X86RegisterInfo.cpp revision 2926869b4a083fc951484de03a9867eabf81e880
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the X86 implementation of the MRegisterInfo class. This 11// file is responsible for the frame pointer elimination optimization on X86. 12// 13//===----------------------------------------------------------------------===// 14 15#include "X86.h" 16#include "X86RegisterInfo.h" 17#include "X86Subtarget.h" 18#include "X86InstrBuilder.h" 19#include "X86MachineFunctionInfo.h" 20#include "X86TargetMachine.h" 21#include "llvm/Constants.h" 22#include "llvm/Type.h" 23#include "llvm/Function.h" 24#include "llvm/CodeGen/ValueTypes.h" 25#include "llvm/CodeGen/MachineInstrBuilder.h" 26#include "llvm/CodeGen/MachineFunction.h" 27#include "llvm/CodeGen/MachineFrameInfo.h" 28#include "llvm/CodeGen/MachineLocation.h" 29#include "llvm/Target/TargetFrameInfo.h" 30#include "llvm/Target/TargetMachine.h" 31#include "llvm/Target/TargetOptions.h" 32#include "llvm/Support/CommandLine.h" 33#include "llvm/ADT/STLExtras.h" 34#include <iostream> 35 36using namespace llvm; 37 38namespace { 39 cl::opt<bool> 40 NoFusing("disable-spill-fusing", 41 cl::desc("Disable fusing of spill code into instructions")); 42 cl::opt<bool> 43 PrintFailedFusing("print-failed-fuse-candidates", 44 cl::desc("Print instructions that the allocator wants to" 45 " fuse, but the X86 backend currently can't"), 46 cl::Hidden); 47} 48 49X86RegisterInfo::X86RegisterInfo(const TargetInstrInfo &tii) 50 : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP), TII(tii) {} 51 52void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 53 MachineBasicBlock::iterator MI, 54 unsigned SrcReg, int FrameIdx, 55 const TargetRegisterClass *RC) const { 56 unsigned Opc; 57 if (RC == &X86::GR32RegClass) { 58 Opc = X86::MOV32mr; 59 } else if (RC == &X86::GR16RegClass) { 60 Opc = X86::MOV16mr; 61 } else if (RC == &X86::GR8RegClass) { 62 Opc = X86::MOV8mr; 63 } else if (RC == &X86::GR32_RegClass) { 64 Opc = X86::MOV32_mr; 65 } else if (RC == &X86::GR16_RegClass) { 66 Opc = X86::MOV16_mr; 67 } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { 68 Opc = X86::FpST64m; 69 } else if (RC == &X86::FR32RegClass) { 70 Opc = X86::MOVSSmr; 71 } else if (RC == &X86::FR64RegClass) { 72 Opc = X86::MOVSDmr; 73 } else if (RC == &X86::VR128RegClass) { 74 Opc = X86::MOVAPSmr; 75 } else { 76 assert(0 && "Unknown regclass"); 77 abort(); 78 } 79 addFrameReference(BuildMI(MBB, MI, Opc, 5), FrameIdx).addReg(SrcReg); 80} 81 82void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 83 MachineBasicBlock::iterator MI, 84 unsigned DestReg, int FrameIdx, 85 const TargetRegisterClass *RC) const{ 86 unsigned Opc; 87 if (RC == &X86::GR32RegClass) { 88 Opc = X86::MOV32rm; 89 } else if (RC == &X86::GR16RegClass) { 90 Opc = X86::MOV16rm; 91 } else if (RC == &X86::GR8RegClass) { 92 Opc = X86::MOV8rm; 93 } else if (RC == &X86::GR32_RegClass) { 94 Opc = X86::MOV32_rm; 95 } else if (RC == &X86::GR16_RegClass) { 96 Opc = X86::MOV16_rm; 97 } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { 98 Opc = X86::FpLD64m; 99 } else if (RC == &X86::FR32RegClass) { 100 Opc = X86::MOVSSrm; 101 } else if (RC == &X86::FR64RegClass) { 102 Opc = X86::MOVSDrm; 103 } else if (RC == &X86::VR128RegClass) { 104 Opc = X86::MOVAPSrm; 105 } else { 106 assert(0 && "Unknown regclass"); 107 abort(); 108 } 109 addFrameReference(BuildMI(MBB, MI, Opc, 4, DestReg), FrameIdx); 110} 111 112void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB, 113 MachineBasicBlock::iterator MI, 114 unsigned DestReg, unsigned SrcReg, 115 const TargetRegisterClass *RC) const { 116 unsigned Opc; 117 if (RC == &X86::GR32RegClass) { 118 Opc = X86::MOV32rr; 119 } else if (RC == &X86::GR16RegClass) { 120 Opc = X86::MOV16rr; 121 } else if (RC == &X86::GR8RegClass) { 122 Opc = X86::MOV8rr; 123 } else if (RC == &X86::GR32_RegClass) { 124 Opc = X86::MOV32_rr; 125 } else if (RC == &X86::GR16_RegClass) { 126 Opc = X86::MOV16_rr; 127 } else if (RC == &X86::RFPRegClass || RC == &X86::RSTRegClass) { 128 Opc = X86::FpMOV; 129 } else if (RC == &X86::FR32RegClass) { 130 Opc = X86::FsMOVAPSrr; 131 } else if (RC == &X86::FR64RegClass) { 132 Opc = X86::FsMOVAPDrr; 133 } else if (RC == &X86::VR128RegClass) { 134 Opc = X86::MOVAPSrr; 135 } else { 136 assert(0 && "Unknown regclass"); 137 abort(); 138 } 139 BuildMI(MBB, MI, Opc, 1, DestReg).addReg(SrcReg); 140} 141 142static MachineInstr *FuseTwoAddrInst(unsigned Opcode, unsigned FrameIndex, 143 MachineInstr *MI) { 144 unsigned NumOps = MI->getNumOperands()-2; 145 // Create the base instruction with the memory operand as the first part. 146 MachineInstrBuilder MIB = addFrameReference(BuildMI(Opcode, 4+NumOps), 