X86RegisterInfo.cpp revision 464bee191feb3062a63a378189e542d15bb806e2
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the X86 implementation of the TargetRegisterInfo class. 11// This file is responsible for the frame pointer elimination optimization 12// on X86. 13// 14//===----------------------------------------------------------------------===// 15 16#include "X86.h" 17#include "X86RegisterInfo.h" 18#include "X86InstrBuilder.h" 19#include "X86MachineFunctionInfo.h" 20#include "X86Subtarget.h" 21#include "X86TargetMachine.h" 22#include "llvm/Constants.h" 23#include "llvm/Function.h" 24#include "llvm/Type.h" 25#include "llvm/CodeGen/ValueTypes.h" 26#include "llvm/CodeGen/MachineInstrBuilder.h" 27#include "llvm/CodeGen/MachineFunction.h" 28#include "llvm/CodeGen/MachineFunctionPass.h" 29#include "llvm/CodeGen/MachineFrameInfo.h" 30#include "llvm/CodeGen/MachineLocation.h" 31#include "llvm/CodeGen/MachineModuleInfo.h" 32#include "llvm/CodeGen/MachineRegisterInfo.h" 33#include "llvm/MC/MCAsmInfo.h" 34#include "llvm/Target/TargetFrameInfo.h" 35#include "llvm/Target/TargetInstrInfo.h" 36#include "llvm/Target/TargetMachine.h" 37#include "llvm/Target/TargetOptions.h" 38#include "llvm/ADT/BitVector.h" 39#include "llvm/ADT/STLExtras.h" 40#include "llvm/Support/CommandLine.h" 41#include "llvm/Support/ErrorHandling.h" 42using namespace llvm; 43 44X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, 45 const TargetInstrInfo &tii) 46 : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ? 47 X86::ADJCALLSTACKDOWN64 : 48 X86::ADJCALLSTACKDOWN32, 49 tm.getSubtarget<X86Subtarget>().is64Bit() ? 50 X86::ADJCALLSTACKUP64 : 51 X86::ADJCALLSTACKUP32), 52 TM(tm), TII(tii) { 53 // Cache some information. 54 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 55 Is64Bit = Subtarget->is64Bit(); 56 IsWin64 = Subtarget->isTargetWin64(); 57 StackAlign = TM.getFrameInfo()->getStackAlignment(); 58 59 if (Is64Bit) { 60 SlotSize = 8; 61 StackPtr = X86::RSP; 62 FramePtr = X86::RBP; 63 } else { 64 SlotSize = 4; 65 StackPtr = X86::ESP; 66 FramePtr = X86::EBP; 67 } 68} 69 70/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF 71/// specific numbering, used in debug info and exception tables. 72int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const { 73 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 74 unsigned Flavour = DWARFFlavour::X86_64; 75 76 if (!Subtarget->is64Bit()) { 77 if (Subtarget->isTargetDarwin()) { 78 if (isEH) 79 Flavour = DWARFFlavour::X86_32_DarwinEH; 80 else 81 Flavour = DWARFFlavour::X86_32_Generic; 82 } else if (Subtarget->isTargetCygMing()) { 83 // Unsupported by now, just quick fallback 84 Flavour = DWARFFlavour::X86_32_Generic; 85 } else { 86 Flavour = DWARFFlavour::X86_32_Generic; 87 } 88 } 89 90 return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour); 91} 92 93/// getX86RegNum - This function maps LLVM register identifiers to their X86 94/// specific numbering, which is used in various places encoding instructions. 95unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) { 96 switch(RegNo) { 97 case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; 98 case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; 99 case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; 100 case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; 101 case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: 102 return N86::ESP; 103 case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: 104 return N86::EBP; 105 case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: 106 return N86::ESI; 107 case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: 108 return N86::EDI; 109 110 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: 111 return N86::EAX; 112 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: 113 return N86::ECX; 114 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: 115 return N86::EDX; 116 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: 117 return N86::EBX; 118 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: 119 return N86::ESP; 120 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: 121 return N86::EBP; 122 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: 123 return N86::ESI; 124 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: 125 return N86::EDI; 126 127 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: 128 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: 129 return RegNo-X86::ST0; 130 131 case X86::XMM0: case X86::XMM8: case X86::MM0: 132 return 0; 133 case X86::XMM1: case X86::XMM9: case X86::MM1: 134 return 1; 135 case X86::XMM2: case X86::XMM10: case X86::MM2: 136 return 2; 137 case X86::XMM3: case X86::XMM11: case X86::MM3: 138 return 3; 139 case X86::XMM4: case X86::XMM12: case X86::MM4: 140 return 4; 141 case X86::XMM5: case X86::XMM13: case X86::MM5: 142 return 5; 143 case X86::XMM6: case X86::XMM14: case X86::MM6: 144 return 6; 145 case X86::XMM7: case X86::XMM15: case X86::MM7: 146 return 7; 147 148 default: 149 assert(isVirtualRegister(RegNo) && "Unknown physical register!"); 150 llvm_unreachable("Register allocator hasn't allocated reg correctly yet!"); 151 return 0; 152 } 153} 154 155const TargetRegisterClass * 156X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, 157 const TargetRegisterClass *B, 158 unsigned SubIdx) const { 159 switch (SubIdx) { 160 default: return 0; 161 case 1: 162 // 8-bit 163 if (B == &X86::GR8RegClass) { 164 if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8) 165 return A; 166 } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) { 167 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 168 A == &X86::GR64_NOREXRegClass || 169 A == &X86::GR64_NOSPRegClass || 170 A == &X86::GR64_NOREX_NOSPRegClass) 171 return &X86::GR64_ABCDRegClass; 172 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 173 A == &X86::GR32_NOREXRegClass || 174 A == &X86::GR32_NOSPRegClass) 175 return &X86::GR32_ABCDRegClass; 176 else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass || 177 A == &X86::GR16_NOREXRegClass) 178 return &X86::GR16_ABCDRegClass; 179 } else if (B == &X86::GR8_NOREXRegClass) { 180 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 181 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 182 return &X86::GR64_NOREXRegClass; 183 else if (A == &X86::GR64_ABCDRegClass) 184 return &X86::GR64_ABCDRegClass; 185 else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass || 186 A == &X86::GR32_NOSPRegClass) 187 return &X86::GR32_NOREXRegClass; 188 else if (A == &X86::GR32_ABCDRegClass) 189 return &X86::GR32_ABCDRegClass; 190 