X86RegisterInfo.cpp revision 4ee451de366474b9c228b4e5fa573795a715216d
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the MRegisterInfo class.  This
11// file is responsible for the frame pointer elimination optimization on X86.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86RegisterInfo.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/Type.h"
24#include "llvm/CodeGen/ValueTypes.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineLocation.h"
29#include "llvm/CodeGen/SSARegMap.h"
30#include "llvm/Target/TargetAsmInfo.h"
31#include "llvm/Target/TargetFrameInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38using namespace llvm;
39
40namespace {
41  cl::opt<bool>
42  NoFusing("disable-spill-fusing",
43           cl::desc("Disable fusing of spill code into instructions"));
44  cl::opt<bool>
45  PrintFailedFusing("print-failed-fuse-candidates",
46                    cl::desc("Print instructions that the allocator wants to"
47                             " fuse, but the X86 backend currently can't"),
48                    cl::Hidden);
49}
50
51X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
52                                 const TargetInstrInfo &tii)
53  : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP),
54    TM(tm), TII(tii) {
55  // Cache some information.
56  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
57  Is64Bit = Subtarget->is64Bit();
58  StackAlign = TM.getFrameInfo()->getStackAlignment();
59  if (Is64Bit) {
60    SlotSize = 8;
61    StackPtr = X86::RSP;
62    FramePtr = X86::RBP;
63  } else {
64    SlotSize = 4;
65    StackPtr = X86::ESP;
66    FramePtr = X86::EBP;
67  }
68
69  SmallVector<unsigned,16> AmbEntries;
70  static const unsigned OpTbl2Addr[][2] = {
71    { X86::ADC32ri,     X86::ADC32mi },
72    { X86::ADC32ri8,    X86::ADC32mi8 },
73    { X86::ADC32rr,     X86::ADC32mr },
74    { X86::ADC64ri32,   X86::ADC64mi32 },
75    { X86::ADC64ri8,    X86::ADC64mi8 },
76    { X86::ADC64rr,     X86::ADC64mr },
77    { X86::ADD16ri,     X86::ADD16mi },
78    { X86::ADD16ri8,    X86::ADD16mi8 },
79    { X86::ADD16rr,     X86::ADD16mr },
80    { X86::ADD32ri,     X86::ADD32mi },
81    { X86::ADD32ri8,    X86::ADD32mi8 },
82    { X86::ADD32rr,     X86::ADD32mr },
83    { X86::ADD64ri32,   X86::ADD64mi32 },
84    { X86::ADD64ri8,    X86::ADD64mi8 },
85    { X86::ADD64rr,     X86::ADD64mr },
86    { X86::ADD8ri,      X86::ADD8mi },
87    { X86::ADD8rr,      X86::ADD8mr },
88    { X86::AND16ri,     X86::AND16mi },
89    { X86::AND16ri8,    X86::AND16mi8 },
90    { X86::AND16rr,     X86::AND16mr },
91    { X86::AND32ri,     X86::AND32mi },
92    { X86::AND32ri8,    X86::AND32mi8 },
93    { X86::AND32rr,     X86::AND32mr },
94    { X86::AND64ri32,   X86::AND64mi32 },
95    { X86::AND64ri8,    X86::AND64mi8 },
96    { X86::AND64rr,     X86::AND64mr },
97    { X86::AND8ri,      X86::AND8mi },
98    { X86::AND8rr,      X86::AND8mr },
99    { X86::DEC16r,      X86::DEC16m },
100    { X86::DEC32r,      X86::DEC32m },
101    { X86::DEC64_16r,   X86::DEC64_16m },
102    { X86::DEC64_32r,   X86::DEC64_32m },
103    { X86::DEC64r,      X86::DEC64m },
104    { X86::DEC8r,       X86::DEC8m },
105    { X86::INC16r,      X86::INC16m },
106    { X86::INC32r,      X86::INC32m },
107    { X86::INC64_16r,   X86::INC64_16m },
108    { X86::INC64_32r,   X86::INC64_32m },
109    { X86::INC64r,      X86::INC64m },
110    { X86::INC8r,       X86::INC8m },
111    { X86::NEG16r,      X86::NEG16m },
112    { X86::NEG32r,      X86::NEG32m },
113    { X86::NEG64r,      X86::NEG64m },
114    { X86::NEG8r,       X86::NEG8m },
115    { X86::NOT16r,      X86::NOT16m },
116    { X86::NOT32r,      X86::NOT32m },
117    { X86::NOT64r,      X86::NOT64m },
118    { X86::NOT8r,       X86::NOT8m },
119    { X86::OR16ri,      X86::OR16mi },
120    { X86::OR16ri8,     X86::OR16mi8 },
121    { X86::OR16rr,      X86::OR16mr },
122    { X86::OR32ri,      X86::OR32mi },
123    { X86::OR32ri8,     X86::OR32mi8 },
124    { X86::OR32rr,      X86::OR32mr },
125    { X86::OR64ri32,    X86::OR64mi32 },
126    { X86::OR64ri8,     X86::OR64mi8 },
127    { X86::OR64rr,      X86::OR64mr },
128    { X86::OR8ri,       X86::OR8mi },
129    { X86::OR8rr,       X86::OR8mr },
130    { X86::ROL16r1,     X86::ROL16m1 },
131    { X86::ROL16rCL,    X86::ROL16mCL },
132    { X86::ROL16ri,     X86::ROL16mi },
133    { X86::ROL32r1,     X86::ROL32m1 },
134    { X86::ROL32rCL,    X86::ROL32mCL },
135    { X86::ROL32ri,     X86::ROL32mi },
136    { X86::ROL64r1,     X86::ROL64m1 },
137    { X86::ROL64rCL,    X86::ROL64mCL },
138    { X86::ROL64ri,     X86::ROL64mi },
139    { X86::ROL8r1,      X86::ROL8m1 },
140    { X86::ROL8rCL,     X86::ROL8mCL },
141    { X86::ROL8ri,      X86::ROL8mi },
142    { X86::ROR16r1,     X86::ROR16m1 },
143    { X86::ROR16rCL,    X86::ROR16mCL },
144    { X86::ROR16ri,     X86::ROR16mi },
145    { X86::ROR32r1,     X86::ROR32m1 },
146    { X86::ROR32rCL,    X86::ROR32mCL },
147    { X86::ROR32ri,     X86::ROR32mi },
148    { X86::ROR64r1,     X86::ROR64m1 },
149    { X86::ROR64rCL,    X86::ROR64mCL },
150    { X86::ROR64ri,     X86::ROR64mi },
151    { X86::ROR8r1,      X86::ROR8m1 },
152    { X86::ROR8rCL,     X86::ROR8mCL },
153    { X86::ROR8ri,      X86::ROR8mi },
154    { X86::SAR16r1,     X86::SAR16m1 },
155    { X86::SAR16rCL,    X86::SAR16mCL },
156    { X86::SAR16ri,     X86::SAR16mi },
157    { X86::SAR32r1,     X86::SAR32m1 },
158    { X86::SAR32rCL,    X86::SAR32mCL },
159    { X86::SAR32ri,     X86::SAR32mi },
160    { X86::SAR64r1,     X86::SAR64m1 },
161    { X86::SAR64rCL,    X86::SAR64mCL },
162    { X86::SAR64ri,     X86::SAR64mi },
163    { X86::SAR8r1,      X86::SAR8m1 },
164    { X86::SAR8rCL,     X86::SAR8mCL },
165    { X86::SAR8ri,      X86::SAR8mi },
166    { X86::SBB32ri,     X86::SBB32mi },
167    { X86::SBB32ri8,    X86::SBB32mi8 },
168    { X86::SBB32rr,     X86::SBB32mr },
169    { X86::SBB64ri32,   X86::SBB64mi32 },
170    { X86::SBB64ri8,    X86::SBB64mi8 },
171    { X86::SBB64rr,     X86::SBB64mr },
172    { X86::SHL16r1,     X86::SHL16m1 },
173    { X86::SHL16rCL,    X86::SHL16mCL },
174    { X86::SHL16ri,     X86::SHL16mi },
175    { X86::SHL32r1,     X86::SHL32m1 },
176    { X86::SHL32rCL,    X86::SHL32mCL },
177    { X86::SHL32ri,     X86::SHL32mi },
178    { X86::SHL64r1,     X86::SHL64m1 },
179    { X86::SHL64rCL,    X86::SHL64mCL },
180    { X86::SHL64ri,     X86::SHL64mi },
181    { X86::SHL8r1,      X86::SHL8m1 },
182    { X86::SHL8rCL,     X86::SHL8mCL },
183    { X86::SHL8ri,      X86::SHL8mi },
184    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
185    { X86::SHLD16rri8,  X86::SHLD16mri8 },
186    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
187    { X86::SHLD32rri8,  X86::SHLD32mri8 },
188    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
189    { X86::SHLD64rri8,  X86::SHLD64mri8 },
190    { X86::SHR16r1,     X86::SHR16m1 },
191    { X86::SHR16rCL,    X86::SHR16mCL },
192    { X86::SHR16ri,     X86::SHR16mi },
193    { X86::SHR32r1,     X86::SHR32m1 },
194    { X86::SHR32rCL,    X86::SHR32mCL },
195    { X86::SHR32ri,     X86::SHR32mi },
196    { X86::SHR64r1,     X86::SHR64m1 },
197    { X86::SHR64rCL,    X86::SHR64mCL },
198    { X86::SHR64ri,     X86::SHR64mi },
199    { X86::SHR8r1,      X86::SHR8m1 },
200    { X86::SHR8rCL,     X86::SHR8mCL },
201    { X86::SHR8ri,      X86::SHR8mi },
202    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
203    { X86::SHRD16rri8,  X86::SHRD16mri8 },
204    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
205    { X86::SHRD32rri8,  X86::SHRD32mri8 },
206    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
207    { X86::SHRD64rri8,  X86::SHRD64mri8 },
208    { X86::SUB16ri,     X86::SUB16mi },
209    { X86::SUB16ri8,    X86::SUB16mi8 },
210    { X86::SUB16rr,     X86::SUB16mr },
211    { X86::SUB32ri,     X86::SUB32mi },
212    { X86::SUB32ri8,    X86::SUB32mi8 },
213    { X86::SUB32rr,     X86::SUB32mr },
214    { X86::SUB64ri32,   X86::SUB64mi32 },
215    { X86::SUB64ri8,    X86::SUB64mi8 },
216    { X86::SUB64rr,     X86::SUB64mr },
217    { X86::SUB8ri,      X86::SUB8mi },
218    { X86::SUB8rr,      X86::SUB8mr },
219    { X86::XOR16ri,     X86::XOR16mi },
220    { X86::XOR16ri8,    X86::XOR16mi8 },
221    { X86::XOR16rr,     X86::XOR16mr },
222    { X86::XOR32ri,     X86::XOR32mi },
223    { X86::XOR32ri8,    X86::XOR32mi8 },
224    { X86::XOR32rr,     X86::XOR32mr },
225    { X86::XOR64ri32,   X86::XOR64mi32 },
226    { X86::XOR64ri8,    X86::XOR64mi8 },
227    { X86::XOR64rr,     X86::XOR64mr },
228    { X86::XOR8ri,      X86::XOR8mi },
229    { X86::XOR8rr,      X86::XOR8mr }
230  };
231
232  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
233    unsigned RegOp = OpTbl2Addr[i][0];
234    unsigned MemOp = OpTbl2Addr[i][1];
235    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
236      assert(false && "Duplicated entries?");
237    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
238    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
239                                               std::make_pair(RegOp, AuxInfo))))
240      AmbEntries.push_back(MemOp);
241  }
242
243  // If the third value is 1, then it's folding either a load or a store.