147 FrameIndex); 148 149 // Loop over the rest of the ri operands, converting them over. 150 for (unsigned i = 0; i != NumOps; ++i) { 151 if (MI->getOperand(i+2).isReg()) 152 MIB = MIB.addReg(MI->getOperand(i+2).getReg()); 153 else { 154 assert(MI->getOperand(i+2).isImm() && "Unknown operand type!"); 155 MIB = MIB.addImm(MI->getOperand(i+2).getImm()); 156 } 157 } 158 return MIB; 159} 160 161static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo, 162 unsigned FrameIndex, MachineInstr *MI) { 163 MachineInstrBuilder MIB = BuildMI(Opcode, MI->getNumOperands()+3); 164 165 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 166 MachineOperand &MO = MI->getOperand(i); 167 if (i == OpNo) { 168 assert(MO.isReg() && "Expected to fold into reg operand!"); 169 MIB = addFrameReference(MIB, FrameIndex); 170 } else if (MO.isReg()) 171 MIB = MIB.addReg(MO.getReg(), MO.getUseType()); 172 else if (MO.isImm()) 173 MIB = MIB.addImm(MO.getImm()); 174 else if (MO.isGlobalAddress()) 175 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset()); 176 else if (MO.isJumpTableIndex()) 177 MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex()); 178 else 179 assert(0 && "Unknown operand for FuseInst!"); 180 } 181 return MIB; 182} 183 184static MachineInstr *MakeM0Inst(unsigned Opcode, unsigned FrameIndex, 185 MachineInstr *MI) { 186 return addFrameReference(BuildMI(Opcode, 5), FrameIndex).addImm(0); 187} 188 189 190//===----------------------------------------------------------------------===// 191// Efficient Lookup Table Support 192//===----------------------------------------------------------------------===// 193 194namespace { 195 /// TableEntry - Maps the 'from' opcode to a fused form of the 'to' opcode. 196 /// 197 struct TableEntry { 198 unsigned from; // Original opcode. 199 unsigned to; // New opcode. 200 201 // less operators used by STL search. 202 bool operator<(const TableEntry &TE) const { return from < TE.from; } 203 friend bool operator<(const TableEntry &TE, unsigned V) { 204 return TE.from < V; 205 } 206 friend bool operator<(unsigned V, const TableEntry &TE) { 207 return V < TE.from; 208 } 209 }; 210} 211 212/// TableIsSorted - Return true if the table is in 'from' opcode order. 213/// 214static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { 215 for (unsigned i = 1; i != NumEntries; ++i) 216 if (!(Table[i-1] < Table[i])) { 217 std::cerr << "Entries out of order " << Table[i-1].from 218 << " " << Table[i].from << "\n"; 219 return false; 220 } 221 return true; 222} 223 224/// TableLookup - Return the table entry matching the specified opcode. 225/// Otherwise return NULL. 226static const TableEntry *TableLookup(const TableEntry *Table, unsigned N, 227 unsigned Opcode) { 228 const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); 229 if (I != Table+N && I->from == Opcode) 230 return I; 231 return NULL; 232} 233 234#define ARRAY_SIZE(TABLE) \ 235 (sizeof(TABLE)/sizeof(TABLE[0])) 236 237#ifdef NDEBUG 238#define ASSERT_SORTED(TABLE) 239#else 240#define ASSERT_SORTED(TABLE) \ 241 { static bool TABLE##Checked = false; \ 242 if (!TABLE##Checked) { \ 243 assert(TableIsSorted(TABLE, ARRAY_SIZE(TABLE)) && \ 244 "All lookup tables must be sorted for efficient access!"); \ 245 TABLE##Checked = true; \ 246 } \ 247 } 248#endif 249 250 251MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, 252 unsigned i, 253 int FrameIndex) const { 254 // Check switch flag 255 if (NoFusing) return NULL; 256 257 // Table (and size) to search 258 const TableEntry *OpcodeTablePtr = NULL; 259 unsigned OpcodeTableSize = 0; 260 bool isTwoAddrFold = false; 261 262 // Folding a memory location into the two-address part of a two-address 263 // instruction is different than folding it other places. It requires 264 // replacing the *two* registers with the memory location. 265 if (MI->getNumOperands() >= 2 && MI->getOperand(0).isReg() && 266 MI->getOperand(1).isReg() && i < 2 && 267 MI->getOperand(0).getReg() == MI->getOperand(1).getReg() && 268 TII.isTwoAddrInstr(MI->getOpcode())) { 269 static const TableEntry OpcodeTable[] = { 270 { X86::ADC32ri, X86::ADC32mi }, 271 { X86::ADC32ri8, X86::ADC32mi8 }, 272 { X86::ADC32rr, X86::ADC32mr }, 273 { X86::ADD16ri, X86::ADD16mi }, 274 { X86::ADD16ri8, X86::ADD16mi8 }, 275 { X86::ADD16rr, X86::ADD16mr }, 276 { X86::ADD32ri, X86::ADD32mi }, 277 { X86::ADD32ri8, X86::ADD32mi8 }, 278 { X86::ADD32rr, X86::ADD32mr }, 279 { X86::ADD8ri, X86::ADD8mi }, 280 { X86::ADD8rr, X86::ADD8mr }, 281 { X86::AND16ri, X86::AND16mi }, 282 { X86::AND16ri8, X86::AND16mi8 }, 283 { X86::AND16rr, X86::AND16mr }, 284 { X86::AND32ri, X86::AND32mi }, 285 { X86::AND32ri8, X86::AND32mi8 }, 286 { X86::AND32rr, X86::AND32mr }, 287 { X86::AND8ri, X86::AND8mi }, 288 { X86::AND8rr, X86::AND8mr }, 289 { X86::DEC16r, X86::DEC16m }, 290 { X86::DEC32r, X86::DEC32m }, 291 { X86::DEC8r, X86::DEC8m }, 292 { X86::INC16r, X86::INC16m }, 293 { X86::INC32r, X86::INC32m }, 294 { X86::INC8r, X86::INC8m }, 295 { X86::NEG16r, X86::NEG16m }, 296 { X86::NEG32r, X86::NEG32m }, 297 { X86::NEG8r, X86::NEG8m }, 298 { X86::NOT16r, X86::NOT16m }, 299 { X86::NOT32r, X86::NOT32m }, 300 { X86::NOT8r, X86::NOT8m }, 301 { X86::OR16ri, X86::OR16mi }, 302 { X86::OR16ri8, X86::OR16mi8 }, 303 { X86::OR16rr, X86::OR16mr }, 304 { X86::OR32ri, X86::OR32mi }, 305 { X86::OR32ri8, X86::OR32mi8 }, 306 { X86::OR32rr, X86::OR32mr }, 307 { X86::OR8ri, X86::OR8mi }, 308 { X86::OR8rr, X86::OR8mr }, 309 { X86::ROL16r1, X86::ROL16m1 }, 310 { X86::ROL16rCL, X86::ROL16mCL }, 311 { X86::ROL16ri, X86::ROL16mi }, 312 { X86::ROL32r1, X86::ROL32m1 }, 313 { X86::ROL32rCL, X86::ROL32mCL }, 314 { X86::ROL32ri, X86::ROL32mi }, 315 { X86::ROL8r1, X86::ROL8m1 }, 316 { X86::ROL8rCL, X86::ROL8mCL }, 317 { X86::ROL8ri, X86::ROL8mi }, 318 { X86::ROR16r1, X86::ROR16m1 }, 319 { X86::ROR16rCL, X86::ROR16mCL }, 320 { X86::ROR16ri, X86::ROR16mi }, 321 { X86::ROR32r1, X86::ROR32m1 }, 322 { X86::ROR32rCL, X86::ROR32mCL }, 323 { X86::ROR32ri, X86::ROR32mi }, 324 { X86::ROR8r1, X86::ROR8m1 }, 325 { X86::ROR8rCL, X86::ROR8mCL }, 326 { X86::ROR8ri, X86::ROR8mi }, 327 { X86::SAR16r1, X86::SAR16m1 }, 328 { X86::SAR16rCL, X86::SAR16mCL }, 329 { X86::SAR16ri, X86::SAR16mi }, 330 { X86::SAR32r1, X86::SAR32m1 }, 331 { X86::SAR32rCL, X86::SAR32mCL }, 332 { X86::SAR32ri, X86::SAR32mi }, 333 { X86::SAR8r1, X86::SAR8m1 }, 334 { X86::SAR8rCL, X86::SAR8mCL }, 335 { X86::SAR8ri, X86::SAR8mi }, 336 { X86::SBB32ri, X86::SBB32mi }, 337 { X86::SBB32ri8, X86::SBB32mi8 }, 338 { X86::SBB32rr, X86::SBB32mr }, 339 { X86::SHL16r1, X86::SHL16m1 }, 340 { X86::SHL16rCL, X86::SHL16mCL }, 341 { X86::SHL16ri, X86::SHL16mi }, 342 { X86::SHL32r1, X86::SHL32m1 }, 343 { X86::SHL32rCL, X86::SHL32mCL }, 344 { X86::SHL32ri, X86::SHL32mi }, 345 { X86::SHL8r1, X86::SHL8m1 }, 346 { X86::SHL8rCL, X86::SHL8mCL }, 347 { X86::SHL8ri, X86::SHL8mi }, 348 { X86::SHLD16rrCL, X86::SHLD16mrCL }, 349 { X86::SHLD16rri8, X86::SHLD16mri8 }, 350 { X86::SHLD32rrCL, X86::SHLD32mrCL }, 351 { X86::SHLD32rri8, X86::SHLD32mri8 }, 352 { X86::SHR16r1, X86::SHR16m1 }, 353 { X86::SHR16rCL, X86::SHR16mCL }, 354 { X86::SHR16ri, X86::SHR16mi }, 355 { X86::SHR32r1, X86::SHR32m1 }, 356 { X86::SHR32rCL, X86::SHR32mCL }, 357 { X86::SHR32ri, X86::SHR32mi }, 358 { X86::SHR8r1, X86::SHR8m1 }, 359 { X86::SHR8rCL, X86::SHR8mCL }, 360 { X86::SHR8ri, X86::SHR8mi }, 361 { X86::SHRD16rrCL, X86::SHRD16mrCL }, 362 { X86::SHRD16rri8, X86::SHRD16mri8 }, 363 { X86::SHRD32rrCL, X86::SHRD32mrCL }, 364 { X86::SHRD32rri8, X86::SHRD32mri8 }, 365 { X86::SUB16ri, X86::SUB16mi }, 366 { X86::SUB16ri8, X86::SUB16mi8 }, 367 { X86::SUB16rr, X86::SUB16mr }, 368 { X86::SUB32ri, X86::SUB32mi }, 369 { X86::SUB32ri8, X86::SUB32mi8 }, 370 { X86::SUB32rr, X86::SUB32mr }, 371 { X86::SUB8ri, X86::SUB8mi }, 372 { X86::SUB8rr, X86::SUB8mr }, 373 { X86::XOR16ri, X86::XOR16mi }, 374 { X86::XOR16ri8, X86::XOR16mi8 }, 375 { X86::XOR16rr, X86::XOR16mr }, 376 { X86::XOR32ri, X86::XOR32mi }, 377 { X86::XOR32ri8, X86::XOR32mi8 }, 378 { X86::XOR32rr, X86::XOR32mr }, 379 { X86::XOR8ri, X86::XOR8mi }, 380 { X86::XOR8rr, X86::XOR8mr } 381 }; 382 ASSERT_SORTED(OpcodeTable); 383 OpcodeTablePtr = OpcodeTable; 384 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 385 isTwoAddrFold = true; 386 } else if (i == 0) { // If operand 0 387 if (MI->getOpcode() == X86::MOV16r0) 388 return MakeM0Inst(X86::MOV16mi, FrameIndex, MI); 389 else if (MI->getOpcode() == X86::MOV32r0) 390 return MakeM0Inst(X86::MOV32mi, FrameIndex, MI); 391 else if (MI->getOpcode() == X86::MOV8r0) 392 return MakeM0Inst(X86::MOV8mi, FrameIndex, MI); 393 394 static const TableEntry OpcodeTable[] = { 395 { X86::CMP16ri, X86::CMP16mi }, 396 { X86::CMP16ri8, X86::CMP16mi8 }, 397 { X86::CMP32ri, X86::CMP32mi }, 398 { X86::CMP32ri8, X86::CMP32mi8 }, 399 { X86::CMP8ri, X86::CMP8mi }, 400 { X86::DIV16r, X86::DIV16m }, 401 { X86::DIV32r, X86::DIV32m }, 402 { X86::DIV8r, X86::DIV8m }, 403 { X86::FsMOVAPDrr, X86::MOVSDmr }, 404 { X86::FsMOVAPSrr, X86::MOVSSmr }, 405 { X86::IDIV16r, X86::IDIV16m }, 406 { X86::IDIV32r, X86::IDIV32m }, 407 { X86::IDIV8r, X86::IDIV8m }, 408 { X86::IMUL16r, X86::IMUL16m }, 409 { X86::IMUL32r, X86::IMUL32m }, 410 { X86::IMUL8r, X86::IMUL8m }, 411 { X86::MOV16ri, X86::MOV16mi }, 412 { X86::MOV16rr, X86::MOV16mr }, 413 { X86::MOV32ri, X86::MOV32mi }, 414 { X86::MOV32rr, X86::MOV32mr }, 415 { X86::MOV8ri, X86::MOV8mi }, 416 { X86::MOV8rr, X86::MOV8mr }, 417 { X86::MOVAPDrr, X86::MOVAPDmr }, 418 { X86::MOVAPSrr, X86::MOVAPSmr }, 419 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr }, 420 { X86::MOVPS2SSrr, X86::MOVPS2SSmr }, 421 { X86::MOVSDrr, X86::MOVSDmr }, 422 { X86::MOVSSrr, X86::MOVSSmr }, 423 { X86::MOVUPDrr, X86::MOVUPDmr }, 424 { X86::MOVUPSrr, X86::MOVUPSmr }, 425 { X86::MUL16r, X86::MUL16m }, 426 { X86::MUL32r, X86::MUL32m }, 427 { X86::MUL8r, X86::MUL8m }, 428 { X86::SETAEr, X86::SETAEm }, 429 { X86::SETAr, X86::SETAm }, 430 { X86::SETBEr, X86::SETBEm }, 431 { X86::SETBr, X86::SETBm }, 432 { X86::SETEr, X86::SETEm }, 433 { X86::SETGEr, X86::SETGEm }, 434 { X86::SETGr, X86::SETGm }, 435 { X86::SETLEr, X86::SETLEm }, 436 { X86::SETLr, X86::SETLm }, 437 { X86::SETNEr, X86::SETNEm }, 438 { X86::SETNPr, X86::SETNPm }, 439 { X86::SETNSr, X86::SETNSm }, 440 { X86::SETPr, X86::SETPm }, 441 { X86::SETSr, X86::SETSm }, 442 { X86::TEST16ri, X86::TEST16mi }, 443 { X86::TEST32ri, X86::TEST32mi }, 444 { X86::TEST8ri, X86::TEST8mi }, 445 { X86::XCHG16rr, X86::XCHG16mr }, 446 { X86::XCHG32rr, X86::XCHG32mr }, 447 { X86::XCHG8rr, X86::XCHG8mr } 448 }; 449 ASSERT_SORTED(OpcodeTable); 450 OpcodeTablePtr = OpcodeTable; 451 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 452 } else if (i == 1) { 453 static const TableEntry OpcodeTable[] = { 454 { X86::CMP16rr, X86::CMP16rm }, 455 { X86::CMP32rr, X86::CMP32rm }, 456 { X86::CMP8rr, X86::CMP8rm }, 457 { X86::CMPPDrri, X86::CMPPDrmi }, 458 { X86::CMPPSrri, X86::CMPPSrmi }, 459 { X86::CMPSDrr, X86::CMPSDrm }, 460 { X86::CMPSSrr, X86::CMPSSrm }, 461 { X86::CVTSD2SSrr, X86::CVTSD2SSrm }, 462 { X86::CVTSI2SDrr, X86::CVTSI2SDrm }, 463 { X86::CVTSI2SSrr, X86::CVTSI2SSrm }, 464 { X86::CVTSS2SDrr, X86::CVTSS2SDrm }, 465 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm }, 466 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm }, 467 { X86::FsMOVAPDrr, X86::MOVSDrm }, 468 { X86::FsMOVAPSrr, X86::MOVSSrm }, 469 { X86::IMUL16rri, X86::IMUL16rmi }, 470 { X86::IMUL16rri8, X86::IMUL16rmi8 }, 471 { X86::IMUL32rri, X86::IMUL32rmi }, 472 { X86::IMUL32rri8, X86::IMUL32rmi8 }, 473 { X86::Int_CMPSDrr, X86::Int_CMPSDrm }, 474 { X86::Int_CMPSSrr, X86::Int_CMPSSrm }, 475 { X86::Int_COMISDrr, X86::Int_COMISDrm }, 476 { X86::Int_COMISSrr, X86::Int_COMISSrm }, 477 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm }, 478 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm }, 479 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm }, 480 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm }, 481 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm }, 482 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm }, 483 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm }, 484 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm }, 485 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm }, 486 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm }, 487 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm }, 488 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm }, 489 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm }, 490 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm }, 491 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm }, 492 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm }, 493 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm }, 494 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm }, 495 { X86::MOV16rr, X86::MOV16rm }, 496 { X86::MOV32rr, X86::MOV32rm }, 497 { X86::MOV8rr, X86::MOV8rm }, 498 { X86::MOVAPDrr, X86::MOVAPDrm }, 499 { X86::MOVAPSrr, X86::MOVAPSrm }, 500 { X86::MOVDDUPrr, X86::MOVDDUPrm }, 501 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm }, 502 { X86::MOVQI2PQIrr, X86::MOVQI2PQIrm }, 503 { X86::MOVSD2PDrr, X86::MOVSD2PDrm }, 504 { X86::MOVSDrr, X86::MOVSDrm }, 505 { X86::MOVSHDUPrr, X86::MOVSHDUPrm }, 506 { X86::MOVSLDUPrr, X86::MOVSLDUPrm }, 507 { X86::MOVSS2PSrr, X86::MOVSS2PSrm }, 508 { X86::MOVSSrr, X86::MOVSSrm }, 509 { X86::MOVSX16rr8, X86::MOVSX16rm8 }, 510 { X86::MOVSX32rr16, X86::MOVSX32rm16 }, 511 { X86::MOVSX32rr8, X86::MOVSX32rm8 }, 512 { X86::MOVUPDrr, X86::MOVUPDrm }, 513 { X86::MOVUPSrr, X86::MOVUPSrm }, 514 { X86::MOVZX16rr8, X86::MOVZX16rm8 }, 515 { X86::MOVZX32rr16, X86::MOVZX32rm16 }, 516 { X86::MOVZX32rr8, X86::MOVZX32rm8 }, 517 { X86::PSHUFDri, X86::PSHUFDmi }, 518 { X86::PSHUFHWri, X86::PSHUFHWmi }, 519 { X86::PSHUFLWri, X86::PSHUFLWmi }, 520 { X86::TEST16rr, X86::TEST16rm }, 521 { X86::TEST32rr, X86::TEST32rm }, 522 { X86::TEST8rr, X86::TEST8rm }, 523 { X86::UCOMISDrr, X86::UCOMISDrm }, 524 { X86::UCOMISSrr, X86::UCOMISSrm }, 525 { X86::XCHG16rr, X86::XCHG16rm }, 526 { X86::XCHG32rr, X86::XCHG32rm }, 527 { X86::XCHG8rr, X86::XCHG8rm } 528 }; 529 ASSERT_SORTED(OpcodeTable); 530 OpcodeTablePtr = OpcodeTable; 531 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 532 } else if (i == 2) { 533 static const TableEntry OpcodeTable[] = { 534 { X86::ADC32rr, X86::ADC32rm }, 535 { X86::ADD16rr, X86::ADD16rm }, 536 { X86::ADD32rr, X86::ADD32rm }, 537 { X86::ADD8rr, X86::ADD8rm }, 538 { X86::ADDPDrr, X86::ADDPDrm }, 539 { X86::ADDPSrr, X86::ADDPSrm }, 540 { X86::ADDSDrr, X86::ADDSDrm }, 541 { X86::ADDSSrr, X86::ADDSSrm }, 542 { X86::ADDSUBPDrr, X86::ADDSUBPDrm }, 543 { X86::ADDSUBPSrr, X86::ADDSUBPSrm }, 544 { X86::AND16rr, X86::AND16rm }, 545 { X86::AND32rr, X86::AND32rm }, 546 { X86::AND8rr, X86::AND8rm }, 547 { X86::ANDNPDrr, X86::ANDNPDrm }, 548 { X86::ANDNPSrr, X86::ANDNPSrm }, 549 { X86::ANDPDrr, X86::ANDPDrm }, 550 { X86::ANDPSrr, X86::ANDPSrm }, 551 { X86::CMOVA16rr, X86::CMOVA16rm }, 552 { X86::CMOVA32rr, X86::CMOVA32rm }, 553 { X86::CMOVAE16rr, X86::CMOVAE16rm }, 554 { X86::CMOVAE32rr, X86::CMOVAE32rm }, 555 { X86::CMOVB16rr, X86::CMOVB16rm }, 556 { X86::CMOVB32rr, X86::CMOVB32rm }, 557 { X86::CMOVBE16rr, X86::CMOVBE16rm }, 558 { X86::CMOVBE32rr, X86::CMOVBE32rm }, 559 { X86::CMOVE16rr, X86::CMOVE16rm }, 560 { X86::CMOVE32rr, X86::CMOVE32rm }, 561 { X86::CMOVG16rr, X86::CMOVG16rm }, 562 { X86::CMOVG32rr, X86::CMOVG32rm }, 563 { X86::CMOVGE16rr, X86::CMOVGE16rm }, 564 { X86::CMOVGE32rr, X86::CMOVGE32rm }, 565 { X86::CMOVL16rr, X86::CMOVL16rm }, 566 { X86::CMOVL32rr, X86::CMOVL32rm }, 567 { X86::CMOVLE16rr, X86::CMOVLE16rm }, 568 { X86::CMOVLE32rr, X86::CMOVLE32rm }, 569 { X86::CMOVNE16rr, X86::CMOVNE16rm }, 570 { X86::CMOVNE32rr, X86::CMOVNE32rm }, 571 { X86::CMOVNP16rr, X86::CMOVNP16rm }, 572 { X86::CMOVNP32rr, X86::CMOVNP32rm }, 573 { X86::CMOVNS16rr, X86::CMOVNS16rm }, 574 { X86::CMOVNS32rr, X86::CMOVNS32rm }, 575 { X86::CMOVP16rr, X86::CMOVP16rm }, 576 { X86::CMOVP32rr, X86::CMOVP32rm }, 577 { X86::CMOVS16rr, X86::CMOVS16rm }, 578 { X86::CMOVS32rr, X86::CMOVS32rm }, 579 { X86::DIVPDrr, X86::DIVPDrm }, 580 { X86::DIVPSrr, X86::DIVPSrm }, 581 { X86::DIVSDrr, X86::DIVSDrm }, 582 { X86::DIVSSrr, X86::DIVSSrm }, 583 { X86::HADDPDrr, X86::HADDPDrm }, 584 { X86::HADDPSrr, X86::HADDPSrm }, 585 { X86::HSUBPDrr, X86::HSUBPDrm }, 586 { X86::HSUBPSrr, X86::HSUBPSrm }, 587 { X86::IMUL16rr, X86::IMUL16rm }, 588 { X86::IMUL32rr, X86::IMUL32rm }, 589 { X86::MAXPDrr, X86::MAXPDrm }, 590 { X86::MAXPSrr, X86::MAXPSrm }, 591 { X86::MINPDrr, X86::MINPDrm }, 592 { X86::MINPSrr, X86::MINPSrm }, 593 { X86::MULPDrr, X86::MULPDrm }, 594 { X86::MULPSrr, X86::MULPSrm }, 595 { X86::MULSDrr, X86::MULSDrm }, 596 { X86::MULSSrr, X86::MULSSrm }, 597 { X86::OR16rr, X86::OR16rm }, 598 { X86::OR32rr, X86::OR32rm }, 599 { X86::OR8rr, X86::OR8rm }, 600 { X86::ORPDrr, X86::ORPDrm }, 601 { X86::ORPSrr, X86::ORPSrm }, 602 { X86::PACKSSDWrr, X86::PACKSSDWrm }, 603 { X86::PACKSSWBrr, X86::PACKSSWBrm }, 604 { X86::PACKUSWBrr, X86::PACKUSWBrm }, 605 { X86::PADDBrr, X86::PADDBrm }, 606 { X86::PADDDrr, X86::PADDDrm }, 607 { X86::PADDSBrr, X86::PADDSBrm }, 608 { X86::PADDSWrr, X86::PADDSWrm }, 609 { X86::PADDWrr, X86::PADDWrm }, 610 { X86::PANDNrr, X86::PANDNrm }, 611 { X86::PANDrr, X86::PANDrm }, 612 { X86::PAVGBrr, X86::PAVGBrm }, 613 { X86::PAVGWrr, X86::PAVGWrm }, 614 { X86::PCMPEQBrr, X86::PCMPEQBrm }, 615 { X86::PCMPEQDrr, X86::PCMPEQDrm }, 616 { X86::PCMPEQWrr, X86::PCMPEQWrm }, 617 { X86::PCMPGTBrr, X86::PCMPGTBrm }, 618 { X86::PCMPGTDrr, X86::PCMPGTDrm }, 619 { X86::PCMPGTWrr, X86::PCMPGTWrm }, 620 { X86::PINSRWrri, X86::PINSRWrmi }, 621 { X86::PMADDWDrr, X86::PMADDWDrm }, 622 { X86::PMAXSWrr, X86::PMAXSWrm }, 623 { X86::PMAXUBrr, X86::PMAXUBrm }, 624 { X86::PMINSWrr, X86::PMINSWrm }, 625 { X86::PMINUBrr, X86::PMINUBrm }, 626 { X86::PMULHUWrr, X86::PMULHUWrm }, 627 { X86::PMULHWrr, X86::PMULHWrm }, 628 { X86::PMULLWrr, X86::PMULLWrm }, 629 { X86::PMULUDQrr, X86::PMULUDQrm }, 630 { X86::PORrr, X86::PORrm }, 631 { X86::PSADBWrr, X86::PSADBWrm }, 632 { X86::PSLLDrr, X86::PSLLDrm }, 633 { X86::PSLLQrr, X86::PSLLQrm }, 634 { X86::PSLLWrr, X86::PSLLWrm }, 635 { X86::PSRADrr, X86::PSRADrm }, 636 { X86::PSRAWrr, X86::PSRAWrm }, 637 { X86::PSRLDrr, X86::PSRLDrm }, 638 { X86::PSRLQrr, X86::PSRLQrm }, 639 { X86::PSRLWrr, X86::PSRLWrm }, 640 { X86::PSUBBrr, X86::PSUBBrm }, 641 { X86::PSUBDrr, X86::PSUBDrm }, 642 { X86::PSUBSBrr, X86::PSUBSBrm }, 643 { X86::PSUBSWrr, X86::PSUBSWrm }, 644 { X86::PSUBWrr, X86::PSUBWrm }, 645 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm }, 646 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm }, 647 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm }, 648 