else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass) 191 return &X86::GR16_NOREXRegClass; 192 else if (A == &X86::GR16_ABCDRegClass) 193 return &X86::GR16_ABCDRegClass; 194 } else if (B == &X86::FR32RegClass) { 195 return A; 196 } 197 break; 198 case 2: 199 // 8-bit hi 200 if (B == &X86::GR8_ABCD_HRegClass) { 201 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 202 A == &X86::GR64_NOREXRegClass || 203 A == &X86::GR64_NOSPRegClass || 204 A == &X86::GR64_NOREX_NOSPRegClass) 205 return &X86::GR64_ABCDRegClass; 206 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 207 A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) 208 return &X86::GR32_ABCDRegClass; 209 else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass || 210 A == &X86::GR16_NOREXRegClass) 211 return &X86::GR16_ABCDRegClass; 212 } else if (B == &X86::FR64RegClass) { 213 return A; 214 } 215 break; 216 case 3: 217 // 16-bit 218 if (B == &X86::GR16RegClass) { 219 if (A->getSize() == 4 || A->getSize() == 8) 220 return A; 221 } else if (B == &X86::GR16_ABCDRegClass) { 222 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 223 A == &X86::GR64_NOREXRegClass || 224 A == &X86::GR64_NOSPRegClass || 225 A == &X86::GR64_NOREX_NOSPRegClass) 226 return &X86::GR64_ABCDRegClass; 227 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 228 A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) 229 return &X86::GR32_ABCDRegClass; 230 } else if (B == &X86::GR16_NOREXRegClass) { 231 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 232 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 233 return &X86::GR64_NOREXRegClass; 234 else if (A == &X86::GR64_ABCDRegClass) 235 return &X86::GR64_ABCDRegClass; 236 else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass || 237 A == &X86::GR32_NOSPRegClass) 238 return &X86::GR32_NOREXRegClass; 239 else if (A == &X86::GR32_ABCDRegClass) 240 return &X86::GR64_ABCDRegClass; 241 } else if (B == &X86::VR128RegClass) { 242 return A; 243 } 244 break; 245 case 4: 246 // 32-bit 247 if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) { 248 if (A->getSize() == 8) 249 return A; 250 } else if (B == &X86::GR32_ABCDRegClass) { 251 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 252 A == &X86::GR64_NOREXRegClass || 253 A == &X86::GR64_NOSPRegClass || 254 A == &X86::GR64_NOREX_NOSPRegClass) 255 return &X86::GR64_ABCDRegClass; 256 } else if (B == &X86::GR32_NOREXRegClass) { 257 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 258 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 259 return &X86::GR64_NOREXRegClass; 260 else if (A == &X86::GR64_ABCDRegClass) 261 return &X86::GR64_ABCDRegClass; 262 } 263 break; 264 } 265 return 0; 266} 267 268const TargetRegisterClass * 269X86RegisterInfo::getPointerRegClass(unsigned Kind) const { 270 switch (Kind) { 271 default: llvm_unreachable("Unexpected Kind in getPointerRegClass!"); 272 case 0: // Normal GPRs. 273 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 274 return &X86::GR64RegClass; 275 return &X86::GR32RegClass; 276 case 1: // Normal GRPs except the stack pointer (for encoding reasons). 277 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 278 return &X86::GR64_NOSPRegClass; 279 return &X86::GR32_NOSPRegClass; 280 } 281} 282 283const TargetRegisterClass * 284X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { 285 if (RC == &X86::CCRRegClass) { 286 if (Is64Bit) 287 return &X86::GR64RegClass; 288 else 289 return &X86::GR32RegClass; 290 } 291 return NULL; 292} 293 294const unsigned * 295X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 296 bool callsEHReturn = false; 297 bool ghcCall = false; 298 299 if (MF) { 300 const MachineFrameInfo *MFI = MF->getFrameInfo(); 301 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 302 callsEHReturn = (MMI ? MMI->callsEHReturn() : false); 303 const Function *F = MF->getFunction(); 304 ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false); 305 } 306 307 static const unsigned GhcCalleeSavedRegs[] = { 308 0 309 }; 310 311 static const unsigned CalleeSavedRegs32Bit[] = { 312 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 313 }; 314 315 static const unsigned CalleeSavedRegs32EHRet[] = { 316 X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 317 }; 318 319 static const unsigned CalleeSavedRegs64Bit[] = { 320 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 321 }; 322 323 static const unsigned CalleeSavedRegs64EHRet[] = { 324 X86::RAX, X86::RDX, X86::RBX, X86::R12, 325 X86::R13, X86::R14, X86::R15, X86::RBP, 0 326 }; 327 328 static const unsigned CalleeSavedRegsWin64[] = { 329 X86::RBX, X86::RBP, X86::RDI, X86::RSI, 330 X86::R12, X86::R13, X86::R14, X86::R15, 331 X86::XMM6, X86::XMM7, X86::XMM8, X86::XMM9, 332 X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13, 333 X86::XMM14, X86::XMM15, 0 334 }; 335 336 if (ghcCall) { 337 return GhcCalleeSavedRegs; 338 } else if (Is64Bit) { 339 if (IsWin64) 340 return CalleeSavedRegsWin64; 341 else 342 return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit); 343 } else { 344 return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit); 345 } 346} 347 348const TargetRegisterClass* const* 349X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const { 350 bool callsEHReturn = false; 351 352 if (MF) { 353 const MachineFrameInfo *MFI = MF->getFrameInfo(); 354 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 355 callsEHReturn = (MMI ? MMI->callsEHReturn() : false); 356 } 357 358 static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = { 359 &X86::GR32RegClass, &X86::GR32RegClass, 360 &X86::GR32RegClass, &X86::GR32RegClass, 0 361 }; 362 static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = { 363 &X86::GR32RegClass, &X86::GR32RegClass, 364 &X86::GR32RegClass, &X86::GR32RegClass, 365 &X86::GR32RegClass, &X86::GR32RegClass, 0 366 }; 367 static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = { 368 &X86::GR64RegClass, &X86::GR64RegClass, 369 &X86::GR64RegClass, &X86::GR64RegClass, 370 &X86::GR64RegClass, &X86::GR64RegClass, 0 371 }; 372 static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = { 373 &X86::GR64RegClass, &X86::GR64RegClass, 374 &X86::GR64RegClass, &X86::GR64RegClass, 375 &X86::GR64RegClass, &X86::GR64RegClass, 376 &X86::GR64RegClass, &X86::GR64RegClass, 0 377 }; 378 static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = { 379 &X86::GR64RegClass, &X86::GR64RegClass, 380 &X86::GR64RegClass, &X86::GR64RegClass, 381 &X86::GR64RegClass, &X86::GR64RegClass, 382 &X86::GR64RegClass, &X86::GR64RegClass, 383 &X86::VR128RegClass, &X86::VR128RegClass, 384 &X86::VR128RegClass, &X86::VR128RegClass, 385 &X86::VR128RegClass, &X86::VR128RegClass, 386 &X86::VR128RegClass, &X86::VR128RegClass, 387 &X86::VR128RegClass, &X86::VR128RegClass, 0 388 }; 389 390 if (Is64Bit) { 391 if (IsWin64) 392 return CalleeSavedRegClassesWin64; 393 else 394 return (callsEHReturn ? 