X86RegisterInfo.cpp revision 58184e6878fdab651bc7c9a59dab2687ca82ede2
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file was developed by the LLVM research group and is distributed under 6// the University of Illinois Open Source License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the X86 implementation of the MRegisterInfo class. This 11// file is responsible for the frame pointer elimination optimization on X86. 12// 13//===----------------------------------------------------------------------===// 14 15#include "X86.h" 16#include "X86RegisterInfo.h" 17#include "X86InstrBuilder.h" 18#include "X86MachineFunctionInfo.h" 19#include "X86Subtarget.h" 20#include "X86TargetMachine.h" 21#include "llvm/Constants.h" 22#include "llvm/Function.h" 23#include "llvm/Type.h" 24#include "llvm/CodeGen/ValueTypes.h" 25#include "llvm/CodeGen/MachineInstrBuilder.h" 26#include "llvm/CodeGen/MachineFunction.h" 27#include "llvm/CodeGen/MachineFrameInfo.h" 28#include "llvm/CodeGen/MachineLocation.h" 29#include "llvm/CodeGen/SSARegMap.h" 30#include "llvm/Target/TargetAsmInfo.h" 31#include "llvm/Target/TargetFrameInfo.h" 32#include "llvm/Target/TargetInstrInfo.h" 33#include "llvm/Target/TargetMachine.h" 34#include "llvm/Target/TargetOptions.h" 35#include "llvm/Support/CommandLine.h" 36#include "llvm/ADT/BitVector.h" 37#include "llvm/ADT/STLExtras.h" 38using namespace llvm; 39 40namespace { 41 cl::opt<bool> 42 NoFusing("disable-spill-fusing", 43 cl::desc("Disable fusing of spill code into instructions")); 44 cl::opt<bool> 45 PrintFailedFusing("print-failed-fuse-candidates", 46 cl::desc("Print instructions that the allocator wants to" 47 " fuse, but the X86 backend currently can't"), 48 cl::Hidden); 49} 50 51X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, 52 const TargetInstrInfo &tii) 53 : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP), 54 TM(tm), TII(tii) { 55 // Cache some information. 56 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 57 Is64Bit = Subtarget->is64Bit(); 58 if (Is64Bit) { 59 SlotSize = 8; 60 StackPtr = X86::RSP; 61 FramePtr = X86::RBP; 62 } else { 63 SlotSize = 4; 64 StackPtr = X86::ESP; 65 FramePtr = X86::EBP; 66 } 67 68 SmallVector<unsigned,16> AmbEntries; 69 static const unsigned OpTbl2Addr[][2] = { 70 { X86::ADC32ri, X86::ADC32mi }, 71 { X86::ADC32ri8, X86::ADC32mi8 }, 72 { X86::ADC32rr, X86::ADC32mr }, 73 { X86::ADC64ri32, X86::ADC64mi32 }, 74 { X86::ADC64ri8, X86::ADC64mi8 }, 75 { X86::ADC64rr, X86::ADC64mr }, 76 { X86::ADD16ri, X86::ADD16mi }, 77 { X86::ADD16ri8, X86::ADD16mi8 }, 78 { X86::ADD16rr, X86::ADD16mr }, 79 { X86::ADD32ri, X86::ADD32mi }, 80 { X86::ADD32ri8, X86::ADD32mi8 }, 81 { X86::ADD32rr, X86::ADD32mr }, 82 { X86::ADD64ri32, X86::ADD64mi32 }, 83 { X86::ADD64ri8, X86::ADD64mi8 }, 84 { X86::ADD64rr, X86::ADD64mr }, 85 { X86::ADD8ri, X86::ADD8mi }, 86 { X86::ADD8rr, X86::ADD8mr }, 87 { X86::AND16ri, X86::AND16mi }, 88 { X86::AND16ri8, X86::AND16mi8 }, 89 { X86::AND16rr, X86::AND16mr }, 90 { X86::AND32ri, X86::AND32mi }, 91 { X86::AND32ri8, X86::AND32mi8 }, 92 { X86::AND32rr, X86::AND32mr }, 93 { X86::AND64ri32, X86::AND64mi32 }, 94 { X86::AND64ri8, X86::AND64mi8 }, 95 { X86::AND64rr, X86::AND64mr }, 96 { X86::AND8ri, X86::AND8mi }, 97 { X86::AND8rr, X86::AND8mr }, 98 { X86::DEC16r, X86::DEC16m }, 99 { X86::DEC32r, X86::DEC32m }, 100 { X86::DEC64_16r, X86::DEC16m }, 101 { X86::DEC64_32r, X86::DEC32m }, 102 { X86::DEC64r, X86::DEC64m }, 103 { X86::DEC8r, X86::DEC8m }, 104 { X86::INC16r, X86::INC16m }, 105 { X86::INC32r, X86::INC32m }, 106 { X86::INC64_16r, X86::INC16m }, 107 { X86::INC64_32r, X86::INC32m }, 108 { X86::INC64r, X86::INC64m }, 109 { X86::INC8r, X86::INC8m }, 110 { X86::NEG16r, X86::NEG16m }, 111 { X86::NEG32r, X86::NEG32m }, 112 { X86::NEG64r, X86::NEG64m }, 113 { X86::NEG8r, X86::NEG8m }, 114 { X86::NOT16r, X86::NOT16m }, 115 { X86::NOT32r, X86::NOT32m }, 116 { X86::NOT64r, X86::NOT64m }, 117 { X86::NOT8r, X86::NOT8m }, 118 { X86::OR16ri, X86::OR16mi }, 119 { X86::OR16ri8, X86::OR16mi8 }, 120 { X86::OR16rr, X86::OR16mr }, 121 { X86::OR32ri, X86::OR32mi }, 122 { X86::OR32ri8, X86::OR32mi8 }, 123 { X86::OR32rr, X86::OR32mr }, 124 { X86::OR64ri32, X86::OR64mi32 }, 125 { X86::OR64ri8, X86::OR64mi8 }, 126 { X86::OR64rr, X86::OR64mr }, 127 { X86::OR8ri, X86::OR8mi }, 128 { X86::OR8rr, X86::OR8mr }, 129 { X86::ROL16r1, X86::ROL16m1 }, 130 { X86::ROL16rCL, X86::ROL16mCL }, 131 { X86::ROL16ri, X86::ROL16mi }, 132 { X86::ROL32r1, X86::ROL32m1 }, 133 { X86::ROL32rCL, X86::ROL32mCL }, 134 { X86::ROL32ri, X86::ROL32mi }, 135 { X86::ROL64r1, X86::ROL64m1 }, 136 { X86::ROL64rCL, X86::ROL64mCL }, 137 { X86::ROL64ri, X86::ROL64mi }, 138 { X86::ROL8r1, X86::ROL8m1 }, 139 { X86::ROL8rCL, X86::ROL8mCL }, 140 { X86::ROL8ri, X86::ROL8mi }, 141 { X86::ROR16r1, X86::ROR16m1 }, 142 { X86::ROR16rCL, X86::ROR16mCL }, 143 { X86::ROR16ri, X86::ROR16mi }, 144 { X86::ROR32r1, X86::ROR32m1 }, 145 { X86::ROR32rCL, X86::ROR32mCL }, 146 { X86::ROR32ri, X86::ROR32mi }, 147 { X86::ROR64r1, X86::ROR64m1 }, 