X86RegisterInfo.cpp revision 22c0e97c567dd15c819906035d15c745100e75bc
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the X86 implementation of the TargetRegisterInfo class. 11// This file is responsible for the frame pointer elimination optimization 12// on X86. 13// 14//===----------------------------------------------------------------------===// 15 16#include "X86.h" 17#include "X86RegisterInfo.h" 18#include "X86InstrBuilder.h" 19#include "X86MachineFunctionInfo.h" 20#include "X86Subtarget.h" 21#include "X86TargetMachine.h" 22#include "llvm/Constants.h" 23#include "llvm/Function.h" 24#include "llvm/Type.h" 25#include "llvm/CodeGen/ValueTypes.h" 26#include "llvm/CodeGen/MachineInstrBuilder.h" 27#include "llvm/CodeGen/MachineFunction.h" 28#include "llvm/CodeGen/MachineFunctionPass.h" 29#include "llvm/CodeGen/MachineFrameInfo.h" 30#include "llvm/CodeGen/MachineLocation.h" 31#include "llvm/CodeGen/MachineModuleInfo.h" 32#include "llvm/CodeGen/MachineRegisterInfo.h" 33#include "llvm/MC/MCAsmInfo.h" 34#include "llvm/Target/TargetFrameInfo.h" 35#include "llvm/Target/TargetInstrInfo.h" 36#include "llvm/Target/TargetMachine.h" 37#include "llvm/Target/TargetOptions.h" 38#include "llvm/ADT/BitVector.h" 39#include "llvm/ADT/STLExtras.h" 40#include "llvm/Support/ErrorHandling.h" 41using namespace llvm; 42 43X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, 44 const TargetInstrInfo &tii) 45 : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ? 46 X86::ADJCALLSTACKDOWN64 : 47 X86::ADJCALLSTACKDOWN32, 48 tm.getSubtarget<X86Subtarget>().is64Bit() ? 49 X86::ADJCALLSTACKUP64 : 50 X86::ADJCALLSTACKUP32), 51 TM(tm), TII(tii) { 52 // Cache some information. 53 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 54 Is64Bit = Subtarget->is64Bit(); 55 IsWin64 = Subtarget->isTargetWin64(); 56 StackAlign = TM.getFrameInfo()->getStackAlignment(); 57 58 if (Is64Bit) { 59 SlotSize = 8; 60 StackPtr = X86::RSP; 61 FramePtr = X86::RBP; 62 } else { 63 SlotSize = 4; 64 StackPtr = X86::ESP; 65 FramePtr = X86::EBP; 66 } 67} 68 69/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF 70/// specific numbering, used in debug info and exception tables. 71int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const { 72 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 73 unsigned Flavour = DWARFFlavour::X86_64; 74 75 if (!Subtarget->is64Bit()) { 76 if (Subtarget->isTargetDarwin()) { 77 if (isEH) 78 Flavour = DWARFFlavour::X86_32_DarwinEH; 79 else 80 Flavour = DWARFFlavour::X86_32_Generic; 81 } else if (Subtarget->isTargetCygMing()) { 82 // Unsupported by now, just quick fallback 83 Flavour = DWARFFlavour::X86_32_Generic; 84 } else { 85 Flavour = DWARFFlavour::X86_32_Generic; 86 } 87 } 88 89 return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour); 90} 91 92/// getX86RegNum - This function maps LLVM register identifiers to their X86 93/// specific numbering, which is used in various places encoding instructions. 94unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) { 95 switch(RegNo) { 96 case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; 97 case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; 98 case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; 99 case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; 100 case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: 101 return N86::ESP; 102 case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: 103 return N86::EBP; 104 case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: 105 return N86::ESI; 106 case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: 107 return N86::EDI; 108 109 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: 110 return N86::EAX; 111 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: 112 return N86::ECX; 113 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: 114 return N86::EDX; 115 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: 116 return N86::EBX; 117 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: 118 return N86::ESP; 119 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: 120 return N86::EBP; 121 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: 122 return N86::ESI; 123 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: 124 return N86::EDI; 125 126 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: 127 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: 128 return RegNo-X86::ST0; 129 130 case X86::XMM0: case X86::XMM8: case X86::MM0: 131 return 0; 132 case X86::XMM1: case X86::XMM9: case X86::MM1: 133 return 1; 134 case X86::XMM2: case X86::XMM10: case X86::MM2: 135 return 2; 136 case X86::XMM3: case X86::XMM11: case X86::MM3: 137 return 3; 138 case X86::XMM4: case X86::XMM12: case X86::MM4: 139 return 4; 140 case X86::XMM5: case X86::XMM13: case X86::MM5: 141 return 5; 142 case X86::XMM6: case X86::XMM14: case X86::MM6: 143 return 6; 144 case X86::XMM7: case X86::XMM15: case X86::MM7: 145 return 7; 146 147 default: 148 assert(isVirtualRegister(RegNo) && "Unknown physical register!"); 149 llvm_unreachable("Register allocator hasn't allocated reg correctly yet!"); 150 return 0; 151 } 152} 153 154const TargetRegisterClass * 155X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, 156 const TargetRegisterClass *B, 157 unsigned SubIdx) const { 158 switch (SubIdx) { 159 default: return 0; 160 case X86::sub_8bit: 161 //case X86::sub_ss: 162 if (B == &X86::GR8RegClass) { 163 if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8) 164 return A; 165 } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) { 166 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 167 A == &X86::GR64_NOREXRegClass || 168 A == &X86::GR64_NOSPRegClass || 169 A == &X86::GR64_NOREX_NOSPRegClass) 170 return &X86::GR64_ABCDRegClass; 171 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 172 A == &X86::GR32_NOREXRegClass || 173 A == &X86::GR32_NOSPRegClass) 174 return &X86::GR32_ABCDRegClass; 175 else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass || 176 A == &X86::GR16_NOREXRegClass) 177 return &X86::GR16_ABCDRegClass; 178 } else if (B == &X86::GR8_NOREXRegClass) { 179 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 180 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 181 return &X86::GR64_NOREXRegClass; 182 else if (A == &X86::GR64_ABCDRegClass) 183 return &X86::GR64_ABCDRegClass; 184 else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass || 185 A == &X86::GR32_NOSPRegClass) 186 return &X86::GR32_NOREXRegClass; 187 else if (A == &X86::GR32_ABCDRegClass) 188 return &X86::GR32_ABCDRegClass; 189 else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass) 190 return &X86::GR16_NOREXRegClass; 191 else if (A == &X86::GR16_ABCDRegClass) 192 return &X86::GR16_ABCDRegClass; 193 } else if (B == &X86::FR32RegClass) { 194 return A; 195 } 196 break; 197 case X86::sub_8bit_hi: 198 //case X86::sub_sd: 199 if (B == &X86::GR8_ABCD_HRegClass) { 200 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 201 A == &X86::GR64_NOREXRegClass || 202 A == &X86::GR64_NOSPRegClass || 203 A == &X86::GR64_NOREX_NOSPRegClass) 204 return &X86::GR64_ABCDRegClass; 205 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 206 A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) 207 return &X86::GR32_ABCDRegClass; 208 else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass || 209 A == &X86::GR16_NOREXRegClass) 210 return &X86::GR16_ABCDRegClass; 211 } else if (B == &X86::FR64RegClass) { 212 return A; 213 } 214 break; 215 case X86::sub_16bit: 216 //case X86::sub_xmm: 217 if (B == &X86::GR16RegClass) { 218 if (A->getSize() == 4 || A->getSize() == 8) 219 return A; 220 } else if (B == &X86::GR16_ABCDRegClass) { 221 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 222 A == &X86::GR64_NOREXRegClass || 223 A == &X86::GR64_NOSPRegClass || 224 A == &X86::GR64_NOREX_NOSPRegClass) 225 return &X86::GR64_ABCDRegClass; 226 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 227 A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) 228 return &X86::GR32_ABCDRegClass; 229 } else if (B == &X86::GR16_NOREXRegClass) { 230 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 231 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 232 return &X86::GR64_NOREXRegClass; 233 else if (A == &X86::GR64_ABCDRegClass) 234 return &X86::GR64_ABCDRegClass; 235 else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass || 236 A == &X86::GR32_NOSPRegClass) 237 return &X86::GR32_NOREXRegClass; 238 else if (A == &X86::GR32_ABCDRegClass) 239 return &X86::GR64_ABCDRegClass; 240 } else if (B == &X86::VR128RegClass) { 241 return A; 242 } 243 break; 244 case X86::sub_32bit: 245 if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) { 246 if (A->getSize() == 8) 247 return A; 248 } else if (B == &X86::GR32_ABCDRegClass) { 249 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 250 A == &X86::GR64_NOREXRegClass || 251 A == &X86::GR64_NOSPRegClass || 252 A == &X86::GR64_NOREX_NOSPRegClass) 253 return &X86::GR64_ABCDRegClass; 254 } else if (B == &X86::GR32_NOREXRegClass) { 255 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 256 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 257 return &X86::GR64_NOREXRegClass; 258 else if (A == &X86::GR64_ABCDRegClass) 259 return &X86::GR64_ABCDRegClass; 260 } 261 break; 262 } 263 return 0; 264} 265 266const TargetRegisterClass * 267X86RegisterInfo::getPointerRegClass(unsigned Kind) const { 268 switch (Kind) { 269 default: llvm_unreachable("Unexpected Kind in getPointerRegClass!"); 270 case 0: // Normal GPRs. 271 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 272 return &X86::GR64RegClass; 273 return &X86::GR32RegClass; 274 case 1: // Normal GRPs except the stack pointer (for encoding reasons). 275 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 276 return &X86::GR64_NOSPRegClass; 277 return &X86::GR32_NOSPRegClass; 278 } 279} 280 281const TargetRegisterClass * 282X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { 283 if (RC == &X86::CCRRegClass) { 284 if (Is64Bit) 285 return &X86::GR64RegClass; 286 else 287 return &X86::GR32RegClass; 288 } 289 return NULL; 290} 291 292const unsigned * 293X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 294 bool callsEHReturn = false; 295 bool ghcCall = false; 296 297 if (MF) { 298 callsEHReturn = MF->getMMI().callsEHReturn(); 299 const Function *F = MF->getFunction(); 300 ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false); 301 } 302 303 static const unsigned GhcCalleeSavedRegs[] = { 304 0 305 }; 306 307 static const unsigned CalleeSavedRegs32Bit[] = { 308 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 309 }; 310 311 static const unsigned CalleeSavedRegs32EHRet[] = { 312 X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 313 }; 314 315 static const unsigned CalleeSavedRegs64Bit[] = { 316 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 317 }; 318 319 static const unsigned CalleeSavedRegs64EHRet[] = { 320 X86::RAX, X86::RDX, X86::RBX, X86::R12, 321 X86::R13, X86::R14, X86::R15, X86::RBP, 0 322 }; 323 324 static const unsigned CalleeSavedRegsWin64[] = { 325 X86::RBX, X86::RBP, X86::RDI, X86::RSI, 326 X86::R12, X86::R13, X86::R14, X86::R15, 327 X86::XMM6, X86::XMM7, X86::XMM8, X86::XMM9, 328 X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13, 329 X86::XMM14, X86::XMM15, 0 330 }; 331 332 if (ghcCall) { 333 return GhcCalleeSavedRegs; 334 } else if (Is64Bit) { 335 if (IsWin64) 336 return CalleeSavedRegsWin64; 337 else 338 return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit); 339 } else { 340 return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit); 341 } 342} 343 344const TargetRegisterClass* const* 345X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const { 346 bool callsEHReturn = false; 347 if (MF) 348 callsEHReturn = MF->getMMI().callsEHReturn(); 349 350 static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = { 351 &X86::GR32RegClass, &X86::GR32RegClass, 352 &X86::GR32RegClass, &X86::GR32RegClass, 0 353 }; 354 static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = { 355 &X86::GR32RegClass, &X86::GR32RegClass, 356 &X86::GR32RegClass, &X86::GR32RegClass, 357 &X86::GR32RegClass, &X86::GR32RegClass, 0 358 }; 359 static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = { 360 &X86::GR64RegClass, &X86::GR64RegClass, 361 &X86::GR64RegClass, &X86::GR64RegClass, 362 &X86::GR64RegClass, &X86::GR64RegClass, 0 363 }; 364 static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = { 365 &X86::GR64RegClass, &X86::GR64RegClass, 366 &X86::GR64RegClass, &X86::GR64RegClass, 367 &X86::GR64RegClass, &X86::GR64RegClass, 368 &X86::GR64RegClass, &X86::GR64RegClass, 0 369 }; 370 static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = { 371 &X86::GR64RegClass, &X86::GR64RegClass, 372 &X86::GR64RegClass, &X86::GR64RegClass, 373 &X86::GR64RegClass, &X86::GR64RegClass, 374 &X86::GR64RegClass, &X86::GR64RegClass, 375 &X86::VR128RegClass, &X86::VR128RegClass, 376 &X86::VR128RegClass, &X86::VR128RegClass, 377 &X86::VR128RegClass, &X86::VR128RegClass, 378 &X86::VR128RegClass, &X86::VR128RegClass, 379 &X86::VR128RegClass, &X86::VR128RegClass, 0 380 }; 381 382 if (Is64Bit) { 383 if (IsWin64) 384 return CalleeSavedRegClassesWin64; 385 else 386 return (callsEHReturn ? 387 CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit); 388 } else { 389 return (callsEHReturn ? 390 CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit); 391 } 392} 393 394BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const { 395 BitVector Reserved(getNumRegs()); 396 // Set the stack-pointer register and its aliases as reserved. 397 Reserved.set(X86::RSP); 398 Reserved.set(X86::ESP); 399 Reserved.set(X86::SP); 400 Reserved.set(X86::SPL); 401 402 // Set the instruction pointer register and its aliases as reserved. 