1//===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file implements the MSP430TargetLowering class. 11// 12//===----------------------------------------------------------------------===// 13 14#include "MSP430ISelLowering.h" 15#include "MSP430.h" 16#include "MSP430MachineFunctionInfo.h" 17#include "MSP430Subtarget.h" 18#include "MSP430TargetMachine.h" 19#include "llvm/CodeGen/CallingConvLower.h" 20#include "llvm/CodeGen/MachineFrameInfo.h" 21#include "llvm/CodeGen/MachineFunction.h" 22#include "llvm/CodeGen/MachineInstrBuilder.h" 23#include "llvm/CodeGen/MachineRegisterInfo.h" 24#include "llvm/CodeGen/SelectionDAGISel.h" 25#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 26#include "llvm/CodeGen/ValueTypes.h" 27#include "llvm/IR/CallingConv.h" 28#include "llvm/IR/DerivedTypes.h" 29#include "llvm/IR/Function.h" 30#include "llvm/IR/GlobalAlias.h" 31#include "llvm/IR/GlobalVariable.h" 32#include "llvm/IR/Intrinsics.h" 33#include "llvm/Support/CommandLine.h" 34#include "llvm/Support/Debug.h" 35#include "llvm/Support/ErrorHandling.h" 36#include "llvm/Support/raw_ostream.h" 37using namespace llvm; 38 39#define DEBUG_TYPE "msp430-lower" 40 41typedef enum { 42 NoHWMult, 43 HWMultIntr, 44 HWMultNoIntr 45} HWMultUseMode; 46 47static cl::opt<HWMultUseMode> 48HWMultMode("msp430-hwmult-mode", cl::Hidden, 49 cl::desc("Hardware multiplier use mode"), 50 cl::init(HWMultNoIntr), 51 cl::values( 52 clEnumValN(NoHWMult, "no", 53 "Do not use hardware multiplier"), 54 clEnumValN(HWMultIntr, "interrupts", 55 "Assume hardware multiplier can be used inside interrupts"), 56 clEnumValN(HWMultNoIntr, "use", 57 "Assume hardware multiplier cannot be used inside interrupts"), 58 clEnumValEnd)); 59 60MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM, 61 const MSP430Subtarget &STI) 62 : TargetLowering(TM) { 63 64 // Set up the register classes. 65 addRegisterClass(MVT::i8, &MSP430::GR8RegClass); 66 addRegisterClass(MVT::i16, &MSP430::GR16RegClass); 67 68 // Compute derived properties from the register classes 69 computeRegisterProperties(STI.getRegisterInfo()); 70 71 // Provide all sorts of operation actions 72 setStackPointerRegisterToSaveRestore(MSP430::SP); 73 setBooleanContents(ZeroOrOneBooleanContent); 74 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 75 76 // We have post-incremented loads / stores. 77 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); 78 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); 79 80 for (MVT VT : MVT::integer_valuetypes()) { 81 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 82 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 83 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 84 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); 85 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand); 86 } 87 88 // We don't have any truncstores 89 setTruncStoreAction(MVT::i16, MVT::i8, Expand); 90 91 setOperationAction(ISD::SRA, MVT::i8, Custom); 92 setOperationAction(ISD::SHL, MVT::i8, Custom); 93 setOperationAction(ISD::SRL, MVT::i8, Custom); 94 setOperationAction(ISD::SRA, MVT::i16, Custom); 95 setOperationAction(ISD::SHL, MVT::i16, Custom); 96 setOperationAction(ISD::SRL, MVT::i16, Custom); 97 setOperationAction(ISD::ROTL, MVT::i8, Expand); 98 setOperationAction(ISD::ROTR, MVT::i8, Expand); 99 setOperationAction(ISD::ROTL, MVT::i16, Expand); 100 setOperationAction(ISD::ROTR, MVT::i16, Expand); 101 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom); 102 setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom); 103 setOperationAction(ISD::BlockAddress, MVT::i16, Custom); 104 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 105 setOperationAction(ISD::BR_CC, MVT::i8, Custom); 106 setOperationAction(ISD::BR_CC, MVT::i16, Custom); 107 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 108 setOperationAction(ISD::SETCC, MVT::i8, Custom); 109 setOperationAction(ISD::SETCC, MVT::i16, Custom); 110 setOperationAction(ISD::SELECT, MVT::i8, Expand); 111 setOperationAction(ISD::SELECT, MVT::i16, Expand); 112 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom); 113 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom); 114 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom); 115 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand); 116 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand); 117 118 setOperationAction(ISD::CTTZ, MVT::i8, Expand); 119 setOperationAction(ISD::CTTZ, MVT::i16, Expand); 120 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i8, Expand); 121 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Expand); 122 setOperationAction(ISD::CTLZ, MVT::i8, Expand); 123 setOperationAction(ISD::CTLZ, MVT::i16, Expand); 124 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8, Expand); 125 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Expand); 126 setOperationAction(ISD::CTPOP, MVT::i8, Expand); 127 setOperationAction(ISD::CTPOP, MVT::i16, Expand); 128 129 setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand); 130 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand); 131 setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand); 132 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand); 133 setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand); 134 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand); 135 136 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 137 138 // FIXME: Implement efficiently multiplication by a constant 139 setOperationAction(ISD::MUL, MVT::i8, Expand); 140 setOperationAction(ISD::MULHS, MVT::i8, Expand); 141 setOperationAction(ISD::MULHU, MVT::i8, Expand); 142 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand); 143 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand); 144 setOperationAction(ISD::MUL, MVT::i16, Expand); 145 setOperationAction(ISD::MULHS, MVT::i16, Expand); 146 setOperationAction(ISD::MULHU, MVT::i16, Expand); 147 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand); 148 