1//===--- BitTracker.h -----------------------------------------------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10#ifndef BITTRACKER_H 11#define BITTRACKER_H 12 13#include "llvm/ADT/SetVector.h" 14#include "llvm/ADT/SmallVector.h" 15#include "llvm/CodeGen/MachineFunction.h" 16 17#include <map> 18#include <queue> 19#include <set> 20 21namespace llvm { 22 class ConstantInt; 23 class MachineRegisterInfo; 24 class MachineBasicBlock; 25 class MachineInstr; 26 class MachineOperand; 27 class raw_ostream; 28 29struct BitTracker { 30 struct BitRef; 31 struct RegisterRef; 32 struct BitValue; 33 struct BitMask; 34 struct RegisterCell; 35 struct MachineEvaluator; 36 37 typedef SetVector<const MachineBasicBlock *> BranchTargetList; 38 39 typedef std::map<unsigned, RegisterCell> CellMapType; 40 41 BitTracker(const MachineEvaluator &E, MachineFunction &F); 42 ~BitTracker(); 43 44 void run(); 45 void trace(bool On = false) { Trace = On; } 46 bool has(unsigned Reg) const; 47 const RegisterCell &lookup(unsigned Reg) const; 48 RegisterCell get(RegisterRef RR) const; 49 void put(RegisterRef RR, const RegisterCell &RC); 50 void subst(RegisterRef OldRR, RegisterRef NewRR); 51 bool reached(const MachineBasicBlock *B) const; 52 53private: 54 void visitPHI(const MachineInstr *PI); 55 void visitNonBranch(const MachineInstr *MI); 56 void visitBranchesFrom(const MachineInstr *BI); 57 void visitUsesOf(unsigned Reg); 58 void reset(); 59 60 typedef std::pair<int,int> CFGEdge; 61 typedef std::set<CFGEdge> EdgeSetType; 62 typedef std::set<const MachineInstr *> InstrSetType; 63 typedef std::queue<CFGEdge> EdgeQueueType; 64 65 EdgeSetType EdgeExec; // Executable flow graph edges. 66 InstrSetType InstrExec; // Executable instructions. 67 EdgeQueueType FlowQ; // Work queue of CFG edges. 68 bool Trace; // Enable tracing for debugging. 69 70 const MachineEvaluator &ME; 71 MachineFunction &MF; 72 MachineRegisterInfo &MRI; 73 CellMapType ⤅ 74}; 75 76 77// Abstraction of a reference to bit at position Pos from a register Reg. 78struct BitTracker::BitRef { 79 BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {} 80 bool operator== (const BitRef &BR) const { 81 // If Reg is 0, disregard Pos. 82 return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos); 83 } 84 unsigned Reg; 85 uint16_t Pos; 86}; 87 88 89// Abstraction of a register reference in MachineOperand. It contains the 90// register number and the subregister index. 91struct BitTracker::RegisterRef { 92 RegisterRef(unsigned R = 0, unsigned S = 0) 93 : Reg(R), Sub(S) {} 94 RegisterRef(const MachineOperand &MO) 95 : Reg(MO.getReg()), Sub(MO.getSubReg()) {} 96 unsigned Reg, Sub; 97}; 98 99 100// Value that a single bit can take. This is outside of the context of 101// any register, it is more of an abstraction of the two-element set of 102// possible bit values. One extension here is the "Ref" type, which 103// indicates that this bit takes the same value as the bit described by 104// RefInfo. 105struct BitTracker::BitValue { 106 enum ValueType { 107 Top, // Bit not yet defined. 108 Zero, // Bit = 0. 109 One, // Bit = 1. 110 Ref // Bit value same as the one described in RefI. 111 // Conceptually, there is no explicit "bottom" value: the lattice's 112 // bottom will be expressed as a "ref to itself", which, in the context 113 // of registers, could be read as "this value of this bit is defined by 114 // this bit". 115 // The ordering is: 116 // x <= Top, 117 // Self <= x, where "Self" is "ref to itself". 118 // This makes the value lattice different for each virtual register 119 // (even for each bit in the same virtual register), since the "bottom" 120 // for one register will be a simple "ref" for another register. 121 // Since we do not store the "Self" bit and register number, the meet 122 // operation will need to take it as a parameter. 123 // 124 // In practice there is a special case for values that are not associa- 125 // ted with any specific virtual register. An example would be a value 126 // corresponding to a bit of a physical register, or an intermediate 127 // value obtained in some computation (such as instruction evaluation). 128 // Such cases are identical to the usual Ref type, but the register 129 // number is 0. In such case the Pos field of the reference is ignored. 130 // 131 // What is worthy of notice is that in value V (that is a "ref"), as long 132 // as the RefI.Reg is not 0, it may actually be the same register as the 133 // one in which V will be contained. If the RefI.Pos refers to the posi- 134 // tion of V, then V is assumed to be "bottom" (as a "ref to itself"), 135 // otherwise V is taken to be identical to the referenced bit of the 136 // same register. 137 // If RefI.Reg is 0, however, such a reference to the same register is 138 // not possible. Any value V that is a "ref", and whose RefI.Reg is 0 139 // is treated as "bottom". 140 }; 141 ValueType Type; 142 BitRef RefI; 143 144 BitValue(ValueType T = Top) : Type(T) {} 145 BitValue(bool B) : Type(B ? One : Zero) {} 146 BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {} 147 148 bool operator== (const BitValue &V) const { 149 if (Type != V.Type) 150 return false; 151 if (Type == Ref && !