403 Reserved.set(X86::RIP); 404 Reserved.set(X86::EIP); 405 Reserved.set(X86::IP); 406 407 // Set the frame-pointer register and its aliases as reserved if needed. 408 if (hasFP(MF)) { 409 Reserved.set(X86::RBP); 410 Reserved.set(X86::EBP); 411 Reserved.set(X86::BP); 412 Reserved.set(X86::BPL); 413 } 414 415 // Mark the x87 stack registers as reserved, since they don't behave normally 416 // with respect to liveness. We don't fully model the effects of x87 stack 417 // pushes and pops after stackification. 418 Reserved.set(X86::ST0); 419 Reserved.set(X86::ST1); 420 Reserved.set(X86::ST2); 421 Reserved.set(X86::ST3); 422 Reserved.set(X86::ST4); 423 Reserved.set(X86::ST5); 424 Reserved.set(X86::ST6); 425 Reserved.set(X86::ST7); 426 return Reserved; 427} 428 429//===----------------------------------------------------------------------===// 430// Stack Frame Processing methods 431//===----------------------------------------------------------------------===// 432 433/// hasFP - Return true if the specified function should have a dedicated frame 434/// pointer register. This is true if the function has variable sized allocas 435/// or if frame pointer elimination is disabled. 436bool X86RegisterInfo::hasFP(const MachineFunction &MF) const { 437 const MachineFrameInfo *MFI = MF.getFrameInfo(); 438 const MachineModuleInfo &MMI = MF.getMMI(); 439 440 return (DisableFramePointerElim(MF) || 441 needsStackRealignment(MF) || 442 MFI->hasVarSizedObjects() || 443 MFI->isFrameAddressTaken() || 444 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 445 MMI.callsUnwindInit()); 446} 447 448bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const { 449 const MachineFrameInfo *MFI = MF.getFrameInfo(); 450 return (RealignStack && 451 !MFI->hasVarSizedObjects()); 452} 453 454bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const { 455 const MachineFrameInfo *MFI = MF.getFrameInfo(); 456 const Function *F = MF.getFunction(); 457 bool requiresRealignment = 458 RealignStack && ((MFI->getMaxAlignment() > StackAlign) || 459 F->hasFnAttr(Attribute::StackAlignment)); 460 461 // FIXME: Currently we don't support stack realignment for functions with 462 // variable-sized allocas. 463 // FIXME: Temporary disable the error - it seems to be too conservative. 464 if (0 && requiresRealignment && MFI->hasVarSizedObjects()) 465 report_fatal_error( 466 "Stack realignment in presense of dynamic allocas is not supported"); 467 468 return (requiresRealignment && !MFI->hasVarSizedObjects()); 469} 470 471bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const { 472 return !MF.getFrameInfo()->hasVarSizedObjects(); 473} 474 475bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction &MF, unsigned Reg, 476 int &FrameIdx) const { 477 if (Reg == FramePtr && hasFP(MF)) { 478 FrameIdx = MF.getFrameInfo()->getObjectIndexBegin(); 479 return true; 480 } 481 return false; 482} 483 484int 485X86RegisterInfo::getFrameIndexOffset(const MachineFunction &MF, int FI) const { 486 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); 487 const MachineFrameInfo *MFI = MF.getFrameInfo(); 488 int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea(); 489 uint64_t StackSize = MFI->getStackSize(); 490 491 if (needsStackRealignment(MF)) { 492 if (FI < 0) { 493 // Skip the saved EBP. 494 Offset += SlotSize; 495 } else { 496 unsigned Align = MFI->getObjectAlignment(FI); 497 assert((-(Offset + StackSize)) % Align == 0); 498 Align = 0; 499 return Offset + StackSize; 500 } 501 // FIXME: Support tail calls 502 } else { 503 if (!hasFP(MF)) 504 return Offset + StackSize; 505 506 // Skip the saved EBP. 507 Offset += SlotSize; 508 509 // Skip the RETADDR move area 510 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 511 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 512 if (TailCallReturnAddrDelta < 0) 513 Offset -= TailCallReturnAddrDelta; 514 } 515 516 return Offset; 517} 518 519static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) { 520 if (is64Bit) { 521 if (isInt<8>(Imm)) 522 return X86::SUB64ri8; 523 return X86::SUB64ri32; 524 } else { 525 if (isInt<8>(Imm)) 526 return X86::SUB32ri8; 527 return X86::SUB32ri; 528 } 529} 530 531static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) { 532 if (is64Bit) { 533 if (isInt<8>(Imm)) 534 return X86::ADD64ri8; 535 return X86::ADD64ri32; 536 } else { 537 if (isInt<8>(Imm)) 538 return X86::ADD32ri8; 539 return X86::ADD32ri; 540 } 541} 542 543void X86RegisterInfo:: 544eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 545 MachineBasicBlock::iterator I) const { 546 if (!hasReservedCallFrame(MF)) { 547 // If the stack pointer can be changed after prologue, turn the 548 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 549 // adjcallstackdown instruction into 'add ESP, <amt>' 550 // TODO: consider using push / pop instead of sub + store / add 551 MachineInstr *Old = I; 552 uint64_t Amount = Old->getOperand(0).getImm(); 553 if (Amount != 0) { 554 // We need to keep the stack aligned properly. To do this, we round the 555 // amount of space needed for the outgoing arguments up to the next 556 // alignment boundary. 557 Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign; 558 559 MachineInstr *New = 0; 560 if (Old->getOpcode() == getCallFrameSetupOpcode()) { 561 New = BuildMI(MF, Old->getDebugLoc(), 562 TII.get(getSUBriOpcode(Is64Bit, Amount)), 563 StackPtr) 564 .addReg(StackPtr) 565 .addImm(Amount); 566 } else { 567 assert(Old->getOpcode() == getCallFrameDestroyOpcode()); 568 569 // Factor out the amount the callee already popped. 570 uint64_t CalleeAmt = Old->getOperand(1).getImm(); 571 Amount -= CalleeAmt; 572 573 if (Amount) { 574 unsigned Opc = getADDriOpcode(Is64Bit, Amount); 575 New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr) 576 .addReg(StackPtr) 577 .addImm(Amount); 578 } 579 } 580 581 if (New) { 582 // The EFLAGS implicit def is dead. 583 New->getOperand(3).setIsDead(); 584 585 // Replace the pseudo instruction with a new instruction. 586 MBB.insert(I, New); 587 } 588 } 589 } else if (I->getOpcode() == getCallFrameDestroyOpcode()) { 590 // If we are performing frame pointer elimination and if the callee pops 591 // something off the stack pointer, add it back. We do this until we have 592 // more advanced stack pointer tracking ability. 