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand); 149 150 setOperationAction(ISD::UDIV, MVT::i8, Expand); 151 setOperationAction(ISD::UDIVREM, MVT::i8, Expand); 152 setOperationAction(ISD::UREM, MVT::i8, Expand); 153 setOperationAction(ISD::SDIV, MVT::i8, Expand); 154 setOperationAction(ISD::SDIVREM, MVT::i8, Expand); 155 setOperationAction(ISD::SREM, MVT::i8, Expand); 156 setOperationAction(ISD::UDIV, MVT::i16, Expand); 157 setOperationAction(ISD::UDIVREM, MVT::i16, Expand); 158 setOperationAction(ISD::UREM, MVT::i16, Expand); 159 setOperationAction(ISD::SDIV, MVT::i16, Expand); 160 setOperationAction(ISD::SDIVREM, MVT::i16, Expand); 161 setOperationAction(ISD::SREM, MVT::i16, Expand); 162 163 // varargs support 164 setOperationAction(ISD::VASTART, MVT::Other, Custom); 165 setOperationAction(ISD::VAARG, MVT::Other, Expand); 166 setOperationAction(ISD::VAEND, MVT::Other, Expand); 167 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 168 setOperationAction(ISD::JumpTable, MVT::i16, Custom); 169 170 // Libcalls names. 171 if (HWMultMode == HWMultIntr) { 172 setLibcallName(RTLIB::MUL_I8, "__mulqi3hw"); 173 setLibcallName(RTLIB::MUL_I16, "__mulhi3hw"); 174 } else if (HWMultMode == HWMultNoIntr) { 175 setLibcallName(RTLIB::MUL_I8, "__mulqi3hw_noint"); 176 setLibcallName(RTLIB::MUL_I16, "__mulhi3hw_noint"); 177 } 178 179 setMinFunctionAlignment(1); 180 setPrefFunctionAlignment(2); 181} 182 183SDValue MSP430TargetLowering::LowerOperation(SDValue Op, 184 SelectionDAG &DAG) const { 185 switch (Op.getOpcode()) { 186 case ISD::SHL: // FALLTHROUGH 187 case ISD::SRL: 188 case ISD::SRA: return LowerShifts(Op, DAG); 189 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 190 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 191 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); 192 case ISD::SETCC: return LowerSETCC(Op, DAG); 193 case ISD::BR_CC: return LowerBR_CC(Op, DAG); 194 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 195 case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG); 196 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 197 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 198 case ISD::VASTART: return LowerVASTART(Op, DAG); 199 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 200 default: 201 llvm_unreachable("unimplemented operand"); 202 } 203} 204 205//===----------------------------------------------------------------------===// 206// MSP430 Inline Assembly Support 207//===----------------------------------------------------------------------===// 208 209/// getConstraintType - Given a constraint letter, return the type of 210/// constraint it is for this target. 211TargetLowering::ConstraintType 212MSP430TargetLowering::getConstraintType(StringRef Constraint) const { 213 if (Constraint.size() == 1) { 214 switch (Constraint[0]) { 215 case 'r': 216 return C_RegisterClass; 217 default: 218 break; 219 } 220 } 221 return TargetLowering::getConstraintType(Constraint); 222} 223 224std::pair<unsigned, const TargetRegisterClass *> 225MSP430TargetLowering::getRegForInlineAsmConstraint( 226 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 227 if (Constraint.size() == 1) { 228 // GCC Constraint Letters 229 switch (Constraint[0]) { 230 default: break; 231 case 'r': // GENERAL_REGS 232 if (VT == MVT::i8) 233 return std::make_pair(0U, &MSP430::GR8RegClass); 234 235 return std::make_pair(0U, &MSP430::GR16RegClass); 236 } 237 } 238 239 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 240} 241 242//===----------------------------------------------------------------------===// 243// Calling Convention Implementation 244//===----------------------------------------------------------------------===// 245 246#include "MSP430GenCallingConv.inc" 247 248/// For each argument in a function store the number of pieces it is composed 249/// of. 250template<typename ArgT> 251static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args, 252 SmallVectorImpl<unsigned> &Out) { 253 unsigned CurrentArgIndex = ~0U; 254 for (unsigned i = 0, e = Args.size(); i != e; i++) { 255 if (CurrentArgIndex == Args[i].OrigArgIndex) { 256 Out.back()++; 257 } else { 258 Out.push_back(1); 259 CurrentArgIndex++; 260 } 261 } 262} 263 264static void AnalyzeVarArgs(CCState &State, 265 const SmallVectorImpl<ISD::OutputArg> &Outs) { 266 State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack); 267} 268 269static void AnalyzeVarArgs(CCState &State, 270 const SmallVectorImpl<ISD::InputArg> &Ins) { 271 State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack); 272} 273 274/// Analyze incoming and outgoing function arguments. We need custom C++ code 275/// to handle special constraints in the ABI like reversing the order of the 276/// pieces of splitted arguments. In addition, all pieces of a certain argument 277/// have to be passed either using registers or the stack but never mixing both. 278template<typename ArgT> 279static void AnalyzeArguments(CCState &State, 280 SmallVectorImpl<CCValAssign> &ArgLocs, 281 const SmallVectorImpl<ArgT> &Args) { 282 static const MCPhysReg RegList[] = { 283 MSP430::R15, MSP430::R14, MSP430::R13, MSP430::R12 284 }; 285 static const unsigned NbRegs = array_lengthof(RegList); 286 287 if (State.isVarArg()) { 288 AnalyzeVarArgs(State, Args); 289 return; 290 } 291 292 SmallVector<unsigned, 4> ArgsParts; 293 ParseFunctionArgs(Args, ArgsParts); 294 295 unsigned RegsLeft = NbRegs; 296 bool UseStack = false; 297 unsigned ValNo = 0; 298 299 for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) { 300 MVT ArgVT = Args[ValNo].VT; 301 ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags; 302 MVT LocVT = ArgVT; 303 CCValAssign::LocInfo LocInfo = CCValAssign::Full; 304 305 // Promote i8 to i16 306 if (LocVT == MVT::i8) { 307 LocVT = MVT::i16; 308 if (ArgFlags.isSExt()) 309 LocInfo = CCValAssign::SExt; 310 else if (ArgFlags.isZExt()) 311 LocInfo = CCValAssign::ZExt; 312 else 313 LocInfo = CCValAssign::AExt; 314 } 315 316 // Handle byval arguments 317 if (ArgFlags.isByVal()) { 