Can only return in registers!");
1650
1651    SDValue Arg = OutVals[realRVLocIdx];
1652
1653    switch (VA.getLocInfo()) {
1654    default: llvm_unreachable("Unknown loc info!");
1655    case CCValAssign::Full: break;
1656    case CCValAssign::BCvt:
1657      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg);
1658      break;
1659    }
1660
1661    if (VA.needsCustom()) {
1662      if (VA.getLocVT() == MVT::v2f64) {
1663        // Extract the first half and return it in two registers.
1664        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1665                                   DAG.getConstant(0, MVT::i32));
1666        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
1667                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
1668
1669        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
1670        Flag = Chain.getValue(1);
1671        VA = RVLocs[++i]; // skip ahead to next loc
1672        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
1673                                 HalfGPRs.getValue(1), Flag);
1674        Flag = Chain.getValue(1);
1675        VA = RVLocs[++i]; // skip ahead to next loc
1676
1677        // Extract the 2nd half and fall through to handle it as an f64 value.
1678        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1679                          DAG.getConstant(1, MVT::i32));
1680      }
1681      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
1682      // available.
1683      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1684                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
1685      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
1686      Flag = Chain.getValue(1);
1687      VA = RVLocs[++i]; // skip ahead to next loc
1688      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
1689                               Flag);
1690    } else
1691      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1692
1693    // Guarantee that all emitted copies are
1694    // stuck together, avoiding something bad.
1695    Flag = Chain.getValue(1);
1696  }
1697
1698  SDValue result;
1699  if (Flag.getNode())
1700    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
1701  else // Return Void
1702    result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain);
1703
1704  return result;
1705}
1706
1707// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
1708// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
1709// one of the above mentioned nodes. It has to be wrapped because otherwise
1710// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
1711// be used to form addressing mode. These wrapped nodes will be selected
1712// into MOVi.
1713static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
1714  EVT PtrVT = Op.getValueType();
1715  // FIXME there is no actual debug info here
1716  DebugLoc dl = Op.getDebugLoc();
1717  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1718  SDValue Res;
1719  if (CP->isMachineConstantPoolEntry())
1720    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
1721                                    CP->getAlignment());
1722  else
1723    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
1724                                    CP->getAlignment());
1725  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
1726}
1727
1728unsigned ARMTargetLowering::getJumpTableEncoding() const {
1729  return MachineJumpTableInfo::EK_Inline;
1730}
1731
1732SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
1733                                             SelectionDAG &DAG) const {
1734  MachineFunction &MF = DAG.getMachineFunction();
1735  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1736  unsigned ARMPCLabelIndex = 0;
1737  DebugLoc DL = Op.getDebugLoc();
1738  EVT PtrVT = getPointerTy();
1739  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1740  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1741  SDValue CPAddr;
1742  if (RelocM == Reloc::Static) {
1743    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
1744  } else {
1745    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1746    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1747    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex,
1748                                                         ARMCP::CPBlockAddress,
1749                                                         PCAdj);
1750    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1751  }
1752  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
1753  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
1754                               MachinePointerInfo::getConstantPool(),
1755                               false, false, 0);
1756  if (RelocM == Reloc::Static)
1757    return Result;
1758  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1759  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
1760}
1761
1762// Lower ISD::GlobalTLSAddress using the "general dynamic" model
1763SDValue
1764ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1765                                                 SelectionDAG &DAG) const {
1766  DebugLoc dl = GA->getDebugLoc();
1767  EVT PtrVT = getPointerTy();
1768  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1769  MachineFunction &MF = DAG.getMachineFunction();
1770  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1771  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1772  ARMConstantPoolValue *CPV =
1773    new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1774                             ARMCP::CPValue, PCAdj, "tlsgd", true);
1775  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1776  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
1777  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
1778                         MachinePointerInfo::getConstantPool(),
1779                         false, false, 0);
1780  SDValue Chain = Argument.getValue(1);
1781
1782  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1783  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
1784
1785  // call __tls_get_addr.
1786  ArgListTy Args;
1787  ArgListEntry Entry;
1788  Entry.Node = Argument;
1789  Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext());
1790  Args.push_back(Entry);
1791  // FIXME: is there useful debug info available here?
1792  std::pair<SDValue, SDValue> CallResult =
1793    LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()),
1794                false, false, false, false,
1795                0, CallingConv::C, false, /*isReturnValueUsed=*/true,
1796                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
1797  return CallResult.first;
1798}
1799
1800// Lower ISD::GlobalTLSAddress using the "initial exec" or
1801// "local exec" model.
1802SDValue
1803ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
1804                                        SelectionDAG &DAG) const {
1805  const GlobalValue *GV = GA->getGlobal();
1806  DebugLoc dl = GA->getDebugLoc();
1807  SDValue Offset;
1808  SDValue Chain = DAG.getEntryNode();
1809  EVT PtrVT = getPointerTy();
1810  // Get the Thread Pointer
1811  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1812
1813  if (GV->isDeclaration()) {
1814    MachineFunction &MF = DAG.getMachineFunction();
1815    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1816    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1817    // Initial exec model.
1818    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
1819    ARMConstantPoolValue *CPV =
1820      new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex,
1821                               ARMCP::CPValue, PCAdj, "gottpoff", true);
1822    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1823    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1824    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1825                         MachinePointerInfo::getConstantPool(),
1826                         false, false, 0);
1827    Chain = Offset.getValue(1);
1828
1829    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1830    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
1831
1832    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1833                         MachinePointerInfo::getConstantPool(),
1834                         false, false, 0);
1835  } else {
1836    // local exec model
1837    ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff");
1838    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1839    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
1840    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
1841                         MachinePointerInfo::getConstantPool(),
1842                         false, false, 0);
1843  }
1844
1845  // The address of the thread local variable is the add of the thread
1846  // pointer with the offset of the variable.
1847  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
1848}
1849
1850SDValue
1851ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
1852  // TODO: implement the "local dynamic" model
1853  assert(Subtarget->isTargetELF() &&
1854         "TLS not implemented for non-ELF targets");
1855  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1856  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
1857  // otherwise use the "Local Exec" TLS Model
1858  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
1859    return LowerToTLSGeneralDynamicModel(GA, DAG);
1860  else
1861    return LowerToTLSExecModels(GA, DAG);
1862}
1863
1864SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
1865                                                 SelectionDAG &DAG) const {
1866  EVT PtrVT = getPointerTy();
1867  DebugLoc dl = Op.getDebugLoc();
1868  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1869  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1870  if (RelocM == Reloc::PIC_) {
1871    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
1872    ARMConstantPoolValue *CPV =
1873      new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT");
1874    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1875    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1876    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
1877                                 CPAddr,
1878                                 MachinePointerInfo::getConstantPool(),
1879                                 false, false, 0);
1880    SDValue Chain = Result.getValue(1);
1881    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1882    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
1883    if (!UseGOTOFF)
1884      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
1885                           MachinePointerInfo::getGOT(), false, false, 0);
1886    return Result;
1887  } else {
1888    // If we have T2 ops, we can materialize the address directly via movt/movw
1889    // pair. This is always cheaper.
1890    if (Subtarget->useMovt()) {
1891      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
1892                         DAG.getTargetGlobalAddress(GV, dl, PtrVT));
1893    } else {
1894      SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1895      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1896      return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1897                         MachinePointerInfo::getConstantPool(),
1898                         false, false, 0);
1899    }
1900  }
1901}
1902
1903SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
1904                                                    SelectionDAG &DAG) const {
1905  MachineFunction &MF = DAG.getMachineFunction();
1906  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1907  unsigned ARMPCLabelIndex = 0;
1908  EVT PtrVT = getPointerTy();
1909  DebugLoc dl = Op.getDebugLoc();
1910  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1911  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1912  SDValue CPAddr;
1913  if (RelocM == Reloc::Static)
1914    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
1915  else {
1916    ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1917    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
1918    ARMConstantPoolValue *CPV =
1919      new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj);
1920    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1921  }
1922  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1923
1924  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1925                               MachinePointerInfo::getConstantPool(),
1926                               false, false, 0);
1927  SDValue Chain = Result.getValue(1);
1928
1929  if (RelocM == Reloc::PIC_) {
1930    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1931    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1932  }
1933
1934  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
1935    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
1936                         false, false, 0);
1937
1938  return Result;
1939}
1940
1941SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
1942                                                    SelectionDAG &DAG) const {
1943  assert(Subtarget->isTargetELF() &&
1944         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
1945  MachineFunction &MF = DAG.getMachineFunction();
1946  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1947  unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
1948  EVT PtrVT = getPointerTy();
1949  DebugLoc dl = Op.getDebugLoc();
1950  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
1951  ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(),
1952                                                       "_GLOBAL_OFFSET_TABLE_",
1953                                                       ARMPCLabelIndex, PCAdj);
1954  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
1955  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1956  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
1957                               MachinePointerInfo::getConstantPool(),
1958                               false, false, 0);
1959  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1960  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
1961}
1962
1963SDValue
1964ARMTargetLowering::LowerEH_SJLJ_DISPATCHSETUP(SDValue Op, SelectionDAG &DAG)
1965  const {
1966  DebugLoc dl = Op.getDebugLoc();
1967  return DAG.getNode(ARMISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other,
1968                     Op.getOperand(0), Op.getOperand(1));
1969}
1970
1971SDValue
1972ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
1973  DebugLoc dl = Op.getDebugLoc();
1974  SDValue Val = DAG.getConstant(0, MVT::i32);
1975  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0),
1976                     Op.getOperand(1), Val);
1977}
1978
1979SDValue
1980ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
1981  DebugLoc dl = Op.getDebugLoc();
1982  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
1983                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
1984}
1985
1986SDValue
1987ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
1988                                          const ARMSubtarget *Subtarget) const {
1989  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1990  DebugLoc dl = Op.getDebugLoc();
1991  switch (IntNo) {
1992  default: return SDValue();    // Don't custom lower most intrinsics.
1993  case Intrinsic::arm_thread_pointer: {
1994    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1995    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
1996  }
1997  case Intrinsic::eh_sjlj_lsda: {
1998    MachineFunction &MF = DAG.getMachineFunction();
1999    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2000    unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId();
2001    EVT PtrVT = getPointerTy();
2002    DebugLoc dl = Op.getDebugLoc();
2003    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2004    SDValue CPAddr;
2005    unsigned PCAdj = (RelocM != Reloc::PIC_)
2006      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2007    ARMConstantPoolValue *CPV =
2008      new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex,
2009                               ARMCP::CPLSDA, PCAdj);
2010    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2011    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2012    SDValue Result =
2013      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2014                  MachinePointerInfo::getConstantPool(),
2015                  false, false, 0);
2016
2017    if (RelocM == Reloc::PIC_) {
2018      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2019      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2020    }
2021    return Result;
2022  }
2023  }
2024}
2025
2026static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG,
2027                               const ARMSubtarget *Subtarget) {
2028  DebugLoc dl = Op.getDebugLoc();
2029  if (!Subtarget->hasDataBarrier()) {
2030    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2031    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2032    // here.
2033    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb1Only() &&
2034           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2035    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2036                       DAG.getConstant(0, MVT::i32));
2037  }
2038
2039  SDValue Op5 = Op.getOperand(5);
2040  bool isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue() != 0;
2041  unsigned isLL = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2042  unsigned isLS = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
2043  bool isOnlyStoreBarrier = (isLL == 0 && isLS == 0);
2044
2045  ARM_MB::MemBOpt DMBOpt;
2046  if (isDeviceBarrier)
2047    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ST : ARM_MB::SY;
2048  else
2049    DMBOpt = isOnlyStoreBarrier ? ARM_MB::ISHST : ARM_MB::ISH;
2050  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2051                     DAG.getConstant(DMBOpt, MVT::i32));
2052}
2053
2054static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2055  MachineFunction &MF = DAG.getMachineFunction();
2056  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2057
2058  // vastart just stores the address of the VarArgsFrameIndex slot into the
2059  // memory location argument.
2060  DebugLoc dl = Op.getDebugLoc();
2061  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2062  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2063  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2064  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2065                      MachinePointerInfo(SV), false, false, 0);
2066}
2067
2068SDValue
2069ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2070                                        SDValue &Root, SelectionDAG &DAG,
2071                                        DebugLoc dl) const {
2072  MachineFunction &MF = DAG.getMachineFunction();
2073  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2074
2075  TargetRegisterClass *RC;
2076  if (AFI->isThumb1OnlyFunction())
2077    RC = ARM::tGPRRegisterClass;
2078  else
2079    RC = ARM::GPRRegisterClass;
2080
2081  // Transform the arguments stored in physical registers into virtual ones.
2082  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2083  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2084
2085  SDValue ArgValue2;
2086  if (NextVA.isMemLoc()) {
2087    MachineFrameInfo *MFI = MF.getFrameInfo();
2088    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2089
2090    // Create load node to retrieve arguments from the stack.
2091    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2092    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2093                            MachinePointerInfo::getFixedStack(FI),
2094                            false, false, 0);
2095  } else {
2096    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2097    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2098  }
2099
2100  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2101}
2102
2103SDValue
2104ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2105                                        CallingConv::ID CallConv, bool isVarArg,
2106                                        const SmallVectorImpl<ISD::InputArg>
2107                                          &Ins,
2108                                        DebugLoc dl, SelectionDAG &DAG,
2109                                        SmallVectorImpl<SDValue> &InVals)
2110                                          const {
2111
2112  MachineFunction &MF = DAG.getMachineFunction();
2113  MachineFrameInfo *MFI = MF.getFrameInfo();
2114
2115  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2116
2117  // Assign locations to all of the incoming arguments.
2118  SmallVector<CCValAssign, 16> ArgLocs;
2119  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
2120                 *DAG.getContext());
2121  CCInfo.AnalyzeFormalArguments(Ins,
2122                                CCAssignFnForNode(CallConv, /* Return*/ false,
2123                                                  isVarArg));
2124
2125  SmallVector<SDValue, 16> ArgValues;
2126
2127  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2128    CCValAssign &VA = ArgLocs[i];
2129
2130    // Arguments stored in registers.
2131    if (VA.isRegLoc()) {
2132      EVT RegVT = VA.getLocVT();
2133
2134      SDValue ArgValue;
2135      if (VA.needsCustom()) {
2136        // f64 and vector types are split up into multiple registers or
2137        // combinations of registers and stack slots.
2138        if (VA.getLocVT() == MVT::v2f64) {
2139          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2140                                                   Chain, DAG, dl);
2141          VA = ArgLocs[++i]; // skip ahead to next loc
2142          SDValue ArgValue2;
2143          if (VA.isMemLoc()) {
2144            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2145            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2146            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2147                                    MachinePointerInfo::getFixedStack(FI),
2148                                    false, false, 0);
2149          } else {
2150            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2151                                             Chain, DAG, dl);
2152          }
2153          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2154          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2155                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2156          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2157                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2158        } else
2159          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2160
2161      } else {
2162        TargetRegisterClass *RC;
2163
2164        if (RegVT == MVT::f32)
2165          RC = ARM::SPRRegisterClass;
2166        else if (RegVT == MVT::f64)
2167          RC = ARM::DPRRegisterClass;
2168        else if (RegVT == MVT::v2f64)
2169          RC = ARM::QPRRegisterClass;
2170        else if (RegVT == MVT::i32)
2171          RC = (AFI->isThumb1OnlyFunction() ?
2172                ARM::tGPRRegisterClass : ARM::GPRRegisterClass);
2173        else
2174          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2175
2176        // Transform the arguments in physical registers into virtual ones.
2177        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2178        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2179      }
2180
2181      // If this is an 8 or 16-bit value, it is really passed promoted
2182      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2183      // truncate to the right size.
2184      switch (VA.getLocInfo()) {
2185      default: llvm_unreachable("Unknown loc info!");
2186      case CCValAssign::Full: break;
2187      case CCValAssign::BCvt:
2188        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
2189        break;
2190      case CCValAssign::SExt:
2191        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2192                               DAG.getValueType(VA.getValVT()));
2193        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2194        break;
2195      case CCValAssign::ZExt:
2196        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2197                               DAG.getValueType(VA.getValVT()));
2198        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2199        break;
2200      }
2201
2202      InVals.push_back(ArgValue);
2203
2204    } else { // VA.isRegLoc()
2205
2206      // sanity check
2207      assert(VA.isMemLoc());
2208      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2209
2210      unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
2211      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), true);
2212
2213      // Create load nodes to retrieve arguments from the stack.
2214      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2215      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2216                                   MachinePointerInfo::getFixedStack(FI),
2217                                   false, false, 0));
2218    }
2219  }
2220
2221  // varargs
2222  if (isVarArg) {
2223    static const unsigned GPRArgRegs[] = {
2224      ARM::R0, ARM::R1, ARM::R2, ARM::R3
2225    };
2226
2227    unsigned NumGPRs = CCInfo.getFirstUnallocated
2228      (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0]));
2229
2230    unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
2231    unsigned VARegSize = (4 - NumGPRs) * 4;
2232    unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1);
2233    unsigned ArgOffset = CCInfo.getNextStackOffset();
2234    if (VARegSaveSize) {
2235      // If this function is vararg, store any remaining integer argument regs
2236      // to their spots on the stack so that they may be loaded by deferencing
2237      // the result of va_next.