593 if (uint64_t CalleeAmt = I->getOperand(1).getImm()) { 594 unsigned Opc = getSUBriOpcode(Is64Bit, CalleeAmt); 595 MachineInstr *Old = I; 596 MachineInstr *New = 597 BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), 598 StackPtr) 599 .addReg(StackPtr) 600 .addImm(CalleeAmt); 601 602 // The EFLAGS implicit def is dead. 603 New->getOperand(3).setIsDead(); 604 MBB.insert(I, New); 605 } 606 } 607 608 MBB.erase(I); 609} 610 611unsigned 612X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 613 int SPAdj, FrameIndexValue *Value, 614 RegScavenger *RS) const{ 615 assert(SPAdj == 0 && "Unexpected"); 616 617 unsigned i = 0; 618 MachineInstr &MI = *II; 619 MachineFunction &MF = *MI.getParent()->getParent(); 620 621 while (!MI.getOperand(i).isFI()) { 622 ++i; 623 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 624 } 625 626 int FrameIndex = MI.getOperand(i).getIndex(); 627 unsigned BasePtr; 628 629 unsigned Opc = MI.getOpcode(); 630 bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm; 631 if (needsStackRealignment(MF)) 632 BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr); 633 else if (AfterFPPop) 634 BasePtr = StackPtr; 635 else 636 BasePtr = (hasFP(MF) ? FramePtr : StackPtr); 637 638 // This must be part of a four operand memory reference. Replace the 639 // FrameIndex with base register with EBP. Add an offset to the offset. 640 MI.getOperand(i).ChangeToRegister(BasePtr, false); 641 642 // Now add the frame object offset to the offset from EBP. 643 int FIOffset; 644 if (AfterFPPop) { 645 // Tail call jmp happens after FP is popped. 646 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); 647 const MachineFrameInfo *MFI = MF.getFrameInfo(); 648 FIOffset = MFI->getObjectOffset(FrameIndex) - TFI.getOffsetOfLocalArea(); 649 } else 650 FIOffset = getFrameIndexOffset(MF, FrameIndex); 651 652 if (MI.getOperand(i+3).isImm()) { 653 // Offset is a 32-bit integer. 654 int Offset = FIOffset + (int)(MI.getOperand(i + 3).getImm()); 655 MI.getOperand(i + 3).ChangeToImmediate(Offset); 656 } else { 657 // Offset is symbolic. This is extremely rare. 658 uint64_t Offset = FIOffset + (uint64_t)MI.getOperand(i+3).getOffset(); 659 MI.getOperand(i+3).setOffset(Offset); 660 } 661 return 0; 662} 663 664void 665X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, 666 RegScavenger *RS) const { 667 MachineFrameInfo *MFI = MF.getFrameInfo(); 668 669 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 670 int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 671 672 if (TailCallReturnAddrDelta < 0) { 673 // create RETURNADDR area 674 // arg 675 // arg 676 // RETADDR 677 // { ... 678 // RETADDR area 679 // ... 680 // } 681 // [EBP] 682 MFI->CreateFixedObject(-TailCallReturnAddrDelta, 683 (-1U*SlotSize)+TailCallReturnAddrDelta, 684 true, false); 685 } 686 687 if (hasFP(MF)) { 688 assert((TailCallReturnAddrDelta <= 0) && 689 "The Delta should always be zero or negative"); 690 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); 691 692 // Create a frame entry for the EBP register that must be saved. 693 int FrameIdx = MFI->CreateFixedObject(SlotSize, 694 -(int)SlotSize + 695 TFI.getOffsetOfLocalArea() + 696 TailCallReturnAddrDelta, 697 true, false); 698 assert(FrameIdx == MFI->getObjectIndexBegin() && 699 "Slot for EBP register must be last in order to be found!"); 700 FrameIdx = 0; 701 } 702} 703 704/// emitSPUpdate - Emit a series of instructions to increment / decrement the 705/// stack pointer by a constant value. 706static 707void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 708 unsigned StackPtr, int64_t NumBytes, bool Is64Bit, 709 const TargetInstrInfo &TII) { 710 bool isSub = NumBytes < 0; 711 uint64_t Offset = isSub ? -NumBytes : NumBytes; 712 unsigned Opc = isSub ? 713 getSUBriOpcode(Is64Bit, Offset) : 714 getADDriOpcode(Is64Bit, Offset); 715 uint64_t Chunk = (1LL << 31) - 1; 716 DebugLoc DL = MBB.findDebugLoc(MBBI); 717 718 while (Offset) { 719 uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset; 720 MachineInstr *MI = 721 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 722 .addReg(StackPtr) 723 .addImm(ThisVal); 724 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 725 Offset -= ThisVal; 726 } 727} 728 729/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. 730static 731void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 732 unsigned StackPtr, uint64_t *NumBytes = NULL) { 733 if (MBBI == MBB.begin()) return; 734 735 MachineBasicBlock::iterator PI = prior(MBBI); 736 unsigned Opc = PI->getOpcode(); 737 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 738 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 739 PI->getOperand(0).getReg() == StackPtr) { 740 if (NumBytes) 741 *NumBytes += PI->getOperand(2).getImm(); 742 MBB.erase(PI); 743 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 744 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 745 PI->getOperand(0).getReg() == StackPtr) { 746 if (NumBytes) 747 *NumBytes -= PI->getOperand(2).getImm(); 748 MBB.erase(PI); 749 } 750} 751 752/// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator. 753static 754void mergeSPUpdatesDown(MachineBasicBlock &MBB, 755 MachineBasicBlock::iterator &MBBI, 756 unsigned StackPtr, uint64_t *NumBytes = NULL) { 757 // FIXME: THIS ISN'T RUN!!! 758 return; 759 760 if (MBBI == MBB.end()) return; 761 762 MachineBasicBlock::iterator NI = llvm::next(MBBI); 763 if (NI == MBB.end()) return; 764 765 unsigned Opc = NI->getOpcode(); 766 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 767 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 768 NI->getOperand(0).getReg() == StackPtr) { 769 if (NumBytes) 770 *NumBytes -= NI->getOperand(2).getImm(); 771 MBB.erase(NI); 772 MBBI = NI; 773 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 774 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 775 NI->getOperand(0).getReg() == StackPtr) { 776 if (NumBytes) 777 *NumBytes += NI->getOperand(2).getImm(); 778 MBB.erase(NI); 779 MBBI = NI; 780 } 781} 782 783/// mergeSPUpdates - Checks the instruction before/after the passed 784/// instruction. If it is an ADD/SUB instruction it is deleted argument and the 785/// stack adjustment is returned as a positive value for ADD and a negative for 786/// SUB. 787static int mergeSPUpdates(MachineBasicBlock &MBB, 788 MachineBasicBlock::iterator &MBBI, 789 unsigned StackPtr, 790 bool doMergeWithPrevious) { 791 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 792 (!doMergeWithPrevious && MBBI == MBB.end())) 793 return 0; 794 795 MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI; 796 MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI); 797 unsigned Opc = PI->getOpcode(); 798 int Offset = 0; 799 800 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 801 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 802 PI->getOperand(0).getReg() == StackPtr){ 803 Offset += PI->getOperand(2).getImm(); 804 MBB.erase(PI); 805 if (!doMergeWithPrevious) MBBI = NI; 806 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 807 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 808 PI->getOperand(0).getReg() == StackPtr) { 809 Offset -= PI->getOperand(2).getImm(); 810 MBB.erase(PI); 811 if (!doMergeWithPrevious) MBBI = NI; 812 } 813 814 return Offset; 815} 816 817void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF, 818 MCSymbol *Label, 819 unsigned FramePtr) const { 820 MachineFrameInfo *MFI = MF.getFrameInfo(); 821 MachineModuleInfo &MMI = MF.getMMI(); 822 823 // Add callee saved registers to move list. 824 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); 825 if (CSI.empty()) return; 826 827 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 828 const TargetData *TD = MF.getTarget().getTargetData(); 829 bool HasFP = hasFP(MF); 830 831 // Calculate amount of bytes used for return address storing. 