(RefI == V.RefI)) 152 return false; 153 return true; 154 } 155 bool operator!= (const BitValue &V) const { 156 return !operator==(V); 157 } 158 bool is(unsigned T) const { 159 assert(T == 0 || T == 1); 160 return T == 0 ? Type == Zero 161 : (T == 1 ? Type == One : false); 162 } 163 164 // The "meet" operation is the "." operation in a semilattice (L, ., T, B): 165 // (1) x.x = x 166 // (2) x.y = y.x 167 // (3) x.(y.z) = (x.y).z 168 // (4) x.T = x (i.e. T = "top") 169 // (5) x.B = B (i.e. B = "bottom") 170 // 171 // This "meet" function will update the value of the "*this" object with 172 // the newly calculated one, and return "true" if the value of *this has 173 // changed, and "false" otherwise. 174 // To prove that it satisfies the conditions (1)-(5), it is sufficient 175 // to show that a relation 176 // x <= y <=> x.y = x 177 // defines a partial order (i.e. that "meet" is same as "infimum"). 178 bool meet(const BitValue &V, const BitRef &Self) { 179 // First, check the cases where there is nothing to be done. 180 if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This) 181 return false; 182 if (V.Type == Top) // This.meet(Top) = This 183 return false; 184 if (*this == V) // This.meet(This) = This 185 return false; 186 187 // At this point, we know that the value of "this" will change. 188 // If it is Top, it will become the same as V, otherwise it will 189 // become "bottom" (i.e. Self). 190 if (Type == Top) { 191 Type = V.Type; 192 RefI = V.RefI; // This may be irrelevant, but copy anyway. 193 return true; 194 } 195 // Become "bottom". 196 Type = Ref; 197 RefI = Self; 198 return true; 199 } 200 201 // Create a reference to the bit value V. 202 static BitValue ref(const BitValue &V); 203 // Create a "self". 204 static BitValue self(const BitRef &Self = BitRef()); 205 206 bool num() const { 207 return Type == Zero || Type == One; 208 } 209 operator bool() const { 210 assert(Type == Zero || Type == One); 211 return Type == One; 212 } 213 214 friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV); 215}; 216 217 218// This operation must be idempotent, i.e. ref(ref(V)) == ref(V). 219inline BitTracker::BitValue 220BitTracker::BitValue::ref(const BitValue &V) { 221 if (V.Type != Ref) 222 return BitValue(V.Type); 223 if (V.RefI.Reg != 0) 224 return BitValue(V.RefI.Reg, V.RefI.Pos); 225 return self(); 226} 227 228 229inline BitTracker::BitValue 230BitTracker::BitValue::self(const BitRef &Self) { 231 return BitValue(Self.Reg, Self.Pos); 232} 233 234 235// A sequence of bits starting from index B up to and including index E. 236// If E < B, the mask represents two sections: [0..E] and [B..W) where 237// W is the width of the register. 238struct BitTracker::BitMask { 239 BitMask() : B(0), E(0) {} 240 BitMask(uint16_t b, uint16_t e) : B(b), E(e) {} 241 uint16_t first() const { return B; } 242 uint16_t last() const { return E; } 243private: 244 uint16_t B, E; 245}; 246 247 248// Representation of a register: a list of BitValues. 249struct BitTracker::RegisterCell { 250 RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {} 251 252 uint16_t width() const { 253 return Bits.size(); 254 } 255 const BitValue &operator[](uint16_t BitN) const { 256 assert(BitN < Bits.size()); 257 return Bits[BitN]; 258 } 259 BitValue &operator[](uint16_t BitN) { 260 assert(BitN < Bits.size()); 261 return Bits[BitN]; 262 } 263 264 bool meet(const RegisterCell &RC, unsigned SelfR); 265 RegisterCell &insert(const RegisterCell &RC, const BitMask &M); 266 RegisterCell extract(const BitMask &M) const; // Returns a new cell. 267 RegisterCell &rol(uint16_t Sh); // Rotate left. 268 RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V); 269 RegisterCell &cat(const RegisterCell &RC); // Concatenate. 270 uint16_t cl(bool B) const; 271 uint16_t ct(bool B) const; 272 273 bool operator== (const RegisterCell &RC) const; 274 bool operator!= (const RegisterCell &RC) const { 275 return !operator==(RC); 276 } 277 278 // Generate a "ref" cell for the corresponding register. In the resulting 279 // cell each bit will be described as being the same as the corresponding 280 // bit in register Reg (i.e. the cell is "defined" by register Reg). 281 static RegisterCell self(unsigned Reg, uint16_t Width); 282 // Generate a "top" cell of given size. 283 static RegisterCell top(uint16_t Width); 284 // Generate a cell that is a "ref" to another cell. 285 static RegisterCell ref(const RegisterCell &C); 286 287private: 288 // The DefaultBitN is here only to avoid frequent reallocation of the 289 // memory in the vector. 