2238      AFI->setVarArgsRegSaveSize(VARegSaveSize);
2239      AFI->setVarArgsFrameIndex(
2240        MFI->CreateFixedObject(VARegSaveSize,
2241                               ArgOffset + VARegSaveSize - VARegSize,
2242                               false));
2243      SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(),
2244                                      getPointerTy());
2245
2246      SmallVector<SDValue, 4> MemOps;
2247      for (; NumGPRs < 4; ++NumGPRs) {
2248        TargetRegisterClass *RC;
2249        if (AFI->isThumb1OnlyFunction())
2250          RC = ARM::tGPRRegisterClass;
2251        else
2252          RC = ARM::GPRRegisterClass;
2253
2254        unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC);
2255        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2256        SDValue Store =
2257          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2258               MachinePointerInfo::getFixedStack(AFI->getVarArgsFrameIndex()),
2259                       false, false, 0);
2260        MemOps.push_back(Store);
2261        FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2262                          DAG.getConstant(4, getPointerTy()));
2263      }
2264      if (!MemOps.empty())
2265        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2266                            &MemOps[0], MemOps.size());
2267    } else
2268      // This will point to the next argument passed via stack.
2269      AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, true));
2270  }
2271
2272  return Chain;
2273}
2274
2275/// isFloatingPointZero - Return true if this is +0.0.
2276static bool isFloatingPointZero(SDValue Op) {
2277  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
2278    return CFP->getValueAPF().isPosZero();
2279  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
2280    // Maybe this has already been legalized into the constant pool?
2281    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
2282      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
2283      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
2284        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
2285          return CFP->getValueAPF().isPosZero();
2286    }
2287  }
2288  return false;
2289}
2290
2291/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
2292/// the given operands.
2293SDValue
2294ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
2295                             SDValue &ARMcc, SelectionDAG &DAG,
2296                             DebugLoc dl) const {
2297  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
2298    unsigned C = RHSC->getZExtValue();
2299    if (!isLegalICmpImmediate(C)) {
2300      // Constant does not fit, try adjusting it by one?
2301      switch (CC) {
2302      default: break;
2303      case ISD::SETLT:
2304      case ISD::SETGE:
2305        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
2306          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
2307          RHS = DAG.getConstant(C-1, MVT::i32);
2308        }
2309        break;
2310      case ISD::SETULT:
2311      case ISD::SETUGE:
2312        if (C != 0 && isLegalICmpImmediate(C-1)) {
2313          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
2314          RHS = DAG.getConstant(C-1, MVT::i32);
2315        }
2316        break;
2317      case ISD::SETLE:
2318      case ISD::SETGT:
2319        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
2320          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
2321          RHS = DAG.getConstant(C+1, MVT::i32);
2322        }
2323        break;
2324      case ISD::SETULE:
2325      case ISD::SETUGT:
2326        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
2327          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2328          RHS = DAG.getConstant(C+1, MVT::i32);
2329        }
2330        break;
2331      }
2332    }
2333  }
2334
2335  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2336  ARMISD::NodeType CompareType;
2337  switch (CondCode) {
2338  default:
2339    CompareType = ARMISD::CMP;
2340    break;
2341  case ARMCC::EQ:
2342  case ARMCC::NE:
2343    // Uses only Z Flag
2344    CompareType = ARMISD::CMPZ;
2345    break;
2346  }
2347  ARMcc = DAG.getConstant(CondCode, MVT::i32);
2348  return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS);
2349}
2350
2351/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
2352SDValue
2353ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
2354                             DebugLoc dl) const {
2355  SDValue Cmp;
2356  if (!isFloatingPointZero(RHS))
2357    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS);
2358  else
2359    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS);
2360  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp);
2361}
2362
2363SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2364  SDValue Cond = Op.getOperand(0);
2365  SDValue SelectTrue = Op.getOperand(1);
2366  SDValue SelectFalse = Op.getOperand(2);
2367  DebugLoc dl = Op.getDebugLoc();
2368
2369  // Convert:
2370  //
2371  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
2372  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
2373  //
2374  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
2375    const ConstantSDNode *CMOVTrue =
2376      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
2377    const ConstantSDNode *CMOVFalse =
2378      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
2379
2380    if (CMOVTrue && CMOVFalse) {
2381      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
2382      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
2383
2384      SDValue True;
2385      SDValue False;
2386      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
2387        True = SelectTrue;
2388        False = SelectFalse;
2389      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
2390        True = SelectFalse;
2391        False = SelectTrue;
2392      }
2393
2394      if (True.getNode() && False.getNode()) {
2395        EVT VT = Cond.getValueType();
2396        SDValue ARMcc = Cond.getOperand(2);
2397        SDValue CCR = Cond.getOperand(3);
2398        SDValue Cmp = Cond.getOperand(4);
2399        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
2400      }
2401    }
2402  }
2403
2404  return DAG.getSelectCC(dl, Cond,
2405                         DAG.getConstant(0, Cond.getValueType()),
2406                         SelectTrue, SelectFalse, ISD::SETNE);
2407}
2408
2409SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2410  EVT VT = Op.getValueType();
2411  SDValue LHS = Op.getOperand(0);
2412  SDValue RHS = Op.getOperand(1);
2413  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2414  SDValue TrueVal = Op.getOperand(2);
2415  SDValue FalseVal = Op.getOperand(3);
2416  DebugLoc dl = Op.getDebugLoc();
2417
2418  if (LHS.getValueType() == MVT::i32) {
2419    SDValue ARMcc;
2420    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2421    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2422    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
2423  }
2424
2425  ARMCC::CondCodes CondCode, CondCode2;
2426  FPCCToARMCC(CC, CondCode, CondCode2);
2427
2428  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2429  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2430  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2431  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
2432                               ARMcc, CCR, Cmp);
2433  if (CondCode2 != ARMCC::AL) {
2434    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
2435    // FIXME: Needs another CMP because flag can have but one use.
2436    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
2437    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
2438                         Result, TrueVal, ARMcc2, CCR, Cmp2);
2439  }
2440  return Result;
2441}
2442
2443/// canChangeToInt - Given the fp compare operand, return true if it is suitable
2444/// to morph to an integer compare sequence.
2445static bool canChangeToInt(SDValue Op, bool &SeenZero,
2446                           const ARMSubtarget *Subtarget) {
2447  SDNode *N = Op.getNode();
2448  if (!N->hasOneUse())
2449    // Otherwise it requires moving the value from fp to integer registers.
2450    return false;
2451  if (!N->getNumValues())
2452    return false;
2453  EVT VT = Op.getValueType();
2454  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
2455    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
2456    // vmrs are very slow, e.g. cortex-a8.
2457    return false;
2458
2459  if (isFloatingPointZero(Op)) {
2460    SeenZero = true;
2461    return true;
2462  }
2463  return ISD::isNormalLoad(N);
2464}
2465
2466static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
2467  if (isFloatingPointZero(Op))
2468    return DAG.getConstant(0, MVT::i32);
2469
2470  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
2471    return DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2472                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
2473                       Ld->isVolatile(), Ld->isNonTemporal(),
2474                       Ld->getAlignment());
2475
2476  llvm_unreachable("Unknown VFP cmp argument!");
2477}
2478
2479static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
2480                           SDValue &RetVal1, SDValue &RetVal2) {
2481  if (isFloatingPointZero(Op)) {
2482    RetVal1 = DAG.getConstant(0, MVT::i32);
2483    RetVal2 = DAG.getConstant(0, MVT::i32);
2484    return;
2485  }
2486
2487  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
2488    SDValue Ptr = Ld->getBasePtr();
2489    RetVal1 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2490                          Ld->getChain(), Ptr,
2491                          Ld->getPointerInfo(),
2492                          Ld->isVolatile(), Ld->isNonTemporal(),
2493                          Ld->getAlignment());
2494
2495    EVT PtrType = Ptr.getValueType();
2496    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
2497    SDValue NewPtr = DAG.getNode(ISD::ADD, Op.getDebugLoc(),
2498                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
2499    RetVal2 = DAG.getLoad(MVT::i32, Op.getDebugLoc(),
2500                          Ld->getChain(), NewPtr,
2501                          Ld->getPointerInfo().getWithOffset(4),
2502                          Ld->isVolatile(), Ld->isNonTemporal(),
2503                          NewAlign);
2504    return;
2505  }
2506
2507  llvm_unreachable("Unknown VFP cmp argument!");
2508}
2509
2510/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
2511/// f32 and even f64 comparisons to integer ones.
2512SDValue
2513ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
2514  SDValue Chain = Op.getOperand(0);
2515  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2516  SDValue LHS = Op.getOperand(2);
2517  SDValue RHS = Op.getOperand(3);
2518  SDValue Dest = Op.getOperand(4);
2519  DebugLoc dl = Op.getDebugLoc();
2520
2521  bool SeenZero = false;
2522  if (canChangeToInt(LHS, SeenZero, Subtarget) &&
2523      canChangeToInt(RHS, SeenZero, Subtarget) &&
2524      // If one of the operand is zero, it's safe to ignore the NaN case since
2525      // we only care about equality comparisons.
2526      (SeenZero || (DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS)))) {
2527    // If unsafe fp math optimization is enabled and there are no othter uses of
2528    // the CMP operands, and the condition code is EQ oe NE, we can optimize it
2529    // to an integer comparison.
2530    if (CC == ISD::SETOEQ)
2531      CC = ISD::SETEQ;
2532    else if (CC == ISD::SETUNE)
2533      CC = ISD::SETNE;
2534
2535    SDValue ARMcc;
2536    if (LHS.getValueType() == MVT::f32) {
2537      LHS = bitcastf32Toi32(LHS, DAG);
2538      RHS = bitcastf32Toi32(RHS, DAG);
2539      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2540      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2541      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2542                         Chain, Dest, ARMcc, CCR, Cmp);
2543    }
2544
2545    SDValue LHS1, LHS2;
2546    SDValue RHS1, RHS2;
2547    expandf64Toi32(LHS, DAG, LHS1, LHS2);
2548    expandf64Toi32(RHS, DAG, RHS1, RHS2);
2549    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
2550    ARMcc = DAG.getConstant(CondCode, MVT::i32);
2551    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2552    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
2553    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
2554  }
2555
2556  return SDValue();
2557}
2558
2559SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2560  SDValue Chain = Op.getOperand(0);
2561  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2562  SDValue LHS = Op.getOperand(2);
2563  SDValue RHS = Op.getOperand(3);
2564  SDValue Dest = Op.getOperand(4);
2565  DebugLoc dl = Op.getDebugLoc();
2566
2567  if (LHS.getValueType() == MVT::i32) {
2568    SDValue ARMcc;
2569    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
2570    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2571    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
2572                       Chain, Dest, ARMcc, CCR, Cmp);
2573  }
2574
2575  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
2576
2577  if (UnsafeFPMath &&
2578      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
2579       CC == ISD::SETNE || CC == ISD::SETUNE)) {
2580    SDValue Result = OptimizeVFPBrcond(Op, DAG);
2581    if (Result.getNode())
2582      return Result;
2583  }
2584
2585  ARMCC::CondCodes CondCode, CondCode2;
2586  FPCCToARMCC(CC, CondCode, CondCode2);
2587
2588  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
2589  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
2590  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2591  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag);
2592  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
2593  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2594  if (CondCode2 != ARMCC::AL) {
2595    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
2596    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
2597    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
2598  }
2599  return Res;
2600}
2601
2602SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
2603  SDValue Chain = Op.getOperand(0);
2604  SDValue Table = Op.getOperand(1);
2605  SDValue Index = Op.getOperand(2);
2606  DebugLoc dl = Op.getDebugLoc();
2607
2608  EVT PTy = getPointerTy();
2609  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
2610  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2611  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
2612  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
2613  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
2614  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
2615  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2616  if (Subtarget->isThumb2()) {
2617    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
2618    // which does another jump to the destination. This also makes it easier
2619    // to translate it to TBB / TBH later.
2620    // FIXME: This might not work if the function is extremely large.
2621    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
2622                       Addr, Op.getOperand(2), JTI, UId);
2623  }
2624  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2625    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
2626                       MachinePointerInfo::getJumpTable(),
2627                       false, false, 0);
2628    Chain = Addr.getValue(1);
2629    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
2630    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2631  } else {
2632    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
2633                       MachinePointerInfo::getJumpTable(), false, false, 0);
2634    Chain = Addr.getValue(1);
2635    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
2636  }
2637}
2638
2639static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
2640  DebugLoc dl = Op.getDebugLoc();
2641  unsigned Opc;
2642
2643  switch (Op.getOpcode()) {
2644  default:
2645    assert(0 && "Invalid opcode!");
2646  case ISD::FP_TO_SINT:
2647    Opc = ARMISD::FTOSI;
2648    break;
2649  case ISD::FP_TO_UINT:
2650    Opc = ARMISD::FTOUI;
2651    break;
2652  }
2653  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
2654  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
2655}
2656
2657static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2658  EVT VT = Op.getValueType();
2659  DebugLoc dl = Op.getDebugLoc();
2660  unsigned Opc;
2661
2662  switch (Op.getOpcode()) {
2663  default:
2664    assert(0 && "Invalid opcode!");
2665  case ISD::SINT_TO_FP:
2666    Opc = ARMISD::SITOF;
2667    break;
2668  case ISD::UINT_TO_FP:
2669    Opc = ARMISD::UITOF;
2670    break;
2671  }
2672
2673  Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0));
2674  return DAG.getNode(Opc, dl, VT, Op);
2675}
2676
2677SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
2678  // Implement fcopysign with a fabs and a conditional fneg.
2679  SDValue Tmp0 = Op.getOperand(0);
2680  SDValue Tmp1 = Op.getOperand(1);
2681  DebugLoc dl = Op.getDebugLoc();
2682  EVT VT = Op.getValueType();
2683  EVT SrcVT = Tmp1.getValueType();
2684  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0);
2685  SDValue ARMcc = DAG.getConstant(ARMCC::LT, MVT::i32);
2686  SDValue FP0 = DAG.getConstantFP(0.0, SrcVT);
2687  SDValue Cmp = getVFPCmp(Tmp1, FP0, DAG, dl);
2688  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2689  return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMcc, CCR, Cmp);
2690}
2691
2692SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
2693  MachineFunction &MF = DAG.getMachineFunction();
2694  MachineFrameInfo *MFI = MF.getFrameInfo();
2695  MFI->setReturnAddressIsTaken(true);
2696
2697  EVT VT = Op.getValueType();
2698  DebugLoc dl = Op.getDebugLoc();
2699  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2700  if (Depth) {
2701    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
2702    SDValue Offset = DAG.getConstant(4, MVT::i32);
2703    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
2704                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
2705                       MachinePointerInfo(), false, false, 0);
2706  }
2707
2708  // Return LR, which contains the return address. Mark it an implicit live-in.
2709  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
2710  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
2711}
2712
2713SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
2714  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2715  MFI->setFrameAddressIsTaken(true);
2716
2717  EVT VT = Op.getValueType();
2718  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
2719  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2720  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
2721    ? ARM::R7 : ARM::R11;
2722  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
2723  while (Depth--)
2724    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
2725                            MachinePointerInfo(),
2726                            false, false, 0);
2727  return FrameAddr;
2728}
2729
2730/// ExpandBIT_CONVERT - If the target supports VFP, this function is called to
2731/// expand a bit convert where either the source or destination type is i64 to
2732/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
2733/// operand type is illegal (e.g., v2f32 for a target that doesn't support
2734/// vectors), since the legalizer won't know what to do with that.
2735static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) {
2736  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2737  DebugLoc dl = N->getDebugLoc();
2738  SDValue Op = N->getOperand(0);
2739
2740  // This function is only supposed to be called for i64 types, either as the
2741  // source or destination of the bit convert.
2742  EVT SrcVT = Op.getValueType();
2743  EVT DstVT = N->getValueType(0);
2744  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
2745         "ExpandBIT_CONVERT called for non-i64 type");
2746
2747  // Turn i64->f64 into VMOVDRR.
2748  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
2749    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2750                             DAG.getConstant(0, MVT::i32));
2751    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
2752                             DAG.getConstant(1, MVT::i32));
2753    return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT,
2754                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
2755  }
2756
2757  // Turn f64->i64 into VMOVRRD.
2758  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
2759    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
2760                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
2761    // Merge the pieces into a single i64 value.
2762    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
2763  }
2764
2765  return SDValue();
2766}
2767
2768/// getZeroVector - Returns a vector of specified type with all zero elements.
2769/// Zero vectors are used to represent vector negation and in those cases
2770/// will be implemented with the NEON VNEG instruction.  However, VNEG does
2771/// not support i64 elements, so sometimes the zero vectors will need to be
2772/// explicitly constructed.  Regardless, use a canonical VMOV to create the
2773/// zero vector.
2774static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
2775  assert(VT.isVector() && "Expected a vector type");
2776  // The canonical modified immediate encoding of a zero vector is....0!