832 int stackGrowth = 833 (MF.getTarget().getFrameInfo()->getStackGrowthDirection() == 834 TargetFrameInfo::StackGrowsUp ? 835 TD->getPointerSize() : -TD->getPointerSize()); 836 837 // FIXME: This is dirty hack. The code itself is pretty mess right now. 838 // It should be rewritten from scratch and generalized sometimes. 839 840 // Determine maximum offset (minumum due to stack growth). 841 int64_t MaxOffset = 0; 842 for (std::vector<CalleeSavedInfo>::const_iterator 843 I = CSI.begin(), E = CSI.end(); I != E; ++I) 844 MaxOffset = std::min(MaxOffset, 845 MFI->getObjectOffset(I->getFrameIdx())); 846 847 // Calculate offsets. 848 int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth; 849 for (std::vector<CalleeSavedInfo>::const_iterator 850 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 851 int64_t Offset = MFI->getObjectOffset(I->getFrameIdx()); 852 unsigned Reg = I->getReg(); 853 Offset = MaxOffset - Offset + saveAreaOffset; 854 855 // Don't output a new machine move if we're re-saving the frame 856 // pointer. This happens when the PrologEpilogInserter has inserted an extra 857 // "PUSH" of the frame pointer -- the "emitPrologue" method automatically 858 // generates one when frame pointers are used. If we generate a "machine 859 // move" for this extra "PUSH", the linker will lose track of the fact that 860 // the frame pointer should have the value of the first "PUSH" when it's 861 // trying to unwind. 862 // 863 // FIXME: This looks inelegant. It's possibly correct, but it's covering up 864 // another bug. I.e., one where we generate a prolog like this: 865 // 866 // pushl %ebp 867 // movl %esp, %ebp 868 // pushl %ebp 869 // pushl %esi 870 // ... 871 // 872 // The immediate re-push of EBP is unnecessary. At the least, it's an 873 // optimization bug. EBP can be used as a scratch register in certain 874 // cases, but probably not when we have a frame pointer. 875 if (HasFP && FramePtr == Reg) 876 continue; 877 878 MachineLocation CSDst(MachineLocation::VirtualFP, Offset); 879 MachineLocation CSSrc(Reg); 880 Moves.push_back(MachineMove(Label, CSDst, CSSrc)); 881 } 882} 883 884/// emitPrologue - Push callee-saved registers onto the stack, which 885/// automatically adjust the stack pointer. Adjust the stack pointer to allocate 886/// space for local variables. Also emit labels used by the exception handler to 887/// generate the exception handling frames. 888void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { 889 MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB. 890 MachineBasicBlock::iterator MBBI = MBB.begin(); 891 MachineFrameInfo *MFI = MF.getFrameInfo(); 892 const Function *Fn = MF.getFunction(); 893 const X86Subtarget *Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 894 MachineModuleInfo &MMI = MF.getMMI(); 895 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 896 bool needsFrameMoves = MMI.hasDebugInfo() || 897 !Fn->doesNotThrow() || UnwindTablesMandatory; 898 uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment. 899 uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate. 900 bool HasFP = hasFP(MF); 901 DebugLoc DL; 902 903 // Add RETADDR move area to callee saved frame size. 904 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 905 if (TailCallReturnAddrDelta < 0) 906 X86FI->setCalleeSavedFrameSize( 907 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 908 909 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 910 // function, and use up to 128 bytes of stack space, don't have a frame 911 // pointer, calls, or dynamic alloca then we do not need to adjust the 912 // stack pointer (we fit in the Red Zone). 913 if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) && 914 !needsStackRealignment(MF) && 915 !MFI->hasVarSizedObjects() && // No dynamic alloca. 916 !MFI->adjustsStack() && // No calls. 917 !Subtarget->isTargetWin64()) { // Win64 has no Red Zone 918 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 919 if (HasFP) MinSize += SlotSize; 920 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 921 MFI->setStackSize(StackSize); 922 } else if (Subtarget->isTargetWin64()) { 923 // We need to always allocate 32 bytes as register spill area. 924 // FIXME: We might reuse these 32 bytes for leaf functions. 925 StackSize += 32; 926 MFI->setStackSize(StackSize); 927 } 928 929 // Insert stack pointer adjustment for later moving of return addr. Only 930 // applies to tail call optimized functions where the callee argument stack 931 // size is bigger than the callers. 932 if (TailCallReturnAddrDelta < 0) { 933 MachineInstr *MI = 934 BuildMI(MBB, MBBI, DL, 935 TII.get(getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta)), 936 StackPtr) 937 .addReg(StackPtr) 938 .addImm(-TailCallReturnAddrDelta); 939 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 940 } 941 942 // Mapping for machine moves: 943 // 944 // DST: VirtualFP AND 945 // SRC: VirtualFP => DW_CFA_def_cfa_offset 946 // ELSE => DW_CFA_def_cfa 947 // 948 // SRC: VirtualFP AND 949 // DST: Register => DW_CFA_def_cfa_register 950 // 951 // ELSE 952 // OFFSET < 0 => DW_CFA_offset_extended_sf 953 // REG < 64 => DW_CFA_offset + Reg 954 // ELSE => DW_CFA_offset_extended 955 956 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 957 const TargetData *TD = MF.getTarget().getTargetData(); 958 uint64_t NumBytes = 0; 959 int stackGrowth = -TD->getPointerSize(); 960 961 if (HasFP) { 962 // Calculate required stack adjustment. 963 uint64_t FrameSize = StackSize - SlotSize; 964 if (needsStackRealignment(MF)) 965 FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign; 966 967 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 968 969 // Get the offset of the stack slot for the EBP register, which is 970 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 971 // Update the frame offset adjustment. 972 MFI->setOffsetAdjustment(-NumBytes); 973 974 // Save EBP/RBP into the appropriate stack slot. 975 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 976 .addReg(FramePtr, RegState::Kill); 977 978 if (needsFrameMoves) { 979 // Mark the place where EBP/RBP was saved. 980 MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol(); 981 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addSym(FrameLabel); 982 983 // Define the current CFA rule to use the provided offset. 