395 CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit); 396 } else { 397 return (callsEHReturn ? 398 CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit); 399 } 400} 401 402BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const { 403 BitVector Reserved(getNumRegs()); 404 // Set the stack-pointer register and its aliases as reserved. 405 Reserved.set(X86::RSP); 406 Reserved.set(X86::ESP); 407 Reserved.set(X86::SP); 408 Reserved.set(X86::SPL); 409 410 // Set the instruction pointer register and its aliases as reserved. 411 Reserved.set(X86::RIP); 412 Reserved.set(X86::EIP); 413 Reserved.set(X86::IP); 414 415 // Set the frame-pointer register and its aliases as reserved if needed. 416 if (hasFP(MF)) { 417 Reserved.set(X86::RBP); 418 Reserved.set(X86::EBP); 419 Reserved.set(X86::BP); 420 Reserved.set(X86::BPL); 421 } 422 423 // Mark the x87 stack registers as reserved, since they don't behave normally 424 // with respect to liveness. We don't fully model the effects of x87 stack 425 // pushes and pops after stackification. 426 Reserved.set(X86::ST0); 427 Reserved.set(X86::ST1); 428 Reserved.set(X86::ST2); 429 Reserved.set(X86::ST3); 430 Reserved.set(X86::ST4); 431 Reserved.set(X86::ST5); 432 Reserved.set(X86::ST6); 433 Reserved.set(X86::ST7); 434 return Reserved; 435} 436 437//===----------------------------------------------------------------------===// 438// Stack Frame Processing methods 439//===----------------------------------------------------------------------===// 440 441/// hasFP - Return true if the specified function should have a dedicated frame 442/// pointer register. This is true if the function has variable sized allocas 443/// or if frame pointer elimination is disabled. 444bool X86RegisterInfo::hasFP(const MachineFunction &MF) const { 445 const MachineFrameInfo *MFI = MF.getFrameInfo(); 446 const MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 447 448 return (NoFramePointerElim || 449 needsStackRealignment(MF) || 450 MFI->hasVarSizedObjects() || 451 MFI->isFrameAddressTaken() || 452 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 453 (MMI && MMI->callsUnwindInit())); 454} 455 456bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const { 457 const MachineFrameInfo *MFI = MF.getFrameInfo(); 458 return (RealignStack && 459 !MFI->hasVarSizedObjects()); 460} 461 462bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const { 463 const MachineFrameInfo *MFI = MF.getFrameInfo(); 464 const Function *F = MF.getFunction(); 465 bool requiresRealignment = 466 RealignStack && ((MFI->getMaxAlignment() > StackAlign) || 467 F->hasFnAttr(Attribute::StackAlignment)); 468 469 // FIXME: Currently we don't support stack realignment for functions with 470 // variable-sized allocas. 471 // FIXME: Temporary disable the error - it seems to be too conservative. 472 if (0 && requiresRealignment && MFI->hasVarSizedObjects()) 473 llvm_report_error( 474 "Stack realignment in presense of dynamic allocas is not supported"); 475 476 return (requiresRealignment && !MFI->hasVarSizedObjects()); 477} 478 479bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const { 480 return !MF.getFrameInfo()->hasVarSizedObjects(); 481} 482 483bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction &MF, unsigned Reg, 484 int &FrameIdx) const { 485 if (Reg == FramePtr && hasFP(MF)) { 486 FrameIdx = MF.getFrameInfo()->getObjectIndexBegin(); 487 return true; 488 } 489 return false; 490} 491 492int 493X86RegisterInfo::getFrameIndexOffset(const MachineFunction &MF, int FI) const { 494 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); 495 const MachineFrameInfo *MFI = MF.getFrameInfo(); 496 int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea(); 497 uint64_t StackSize = MFI->getStackSize(); 498 499 if (needsStackRealignment(MF)) { 500 if (FI < 0) { 501 // Skip the saved EBP. 502 Offset += SlotSize; 503 } else { 504 unsigned Align = MFI->getObjectAlignment(FI); 505 assert((-(Offset + StackSize)) % Align == 0); 506 Align = 0; 507 return Offset + StackSize; 508 } 509 // FIXME: Support tail calls 510 } else { 511 if (!hasFP(MF)) 512 return Offset + StackSize; 513 514 // Skip the saved EBP. 515 Offset += SlotSize; 516 517 // Skip the RETADDR move area 518 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 519 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 520 if (TailCallReturnAddrDelta < 0) 521 Offset -= TailCallReturnAddrDelta; 522 } 523 524 return Offset; 525} 526 527void X86RegisterInfo:: 528eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 529 MachineBasicBlock::iterator I) const { 530 if (!hasReservedCallFrame(MF)) { 531 // If the stack pointer can be changed after prologue, turn the 532 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 533 // adjcallstackdown instruction into 'add ESP, <amt>' 534 // TODO: consider using push / pop instead of sub + store / add 535 MachineInstr *Old = I; 536 uint64_t Amount = Old->getOperand(0).getImm(); 537 if (Amount != 0) { 538 // We need to keep the stack aligned properly. To do this, we round the 539 // amount of space needed for the outgoing arguments up to the next 540 // alignment boundary. 541 Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign; 542 543 MachineInstr *New = 0; 544 if (Old->getOpcode() == getCallFrameSetupOpcode()) { 545 New = BuildMI(MF, Old->getDebugLoc(), 546 TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), 547 StackPtr) 548 .addReg(StackPtr) 549 .addImm(Amount); 550 } else { 551 assert(Old->getOpcode() == getCallFrameDestroyOpcode()); 552 553 // Factor out the amount the callee already popped. 554 uint64_t CalleeAmt = Old->getOperand(1).getImm(); 555 Amount -= CalleeAmt; 556 557 if (Amount) { 558 unsigned Opc = (Amount < 128) ? 559 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 560 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri); 561 New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr) 562 .addReg(StackPtr) 563 .addImm(Amount); 564 } 565 } 566 567 if (New) { 568 // The EFLAGS implicit def is dead. 569 New->getOperand(3).setIsDead(); 570 571 // Replace the pseudo instruction with a new instruction. 572 MBB.insert(I, New); 573 } 574 } 575 } else if (I->getOpcode() == getCallFrameDestroyOpcode()) { 576 // If we are performing frame pointer elimination and if the callee pops 577 // something off the stack pointer, add it back. We do this until we have 578 // more advanced stack pointer tracking ability. 