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm }, 649 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm }, 650 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm }, 651 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm }, 652 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm }, 653 { X86::PXORrr, X86::PXORrm }, 654 { X86::RCPPSr, X86::RCPPSm }, 655 { X86::RSQRTPSr, X86::RSQRTPSm }, 656 { X86::SBB32rr, X86::SBB32rm }, 657 { X86::SHUFPDrri, X86::SHUFPDrmi }, 658 { X86::SHUFPSrri, X86::SHUFPSrmi }, 659 { X86::SQRTPDr, X86::SQRTPDm }, 660 { X86::SQRTPSr, X86::SQRTPSm }, 661 { X86::SQRTSDr, X86::SQRTSDm }, 662 { X86::SQRTSSr, X86::SQRTSSm }, 663 { X86::SUB16rr, X86::SUB16rm }, 664 { X86::SUB32rr, X86::SUB32rm }, 665 { X86::SUB8rr, X86::SUB8rm }, 666 { X86::SUBPDrr, X86::SUBPDrm }, 667 { X86::SUBPSrr, X86::SUBPSrm }, 668 { X86::SUBSDrr, X86::SUBSDrm }, 669 { X86::SUBSSrr, X86::SUBSSrm }, 670 { X86::UNPCKHPDrr, X86::UNPCKHPDrm }, 671 { X86::UNPCKHPSrr, X86::UNPCKHPSrm }, 672 { X86::UNPCKLPDrr, X86::UNPCKLPDrm }, 673 { X86::UNPCKLPSrr, X86::UNPCKLPSrm }, 674 { X86::XOR16rr, X86::XOR16rm }, 675 { X86::XOR32rr, X86::XOR32rm }, 676 { X86::XOR8rr, X86::XOR8rm }, 677 { X86::XORPDrr, X86::XORPDrm }, 678 { X86::XORPSrr, X86::XORPSrm } 679 }; 680 ASSERT_SORTED(OpcodeTable); 681 OpcodeTablePtr = OpcodeTable; 682 OpcodeTableSize = ARRAY_SIZE(OpcodeTable); 683 } 684 685 // If table selected... 686 if (OpcodeTablePtr) { 687 // Find the Opcode to fuse 688 unsigned fromOpcode = MI->getOpcode(); 689 // Lookup fromOpcode in table 690 if (const TableEntry *Entry = TableLookup(OpcodeTablePtr, OpcodeTableSize, 691 fromOpcode)) { 692 if (isTwoAddrFold) 693 return FuseTwoAddrInst(Entry->to, FrameIndex, MI); 694 695 return FuseInst(Entry->to, i, FrameIndex, MI); 696 } 697 } 698 699 // No fusion 700 if (PrintFailedFusing) 701 std::cerr << "We failed to fuse (" 702 << ((i == 1) ? "r" : "s") << "): " << *MI; 703 return NULL; 704} 705 706 707const unsigned *X86RegisterInfo::getCalleeSaveRegs() const { 708 static const unsigned CalleeSaveRegs[] = { 709 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 710 }; 711 return CalleeSaveRegs; 712} 713 714const TargetRegisterClass* const* 715X86RegisterInfo::getCalleeSaveRegClasses() const { 716 static const TargetRegisterClass * const CalleeSaveRegClasses[] = { 717 &X86::GR32RegClass, &X86::GR32RegClass, 718 &X86::GR32RegClass, &X86::GR32RegClass, 0 719 }; 720 return CalleeSaveRegClasses; 721} 722 723//===----------------------------------------------------------------------===// 724// Stack Frame Processing methods 725//===----------------------------------------------------------------------===// 726 727// hasFP - Return true if the specified function should have a dedicated frame 728// pointer register. This is true if the function has variable sized allocas or 729// if frame pointer elimination is disabled. 730// 731static bool hasFP(const MachineFunction &MF) { 732 return (NoFramePointerElim || 733 MF.getFrameInfo()->hasVarSizedObjects() || 734 MF.getInfo<X86FunctionInfo>()->getForceFramePointer()); 735} 736 737void X86RegisterInfo:: 738eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 739 MachineBasicBlock::iterator I) const { 740 if (hasFP(MF)) { 741 // If we have a frame pointer, turn the adjcallstackup instruction into a 742 // 'sub ESP, <amt>' and the adjcallstackdown instruction into 'add ESP, 743 // <amt>' 744 MachineInstr *Old = I; 745 unsigned Amount = Old->getOperand(0).getImmedValue(); 746 if (Amount != 0) { 747 // We need to keep the stack aligned properly. To do this, we round the 748 // amount of space needed for the outgoing arguments up to the next 749 // alignment boundary. 750 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); 751 Amount = (Amount+Align-1)/Align*Align; 752 753 MachineInstr *New = 0; 754 if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) { 755 New=BuildMI(X86::SUB32ri, 2, X86::ESP).addReg(X86::ESP).addImm(Amount); 756 } else { 757 assert(Old->getOpcode() == X86::ADJCALLSTACKUP); 758 // factor out the amount the callee already popped. 759 unsigned CalleeAmt = Old->getOperand(1).getImmedValue(); 760 Amount -= CalleeAmt; 761 if (Amount) { 762 unsigned Opc = Amount < 128 ? X86::ADD32ri8 : X86::ADD32ri; 763 New = BuildMI(Opc, 2, X86::ESP).addReg(X86::ESP).addImm(Amount); 764 } 765 } 766 767 // Replace the pseudo instruction with a new instruction... 768 if (New) MBB.insert(I, New); 769 } 770 } else if (I->getOpcode() == X86::ADJCALLSTACKUP) { 771 // If we are performing frame pointer elimination and if the callee pops 772 // something off the stack pointer, add it back. We do this until we have 773 // more advanced stack pointer tracking ability. 