244  static const unsigned OpTbl0[][3] = {
245    { X86::CALL32r,     X86::CALL32m, 1 },
246    { X86::CALL64r,     X86::CALL64m, 1 },
247    { X86::CMP16ri,     X86::CMP16mi, 1 },
248    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
249    { X86::CMP32ri,     X86::CMP32mi, 1 },
250    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
251    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
252    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
253    { X86::CMP8ri,      X86::CMP8mi, 1 },
254    { X86::DIV16r,      X86::DIV16m, 1 },
255    { X86::DIV32r,      X86::DIV32m, 1 },
256    { X86::DIV64r,      X86::DIV64m, 1 },
257    { X86::DIV8r,       X86::DIV8m, 1 },
258    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
259    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
260    { X86::IDIV16r,     X86::IDIV16m, 1 },
261    { X86::IDIV32r,     X86::IDIV32m, 1 },
262    { X86::IDIV64r,     X86::IDIV64m, 1 },
263    { X86::IDIV8r,      X86::IDIV8m, 1 },
264    { X86::IMUL16r,     X86::IMUL16m, 1 },
265    { X86::IMUL32r,     X86::IMUL32m, 1 },
266    { X86::IMUL64r,     X86::IMUL64m, 1 },
267    { X86::IMUL8r,      X86::IMUL8m, 1 },
268    { X86::JMP32r,      X86::JMP32m, 1 },
269    { X86::JMP64r,      X86::JMP64m, 1 },
270    { X86::MOV16ri,     X86::MOV16mi, 0 },
271    { X86::MOV16rr,     X86::MOV16mr, 0 },
272    { X86::MOV16to16_,  X86::MOV16_mr, 0 },
273    { X86::MOV32ri,     X86::MOV32mi, 0 },
274    { X86::MOV32rr,     X86::MOV32mr, 0 },
275    { X86::MOV32to32_,  X86::MOV32_mr, 0 },
276    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
277    { X86::MOV64rr,     X86::MOV64mr, 0 },
278    { X86::MOV8ri,      X86::MOV8mi, 0 },
279    { X86::MOV8rr,      X86::MOV8mr, 0 },
280    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
281    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
282    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
283    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
284    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
285    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
286    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
287    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
288    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
289    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
290    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
291    { X86::MUL16r,      X86::MUL16m, 1 },
292    { X86::MUL32r,      X86::MUL32m, 1 },
293    { X86::MUL64r,      X86::MUL64m, 1 },
294    { X86::MUL8r,       X86::MUL8m, 1 },
295    { X86::SETAEr,      X86::SETAEm, 0 },
296    { X86::SETAr,       X86::SETAm, 0 },
297    { X86::SETBEr,      X86::SETBEm, 0 },
298    { X86::SETBr,       X86::SETBm, 0 },
299    { X86::SETEr,       X86::SETEm, 0 },
300    { X86::SETGEr,      X86::SETGEm, 0 },
301    { X86::SETGr,       X86::SETGm, 0 },
302    { X86::SETLEr,      X86::SETLEm, 0 },
303    { X86::SETLr,       X86::SETLm, 0 },
304    { X86::SETNEr,      X86::SETNEm, 0 },
305    { X86::SETNPr,      X86::SETNPm, 0 },
306    { X86::SETNSr,      X86::SETNSm, 0 },
307    { X86::SETPr,       X86::SETPm, 0 },
308    { X86::SETSr,       X86::SETSm, 0 },
309    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
310    { X86::TEST16ri,    X86::TEST16mi, 1 },
311    { X86::TEST32ri,    X86::TEST32mi, 1 },
312    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
313    { X86::TEST8ri,     X86::TEST8mi, 1 },
314    { X86::XCHG16rr,    X86::XCHG16mr, 0 },
315    { X86::XCHG32rr,    X86::XCHG32mr, 0 },
316    { X86::XCHG64rr,    X86::XCHG64mr, 0 },
317    { X86::XCHG8rr,     X86::XCHG8mr, 0 }
318  };
319
320  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
321    unsigned RegOp = OpTbl0[i][0];
322    unsigned MemOp = OpTbl0[i][1];
323    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
324      assert(false && "Duplicated entries?");
325    unsigned FoldedLoad = OpTbl0[i][2];
326    // Index 0, folded load or store.
327    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
328    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
329      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
330                                               std::make_pair(RegOp, AuxInfo))))
331        AmbEntries.push_back(MemOp);
332  }
333
334  static const unsigned OpTbl1[][2] = {
335    { X86::CMP16rr,         X86::CMP16rm },
336    { X86::CMP32rr,         X86::CMP32rm },
337    { X86::CMP64rr,         X86::CMP64rm },
338    { X86::CMP8rr,          X86::CMP8rm },
339    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
340    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
341    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
342    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
343    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
344    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
345    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
346    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
347    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
348    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
349    { X86::FsMOVAPDrr,      X86::MOVSDrm },
350    { X86::FsMOVAPSrr,      X86::MOVSSrm },
351    { X86::IMUL16rri,       X86::IMUL16rmi },
352    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
353    { X86::IMUL32rri,       X86::IMUL32rmi },
354    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
355    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
356    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
357    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
358    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
359    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
360    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
361    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
362    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
363    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
364    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
365    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
366    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
367    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
368    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
369    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
370    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
371    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
372    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
373    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
374    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
375    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
376    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
377    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
378    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
379    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
380    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
381    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
382    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
383    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
384    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
385    { X86::MOV16rr,         X86::MOV16rm },
386    { X86::MOV16to16_,      X86::MOV16_rm },
387    { X86::MOV32rr,         X86::MOV32rm },
388    { X86::MOV32to32_,      X86::MOV32_rm },
389    { X86::MOV64rr,         X86::MOV64rm },
390    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
391    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
392    { X86::MOV8rr,          X86::MOV8rm },
393    { X86::MOVAPDrr,        X86::MOVAPDrm },
394    { X86::MOVAPSrr,        X86::MOVAPSrm },
395    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
396    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
397    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
398    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
399    { X86::MOVSDrr,         X86::MOVSDrm },
400    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
401    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
402    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
403    { X86::MOVSSrr,         X86::MOVSSrm },
404    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
405    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
406    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
407    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
408    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
409    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
410    { X86::MOVUPDrr,        X86::MOVUPDrm },
411    { X86::MOVUPSrr,        X86::MOVUPSrm },
412    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
413    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
414    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
415    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
416    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
417    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
418    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
419    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
420    { X86::PSHUFDri,        X86::PSHUFDmi },
421    { X86::PSHUFHWri,       X86::PSHUFHWmi },
422    { X86::PSHUFLWri,       X86::PSHUFLWmi },
423    { X86::PsMOVZX64rr32,   X86::PsMOVZX64rm32 },
424    { X86::RCPPSr,          X86::RCPPSm },
425    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
426    { X86::RSQRTPSr,        X86::RSQRTPSm },
427    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
428    { X86::RSQRTSSr,        X86::RSQRTSSm },
429    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
430    { X86::SQRTPDr,         X86::SQRTPDm },
431    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
432    { X86::SQRTPSr,         X86::SQRTPSm },
433    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
434    { X86::SQRTSDr,         X86::SQRTSDm },
435    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
436    { X86::SQRTSSr,         X86::SQRTSSm },
437    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
438    { X86::TEST16rr,        X86::TEST16rm },
439    { X86::TEST32rr,        X86::TEST32rm },
440    { X86::TEST64rr,        X86::TEST64rm },
441    { X86::TEST8rr,         X86::TEST8rm },
442    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
443    { X86::UCOMISDrr,       X86::UCOMISDrm },
444    { X86::UCOMISSrr,       X86::UCOMISSrm },
445    { X86::XCHG16rr,        X86::XCHG16rm },
446    { X86::XCHG32rr,        X86::XCHG32rm },
447    { X86::XCHG64rr,        X86::XCHG64rm },
448    { X86::XCHG8rr,         X86::XCHG8rm }
449  };
450
451  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
452    unsigned RegOp = OpTbl1[i][0];
453    unsigned MemOp = OpTbl1[i][1];
454    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
455      assert(false && "Duplicated entries?");
456    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
457    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
458      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
459                                               std::make_pair(RegOp, AuxInfo))))
460        AmbEntries.push_back(MemOp);
461  }
462
463  static const unsigned OpTbl2[][2] = {
464    { X86::ADC32rr,         X86::ADC32rm },
465    { X86::ADC64rr,         X86::ADC64rm },
466    { X86::ADD16rr,         X86::ADD16rm },
467    { X86::ADD32rr,         X86::ADD32rm },
468    { X86::ADD64rr,         X86::ADD64rm },
469    { X86::ADD8rr,          X86::ADD8rm },
470    { X86::ADDPDrr,         X86::ADDPDrm },
471    { X86::ADDPSrr,         X86::ADDPSrm },
472    { X86::ADDSDrr,         X86::ADDSDrm },
473    { X86::ADDSSrr,         X86::ADDSSrm },
474    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
475    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
476    { X86::AND16rr,         X86::AND16rm },
477    { X86::AND32rr,         X86::AND32rm },
478    { X86::AND64rr,         X86::AND64rm },
479    { X86::AND8rr,          X86::AND8rm },
480    { X86::ANDNPDrr,        X86::ANDNPDrm },
481    { X86::ANDNPSrr,        X86::ANDNPSrm },
482    { X86::ANDPDrr,         X86::ANDPDrm },
483    { X86::ANDPSrr,         X86::ANDPSrm },
484    { X86::CMOVA16rr,       X86::CMOVA16rm },
485    { X86::CMOVA32rr,       X86::CMOVA32rm },
486    { X86::CMOVA64rr,       X86::CMOVA64rm },