579 if (uint64_t CalleeAmt = I->getOperand(1).getImm()) { 580 unsigned Opc = (CalleeAmt < 128) ? 581 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 582 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); 583 MachineInstr *Old = I; 584 MachineInstr *New = 585 BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), 586 StackPtr) 587 .addReg(StackPtr) 588 .addImm(CalleeAmt); 589 590 // The EFLAGS implicit def is dead. 591 New->getOperand(3).setIsDead(); 592 MBB.insert(I, New); 593 } 594 } 595 596 MBB.erase(I); 597} 598 599unsigned 600X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 601 int SPAdj, FrameIndexValue *Value, 602 RegScavenger *RS) const{ 603 assert(SPAdj == 0 && "Unexpected"); 604 605 unsigned i = 0; 606 MachineInstr &MI = *II; 607 MachineFunction &MF = *MI.getParent()->getParent(); 608 609 while (!MI.getOperand(i).isFI()) { 610 ++i; 611 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 612 } 613 614 int FrameIndex = MI.getOperand(i).getIndex(); 615 unsigned BasePtr; 616 617 if (needsStackRealignment(MF)) 618 BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr); 619 else 620 BasePtr = (hasFP(MF) ? FramePtr : StackPtr); 621 622 // This must be part of a four operand memory reference. Replace the 623 // FrameIndex with base register with EBP. Add an offset to the offset. 624 MI.getOperand(i).ChangeToRegister(BasePtr, false); 625 626 // Now add the frame object offset to the offset from EBP. 627 if (MI.getOperand(i+3).isImm()) { 628 // Offset is a 32-bit integer. 629 int Offset = getFrameIndexOffset(MF, FrameIndex) + 630 (int)(MI.getOperand(i + 3).getImm()); 631 632 MI.getOperand(i + 3).ChangeToImmediate(Offset); 633 } else { 634 // Offset is symbolic. This is extremely rare. 635 uint64_t Offset = getFrameIndexOffset(MF, FrameIndex) + 636 (uint64_t)MI.getOperand(i+3).getOffset(); 637 MI.getOperand(i+3).setOffset(Offset); 638 } 639 return 0; 640} 641 642void 643X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, 644 RegScavenger *RS) const { 645 MachineFrameInfo *MFI = MF.getFrameInfo(); 646 647 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 648 int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 649 650 if (TailCallReturnAddrDelta < 0) { 651 // create RETURNADDR area 652 // arg 653 // arg 654 // RETADDR 655 // { ... 656 // RETADDR area 657 // ... 658 // } 659 // [EBP] 660 MFI->CreateFixedObject(-TailCallReturnAddrDelta, 661 (-1U*SlotSize)+TailCallReturnAddrDelta, 662 true, false); 663 } 664 665 if (hasFP(MF)) { 666 assert((TailCallReturnAddrDelta <= 0) && 667 "The Delta should always be zero or negative"); 668 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); 669 670 // Create a frame entry for the EBP register that must be saved. 671 int FrameIdx = MFI->CreateFixedObject(SlotSize, 672 -(int)SlotSize + 673 TFI.getOffsetOfLocalArea() + 674 TailCallReturnAddrDelta, 675 true, false); 676 assert(FrameIdx == MFI->getObjectIndexBegin() && 677 "Slot for EBP register must be last in order to be found!"); 678 FrameIdx = 0; 679 } 680} 681 682/// emitSPUpdate - Emit a series of instructions to increment / decrement the 683/// stack pointer by a constant value. 684static 685void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 686 unsigned StackPtr, int64_t NumBytes, bool Is64Bit, 687 const TargetInstrInfo &TII) { 688 bool isSub = NumBytes < 0; 689 uint64_t Offset = isSub ? -NumBytes : NumBytes; 690 unsigned Opc = isSub 691 ? ((Offset < 128) ? 692 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 693 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri)) 694 : ((Offset < 128) ? 695 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 696 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri)); 697 uint64_t Chunk = (1LL << 31) - 1; 698 DebugLoc DL = MBB.findDebugLoc(MBBI); 699 700 while (Offset) { 701 uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset; 702 MachineInstr *MI = 703 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 704 .addReg(StackPtr) 705 .addImm(ThisVal); 706 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 707 Offset -= ThisVal; 708 } 709} 710 711/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. 712static 713void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 714 unsigned StackPtr, uint64_t *NumBytes = NULL) { 715 if (MBBI == MBB.begin()) return; 716 717 MachineBasicBlock::iterator PI = prior(MBBI); 718 unsigned Opc = PI->getOpcode(); 719 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 720 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 721 PI->getOperand(0).getReg() == StackPtr) { 722 if (NumBytes) 723 *NumBytes += PI->getOperand(2).getImm(); 724 MBB.erase(PI); 725 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 726 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 727 PI->getOperand(0).getReg() == StackPtr) { 728 if (NumBytes) 729 *NumBytes -= PI->getOperand(2).getImm(); 730 MBB.erase(PI); 731 } 732} 733 734/// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator. 735static 736void mergeSPUpdatesDown(MachineBasicBlock &MBB, 737 MachineBasicBlock::iterator &MBBI, 738 unsigned StackPtr, uint64_t *NumBytes = NULL) { 739 // FIXME: THIS ISN'T RUN!!! 740 return; 741 742 if (MBBI == MBB.end()) return; 743 744 MachineBasicBlock::iterator NI = llvm::next(MBBI); 745 if (NI == MBB.end()) return; 746 747 unsigned Opc = NI->getOpcode(); 748 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 749 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 750 NI->getOperand(0).getReg() == StackPtr) { 751 if (NumBytes) 752 *NumBytes -= NI->getOperand(2).getImm(); 753 MBB.erase(NI); 754 MBBI = NI; 755 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 756 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 757 NI->getOperand(0).getReg() == StackPtr) { 758 if (NumBytes) 759 *NumBytes += NI->getOperand(2).getImm(); 760 MBB.erase(NI); 761 MBBI = NI; 762 } 763} 764 765/// mergeSPUpdates - Checks the instruction before/after the passed 766/// instruction. If it is an ADD/SUB instruction it is deleted argument and the 767/// stack adjustment is returned as a positive value for ADD and a negative for 768/// SUB. 769static int mergeSPUpdates(MachineBasicBlock &MBB, 770 MachineBasicBlock::iterator &MBBI, 771 unsigned StackPtr, 772 bool doMergeWithPrevious) { 773 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 774 (!doMergeWithPrevious && MBBI == MBB.end())) 775 return 0; 776 777 MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI; 778 MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI); 779 unsigned Opc = PI->getOpcode(); 780 int Offset = 0; 781 782 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 783 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 784 PI->getOperand(0).getReg() == StackPtr){ 785 Offset += PI->getOperand(2).getImm(); 786 MBB.erase(PI); 787 if (!doMergeWithPrevious) MBBI = NI; 788 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 789 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 790 PI->getOperand(0).getReg() == StackPtr) { 791 Offset -= PI->getOperand(2).getImm(); 792 MBB.erase(PI); 793 if (!doMergeWithPrevious) MBBI = NI; 794 } 795 796 return Offset; 797} 798 799void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF, 800 unsigned LabelId, 801 unsigned FramePtr) const { 802 MachineFrameInfo *MFI = MF.getFrameInfo(); 803 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 804 if (!MMI) return; 805 806 // Add callee saved registers to move list. 807 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); 808 if (CSI.empty()) return; 809 810 std::vector<MachineMove> &Moves = MMI->getFrameMoves(); 811 const TargetData *TD = MF.getTarget().getTargetData(); 812 bool HasFP = hasFP(MF); 813 814 // Calculate amount of bytes used for return address storing. 815 int stackGrowth = 816 (MF.getTarget().getFrameInfo()->getStackGrowthDirection() == 817 TargetFrameInfo::StackGrowsUp ? 818 TD->getPointerSize() : -TD->getPointerSize()); 819 820 // FIXME: This is dirty hack. The code itself is pretty mess right now. 821 // It should be rewritten from scratch and generalized sometimes. 822 823 // Determine maximum offset (minumum due to stack growth). 824 int64_t MaxOffset = 0; 825 for (std::vector<CalleeSavedInfo>::const_iterator 826 I = CSI.begin(), E = CSI.end(); I != E; ++I) 827 MaxOffset = std::min(MaxOffset, 828 MFI->getObjectOffset(I->getFrameIdx())); 829 830 // Calculate offsets. 831 int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth; 832 for (std::vector<CalleeSavedInfo>::const_iterator 833 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 834 int64_t Offset = MFI->getObjectOffset(I->getFrameIdx()); 835 unsigned Reg = I->getReg(); 836 Offset = MaxOffset - Offset + saveAreaOffset; 837 838 // Don't output a new machine move if we're re-saving the frame 839 // pointer. This happens when the PrologEpilogInserter has inserted an extra 840 // "PUSH" of the frame pointer -- the "emitPrologue" method automatically 841 // generates one when frame pointers are used. If we generate a "machine 842 // move" for this extra "PUSH", the linker will lose track of the fact that 843 // the frame pointer should have the value of the first "PUSH" when it's 844 // trying to unwind. 845 // 846 // FIXME: This looks inelegant. It's possibly correct, but it's covering up 847 // another bug. I.e., one where we generate a prolog like this: 848 // 849 // pushl %ebp 850 // movl %esp, %ebp 851 // pushl %ebp 852 // pushl %esi 853 // ... 854 // 855 // The immediate re-push of EBP is unnecessary. At the least, it's an 856 // optimization bug. EBP can be used as a scratch register in certain 857 // cases, but probably not when we have a frame pointer. 858 if (HasFP && FramePtr == Reg) 859 continue; 860 861 MachineLocation CSDst(MachineLocation::VirtualFP, Offset); 862 MachineLocation CSSrc(Reg); 863 Moves.push_back(MachineMove(LabelId, CSDst, CSSrc)); 864 } 865} 866 867/// emitPrologue - Push callee-saved registers onto the stack, which 868/// automatically adjust the stack pointer. Adjust the stack pointer to allocate 869/// space for local variables. Also emit labels used by the exception handler to 870/// generate the exception handling frames. 871void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { 872 MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB. 873 MachineBasicBlock::iterator MBBI = MBB.begin(); 874 MachineFrameInfo *MFI = MF.getFrameInfo(); 875 const Function *Fn = MF.getFunction(); 876 const X86Subtarget *Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 877 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 878 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 879 bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) || 880 !Fn->doesNotThrow() || UnwindTablesMandatory; 881 uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment. 882 uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate. 883 bool HasFP = hasFP(MF); 884 DebugLoc DL; 885 886 // Add RETADDR move area to callee saved frame size. 887 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 888 if (TailCallReturnAddrDelta < 0) 889 X86FI->setCalleeSavedFrameSize( 890 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 891 892 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 893 // function, and use up to 128 bytes of stack space, don't have a frame 894 // pointer, calls, or dynamic alloca then we do not need to adjust the 895 // stack pointer (we fit in the Red Zone). 896 if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) && 897 !needsStackRealignment(MF) && 898 !MFI->hasVarSizedObjects() && // No dynamic alloca. 899 !MFI->hasCalls() && // No calls. 900 !Subtarget->isTargetWin64()) { // Win64 has no Red Zone 901 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 902 if (HasFP) MinSize += SlotSize; 903 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 904 MFI->setStackSize(StackSize); 905 } else if (Subtarget->isTargetWin64()) { 906 // We need to always allocate 32 bytes as register spill area. 907 // FIXME: We might reuse these 32 bytes for leaf functions. 908 StackSize += 32; 909 MFI->setStackSize(StackSize); 910 } 911 912 // Insert stack pointer adjustment for later moving of return addr. Only 913 // applies to tail call optimized functions where the callee argument stack 914 // size is bigger than the callers. 915 if (TailCallReturnAddrDelta < 0) { 916 MachineInstr *MI = 917 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri), 918 StackPtr) 919 .addReg(StackPtr) 920 .addImm(-TailCallReturnAddrDelta); 921 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 922 } 923 924 // Mapping for machine moves: 925 // 926 // DST: VirtualFP AND 927 // SRC: VirtualFP => DW_CFA_def_cfa_offset 928 // ELSE => DW_CFA_def_cfa 929 // 930 // SRC: VirtualFP AND 931 // DST: Register => DW_CFA_def_cfa_register 932 // 933 // ELSE 934 // OFFSET < 0 => DW_CFA_offset_extended_sf 935 // REG < 64 => DW_CFA_offset + Reg 936 // ELSE => DW_CFA_offset_extended 937 938 std::vector<MachineMove> &Moves = MMI->getFrameMoves(); 939 const TargetData *TD = MF.getTarget().getTargetData(); 940 uint64_t NumBytes = 0; 941 int stackGrowth = -TD->getPointerSize(); 942 943 if (HasFP) { 944 // Calculate required stack adjustment. 