774 if (unsigned CalleeAmt = I->getOperand(1).getImmedValue()) { 775 unsigned Opc = CalleeAmt < 128 ? X86::SUB32ri8 : X86::SUB32ri; 776 MachineInstr *New = 777 BuildMI(Opc, 1, X86::ESP).addReg(X86::ESP).addImm(CalleeAmt); 778 MBB.insert(I, New); 779 } 780 } 781 782 MBB.erase(I); 783} 784 785void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II) const{ 786 unsigned i = 0; 787 MachineInstr &MI = *II; 788 MachineFunction &MF = *MI.getParent()->getParent(); 789 while (!MI.getOperand(i).isFrameIndex()) { 790 ++i; 791 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 792 } 793 794 int FrameIndex = MI.getOperand(i).getFrameIndex(); 795 796 // This must be part of a four operand memory reference. Replace the 797 // FrameIndex with base register with EBP. Add add an offset to the offset. 798 MI.getOperand(i).ChangeToRegister(hasFP(MF) ? X86::EBP : X86::ESP); 799 800 // Now add the frame object offset to the offset from EBP. 801 int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) + 802 MI.getOperand(i+3).getImmedValue()+4; 803 804 if (!hasFP(MF)) 805 Offset += MF.getFrameInfo()->getStackSize(); 806 else 807 Offset += 4; // Skip the saved EBP 808 809 MI.getOperand(i+3).ChangeToImmediate(Offset); 810} 811 812void 813X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{ 814 if (hasFP(MF)) { 815 // Create a frame entry for the EBP register that must be saved. 816 int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, -8); 817 assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() && 818 "Slot for EBP register must be last in order to be found!"); 819 } 820} 821 822void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { 823 MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB 824 MachineBasicBlock::iterator MBBI = MBB.begin(); 825 MachineFrameInfo *MFI = MF.getFrameInfo(); 826 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); 827 const Function* Fn = MF.getFunction(); 828 const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 829 MachineInstr *MI; 830 831 // Get the number of bytes to allocate from the FrameInfo 832 unsigned NumBytes = MFI->getStackSize(); 833 if (MFI->hasCalls() || MF.getFrameInfo()->hasVarSizedObjects()) { 834 // When we have no frame pointer, we reserve argument space for call sites 835 // in the function immediately on entry to the current function. This 836 // eliminates the need for add/sub ESP brackets around call sites. 837 // 838 if (!hasFP(MF)) 839 NumBytes += MFI->getMaxCallFrameSize(); 840 841 // Round the size to a multiple of the alignment (don't forget the 4 byte 842 // offset though). 843 NumBytes = ((NumBytes+4)+Align-1)/Align*Align - 4; 844 } 845 846 // Update frame info to pretend that this is part of the stack... 847 MFI->setStackSize(NumBytes); 848 849 if (NumBytes) { // adjust stack pointer: ESP -= numbytes 850 if (NumBytes >= 4096 && Subtarget->TargetType == X86Subtarget::isCygwin) { 851 // Function prologue calls _alloca to probe the stack when allocating 852 // more than 4k bytes in one go. Touching the stack at 4K increments is 853 // necessary to ensure that the guard pages used by the OS virtual memory 854 // manager are allocated in correct sequence. 855 MI = BuildMI(X86::MOV32ri, 2, X86::EAX).addImm(NumBytes); 856 MBB.insert(MBBI, MI); 857 MI = BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("_alloca"); 858 MBB.insert(MBBI, MI); 859 } else { 860 unsigned Opc = NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri; 861 MI = BuildMI(Opc, 2, X86::ESP).addReg(X86::ESP).addImm(NumBytes); 862 MBB.insert(MBBI, MI); 863 } 864 } 865 866 if (hasFP(MF)) { 867 // Get the offset of the stack slot for the EBP register... which is 868 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 869 int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexBegin())+4; 870 871 // Save EBP into the appropriate stack slot... 872 MI = addRegOffset(BuildMI(X86::MOV32mr, 5), // mov [ESP-<offset>], EBP 873 X86::ESP, EBPOffset+NumBytes).addReg(X86::EBP); 874 MBB.insert(MBBI, MI); 875 876 // Update EBP with the new base value... 