487    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
488    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
489    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
490    { X86::CMOVB16rr,       X86::CMOVB16rm },
491    { X86::CMOVB32rr,       X86::CMOVB32rm },
492    { X86::CMOVB64rr,       X86::CMOVB64rm },
493    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
494    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
495    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
496    { X86::CMOVE16rr,       X86::CMOVE16rm },
497    { X86::CMOVE32rr,       X86::CMOVE32rm },
498    { X86::CMOVE64rr,       X86::CMOVE64rm },
499    { X86::CMOVG16rr,       X86::CMOVG16rm },
500    { X86::CMOVG32rr,       X86::CMOVG32rm },
501    { X86::CMOVG64rr,       X86::CMOVG64rm },
502    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
503    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
504    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
505    { X86::CMOVL16rr,       X86::CMOVL16rm },
506    { X86::CMOVL32rr,       X86::CMOVL32rm },
507    { X86::CMOVL64rr,       X86::CMOVL64rm },
508    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
509    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
510    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
511    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
512    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
513    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
514    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
515    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
516    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
517    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
518    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
519    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
520    { X86::CMOVP16rr,       X86::CMOVP16rm },
521    { X86::CMOVP32rr,       X86::CMOVP32rm },
522    { X86::CMOVP64rr,       X86::CMOVP64rm },
523    { X86::CMOVS16rr,       X86::CMOVS16rm },
524    { X86::CMOVS32rr,       X86::CMOVS32rm },
525    { X86::CMOVS64rr,       X86::CMOVS64rm },
526    { X86::CMPPDrri,        X86::CMPPDrmi },
527    { X86::CMPPSrri,        X86::CMPPSrmi },
528    { X86::CMPSDrr,         X86::CMPSDrm },
529    { X86::CMPSSrr,         X86::CMPSSrm },
530    { X86::DIVPDrr,         X86::DIVPDrm },
531    { X86::DIVPSrr,         X86::DIVPSrm },
532    { X86::DIVSDrr,         X86::DIVSDrm },
533    { X86::DIVSSrr,         X86::DIVSSrm },
534    { X86::HADDPDrr,        X86::HADDPDrm },
535    { X86::HADDPSrr,        X86::HADDPSrm },
536    { X86::HSUBPDrr,        X86::HSUBPDrm },
537    { X86::HSUBPSrr,        X86::HSUBPSrm },
538    { X86::IMUL16rr,        X86::IMUL16rm },
539    { X86::IMUL32rr,        X86::IMUL32rm },
540    { X86::IMUL64rr,        X86::IMUL64rm },
541    { X86::MAXPDrr,         X86::MAXPDrm },
542    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
543    { X86::MAXPSrr,         X86::MAXPSrm },
544    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
545    { X86::MAXSDrr,         X86::MAXSDrm },
546    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
547    { X86::MAXSSrr,         X86::MAXSSrm },
548    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
549    { X86::MINPDrr,         X86::MINPDrm },
550    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
551    { X86::MINPSrr,         X86::MINPSrm },
552    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
553    { X86::MINSDrr,         X86::MINSDrm },
554    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
555    { X86::MINSSrr,         X86::MINSSrm },
556    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
557    { X86::MULPDrr,         X86::MULPDrm },
558    { X86::MULPSrr,         X86::MULPSrm },
559    { X86::MULSDrr,         X86::MULSDrm },
560    { X86::MULSSrr,         X86::MULSSrm },
561    { X86::OR16rr,          X86::OR16rm },
562    { X86::OR32rr,          X86::OR32rm },
563    { X86::OR64rr,          X86::OR64rm },
564    { X86::OR8rr,           X86::OR8rm },
565    { X86::ORPDrr,          X86::ORPDrm },
566    { X86::ORPSrr,          X86::ORPSrm },
567    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
568    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
569    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
570    { X86::PADDBrr,         X86::PADDBrm },
571    { X86::PADDDrr,         X86::PADDDrm },
572    { X86::PADDQrr,         X86::PADDQrm },
573    { X86::PADDSBrr,        X86::PADDSBrm },
574    { X86::PADDSWrr,        X86::PADDSWrm },
575    { X86::PADDWrr,         X86::PADDWrm },
576    { X86::PANDNrr,         X86::PANDNrm },
577    { X86::PANDrr,          X86::PANDrm },
578    { X86::PAVGBrr,         X86::PAVGBrm },
579    { X86::PAVGWrr,         X86::PAVGWrm },
580    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
581    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
582    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
583    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
584    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
585    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
586    { X86::PINSRWrri,       X86::PINSRWrmi },
587    { X86::PMADDWDrr,       X86::PMADDWDrm },
588    { X86::PMAXSWrr,        X86::PMAXSWrm },
589    { X86::PMAXUBrr,        X86::PMAXUBrm },
590    { X86::PMINSWrr,        X86::PMINSWrm },
591    { X86::PMINUBrr,        X86::PMINUBrm },
592    { X86::PMULHUWrr,       X86::PMULHUWrm },
593    { X86::PMULHWrr,        X86::PMULHWrm },
594    { X86::PMULLWrr,        X86::PMULLWrm },
595    { X86::PMULUDQrr,       X86::PMULUDQrm },
596    { X86::PORrr,           X86::PORrm },
597    { X86::PSADBWrr,        X86::PSADBWrm },
598    { X86::PSLLDrr,         X86::PSLLDrm },
599    { X86::PSLLQrr,         X86::PSLLQrm },
600    { X86::PSLLWrr,         X86::PSLLWrm },
601    { X86::PSRADrr,         X86::PSRADrm },
602    { X86::PSRAWrr,         X86::PSRAWrm },
603    { X86::PSRLDrr,         X86::PSRLDrm },
604    { X86::PSRLQrr,         X86::PSRLQrm },
605    { X86::PSRLWrr,         X86::PSRLWrm },
606    { X86::PSUBBrr,         X86::PSUBBrm },
607    { X86::PSUBDrr,         X86::PSUBDrm },
608    { X86::PSUBSBrr,        X86::PSUBSBrm },
609    { X86::PSUBSWrr,        X86::PSUBSWrm },
610    { X86::PSUBWrr,         X86::PSUBWrm },
611    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
612    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
613    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
614    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
615    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
616    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
617    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
618    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
619    { X86::PXORrr,          X86::PXORrm },
620    { X86::SBB32rr,         X86::SBB32rm },
621    { X86::SBB64rr,         X86::SBB64rm },
622    { X86::SHUFPDrri,       X86::SHUFPDrmi },
623    { X86::SHUFPSrri,       X86::SHUFPSrmi },
624    { X86::SUB16rr,         X86::SUB16rm },
625    { X86::SUB32rr,         X86::SUB32rm },
626    { X86::SUB64rr,         X86::SUB64rm },
627    { X86::SUB8rr,          X86::SUB8rm },
628    { X86::SUBPDrr,         X86::SUBPDrm },
629    { X86::SUBPSrr,         X86::SUBPSrm },
630    { X86::SUBSDrr,         X86::SUBSDrm },
631    { X86::SUBSSrr,         X86::SUBSSrm },
632    // FIXME: TEST*rr -> swapped operand of TEST*mr.
633    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
634    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
635    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
636    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
637    { X86::XOR16rr,         X86::XOR16rm },
638    { X86::XOR32rr,         X86::XOR32rm },
639    { X86::XOR64rr,         X86::XOR64rm },
640    { X86::XOR8rr,          X86::XOR8rm },
641    { X86::XORPDrr,         X86::XORPDrm },
642    { X86::XORPSrr,         X86::XORPSrm }
643  };
644
645  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
646    unsigned RegOp = OpTbl2[i][0];
647    unsigned MemOp = OpTbl2[i][1];
648    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
649      assert(false && "Duplicated entries?");
650    unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
651    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
652                                               std::make_pair(RegOp, AuxInfo))))
653      AmbEntries.push_back(MemOp);
654  }
655
656  // Remove ambiguous entries.
657  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
658}
659
660// getDwarfRegNum - This function maps LLVM register identifiers to the
661// Dwarf specific numbering, used in debug info and exception tables.
662
663int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
664  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
665  unsigned Flavour = DWARFFlavour::X86_64;
666  if (!Subtarget->is64Bit()) {
667    if (Subtarget->isTargetDarwin()) {
668      Flavour = DWARFFlavour::X86_32_Darwin;
669    } else if (Subtarget->isTargetCygMing()) {
670      // Unsupported by now, just quick fallback
671      Flavour = DWARFFlavour::X86_32_ELF;
672    } else {
673      Flavour = DWARFFlavour::X86_32_ELF;
674    }
675  }
676
677  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
678}
679
680// getX86RegNum - This function maps LLVM register identifiers to their X86
681// specific numbering, which is used in various places encoding instructions.
682//
683unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
684  switch(RegNo) {
685  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
686  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
687  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
688  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
689  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
690    return N86::ESP;
691  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
692    return N86::EBP;
693  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
694    return N86::ESI;
695  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
696    return N86::EDI;
697
698  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
699    return N86::EAX;
700  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
701    return N86::ECX;
702  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
703    return N86::EDX;
704  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
705    return N86::EBX;
706  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
707    return N86::ESP;
708  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
709    return N86::EBP;
710  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
711    return N86::ESI;
712  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
713    return N86::EDI;
714
715  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
716  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
717    return RegNo-X86::ST0;
718
719  case X86::XMM0: case X86::XMM8: case X86::MM0:
720    return 0;
721  case X86::XMM1: case X86::XMM9: case X86::MM1:
722    return 1;
723  case X86::XMM2: case X86::XMM10: case X86::MM2:
724    return 2;
725  case X86::XMM3: case X86::XMM11: case X86::MM3:
726    return 3;
727  case X86::XMM4: case X86::XMM12: case X86::MM4:
728    return 4;
729  case X86::XMM5: case X86::XMM13: case X86::MM5:
730    return 5;
731  case X86::XMM6: case X86::XMM14: case X86::MM6:
732    return 6;
733  case X86::XMM7: case X86::XMM15: case X86::MM7:
734    return 7;
735
736  default:
737    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
738    assert(0 && "Register allocator hasn't allocated reg correctly yet!");
739    return 0;
740  }
741}
742
743bool X86RegisterInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
744                                                MachineBasicBlock::iterator MI,
745                                const std::vector<CalleeSavedInfo> &CSI) const {
746  if (CSI.empty())
747    return false;
748
749  MachineFunction &MF = *MBB.getParent();
750  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
751  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
752  unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
753  for (unsigned i = CSI.size(); i != 0; --i) {
754    unsigned Reg = CSI[i-1].getReg();
755    // Add the callee-saved register as live-in. It's killed at the spill.