984 if (StackSize) { 985 MachineLocation SPDst(MachineLocation::VirtualFP); 986 MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth); 987 Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc)); 988 } else { 989 // FIXME: Verify & implement for FP 990 MachineLocation SPDst(StackPtr); 991 MachineLocation SPSrc(StackPtr, stackGrowth); 992 Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc)); 993 } 994 995 // Change the rule for the FramePtr to be an "offset" rule. 996 MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth); 997 MachineLocation FPSrc(FramePtr); 998 Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc)); 999 } 1000 1001 // Update EBP with the new base value... 1002 BuildMI(MBB, MBBI, DL, 1003 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr) 1004 .addReg(StackPtr); 1005 1006 if (needsFrameMoves) { 1007 // Mark effective beginning of when frame pointer becomes valid. 1008 MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol(); 1009 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addSym(FrameLabel); 1010 1011 // Define the current CFA to use the EBP/RBP register. 1012 MachineLocation FPDst(FramePtr); 1013 MachineLocation FPSrc(MachineLocation::VirtualFP); 1014 Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc)); 1015 } 1016 1017 // Mark the FramePtr as live-in in every block except the entry. 1018 for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end(); 1019 I != E; ++I) 1020 I->addLiveIn(FramePtr); 1021 1022 // Realign stack 1023 if (needsStackRealignment(MF)) { 1024 MachineInstr *MI = 1025 BuildMI(MBB, MBBI, DL, 1026 TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), 1027 StackPtr).addReg(StackPtr).addImm(-MaxAlign); 1028 1029 // The EFLAGS implicit def is dead. 1030 MI->getOperand(3).setIsDead(); 1031 } 1032 } else { 1033 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1034 } 1035 1036 // Skip the callee-saved push instructions. 1037 bool PushedRegs = false; 1038 int StackOffset = 2 * stackGrowth; 1039 1040 while (MBBI != MBB.end() && 1041 (MBBI->getOpcode() == X86::PUSH32r || 1042 MBBI->getOpcode() == X86::PUSH64r)) { 1043 PushedRegs = true; 1044 ++MBBI; 1045 1046 if (!HasFP && needsFrameMoves) { 1047 // Mark callee-saved push instruction. 1048 MCSymbol *Label = MMI.getContext().CreateTempSymbol(); 1049 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addSym(Label); 1050 1051 // Define the current CFA rule to use the provided offset. 1052 unsigned Ptr = StackSize ? 1053 MachineLocation::VirtualFP : StackPtr; 1054 MachineLocation SPDst(Ptr); 1055 MachineLocation SPSrc(Ptr, StackOffset); 1056 Moves.push_back(MachineMove(Label, SPDst, SPSrc)); 1057 StackOffset += stackGrowth; 1058 } 1059 } 1060 1061 DL = MBB.findDebugLoc(MBBI); 1062 1063 // Adjust stack pointer: ESP -= numbytes. 1064 if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) { 1065 // Check, whether EAX is livein for this function. 1066 bool isEAXAlive = false; 1067 for (MachineRegisterInfo::livein_iterator 1068 II = MF.getRegInfo().livein_begin(), 1069 EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) { 1070 unsigned Reg = II->first; 1071 isEAXAlive = (Reg == X86::EAX || Reg == X86::AX || 1072 Reg == X86::AH || Reg == X86::AL); 1073 } 1074 1075 // Function prologue calls _alloca to probe the stack when allocating more 1076 // than 4k bytes in one go. Touching the stack at 4K increments is necessary 1077 // to ensure that the guard pages used by the OS virtual memory manager are 1078 // allocated in correct sequence. 1079 if (!isEAXAlive) { 1080 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1081 .addImm(NumBytes); 1082 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 1083 .addExternalSymbol("_alloca") 1084 .addReg(StackPtr, RegState::Define | RegState::Implicit); 1085 } else { 1086 // Save EAX 1087 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1088 .addReg(X86::EAX, RegState::Kill); 1089 1090 // Allocate NumBytes-4 bytes on stack. We'll also use 4 already 1091 // allocated bytes for EAX. 1092 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1093 .addImm(NumBytes - 4); 1094 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 1095 .addExternalSymbol("_alloca") 1096 .addReg(StackPtr, RegState::Define | RegState::Implicit); 1097 1098 // Restore EAX 1099 MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), 1100 X86::EAX), 1101 StackPtr, false, NumBytes - 4); 1102 MBB.insert(MBBI, MI); 1103 } 1104 } else if (NumBytes) { 1105 // If there is an SUB32ri of ESP immediately before this instruction, merge 1106 // the two. This can be the case when tail call elimination is enabled and 1107 // the callee has more arguments then the caller. 1108 NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); 1109 1110 // If there is an ADD32ri or SUB32ri of ESP immediately after this 1111 // instruction, merge the two instructions. 1112 mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes); 1113 1114 if (NumBytes) 1115 emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII); 1116 } 1117 1118 if ((NumBytes || PushedRegs) && needsFrameMoves) { 1119 // Mark end of stack pointer adjustment. 1120 MCSymbol *Label = MMI.getContext().CreateTempSymbol(); 1121 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addSym(Label); 1122 1123 if (!HasFP && NumBytes) { 1124 // Define the current CFA rule to use the provided offset. 1125 if (StackSize) { 1126 MachineLocation SPDst(MachineLocation::VirtualFP); 1127 MachineLocation SPSrc(MachineLocation::VirtualFP, 1128 -StackSize + stackGrowth); 1129 Moves.push_back(MachineMove(Label, SPDst, SPSrc)); 1130 } else { 1131 // FIXME: Verify & implement for FP 1132 MachineLocation SPDst(StackPtr); 1133 MachineLocation SPSrc(StackPtr, stackGrowth); 1134 Moves.push_back(MachineMove(Label, SPDst, SPSrc)); 1135 } 1136 } 1137 1138 // Emit DWARF info specifying the offsets of the callee-saved registers. 1139 if (PushedRegs) 1140 emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr); 1141 } 1142} 1143 1144void X86RegisterInfo::emitEpilogue(MachineFunction &MF, 1145 MachineBasicBlock &MBB) const { 1146 const MachineFrameInfo *MFI = MF.getFrameInfo(); 1147 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1148 MachineBasicBlock::iterator MBBI = prior(MBB.end()); 1149 unsigned RetOpcode = MBBI->getOpcode(); 1150 DebugLoc DL = MBBI->getDebugLoc(); 1151 1152 switch (RetOpcode) { 1153 default: 1154 llvm_unreachable("Can only insert epilog into returning blocks"); 1155 case X86::RET: 1156 case X86::RETI: 1157 case X86::TCRETURNdi: 1158 case X86::TCRETURNri: 1159 case X86::TCRETURNmi: 1160 case X86::TCRETURNdi64: 1161 case X86::TCRETURNri64: 1162 case X86::TCRETURNmi64: 1163 case X86::EH_RETURN: 1164 case X86::EH_RETURN64: 1165 break; // These are ok 1166 } 1167 1168 // Get the number of bytes to allocate from the FrameInfo. 1169 uint64_t StackSize = MFI->getStackSize(); 1170 uint64_t MaxAlign = MFI->getMaxAlignment(); 1171 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1172 uint64_t NumBytes = 0; 1173 1174 if (hasFP(MF)) { 1175 // Calculate required stack adjustment. 