318 State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags); 319 continue; 320 } 321 322 unsigned Parts = ArgsParts[i]; 323 324 if (!UseStack && Parts <= RegsLeft) { 325 unsigned FirstVal = ValNo; 326 for (unsigned j = 0; j < Parts; j++) { 327 unsigned Reg = State.AllocateReg(RegList); 328 State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo)); 329 RegsLeft--; 330 } 331 332 // Reverse the order of the pieces to agree with the "big endian" format 333 // required in the calling convention ABI. 334 SmallVectorImpl<CCValAssign>::iterator B = ArgLocs.begin() + FirstVal; 335 std::reverse(B, B + Parts); 336 } else { 337 UseStack = true; 338 for (unsigned j = 0; j < Parts; j++) 339 CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State); 340 } 341 } 342} 343 344static void AnalyzeRetResult(CCState &State, 345 const SmallVectorImpl<ISD::InputArg> &Ins) { 346 State.AnalyzeCallResult(Ins, RetCC_MSP430); 347} 348 349static void AnalyzeRetResult(CCState &State, 350 const SmallVectorImpl<ISD::OutputArg> &Outs) { 351 State.AnalyzeReturn(Outs, RetCC_MSP430); 352} 353 354template<typename ArgT> 355static void AnalyzeReturnValues(CCState &State, 356 SmallVectorImpl<CCValAssign> &RVLocs, 357 const SmallVectorImpl<ArgT> &Args) { 358 AnalyzeRetResult(State, Args); 359 360 // Reverse splitted return values to get the "big endian" format required 361 // to agree with the calling convention ABI. 362 std::reverse(RVLocs.begin(), RVLocs.end()); 363} 364 365SDValue 366MSP430TargetLowering::LowerFormalArguments(SDValue Chain, 367 CallingConv::ID CallConv, 368 bool isVarArg, 369 const SmallVectorImpl<ISD::InputArg> 370 &Ins, 371 SDLoc dl, 372 SelectionDAG &DAG, 373 SmallVectorImpl<SDValue> &InVals) 374 const { 375 376 switch (CallConv) { 377 default: 378 llvm_unreachable("Unsupported calling convention"); 379 case CallingConv::C: 380 case CallingConv::Fast: 381 return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); 382 case CallingConv::MSP430_INTR: 383 if (Ins.empty()) 384 return Chain; 385 report_fatal_error("ISRs cannot have arguments"); 386 } 387} 388 389SDValue 390MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 391 SmallVectorImpl<SDValue> &InVals) const { 392 SelectionDAG &DAG = CLI.DAG; 393 SDLoc &dl = CLI.DL; 394 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 395 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 396 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 397 SDValue Chain = CLI.Chain; 398 SDValue Callee = CLI.Callee; 399 bool &isTailCall = CLI.IsTailCall; 400 CallingConv::ID CallConv = CLI.CallConv; 401 bool isVarArg = CLI.IsVarArg; 402 403 // MSP430 target does not yet support tail call optimization. 404 isTailCall = false; 405 406 switch (CallConv) { 407 default: 408 llvm_unreachable("Unsupported calling convention"); 409 case CallingConv::Fast: 410 case CallingConv::C: 411 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 412 Outs, OutVals, Ins, dl, DAG, InVals); 413 case CallingConv::MSP430_INTR: 414 report_fatal_error("ISRs cannot be called directly"); 415 } 416} 417 418/// LowerCCCArguments - transform physical registers into virtual registers and 419/// generate load operations for arguments places on the stack. 420// FIXME: struct return stuff 421SDValue 422MSP430TargetLowering::LowerCCCArguments(SDValue Chain, 423 CallingConv::ID CallConv, 424 bool isVarArg, 425 const SmallVectorImpl<ISD::InputArg> 426 &Ins, 427 SDLoc dl, 428 SelectionDAG &DAG, 429 SmallVectorImpl<SDValue> &InVals) 430 const { 431 MachineFunction &MF = DAG.getMachineFunction(); 432 MachineFrameInfo *MFI = MF.getFrameInfo(); 433 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 434 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 435 436 // Assign locations to all of the incoming arguments. 437 SmallVector<CCValAssign, 16> ArgLocs; 438 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 439 *DAG.getContext()); 440 AnalyzeArguments(CCInfo, ArgLocs, Ins); 441 442 // Create frame index for the start of the first vararg value 443 if (isVarArg) { 444 unsigned Offset = CCInfo.getNextStackOffset(); 445 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, Offset, true)); 446 } 447 448 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 449 CCValAssign &VA = ArgLocs[i]; 450 if (VA.isRegLoc()) { 451 // Arguments passed in registers 452 EVT RegVT = VA.getLocVT(); 453 switch (RegVT.getSimpleVT().SimpleTy) { 454 default: 455 { 456#ifndef NDEBUG 457 errs() << "LowerFormalArguments Unhandled argument type: " 458 << RegVT.getSimpleVT().SimpleTy << "\n"; 459#endif 460 llvm_unreachable(nullptr); 461 } 462 case MVT::i16: 463 unsigned VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass); 464 RegInfo.addLiveIn(VA.getLocReg(), VReg); 465 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 466 467 // If this is an 8-bit value, it is really passed promoted to 16 468 // bits. Insert an assert[sz]ext to capture this, then truncate to the 469 // right size. 470 if (VA.getLocInfo() == CCValAssign::SExt) 471 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, 472 DAG.getValueType(VA.getValVT())); 473 else if (VA.getLocInfo() == CCValAssign::ZExt) 474 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, 475 DAG.getValueType(VA.getValVT())); 476 477 if (VA.getLocInfo() != CCValAssign::Full) 478 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 479 480 InVals.push_back(ArgValue); 481 } 482 } else { 483 // Sanity check 484 assert(VA.isMemLoc()); 485 486 SDValue InVal; 487 ISD::ArgFlagsTy Flags = Ins[i].Flags; 488 489 if (Flags.isByVal()) { 490 int FI = MFI->CreateFixedObject(Flags.getByValSize(), 491 VA.getLocMemOffset(), true); 492 InVal = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 493 } else { 494 // Load the argument to a virtual register 495 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 496 if (ObjSize > 2) { 497 errs() << "LowerFormalArguments Unhandled argument type: " 498 << EVT(VA.getLocVT()).getEVTString() 499 << "\n"; 500 } 501 // Create the frame index object for this incoming parameter... 