2777  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
2778  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
2779  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
2780  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
2781}
2782
2783/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
2784/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2785SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
2786                                                SelectionDAG &DAG) const {
2787  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2788  EVT VT = Op.getValueType();
2789  unsigned VTBits = VT.getSizeInBits();
2790  DebugLoc dl = Op.getDebugLoc();
2791  SDValue ShOpLo = Op.getOperand(0);
2792  SDValue ShOpHi = Op.getOperand(1);
2793  SDValue ShAmt  = Op.getOperand(2);
2794  SDValue ARMcc;
2795  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
2796
2797  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
2798
2799  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2800                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2801  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
2802  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2803                                   DAG.getConstant(VTBits, MVT::i32));
2804  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
2805  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2806  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
2807
2808  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2809  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2810                          ARMcc, DAG, dl);
2811  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
2812  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
2813                           CCR, Cmp);
2814
2815  SDValue Ops[2] = { Lo, Hi };
2816  return DAG.getMergeValues(Ops, 2, dl);
2817}
2818
2819/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
2820/// i32 values and take a 2 x i32 value to shift plus a shift amount.
2821SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
2822                                               SelectionDAG &DAG) const {
2823  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
2824  EVT VT = Op.getValueType();
2825  unsigned VTBits = VT.getSizeInBits();
2826  DebugLoc dl = Op.getDebugLoc();
2827  SDValue ShOpLo = Op.getOperand(0);
2828  SDValue ShOpHi = Op.getOperand(1);
2829  SDValue ShAmt  = Op.getOperand(2);
2830  SDValue ARMcc;
2831
2832  assert(Op.getOpcode() == ISD::SHL_PARTS);
2833  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2834                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
2835  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2836  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2837                                   DAG.getConstant(VTBits, MVT::i32));
2838  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2839  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2840
2841  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2842  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
2843  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
2844                          ARMcc, DAG, dl);
2845  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2846  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
2847                           CCR, Cmp);
2848
2849  SDValue Ops[2] = { Lo, Hi };
2850  return DAG.getMergeValues(Ops, 2, dl);
2851}
2852
2853SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
2854                                            SelectionDAG &DAG) const {
2855  // The rounding mode is in bits 23:22 of the FPSCR.
2856  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2857  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2858  // so that the shift + and get folded into a bitfield extract.
2859  DebugLoc dl = Op.getDebugLoc();
2860  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
2861                              DAG.getConstant(Intrinsic::arm_get_fpscr,
2862                                              MVT::i32));
2863  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
2864                                  DAG.getConstant(1U << 22, MVT::i32));
2865  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
2866                              DAG.getConstant(22, MVT::i32));
2867  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
2868                     DAG.getConstant(3, MVT::i32));
2869}
2870
2871static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
2872                         const ARMSubtarget *ST) {
2873  EVT VT = N->getValueType(0);
2874  DebugLoc dl = N->getDebugLoc();
2875
2876  if (!ST->hasV6T2Ops())
2877    return SDValue();
2878
2879  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
2880  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
2881}
2882
2883static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
2884                          const ARMSubtarget *ST) {
2885  EVT VT = N->getValueType(0);
2886  DebugLoc dl = N->getDebugLoc();
2887
2888  // Lower vector shifts on NEON to use VSHL.
2889  if (VT.isVector()) {
2890    assert(ST->hasNEON() && "unexpected vector shift");
2891
2892    // Left shifts translate directly to the vshiftu intrinsic.
2893    if (N->getOpcode() == ISD::SHL)
2894      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2895                         DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
2896                         N->getOperand(0), N->getOperand(1));
2897
2898    assert((N->getOpcode() == ISD::SRA ||
2899            N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
2900
2901    // NEON uses the same intrinsics for both left and right shifts.  For
2902    // right shifts, the shift amounts are negative, so negate the vector of
2903    // shift amounts.
2904    EVT ShiftVT = N->getOperand(1).getValueType();
2905    SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
2906                                       getZeroVector(ShiftVT, DAG, dl),
2907                                       N->getOperand(1));
2908    Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
2909                               Intrinsic::arm_neon_vshifts :
2910                               Intrinsic::arm_neon_vshiftu);
2911    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
2912                       DAG.getConstant(vshiftInt, MVT::i32),
2913                       N->getOperand(0), NegatedCount);
2914  }
2915
2916  // We can get here for a node like i32 = ISD::SHL i32, i64
2917  if (VT != MVT::i64)
2918    return SDValue();
2919
2920  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
2921         "Unknown shift to lower!");
2922
2923  // We only lower SRA, SRL of 1 here, all others use generic lowering.
2924  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
2925      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
2926    return SDValue();
2927
2928  // If we are in thumb mode, we don't have RRX.
2929  if (ST->isThumb1Only()) return SDValue();
2930
2931  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
2932  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2933                           DAG.getConstant(0, MVT::i32));
2934  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
2935                           DAG.getConstant(1, MVT::i32));
2936
2937  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
2938  // captures the result into a carry flag.
2939  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
2940  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1);
2941
2942  // The low part is an ARMISD::RRX operand, which shifts the carry in.
2943  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
2944
2945  // Merge the pieces into a single i64 value.
2946 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
2947}
2948
2949static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
2950  SDValue TmpOp0, TmpOp1;
2951  bool Invert = false;
2952  bool Swap = false;
2953  unsigned Opc = 0;
2954
2955  SDValue Op0 = Op.getOperand(0);
2956  SDValue Op1 = Op.getOperand(1);
2957  SDValue CC = Op.getOperand(2);
2958  EVT VT = Op.getValueType();
2959  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
2960  DebugLoc dl = Op.getDebugLoc();
2961
2962  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
2963    switch (SetCCOpcode) {
2964    default: llvm_unreachable("Illegal FP comparison"); break;
2965    case ISD::SETUNE:
2966    case ISD::SETNE:  Invert = true; // Fallthrough
2967    case ISD::SETOEQ:
2968    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
2969    case ISD::SETOLT:
2970    case ISD::SETLT: Swap = true; // Fallthrough
2971    case ISD::SETOGT:
2972    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
2973    case ISD::SETOLE:
2974    case ISD::SETLE:  Swap = true; // Fallthrough
2975    case ISD::SETOGE:
2976    case ISD::SETGE: Opc = ARMISD::VCGE; break;
2977    case ISD::SETUGE: Swap = true; // Fallthrough
2978    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
2979    case ISD::SETUGT: Swap = true; // Fallthrough
2980    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
2981    case ISD::SETUEQ: Invert = true; // Fallthrough
2982    case ISD::SETONE:
2983      // Expand this to (OLT | OGT).
2984      TmpOp0 = Op0;
2985      TmpOp1 = Op1;
2986      Opc = ISD::OR;
2987      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2988      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
2989      break;
2990    case ISD::SETUO: Invert = true; // Fallthrough
2991    case ISD::SETO:
2992      // Expand this to (OLT | OGE).
2993      TmpOp0 = Op0;
2994      TmpOp1 = Op1;
2995      Opc = ISD::OR;
2996      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
2997      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
2998      break;
2999    }
3000  } else {
3001    // Integer comparisons.
3002    switch (SetCCOpcode) {
3003    default: llvm_unreachable("Illegal integer comparison"); break;
3004    case ISD::SETNE:  Invert = true;
3005    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
3006    case ISD::SETLT:  Swap = true;
3007    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
3008    case ISD::SETLE:  Swap = true;
3009    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
3010    case ISD::SETULT: Swap = true;
3011    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
3012    case ISD::SETULE: Swap = true;
3013    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
3014    }
3015
3016    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
3017    if (Opc == ARMISD::VCEQ) {
3018
3019      SDValue AndOp;
3020      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
3021        AndOp = Op0;
3022      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
3023        AndOp = Op1;
3024
3025      // Ignore bitconvert.
3026      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT)
3027        AndOp = AndOp.getOperand(0);
3028
3029      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
3030        Opc = ARMISD::VTST;
3031        Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0));
3032        Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1));
3033        Invert = !Invert;
3034      }
3035    }
3036  }
3037
3038  if (Swap)
3039    std::swap(Op0, Op1);
3040
3041  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
3042
3043  if (Invert)
3044    Result = DAG.getNOT(dl, Result, VT);
3045
3046  return Result;
3047}
3048
3049/// isNEONModifiedImm - Check if the specified splat value corresponds to a
3050/// valid vector constant for a NEON instruction with a "modified immediate"
3051/// operand (e.g., VMOV).  If so, return the encoded value.
3052static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
3053                                 unsigned SplatBitSize, SelectionDAG &DAG,
3054                                 EVT &VT, bool is128Bits, bool isVMOV) {
3055  unsigned OpCmode, Imm;
3056
3057  // SplatBitSize is set to the smallest size that splats the vector, so a
3058  // zero vector will always have SplatBitSize == 8.  However, NEON modified
3059  // immediate instructions others than VMOV do not support the 8-bit encoding
3060  // of a zero vector, and the default encoding of zero is supposed to be the
3061  // 32-bit version.
3062  if (SplatBits == 0)
3063    SplatBitSize = 32;
3064
3065  switch (SplatBitSize) {
3066  case 8:
3067    if (!isVMOV)
3068      return SDValue();
3069    // Any 1-byte value is OK.  Op=0, Cmode=1110.
3070    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
3071    OpCmode = 0xe;
3072    Imm = SplatBits;
3073    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
3074    break;
3075
3076  case 16:
3077    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
3078    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
3079    if ((SplatBits & ~0xff) == 0) {
3080      // Value = 0x00nn: Op=x, Cmode=100x.
3081      OpCmode = 0x8;
3082      Imm = SplatBits;
3083      break;
3084    }
3085    if ((SplatBits & ~0xff00) == 0) {
3086      // Value = 0xnn00: Op=x, Cmode=101x.
3087      OpCmode = 0xa;
3088      Imm = SplatBits >> 8;
3089      break;
3090    }
3091    return SDValue();
3092
3093  case 32:
3094    // NEON's 32-bit VMOV supports splat values where:
3095    // * only one byte is nonzero, or
3096    // * the least significant byte is 0xff and the second byte is nonzero, or
3097    // * the least significant 2 bytes are 0xff and the third is nonzero.
3098    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
3099    if ((SplatBits & ~0xff) == 0) {
3100      // Value = 0x000000nn: Op=x, Cmode=000x.
3101      OpCmode = 0;
3102      Imm = SplatBits;
3103      break;
3104    }
3105    if ((SplatBits & ~0xff00) == 0) {
3106      // Value = 0x0000nn00: Op=x, Cmode=001x.
3107      OpCmode = 0x2;
3108      Imm = SplatBits >> 8;
3109      break;
3110    }
3111    if ((SplatBits & ~0xff0000) == 0) {
3112      // Value = 0x00nn0000: Op=x, Cmode=010x.
3113      OpCmode = 0x4;
3114      Imm = SplatBits >> 16;
3115      break;
3116    }
3117    if ((SplatBits & ~0xff000000) == 0) {
3118      // Value = 0xnn000000: Op=x, Cmode=011x.
3119      OpCmode = 0x6;
3120      Imm = SplatBits >> 24;
3121      break;
3122    }
3123
3124    if ((SplatBits & ~0xffff) == 0 &&
3125        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
3126      // Value = 0x0000nnff: Op=x, Cmode=1100.
3127      OpCmode = 0xc;
3128      Imm = SplatBits >> 8;
3129      SplatBits |= 0xff;
3130      break;
3131    }
3132
3133    if ((SplatBits & ~0xffffff) == 0 &&
3134        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
3135      // Value = 0x00nnffff: Op=x, Cmode=1101.
3136      OpCmode = 0xd;
3137      Imm = SplatBits >> 16;
3138      SplatBits |= 0xffff;
3139      break;
3140    }
3141
3142    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
3143    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
3144    // VMOV.I32.  A (very) minor optimization would be to replicate the value
3145    // and fall through here to test for a valid 64-bit splat.  But, then the
3146    // caller would also need to check and handle the change in size.
3147    return SDValue();
3148
3149  case 64: {
3150    if (!isVMOV)
3151      return SDValue();
3152    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
3153    uint64_t BitMask = 0xff;
3154    uint64_t Val = 0;
3155    unsigned ImmMask = 1;
3156    Imm = 0;
3157    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
3158      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
3159        Val |= BitMask;
3160        Imm |= ImmMask;
3161      } else if ((SplatBits & BitMask) != 0) {
3162        return SDValue();
3163      }
3164      BitMask <<= 8;
3165      ImmMask <<= 1;
3166    }
3167    // Op=1, Cmode=1110.
3168    OpCmode = 0x1e;
3169    SplatBits = Val;
3170    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
3171    break;
3172  }
3173
3174  default:
3175    llvm_unreachable("unexpected size for isNEONModifiedImm");
3176    return SDValue();
3177  }
3178
3179  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
3180  return DAG.getTargetConstant(EncodedVal, MVT::i32);
3181}
3182
3183static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT,
3184                       bool &ReverseVEXT, unsigned &Imm) {
3185  unsigned NumElts = VT.getVectorNumElements();
3186  ReverseVEXT = false;
3187
3188  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
3189  if (M[0] < 0)
3190    return false;
3191
3192  Imm = M[0];
3193
3194  // If this is a VEXT shuffle, the immediate value is the index of the first
3195  // element.  The other shuffle indices must be the successive elements after
3196  // the first one.
3197  unsigned ExpectedElt = Imm;
3198  for (unsigned i = 1; i < NumElts; ++i) {
3199    // Increment the expected index.  If it wraps around, it may still be
3200    // a VEXT but the source vectors must be swapped.
3201    ExpectedElt += 1;
3202    if (ExpectedElt == NumElts * 2) {
3203      ExpectedElt = 0;
3204      ReverseVEXT = true;
3205    }
3206
3207    if (M[i] < 0) continue; // ignore UNDEF indices
3208    if (ExpectedElt != static_cast<unsigned>(M[i]))
3209      return false;
3210  }
3211
3212  // Adjust the index value if the source operands will be swapped.
3213  if (ReverseVEXT)
3214    Imm -= NumElts;
3215
3216  return true;
3217}
3218
3219/// isVREVMask - Check if a vector shuffle corresponds to a VREV
3220/// instruction with the specified blocksize.  (The order of the elements
3221/// within each block of the vector is reversed.)
3222static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT,
3223                       unsigned BlockSize) {
3224  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
3225         "Only possible block sizes for VREV are: 16, 32, 64");
3226
3227  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3228  if (EltSz == 64)
3229    return false;
3230
3231  unsigned NumElts = VT.getVectorNumElements();
3232  unsigned BlockElts = M[0] + 1;
3233  // If the first shuffle index is UNDEF, be optimistic.
3234  if (M[0] < 0)
3235    BlockElts = BlockSize / EltSz;
3236
3237  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
3238    return false;
3239
3240  for (unsigned i = 0; i < NumElts; ++i) {
3241    if (M[i] < 0) continue; // ignore UNDEF indices
3242    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
3243      return false;
3244  }
3245
3246  return true;
3247}
3248
3249static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT,
3250                       unsigned &WhichResult) {
3251  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3252  if (EltSz == 64)
3253    return false;
3254
3255  unsigned NumElts = VT.getVectorNumElements();
3256  WhichResult = (M[0] == 0 ? 0 : 1);
3257  for (unsigned i = 0; i < NumElts; i += 2) {
3258    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3259        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
3260      return false;
3261  }
3262  return true;
3263}
3264
3265/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
3266/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3267/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
3268static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3269                                unsigned &WhichResult) {
3270  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3271  if (EltSz == 64)
3272    return false;
3273
3274  unsigned NumElts = VT.getVectorNumElements();
3275  WhichResult = (M[0] == 0 ? 0 : 1);
3276  for (unsigned i = 0; i < NumElts; i += 2) {
3277    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
3278        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
3279      return false;
3280  }
3281  return true;
3282}
3283
3284static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT,
3285                       unsigned &WhichResult) {
3286  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3287  if (EltSz == 64)
3288    return false;
3289
3290  unsigned NumElts = VT.getVectorNumElements();
3291  WhichResult = (M[0] == 0 ? 0 : 1);
3292  for (unsigned i = 0; i != NumElts; ++i) {
3293    if (M[i] < 0) continue; // ignore UNDEF indices
3294    if ((unsigned) M[i] != 2 * i + WhichResult)
3295      return false;
3296  }
3297
3298  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3299  if (VT.is64BitVector() && EltSz == 32)
3300    return false;
3301
3302  return true;
3303}
3304
3305/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
3306/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3307/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
3308static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3309                                unsigned &WhichResult) {
3310  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3311  if (EltSz == 64)
3312    return false;
3313
3314  unsigned Half = VT.getVectorNumElements() / 2;
3315  WhichResult = (M[0] == 0 ? 0 : 1);
3316  for (unsigned j = 0; j != 2; ++j) {
3317    unsigned Idx = WhichResult;
3318    for (unsigned i = 0; i != Half; ++i) {
3319      int MIdx = M[i + j * Half];
3320      if (MIdx >= 0 && (unsigned) MIdx != Idx)
3321        return false;
3322      Idx += 2;
3323    }
3324  }
3325
3326  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3327  if (VT.is64BitVector() && EltSz == 32)
3328    return false;
3329
3330  return true;
3331}
3332
3333static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT,
3334                       unsigned &WhichResult) {
3335  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3336  if (EltSz == 64)
3337    return false;
3338
3339  unsigned NumElts = VT.getVectorNumElements();
3340  WhichResult = (M[0] == 0 ? 0 : 1);
3341  unsigned Idx = WhichResult * NumElts / 2;
3342  for (unsigned i = 0; i != NumElts; i += 2) {
3343    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3344        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
3345      return false;
3346    Idx += 1;
3347  }
3348
3349  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3350  if (VT.is64BitVector() && EltSz == 32)
3351    return false;
3352
3353  return true;
3354}
3355
3356/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
3357/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
3358/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
3359static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT,
3360                                unsigned &WhichResult) {
3361  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
3362  if (EltSz == 64)
3363    return false;
3364
3365  unsigned NumElts = VT.getVectorNumElements();
3366  WhichResult = (M[0] == 0 ? 0 : 1);
3367  unsigned Idx = WhichResult * NumElts / 2;
3368  for (unsigned i = 0; i != NumElts; i += 2) {
3369    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
3370        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
3371      return false;
3372    Idx += 1;
3373  }
3374
3375  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
3376  if (VT.is64BitVector() && EltSz == 32)
3377    return false;
3378
3379  return true;
3380}
3381
3382// If N is an integer constant that can be moved into a register in one
3383// instruction, return an SDValue of such a constant (will become a MOV
3384// instruction).  Otherwise return null.