945 uint64_t FrameSize = StackSize - SlotSize; 946 if (needsStackRealignment(MF)) 947 FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign; 948 949 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 950 951 // Get the offset of the stack slot for the EBP register, which is 952 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 953 // Update the frame offset adjustment. 954 MFI->setOffsetAdjustment(-NumBytes); 955 956 // Save EBP/RBP into the appropriate stack slot. 957 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 958 .addReg(FramePtr, RegState::Kill); 959 960 if (needsFrameMoves) { 961 // Mark the place where EBP/RBP was saved. 962 unsigned FrameLabelId = MMI->NextLabelID(); 963 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId); 964 965 // Define the current CFA rule to use the provided offset. 966 if (StackSize) { 967 MachineLocation SPDst(MachineLocation::VirtualFP); 968 MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth); 969 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 970 } else { 971 // FIXME: Verify & implement for FP 972 MachineLocation SPDst(StackPtr); 973 MachineLocation SPSrc(StackPtr, stackGrowth); 974 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 975 } 976 977 // Change the rule for the FramePtr to be an "offset" rule. 978 MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth); 979 MachineLocation FPSrc(FramePtr); 980 Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc)); 981 } 982 983 // Update EBP with the new base value... 984 BuildMI(MBB, MBBI, DL, 985 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr) 986 .addReg(StackPtr); 987 988 if (needsFrameMoves) { 989 // Mark effective beginning of when frame pointer becomes valid. 990 unsigned FrameLabelId = MMI->NextLabelID(); 991 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId); 992 993 // Define the current CFA to use the EBP/RBP register. 994 MachineLocation FPDst(FramePtr); 995 MachineLocation FPSrc(MachineLocation::VirtualFP); 996 Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc)); 997 } 998 999 // Mark the FramePtr as live-in in every block except the entry. 1000 for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end(); 1001 I != E; ++I) 1002 I->addLiveIn(FramePtr); 1003 1004 // Realign stack 1005 if (needsStackRealignment(MF)) { 1006 MachineInstr *MI = 1007 BuildMI(MBB, MBBI, DL, 1008 TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), 1009 StackPtr).addReg(StackPtr).addImm(-MaxAlign); 1010 1011 // The EFLAGS implicit def is dead. 1012 MI->getOperand(3).setIsDead(); 1013 } 1014 } else { 1015 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1016 } 1017 1018 // Skip the callee-saved push instructions. 1019 bool PushedRegs = false; 1020 int StackOffset = 2 * stackGrowth; 1021 1022 while (MBBI != MBB.end() && 1023 (MBBI->getOpcode() == X86::PUSH32r || 1024 MBBI->getOpcode() == X86::PUSH64r)) { 1025 PushedRegs = true; 1026 ++MBBI; 1027 1028 if (!HasFP && needsFrameMoves) { 1029 // Mark callee-saved push instruction. 1030 unsigned LabelId = MMI->NextLabelID(); 1031 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId); 1032 1033 // Define the current CFA rule to use the provided offset. 1034 unsigned Ptr = StackSize ? 1035 MachineLocation::VirtualFP : StackPtr; 1036 MachineLocation SPDst(Ptr); 1037 MachineLocation SPSrc(Ptr, StackOffset); 1038 Moves.push_back(MachineMove(LabelId, SPDst, SPSrc)); 1039 StackOffset += stackGrowth; 1040 } 1041 } 1042 1043 DL = MBB.findDebugLoc(MBBI); 1044 1045 // Adjust stack pointer: ESP -= numbytes. 1046 if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) { 1047 // Check, whether EAX is livein for this function. 1048 bool isEAXAlive = false; 1049 for (MachineRegisterInfo::livein_iterator 1050 II = MF.getRegInfo().livein_begin(), 1051 EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) { 1052 unsigned Reg = II->first; 1053 isEAXAlive = (Reg == X86::EAX || Reg == X86::AX || 1054 Reg == X86::AH || Reg == X86::AL); 1055 } 1056 1057 // Function prologue calls _alloca to probe the stack when allocating more 1058 // than 4k bytes in one go. Touching the stack at 4K increments is necessary 1059 // to ensure that the guard pages used by the OS virtual memory manager are 1060 // allocated in correct sequence. 1061 if (!isEAXAlive) { 1062 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1063 .addImm(NumBytes); 1064 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 1065 .addExternalSymbol("_alloca") 1066 .addReg(StackPtr, RegState::Define | RegState::Implicit); 1067 } else { 1068 // Save EAX 1069 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1070 .addReg(X86::EAX, RegState::Kill); 1071 1072 // Allocate NumBytes-4 bytes on stack. We'll also use 4 already 1073 // allocated bytes for EAX. 1074 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1075 .addImm(NumBytes - 4); 1076 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 1077 .addExternalSymbol("_alloca") 1078 .addReg(StackPtr, RegState::Define | RegState::Implicit); 1079 1080 // Restore EAX 1081 MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), 1082 X86::EAX), 1083 StackPtr, false, NumBytes - 4); 1084 MBB.insert(MBBI, MI); 1085 } 1086 } else if (NumBytes) { 1087 // If there is an SUB32ri of ESP immediately before this instruction, merge 1088 // the two. This can be the case when tail call elimination is enabled and 1089 // the callee has more arguments then the caller. 1090 NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); 1091 1092 // If there is an ADD32ri or SUB32ri of ESP immediately after this 1093 // instruction, merge the two instructions. 1094 mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes); 1095 1096 if (NumBytes) 1097 emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII); 1098 } 1099 1100 if ((NumBytes || PushedRegs) && needsFrameMoves) { 1101 // Mark end of stack pointer adjustment. 1102 unsigned LabelId = MMI->NextLabelID(); 1103 BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId); 1104 1105 if (!HasFP && NumBytes) { 1106 // Define the current CFA rule to use the provided offset. 1107 if (StackSize) { 1108 MachineLocation SPDst(MachineLocation::VirtualFP); 1109 MachineLocation SPSrc(MachineLocation::VirtualFP, 1110 -StackSize + stackGrowth); 1111 Moves.push_back(MachineMove(LabelId, SPDst, SPSrc)); 1112 } else { 1113 // FIXME: Verify & implement for FP 1114 MachineLocation SPDst(StackPtr); 1115 MachineLocation SPSrc(StackPtr, stackGrowth); 1116 Moves.push_back(MachineMove(LabelId, SPDst, SPSrc)); 1117 } 1118 } 1119 1120 // Emit DWARF info specifying the offsets of the callee-saved registers. 