877 if (NumBytes == 4) // mov EBP, ESP 878 MI = BuildMI(X86::MOV32rr, 2, X86::EBP).addReg(X86::ESP); 879 else // lea EBP, [ESP+StackSize] 880 MI = addRegOffset(BuildMI(X86::LEA32r, 5, X86::EBP), X86::ESP,NumBytes-4); 881 882 MBB.insert(MBBI, MI); 883 } 884 885 // If it's main() on Cygwin\Mingw32 we should align stack as well 886 if (Fn->hasExternalLinkage() && Fn->getName() == "main" && 887 Subtarget->TargetType == X86Subtarget::isCygwin) { 888 MI = BuildMI(X86::AND32ri, 2, X86::ESP).addReg(X86::ESP).addImm(-Align); 889 MBB.insert(MBBI, MI); 890 891 // Probe the stack 892 MI = BuildMI(X86::MOV32ri, 2, X86::EAX).addImm(Align); 893 MBB.insert(MBBI, MI); 894 MI = BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("_alloca"); 895 MBB.insert(MBBI, MI); 896 } 897} 898 899void X86RegisterInfo::emitEpilogue(MachineFunction &MF, 900 MachineBasicBlock &MBB) const { 901 const MachineFrameInfo *MFI = MF.getFrameInfo(); 902 MachineBasicBlock::iterator MBBI = prior(MBB.end()); 903 904 switch (MBBI->getOpcode()) { 905 case X86::RET: 906 case X86::RETI: 907 case X86::TAILJMPd: 908 case X86::TAILJMPr: 909 case X86::TAILJMPm: break; // These are ok 910 default: 911 assert(0 && "Can only insert epilog into returning blocks"); 912 } 913 914 if (hasFP(MF)) { 915 // Get the offset of the stack slot for the EBP register... which is 916 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 917 int EBPOffset = MFI->getObjectOffset(MFI->getObjectIndexEnd()-1)+4; 918 919 // mov ESP, EBP 920 BuildMI(MBB, MBBI, X86::MOV32rr, 1, X86::ESP).addReg(X86::EBP); 921 922 // pop EBP 923 BuildMI(MBB, MBBI, X86::POP32r, 0, X86::EBP); 924 } else { 925 // Get the number of bytes allocated from the FrameInfo... 926 unsigned NumBytes = MFI->getStackSize(); 927 928 if (NumBytes) { // adjust stack pointer back: ESP += numbytes 929 // If there is an ADD32ri or SUB32ri of ESP immediately before this 930 // instruction, merge the two instructions. 931 if (MBBI != MBB.begin()) { 932 MachineBasicBlock::iterator PI = prior(MBBI); 933 if ((PI->getOpcode() == X86::ADD32ri || 934 PI->getOpcode() == X86::ADD32ri8) && 935 PI->getOperand(0).getReg() == X86::ESP) { 936 NumBytes += PI->getOperand(1).getImmedValue(); 937 MBB.erase(PI); 938 } else if ((PI->getOpcode() == X86::SUB32ri || 939 PI->getOpcode() == X86::SUB32ri8) && 940 PI->getOperand(0).getReg() == X86::ESP) { 941 NumBytes -= PI->getOperand(1).getImmedValue(); 942 MBB.erase(PI); 943 } else if (PI->getOpcode() == X86::ADJSTACKPTRri) { 944 NumBytes += PI->getOperand(1).getImmedValue(); 945 MBB.erase(PI); 946 } 947 } 948 949 if (NumBytes > 0) { 950 unsigned Opc = NumBytes < 128 ? X86::ADD32ri8 : X86::ADD32ri; 951 BuildMI(MBB, MBBI, Opc, 2, X86::ESP).addReg(X86::ESP).addImm(NumBytes); 952 } else if ((int)NumBytes < 0) { 953 unsigned Opc = -NumBytes < 128 ? X86::SUB32ri8 : X86::SUB32ri; 954 BuildMI(MBB, MBBI, Opc, 2, X86::ESP).addReg(X86::ESP).addImm(-NumBytes); 955 } 956 } 957 } 958} 959 960unsigned X86RegisterInfo::getRARegister() const { 961 return X86::ST0; // use a non-register register 962} 963 964unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const { 965 return hasFP(MF) ? X86::EBP : X86::ESP; 966} 967 968namespace llvm { 969unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) { 970 switch (VT) { 971 default: return Reg; 972 case MVT::i8: 973 if (High) { 974 switch (Reg) { 975 default: return Reg; 976 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: 977 return X86::AH; 978 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: 979 return X86::DH; 980 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: 981 return X86::CH; 982 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: 983 return X86::BH; 984 } 985 } else { 986 switch (Reg) { 987 default: return Reg; 988 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: 989 return X86::AL; 990 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: 991 return X86::DL; 992 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: 993 return X86::CL; 994 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: 995 return X86::BL; 996 } 997 } 998 case MVT::i16: 999 switch (Reg) { 1000 default: return Reg; 1001 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: 1002 return X86::AX; 1003 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: 1004 return X86::DX; 1005 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: 1006 return X86::CX; 1007 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: 1008 return X86::BX; 1009 case X86::ESI: 1010 return X86::SI; 1011 case X86::EDI: 1012 return X86::DI; 1013 case X86::EBP: 1014 return X86::BP; 1015 case X86::ESP: 1016 return X86::SP; 1017 } 1018 case MVT::i32: 1019 switch (Reg) { 1020 default: return true; 1021 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: 1022 return X86::EAX; 1023 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: 1024 return X86::EDX; 1025 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: 1026 return X86::ECX; 1027 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: 1028 return X86::EBX; 1029 case X86::SI: 1030 return X86::ESI; 1031 case X86::DI: 1032 return X86::EDI; 1033 case X86::BP: 1034 return X86::EBP; 1035 case X86::SP: 1036 return X86::ESP; 1037 } 1038 } 1039 1040 return Reg; 1041} 1042} 1043 1044#include "X86GenRegisterInfo.inc" 1045 1046