756    MBB.addLiveIn(Reg);
757    BuildMI(MBB, MI, TII.get(Opc)).addReg(Reg);
758  }
759  return true;
760}
761
762bool X86RegisterInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
763                                                 MachineBasicBlock::iterator MI,
764                                const std::vector<CalleeSavedInfo> &CSI) const {
765  if (CSI.empty())
766    return false;
767
768  unsigned Opc = Is64Bit ? X86::POP64r : X86::POP32r;
769  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
770    unsigned Reg = CSI[i].getReg();
771    BuildMI(MBB, MI, TII.get(Opc), Reg);
772  }
773  return true;
774}
775
776static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
777                                                     MachineOperand &MO) {
778  if (MO.isRegister())
779    MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
780                     false, false, MO.getSubReg());
781  else if (MO.isImmediate())
782    MIB = MIB.addImm(MO.getImm());
783  else if (MO.isFrameIndex())
784    MIB = MIB.addFrameIndex(MO.getFrameIndex());
785  else if (MO.isGlobalAddress())
786    MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
787  else if (MO.isConstantPoolIndex())
788    MIB = MIB.addConstantPoolIndex(MO.getConstantPoolIndex(), MO.getOffset());
789  else if (MO.isJumpTableIndex())
790    MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex());
791  else if (MO.isExternalSymbol())
792    MIB = MIB.addExternalSymbol(MO.getSymbolName());
793  else
794    assert(0 && "Unknown operand for X86InstrAddOperand!");
795
796  return MIB;
797}
798
799static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
800                                  unsigned StackAlign) {
801  unsigned Opc = 0;
802  if (RC == &X86::GR64RegClass) {
803    Opc = X86::MOV64mr;
804  } else if (RC == &X86::GR32RegClass) {
805    Opc = X86::MOV32mr;
806  } else if (RC == &X86::GR16RegClass) {
807    Opc = X86::MOV16mr;
808  } else if (RC == &X86::GR8RegClass) {
809    Opc = X86::MOV8mr;
810  } else if (RC == &X86::GR32_RegClass) {
811    Opc = X86::MOV32_mr;
812  } else if (RC == &X86::GR16_RegClass) {
813    Opc = X86::MOV16_mr;
814  } else if (RC == &X86::RFP80RegClass) {
815    Opc = X86::ST_FpP80m;   // pops
816  } else if (RC == &X86::RFP64RegClass) {
817    Opc = X86::ST_Fp64m;
818  } else if (RC == &X86::RFP32RegClass) {
819    Opc = X86::ST_Fp32m;
820  } else if (RC == &X86::FR32RegClass) {
821    Opc = X86::MOVSSmr;
822  } else if (RC == &X86::FR64RegClass) {
823    Opc = X86::MOVSDmr;
824  } else if (RC == &X86::VR128RegClass) {
825    // FIXME: Use movaps once we are capable of selectively
826    // aligning functions that spill SSE registers on 16-byte boundaries.
827    Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
828  } else if (RC == &X86::VR64RegClass) {
829    Opc = X86::MMX_MOVQ64mr;
830  } else {
831    assert(0 && "Unknown regclass");
832    abort();
833  }
834
835  return Opc;
836}
837
838void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
839                                          MachineBasicBlock::iterator MI,
840                                          unsigned SrcReg, bool isKill, int FrameIdx,
841                                          const TargetRegisterClass *RC) const {
842  unsigned Opc = getStoreRegOpcode(RC, StackAlign);
843  addFrameReference(BuildMI(MBB, MI, TII.get(Opc)), FrameIdx)
844    .addReg(SrcReg, false, false, isKill);
845}
846
847void X86RegisterInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
848                                     bool isKill,
849                                     SmallVectorImpl<MachineOperand> &Addr,
850                                     const TargetRegisterClass *RC,
851                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
852  unsigned Opc = getStoreRegOpcode(RC, StackAlign);
853  MachineInstrBuilder MIB = BuildMI(TII.get(Opc));
854  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
855    MIB = X86InstrAddOperand(MIB, Addr[i]);
856  MIB.addReg(SrcReg, false, false, isKill);
857  NewMIs.push_back(MIB);
858}
859
860static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
861                                 unsigned StackAlign) {
862  unsigned Opc = 0;
863  if (RC == &X86::GR64RegClass) {
864    Opc = X86::MOV64rm;
865  } else if (RC == &X86::GR32RegClass) {
866    Opc = X86::MOV32rm;
867  } else if (RC == &X86::GR16RegClass) {
868    Opc = X86::MOV16rm;
869  } else if (RC == &X86::GR8RegClass) {
870    Opc = X86::MOV8rm;
871  } else if (RC == &X86::GR32_RegClass) {
872    Opc = X86::MOV32_rm;
873  } else if (RC == &X86::GR16_RegClass) {
874    Opc = X86::MOV16_rm;
875  } else if (RC == &X86::RFP80RegClass) {
876    Opc = X86::LD_Fp80m;
877  } else if (RC == &X86::RFP64RegClass) {
878    Opc = X86::LD_Fp64m;
879  } else if (RC == &X86::RFP32RegClass) {
880    Opc = X86::LD_Fp32m;
881  } else if (RC == &X86::FR32RegClass) {
882    Opc = X86::MOVSSrm;
883  } else if (RC == &X86::FR64RegClass) {
884    Opc = X86::MOVSDrm;
885  } else if (RC == &X86::VR128RegClass) {
886    // FIXME: Use movaps once we are capable of selectively
887    // aligning functions that spill SSE registers on 16-byte boundaries.
888    Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
889  } else if (RC == &X86::VR64RegClass) {
890    Opc = X86::MMX_MOVQ64rm;
891  } else {
892    assert(0 && "Unknown regclass");
893    abort();
894  }
895
896  return Opc;
897}
898
899void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
900                                           MachineBasicBlock::iterator MI,
901                                           unsigned DestReg, int FrameIdx,
902                                           const TargetRegisterClass *RC) const{
903  unsigned Opc = getLoadRegOpcode(RC, StackAlign);
904  addFrameReference(BuildMI(MBB, MI, TII.get(Opc), DestReg), FrameIdx);
905}
906
907void X86RegisterInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
908                                      SmallVectorImpl<MachineOperand> &Addr,
909                                      const TargetRegisterClass *RC,
910                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
911  unsigned Opc = getLoadRegOpcode(RC, StackAlign);
912  MachineInstrBuilder MIB = BuildMI(TII.get(Opc), DestReg);
913  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
914    MIB = X86InstrAddOperand(MIB, Addr[i]);
915  NewMIs.push_back(MIB);
916}
917
918void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
919                                   MachineBasicBlock::iterator MI,
920                                   unsigned DestReg, unsigned SrcReg,
921                                   const TargetRegisterClass *DestRC,
922                                   const TargetRegisterClass *SrcRC) const {
923  if (DestRC != SrcRC) {
924    // Moving EFLAGS to / from another register requires a push and a pop.
925    if (SrcRC == &X86::CCRRegClass) {
926      assert(SrcReg == X86::EFLAGS);
927      if (DestRC == &X86::GR64RegClass) {
928        BuildMI(MBB, MI, TII.get(X86::PUSHFQ));
929        BuildMI(MBB, MI, TII.get(X86::POP64r), DestReg);
930        return;
931      } else if (DestRC == &X86::GR32RegClass) {
932        BuildMI(MBB, MI, TII.get(X86::PUSHFD));
933        BuildMI(MBB, MI, TII.get(X86::POP32r), DestReg);
934        return;
935      }
936    } else if (DestRC == &X86::CCRRegClass) {
937      assert(DestReg == X86::EFLAGS);
938      if (SrcRC == &X86::GR64RegClass) {
939        BuildMI(MBB, MI, TII.get(X86::PUSH64r)).addReg(SrcReg);
940        BuildMI(MBB, MI, TII.get(X86::POPFQ));
941        return;
942      } else if (SrcRC == &X86::GR32RegClass) {
943        BuildMI(MBB, MI, TII.get(X86::PUSH32r)).addReg(SrcReg);
944        BuildMI(MBB, MI, TII.get(X86::POPFD));
945        return;
946      }
947    }
948    cerr << "Not yet supported!";
949    abort();
950  }
951
952  unsigned Opc;
953  if (DestRC == &X86::GR64RegClass) {
954    Opc = X86::MOV64rr;
955  } else if (DestRC == &X86::GR32RegClass) {
956    Opc = X86::MOV32rr;
957  } else if (DestRC == &X86::GR16RegClass) {
958    Opc = X86::MOV16rr;
959  } else if (DestRC == &X86::GR8RegClass) {
960    Opc = X86::MOV8rr;
961  } else if (DestRC == &X86::GR32_RegClass) {
962    Opc = X86::MOV32_rr;
963  } else if (DestRC == &X86::GR16_RegClass) {
964    Opc = X86::MOV16_rr;
965  } else if (DestRC == &X86::RFP32RegClass) {
966    Opc = X86::MOV_Fp3232;
967  } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
968    Opc = X86::MOV_Fp6464;
969  } else if (DestRC == &X86::RFP80RegClass) {
970    Opc = X86::MOV_Fp8080;
971  } else if (DestRC == &X86::FR32RegClass) {
972    Opc = X86::FsMOVAPSrr;
973  } else if (DestRC == &X86::FR64RegClass) {
974    Opc = X86::FsMOVAPDrr;
975  } else if (DestRC == &X86::VR128RegClass) {
976    Opc = X86::MOVAPSrr;
977  } else if (DestRC == &X86::VR64RegClass) {
978    Opc = X86::MMX_MOVQ64rr;
979  } else {
980    assert(0 && "Unknown regclass");
981    abort();
982  }
983  BuildMI(MBB, MI, TII.get(Opc), DestReg).addReg(SrcReg);
984}
985
986const TargetRegisterClass *
987X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
988  if (RC == &X86::CCRRegClass)
989    if (Is64Bit)
990      return &X86::GR64RegClass;
991    else
992      return &X86::GR32RegClass;
993  return NULL;
994}
995
996void X86RegisterInfo::reMaterialize(MachineBasicBlock &MBB,
997                                    MachineBasicBlock::iterator I,
998                                    unsigned DestReg,
999                                    const MachineInstr *Orig) const {
1000  // MOV32r0 etc. are implemented with xor which clobbers condition code.
1001  // Re-materialize them as movri instructions to avoid side effects.
1002  switch (Orig->getOpcode()) {
1003  case X86::MOV8r0:
1004    BuildMI(MBB, I, TII.get(X86::MOV8ri), DestReg).addImm(0);
1005    break;
1006  case X86::MOV16r0:
1007    BuildMI(MBB, I, TII.get(X86::MOV16ri), DestReg).addImm(0);
1008    break;
1009  case X86::MOV32r0:
1010    BuildMI(MBB, I, TII.get(X86::MOV32ri), DestReg).addImm(0);
1011    break;
1012  case X86::MOV64r0:
1013    BuildMI(MBB, I, TII.get(X86::MOV64ri32), DestReg).addImm(0);
1014    break;
1015  default: {
1016    MachineInstr *MI = Orig->clone();
1017    MI->getOperand(0).setReg(DestReg);
1018    MBB.insert(I, MI);
1019    break;
1020  }
1021  }
1022}
1023
1024static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1025                                     SmallVector<MachineOperand,4> &MOs,
1026                                 MachineInstr *MI, const TargetInstrInfo &TII) {
1027  // Create the base instruction with the memory operand as the first part.