3385static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
3386                                     const ARMSubtarget *ST, DebugLoc dl) {
3387  uint64_t Val;
3388  if (!isa<ConstantSDNode>(N))
3389    return SDValue();
3390  Val = cast<ConstantSDNode>(N)->getZExtValue();
3391
3392  if (ST->isThumb1Only()) {
3393    if (Val <= 255 || ~Val <= 255)
3394      return DAG.getConstant(Val, MVT::i32);
3395  } else {
3396    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
3397      return DAG.getConstant(Val, MVT::i32);
3398  }
3399  return SDValue();
3400}
3401
3402// If this is a case we can't handle, return null and let the default
3403// expansion code take care of it.
3404static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3405                                 const ARMSubtarget *ST) {
3406  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3407  DebugLoc dl = Op.getDebugLoc();
3408  EVT VT = Op.getValueType();
3409
3410  APInt SplatBits, SplatUndef;
3411  unsigned SplatBitSize;
3412  bool HasAnyUndefs;
3413  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3414    if (SplatBitSize <= 64) {
3415      // Check if an immediate VMOV works.
3416      EVT VmovVT;
3417      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
3418                                      SplatUndef.getZExtValue(), SplatBitSize,
3419                                      DAG, VmovVT, VT.is128BitVector(), true);
3420      if (Val.getNode()) {
3421        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
3422        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3423      }
3424
3425      // Try an immediate VMVN.
3426      uint64_t NegatedImm = (SplatBits.getZExtValue() ^
3427                             ((1LL << SplatBitSize) - 1));
3428      Val = isNEONModifiedImm(NegatedImm,
3429                                      SplatUndef.getZExtValue(), SplatBitSize,
3430                                      DAG, VmovVT, VT.is128BitVector(), false);
3431      if (Val.getNode()) {
3432        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
3433        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vmov);
3434      }
3435    }
3436  }
3437
3438  // Scan through the operands to see if only one value is used.
3439  unsigned NumElts = VT.getVectorNumElements();
3440  bool isOnlyLowElement = true;
3441  bool usesOnlyOneValue = true;
3442  bool isConstant = true;
3443  SDValue Value;
3444  for (unsigned i = 0; i < NumElts; ++i) {
3445    SDValue V = Op.getOperand(i);
3446    if (V.getOpcode() == ISD::UNDEF)
3447      continue;
3448    if (i > 0)
3449      isOnlyLowElement = false;
3450    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
3451      isConstant = false;
3452
3453    if (!Value.getNode())
3454      Value = V;
3455    else if (V != Value)
3456      usesOnlyOneValue = false;
3457  }
3458
3459  if (!Value.getNode())
3460    return DAG.getUNDEF(VT);
3461
3462  if (isOnlyLowElement)
3463    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
3464
3465  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3466
3467  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
3468  // i32 and try again.
3469  if (usesOnlyOneValue && EltSize <= 32) {
3470    if (!isConstant)
3471      return DAG.getNode(ARMISD::VDUP, dl, VT, Value);
3472    if (VT.getVectorElementType().isFloatingPoint()) {
3473      SmallVector<SDValue, 8> Ops;
3474      for (unsigned i = 0; i < NumElts; ++i)
3475        Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
3476                                  Op.getOperand(i)));
3477      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &Ops[0],
3478                                NumElts);
3479      Val = LowerBUILD_VECTOR(Val, DAG, ST);
3480      if (Val.getNode())
3481        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3482    }
3483    SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
3484    if (Val.getNode())
3485      return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
3486  }
3487
3488  // If all elements are constants and the case above didn't get hit, fall back
3489  // to the default expansion, which will generate a load from the constant
3490  // pool.
3491  if (isConstant)
3492    return SDValue();
3493
3494  // Vectors with 32- or 64-bit elements can be built by directly assigning
3495  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
3496  // will be legalized.
3497  if (EltSize >= 32) {
3498    // Do the expansion with floating-point types, since that is what the VFP
3499    // registers are defined to use, and since i64 is not legal.
3500    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3501    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3502    SmallVector<SDValue, 8> Ops;
3503    for (unsigned i = 0; i < NumElts; ++i)
3504      Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i)));
3505    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3506    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3507  }
3508
3509  return SDValue();
3510}
3511
3512/// isShuffleMaskLegal - Targets can use this to indicate that they only
3513/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
3514/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
3515/// are assumed to be legal.
3516bool
3517ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
3518                                      EVT VT) const {
3519  if (VT.getVectorNumElements() == 4 &&
3520      (VT.is128BitVector() || VT.is64BitVector())) {
3521    unsigned PFIndexes[4];
3522    for (unsigned i = 0; i != 4; ++i) {
3523      if (M[i] < 0)
3524        PFIndexes[i] = 8;
3525      else
3526        PFIndexes[i] = M[i];
3527    }
3528
3529    // Compute the index in the perfect shuffle table.
3530    unsigned PFTableIndex =
3531      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3532    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3533    unsigned Cost = (PFEntry >> 30);
3534
3535    if (Cost <= 4)
3536      return true;
3537  }
3538
3539  bool ReverseVEXT;
3540  unsigned Imm, WhichResult;
3541
3542  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3543  return (EltSize >= 32 ||
3544          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
3545          isVREVMask(M, VT, 64) ||
3546          isVREVMask(M, VT, 32) ||
3547          isVREVMask(M, VT, 16) ||
3548          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
3549          isVTRNMask(M, VT, WhichResult) ||
3550          isVUZPMask(M, VT, WhichResult) ||
3551          isVZIPMask(M, VT, WhichResult) ||
3552          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
3553          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
3554          isVZIP_v_undef_Mask(M, VT, WhichResult));
3555}
3556
3557/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3558/// the specified operations to build the shuffle.
3559static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3560                                      SDValue RHS, SelectionDAG &DAG,
3561                                      DebugLoc dl) {
3562  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3563  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3564  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3565
3566  enum {
3567    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3568    OP_VREV,
3569    OP_VDUP0,
3570    OP_VDUP1,
3571    OP_VDUP2,
3572    OP_VDUP3,
3573    OP_VEXT1,
3574    OP_VEXT2,
3575    OP_VEXT3,
3576    OP_VUZPL, // VUZP, left result
3577    OP_VUZPR, // VUZP, right result
3578    OP_VZIPL, // VZIP, left result
3579    OP_VZIPR, // VZIP, right result
3580    OP_VTRNL, // VTRN, left result
3581    OP_VTRNR  // VTRN, right result
3582  };
3583
3584  if (OpNum == OP_COPY) {
3585    if (LHSID == (1*9+2)*9+3) return LHS;
3586    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3587    return RHS;
3588  }
3589
3590  SDValue OpLHS, OpRHS;
3591  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3592  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3593  EVT VT = OpLHS.getValueType();
3594
3595  switch (OpNum) {
3596  default: llvm_unreachable("Unknown shuffle opcode!");
3597  case OP_VREV:
3598    return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
3599  case OP_VDUP0:
3600  case OP_VDUP1:
3601  case OP_VDUP2:
3602  case OP_VDUP3:
3603    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
3604                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
3605  case OP_VEXT1:
3606  case OP_VEXT2:
3607  case OP_VEXT3:
3608    return DAG.getNode(ARMISD::VEXT, dl, VT,
3609                       OpLHS, OpRHS,
3610                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
3611  case OP_VUZPL:
3612  case OP_VUZPR:
3613    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3614                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
3615  case OP_VZIPL:
3616  case OP_VZIPR:
3617    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3618                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
3619  case OP_VTRNL:
3620  case OP_VTRNR:
3621    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3622                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
3623  }
3624}
3625
3626static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3627  SDValue V1 = Op.getOperand(0);
3628  SDValue V2 = Op.getOperand(1);
3629  DebugLoc dl = Op.getDebugLoc();
3630  EVT VT = Op.getValueType();
3631  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
3632  SmallVector<int, 8> ShuffleMask;
3633
3634  // Convert shuffles that are directly supported on NEON to target-specific
3635  // DAG nodes, instead of keeping them as shuffles and matching them again
3636  // during code selection.  This is more efficient and avoids the possibility
3637  // of inconsistencies between legalization and selection.
3638  // FIXME: floating-point vectors should be canonicalized to integer vectors
3639  // of the same time so that they get CSEd properly.
3640  SVN->getMask(ShuffleMask);
3641
3642  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3643  if (EltSize <= 32) {
3644    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
3645      int Lane = SVN->getSplatIndex();
3646      // If this is undef splat, generate it via "just" vdup, if possible.
3647      if (Lane == -1) Lane = 0;
3648
3649      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3650        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
3651      }
3652      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
3653                         DAG.getConstant(Lane, MVT::i32));
3654    }
3655
3656    bool ReverseVEXT;
3657    unsigned Imm;
3658    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
3659      if (ReverseVEXT)
3660        std::swap(V1, V2);
3661      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
3662                         DAG.getConstant(Imm, MVT::i32));
3663    }
3664
3665    if (isVREVMask(ShuffleMask, VT, 64))
3666      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
3667    if (isVREVMask(ShuffleMask, VT, 32))
3668      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
3669    if (isVREVMask(ShuffleMask, VT, 16))
3670      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
3671
3672    // Check for Neon shuffles that modify both input vectors in place.
3673    // If both results are used, i.e., if there are two shuffles with the same
3674    // source operands and with masks corresponding to both results of one of
3675    // these operations, DAG memoization will ensure that a single node is
3676    // used for both shuffles.
3677    unsigned WhichResult;
3678    if (isVTRNMask(ShuffleMask, VT, WhichResult))
3679      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3680                         V1, V2).getValue(WhichResult);
3681    if (isVUZPMask(ShuffleMask, VT, WhichResult))
3682      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3683                         V1, V2).getValue(WhichResult);
3684    if (isVZIPMask(ShuffleMask, VT, WhichResult))
3685      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3686                         V1, V2).getValue(WhichResult);
3687
3688    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
3689      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
3690                         V1, V1).getValue(WhichResult);
3691    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3692      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
3693                         V1, V1).getValue(WhichResult);
3694    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
3695      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
3696                         V1, V1).getValue(WhichResult);
3697  }
3698
3699  // If the shuffle is not directly supported and it has 4 elements, use
3700  // the PerfectShuffle-generated table to synthesize it from other shuffles.
3701  unsigned NumElts = VT.getVectorNumElements();
3702  if (NumElts == 4) {
3703    unsigned PFIndexes[4];
3704    for (unsigned i = 0; i != 4; ++i) {
3705      if (ShuffleMask[i] < 0)
3706        PFIndexes[i] = 8;
3707      else
3708        PFIndexes[i] = ShuffleMask[i];
3709    }
3710
3711    // Compute the index in the perfect shuffle table.
3712    unsigned PFTableIndex =
3713      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3714    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3715    unsigned Cost = (PFEntry >> 30);
3716
3717    if (Cost <= 4)
3718      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3719  }
3720
3721  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
3722  if (EltSize >= 32) {
3723    // Do the expansion with floating-point types, since that is what the VFP
3724    // registers are defined to use, and since i64 is not legal.
3725    EVT EltVT = EVT::getFloatingPointVT(EltSize);
3726    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
3727    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1);
3728    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2);
3729    SmallVector<SDValue, 8> Ops;
3730    for (unsigned i = 0; i < NumElts; ++i) {
3731      if (ShuffleMask[i] < 0)
3732        Ops.push_back(DAG.getUNDEF(EltVT));
3733      else
3734        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
3735                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
3736                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
3737                                                  MVT::i32)));
3738    }
3739    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
3740    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val);
3741  }
3742
3743  return SDValue();
3744}
3745
3746static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
3747  EVT VT = Op.getValueType();
3748  DebugLoc dl = Op.getDebugLoc();
3749  SDValue Vec = Op.getOperand(0);
3750  SDValue Lane = Op.getOperand(1);
3751  assert(VT == MVT::i32 &&
3752         Vec.getValueType().getVectorElementType().getSizeInBits() < 32 &&
3753         "unexpected type for custom-lowering vector extract");
3754  return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
3755}
3756
3757static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3758  // The only time a CONCAT_VECTORS operation can have legal types is when
3759  // two 64-bit vectors are concatenated to a 128-bit vector.
3760  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
3761         "unexpected CONCAT_VECTORS");
3762  DebugLoc dl = Op.getDebugLoc();
3763  SDValue Val = DAG.getUNDEF(MVT::v2f64);
3764  SDValue Op0 = Op.getOperand(0);
3765  SDValue Op1 = Op.getOperand(1);
3766  if (Op0.getOpcode() != ISD::UNDEF)
3767    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3768                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0),
3769                      DAG.getIntPtrConstant(0));
3770  if (Op1.getOpcode() != ISD::UNDEF)
3771    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
3772                      DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1),
3773                      DAG.getIntPtrConstant(1));
3774  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val);
3775}
3776
3777/// SkipExtension - For a node that is either a SIGN_EXTEND, ZERO_EXTEND, or
3778/// an extending load, return the unextended value.
3779static SDValue SkipExtension(SDNode *N, SelectionDAG &DAG) {
3780  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
3781    return N->getOperand(0);
3782  LoadSDNode *LD = cast<LoadSDNode>(N);
3783  return DAG.getLoad(LD->getMemoryVT(), N->getDebugLoc(), LD->getChain(),
3784                     LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
3785                     LD->isNonTemporal(), LD->getAlignment());
3786}
3787
3788static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
3789  // Multiplications are only custom-lowered for 128-bit vectors so that
3790  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
3791  EVT VT = Op.getValueType();
3792  assert(VT.is128BitVector() && "unexpected type for custom-lowering ISD::MUL");
3793  SDNode *N0 = Op.getOperand(0).getNode();
3794  SDNode *N1 = Op.getOperand(1).getNode();
3795  unsigned NewOpc = 0;
3796  if ((N0->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N0)) &&
3797      (N1->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N1))) {
3798    NewOpc = ARMISD::VMULLs;
3799  } else if ((N0->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N0)) &&
3800             (N1->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N1))) {
3801    NewOpc = ARMISD::VMULLu;
3802  } else if (VT.getSimpleVT().SimpleTy == MVT::v2i64) {
3803    // Fall through to expand this.  It is not legal.
3804    return SDValue();
3805  } else {
3806    // Other vector multiplications are legal.
3807    return Op;
3808  }
3809
3810  // Legalize to a VMULL instruction.
3811  DebugLoc DL = Op.getDebugLoc();
3812  SDValue Op0 = SkipExtension(N0, DAG);
3813  SDValue Op1 = SkipExtension(N1, DAG);
3814
3815  assert(Op0.getValueType().is64BitVector() &&
3816         Op1.getValueType().is64BitVector() &&
3817         "unexpected types for extended operands to VMULL");
3818  return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
3819}
3820
3821SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3822  switch (Op.getOpcode()) {
3823  default: llvm_unreachable("Don't know how to custom lower this!");
3824  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
3825  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
3826  case ISD::GlobalAddress:
3827    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
3828      LowerGlobalAddressELF(Op, DAG);
3829  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3830  case ISD::SELECT:        return LowerSELECT(Op, DAG);
3831  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
3832  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
3833  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
3834  case ISD::VASTART:       return LowerVASTART(Op, DAG);
3835  case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget);
3836  case ISD::SINT_TO_FP:
3837  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
3838  case ISD::FP_TO_SINT:
3839  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
3840  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
3841  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
3842  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
3843  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3844  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
3845  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
3846  case ISD::EH_SJLJ_DISPATCHSETUP: return LowerEH_SJLJ_DISPATCHSETUP(Op, DAG);
3847  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
3848                                                               Subtarget);
3849  case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG);
3850  case ISD::SHL:
3851  case ISD::SRL:
3852  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
3853  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
3854  case ISD::SRL_PARTS:
3855  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
3856  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
3857  case ISD::VSETCC:        return LowerVSETCC(Op, DAG);
3858  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
3859  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3860  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3861  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3862  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
3863  case ISD::MUL:           return LowerMUL(Op, DAG);
3864  }
3865  return SDValue();
3866}
3867
3868/// ReplaceNodeResults - Replace the results of node with an illegal result
3869/// type with new values built out of custom code.