148 { X86::ROR64rCL, X86::ROR64mCL }, 149 { X86::ROR64ri, X86::ROR64mi }, 150 { X86::ROR8r1, X86::ROR8m1 }, 151 { X86::ROR8rCL, X86::ROR8mCL }, 152 { X86::ROR8ri, X86::ROR8mi }, 153 { X86::SAR16r1, X86::SAR16m1 }, 154 { X86::SAR16rCL, X86::SAR16mCL }, 155 { X86::SAR16ri, X86::SAR16mi }, 156 { X86::SAR32r1, X86::SAR32m1 }, 157 { X86::SAR32rCL, X86::SAR32mCL }, 158 { X86::SAR32ri, X86::SAR32mi }, 159 { X86::SAR64r1, X86::SAR64m1 }, 160 { X86::SAR64rCL, X86::SAR64mCL }, 161 { X86::SAR64ri, X86::SAR64mi }, 162 { X86::SAR8r1, X86::SAR8m1 }, 163 { X86::SAR8rCL, X86::SAR8mCL }, 164 { X86::SAR8ri, X86::SAR8mi }, 165 { X86::SBB32ri, X86::SBB32mi }, 166 { X86::SBB32ri8, X86::SBB32mi8 }, 167 { X86::SBB32rr, X86::SBB32mr }, 168 { X86::SBB64ri32, X86::SBB64mi32 }, 169 { X86::SBB64ri8, X86::SBB64mi8 }, 170 { X86::SBB64rr, X86::SBB64mr }, 171 { X86::SHL16r1, X86::SHL16m1 }, 172 { X86::SHL16rCL, X86::SHL16mCL }, 173 { X86::SHL16ri, X86::SHL16mi }, 174 { X86::SHL32r1, X86::SHL32m1 }, 175 { X86::SHL32rCL, X86::SHL32mCL }, 176 { X86::SHL32ri, X86::SHL32mi }, 177 { X86::SHL64r1, X86::SHL64m1 }, 178 { X86::SHL64rCL, X86::SHL64mCL }, 179 { X86::SHL64ri, X86::SHL64mi }, 180 { X86::SHL8r1, X86::SHL8m1 }, 181 { X86::SHL8rCL, X86::SHL8mCL }, 182 { X86::SHL8ri, X86::SHL8mi }, 183 { X86::SHLD16rrCL, X86::SHLD16mrCL }, 184 { X86::SHLD16rri8, X86::SHLD16mri8 }, 185 { X86::SHLD32rrCL, X86::SHLD32mrCL }, 186 { X86::SHLD32rri8, X86::SHLD32mri8 }, 187 { X86::SHLD64rrCL, X86::SHLD64mrCL }, 188 { X86::SHLD64rri8, X86::SHLD64mri8 }, 189 { X86::SHR16r1, X86::SHR16m1 }, 190 { X86::SHR16rCL, X86::SHR16mCL }, 191 { X86::SHR16ri, X86::SHR16mi }, 192 { X86::SHR32r1, X86::SHR32m1 }, 193 { X86::SHR32rCL, X86::SHR32mCL }, 194 { X86::SHR32ri, X86::SHR32mi }, 195 { X86::SHR64r1, X86::SHR64m1 }, 196 { X86::SHR64rCL, X86::SHR64mCL }, 197 { X86::SHR64ri, X86::SHR64mi }, 198 { X86::SHR8r1, X86::SHR8m1 }, 199 { X86::SHR8rCL, X86::SHR8mCL }, 200 { X86::SHR8ri, X86::SHR8mi }, 201 { X86::SHRD16rrCL, X86::SHRD16mrCL }, 202 { X86::SHRD16rri8, X86::SHRD16mri8 }, 203 { X86::SHRD32rrCL, X86::SHRD32mrCL }, 204 { X86::SHRD32rri8, X86::SHRD32mri8 }, 205 { X86::SHRD64rrCL, X86::SHRD64mrCL }, 206 { X86::SHRD64rri8, X86::SHRD64mri8 }, 207 { X86::SUB16ri, X86::SUB16mi }, 208 { X86::SUB16ri8, X86::SUB16mi8 }, 209 { X86::SUB16rr, X86::SUB16mr }, 210 { X86::SUB32ri, X86::SUB32mi }, 211 { X86::SUB32ri8, X86::SUB32mi8 }, 212 { X86::SUB32rr, X86::SUB32mr }, 213 { X86::SUB64ri32, X86::SUB64mi32 }, 214 { X86::SUB64ri8, X86::SUB64mi8 }, 215 { X86::SUB64rr, X86::SUB64mr }, 216 { X86::SUB8ri, X86::SUB8mi }, 217 { X86::SUB8rr, X86::SUB8mr }, 218 { X86::XOR16ri, X86::XOR16mi }, 219 { X86::XOR16ri8, X86::XOR16mi8 }, 220 { X86::XOR16rr, X86::XOR16mr }, 221 { X86::XOR32ri, X86::XOR32mi }, 222 { X86::XOR32ri8, X86::XOR32mi8 }, 223 { X86::XOR32rr, X86::XOR32mr }, 224 { X86::XOR64ri32, X86::XOR64mi32 }, 225 { X86::XOR64ri8, X86::XOR64mi8 }, 226 { X86::XOR64rr, X86::XOR64mr }, 227 { X86::XOR8ri, X86::XOR8mi }, 228 { X86::XOR8rr, X86::XOR8mr } 229 }; 230 231 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { 232 unsigned RegOp = OpTbl2Addr[i][0]; 233 unsigned MemOp = OpTbl2Addr[i][1]; 234 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp))) 235 assert(false && "Duplicated entries?"); 236 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store 237 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, 238 std::make_pair(RegOp, AuxInfo)))) 239 AmbEntries.push_back(MemOp); 240 } 241 242 // If the third value is 1, then it's folding either a load or a store. 243 static const unsigned OpTbl0[][3] = { 244 { X86::CALL32r, X86::CALL32m, 1 }, 245 { X86::CALL64r, X86::CALL64m, 1 }, 246 { X86::CMP16ri, X86::CMP16mi, 1 }, 247 { X86::CMP16ri8, X86::CMP16mi8, 1 }, 248 { X86::CMP32ri, X86::CMP32mi, 1 }, 249 { X86::CMP32ri8, X86::CMP32mi8, 1 }, 250 { X86::CMP64ri32, X86::CMP64mi32, 1 }, 251 { X86::CMP64ri8, X86::CMP64mi8, 1 }, 252 { X86::CMP8ri, X86::CMP8mi, 1 }, 253 { X86::DIV16r, X86::DIV16m, 1 }, 254 { X86::DIV32r, X86::DIV32m, 1 }, 255 { X86::DIV64r, X86::DIV64m, 1 }, 256 { X86::DIV8r, X86::DIV8m, 1 }, 257 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 }, 258 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 }, 259 { X86::IDIV16r, X86::IDIV16m, 1 }, 260 { X86::IDIV32r, X86::IDIV32m, 1 }, 261 { X86::IDIV64r, X86::IDIV64m, 1 }, 262 { X86::IDIV8r, X86::IDIV8m, 1 }, 263 { X86::IMUL16r, X86::IMUL16m, 1 }, 264 { X86::IMUL32r, X86::IMUL32m, 1 }, 265 { X86::IMUL64r, X86::IMUL64m, 1 }, 266 { X86::IMUL8r, X86::IMUL8m, 1 }, 267 { X86::JMP32r, X86::JMP32m, 1 }, 268 { X86::JMP64r, X86::JMP64m, 1 }, 269 { X86::MOV16ri, X86::MOV16mi, 0 }, 270 { X86::MOV16rr, X86::MOV16mr, 0 }, 271 { X86::MOV16to16_, X86::MOV16_mr, 0 }, 272 { X86::MOV32ri, X86::MOV32mi, 0 }, 273 { X86::MOV32rr, X86::MOV32mr, 0 }, 274 { X86::MOV32to32_, X86::MOV32_mr, 0 }, 275 { X86::MOV64ri32, X86::MOV64mi32, 0 }, 276 { X86::MOV64rr, X86::MOV64mr, 0 }, 277 { X86::MOV8ri, X86::MOV8mi, 0 }, 278 { X86::MOV8rr, X86::MOV8mr, 0 }, 279 { X86::MOVAPDrr, X86::MOVAPDmr, 