502 int FI = MFI->CreateFixedObject(ObjSize, VA.getLocMemOffset(), true); 503 504 // Create the SelectionDAG nodes corresponding to a load 505 //from this parameter 506 SDValue FIN = DAG.getFrameIndex(FI, MVT::i16); 507 InVal = DAG.getLoad( 508 VA.getLocVT(), dl, Chain, FIN, 509 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 510 false, false, false, 0); 511 } 512 513 InVals.push_back(InVal); 514 } 515 } 516 517 return Chain; 518} 519 520SDValue 521MSP430TargetLowering::LowerReturn(SDValue Chain, 522 CallingConv::ID CallConv, bool isVarArg, 523 const SmallVectorImpl<ISD::OutputArg> &Outs, 524 const SmallVectorImpl<SDValue> &OutVals, 525 SDLoc dl, SelectionDAG &DAG) const { 526 527 // CCValAssign - represent the assignment of the return value to a location 528 SmallVector<CCValAssign, 16> RVLocs; 529 530 // ISRs cannot return any value. 531 if (CallConv == CallingConv::MSP430_INTR && !Outs.empty()) 532 report_fatal_error("ISRs cannot return any value"); 533 534 // CCState - Info about the registers and stack slot. 535 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 536 *DAG.getContext()); 537 538 // Analize return values. 539 AnalyzeReturnValues(CCInfo, RVLocs, Outs); 540 541 SDValue Flag; 542 SmallVector<SDValue, 4> RetOps(1, Chain); 543 544 // Copy the result values into the output registers. 545 for (unsigned i = 0; i != RVLocs.size(); ++i) { 546 CCValAssign &VA = RVLocs[i]; 547 assert(VA.isRegLoc() && "Can only return in registers!"); 548 549 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 550 OutVals[i], Flag); 551 552 // Guarantee that all emitted copies are stuck together, 553 // avoiding something bad. 554 Flag = Chain.getValue(1); 555 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 556 } 557 558 unsigned Opc = (CallConv == CallingConv::MSP430_INTR ? 559 MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG); 560 561 RetOps[0] = Chain; // Update chain. 562 563 // Add the flag if we have it. 564 if (Flag.getNode()) 565 RetOps.push_back(Flag); 566 567 return DAG.getNode(Opc, dl, MVT::Other, RetOps); 568} 569 570/// LowerCCCCallTo - functions arguments are copied from virtual regs to 571/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. 572// TODO: sret. 573SDValue 574MSP430TargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee, 575 CallingConv::ID CallConv, bool isVarArg, 576 bool isTailCall, 577 const SmallVectorImpl<ISD::OutputArg> 578 &Outs, 579 const SmallVectorImpl<SDValue> &OutVals, 580 const SmallVectorImpl<ISD::InputArg> &Ins, 581 SDLoc dl, SelectionDAG &DAG, 582 SmallVectorImpl<SDValue> &InVals) const { 583 // Analyze operands of the call, assigning locations to each operand. 584 SmallVector<CCValAssign, 16> ArgLocs; 585 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 586 *DAG.getContext()); 587 AnalyzeArguments(CCInfo, ArgLocs, Outs); 588 589 // Get a count of how many bytes are to be pushed on the stack. 590 unsigned NumBytes = CCInfo.getNextStackOffset(); 591 auto PtrVT = getPointerTy(DAG.getDataLayout()); 592 593 Chain = DAG.getCALLSEQ_START(Chain, 594 DAG.getConstant(NumBytes, dl, PtrVT, true), dl); 595 596 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 597 SmallVector<SDValue, 12> MemOpChains; 598 SDValue StackPtr; 599 600 // Walk the register/memloc assignments, inserting copies/loads. 601 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 602 CCValAssign &VA = ArgLocs[i]; 603 604 SDValue Arg = OutVals[i]; 605 606 // Promote the value if needed. 607 switch (VA.getLocInfo()) { 608 default: llvm_unreachable("Unknown loc info!"); 609 case CCValAssign::Full: break; 610 case CCValAssign::SExt: 611 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 612 break; 613 case CCValAssign::ZExt: 614 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 615 break; 616 case CCValAssign::AExt: 617 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 618 break; 619 } 620 621 // Arguments that can be passed on register must be kept at RegsToPass 622 // vector 623 if (VA.isRegLoc()) { 624 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 625 } else { 626 assert(VA.isMemLoc()); 627 628 if (!StackPtr.getNode()) 629 StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT); 630 631 SDValue PtrOff = 632 DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, 633 DAG.getIntPtrConstant(VA.getLocMemOffset(), dl)); 634 635 SDValue MemOp; 636 ISD::ArgFlagsTy Flags = Outs[i].Flags; 637 638 if (Flags.isByVal()) { 639 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16); 640 MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode, 641 Flags.getByValAlign(), 642 /*isVolatile*/false, 643 /*AlwaysInline=*/true, 644 /*isTailCall=*/false, 645 MachinePointerInfo(), 646 MachinePointerInfo()); 647 } else { 648 MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(), 649 false, false, 0); 650 } 651 652 MemOpChains.push_back(MemOp); 653 } 654 } 655 656 // Transform all store nodes into one single node because all store nodes are 657 // independent of each other. 658 if (!MemOpChains.empty()) 659 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 660 661 // Build a sequence of copy-to-reg nodes chained together with token chain and 662 // flag operands which copy the outgoing args into registers. The InFlag in 663 // necessary since all emitted instructions must be stuck together. 664 SDValue InFlag; 665 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 666 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 667 RegsToPass[i].second, InFlag); 668 InFlag = Chain.getValue(1); 669 } 670 671 // If the callee is a GlobalAddress node (quite common, every direct call is) 672 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 673 // Likewise ExternalSymbol -> TargetExternalSymbol. 