1121 if (PushedRegs) 1122 emitCalleeSavedFrameMoves(MF, LabelId, HasFP ? FramePtr : StackPtr); 1123 } 1124} 1125 1126void X86RegisterInfo::emitEpilogue(MachineFunction &MF, 1127 MachineBasicBlock &MBB) const { 1128 const MachineFrameInfo *MFI = MF.getFrameInfo(); 1129 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1130 MachineBasicBlock::iterator MBBI = prior(MBB.end()); 1131 unsigned RetOpcode = MBBI->getOpcode(); 1132 DebugLoc DL = MBBI->getDebugLoc(); 1133 1134 switch (RetOpcode) { 1135 default: 1136 llvm_unreachable("Can only insert epilog into returning blocks"); 1137 case X86::RET: 1138 case X86::RETI: 1139 case X86::TCRETURNdi: 1140 case X86::TCRETURNri: 1141 case X86::TCRETURNri64: 1142 case X86::TCRETURNdi64: 1143 case X86::EH_RETURN: 1144 case X86::EH_RETURN64: 1145 case X86::TAILJMPd: 1146 case X86::TAILJMPr: 1147 case X86::TAILJMPm: 1148 break; // These are ok 1149 } 1150 1151 // Get the number of bytes to allocate from the FrameInfo. 1152 uint64_t StackSize = MFI->getStackSize(); 1153 uint64_t MaxAlign = MFI->getMaxAlignment(); 1154 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1155 uint64_t NumBytes = 0; 1156 1157 if (hasFP(MF)) { 1158 // Calculate required stack adjustment. 1159 uint64_t FrameSize = StackSize - SlotSize; 1160 if (needsStackRealignment(MF)) 1161 FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign; 1162 1163 NumBytes = FrameSize - CSSize; 1164 1165 // Pop EBP. 1166 BuildMI(MBB, MBBI, DL, 1167 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); 1168 } else { 1169 NumBytes = StackSize - CSSize; 1170 } 1171 1172 // Skip the callee-saved pop instructions. 1173 MachineBasicBlock::iterator LastCSPop = MBBI; 1174 while (MBBI != MBB.begin()) { 1175 MachineBasicBlock::iterator PI = prior(MBBI); 1176 unsigned Opc = PI->getOpcode(); 1177 1178 if (Opc != X86::POP32r && Opc != X86::POP64r && 1179 !PI->getDesc().isTerminator()) 1180 break; 1181 1182 --MBBI; 1183 } 1184 1185 DL = MBBI->getDebugLoc(); 1186 1187 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1188 // instruction, merge the two instructions. 1189 if (NumBytes || MFI->hasVarSizedObjects()) 1190 mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); 1191 1192 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1193 // slot before popping them off! Same applies for the case, when stack was 1194 // realigned. 1195 if (needsStackRealignment(MF)) { 1196 // We cannot use LEA here, because stack pointer was realigned. We need to 1197 // deallocate local frame back. 1198 if (CSSize) { 1199 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 1200 MBBI = prior(LastCSPop); 1201 } 1202 1203 BuildMI(MBB, MBBI, DL, 1204 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), 1205 StackPtr).addReg(FramePtr); 1206 } else if (MFI->hasVarSizedObjects()) { 1207 if (CSSize) { 1208 unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r; 1209 MachineInstr *MI = 1210 addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr), 1211 FramePtr, false, -CSSize); 1212 MBB.insert(MBBI, MI); 1213 } else { 1214 BuildMI(MBB, MBBI, DL, 1215 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr) 1216 .addReg(FramePtr); 1217 } 1218 } else if (NumBytes) { 1219 // Adjust stack pointer back: ESP += numbytes. 1220 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 1221 } 1222 1223 // We're returning from function via eh_return. 1224 if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) { 1225 MBBI = prior(MBB.end()); 1226 MachineOperand &DestAddr = MBBI->getOperand(0); 1227 assert(DestAddr.isReg() && "Offset should be in register!"); 1228 BuildMI(MBB, MBBI, DL, 1229 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), 1230 StackPtr).addReg(DestAddr.getReg()); 1231 } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || 1232 RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) { 1233 // Tail call return: adjust the stack pointer and jump to callee. 1234 MBBI = prior(MBB.end()); 1235 MachineOperand &JumpTarget = MBBI->getOperand(0); 1236 MachineOperand &StackAdjust = MBBI->getOperand(1); 1237 assert(StackAdjust.isImm() && "Expecting immediate value."); 1238 1239 // Adjust stack pointer. 1240 int StackAdj = StackAdjust.getImm(); 1241 int MaxTCDelta = X86FI->getTCReturnAddrDelta(); 1242 int Offset = 0; 1243 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); 1244 1245 // Incoporate the retaddr area. 1246 Offset = StackAdj-MaxTCDelta; 1247 assert(Offset >= 0 && "Offset should never be negative"); 1248 1249 if (Offset) { 1250 // Check for possible merge with preceeding ADD instruction. 1251 Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1252 emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII); 1253 } 1254 1255 // Jump to label or value in register. 1256 if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64) { 1257 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPd)). 1258 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), 1259 JumpTarget.getTargetFlags()); 1260 } else if (RetOpcode == X86::TCRETURNri64) { 1261 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg()); 1262 } else { 1263 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg()); 1264 } 1265 1266 MachineInstr *NewMI = prior(MBBI); 1267 for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i) 1268 NewMI->addOperand(MBBI->getOperand(i)); 1269 1270 // Delete the pseudo instruction TCRETURN. 1271 MBB.erase(MBBI); 1272 } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) && 1273 (X86FI->getTCReturnAddrDelta() < 0)) { 1274 // Add the return addr area delta back since we are not tail calling. 1275 int delta = -1*X86FI->getTCReturnAddrDelta(); 1276 MBBI = prior(MBB.end()); 1277 1278 // Check for possible merge with preceeding ADD instruction. 1279 delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1280 emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII); 1281 } 1282} 1283 1284unsigned X86RegisterInfo::getRARegister() const { 1285 return Is64Bit ? X86::RIP // Should have dwarf #16. 1286 : X86::EIP; // Should have dwarf #8. 1287} 1288 1289unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const { 1290 return hasFP(MF) ? FramePtr : StackPtr; 1291} 1292 1293void 1294X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) const { 1295 // Calculate amount of bytes used for return address storing 1296 int stackGrowth = (Is64Bit ? -8 : -4); 1297 1298 // Initial state of the frame pointer is esp+4. 