3870void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
3871                                           SmallVectorImpl<SDValue>&Results,
3872                                           SelectionDAG &DAG) const {
3873  SDValue Res;
3874  switch (N->getOpcode()) {
3875  default:
3876    llvm_unreachable("Don't know how to custom expand this!");
3877    break;
3878  case ISD::BIT_CONVERT:
3879    Res = ExpandBIT_CONVERT(N, DAG);
3880    break;
3881  case ISD::SRL:
3882  case ISD::SRA:
3883    Res = LowerShift(N, DAG, Subtarget);
3884    break;
3885  }
3886  if (Res.getNode())
3887    Results.push_back(Res);
3888}
3889
3890//===----------------------------------------------------------------------===//
3891//                           ARM Scheduler Hooks
3892//===----------------------------------------------------------------------===//
3893
3894MachineBasicBlock *
3895ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
3896                                     MachineBasicBlock *BB,
3897                                     unsigned Size) const {
3898  unsigned dest    = MI->getOperand(0).getReg();
3899  unsigned ptr     = MI->getOperand(1).getReg();
3900  unsigned oldval  = MI->getOperand(2).getReg();
3901  unsigned newval  = MI->getOperand(3).getReg();
3902  unsigned scratch = BB->getParent()->getRegInfo()
3903    .createVirtualRegister(ARM::GPRRegisterClass);
3904  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3905  DebugLoc dl = MI->getDebugLoc();
3906  bool isThumb2 = Subtarget->isThumb2();
3907
3908  unsigned ldrOpc, strOpc;
3909  switch (Size) {
3910  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
3911  case 1:
3912    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
3913    strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB;
3914    break;
3915  case 2:
3916    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
3917    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
3918    break;
3919  case 4:
3920    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
3921    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
3922    break;
3923  }
3924
3925  MachineFunction *MF = BB->getParent();
3926  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3927  MachineFunction::iterator It = BB;
3928  ++It; // insert the new blocks after the current block
3929
3930  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3931  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
3932  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
3933  MF->insert(It, loop1MBB);
3934  MF->insert(It, loop2MBB);
3935  MF->insert(It, exitMBB);
3936
3937  // Transfer the remainder of BB and its successor edges to exitMBB.
3938  exitMBB->splice(exitMBB->begin(), BB,
3939                  llvm::next(MachineBasicBlock::iterator(MI)),
3940                  BB->end());
3941  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
3942
3943  //  thisMBB:
3944  //   ...
3945  //   fallthrough --> loop1MBB
3946  BB->addSuccessor(loop1MBB);
3947
3948  // loop1MBB:
3949  //   ldrex dest, [ptr]
3950  //   cmp dest, oldval
3951  //   bne exitMBB
3952  BB = loop1MBB;
3953  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
3954  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
3955                 .addReg(dest).addReg(oldval));
3956  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3957    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3958  BB->addSuccessor(loop2MBB);
3959  BB->addSuccessor(exitMBB);
3960
3961  // loop2MBB:
3962  //   strex scratch, newval, [ptr]
3963  //   cmp scratch, #0
3964  //   bne loop1MBB
3965  BB = loop2MBB;
3966  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval)
3967                 .addReg(ptr));
3968  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
3969                 .addReg(scratch).addImm(0));
3970  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
3971    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
3972  BB->addSuccessor(loop1MBB);
3973  BB->addSuccessor(exitMBB);
3974
3975  //  exitMBB:
3976  //   ...
3977  BB = exitMBB;
3978
3979  MI->eraseFromParent();   // The instruction is gone now.
3980
3981  return BB;
3982}
3983
3984MachineBasicBlock *
3985ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
3986                                    unsigned Size, unsigned BinOpcode) const {
3987  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
3988  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3989
3990  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3991  MachineFunction *MF = BB->getParent();
3992  MachineFunction::iterator It = BB;
3993  ++It;
3994
3995  unsigned dest = MI->getOperand(0).getReg();
3996  unsigned ptr = MI->getOperand(1).getReg();
3997  unsigned incr = MI->getOperand(2).getReg();
3998  DebugLoc dl = MI->getDebugLoc();
3999
4000  bool isThumb2 = Subtarget->isThumb2();
4001  unsigned ldrOpc, strOpc;
4002  switch (Size) {
4003  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
4004  case 1:
4005    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
4006    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
4007    break;
4008  case 2:
4009    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
4010    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
4011    break;
4012  case 4:
4013    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
4014    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
4015    break;
4016  }
4017
4018  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4019  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
4020  MF->insert(It, loopMBB);
4021  MF->insert(It, exitMBB);
4022
4023  // Transfer the remainder of BB and its successor edges to exitMBB.
4024  exitMBB->splice(exitMBB->begin(), BB,
4025                  llvm::next(MachineBasicBlock::iterator(MI)),
4026                  BB->end());
4027  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4028
4029  MachineRegisterInfo &RegInfo = MF->getRegInfo();
4030  unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4031  unsigned scratch2 = (!BinOpcode) ? incr :
4032    RegInfo.createVirtualRegister(ARM::GPRRegisterClass);
4033
4034  //  thisMBB:
4035  //   ...
4036  //   fallthrough --> loopMBB
4037  BB->addSuccessor(loopMBB);
4038
4039  //  loopMBB:
4040  //   ldrex dest, ptr
4041  //   <binop> scratch2, dest, incr
4042  //   strex scratch, scratch2, ptr
4043  //   cmp scratch, #0
4044  //   bne- loopMBB
4045  //   fallthrough --> exitMBB
4046  BB = loopMBB;
4047  AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr));
4048  if (BinOpcode) {
4049    // operand order needs to go the other way for NAND
4050    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
4051      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4052                     addReg(incr).addReg(dest)).addReg(0);
4053    else
4054      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
4055                     addReg(dest).addReg(incr)).addReg(0);
4056  }
4057
4058  AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2)
4059                 .addReg(ptr));
4060  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4061                 .addReg(scratch).addImm(0));
4062  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4063    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
4064
4065  BB->addSuccessor(loopMBB);
4066  BB->addSuccessor(exitMBB);
4067
4068  //  exitMBB:
4069  //   ...
4070  BB = exitMBB;
4071
4072  MI->eraseFromParent();   // The instruction is gone now.
4073
4074  return BB;
4075}
4076
4077static
4078MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
4079  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
4080       E = MBB->succ_end(); I != E; ++I)
4081    if (*I != Succ)
4082      return *I;
4083  llvm_unreachable("Expecting a BB with two successors!");
4084}
4085
4086MachineBasicBlock *
4087ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4088                                               MachineBasicBlock *BB) const {
4089  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4090  DebugLoc dl = MI->getDebugLoc();
4091  bool isThumb2 = Subtarget->isThumb2();
4092  switch (MI->getOpcode()) {
4093  default:
4094    MI->dump();
4095    llvm_unreachable("Unexpected instr type to insert");
4096
4097  case ARM::ATOMIC_LOAD_ADD_I8:
4098     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4099  case ARM::ATOMIC_LOAD_ADD_I16:
4100     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4101  case ARM::ATOMIC_LOAD_ADD_I32:
4102     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
4103
4104  case ARM::ATOMIC_LOAD_AND_I8:
4105     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4106  case ARM::ATOMIC_LOAD_AND_I16:
4107     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4108  case ARM::ATOMIC_LOAD_AND_I32:
4109     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
4110
4111  case ARM::ATOMIC_LOAD_OR_I8:
4112     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4113  case ARM::ATOMIC_LOAD_OR_I16:
4114     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4115  case ARM::ATOMIC_LOAD_OR_I32:
4116     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
4117
4118  case ARM::ATOMIC_LOAD_XOR_I8:
4119     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4120  case ARM::ATOMIC_LOAD_XOR_I16:
4121     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4122  case ARM::ATOMIC_LOAD_XOR_I32:
4123     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
4124
4125  case ARM::ATOMIC_LOAD_NAND_I8:
4126     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4127  case ARM::ATOMIC_LOAD_NAND_I16:
4128     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4129  case ARM::ATOMIC_LOAD_NAND_I32:
4130     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
4131
4132  case ARM::ATOMIC_LOAD_SUB_I8:
4133     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4134  case ARM::ATOMIC_LOAD_SUB_I16:
4135     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4136  case ARM::ATOMIC_LOAD_SUB_I32:
4137     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
4138
4139  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
4140  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
4141  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
4142
4143  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
4144  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
4145  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
4146
4147  case ARM::tMOVCCr_pseudo: {
4148    // To "insert" a SELECT_CC instruction, we actually have to insert the
4149    // diamond control-flow pattern.  The incoming instruction knows the
4150    // destination vreg to set, the condition code register to branch on, the
4151    // true/false values to select between, and a branch opcode to use.
4152    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4153    MachineFunction::iterator It = BB;
4154    ++It;
4155
4156    //  thisMBB:
4157    //  ...
4158    //   TrueVal = ...
4159    //   cmpTY ccX, r1, r2
4160    //   bCC copy1MBB
4161    //   fallthrough --> copy0MBB
4162    MachineBasicBlock *thisMBB  = BB;
4163    MachineFunction *F = BB->getParent();
4164    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4165    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
4166    F->insert(It, copy0MBB);
4167    F->insert(It, sinkMBB);
4168
4169    // Transfer the remainder of BB and its successor edges to sinkMBB.
4170    sinkMBB->splice(sinkMBB->begin(), BB,
4171                    llvm::next(MachineBasicBlock::iterator(MI)),
4172                    BB->end());
4173    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4174
4175    BB->addSuccessor(copy0MBB);
4176    BB->addSuccessor(sinkMBB);
4177
4178    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
4179      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
4180
4181    //  copy0MBB:
4182    //   %FalseValue = ...
4183    //   # fallthrough to sinkMBB
4184    BB = copy0MBB;
4185
4186    // Update machine-CFG edges
4187    BB->addSuccessor(sinkMBB);
4188
4189    //  sinkMBB:
4190    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4191    //  ...
4192    BB = sinkMBB;
4193    BuildMI(*BB, BB->begin(), dl,
4194            TII->get(ARM::PHI), MI->getOperand(0).getReg())
4195      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4196      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4197
4198    MI->eraseFromParent();   // The pseudo instruction is gone now.
4199    return BB;
4200  }
4201
4202  case ARM::BCCi64:
4203  case ARM::BCCZi64: {
4204    // Compare both parts that make up the double comparison separately for
4205    // equality.
4206    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
4207
4208    unsigned LHS1 = MI->getOperand(1).getReg();
4209    unsigned LHS2 = MI->getOperand(2).getReg();
4210    if (RHSisZero) {
4211      AddDefaultPred(BuildMI(BB, dl,
4212                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4213                     .addReg(LHS1).addImm(0));
4214      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
4215        .addReg(LHS2).addImm(0)
4216        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4217    } else {
4218      unsigned RHS1 = MI->getOperand(3).getReg();
4219      unsigned RHS2 = MI->getOperand(4).getReg();
4220      AddDefaultPred(BuildMI(BB, dl,
4221                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4222                     .addReg(LHS1).addReg(RHS1));
4223      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
4224        .addReg(LHS2).addReg(RHS2)
4225        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
4226    }
4227
4228    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
4229    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
4230    if (MI->getOperand(0).getImm() == ARMCC::NE)
4231      std::swap(destMBB, exitMBB);
4232
4233    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
4234      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
4235    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2B : ARM::B))
4236      .addMBB(exitMBB);
4237
4238    MI->eraseFromParent();   // The pseudo instruction is gone now.
4239    return BB;
4240  }
4241  }
4242}
4243
4244//===----------------------------------------------------------------------===//
4245//                           ARM Optimization Hooks
4246//===----------------------------------------------------------------------===//
4247
4248static
4249SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
4250                            TargetLowering::DAGCombinerInfo &DCI) {
4251  SelectionDAG &DAG = DCI.DAG;
4252  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4253  EVT VT = N->getValueType(0);
4254  unsigned Opc = N->getOpcode();
4255  bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC;
4256  SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1);
4257  SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2);
4258  ISD::CondCode CC = ISD::SETCC_INVALID;
4259
4260  if (isSlctCC) {
4261    CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get();
4262  } else {
4263    SDValue CCOp = Slct.getOperand(0);
4264    if (CCOp.getOpcode() == ISD::SETCC)
4265      CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get();
4266  }
4267
4268  bool DoXform = false;
4269  bool InvCC = false;
4270  assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) &&
4271          "Bad input!");
4272
4273  if (LHS.getOpcode() == ISD::Constant &&
4274      cast<ConstantSDNode>(LHS)->isNullValue()) {
4275    DoXform = true;
4276  } else if (CC != ISD::SETCC_INVALID &&
4277             RHS.getOpcode() == ISD::Constant &&
4278             cast<ConstantSDNode>(RHS)->isNullValue()) {
4279    std::swap(LHS, RHS);
4280    SDValue Op0 = Slct.getOperand(0);
4281    EVT OpVT = isSlctCC ? Op0.getValueType() :
4282                          Op0.getOperand(0).getValueType();
4283    bool isInt = OpVT.isInteger();
4284    CC = ISD::getSetCCInverse(CC, isInt);
4285
4286    if (!TLI.isCondCodeLegal(CC, OpVT))
4287      return SDValue();         // Inverse operator isn't legal.
4288
4289    DoXform = true;
4290    InvCC = true;
4291  }
4292
4293  if (DoXform) {
4294    SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS);
4295    if (isSlctCC)
4296      return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result,
4297                             Slct.getOperand(0), Slct.getOperand(1), CC);
4298    SDValue CCOp = Slct.getOperand(0);
4299    if (InvCC)
4300      CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(),
4301                          CCOp.getOperand(0), CCOp.getOperand(1), CC);
4302    return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT,
4303                       CCOp, OtherOp, Result);
4304  }
4305  return SDValue();
4306}
4307
4308/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4309/// operands N0 and N1.  This is a helper for PerformADDCombine that is
4310/// called with the default operands, and if that fails, with commuted
4311/// operands.
4312static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4313                                         TargetLowering::DAGCombinerInfo &DCI) {
4314  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
4315  if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) {
4316    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
4317    if (Result.getNode()) return Result;
4318  }
4319  return SDValue();
4320}
4321
4322/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4323///
4324static SDValue PerformADDCombine(SDNode *N,
4325                                 TargetLowering::DAGCombinerInfo &DCI) {
4326  SDValue N0 = N->getOperand(0);
4327  SDValue N1 = N->getOperand(1);
4328
4329  // First try with the default operand order.
4330  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI);
4331  if (Result.getNode())
4332    return Result;
4333
4334  // If that didn't work, try again with the operands commuted.
4335  return PerformADDCombineWithOperands(N, N1, N0, DCI);
4336}
4337
4338/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
4339///
4340static SDValue PerformSUBCombine(SDNode *N,
4341                                 TargetLowering::DAGCombinerInfo &DCI) {
4342  SDValue N0 = N->getOperand(0);
4343  SDValue N1 = N->getOperand(1);
4344
4345  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
4346  if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) {
4347    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
4348    if (Result.getNode()) return Result;
4349  }
4350
4351  return SDValue();
4352}
4353
4354static SDValue PerformMULCombine(SDNode *N,
4355                                 TargetLowering::DAGCombinerInfo &DCI,
4356                                 const ARMSubtarget *Subtarget) {
4357  SelectionDAG &DAG = DCI.DAG;
4358
4359  if (Subtarget->isThumb1Only())
4360    return SDValue();
4361
4362  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
4363    return SDValue();
4364
4365  EVT VT = N->getValueType(0);
4366  if (VT != MVT::i32)
4367    return SDValue();
4368
4369  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
4370  if (!C)
4371    return SDValue();
4372
4373  uint64_t MulAmt = C->getZExtValue();
4374  unsigned ShiftAmt = CountTrailingZeros_64(MulAmt);
4375  ShiftAmt = ShiftAmt & (32 - 1);
4376  SDValue V = N->getOperand(0);
4377  DebugLoc DL = N->getDebugLoc();
4378
4379  SDValue Res;
4380  MulAmt >>= ShiftAmt;
4381  if (isPowerOf2_32(MulAmt - 1)) {
4382    // (mul x, 2^N + 1) => (add (shl x, N), x)
4383    Res = DAG.getNode(ISD::ADD, DL, VT,
4384                      V, DAG.getNode(ISD::SHL, DL, VT,
4385                                     V, DAG.getConstant(Log2_32(MulAmt-1),
4386                                                        MVT::i32)));
4387  } else if (isPowerOf2_32(MulAmt + 1)) {
4388    // (mul x, 2^N - 1) => (sub (shl x, N), x)
4389    Res = DAG.getNode(ISD::SUB, DL, VT,
4390                      DAG.getNode(ISD::SHL, DL, VT,
4391                                  V, DAG.getConstant(Log2_32(MulAmt+1),
4392                                                     MVT::i32)),
4393                                                     V);
4394  } else
4395    return SDValue();
4396
4397  if (ShiftAmt != 0)
4398    Res = DAG.getNode(ISD::SHL, DL, VT, Res,
4399                      DAG.getConstant(ShiftAmt, MVT::i32));
4400
4401  // Do not add new nodes to DAG combiner worklist.