674 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 675 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16); 676 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 677 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16); 678 679 // Returns a chain & a flag for retval copy to use. 680 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 681 SmallVector<SDValue, 8> Ops; 682 Ops.push_back(Chain); 683 Ops.push_back(Callee); 684 685 // Add argument registers to the end of the list so that they are 686 // known live into the call. 687 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 688 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 689 RegsToPass[i].second.getValueType())); 690 691 if (InFlag.getNode()) 692 Ops.push_back(InFlag); 693 694 Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops); 695 InFlag = Chain.getValue(1); 696 697 // Create the CALLSEQ_END node. 698 Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true), 699 DAG.getConstant(0, dl, PtrVT, true), InFlag, dl); 700 InFlag = Chain.getValue(1); 701 702 // Handle result values, copying them out of physregs into vregs that we 703 // return. 704 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, 705 DAG, InVals); 706} 707 708/// LowerCallResult - Lower the result values of a call into the 709/// appropriate copies out of appropriate physical registers. 710/// 711SDValue 712MSP430TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 713 CallingConv::ID CallConv, bool isVarArg, 714 const SmallVectorImpl<ISD::InputArg> &Ins, 715 SDLoc dl, SelectionDAG &DAG, 716 SmallVectorImpl<SDValue> &InVals) const { 717 718 // Assign locations to each value returned by this call. 719 SmallVector<CCValAssign, 16> RVLocs; 720 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 721 *DAG.getContext()); 722 723 AnalyzeReturnValues(CCInfo, RVLocs, Ins); 724 725 // Copy all of the result registers out of their specified physreg. 726 for (unsigned i = 0; i != RVLocs.size(); ++i) { 727 Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), 728 RVLocs[i].getValVT(), InFlag).getValue(1); 729 InFlag = Chain.getValue(2); 730 InVals.push_back(Chain.getValue(0)); 731 } 732 733 return Chain; 734} 735 736SDValue MSP430TargetLowering::LowerShifts(SDValue Op, 737 SelectionDAG &DAG) const { 738 unsigned Opc = Op.getOpcode(); 739 SDNode* N = Op.getNode(); 740 EVT VT = Op.getValueType(); 741 SDLoc dl(N); 742 743 // Expand non-constant shifts to loops: 744 if (!isa<ConstantSDNode>(N->getOperand(1))) 745 switch (Opc) { 746 default: llvm_unreachable("Invalid shift opcode!"); 747 case ISD::SHL: 748 return DAG.getNode(MSP430ISD::SHL, dl, 749 VT, N->getOperand(0), N->getOperand(1)); 750 case ISD::SRA: 751 return DAG.getNode(MSP430ISD::SRA, dl, 752 VT, N->getOperand(0), N->getOperand(1)); 753 case ISD::SRL: 754 return DAG.getNode(MSP430ISD::SRL, dl, 755 VT, N->getOperand(0), N->getOperand(1)); 756 } 757 758 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 759 760 // Expand the stuff into sequence of shifts. 761 // FIXME: for some shift amounts this might be done better! 762 // E.g.: foo >> (8 + N) => sxt(swpb(foo)) >> N 763 SDValue Victim = N->getOperand(0); 764 765 if (Opc == ISD::SRL && ShiftAmount) { 766 // Emit a special goodness here: 767 // srl A, 1 => clrc; rrc A 768 Victim = DAG.getNode(MSP430ISD::RRC, dl, VT, Victim); 769 ShiftAmount -= 1; 770 } 771 772 while (ShiftAmount--) 773 Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA), 774 dl, VT, Victim); 775 776 return Victim; 777} 778 779SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op, 780 SelectionDAG &DAG) const { 781 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 782 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 783 auto PtrVT = getPointerTy(DAG.getDataLayout()); 784 785 // Create the TargetGlobalAddress node, folding in the constant offset. 786 SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset); 787 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result); 788} 789 790SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op, 791 SelectionDAG &DAG) const { 792 SDLoc dl(Op); 793 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 794 auto PtrVT = getPointerTy(DAG.getDataLayout()); 795 SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT); 796 797 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result); 798} 799 800SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op, 801 SelectionDAG &DAG) const { 802 SDLoc dl(Op); 803 auto PtrVT = getPointerTy(DAG.getDataLayout()); 804 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 805 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT); 806 807 return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result); 808} 809 810static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC, 811 ISD::CondCode CC, 812 SDLoc dl, SelectionDAG &DAG) { 813 // FIXME: Handle bittests someday 814 assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet"); 815 816 // FIXME: Handle jump negative someday 817 MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID; 818 switch (CC) { 819 default: llvm_unreachable("Invalid integer condition!"); 820 case ISD::SETEQ: 821 TCC = MSP430CC::COND_E; // aka COND_Z 822 // Minor optimization: if LHS is a constant, swap operands, then the 823 // constant can be folded into comparison. 824 if (LHS.getOpcode() == ISD::Constant) 825 std::swap(LHS, RHS); 826 break; 827 case ISD::SETNE: 828 TCC = MSP430CC::COND_NE; // aka COND_NZ 829 // Minor optimization: if LHS is a constant, swap operands, then the 830 // constant can be folded into comparison. 831 if (LHS.getOpcode() == ISD::Constant) 832 std::swap(LHS, RHS); 833 break; 834 case ISD::SETULE: 835 std::swap(LHS, RHS); // FALLTHROUGH 836 case ISD::SETUGE: 837 // Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to 838 // fold constant into instruction. 839 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 840 LHS = RHS; 841 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 842 TCC = MSP430CC::COND_LO; 843 break; 844 } 845 TCC = MSP430CC::COND_HS; // aka COND_C 846 break; 847 case ISD::SETUGT: 848 std::swap(LHS, RHS); // FALLTHROUGH 849 case ISD::SETULT: 850 // Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to 851 // fold constant into instruction. 