1176 uint64_t FrameSize = StackSize - SlotSize; 1177 if (needsStackRealignment(MF)) 1178 FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign; 1179 1180 NumBytes = FrameSize - CSSize; 1181 1182 // Pop EBP. 1183 BuildMI(MBB, MBBI, DL, 1184 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); 1185 } else { 1186 NumBytes = StackSize - CSSize; 1187 } 1188 1189 // Skip the callee-saved pop instructions. 1190 MachineBasicBlock::iterator LastCSPop = MBBI; 1191 while (MBBI != MBB.begin()) { 1192 MachineBasicBlock::iterator PI = prior(MBBI); 1193 unsigned Opc = PI->getOpcode(); 1194 1195 if (Opc != X86::POP32r && Opc != X86::POP64r && 1196 !PI->getDesc().isTerminator()) 1197 break; 1198 1199 --MBBI; 1200 } 1201 1202 DL = MBBI->getDebugLoc(); 1203 1204 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1205 // instruction, merge the two instructions. 1206 if (NumBytes || MFI->hasVarSizedObjects()) 1207 mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); 1208 1209 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1210 // slot before popping them off! Same applies for the case, when stack was 1211 // realigned. 1212 if (needsStackRealignment(MF)) { 1213 // We cannot use LEA here, because stack pointer was realigned. We need to 1214 // deallocate local frame back. 1215 if (CSSize) { 1216 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 1217 MBBI = prior(LastCSPop); 1218 } 1219 1220 BuildMI(MBB, MBBI, DL, 1221 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), 1222 StackPtr).addReg(FramePtr); 1223 } else if (MFI->hasVarSizedObjects()) { 1224 if (CSSize) { 1225 unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r; 1226 MachineInstr *MI = 1227 addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr), 1228 FramePtr, false, -CSSize); 1229 MBB.insert(MBBI, MI); 1230 } else { 1231 BuildMI(MBB, MBBI, DL, 1232 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr) 1233 .addReg(FramePtr); 1234 } 1235 } else if (NumBytes) { 1236 // Adjust stack pointer back: ESP += numbytes. 1237 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 1238 } 1239 1240 // We're returning from function via eh_return. 1241 if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) { 1242 MBBI = prior(MBB.end()); 1243 MachineOperand &DestAddr = MBBI->getOperand(0); 1244 assert(DestAddr.isReg() && "Offset should be in register!"); 1245 BuildMI(MBB, MBBI, DL, 1246 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), 1247 StackPtr).addReg(DestAddr.getReg()); 1248 } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || 1249 RetOpcode == X86::TCRETURNmi || 1250 RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 || 1251 RetOpcode == X86::TCRETURNmi64) { 1252 bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64; 1253 // Tail call return: adjust the stack pointer and jump to callee. 1254 MBBI = prior(MBB.end()); 1255 MachineOperand &JumpTarget = MBBI->getOperand(0); 1256 MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1); 1257 assert(StackAdjust.isImm() && "Expecting immediate value."); 1258 1259 // Adjust stack pointer. 1260 int StackAdj = StackAdjust.getImm(); 1261 int MaxTCDelta = X86FI->getTCReturnAddrDelta(); 1262 int Offset = 0; 1263 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); 1264 1265 // Incoporate the retaddr area. 1266 Offset = StackAdj-MaxTCDelta; 1267 assert(Offset >= 0 && "Offset should never be negative"); 1268 1269 if (Offset) { 1270 // Check for possible merge with preceeding ADD instruction. 1271 Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1272 emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII); 1273 } 1274 1275 // Jump to label or value in register. 1276 if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) { 1277 BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi) 1278 ? X86::TAILJMPd : X86::TAILJMPd64)). 1279 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), 1280 JumpTarget.getTargetFlags()); 1281 } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) { 1282 MachineInstrBuilder MIB = 1283 BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi) 1284 ? X86::TAILJMPm : X86::TAILJMPm64)); 1285 for (unsigned i = 0; i != 5; ++i) 1286 MIB.addOperand(MBBI->getOperand(i)); 1287 } else if (RetOpcode == X86::TCRETURNri64) { 1288 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg()); 1289 } else { 1290 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg()); 1291 } 1292 1293 MachineInstr *NewMI = prior(MBBI); 1294 for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i) 1295 NewMI->addOperand(MBBI->getOperand(i)); 1296 1297 // Delete the pseudo instruction TCRETURN. 1298 MBB.erase(MBBI); 1299 } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) && 1300 (X86FI->getTCReturnAddrDelta() < 0)) { 1301 // Add the return addr area delta back since we are not tail calling. 1302 int delta = -1*X86FI->getTCReturnAddrDelta(); 1303 MBBI = prior(MBB.end()); 1304 1305 // Check for possible merge with preceeding ADD instruction. 1306 delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1307 emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII); 1308 } 1309} 1310 1311unsigned X86RegisterInfo::getRARegister() const { 1312 return Is64Bit ? X86::RIP // Should have dwarf #16. 1313 : X86::EIP; // Should have dwarf #8. 1314} 1315 1316unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const { 1317 return hasFP(MF) ? FramePtr : StackPtr; 1318} 1319 1320void 1321X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) const { 1322 // Calculate amount of bytes used for return address storing 1323 int stackGrowth = (Is64Bit ? -8 : -4); 1324 1325 // Initial state of the frame pointer is esp+stackGrowth. 1326 MachineLocation Dst(MachineLocation::VirtualFP); 1327 MachineLocation Src(StackPtr, stackGrowth); 1328 Moves.push_back(MachineMove(0, Dst, Src)); 1329 1330 // Add return address to move list 1331 MachineLocation CSDst(StackPtr, stackGrowth); 1332 MachineLocation CSSrc(getRARegister()); 1333 Moves.push_back(MachineMove(0, CSDst, CSSrc)); 1334} 1335 1336unsigned X86RegisterInfo::getEHExceptionRegister() const { 1337 llvm_unreachable("What is the exception register"); 1338 return 0; 1339} 1340 1341unsigned X86RegisterInfo::getEHHandlerRegister() const { 1342 llvm_unreachable("What is the exception handler register"); 1343 return 0; 1344} 1345 1346namespace llvm { 1347unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) { 1348 switch (VT.getSimpleVT().SimpleTy) { 1349 default: return Reg; 1350 case MVT::i8: 1351 if (High) { 1352 switch (Reg) { 1353 default: return 0; 1354 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1355 return X86::AH; 1356 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1357 return X86::DH; 1358 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1359 return X86::CH; 1360 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1361 return X86::BH; 1362 } 1363 } else { 1364 switch (Reg) { 1365 default: return 