4402  DCI.CombineTo(N, Res, false);
4403  return SDValue();
4404}
4405
4406/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
4407static SDValue PerformORCombine(SDNode *N,
4408                                TargetLowering::DAGCombinerInfo &DCI,
4409                                const ARMSubtarget *Subtarget) {
4410  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
4411  // reasonable.
4412
4413  // BFI is only available on V6T2+
4414  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
4415    return SDValue();
4416
4417  SelectionDAG &DAG = DCI.DAG;
4418  SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
4419  DebugLoc DL = N->getDebugLoc();
4420  // 1) or (and A, mask), val => ARMbfi A, val, mask
4421  //      iff (val & mask) == val
4422  //
4423  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4424  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
4425  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4426  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
4427  //          && CountPopulation_32(mask) == CountPopulation_32(~mask2)
4428  //  (i.e., copy a bitfield value into another bitfield of the same width)
4429  if (N0.getOpcode() != ISD::AND)
4430    return SDValue();
4431
4432  EVT VT = N->getValueType(0);
4433  if (VT != MVT::i32)
4434    return SDValue();
4435
4436
4437  // The value and the mask need to be constants so we can verify this is
4438  // actually a bitfield set. If the mask is 0xffff, we can do better
4439  // via a movt instruction, so don't use BFI in that case.
4440  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4441  if (!C)
4442    return SDValue();
4443  unsigned Mask = C->getZExtValue();
4444  if (Mask == 0xffff)
4445    return SDValue();
4446  SDValue Res;
4447  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
4448  if ((C = dyn_cast<ConstantSDNode>(N1))) {
4449    unsigned Val = C->getZExtValue();
4450    if (!ARM::isBitFieldInvertedMask(Mask) || (Val & ~Mask) != Val)
4451      return SDValue();
4452    Val >>= CountTrailingZeros_32(~Mask);
4453
4454    Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0),
4455                      DAG.getConstant(Val, MVT::i32),
4456                      DAG.getConstant(Mask, MVT::i32));
4457
4458    // Do not add new nodes to DAG combiner worklist.
4459    DCI.CombineTo(N, Res, false);
4460  } else if (N1.getOpcode() == ISD::AND) {
4461    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
4462    C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
4463    if (!C)
4464      return SDValue();
4465    unsigned Mask2 = C->getZExtValue();
4466
4467    if (ARM::isBitFieldInvertedMask(Mask) &&
4468        ARM::isBitFieldInvertedMask(~Mask2) &&
4469        (CountPopulation_32(Mask) == CountPopulation_32(~Mask2))) {
4470      // The pack halfword instruction works better for masks that fit it,
4471      // so use that when it's available.
4472      if (Subtarget->hasT2ExtractPack() &&
4473          (Mask == 0xffff || Mask == 0xffff0000))
4474        return SDValue();
4475      // 2a
4476      unsigned lsb = CountTrailingZeros_32(Mask2);
4477      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
4478                        DAG.getConstant(lsb, MVT::i32));
4479      Res = DAG.getNode(ARMISD::BFI, DL, VT, N0.getOperand(0), Res,
4480                        DAG.getConstant(Mask, MVT::i32));
4481      // Do not add new nodes to DAG combiner worklist.
4482      DCI.CombineTo(N, Res, false);
4483    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
4484               ARM::isBitFieldInvertedMask(Mask2) &&
4485               (CountPopulation_32(~Mask) == CountPopulation_32(Mask2))) {
4486      // The pack halfword instruction works better for masks that fit it,
4487      // so use that when it's available.
4488      if (Subtarget->hasT2ExtractPack() &&
4489          (Mask2 == 0xffff || Mask2 == 0xffff0000))
4490        return SDValue();
4491      // 2b
4492      unsigned lsb = CountTrailingZeros_32(Mask);
4493      Res = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
4494                        DAG.getConstant(lsb, MVT::i32));
4495      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
4496                                DAG.getConstant(Mask2, MVT::i32));
4497      // Do not add new nodes to DAG combiner worklist.
4498      DCI.CombineTo(N, Res, false);
4499    }
4500  }
4501
4502  return SDValue();
4503}
4504
4505/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
4506/// ARMISD::VMOVRRD.
4507static SDValue PerformVMOVRRDCombine(SDNode *N,
4508                                     TargetLowering::DAGCombinerInfo &DCI) {
4509  // vmovrrd(vmovdrr x, y) -> x,y
4510  SDValue InDouble = N->getOperand(0);
4511  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
4512    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
4513  return SDValue();
4514}
4515
4516/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
4517/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
4518static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
4519  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
4520  SDValue Op0 = N->getOperand(0);
4521  SDValue Op1 = N->getOperand(1);
4522  if (Op0.getOpcode() == ISD::BIT_CONVERT)
4523    Op0 = Op0.getOperand(0);
4524  if (Op1.getOpcode() == ISD::BIT_CONVERT)
4525    Op1 = Op1.getOperand(0);
4526  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
4527      Op0.getNode() == Op1.getNode() &&
4528      Op0.getResNo() == 0 && Op1.getResNo() == 1)
4529    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(),
4530                       N->getValueType(0), Op0.getOperand(0));
4531  return SDValue();
4532}
4533
4534/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
4535/// ISD::BUILD_VECTOR.
4536static SDValue PerformBUILD_VECTORCombine(SDNode *N, SelectionDAG &DAG) {
4537  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
4538  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
4539  // into a pair of GPRs, which is fine when the value is used as a scalar,
4540  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
4541  if (N->getNumOperands() == 2)
4542    return PerformVMOVDRRCombine(N, DAG);
4543
4544  return SDValue();
4545}
4546
4547/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
4548/// ISD::VECTOR_SHUFFLE.
4549static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
4550  // The LLVM shufflevector instruction does not require the shuffle mask
4551  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
4552  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
4553  // operands do not match the mask length, they are extended by concatenating
4554  // them with undef vectors.  That is probably the right thing for other
4555  // targets, but for NEON it is better to concatenate two double-register
4556  // size vector operands into a single quad-register size vector.  Do that
4557  // transformation here:
4558  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
4559  //   shuffle(concat(v1, v2), undef)
4560  SDValue Op0 = N->getOperand(0);
4561  SDValue Op1 = N->getOperand(1);
4562  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
4563      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
4564      Op0.getNumOperands() != 2 ||
4565      Op1.getNumOperands() != 2)
4566    return SDValue();
4567  SDValue Concat0Op1 = Op0.getOperand(1);
4568  SDValue Concat1Op1 = Op1.getOperand(1);
4569  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
4570      Concat1Op1.getOpcode() != ISD::UNDEF)
4571    return SDValue();
4572  // Skip the transformation if any of the types are illegal.
4573  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4574  EVT VT = N->getValueType(0);
4575  if (!TLI.isTypeLegal(VT) ||
4576      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
4577      !TLI.isTypeLegal(Concat1Op1.getValueType()))
4578    return SDValue();
4579
4580  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, N->getDebugLoc(), VT,
4581                                  Op0.getOperand(0), Op1.getOperand(0));
4582  // Translate the shuffle mask.
4583  SmallVector<int, 16> NewMask;
4584  unsigned NumElts = VT.getVectorNumElements();
4585  unsigned HalfElts = NumElts/2;
4586  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
4587  for (unsigned n = 0; n < NumElts; ++n) {
4588    int MaskElt = SVN->getMaskElt(n);
4589    int NewElt = -1;
4590    if (MaskElt < (int)HalfElts)
4591      NewElt = MaskElt;
4592    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
4593      NewElt = HalfElts + MaskElt - NumElts;
4594    NewMask.push_back(NewElt);
4595  }
4596  return DAG.getVectorShuffle(VT, N->getDebugLoc(), NewConcat,
4597                              DAG.getUNDEF(VT), NewMask.data());
4598}
4599
4600/// PerformVDUPLANECombine - Target-specific dag combine xforms for
4601/// ARMISD::VDUPLANE.
4602static SDValue PerformVDUPLANECombine(SDNode *N, SelectionDAG &DAG) {
4603  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
4604  // redundant.
4605  SDValue Op = N->getOperand(0);
4606  EVT VT = N->getValueType(0);
4607
4608  // Ignore bit_converts.
4609  while (Op.getOpcode() == ISD::BIT_CONVERT)
4610    Op = Op.getOperand(0);
4611  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
4612    return SDValue();
4613
4614  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
4615  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
4616  // The canonical VMOV for a zero vector uses a 32-bit element size.
4617  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4618  unsigned EltBits;
4619  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
4620    EltSize = 8;
4621  if (EltSize > VT.getVectorElementType().getSizeInBits())
4622    return SDValue();
4623
4624  return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
4625}
4626
4627/// getVShiftImm - Check if this is a valid build_vector for the immediate
4628/// operand of a vector shift operation, where all the elements of the
4629/// build_vector must have the same constant integer value.
4630static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
4631  // Ignore bit_converts.
4632  while (Op.getOpcode() == ISD::BIT_CONVERT)
4633    Op = Op.getOperand(0);
4634  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4635  APInt SplatBits, SplatUndef;
4636  unsigned SplatBitSize;
4637  bool HasAnyUndefs;
4638  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
4639                                      HasAnyUndefs, ElementBits) ||
4640      SplatBitSize > ElementBits)
4641    return false;
4642  Cnt = SplatBits.getSExtValue();
4643  return true;
4644}
4645
4646/// isVShiftLImm - Check if this is a valid build_vector for the immediate
4647/// operand of a vector shift left operation.  That value must be in the range:
4648///   0 <= Value < ElementBits for a left shift; or
4649///   0 <= Value <= ElementBits for a long left shift.
4650static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
4651  assert(VT.isVector() && "vector shift count is not a vector type");
4652  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4653  if (! getVShiftImm(Op, ElementBits, Cnt))
4654    return false;
4655  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
4656}
4657
4658/// isVShiftRImm - Check if this is a valid build_vector for the immediate
4659/// operand of a vector shift right operation.  For a shift opcode, the value
4660/// is positive, but for an intrinsic the value count must be negative. The
4661/// absolute value must be in the range:
4662///   1 <= |Value| <= ElementBits for a right shift; or
4663///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
4664static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
4665                         int64_t &Cnt) {
4666  assert(VT.isVector() && "vector shift count is not a vector type");
4667  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
4668  if (! getVShiftImm(Op, ElementBits, Cnt))
4669    return false;
4670  if (isIntrinsic)
4671    Cnt = -Cnt;
4672  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
4673}
4674
4675/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
4676static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
4677  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4678  switch (IntNo) {
4679  default:
4680    // Don't do anything for most intrinsics.
4681    break;
4682
4683  // Vector shifts: check for immediate versions and lower them.
4684  // Note: This is done during DAG combining instead of DAG legalizing because
4685  // the build_vectors for 64-bit vector element shift counts are generally
4686  // not legal, and it is hard to see their values after they get legalized to
4687  // loads from a constant pool.
4688  case Intrinsic::arm_neon_vshifts:
4689  case Intrinsic::arm_neon_vshiftu:
4690  case Intrinsic::arm_neon_vshiftls:
4691  case Intrinsic::arm_neon_vshiftlu:
4692  case Intrinsic::arm_neon_vshiftn:
4693  case Intrinsic::arm_neon_vrshifts:
4694  case Intrinsic::arm_neon_vrshiftu:
4695  case Intrinsic::arm_neon_vrshiftn:
4696  case Intrinsic::arm_neon_vqshifts:
4697  case Intrinsic::arm_neon_vqshiftu:
4698  case Intrinsic::arm_neon_vqshiftsu:
4699  case Intrinsic::arm_neon_vqshiftns:
4700  case Intrinsic::arm_neon_vqshiftnu:
4701  case Intrinsic::arm_neon_vqshiftnsu:
4702  case Intrinsic::arm_neon_vqrshiftns:
4703  case Intrinsic::arm_neon_vqrshiftnu:
4704  case Intrinsic::arm_neon_vqrshiftnsu: {
4705    EVT VT = N->getOperand(1).getValueType();
4706    int64_t Cnt;
4707    unsigned VShiftOpc = 0;
4708
4709    switch (IntNo) {
4710    case Intrinsic::arm_neon_vshifts:
4711    case Intrinsic::arm_neon_vshiftu:
4712      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
4713        VShiftOpc = ARMISD::VSHL;
4714        break;
4715      }
4716      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
4717        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
4718                     ARMISD::VSHRs : ARMISD::VSHRu);
4719        break;
4720      }
4721      return SDValue();
4722
4723    case Intrinsic::arm_neon_vshiftls:
4724    case Intrinsic::arm_neon_vshiftlu:
4725      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
4726        break;
4727      llvm_unreachable("invalid shift count for vshll intrinsic");
4728
4729    case Intrinsic::arm_neon_vrshifts:
4730    case Intrinsic::arm_neon_vrshiftu:
4731      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
4732        break;
4733      return SDValue();
4734
4735    case Intrinsic::arm_neon_vqshifts:
4736    case Intrinsic::arm_neon_vqshiftu:
4737      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4738        break;
4739      return SDValue();
4740
4741    case Intrinsic::arm_neon_vqshiftsu:
4742      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
4743        break;
4744      llvm_unreachable("invalid shift count for vqshlu intrinsic");
4745
4746    case Intrinsic::arm_neon_vshiftn:
4747    case Intrinsic::arm_neon_vrshiftn:
4748    case Intrinsic::arm_neon_vqshiftns:
4749    case Intrinsic::arm_neon_vqshiftnu:
4750    case Intrinsic::arm_neon_vqshiftnsu:
4751    case Intrinsic::arm_neon_vqrshiftns:
4752    case Intrinsic::arm_neon_vqrshiftnu:
4753    case Intrinsic::arm_neon_vqrshiftnsu:
4754      // Narrowing shifts require an immediate right shift.
4755      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
4756        break;
4757      llvm_unreachable("invalid shift count for narrowing vector shift "
4758                       "intrinsic");
4759
4760    default:
4761      llvm_unreachable("unhandled vector shift");
4762    }
4763
4764    switch (IntNo) {
4765    case Intrinsic::arm_neon_vshifts:
4766    case Intrinsic::arm_neon_vshiftu:
4767      // Opcode already set above.
4768      break;
4769    case Intrinsic::arm_neon_vshiftls:
4770    case Intrinsic::arm_neon_vshiftlu:
4771      if (Cnt == VT.getVectorElementType().getSizeInBits())
4772        VShiftOpc = ARMISD::VSHLLi;
4773      else
4774        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
4775                     ARMISD::VSHLLs : ARMISD::VSHLLu);
4776      break;
4777    case Intrinsic::arm_neon_vshiftn:
4778      VShiftOpc = ARMISD::VSHRN; break;
4779    case Intrinsic::arm_neon_vrshifts:
4780      VShiftOpc = ARMISD::VRSHRs; break;
4781    case Intrinsic::arm_neon_vrshiftu:
4782      VShiftOpc = ARMISD::VRSHRu; break;
4783    case Intrinsic::arm_neon_vrshiftn:
4784      VShiftOpc = ARMISD::VRSHRN; break;
4785    case Intrinsic::arm_neon_vqshifts:
4786      VShiftOpc = ARMISD::VQSHLs; break;
4787    case Intrinsic::arm_neon_vqshiftu:
4788      VShiftOpc = ARMISD::VQSHLu; break;
4789    case Intrinsic::arm_neon_vqshiftsu:
4790      VShiftOpc = ARMISD::VQSHLsu; break;
4791    case Intrinsic::arm_neon_vqshiftns:
4792      VShiftOpc = ARMISD::VQSHRNs; break;
4793    case Intrinsic::arm_neon_vqshiftnu:
4794      VShiftOpc = ARMISD::VQSHRNu; break;
4795    case Intrinsic::arm_neon_vqshiftnsu:
4796      VShiftOpc = ARMISD::VQSHRNsu; break;
4797    case Intrinsic::arm_neon_vqrshiftns:
4798      VShiftOpc = ARMISD::VQRSHRNs; break;
4799    case Intrinsic::arm_neon_vqrshiftnu:
4800      VShiftOpc = ARMISD::VQRSHRNu; break;
4801    case Intrinsic::arm_neon_vqrshiftnsu:
4802      VShiftOpc = ARMISD::VQRSHRNsu; break;
4803    }
4804
4805    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4806                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
4807  }
4808
4809  case Intrinsic::arm_neon_vshiftins: {
4810    EVT VT = N->getOperand(1).getValueType();
4811    int64_t Cnt;
4812    unsigned VShiftOpc = 0;
4813
4814    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
4815      VShiftOpc = ARMISD::VSLI;
4816    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
4817      VShiftOpc = ARMISD::VSRI;
4818    else {
4819      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
4820    }
4821
4822    return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0),
4823                       N->getOperand(1), N->getOperand(2),
4824                       DAG.getConstant(Cnt, MVT::i32));
4825  }
4826
4827  case Intrinsic::arm_neon_vqrshifts:
4828  case Intrinsic::arm_neon_vqrshiftu:
4829    // No immediate versions of these to check for.