852 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 853 LHS = RHS; 854 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 855 TCC = MSP430CC::COND_HS; 856 break; 857 } 858 TCC = MSP430CC::COND_LO; // aka COND_NC 859 break; 860 case ISD::SETLE: 861 std::swap(LHS, RHS); // FALLTHROUGH 862 case ISD::SETGE: 863 // Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to 864 // fold constant into instruction. 865 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 866 LHS = RHS; 867 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 868 TCC = MSP430CC::COND_L; 869 break; 870 } 871 TCC = MSP430CC::COND_GE; 872 break; 873 case ISD::SETGT: 874 std::swap(LHS, RHS); // FALLTHROUGH 875 case ISD::SETLT: 876 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to 877 // fold constant into instruction. 878 if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) { 879 LHS = RHS; 880 RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0)); 881 TCC = MSP430CC::COND_GE; 882 break; 883 } 884 TCC = MSP430CC::COND_L; 885 break; 886 } 887 888 TargetCC = DAG.getConstant(TCC, dl, MVT::i8); 889 return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS); 890} 891 892 893SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 894 SDValue Chain = Op.getOperand(0); 895 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 896 SDValue LHS = Op.getOperand(2); 897 SDValue RHS = Op.getOperand(3); 898 SDValue Dest = Op.getOperand(4); 899 SDLoc dl (Op); 900 901 SDValue TargetCC; 902 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 903 904 return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(), 905 Chain, Dest, TargetCC, Flag); 906} 907 908SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 909 SDValue LHS = Op.getOperand(0); 910 SDValue RHS = Op.getOperand(1); 911 SDLoc dl (Op); 912 913 // If we are doing an AND and testing against zero, then the CMP 914 // will not be generated. The AND (or BIT) will generate the condition codes, 915 // but they are different from CMP. 916 // FIXME: since we're doing a post-processing, use a pseudoinstr here, so 917 // lowering & isel wouldn't diverge. 918 bool andCC = false; 919 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 920 if (RHSC->isNullValue() && LHS.hasOneUse() && 921 (LHS.getOpcode() == ISD::AND || 922 (LHS.getOpcode() == ISD::TRUNCATE && 923 LHS.getOperand(0).getOpcode() == ISD::AND))) { 924 andCC = true; 925 } 926 } 927 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 928 SDValue TargetCC; 929 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 930 931 // Get the condition codes directly from the status register, if its easy. 932 // Otherwise a branch will be generated. Note that the AND and BIT 933 // instructions generate different flags than CMP, the carry bit can be used 934 // for NE/EQ. 935 bool Invert = false; 936 bool Shift = false; 937 bool Convert = true; 938 switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) { 939 default: 940 Convert = false; 941 break; 942 case MSP430CC::COND_HS: 943 // Res = SR & 1, no processing is required 944 break; 945 case MSP430CC::COND_LO: 946 // Res = ~(SR & 1) 947 Invert = true; 948 break; 949 case MSP430CC::COND_NE: 950 if (andCC) { 951 // C = ~Z, thus Res = SR & 1, no processing is required 952 } else { 953 // Res = ~((SR >> 1) & 1) 954 Shift = true; 955 Invert = true; 956 } 957 break; 958 case MSP430CC::COND_E: 959 Shift = true; 960 // C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however, 961 // Res = (SR >> 1) & 1 is 1 word shorter. 962 break; 963 } 964 EVT VT = Op.getValueType(); 965 SDValue One = DAG.getConstant(1, dl, VT); 966 if (Convert) { 967 SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR, 968 MVT::i16, Flag); 969 if (Shift) 970 // FIXME: somewhere this is turned into a SRL, lower it MSP specific? 971 SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One); 972 SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One); 973 if (Invert) 974 SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One); 975 return SR; 976 } else { 977 SDValue Zero = DAG.getConstant(0, dl, VT); 978 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 979 SDValue Ops[] = {One, Zero, TargetCC, Flag}; 980 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops); 981 } 982} 983 984SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op, 985 SelectionDAG &DAG) const { 986 SDValue LHS = Op.getOperand(0); 987 SDValue RHS = Op.getOperand(1); 988 SDValue TrueV = Op.getOperand(2); 989 SDValue FalseV = Op.getOperand(3); 990 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 991 SDLoc dl (Op); 992 993 SDValue TargetCC; 994 SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG); 995 996 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 997 SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag}; 998 999 return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops); 1000} 1001 1002SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op, 1003 SelectionDAG &DAG) const { 1004 SDValue Val = Op.getOperand(0); 1005 EVT VT = Op.getValueType(); 1006 SDLoc dl(Op); 1007 1008 assert(VT == MVT::i16 && "Only support i16 for now!"); 1009 1010 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, 1011 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val), 1012 DAG.getValueType(Val.getValueType())); 1013} 1014 1015SDValue 1016MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { 1017 MachineFunction &MF = DAG.getMachineFunction(); 1018 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 1019 int ReturnAddrIndex = FuncInfo->getRAIndex(); 1020 auto PtrVT = getPointerTy(MF.getDataLayout()); 1021 1022 if (ReturnAddrIndex == 0) { 1023 // Set up a frame object for the return address. 