1028  MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1029  MachineInstrBuilder MIB(NewMI);
1030  unsigned NumAddrOps = MOs.size();
1031  for (unsigned i = 0; i != NumAddrOps; ++i)
1032    MIB = X86InstrAddOperand(MIB, MOs[i]);
1033  if (NumAddrOps < 4)  // FrameIndex only
1034    MIB.addImm(1).addReg(0).addImm(0);
1035
1036  // Loop over the rest of the ri operands, converting them over.
1037  unsigned NumOps = TII.getNumOperands(MI->getOpcode())-2;
1038  for (unsigned i = 0; i != NumOps; ++i) {
1039    MachineOperand &MO = MI->getOperand(i+2);
1040    MIB = X86InstrAddOperand(MIB, MO);
1041  }
1042  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1043    MachineOperand &MO = MI->getOperand(i);
1044    MIB = X86InstrAddOperand(MIB, MO);
1045  }
1046  return MIB;
1047}
1048
1049static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1050                              SmallVector<MachineOperand,4> &MOs,
1051                              MachineInstr *MI, const TargetInstrInfo &TII) {
1052  MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1053  MachineInstrBuilder MIB(NewMI);
1054
1055  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1056    MachineOperand &MO = MI->getOperand(i);
1057    if (i == OpNo) {
1058      assert(MO.isRegister() && "Expected to fold into reg operand!");
1059      unsigned NumAddrOps = MOs.size();
1060      for (unsigned i = 0; i != NumAddrOps; ++i)
1061        MIB = X86InstrAddOperand(MIB, MOs[i]);
1062      if (NumAddrOps < 4)  // FrameIndex only
1063        MIB.addImm(1).addReg(0).addImm(0);
1064    } else {
1065      MIB = X86InstrAddOperand(MIB, MO);
1066    }
1067  }
1068  return MIB;
1069}
1070
1071static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1072                                SmallVector<MachineOperand,4> &MOs,
1073                                MachineInstr *MI) {
1074  MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1075
1076  unsigned NumAddrOps = MOs.size();
1077  for (unsigned i = 0; i != NumAddrOps; ++i)
1078    MIB = X86InstrAddOperand(MIB, MOs[i]);
1079  if (NumAddrOps < 4)  // FrameIndex only
1080    MIB.addImm(1).addReg(0).addImm(0);
1081  return MIB.addImm(0);
1082}
1083
1084MachineInstr*
1085X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
1086                                   SmallVector<MachineOperand,4> &MOs) const {
1087  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1088  bool isTwoAddrFold = false;
1089  unsigned NumOps = TII.getNumOperands(MI->getOpcode());
1090  bool isTwoAddr = NumOps > 1 &&
1091    MI->getInstrDescriptor()->getOperandConstraint(1, TOI::TIED_TO) != -1;
1092
1093  MachineInstr *NewMI = NULL;
1094  // Folding a memory location into the two-address part of a two-address
1095  // instruction is different than folding it other places.  It requires
1096  // replacing the *two* registers with the memory location.
1097  if (isTwoAddr && NumOps >= 2 && i < 2 &&
1098      MI->getOperand(0).isRegister() &&
1099      MI->getOperand(1).isRegister() &&
1100      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1101    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1102    isTwoAddrFold = true;
1103  } else if (i == 0) { // If operand 0
1104    if (MI->getOpcode() == X86::MOV16r0)
1105      NewMI = MakeM0Inst(TII, X86::MOV16mi, MOs, MI);
1106    else if (MI->getOpcode() == X86::MOV32r0)
1107      NewMI = MakeM0Inst(TII, X86::MOV32mi, MOs, MI);
1108    else if (MI->getOpcode() == X86::MOV64r0)
1109      NewMI = MakeM0Inst(TII, X86::MOV64mi32, MOs, MI);
1110    else if (MI->getOpcode() == X86::MOV8r0)
1111      NewMI = MakeM0Inst(TII, X86::MOV8mi, MOs, MI);
1112    if (NewMI) {
1113      NewMI->copyKillDeadInfo(MI);
1114      return NewMI;
1115    }
1116
1117    OpcodeTablePtr = &RegOp2MemOpTable0;
1118  } else if (i == 1) {
1119    OpcodeTablePtr = &RegOp2MemOpTable1;
1120  } else if (i == 2) {
1121    OpcodeTablePtr = &RegOp2MemOpTable2;
1122  }
1123
1124  // If table selected...
1125  if (OpcodeTablePtr) {
1126    // Find the Opcode to fuse
1127    DenseMap<unsigned*, unsigned>::iterator I =
1128      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1129    if (I != OpcodeTablePtr->end()) {
1130      if (isTwoAddrFold)
1131        NewMI = FuseTwoAddrInst(I->second, MOs, MI, TII);
1132      else
1133        NewMI = FuseInst(I->second, i, MOs, MI, TII);
1134      NewMI->copyKillDeadInfo(MI);
1135      return NewMI;
1136    }
1137  }
1138
1139  // No fusion
1140  if (PrintFailedFusing)
1141    cerr << "We failed to fuse ("
1142         << ((i == 1) ? "r" : "s") << "): " << *MI;
1143  return NULL;
1144}
1145
1146
1147MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI,
1148                                              SmallVectorImpl<unsigned> &Ops,
1149                                              int FrameIndex) const {
1150  // Check switch flag
1151  if (NoFusing) return NULL;
1152
1153  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1154    unsigned NewOpc = 0;
1155    switch (MI->getOpcode()) {
1156    default: return NULL;
1157    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
1158    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1159    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1160    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1161    }
1162    // Change to CMPXXri r, 0 first.
1163    MI->setInstrDescriptor(TII.get(NewOpc));
1164    MI->getOperand(1).ChangeToImmediate(0);
1165  } else if (Ops.size() != 1)
1166    return NULL;
1167
1168  SmallVector<MachineOperand,4> MOs;
1169  MOs.push_back(MachineOperand::CreateFrameIndex(FrameIndex));
1170  return foldMemoryOperand(MI, Ops[0], MOs);
1171}
1172
1173MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI,
1174                                                 SmallVectorImpl<unsigned> &Ops,
1175                                                 MachineInstr *LoadMI) const {
1176  // Check switch flag
1177  if (NoFusing) return NULL;
1178
1179  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1180    unsigned NewOpc = 0;
1181    switch (MI->getOpcode()) {
1182    default: return NULL;
1183    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
1184    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1185    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1186    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1187    }
1188    // Change to CMPXXri r, 0 first.
1189    MI->setInstrDescriptor(TII.get(NewOpc));
1190    MI->getOperand(1).ChangeToImmediate(0);
1191  } else if (Ops.size() != 1)
1192    return NULL;
1193
1194  SmallVector<MachineOperand,4> MOs;
1195  unsigned NumOps = TII.getNumOperands(LoadMI->getOpcode());
1196  for (unsigned i = NumOps - 4; i != NumOps; ++i)
1197    MOs.push_back(LoadMI->getOperand(i));
1198  return foldMemoryOperand(MI, Ops[0], MOs);
1199}
1200
1201
1202bool X86RegisterInfo::canFoldMemoryOperand(MachineInstr *MI,
1203                                         SmallVectorImpl<unsigned> &Ops) const {
1204  // Check switch flag
1205  if (NoFusing) return 0;
1206
1207  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1208    switch (MI->getOpcode()) {
1209    default: return false;
1210    case X86::TEST8rr:
1211    case X86::TEST16rr:
1212    case X86::TEST32rr:
1213    case X86::TEST64rr:
1214      return true;
1215    }
1216  }
1217
1218  if (Ops.size() != 1)
1219    return false;
1220
1221  unsigned OpNum = Ops[0];
1222  unsigned Opc = MI->getOpcode();
1223  unsigned NumOps = TII.getNumOperands(Opc);
1224  bool isTwoAddr = NumOps > 1 &&
1225    TII.getOperandConstraint(Opc, 1, TOI::TIED_TO) != -1;
1226
1227  // Folding a memory location into the two-address part of a two-address
1228  // instruction is different than folding it other places.  It requires
1229  // replacing the *two* registers with the memory location.
1230  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1231  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
1232    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1233  } else if (OpNum == 0) { // If operand 0
1234    switch (Opc) {
1235    case X86::MOV16r0:
1236    case X86::MOV32r0:
1237    case X86::MOV64r0:
1238    case X86::MOV8r0:
1239      return true;
1240    default: break;
1241    }
1242    OpcodeTablePtr = &RegOp2MemOpTable0;
1243  } else if (OpNum == 1) {
1244    OpcodeTablePtr = &RegOp2MemOpTable1;
1245  } else if (OpNum == 2) {
1246    OpcodeTablePtr = &RegOp2MemOpTable2;
1247  }
1248
1249  if (OpcodeTablePtr) {
1250    // Find the Opcode to fuse
1251    DenseMap<unsigned*, unsigned>::iterator I =
1252      OpcodeTablePtr->find((unsigned*)Opc);
1253    if (I != OpcodeTablePtr->end())
1254      return true;
1255  }
1256  return false;
1257}
1258
1259bool X86RegisterInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
1260                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
1261                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1262  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1263    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
1264  if (I == MemOp2RegOpTable.end())
1265    return false;
1266  unsigned Opc = I->second.first;
1267  unsigned Index = I->second.second & 0xf;
1268  bool FoldedLoad = I->second.second & (1 << 4);
1269  bool FoldedStore = I->second.second & (1 << 5);
1270  if (UnfoldLoad && !FoldedLoad)
1271    return false;
1272  UnfoldLoad &= FoldedLoad;
1273  if (UnfoldStore && !FoldedStore)
1274    return false;
1275  UnfoldStore &= FoldedStore;
1276
1277  const TargetInstrDescriptor &TID = TII.get(Opc);
1278  const TargetOperandInfo &TOI = TID.OpInfo[Index];
1279  const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1280    ? TII.getPointerRegClass() : getRegClass(TOI.RegClass);
1281  SmallVector<MachineOperand,4> AddrOps;
1282  SmallVector<MachineOperand,2> BeforeOps;
1283  SmallVector<MachineOperand,2> AfterOps;
1284  SmallVector<MachineOperand,4> ImpOps;
1285  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1286    MachineOperand &Op = MI->getOperand(i);
1287    if (i >= Index && i < Index+4)
1288      AddrOps.push_back(Op);
1289    else if (Op.isRegister() && Op.isImplicit())
1290      ImpOps.push_back(Op);
1291    else if (i < Index)
1292      BeforeOps.push_back(Op);
1293    else if (i > Index)
1294      AfterOps.push_back(Op);
1295  }
1296
1297  // Emit the load instruction.
1298  if (UnfoldLoad) {
1299    loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
1300    if (UnfoldStore) {
1301      // Address operands cannot be marked isKill.