4830    break;
4831  }
4832
4833  return SDValue();
4834}
4835
4836/// PerformShiftCombine - Checks for immediate versions of vector shifts and
4837/// lowers them.  As with the vector shift intrinsics, this is done during DAG
4838/// combining instead of DAG legalizing because the build_vectors for 64-bit
4839/// vector element shift counts are generally not legal, and it is hard to see
4840/// their values after they get legalized to loads from a constant pool.
4841static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
4842                                   const ARMSubtarget *ST) {
4843  EVT VT = N->getValueType(0);
4844
4845  // Nothing to be done for scalar shifts.
4846  if (! VT.isVector())
4847    return SDValue();
4848
4849  assert(ST->hasNEON() && "unexpected vector shift");
4850  int64_t Cnt;
4851
4852  switch (N->getOpcode()) {
4853  default: llvm_unreachable("unexpected shift opcode");
4854
4855  case ISD::SHL:
4856    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
4857      return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0),
4858                         DAG.getConstant(Cnt, MVT::i32));
4859    break;
4860
4861  case ISD::SRA:
4862  case ISD::SRL:
4863    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
4864      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
4865                            ARMISD::VSHRs : ARMISD::VSHRu);
4866      return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0),
4867                         DAG.getConstant(Cnt, MVT::i32));
4868    }
4869  }
4870  return SDValue();
4871}
4872
4873/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
4874/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
4875static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
4876                                    const ARMSubtarget *ST) {
4877  SDValue N0 = N->getOperand(0);
4878
4879  // Check for sign- and zero-extensions of vector extract operations of 8-
4880  // and 16-bit vector elements.  NEON supports these directly.  They are
4881  // handled during DAG combining because type legalization will promote them
4882  // to 32-bit types and it is messy to recognize the operations after that.
4883  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
4884    SDValue Vec = N0.getOperand(0);
4885    SDValue Lane = N0.getOperand(1);
4886    EVT VT = N->getValueType(0);
4887    EVT EltVT = N0.getValueType();
4888    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4889
4890    if (VT == MVT::i32 &&
4891        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
4892        TLI.isTypeLegal(Vec.getValueType())) {
4893
4894      unsigned Opc = 0;
4895      switch (N->getOpcode()) {
4896      default: llvm_unreachable("unexpected opcode");
4897      case ISD::SIGN_EXTEND:
4898        Opc = ARMISD::VGETLANEs;
4899        break;
4900      case ISD::ZERO_EXTEND:
4901      case ISD::ANY_EXTEND:
4902        Opc = ARMISD::VGETLANEu;
4903        break;
4904      }
4905      return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane);
4906    }
4907  }
4908
4909  return SDValue();
4910}
4911
4912/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
4913/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
4914static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
4915                                       const ARMSubtarget *ST) {
4916  // If the target supports NEON, try to use vmax/vmin instructions for f32
4917  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
4918  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
4919  // a NaN; only do the transformation when it matches that behavior.
4920
4921  // For now only do this when using NEON for FP operations; if using VFP, it
4922  // is not obvious that the benefit outweighs the cost of switching to the
4923  // NEON pipeline.
4924  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
4925      N->getValueType(0) != MVT::f32)
4926    return SDValue();
4927
4928  SDValue CondLHS = N->getOperand(0);
4929  SDValue CondRHS = N->getOperand(1);
4930  SDValue LHS = N->getOperand(2);
4931  SDValue RHS = N->getOperand(3);
4932  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
4933
4934  unsigned Opcode = 0;
4935  bool IsReversed;
4936  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
4937    IsReversed = false; // x CC y ? x : y
4938  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
4939    IsReversed = true ; // x CC y ? y : x
4940  } else {
4941    return SDValue();
4942  }
4943
4944  bool IsUnordered;
4945  switch (CC) {
4946  default: break;
4947  case ISD::SETOLT:
4948  case ISD::SETOLE:
4949  case ISD::SETLT:
4950  case ISD::SETLE:
4951  case ISD::SETULT:
4952  case ISD::SETULE:
4953    // If LHS is NaN, an ordered comparison will be false and the result will
4954    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
4955    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4956    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
4957    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4958      break;
4959    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
4960    // will return -0, so vmin can only be used for unsafe math or if one of
4961    // the operands is known to be nonzero.
4962    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
4963        !UnsafeFPMath &&
4964        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4965      break;
4966    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
4967    break;
4968
4969  case ISD::SETOGT:
4970  case ISD::SETOGE:
4971  case ISD::SETGT:
4972  case ISD::SETGE:
4973  case ISD::SETUGT:
4974  case ISD::SETUGE:
4975    // If LHS is NaN, an ordered comparison will be false and the result will
4976    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
4977    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
4978    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
4979    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
4980      break;
4981    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
4982    // will return +0, so vmax can only be used for unsafe math or if one of
4983    // the operands is known to be nonzero.
4984    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
4985        !UnsafeFPMath &&
4986        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
4987      break;
4988    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
4989    break;
4990  }
4991
4992  if (!Opcode)
4993    return SDValue();
4994  return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS);
4995}
4996
4997SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
4998                                             DAGCombinerInfo &DCI) const {
4999  switch (N->getOpcode()) {
5000  default: break;
5001  case ISD::ADD:        return PerformADDCombine(N, DCI);
5002  case ISD::SUB:        return PerformSUBCombine(N, DCI);
5003  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
5004  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
5005  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
5006  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
5007  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI.DAG);
5008  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
5009  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI.DAG);
5010  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
5011  case ISD::SHL:
5012  case ISD::SRA:
5013  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
5014  case ISD::SIGN_EXTEND:
5015  case ISD::ZERO_EXTEND:
5016  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
5017  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
5018  }
5019  return SDValue();
5020}
5021
5022bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const {
5023  if (!Subtarget->allowsUnalignedMem())
5024    return false;
5025
5026  switch (VT.getSimpleVT().SimpleTy) {
5027  default:
5028    return false;
5029  case MVT::i8:
5030  case MVT::i16:
5031  case MVT::i32:
5032    return true;
5033  // FIXME: VLD1 etc with standard alignment is legal.
5034  }
5035}
5036
5037static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
5038  if (V < 0)
5039    return false;
5040
5041  unsigned Scale = 1;
5042  switch (VT.getSimpleVT().SimpleTy) {
5043  default: return false;
5044  case MVT::i1:
5045  case MVT::i8:
5046    // Scale == 1;
5047    break;
5048  case MVT::i16:
5049    // Scale == 2;
5050    Scale = 2;
5051    break;
5052  case MVT::i32:
5053    // Scale == 4;
5054    Scale = 4;
5055    break;
5056  }
5057
5058  if ((V & (Scale - 1)) != 0)
5059    return false;
5060  V /= Scale;
5061  return V == (V & ((1LL << 5) - 1));
5062}
5063
5064static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
5065                                      const ARMSubtarget *Subtarget) {
5066  bool isNeg = false;
5067  if (V < 0) {
5068    isNeg = true;
5069    V = - V;
5070  }
5071
5072  switch (VT.getSimpleVT().SimpleTy) {
5073  default: return false;
5074  case MVT::i1:
5075  case MVT::i8:
5076  case MVT::i16:
5077  case MVT::i32:
5078    // + imm12 or - imm8
5079    if (isNeg)
5080      return V == (V & ((1LL << 8) - 1));
5081    return V == (V & ((1LL << 12) - 1));
5082  case MVT::f32:
5083  case MVT::f64:
5084    // Same as ARM mode. FIXME: NEON?
5085    if (!Subtarget->hasVFP2())
5086      return false;
5087    if ((V & 3) != 0)
5088      return false;
5089    V >>= 2;
5090    return V == (V & ((1LL << 8) - 1));
5091  }
5092}
5093
5094/// isLegalAddressImmediate - Return true if the integer value can be used
5095/// as the offset of the target addressing mode for load / store of the
5096/// given type.
5097static bool isLegalAddressImmediate(int64_t V, EVT VT,
5098                                    const ARMSubtarget *Subtarget) {
5099  if (V == 0)
5100    return true;
5101
5102  if (!VT.isSimple())
5103    return false;
5104
5105  if (Subtarget->isThumb1Only())
5106    return isLegalT1AddressImmediate(V, VT);
5107  else if (Subtarget->isThumb2())
5108    return isLegalT2AddressImmediate(V, VT, Subtarget);
5109
5110  // ARM mode.
5111  if (V < 0)
5112    V = - V;
5113  switch (VT.getSimpleVT().SimpleTy) {
5114  default: return false;
5115  case MVT::i1:
5116  case MVT::i8:
5117  case MVT::i32:
5118    // +- imm12
5119    return V == (V & ((1LL << 12) - 1));
5120  case MVT::i16:
5121    // +- imm8
5122    return V == (V & ((1LL << 8) - 1));
5123  case MVT::f32:
5124  case MVT::f64:
5125    if (!Subtarget->hasVFP2()) // FIXME: NEON?
5126      return false;
5127    if ((V & 3) != 0)
5128      return false;
5129    V >>= 2;
5130    return V == (V & ((1LL << 8) - 1));
5131  }
5132}
5133
5134bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
5135                                                      EVT VT) const {
5136  int Scale = AM.Scale;
5137  if (Scale < 0)
5138    return false;
5139
5140  switch (VT.getSimpleVT().SimpleTy) {
5141  default: return false;
5142  case MVT::i1:
5143  case MVT::i8:
5144  case MVT::i16:
5145  case MVT::i32:
5146    if (Scale == 1)
5147      return true;
5148    // r + r << imm
5149    Scale = Scale & ~1;
5150    return Scale == 2 || Scale == 4 || Scale == 8;
5151  case MVT::i64:
5152    // r + r
5153    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5154      return true;
5155    return false;
5156  case MVT::isVoid:
5157    // Note, we allow "void" uses (basically, uses that aren't loads or
5158    // stores), because arm allows folding a scale into many arithmetic
5159    // operations.  This should be made more precise and revisited later.
5160
5161    // Allow r << imm, but the imm has to be a multiple of two.
5162    if (Scale & 1) return false;
5163    return isPowerOf2_32(Scale);
5164  }
5165}
5166
5167/// isLegalAddressingMode - Return true if the addressing mode represented
5168/// by AM is legal for this target, for a load/store of the specified type.
5169bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5170                                              const Type *Ty) const {
5171  EVT VT = getValueType(Ty, true);
5172  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
5173    return false;
5174
5175  // Can never fold addr of global into load/store.
5176  if (AM.BaseGV)
5177    return false;
5178
5179  switch (AM.Scale) {
5180  case 0:  // no scale reg, must be "r+i" or "r", or "i".
5181    break;
5182  case 1:
5183    if (Subtarget->isThumb1Only())
5184      return false;
5185    // FALL THROUGH.
5186  default:
5187    // ARM doesn't support any R+R*scale+imm addr modes.
5188    if (AM.BaseOffs)
5189      return false;
5190
5191    if (!VT.isSimple())
5192      return false;
5193
5194    if (Subtarget->isThumb2())
5195      return isLegalT2ScaledAddressingMode(AM, VT);
5196
5197    int Scale = AM.Scale;
5198    switch (VT.getSimpleVT().SimpleTy) {
5199    default: return false;
5200    case MVT::i1:
5201    case MVT::i8:
5202    case MVT::i32:
5203      if (Scale < 0) Scale = -Scale;
5204      if (Scale == 1)
5205        return true;
5206      // r + r << imm
5207      return isPowerOf2_32(Scale & ~1);
5208    case MVT::i16:
5209    case MVT::i64:
5210      // r + r
5211      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
5212        return true;
5213      return false;
5214
5215    case MVT::isVoid:
5216      // Note, we allow "void" uses (basically, uses that aren't loads or
5217      // stores), because arm allows folding a scale into many arithmetic
5218      // operations.  This should be made more precise and revisited later.
5219
5220      // Allow r << imm, but the imm has to be a multiple of two.
5221      if (Scale & 1) return false;
5222      return isPowerOf2_32(Scale);
5223    }
5224    break;
5225  }
5226  return true;
5227}
5228
5229/// isLegalICmpImmediate - Return true if the specified immediate is legal
5230/// icmp immediate, that is the target has icmp instructions which can compare
5231/// a register against the immediate without having to materialize the
5232/// immediate into a register.
5233bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
5234  if (!Subtarget->isThumb())
5235    return ARM_AM::getSOImmVal(Imm) != -1;
5236  if (Subtarget->isThumb2())
5237    return ARM_AM::getT2SOImmVal(Imm) != -1;
5238  return Imm >= 0 && Imm <= 255;
5239}
5240
5241static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
5242                                      bool isSEXTLoad, SDValue &Base,
5243                                      SDValue &Offset, bool &isInc,
5244                                      SelectionDAG &DAG) {
5245  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5246    return false;
5247
5248  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
5249    // AddressingMode 3
5250    Base = Ptr->getOperand(0);
5251    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5252      int RHSC = (int)RHS->getZExtValue();
5253      if (RHSC < 0 && RHSC > -256) {
5254        assert(Ptr->getOpcode() == ISD::ADD);
5255        isInc = false;
5256        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5257        return true;
5258      }
5259    }
5260    isInc = (Ptr->getOpcode() == ISD::ADD);
5261    Offset = Ptr->getOperand(1);
5262    return true;
5263  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
5264    // AddressingMode 2
5265    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5266      int RHSC = (int)RHS->getZExtValue();
5267      if (RHSC < 0 && RHSC > -0x1000) {
5268        assert(Ptr->getOpcode() == ISD::ADD);
5269        isInc = false;
5270        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5271        Base = Ptr->getOperand(0);
5272        return true;
5273      }
5274    }
5275
5276    if (Ptr->getOpcode() == ISD::ADD) {
5277      isInc = true;
5278      ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0));
5279      if (ShOpcVal != ARM_AM::no_shift) {
5280        Base = Ptr->getOperand(1);
5281        Offset = Ptr->getOperand(0);
5282      } else {
5283        Base = Ptr->getOperand(0);
5284        Offset = Ptr->getOperand(1);
5285      }
5286      return true;
5287    }
5288
5289    isInc = (Ptr->getOpcode() == ISD::ADD);
5290    Base = Ptr->getOperand(0);
5291    Offset = Ptr->getOperand(1);
5292    return true;
5293  }
5294
5295  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
5296  return false;
5297}
5298
5299static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
5300                                     bool isSEXTLoad, SDValue &Base,
5301                                     SDValue &Offset, bool &isInc,
5302                                     SelectionDAG &DAG) {
5303  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
5304    return false;
5305
5306  Base = Ptr->getOperand(0);
5307  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
5308    int RHSC = (int)RHS->getZExtValue();
5309    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
5310      assert(Ptr->getOpcode() == ISD::ADD);
5311      isInc = false;
5312      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
5313      return true;
5314    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
5315      isInc = Ptr->getOpcode() == ISD::ADD;
5316      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
5317      return true;
5318    }
5319  }
5320
5321  return false;
5322}
5323
5324/// getPreIndexedAddressParts - returns true by value, base pointer and
5325/// offset pointer and addressing mode by reference if the node's address
5326/// can be legally represented as pre-indexed load / store address.
5327bool
5328ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
5329                                             SDValue &Offset,
5330                                             ISD::MemIndexedMode &AM,
5331                                             SelectionDAG &DAG) const {
5332  if (Subtarget->isThumb1Only())
5333    return false;
5334
5335  EVT VT;
5336  SDValue Ptr;
5337  bool isSEXTLoad = false;
5338  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5339    Ptr = LD->getBasePtr();
5340    VT  = LD->getMemoryVT();
5341    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5342  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5343    Ptr = ST->getBasePtr();
5344    VT  = ST->getMemoryVT();
5345  } else
5346    return false;
5347
5348  bool isInc;
5349  bool isLegal = false;
5350  if (Subtarget->isThumb2())
5351    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5352                                       Offset, isInc, DAG);
5353  else
5354    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
5355                                        Offset, isInc, DAG);
5356  if (!isLegal)
5357    return false;
5358
5359  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
5360  return true;
5361}
5362
5363/// getPostIndexedAddressParts - returns true by value, base pointer and
5364/// offset pointer and addressing mode by reference if this node can be
5365/// combined with a load / store to form a post-indexed load / store.