1024 uint64_t SlotSize = MF.getDataLayout().getPointerSize(); 1025 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, 1026 true); 1027 FuncInfo->setRAIndex(ReturnAddrIndex); 1028 } 1029 1030 return DAG.getFrameIndex(ReturnAddrIndex, PtrVT); 1031} 1032 1033SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op, 1034 SelectionDAG &DAG) const { 1035 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1036 MFI->setReturnAddressIsTaken(true); 1037 1038 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1039 return SDValue(); 1040 1041 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1042 SDLoc dl(Op); 1043 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1044 1045 if (Depth > 0) { 1046 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 1047 SDValue Offset = 1048 DAG.getConstant(DAG.getDataLayout().getPointerSize(), dl, MVT::i16); 1049 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 1050 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), 1051 MachinePointerInfo(), false, false, false, 0); 1052 } 1053 1054 // Just load the return address. 1055 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); 1056 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, 1057 MachinePointerInfo(), false, false, false, 0); 1058} 1059 1060SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op, 1061 SelectionDAG &DAG) const { 1062 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 1063 MFI->setFrameAddressIsTaken(true); 1064 1065 EVT VT = Op.getValueType(); 1066 SDLoc dl(Op); // FIXME probably not meaningful 1067 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1068 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 1069 MSP430::FP, VT); 1070 while (Depth--) 1071 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 1072 MachinePointerInfo(), 1073 false, false, false, 0); 1074 return FrameAddr; 1075} 1076 1077SDValue MSP430TargetLowering::LowerVASTART(SDValue Op, 1078 SelectionDAG &DAG) const { 1079 MachineFunction &MF = DAG.getMachineFunction(); 1080 MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>(); 1081 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1082 1083 // Frame index of first vararg argument 1084 SDValue FrameIndex = 1085 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 1086 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1087 1088 // Create a store of the frame index to the location operand 1089 return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, 1090 Op.getOperand(1), MachinePointerInfo(SV), 1091 false, false, 0); 1092} 1093 1094SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op, 1095 SelectionDAG &DAG) const { 1096 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1097 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1098 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1099 return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result); 1100} 1101 1102/// getPostIndexedAddressParts - returns true by value, base pointer and 1103/// offset pointer and addressing mode by reference if this node can be 1104/// combined with a load / store to form a post-indexed load / store. 1105bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 1106 SDValue &Base, 1107 SDValue &Offset, 1108 ISD::MemIndexedMode &AM, 1109 SelectionDAG &DAG) const { 1110 1111 LoadSDNode *LD = cast<LoadSDNode>(N); 1112 if (LD->getExtensionType() != ISD::NON_EXTLOAD) 1113 return false; 1114 1115 EVT VT = LD->getMemoryVT(); 1116 if (VT != MVT::i8 && VT != MVT::i16) 1117 return false; 1118 1119 if (Op->getOpcode() != ISD::ADD) 1120 return false; 1121 1122 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { 1123 uint64_t RHSC = RHS->getZExtValue(); 1124 if ((VT == MVT::i16 && RHSC != 2) || 1125 (VT == MVT::i8 && RHSC != 1)) 1126 return false; 1127 1128 Base = Op->getOperand(0); 1129 Offset = DAG.getConstant(RHSC, SDLoc(N), VT); 1130 AM = ISD::POST_INC; 1131 return true; 1132 } 1133 1134 return false; 1135} 1136 1137 1138const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const { 1139 switch ((MSP430ISD::NodeType)Opcode) { 1140 case MSP430ISD::FIRST_NUMBER: break; 1141 case MSP430ISD::RET_FLAG: return "MSP430ISD::RET_FLAG"; 1142 case MSP430ISD::RETI_FLAG: return "MSP430ISD::RETI_FLAG"; 1143 case MSP430ISD::RRA: return "MSP430ISD::RRA"; 1144 case MSP430ISD::RLA: return "MSP430ISD::RLA"; 1145 case MSP430ISD::RRC: return "MSP430ISD::RRC"; 1146 case MSP430ISD::CALL: return "MSP430ISD::CALL"; 1147 case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper"; 1148 case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC"; 1149 case MSP430ISD::CMP: return "MSP430ISD::CMP"; 1150 case MSP430ISD::SETCC: return "MSP430ISD::SETCC"; 1151 case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC"; 1152 case MSP430ISD::SHL: return "MSP430ISD::SHL"; 1153 case MSP430ISD::SRA: return "MSP430ISD::SRA"; 1154 case MSP430ISD::SRL: return "MSP430ISD::SRL"; 1155 } 1156 return nullptr; 1157} 1158 1159bool MSP430TargetLowering::isTruncateFree(Type *Ty1, 1160 Type *Ty2) const { 1161 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 1162 return false; 1163 1164 return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits()); 1165} 1166 1167bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 1168 if (!VT1.isInteger() || !VT2.isInteger()) 1169 return false; 1170 1171 return (VT1.getSizeInBits() > VT2.getSizeInBits()); 1172} 1173 1174bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { 1175 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers. 1176 return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16); 1177} 1178 1179bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { 1180 // MSP430 implicitly zero-extends 8-bit results in 16-bit registers. 