1302      for (unsigned i = 1; i != 5; ++i) {
1303        MachineOperand &MO = NewMIs[0]->getOperand(i);
1304        if (MO.isRegister())
1305          MO.unsetIsKill();
1306      }
1307    }
1308  }
1309
1310  // Emit the data processing instruction.
1311  MachineInstr *DataMI = new MachineInstr(TID, true);
1312  MachineInstrBuilder MIB(DataMI);
1313
1314  if (FoldedStore)
1315    MIB.addReg(Reg, true);
1316  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
1317    MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
1318  if (FoldedLoad)
1319    MIB.addReg(Reg);
1320  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
1321    MIB = X86InstrAddOperand(MIB, AfterOps[i]);
1322  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
1323    MachineOperand &MO = ImpOps[i];
1324    MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
1325  }
1326  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
1327  unsigned NewOpc = 0;
1328  switch (DataMI->getOpcode()) {
1329  default: break;
1330  case X86::CMP64ri32:
1331  case X86::CMP32ri:
1332  case X86::CMP16ri:
1333  case X86::CMP8ri: {
1334    MachineOperand &MO0 = DataMI->getOperand(0);
1335    MachineOperand &MO1 = DataMI->getOperand(1);
1336    if (MO1.getImm() == 0) {
1337      switch (DataMI->getOpcode()) {
1338      default: break;
1339      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
1340      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
1341      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
1342      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
1343      }
1344      DataMI->setInstrDescriptor(TII.get(NewOpc));
1345      MO1.ChangeToRegister(MO0.getReg(), false);
1346    }
1347  }
1348  }
1349  NewMIs.push_back(DataMI);
1350
1351  // Emit the store instruction.
1352  if (UnfoldStore) {
1353    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
1354    const TargetRegisterClass *DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1355      ? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass);
1356    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
1357  }
1358
1359  return true;
1360}
1361
1362
1363bool
1364X86RegisterInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1365                                     SmallVectorImpl<SDNode*> &NewNodes) const {
1366  if (!N->isTargetOpcode())
1367    return false;
1368
1369  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1370    MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
1371  if (I == MemOp2RegOpTable.end())
1372    return false;
1373  unsigned Opc = I->second.first;
1374  unsigned Index = I->second.second & 0xf;
1375  bool FoldedLoad = I->second.second & (1 << 4);
1376  bool FoldedStore = I->second.second & (1 << 5);
1377  const TargetInstrDescriptor &TID = TII.get(Opc);
1378  const TargetOperandInfo &TOI = TID.OpInfo[Index];
1379  const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1380    ? TII.getPointerRegClass() : getRegClass(TOI.RegClass);
1381  std::vector<SDOperand> AddrOps;
1382  std::vector<SDOperand> BeforeOps;
1383  std::vector<SDOperand> AfterOps;
1384  unsigned NumOps = N->getNumOperands();
1385  for (unsigned i = 0; i != NumOps-1; ++i) {
1386    SDOperand Op = N->getOperand(i);
1387    if (i >= Index && i < Index+4)
1388      AddrOps.push_back(Op);
1389    else if (i < Index)
1390      BeforeOps.push_back(Op);
1391    else if (i > Index)
1392      AfterOps.push_back(Op);
1393  }
1394  SDOperand Chain = N->getOperand(NumOps-1);
1395  AddrOps.push_back(Chain);
1396
1397  // Emit the load instruction.
1398  SDNode *Load = 0;
1399  if (FoldedLoad) {
1400    MVT::ValueType VT = *RC->vt_begin();
1401    Load = DAG.getTargetNode(getLoadRegOpcode(RC, StackAlign), VT, MVT::Other,
1402                             &AddrOps[0], AddrOps.size());
1403    NewNodes.push_back(Load);
1404  }
1405
1406  // Emit the data processing instruction.
1407  std::vector<MVT::ValueType> VTs;
1408  const TargetRegisterClass *DstRC = 0;
1409  if (TID.numDefs > 0) {
1410    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
1411    DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1412      ? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass);
1413    VTs.push_back(*DstRC->vt_begin());
1414  }
1415  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
1416    MVT::ValueType VT = N->getValueType(i);
1417    if (VT != MVT::Other && i >= TID.numDefs)
1418      VTs.push_back(VT);
1419  }
1420  if (Load)
1421    BeforeOps.push_back(SDOperand(Load, 0));
1422  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
1423  SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
1424  NewNodes.push_back(NewNode);
1425
1426  // Emit the store instruction.
1427  if (FoldedStore) {
1428    AddrOps.pop_back();
1429    AddrOps.push_back(SDOperand(NewNode, 0));
1430    AddrOps.push_back(Chain);
1431    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, StackAlign),
1432                                      MVT::Other, &AddrOps[0], AddrOps.size());
1433    NewNodes.push_back(Store);
1434  }
1435
1436  return true;
1437}
1438
1439unsigned X86RegisterInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
1440                                      bool UnfoldLoad, bool UnfoldStore) const {
1441  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1442    MemOp2RegOpTable.find((unsigned*)Opc);
1443  if (I == MemOp2RegOpTable.end())
1444    return 0;
1445  bool FoldedLoad = I->second.second & (1 << 4);
1446  bool FoldedStore = I->second.second & (1 << 5);
1447  if (UnfoldLoad && !FoldedLoad)
1448    return 0;
1449  if (UnfoldStore && !FoldedStore)
1450    return 0;
1451  return I->second.first;
1452}
1453
1454const unsigned *
1455X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
1456  static const unsigned CalleeSavedRegs32Bit[] = {
1457    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
1458  };
1459
1460  static const unsigned CalleeSavedRegs32EHRet[] = {
1461    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
1462  };
1463
1464  static const unsigned CalleeSavedRegs64Bit[] = {
1465    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
1466  };
1467
1468  if (Is64Bit)
1469    return CalleeSavedRegs64Bit;
1470  else {
1471    if (MF) {
1472        MachineFrameInfo *MFI = MF->getFrameInfo();
1473        MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1474        if (MMI && MMI->callsEHReturn())
1475          return CalleeSavedRegs32EHRet;
1476    }
1477    return CalleeSavedRegs32Bit;
1478  }
1479}
1480
1481const TargetRegisterClass* const*
1482X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
1483  static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
1484    &X86::GR32RegClass, &X86::GR32RegClass,
1485    &X86::GR32RegClass, &X86::GR32RegClass,  0
1486  };
1487  static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
1488    &X86::GR32RegClass, &X86::GR32RegClass,
1489    &X86::GR32RegClass, &X86::GR32RegClass,
1490    &X86::GR32RegClass, &X86::GR32RegClass,  0
1491  };
1492  static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
1493    &X86::GR64RegClass, &X86::GR64RegClass,
1494    &X86::GR64RegClass, &X86::GR64RegClass,
1495    &X86::GR64RegClass, &X86::GR64RegClass, 0
1496  };
1497
1498  if (Is64Bit)
1499    return CalleeSavedRegClasses64Bit;
1500  else {
1501    if (MF) {
1502        MachineFrameInfo *MFI = MF->getFrameInfo();
1503        MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1504        if (MMI && MMI->callsEHReturn())
1505          return CalleeSavedRegClasses32EHRet;
1506    }
1507    return CalleeSavedRegClasses32Bit;
1508  }
1509
1510}
1511
1512BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
1513  BitVector Reserved(getNumRegs());
1514  Reserved.set(X86::RSP);
1515  Reserved.set(X86::ESP);
1516  Reserved.set(X86::SP);
1517  Reserved.set(X86::SPL);
1518  if (hasFP(MF)) {
1519    Reserved.set(X86::RBP);
1520    Reserved.set(X86::EBP);
1521    Reserved.set(X86::BP);
1522    Reserved.set(X86::BPL);
1523  }
1524  return Reserved;
1525}
1526
1527//===----------------------------------------------------------------------===//
1528// Stack Frame Processing methods
1529//===----------------------------------------------------------------------===//
1530
1531// hasFP - Return true if the specified function should have a dedicated frame
1532// pointer register.  This is true if the function has variable sized allocas or
1533// if frame pointer elimination is disabled.
1534//
1535bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
1536  MachineFrameInfo *MFI = MF.getFrameInfo();
1537  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1538
1539  return (NoFramePointerElim ||
1540          MFI->hasVarSizedObjects() ||
1541          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
1542          (MMI && MMI->callsUnwindInit()));
1543}
1544
1545bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
1546  return !MF.getFrameInfo()->hasVarSizedObjects();
1547}
1548
1549void X86RegisterInfo::
1550eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
1551                              MachineBasicBlock::iterator I) const {
1552  if (!hasReservedCallFrame(MF)) {
1553    // If the stack pointer can be changed after prologue, turn the
1554    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
1555    // adjcallstackdown instruction into 'add ESP, <amt>'
1556    // TODO: consider using push / pop instead of sub + store / add
1557    MachineInstr *Old = I;
1558    uint64_t Amount = Old->getOperand(0).getImm();
1559    if (Amount != 0) {
1560      // We need to keep the stack aligned properly.  To do this, we round the
1561      // amount of space needed for the outgoing arguments up to the next
1562      // alignment boundary.
1563      Amount = (Amount+StackAlign-1)/StackAlign*StackAlign;
1564
1565      MachineInstr *New = 0;
1566      if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
1567        New=BuildMI(TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr)
1568          .addReg(StackPtr).addImm(Amount);
1569      } else {
1570        assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
1571        // factor out the amount the callee already popped.
1572        uint64_t CalleeAmt = Old->getOperand(1).getImm();
1573        Amount -= CalleeAmt;
1574        if (Amount) {
1575          unsigned Opc = (Amount < 128) ?
1576            (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
1577            (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
1578          New = BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(Amount);
1579        }
1580      }
1581
1582      // Replace the pseudo instruction with a new instruction...
1583      if (New) MBB.insert(I, New);
1584    }
1585  } else if (I->getOpcode() == X86::ADJCALLSTACKUP) {
1586    // If we are performing frame pointer elimination and if the callee pops
1587    // something off the stack pointer, add it back.  We do this until we have
1588    // more advanced stack pointer tracking ability.
1589    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
1590      unsigned Opc = (CalleeAmt < 128) ?
1591        (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
1592        (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
1593      MachineInstr *New =
1594        BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt);
1595      MBB.insert(I, New);
1596    }
1597  }
1598
1599  MBB.erase(I);
1600}
1601
1602void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1603                                          int SPAdj, RegScavenger *RS) const{
1604  assert(SPAdj == 0 && "Unexpected");
1605
1606  unsigned i = 0;
1607  MachineInstr &MI = *II;
1608  MachineFunction &MF = *MI.getParent()->getParent();
1609  while (!MI.getOperand(i).isFrameIndex()) {
1610    ++i;
1611    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
1612  }
1613
1614  int FrameIndex = MI.getOperand(i).getFrameIndex();
1615  // This must be part of a four operand memory reference.  Replace the
1616  // FrameIndex with base register with EBP.  Add an offset to the offset.