5366bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
5367                                                   SDValue &Base,
5368                                                   SDValue &Offset,
5369                                                   ISD::MemIndexedMode &AM,
5370                                                   SelectionDAG &DAG) const {
5371  if (Subtarget->isThumb1Only())
5372    return false;
5373
5374  EVT VT;
5375  SDValue Ptr;
5376  bool isSEXTLoad = false;
5377  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
5378    VT  = LD->getMemoryVT();
5379    Ptr = LD->getBasePtr();
5380    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
5381  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
5382    VT  = ST->getMemoryVT();
5383    Ptr = ST->getBasePtr();
5384  } else
5385    return false;
5386
5387  bool isInc;
5388  bool isLegal = false;
5389  if (Subtarget->isThumb2())
5390    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5391                                       isInc, DAG);
5392  else
5393    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
5394                                        isInc, DAG);
5395  if (!isLegal)
5396    return false;
5397
5398  if (Ptr != Base) {
5399    // Swap base ptr and offset to catch more post-index load / store when
5400    // it's legal. In Thumb2 mode, offset must be an immediate.
5401    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
5402        !Subtarget->isThumb2())
5403      std::swap(Base, Offset);
5404
5405    // Post-indexed load / store update the base pointer.
5406    if (Ptr != Base)
5407      return false;
5408  }
5409
5410  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
5411  return true;
5412}
5413
5414void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5415                                                       const APInt &Mask,
5416                                                       APInt &KnownZero,
5417                                                       APInt &KnownOne,
5418                                                       const SelectionDAG &DAG,
5419                                                       unsigned Depth) const {
5420  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5421  switch (Op.getOpcode()) {
5422  default: break;
5423  case ARMISD::CMOV: {
5424    // Bits are known zero/one if known on the LHS and RHS.
5425    DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
5426    if (KnownZero == 0 && KnownOne == 0) return;
5427
5428    APInt KnownZeroRHS, KnownOneRHS;
5429    DAG.ComputeMaskedBits(Op.getOperand(1), Mask,
5430                          KnownZeroRHS, KnownOneRHS, Depth+1);
5431    KnownZero &= KnownZeroRHS;
5432    KnownOne  &= KnownOneRHS;
5433    return;
5434  }
5435  }
5436}
5437
5438//===----------------------------------------------------------------------===//
5439//                           ARM Inline Assembly Support
5440//===----------------------------------------------------------------------===//
5441
5442/// getConstraintType - Given a constraint letter, return the type of
5443/// constraint it is for this target.
5444ARMTargetLowering::ConstraintType
5445ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
5446  if (Constraint.size() == 1) {
5447    switch (Constraint[0]) {
5448    default:  break;
5449    case 'l': return C_RegisterClass;
5450    case 'w': return C_RegisterClass;
5451    }
5452  }
5453  return TargetLowering::getConstraintType(Constraint);
5454}
5455
5456/// Examine constraint type and operand type and determine a weight value.
5457/// This object must already have been set up with the operand type
5458/// and the current alternative constraint selected.
5459TargetLowering::ConstraintWeight
5460ARMTargetLowering::getSingleConstraintMatchWeight(
5461    AsmOperandInfo &info, const char *constraint) const {
5462  ConstraintWeight weight = CW_Invalid;
5463  Value *CallOperandVal = info.CallOperandVal;
5464    // If we don't have a value, we can't do a match,
5465    // but allow it at the lowest weight.
5466  if (CallOperandVal == NULL)
5467    return CW_Default;
5468  const Type *type = CallOperandVal->getType();
5469  // Look at the constraint type.
5470  switch (*constraint) {
5471  default:
5472    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5473    break;
5474  case 'l':
5475    if (type->isIntegerTy()) {
5476      if (Subtarget->isThumb())
5477        weight = CW_SpecificReg;
5478      else
5479        weight = CW_Register;
5480    }
5481    break;
5482  case 'w':
5483    if (type->isFloatingPointTy())
5484      weight = CW_Register;
5485    break;
5486  }
5487  return weight;
5488}
5489
5490std::pair<unsigned, const TargetRegisterClass*>
5491ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5492                                                EVT VT) const {
5493  if (Constraint.size() == 1) {
5494    // GCC ARM Constraint Letters
5495    switch (Constraint[0]) {
5496    case 'l':
5497      if (Subtarget->isThumb())
5498        return std::make_pair(0U, ARM::tGPRRegisterClass);
5499      else
5500        return std::make_pair(0U, ARM::GPRRegisterClass);
5501    case 'r':
5502      return std::make_pair(0U, ARM::GPRRegisterClass);
5503    case 'w':
5504      if (VT == MVT::f32)
5505        return std::make_pair(0U, ARM::SPRRegisterClass);
5506      if (VT.getSizeInBits() == 64)
5507        return std::make_pair(0U, ARM::DPRRegisterClass);
5508      if (VT.getSizeInBits() == 128)
5509        return std::make_pair(0U, ARM::QPRRegisterClass);
5510      break;
5511    }
5512  }
5513  if (StringRef("{cc}").equals_lower(Constraint))
5514    return std::make_pair(unsigned(ARM::CPSR), ARM::CCRRegisterClass);
5515
5516  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5517}
5518
5519std::vector<unsigned> ARMTargetLowering::
5520getRegClassForInlineAsmConstraint(const std::string &Constraint,
5521                                  EVT VT) const {
5522  if (Constraint.size() != 1)
5523    return std::vector<unsigned>();
5524
5525  switch (Constraint[0]) {      // GCC ARM Constraint Letters
5526  default: break;
5527  case 'l':
5528    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5529                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5530                                 0);
5531  case 'r':
5532    return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3,
5533                                 ARM::R4, ARM::R5, ARM::R6, ARM::R7,
5534                                 ARM::R8, ARM::R9, ARM::R10, ARM::R11,
5535                                 ARM::R12, ARM::LR, 0);
5536  case 'w':
5537    if (VT == MVT::f32)
5538      return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3,
5539                                   ARM::S4, ARM::S5, ARM::S6, ARM::S7,
5540                                   ARM::S8, ARM::S9, ARM::S10, ARM::S11,
5541                                   ARM::S12,ARM::S13,ARM::S14,ARM::S15,
5542                                   ARM::S16,ARM::S17,ARM::S18,ARM::S19,
5543                                   ARM::S20,ARM::S21,ARM::S22,ARM::S23,
5544                                   ARM::S24,ARM::S25,ARM::S26,ARM::S27,
5545                                   ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0);
5546    if (VT.getSizeInBits() == 64)
5547      return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3,
5548                                   ARM::D4, ARM::D5, ARM::D6, ARM::D7,
5549                                   ARM::D8, ARM::D9, ARM::D10,ARM::D11,
5550                                   ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0);
5551    if (VT.getSizeInBits() == 128)
5552      return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3,
5553                                   ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0);
5554      break;
5555  }
5556
5557  return std::vector<unsigned>();
5558}
5559
5560/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5561/// vector.  If it is invalid, don't add anything to Ops.
5562void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5563                                                     char Constraint,
5564                                                     std::vector<SDValue>&Ops,
5565                                                     SelectionDAG &DAG) const {
5566  SDValue Result(0, 0);
5567
5568  switch (Constraint) {
5569  default: break;
5570  case 'I': case 'J': case 'K': case 'L':
5571  case 'M': case 'N': case 'O':
5572    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5573    if (!C)
5574      return;
5575
5576    int64_t CVal64 = C->getSExtValue();
5577    int CVal = (int) CVal64;
5578    // None of these constraints allow values larger than 32 bits.  Check
5579    // that the value fits in an int.
5580    if (CVal != CVal64)
5581      return;
5582
5583    switch (Constraint) {
5584      case 'I':
5585        if (Subtarget->isThumb1Only()) {
5586          // This must be a constant between 0 and 255, for ADD
5587          // immediates.
5588          if (CVal >= 0 && CVal <= 255)
5589            break;
5590        } else if (Subtarget->isThumb2()) {
5591          // A constant that can be used as an immediate value in a
5592          // data-processing instruction.
5593          if (ARM_AM::getT2SOImmVal(CVal) != -1)
5594            break;
5595        } else {
5596          // A constant that can be used as an immediate value in a
5597          // data-processing instruction.
5598          if (ARM_AM::getSOImmVal(CVal) != -1)
5599            break;
5600        }
5601        return;
5602
5603      case 'J':
5604        if (Subtarget->isThumb()) {  // FIXME thumb2
5605          // This must be a constant between -255 and -1, for negated ADD
5606          // immediates. This can be used in GCC with an "n" modifier that
5607          // prints the negated value, for use with SUB instructions. It is
5608          // not useful otherwise but is implemented for compatibility.
5609          if (CVal >= -255 && CVal <= -1)
5610            break;
5611        } else {
5612          // This must be a constant between -4095 and 4095. It is not clear
5613          // what this constraint is intended for. Implemented for
5614          // compatibility with GCC.
5615          if (CVal >= -4095 && CVal <= 4095)
5616            break;
5617        }
5618        return;
5619
5620      case 'K':
5621        if (Subtarget->isThumb1Only()) {
5622          // A 32-bit value where only one byte has a nonzero value. Exclude
5623          // zero to match GCC. This constraint is used by GCC internally for
5624          // constants that can be loaded with a move/shift combination.
5625          // It is not useful otherwise but is implemented for compatibility.
5626          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
5627            break;
5628        } else if (Subtarget->isThumb2()) {
5629          // A constant whose bitwise inverse can be used as an immediate
5630          // value in a data-processing instruction. This can be used in GCC
5631          // with a "B" modifier that prints the inverted value, for use with
5632          // BIC and MVN instructions. It is not useful otherwise but is
5633          // implemented for compatibility.
5634          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
5635            break;
5636        } else {
5637          // A constant whose bitwise inverse can be used as an immediate
5638          // value in a data-processing instruction. This can be used in GCC
5639          // with a "B" modifier that prints the inverted value, for use with
5640          // BIC and MVN instructions. It is not useful otherwise but is
5641          // implemented for compatibility.
5642          if (ARM_AM::getSOImmVal(~CVal) != -1)
5643            break;
5644        }
5645        return;
5646
5647      case 'L':
5648        if (Subtarget->isThumb1Only()) {
5649          // This must be a constant between -7 and 7,
5650          // for 3-operand ADD/SUB immediate instructions.
5651          if (CVal >= -7 && CVal < 7)
5652            break;
5653        } else if (Subtarget->isThumb2()) {
5654          // A constant whose negation can be used as an immediate value in a
5655          // data-processing instruction. This can be used in GCC with an "n"
5656          // modifier that prints the negated value, for use with SUB
5657          // instructions. It is not useful otherwise but is implemented for
5658          // compatibility.
5659          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
5660            break;
5661        } else {
5662          // A constant whose negation can be used as an immediate value in a
5663          // data-processing instruction. This can be used in GCC with an "n"
5664          // modifier that prints the negated value, for use with SUB
5665          // instructions. It is not useful otherwise but is implemented for
5666          // compatibility.
5667          if (ARM_AM::getSOImmVal(-CVal) != -1)
5668            break;
5669        }
5670        return;
5671
5672      case 'M':
5673        if (Subtarget->isThumb()) { // FIXME thumb2
5674          // This must be a multiple of 4 between 0 and 1020, for
5675          // ADD sp + immediate.
5676          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
5677            break;
5678        } else {
5679          // A power of two or a constant between 0 and 32.  This is used in
5680          // GCC for the shift amount on shifted register operands, but it is
5681          // useful in general for any shift amounts.
5682          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
5683            break;
5684        }
5685        return;
5686
5687      case 'N':
5688        if (Subtarget->isThumb()) {  // FIXME thumb2
5689          // This must be a constant between 0 and 31, for shift amounts.
5690          if (CVal >= 0 && CVal <= 31)
5691            break;
5692        }
5693        return;
5694
5695      case 'O':
5696        if (Subtarget->isThumb()) {  // FIXME thumb2
5697          // This must be a multiple of 4 between -508 and 508, for
5698          // ADD/SUB sp = sp + immediate.
5699          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
5700            break;
5701        }
5702        return;
5703    }
5704    Result = DAG.getTargetConstant(CVal, Op.getValueType());
5705    break;
5706  }
5707
5708  if (Result.getNode()) {
5709    Ops.push_back(Result);
5710    return;
5711  }
5712  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5713}
5714
5715bool
5716ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5717  // The ARM target isn't yet aware of offsets.
5718  return false;
5719}
5720
5721int ARM::getVFPf32Imm(const APFloat &FPImm) {
5722  APInt Imm = FPImm.bitcastToAPInt();
5723  uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
5724  int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
5725  int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
5726
5727  // We can handle 4 bits of mantissa.
5728  // mantissa = (16+UInt(e:f:g:h))/16.
5729  if (Mantissa & 0x7ffff)
5730    return -1;
5731  Mantissa >>= 19;
5732  if ((Mantissa & 0xf) != Mantissa)
5733    return -1;
5734
5735  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5736  if (Exp < -3 || Exp > 4)
5737    return -1;
5738  Exp = ((Exp+3) & 0x7) ^ 4;
5739
5740  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5741}
5742
5743int ARM::getVFPf64Imm(const APFloat &FPImm) {
5744  APInt Imm = FPImm.bitcastToAPInt();
5745  uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
5746  int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
5747  uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL;
5748
5749  // We can handle 4 bits of mantissa.
5750  // mantissa = (16+UInt(e:f:g:h))/16.
5751  if (Mantissa & 0xffffffffffffLL)
5752    return -1;
5753  Mantissa >>= 48;
5754  if ((Mantissa & 0xf) != Mantissa)
5755    return -1;
5756
5757  // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
5758  if (Exp < -3 || Exp > 4)
5759    return -1;
5760  Exp = ((Exp+3) & 0x7) ^ 4;
5761
5762  return ((int)Sign << 7) | (Exp << 4) | Mantissa;
5763}
5764
5765bool ARM::isBitFieldInvertedMask(unsigned v) {
5766  if (v == 0xffffffff)
5767    return 0;
5768  // there can be 1's on either or both "outsides", all the "inside"
5769  // bits must be 0's
5770  unsigned int lsb = 0, msb = 31;
5771  while (v & (1 << msb)) --msb;
5772  while (v & (1 << lsb)) ++lsb;
5773  for (unsigned int i = lsb; i <= msb; ++i) {
5774    if (v & (1 << i))
5775      return 0;
5776  }
5777  return 1;
5778}
5779
5780/// isFPImmLegal - Returns true if the target can instruction select the
5781/// specified FP immediate natively. If false, the legalizer will
5782/// materialize the FP immediate as a load from a constant pool.
5783bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
5784  if (!Subtarget->hasVFP3())
5785    return false;
5786  if (VT == MVT::f32)
5787    return ARM::getVFPf32Imm(Imm) != -1;
5788  if (VT == MVT::f64)
5789    return ARM::getVFPf64Imm(Imm) != -1;
5790  return false;
5791}
5792
5793/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
5794/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
5795/// specified in the intrinsic calls.
5796bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
5797                                           const CallInst &I,
5798                                           unsigned Intrinsic) const {
5799  switch (Intrinsic) {
5800  case Intrinsic::arm_neon_vld1:
5801  case Intrinsic::arm_neon_vld2:
5802  case Intrinsic::arm_neon_vld3:
5803  case Intrinsic::arm_neon_vld4:
5804  case Intrinsic::arm_neon_vld2lane:
5805  case Intrinsic::arm_neon_vld3lane:
5806  case Intrinsic::arm_neon_vld4lane: {
5807    Info.opc = ISD::INTRINSIC_W_CHAIN;
5808    // Conservatively set memVT to the entire set of vectors loaded.
5809    uint64_t NumElts = getTargetData()->getTypeAllocSize(I.getType()) / 8;
5810    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5811    Info.ptrVal = I.getArgOperand(0);
5812    Info.offset = 0;
5813    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
5814    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
5815    Info.vol = false; // volatile loads with NEON intrinsics not supported
5816    Info.readMem = true;
5817    Info.writeMem = false;
5818    return true;
5819  }
5820  case Intrinsic::arm_neon_vst1:
5821  case Intrinsic::arm_neon_vst2:
5822  case Intrinsic::arm_neon_vst3:
5823  case Intrinsic::arm_neon_vst4:
5824  case Intrinsic::arm_neon_vst2lane:
5825  case Intrinsic::arm_neon_vst3lane:
5826  case Intrinsic::arm_neon_vst4lane: {
5827    Info.opc = ISD::INTRINSIC_VOID;
5828    // Conservatively set memVT to the entire set of vectors stored.
5829    unsigned NumElts = 0;
5830    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
5831      const Type *ArgTy = I.getArgOperand(ArgI)->getType();
5832      if (!ArgTy->isVectorTy())
5833        break;
5834      NumElts += getTargetData()->getTypeAllocSize(ArgTy) / 8;
5835    }
5836    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
5837    Info.ptrVal = I.getArgOperand(0);
5838    Info.offset = 0;
5839    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
5840    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
5841    Info.vol = false; // volatile stores with NEON intrinsics not supported
5842    Info.readMem = false;
5843    Info.writeMem = true;
5844    return true;
5845  }
5846  default:
5847    break;
5848  }
5849
5850  return false;
5851}
5852