0; 1366 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1367 return X86::AL; 1368 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1369 return X86::DL; 1370 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1371 return X86::CL; 1372 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1373 return X86::BL; 1374 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1375 return X86::SIL; 1376 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1377 return X86::DIL; 1378 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1379 return X86::BPL; 1380 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1381 return X86::SPL; 1382 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1383 return X86::R8B; 1384 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1385 return X86::R9B; 1386 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1387 return X86::R10B; 1388 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1389 return X86::R11B; 1390 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1391 return X86::R12B; 1392 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1393 return X86::R13B; 1394 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1395 return X86::R14B; 1396 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1397 return X86::R15B; 1398 } 1399 } 1400 case MVT::i16: 1401 switch (Reg) { 1402 default: return Reg; 1403 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1404 return X86::AX; 1405 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1406 return X86::DX; 1407 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1408 return X86::CX; 1409 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1410 return X86::BX; 1411 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1412 return X86::SI; 1413 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1414 return X86::DI; 1415 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1416 return X86::BP; 1417 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1418 return X86::SP; 1419 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1420 return X86::R8W; 1421 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1422 return X86::R9W; 1423 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1424 return X86::R10W; 1425 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1426 return X86::R11W; 1427 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1428 return X86::R12W; 1429 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1430 return X86::R13W; 1431 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1432 return X86::R14W; 1433 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1434 return X86::R15W; 1435 } 1436 case MVT::i32: 1437 switch (Reg) { 1438 default: return Reg; 1439 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1440 return X86::EAX; 1441 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1442 return X86::EDX; 1443 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1444 return X86::ECX; 1445 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1446 return X86::EBX; 1447 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1448 return X86::ESI; 1449 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1450 return X86::EDI; 1451 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1452 return X86::EBP; 1453 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1454 return X86::ESP; 1455 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1456 return X86::R8D; 1457 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1458 return X86::R9D; 1459 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1460 return X86::R10D; 1461 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1462 return X86::R11D; 1463 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1464 return X86::R12D; 1465 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1466 return X86::R13D; 1467 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1468 return X86::R14D; 1469 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1470 return X86::R15D; 1471 } 1472 case MVT::i64: 1473 switch (Reg) { 1474 default: return Reg; 1475 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1476 return X86::RAX; 1477 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1478 return X86::RDX; 1479 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1480 return X86::RCX; 1481 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1482 return X86::RBX; 1483 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1484 return X86::RSI; 1485 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1486 return X86::RDI; 1487 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1488 return X86::RBP; 1489 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1490 return X86::RSP; 1491 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1492 return X86::R8; 1493 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1494 return X86::R9; 1495 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1496 return X86::R10; 1497 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1498 return X86::R11; 1499 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1500 return X86::R12; 1501 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1502 return X86::R13; 1503 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1504 return X86::R14; 1505 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1506 return X86::R15; 1507 } 1508 } 1509 1510 return Reg; 1511} 1512} 1513 1514#include "X86GenRegisterInfo.inc" 1515 1516namespace { 1517 struct MSAH : public MachineFunctionPass { 1518 static char ID; 1519 MSAH() : MachineFunctionPass(&ID) {} 1520 1521 virtual bool runOnMachineFunction(MachineFunction &MF) { 1522 const X86TargetMachine *TM = 1523 static_cast<const X86TargetMachine *>(&MF.getTarget()); 1524 const X86RegisterInfo *X86RI = TM->getRegisterInfo(); 1525 MachineRegisterInfo &RI = MF.getRegInfo(); 1526 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1527 unsigned StackAlignment = X86RI->getStackAlignment(); 1528 1529 // Be over-conservative: scan over all vreg defs and find whether vector 1530 // registers are used. If yes, there is a possibility that vector register 1531 // will be spilled and thus require dynamic stack realignment. 1532 for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister; 1533 RegNum < RI.getLastVirtReg(); ++RegNum) 1534 if (RI.getRegClass(RegNum)->getAlignment() > StackAlignment) { 1535 FuncInfo->setReserveFP(true); 1536 return true; 1537 } 1538 1539 // Nothing to do 1540 return false; 1541 } 1542 1543 virtual const char *getPassName() const { 1544 return "X86 Maximal Stack Alignment Check"; 1545 } 1546 1547 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1548 AU.setPreservesCFG(); 1549 MachineFunctionPass::getAnalysisUsage(AU); 1550 } 1551 }; 1552 1553 char MSAH::ID = 0; 1554} 1555 1556FunctionPass* 1557llvm::createX86MaxStackAlignmentHeuristicPass() { return new MSAH(); } 1558