1617  MI.getOperand(i).ChangeToRegister(hasFP(MF) ? FramePtr : StackPtr, false);
1618
1619  // Now add the frame object offset to the offset from EBP.
1620  int64_t Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
1621                   MI.getOperand(i+3).getImm()+SlotSize;
1622
1623  if (!hasFP(MF))
1624    Offset += MF.getFrameInfo()->getStackSize();
1625  else {
1626    Offset += SlotSize;  // Skip the saved EBP
1627    // Skip the RETADDR move area
1628    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1629    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1630    if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta;
1631  }
1632
1633  MI.getOperand(i+3).ChangeToImmediate(Offset);
1634}
1635
1636void
1637X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
1638  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1639  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1640  if (TailCallReturnAddrDelta < 0) {
1641    // create RETURNADDR area
1642    //   arg
1643    //   arg
1644    //   RETADDR
1645    //   { ...
1646    //     RETADDR area
1647    //     ...
1648    //   }
1649    //   [EBP]
1650    MF.getFrameInfo()->
1651      CreateFixedObject(-TailCallReturnAddrDelta,
1652                        (-1*SlotSize)+TailCallReturnAddrDelta);
1653  }
1654  if (hasFP(MF)) {
1655    assert((TailCallReturnAddrDelta <= 0) &&
1656           "The Delta should always be zero or negative");
1657    // Create a frame entry for the EBP register that must be saved.
1658    int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1659                                                        (int)SlotSize * -2+
1660                                                       TailCallReturnAddrDelta);
1661    assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
1662           "Slot for EBP register must be last in order to be found!");
1663  }
1664}
1665
1666/// emitSPUpdate - Emit a series of instructions to increment / decrement the
1667/// stack pointer by a constant value.
1668static
1669void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
1670                  unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
1671                  const TargetInstrInfo &TII) {
1672  bool isSub = NumBytes < 0;
1673  uint64_t Offset = isSub ? -NumBytes : NumBytes;
1674  unsigned Opc = isSub
1675    ? ((Offset < 128) ?
1676       (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
1677       (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
1678    : ((Offset < 128) ?
1679       (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
1680       (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
1681  uint64_t Chunk = (1LL << 31) - 1;
1682
1683  while (Offset) {
1684    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
1685    BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(ThisVal);
1686    Offset -= ThisVal;
1687  }
1688}
1689
1690// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
1691static
1692void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
1693                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
1694  if (MBBI == MBB.begin()) return;
1695
1696  MachineBasicBlock::iterator PI = prior(MBBI);
1697  unsigned Opc = PI->getOpcode();
1698  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1699       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1700      PI->getOperand(0).getReg() == StackPtr) {
1701    if (NumBytes)
1702      *NumBytes += PI->getOperand(2).getImm();
1703    MBB.erase(PI);
1704  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1705              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1706             PI->getOperand(0).getReg() == StackPtr) {
1707    if (NumBytes)
1708      *NumBytes -= PI->getOperand(2).getImm();
1709    MBB.erase(PI);
1710  }
1711}
1712
1713// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
1714static
1715void mergeSPUpdatesDown(MachineBasicBlock &MBB,
1716                        MachineBasicBlock::iterator &MBBI,
1717                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
1718  return;
1719
1720  if (MBBI == MBB.end()) return;
1721
1722  MachineBasicBlock::iterator NI = next(MBBI);
1723  if (NI == MBB.end()) return;
1724
1725  unsigned Opc = NI->getOpcode();
1726  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1727       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1728      NI->getOperand(0).getReg() == StackPtr) {
1729    if (NumBytes)
1730      *NumBytes -= NI->getOperand(2).getImm();
1731    MBB.erase(NI);
1732    MBBI = NI;
1733  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1734              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1735             NI->getOperand(0).getReg() == StackPtr) {
1736    if (NumBytes)
1737      *NumBytes += NI->getOperand(2).getImm();
1738    MBB.erase(NI);
1739    MBBI = NI;
1740  }
1741}
1742
1743/// mergeSPUpdates - Checks the instruction before/after the passed
1744/// instruction. If it is an ADD/SUB instruction it is deleted
1745/// argument and the stack adjustment is returned as a positive value for ADD
1746/// and a negative for SUB.
1747static int mergeSPUpdates(MachineBasicBlock &MBB,
1748                           MachineBasicBlock::iterator &MBBI,
1749                           unsigned StackPtr,
1750                           bool doMergeWithPrevious) {
1751
1752  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
1753      (!doMergeWithPrevious && MBBI == MBB.end()))
1754    return 0;
1755
1756  int Offset = 0;
1757
1758  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
1759  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
1760  unsigned Opc = PI->getOpcode();
1761  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1762       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1763      PI->getOperand(0).getReg() == StackPtr){
1764    Offset += PI->getOperand(2).getImm();
1765    MBB.erase(PI);
1766    if (!doMergeWithPrevious) MBBI = NI;
1767  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1768              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1769             PI->getOperand(0).getReg() == StackPtr) {
1770    Offset -= PI->getOperand(2).getImm();
1771    MBB.erase(PI);
1772    if (!doMergeWithPrevious) MBBI = NI;
1773  }
1774
1775  return Offset;
1776}
1777
1778void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
1779  MachineBasicBlock &MBB = MF.front();   // Prolog goes in entry BB
1780  MachineFrameInfo *MFI = MF.getFrameInfo();
1781  const Function* Fn = MF.getFunction();
1782  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
1783  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1784  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1785  MachineBasicBlock::iterator MBBI = MBB.begin();
1786
1787  // Prepare for frame info.
1788  unsigned FrameLabelId = 0;
1789
1790  // Get the number of bytes to allocate from the FrameInfo.
1791  uint64_t StackSize = MFI->getStackSize();
1792  // Add RETADDR move area to callee saved frame size.
1793  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1794  if (TailCallReturnAddrDelta < 0)
1795    X86FI->setCalleeSavedFrameSize(
1796          X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta));
1797  uint64_t NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1798
1799  // Insert stack pointer adjustment for later moving of return addr.  Only
1800  // applies to tail call optimized functions where the callee argument stack
1801  // size is bigger than the callers.
1802  if (TailCallReturnAddrDelta < 0) {
1803    BuildMI(MBB, MBBI, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
1804            StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta);
1805  }
1806
1807  if (hasFP(MF)) {
1808    // Get the offset of the stack slot for the EBP register... which is
1809    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1810    // Update the frame offset adjustment.
1811    MFI->setOffsetAdjustment(SlotSize-NumBytes);
1812
1813    // Save EBP into the appropriate stack slot...
1814    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1815      .addReg(FramePtr);
1816    NumBytes -= SlotSize;
1817
1818    if (MMI && MMI->needsFrameInfo()) {
1819      // Mark effective beginning of when frame pointer becomes valid.
1820      FrameLabelId = MMI->NextLabelID();
1821      BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(FrameLabelId);
1822    }
1823
1824    // Update EBP with the new base value...
1825    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
1826      .addReg(StackPtr);
1827  }
1828
1829  unsigned ReadyLabelId = 0;
1830  if (MMI && MMI->needsFrameInfo()) {
1831    // Mark effective beginning of when frame pointer is ready.
1832    ReadyLabelId = MMI->NextLabelID();
1833    BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(ReadyLabelId);
1834  }
1835
1836  // Skip the callee-saved push instructions.
1837  while (MBBI != MBB.end() &&
1838         (MBBI->getOpcode() == X86::PUSH32r ||
1839          MBBI->getOpcode() == X86::PUSH64r))
1840    ++MBBI;
1841
1842  if (NumBytes) {   // adjust stack pointer: ESP -= numbytes
1843    if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
1844      // Check, whether EAX is livein for this function
1845      bool isEAXAlive = false;
1846      for (MachineFunction::livein_iterator II = MF.livein_begin(),
1847             EE = MF.livein_end(); (II != EE) && !isEAXAlive; ++II) {
1848        unsigned Reg = II->first;
1849        isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
1850                      Reg == X86::AH || Reg == X86::AL);
1851      }
1852
1853      // Function prologue calls _alloca to probe the stack when allocating
1854      // more than 4k bytes in one go. Touching the stack at 4K increments is
1855      // necessary to ensure that the guard pages used by the OS virtual memory
1856      // manager are allocated in correct sequence.
1857      if (!isEAXAlive) {
1858        BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes);
1859        BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
1860          .addExternalSymbol("_alloca");
1861      } else {
1862        // Save EAX
1863        BuildMI(MBB, MBBI, TII.get(X86::PUSH32r), X86::EAX);
1864        // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
1865        // allocated bytes for EAX.
1866        BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4);
1867        BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
1868          .addExternalSymbol("_alloca");
1869        // Restore EAX
1870        MachineInstr *MI = addRegOffset(BuildMI(TII.get(X86::MOV32rm),X86::EAX),
1871                                        StackPtr, NumBytes-4);
1872        MBB.insert(MBBI, MI);
1873      }
1874    } else {
1875      // If there is an SUB32ri of ESP immediately before this instruction,
1876      // merge the two. This can be the case when tail call elimination is
1877      // enabled and the callee has more arguments then the caller.
1878      NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
1879      // If there is an ADD32ri or SUB32ri of ESP immediately after this
1880      // instruction, merge the two instructions.
1881      mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
1882
1883      if (NumBytes)
1884        emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
1885    }
1886  }
1887
1888  if (MMI && MMI->needsFrameInfo()) {
1889    std::vector<MachineMove> &Moves = MMI->getFrameMoves();
1890    const TargetData *TD = MF.getTarget().getTargetData();
1891
1892    // Calculate amount of bytes used for return address storing
1893    int stackGrowth =
1894      (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
1895       TargetFrameInfo::StackGrowsUp ?
1896       TD->getPointerSize() : -TD->getPointerSize());
1897
1898    if (StackSize) {
1899      // Show update of SP.
1900      if (hasFP(MF)) {
1901        // Adjust SP
1902        MachineLocation SPDst(MachineLocation::VirtualFP);
1903        MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth);
1904        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1905      } else {
1906        MachineLocation SPDst(MachineLocation::VirtualFP);
1907        MachineLocation SPSrc(MachineLocation::VirtualFP, -StackSize+stackGrowth);
1908        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1909      }
1910    } else {
1911      //FIXME: Verify & implement for FP
1912      MachineLocation SPDst(StackPtr);
1913      MachineLocation SPSrc(StackPtr, stackGrowth);
1914      Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1915    }
1916
1917    // Add callee saved registers to move list.
1918    const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
1919
1920    // FIXME: This is dirty hack. The code itself is pretty mess right now.
1921    // It should be rewritten from scratch and generalized sometimes.