1299 MachineLocation Dst(MachineLocation::VirtualFP); 1300 MachineLocation Src(StackPtr, stackGrowth); 1301 Moves.push_back(MachineMove(0, Dst, Src)); 1302 1303 // Add return address to move list 1304 MachineLocation CSDst(StackPtr, stackGrowth); 1305 MachineLocation CSSrc(getRARegister()); 1306 Moves.push_back(MachineMove(0, CSDst, CSSrc)); 1307} 1308 1309unsigned X86RegisterInfo::getEHExceptionRegister() const { 1310 llvm_unreachable("What is the exception register"); 1311 return 0; 1312} 1313 1314unsigned X86RegisterInfo::getEHHandlerRegister() const { 1315 llvm_unreachable("What is the exception handler register"); 1316 return 0; 1317} 1318 1319namespace llvm { 1320unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) { 1321 switch (VT.getSimpleVT().SimpleTy) { 1322 default: return Reg; 1323 case MVT::i8: 1324 if (High) { 1325 switch (Reg) { 1326 default: return 0; 1327 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1328 return X86::AH; 1329 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1330 return X86::DH; 1331 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1332 return X86::CH; 1333 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1334 return X86::BH; 1335 } 1336 } else { 1337 switch (Reg) { 1338 default: return 0; 1339 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1340 return X86::AL; 1341 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1342 return X86::DL; 1343 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1344 return X86::CL; 1345 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1346 return X86::BL; 1347 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1348 return X86::SIL; 1349 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1350 return X86::DIL; 1351 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1352 return X86::BPL; 1353 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1354 return X86::SPL; 1355 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1356 return X86::R8B; 1357 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1358 return X86::R9B; 1359 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1360 return X86::R10B; 1361 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1362 return X86::R11B; 1363 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1364 return X86::R12B; 1365 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1366 return X86::R13B; 1367 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1368 return X86::R14B; 1369 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1370 return X86::R15B; 1371 } 1372 } 1373 case MVT::i16: 1374 switch (Reg) { 1375 default: return Reg; 1376 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1377 return X86::AX; 1378 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1379 return X86::DX; 1380 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1381 return X86::CX; 1382 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1383 return X86::BX; 1384 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1385 return X86::SI; 1386 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1387 return X86::DI; 1388 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1389 return X86::BP; 1390 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1391 return X86::SP; 1392 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1393 return X86::R8W; 1394 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1395 return X86::R9W; 1396 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1397 return X86::R10W; 1398 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1399 return X86::R11W; 1400 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1401 return X86::R12W; 1402 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1403 return X86::R13W; 1404 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1405 return X86::R14W; 1406 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1407 return X86::R15W; 1408 } 1409 case MVT::i32: 1410 switch (Reg) { 1411 default: return Reg; 1412 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1413 return X86::EAX; 1414 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1415 return X86::EDX; 1416 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1417 return X86::ECX; 1418 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1419 return X86::EBX; 1420 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1421 return X86::ESI; 1422 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1423 return X86::EDI; 1424 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1425 return X86::EBP; 1426 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1427 return X86::ESP; 1428 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1429 return X86::R8D; 1430 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1431 return X86::R9D; 1432 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1433 return X86::R10D; 1434 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1435 return X86::R11D; 1436 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1437 return X86::R12D; 1438 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1439 return X86::R13D; 1440 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1441 return X86::R14D; 1442 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1443 return X86::R15D; 1444 } 1445 case MVT::i64: 1446 switch (Reg) { 1447 default: return Reg; 1448 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1449 return X86::RAX; 1450 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1451 return X86::RDX; 1452 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1453 return X86::RCX; 1454 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1455 return X86::RBX; 1456 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1457 return X86::RSI; 1458 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1459 return X86::RDI; 1460 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1461 return X86::RBP; 1462 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1463 return X86::RSP; 1464 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1465 return X86::R8; 1466 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1467 return X86::R9; 1468 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1469 return X86::R10; 1470 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1471 return X86::R11; 1472 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1473 return X86::R12; 1474 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1475 return X86::R13; 1476 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1477 return X86::R14; 1478 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1479 return X86::R15; 1480 } 1481 } 1482 1483 return Reg; 1484} 1485} 1486 1487#include "X86GenRegisterInfo.inc" 1488