1181 return 0 && VT1 == MVT::i8 && VT2 == MVT::i16; 1182} 1183 1184bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 1185 return isZExtFree(Val.getValueType(), VT2); 1186} 1187 1188//===----------------------------------------------------------------------===// 1189// Other Lowering Code 1190//===----------------------------------------------------------------------===// 1191 1192MachineBasicBlock* 1193MSP430TargetLowering::EmitShiftInstr(MachineInstr *MI, 1194 MachineBasicBlock *BB) const { 1195 MachineFunction *F = BB->getParent(); 1196 MachineRegisterInfo &RI = F->getRegInfo(); 1197 DebugLoc dl = MI->getDebugLoc(); 1198 const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo(); 1199 1200 unsigned Opc; 1201 const TargetRegisterClass * RC; 1202 switch (MI->getOpcode()) { 1203 default: llvm_unreachable("Invalid shift opcode!"); 1204 case MSP430::Shl8: 1205 Opc = MSP430::SHL8r1; 1206 RC = &MSP430::GR8RegClass; 1207 break; 1208 case MSP430::Shl16: 1209 Opc = MSP430::SHL16r1; 1210 RC = &MSP430::GR16RegClass; 1211 break; 1212 case MSP430::Sra8: 1213 Opc = MSP430::SAR8r1; 1214 RC = &MSP430::GR8RegClass; 1215 break; 1216 case MSP430::Sra16: 1217 Opc = MSP430::SAR16r1; 1218 RC = &MSP430::GR16RegClass; 1219 break; 1220 case MSP430::Srl8: 1221 Opc = MSP430::SAR8r1c; 1222 RC = &MSP430::GR8RegClass; 1223 break; 1224 case MSP430::Srl16: 1225 Opc = MSP430::SAR16r1c; 1226 RC = &MSP430::GR16RegClass; 1227 break; 1228 } 1229 1230 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1231 MachineFunction::iterator I = ++BB->getIterator(); 1232 1233 // Create loop block 1234 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB); 1235 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB); 1236 1237 F->insert(I, LoopBB); 1238 F->insert(I, RemBB); 1239 1240 // Update machine-CFG edges by transferring all successors of the current 1241 // block to the block containing instructions after shift. 1242 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), 1243 BB->end()); 1244 RemBB->transferSuccessorsAndUpdatePHIs(BB); 1245 1246 // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB 1247 BB->addSuccessor(LoopBB); 1248 BB->addSuccessor(RemBB); 1249 LoopBB->addSuccessor(RemBB); 1250 LoopBB->addSuccessor(LoopBB); 1251 1252 unsigned ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass); 1253 unsigned ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass); 1254 unsigned ShiftReg = RI.createVirtualRegister(RC); 1255 unsigned ShiftReg2 = RI.createVirtualRegister(RC); 1256 unsigned ShiftAmtSrcReg = MI->getOperand(2).getReg(); 1257 unsigned SrcReg = MI->getOperand(1).getReg(); 1258 unsigned DstReg = MI->getOperand(0).getReg(); 1259 1260 // BB: 1261 // cmp 0, N 1262 // je RemBB 1263 BuildMI(BB, dl, TII.get(MSP430::CMP8ri)) 1264 .addReg(ShiftAmtSrcReg).addImm(0); 1265 BuildMI(BB, dl, TII.get(MSP430::JCC)) 1266 .addMBB(RemBB) 1267 .addImm(MSP430CC::COND_E); 1268 1269 // LoopBB: 1270 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB] 1271 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB] 1272 // ShiftReg2 = shift ShiftReg 1273 // ShiftAmt2 = ShiftAmt - 1; 1274 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg) 1275 .addReg(SrcReg).addMBB(BB) 1276 .addReg(ShiftReg2).addMBB(LoopBB); 1277 BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg) 1278 .addReg(ShiftAmtSrcReg).addMBB(BB) 1279 .addReg(ShiftAmtReg2).addMBB(LoopBB); 1280 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2) 1281 .addReg(ShiftReg); 1282 BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2) 1283 .addReg(ShiftAmtReg).addImm(1); 1284 BuildMI(LoopBB, dl, TII.get(MSP430::JCC)) 1285 .addMBB(LoopBB) 1286 .addImm(MSP430CC::COND_NE); 1287 1288 // RemBB: 1289 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB] 1290 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg) 1291 .addReg(SrcReg).addMBB(BB) 1292 .addReg(ShiftReg2).addMBB(LoopBB); 1293 1294 MI->eraseFromParent(); // The pseudo instruction is gone now. 1295 return RemBB; 1296} 1297 1298MachineBasicBlock* 1299MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 1300 MachineBasicBlock *BB) const { 1301 unsigned Opc = MI->getOpcode(); 1302 1303 if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 || 1304 Opc == MSP430::Sra8 || Opc == MSP430::Sra16 || 1305 Opc == MSP430::Srl8 || Opc == MSP430::Srl16) 1306 return EmitShiftInstr(MI, BB); 1307 1308 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo(); 1309 DebugLoc dl = MI->getDebugLoc(); 1310 1311 assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) && 1312 "Unexpected instr type to insert"); 1313 1314 // To "insert" a SELECT instruction, we actually have to insert the diamond 1315 // control-flow pattern. The incoming instruction knows the destination vreg 1316 // to set, the condition code register to branch on, the true/false values to 1317 // select between, and a branch opcode to use. 1318 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 1319 MachineFunction::iterator I = ++BB->getIterator(); 1320 1321 // thisMBB: 1322 // ... 1323 // TrueVal = ... 1324 // cmpTY ccX, r1, r2 1325 // jCC copy1MBB 1326 // fallthrough --> copy0MBB 1327 MachineBasicBlock *thisMBB = BB; 1328 MachineFunction *F = BB->getParent(); 1329 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 1330 MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB); 1331 F->insert(I, copy0MBB); 1332 F->insert(I, copy1MBB); 1333 // Update machine-CFG edges by transferring all successors of the current 1334 // block to the new block which will contain the Phi node for the select. 1335 copy1MBB->splice(copy1MBB->begin(), BB, 1336 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 1337 copy1MBB->transferSuccessorsAndUpdatePHIs(BB); 1338 // Next, add the true and fallthrough blocks as its successors. 1339 BB->addSuccessor(copy0MBB); 1340 BB->addSuccessor(copy1MBB); 1341 1342 BuildMI(BB, dl, TII.get(MSP430::JCC)) 1343 .addMBB(copy1MBB) 1344 .addImm(MI->getOperand(3).getImm()); 1345 1346 // copy0MBB: 1347 // %FalseValue = ... 1348 // # fallthrough to copy1MBB 1349 BB = copy0MBB; 1350 1351 // Update machine-CFG edges 1352 BB->addSuccessor(copy1MBB); 1353 1354 // copy1MBB: 1355 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 1356 // ... 1357 BB = copy1MBB; 1358 BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), 1359 MI->getOperand(0).getReg()) 1360 .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB) 1361 .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB); 1362 1363 MI->eraseFromParent(); // The pseudo instruction is gone now. 1364 return BB; 1365} 1366