1922
1923    // Determine maximum offset (minumum due to stack growth)
1924    int64_t MaxOffset = 0;
1925    for (unsigned I = 0, E = CSI.size(); I!=E; ++I)
1926      MaxOffset = std::min(MaxOffset,
1927                           MFI->getObjectOffset(CSI[I].getFrameIdx()));
1928
1929    // Calculate offsets
1930    int64_t saveAreaOffset = (hasFP(MF) ? 3 : 2)*stackGrowth;
1931    for (unsigned I = 0, E = CSI.size(); I!=E; ++I) {
1932      int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx());
1933      unsigned Reg = CSI[I].getReg();
1934      Offset = (MaxOffset-Offset+saveAreaOffset);
1935      MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
1936      MachineLocation CSSrc(Reg);
1937      Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc));
1938    }
1939
1940    if (hasFP(MF)) {
1941      // Save FP
1942      MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth);
1943      MachineLocation FPSrc(FramePtr);
1944      Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
1945    }
1946
1947    MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr);
1948    MachineLocation FPSrc(MachineLocation::VirtualFP);
1949    Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
1950  }
1951
1952  // If it's main() on Cygwin\Mingw32 we should align stack as well
1953  if (Fn->hasExternalLinkage() && Fn->getName() == "main" &&
1954      Subtarget->isTargetCygMing()) {
1955    BuildMI(MBB, MBBI, TII.get(X86::AND32ri), X86::ESP)
1956                .addReg(X86::ESP).addImm(-StackAlign);
1957
1958    // Probe the stack
1959    BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(StackAlign);
1960    BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca");
1961  }
1962}
1963
1964void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
1965                                   MachineBasicBlock &MBB) const {
1966  const MachineFrameInfo *MFI = MF.getFrameInfo();
1967  const Function* Fn = MF.getFunction();
1968  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1969  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
1970  MachineBasicBlock::iterator MBBI = prior(MBB.end());
1971  unsigned RetOpcode = MBBI->getOpcode();
1972
1973  switch (RetOpcode) {
1974  case X86::RET:
1975  case X86::RETI:
1976  case X86::TCRETURNdi:
1977  case X86::TCRETURNri:
1978  case X86::TCRETURNri64:
1979  case X86::TCRETURNdi64:
1980  case X86::EH_RETURN:
1981  case X86::TAILJMPd:
1982  case X86::TAILJMPr:
1983  case X86::TAILJMPm: break;  // These are ok
1984  default:
1985    assert(0 && "Can only insert epilog into returning blocks");
1986  }
1987
1988  // Get the number of bytes to allocate from the FrameInfo
1989  uint64_t StackSize = MFI->getStackSize();
1990  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1991  uint64_t NumBytes = StackSize - CSSize;
1992
1993  if (hasFP(MF)) {
1994    // pop EBP.
1995    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1996    NumBytes -= SlotSize;
1997  }
1998
1999  // Skip the callee-saved pop instructions.
2000  while (MBBI != MBB.begin()) {
2001    MachineBasicBlock::iterator PI = prior(MBBI);
2002    unsigned Opc = PI->getOpcode();
2003    if (Opc != X86::POP32r && Opc != X86::POP64r && !TII.isTerminatorInstr(Opc))
2004      break;
2005    --MBBI;
2006  }
2007
2008  // If there is an ADD32ri or SUB32ri of ESP immediately before this
2009  // instruction, merge the two instructions.
2010  if (NumBytes || MFI->hasVarSizedObjects())
2011    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
2012
2013  // If dynamic alloca is used, then reset esp to point to the last callee-saved
2014  // slot before popping them off!  Also, if it's main() on Cygwin/Mingw32 we
2015  // aligned stack in the prologue, - revert stack changes back. Note: we're
2016  // assuming, that frame pointer was forced for main()
2017  if (MFI->hasVarSizedObjects() ||
2018      (Fn->hasExternalLinkage() && Fn->getName() == "main" &&
2019       Subtarget->isTargetCygMing())) {
2020    unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
2021    if (CSSize) {
2022      MachineInstr *MI = addRegOffset(BuildMI(TII.get(Opc), StackPtr),
2023                                      FramePtr, -CSSize);
2024      MBB.insert(MBBI, MI);
2025    } else
2026      BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
2027        addReg(FramePtr);
2028
2029    NumBytes = 0;
2030  }
2031
2032  // adjust stack pointer back: ESP += numbytes
2033  if (NumBytes)
2034    emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
2035
2036  // We're returning from function via eh_return.
2037  if (RetOpcode == X86::EH_RETURN) {
2038    MBBI = prior(MBB.end());
2039    MachineOperand &DestAddr  = MBBI->getOperand(0);
2040    assert(DestAddr.isRegister() && "Offset should be in register!");
2041    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
2042      addReg(DestAddr.getReg());
2043  // Tail call return: adjust the stack pointer and jump to callee
2044  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
2045             RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
2046    MBBI = prior(MBB.end());
2047    MachineOperand &JumpTarget = MBBI->getOperand(0);
2048    MachineOperand &StackAdjust = MBBI->getOperand(1);
2049    assert( StackAdjust.isImmediate() && "Expecting immediate value.");
2050
2051    // Adjust stack pointer.
2052    int StackAdj = StackAdjust.getImm();
2053    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
2054    int Offset = 0;
2055    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
2056    // Incoporate the retaddr area.
2057    Offset = StackAdj-MaxTCDelta;
2058    assert(Offset >= 0 && "Offset should never be negative");
2059    if (Offset) {
2060      // Check for possible merge with preceeding ADD instruction.
2061      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
2062      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
2063    }
2064    // Jump to label or value in register.
2065    if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
2066      BuildMI(MBB, MBBI, TII.get(X86::TAILJMPd)).
2067        addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
2068    else if (RetOpcode== X86::TCRETURNri64) {
2069      BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
2070    } else
2071       BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr), JumpTarget.getReg());
2072    // Delete the pseudo instruction TCRETURN.
2073    MBB.erase(MBBI);
2074  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
2075             (X86FI->getTCReturnAddrDelta() < 0)) {
2076    // Add the return addr area delta back since we are not tail calling.
2077    int delta = -1*X86FI->getTCReturnAddrDelta();
2078    MBBI = prior(MBB.end());
2079    // Check for possible merge with preceeding ADD instruction.
2080    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
2081    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
2082  }
2083}
2084
2085unsigned X86RegisterInfo::getRARegister() const {
2086  if (Is64Bit)
2087    return X86::RIP;  // Should have dwarf #16
2088  else
2089    return X86::EIP;  // Should have dwarf #8
2090}
2091
2092unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
2093  return hasFP(MF) ? FramePtr : StackPtr;
2094}
2095
2096void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
2097                                                                         const {
2098  // Calculate amount of bytes used for return address storing
2099  int stackGrowth = (Is64Bit ? -8 : -4);
2100
2101  // Initial state of the frame pointer is esp+4.
2102  MachineLocation Dst(MachineLocation::VirtualFP);
2103  MachineLocation Src(StackPtr, stackGrowth);
2104  Moves.push_back(MachineMove(0, Dst, Src));
2105
2106  // Add return address to move list
2107  MachineLocation CSDst(StackPtr, stackGrowth);
2108  MachineLocation CSSrc(getRARegister());
2109  Moves.push_back(MachineMove(0, CSDst, CSSrc));
2110}
2111
2112unsigned X86RegisterInfo::getEHExceptionRegister() const {
2113  assert(0 && "What is the exception register");
2114  return 0;
2115}
2116
2117unsigned X86RegisterInfo::getEHHandlerRegister() const {
2118  assert(0 && "What is the exception handler register");
2119  return 0;
2120}
2121
2122namespace llvm {
2123unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) {
2124  switch (VT) {
2125  default: return Reg;
2126  case MVT::i8:
2127    if (High) {
2128      switch (Reg) {
2129      default: return 0;
2130      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2131        return X86::AH;
2132      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2133        return X86::DH;
2134      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2135        return X86::CH;
2136      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2137        return X86::BH;
2138      }
2139    } else {
2140      switch (Reg) {
2141      default: return 0;
2142      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2143        return X86::AL;
2144      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2145        return X86::DL;
2146      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2147        return X86::CL;
2148      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2149        return X86::BL;
2150      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
2151        return X86::SIL;
2152      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
2153        return X86::DIL;
2154      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
2155        return X86::BPL;
2156      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
2157        return X86::SPL;
2158      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
2159        return X86::R8B;
2160      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
2161        return X86::R9B;
2162      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
2163        return X86::R10B;
2164      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
2165        return X86::R11B;
2166      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
2167        return X86::R12B;
2168      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
2169        return X86::R13B;
2170      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
2171        return X86::R14B;
2172      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
2173        return X86::R15B;
2174      }
2175    }
2176  case MVT::i16:
2177    switch (Reg) {
2178    default: return Reg;
2179    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2180      return X86::AX;
2181    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2182      return X86::DX;
2183    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2184      return X86::CX;
2185    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2186      return X86::BX;
2187    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
2188      return X86::SI;
2189    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
2190      return X86::DI;
2191    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
2192      return X86::BP;
2193    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
2194      return X86::SP;
2195    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
2196      return X86::R8W;
2197    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
2198      return X86::R9W;
2199    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
2200      return X86::R10W;
2201    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
2202      return X86::R11W;
2203    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
2204      return X86::R12W;
2205    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
2206      return X86::R13W;
2207    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
2208      return X86::R14W;
2209    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
2210      return X86::R15W;
2211    }
2212  case MVT::i32:
2213    switch (Reg) {
2214    default: return Reg;
2215    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2216      return X86::EAX;
2217    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2218      return X86::EDX;
2219    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2220      return X86::ECX;
2221    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2222      return X86::EBX;
2223    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
2224      return X86::ESI;
2225    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
2226      return X86::EDI;
2227    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
2228      return X86::EBP;
2229    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
2230      return X86::ESP;
2231    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
2232      return X86::R8D;
2233    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
2234      return X86::R9D;
2235    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
2236      return X86::R10D;
2237    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
2238      return X86::R11D;
2239    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
2240      return X86::R12D;
2241    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
2242      return X86::R13D;
2243    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
2244      return X86::R14D;
2245    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
2246      return X86::R15D;
2247    }
2248  case MVT::i64:
2249    switch (Reg) {
2250    default: return Reg;
2251    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2252      return X86::RAX;
2253    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2254      return X86::RDX;
2255    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2256      return X86::RCX;
2257    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2258      return X86::RBX;
2259    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
2260      return X86::RSI;
2261    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
2262      return X86::RDI;
2263    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
2264      return X86::RBP;
2265    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
2266      return X86::RSP;
2267    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
2268      return X86::R8;
2269    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
2270      return X86::R9;
2271    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
2272      return X86::R10;
2273    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
2274      return X86::R11;
2275    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
2276      return X86::R12;
2277    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
2278      return X86::R13;
2279    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
2280      return X86::R14;
2281    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
2282      return X86::R15;
2283    }
2284  }
2285
2286  return Reg;
2287}
2288}
2289
2290#include "X86GenRegisterInfo.inc"
2291
2292