290 static const unsigned DefaultBitN = 32; 291 typedef SmallVector<BitValue, DefaultBitN> BitValueList; 292 BitValueList Bits; 293 294 friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC); 295}; 296 297 298inline bool BitTracker::has(unsigned Reg) const { 299 return Map.find(Reg) != Map.end(); 300} 301 302 303inline const BitTracker::RegisterCell& 304BitTracker::lookup(unsigned Reg) const { 305 CellMapType::const_iterator F = Map.find(Reg); 306 assert(F != Map.end()); 307 return F->second; 308} 309 310 311inline BitTracker::RegisterCell 312BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) { 313 RegisterCell RC(Width); 314 for (uint16_t i = 0; i < Width; ++i) 315 RC.Bits[i] = BitValue::self(BitRef(Reg, i)); 316 return RC; 317} 318 319 320inline BitTracker::RegisterCell 321BitTracker::RegisterCell::top(uint16_t Width) { 322 RegisterCell RC(Width); 323 for (uint16_t i = 0; i < Width; ++i) 324 RC.Bits[i] = BitValue(BitValue::Top); 325 return RC; 326} 327 328 329inline BitTracker::RegisterCell 330BitTracker::RegisterCell::ref(const RegisterCell &C) { 331 uint16_t W = C.width(); 332 RegisterCell RC(W); 333 for (unsigned i = 0; i < W; ++i) 334 RC[i] = BitValue::ref(C[i]); 335 return RC; 336} 337 338// A class to evaluate target's instructions and update the cell maps. 339// This is used internally by the bit tracker. A target that wants to 340// utilize this should implement the evaluation functions (noted below) 341// in a subclass of this class. 342struct BitTracker::MachineEvaluator { 343 MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M) 344 : TRI(T), MRI(M) {} 345 virtual ~MachineEvaluator() {} 346 347 uint16_t getRegBitWidth(const RegisterRef &RR) const; 348 349 RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const; 350 void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const; 351 // A result of any operation should use refs to the source cells, not 352 // the cells directly. This function is a convenience wrapper to quickly 353 // generate a ref for a cell corresponding to a register reference. 354 RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const { 355 RegisterCell RC = getCell(RR, M); 356 return RegisterCell::ref(RC); 357 } 358 359 // Helper functions. 360 // Check if a cell is an immediate value (i.e. all bits are either 0 or 1). 361 bool isInt(const RegisterCell &A) const; 362 // Convert cell to an immediate value. 363 uint64_t toInt(const RegisterCell &A) const; 364 365 // Generate cell from an immediate value. 366 RegisterCell eIMM(int64_t V, uint16_t W) const; 367 RegisterCell eIMM(const ConstantInt *CI) const; 368 369 // Arithmetic. 370 RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const; 371 RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const; 372 RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const; 373 RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const; 374 375 // Shifts. 376 RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const; 377 RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const; 378 RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const; 379 380 // Logical. 381 RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const; 382 RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const; 383 RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const; 384 RegisterCell eNOT(const RegisterCell &A1) const; 385 386 // Set bit, clear bit. 387 RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const; 388 RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const; 389 390 // Count leading/trailing bits (zeros/ones). 391 RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const; 392 RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const; 393 394 // Sign/zero extension. 395 RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const; 396 RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const; 397 398 // Extract/insert 399 // XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1. 400 // INS R,S,b: take R and replace bits starting from b with S. 401 RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const; 402 RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2, 403 uint16_t AtN) const; 404 405 // User-provided functions for individual targets: 406 407 // Return a sub-register mask that indicates which bits in Reg belong 408 // to the subregister Sub. These bits are assumed to be contiguous in 409 // the super-register, and have the same ordering in the sub-register 410 // as in the super-register. It is valid to call this function with 411 // Sub == 0, in this case, the function should return a mask that spans 412 // the entire register Reg (which is what the default implementation 413 // does). 414 virtual BitMask mask(unsigned Reg, unsigned Sub) const; 415 // Indicate whether a given register class should be tracked. 416 virtual bool track(const TargetRegisterClass *RC) const { return true; } 417 // Evaluate a non-branching machine instruction, given the cell map with 418 // the input values. Place the results in the Outputs map. Return "true" 419 // if evaluation succeeded, "false" otherwise. 420 virtual bool evaluate(const MachineInstr *MI, const CellMapType &Inputs, 421 CellMapType &Outputs) const; 422 // Evaluate a branch, given the cell map with the input values. Fill out 423 // a list of all possible branch targets and indicate (through a flag) 424 // whether the branch could fall-through. Return "true" if this information 425 // has been successfully computed, "false" otherwise. 426 virtual bool evaluate(const MachineInstr *BI, const CellMapType &Inputs, 427 BranchTargetList &Targets, bool &FallsThru) const = 0; 428 429 const TargetRegisterInfo &TRI; 430 MachineRegisterInfo &MRI; 431}; 432 433} // end namespace llvm 434 435#endif 436