0 }, 280 { X86::MOVAPSrr, X86::MOVAPSmr, 0 }, 281 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 }, 282 { X86::MOVPQIto64rr,X86::MOVPQIto64mr, 0 }, 283 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 }, 284 { X86::MOVSDrr, X86::MOVSDmr, 0 }, 285 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 }, 286 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 }, 287 { X86::MOVSSrr, X86::MOVSSmr, 0 }, 288 { X86::MOVUPDrr, X86::MOVUPDmr, 0 }, 289 { X86::MOVUPSrr, X86::MOVUPSmr, 0 }, 290 { X86::MUL16r, X86::MUL16m, 1 }, 291 { X86::MUL32r, X86::MUL32m, 1 }, 292 { X86::MUL64r, X86::MUL64m, 1 }, 293 { X86::MUL8r, X86::MUL8m, 1 }, 294 { X86::SETAEr, X86::SETAEm, 0 }, 295 { X86::SETAr, X86::SETAm, 0 }, 296 { X86::SETBEr, X86::SETBEm, 0 }, 297 { X86::SETBr, X86::SETBm, 0 }, 298 { X86::SETEr, X86::SETEm, 0 }, 299 { X86::SETGEr, X86::SETGEm, 0 }, 300 { X86::SETGr, X86::SETGm, 0 }, 301 { X86::SETLEr, X86::SETLEm, 0 }, 302 { X86::SETLr, X86::SETLm, 0 }, 303 { X86::SETNEr, X86::SETNEm, 0 }, 304 { X86::SETNPr, X86::SETNPm, 0 }, 305 { X86::SETNSr, X86::SETNSm, 0 }, 306 { X86::SETPr, X86::SETPm, 0 }, 307 { X86::SETSr, X86::SETSm, 0 }, 308 { X86::TAILJMPr, X86::TAILJMPm, 1 }, 309 { X86::TEST16ri, X86::TEST16mi, 1 }, 310 { X86::TEST32ri, X86::TEST32mi, 1 }, 311 { X86::TEST64ri32, X86::TEST64mi32, 1 }, 312 { X86::TEST8ri, X86::TEST8mi, 1 }, 313 { X86::XCHG16rr, X86::XCHG16mr, 0 }, 314 { X86::XCHG32rr, X86::XCHG32mr, 0 }, 315 { X86::XCHG64rr, X86::XCHG64mr, 0 }, 316 { X86::XCHG8rr, X86::XCHG8mr, 0 } 317 }; 318 319 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { 320 unsigned RegOp = OpTbl0[i][0]; 321 unsigned MemOp = OpTbl0[i][1]; 322 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp))) 323 assert(false && "Duplicated entries?"); 324 unsigned FoldedLoad = OpTbl0[i][2]; 325 // Index 0, folded load or store. 326 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5); 327 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, 328 std::make_pair(RegOp, AuxInfo)))) 329 AmbEntries.push_back(MemOp); 330 } 331 332 static const unsigned OpTbl1[][2] = { 333 { X86::CMP16rr, X86::CMP16rm }, 334 { X86::CMP32rr, X86::CMP32rm }, 335 { X86::CMP64rr, X86::CMP64rm }, 336 { X86::CMP8rr, X86::CMP8rm }, 337 { X86::CVTSD2SSrr, X86::CVTSD2SSrm }, 338 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm }, 339 { X86::CVTSI2SDrr, X86::CVTSI2SDrm }, 340 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm }, 341 { X86::CVTSI2SSrr, X86::CVTSI2SSrm }, 342 { X86::CVTSS2SDrr, X86::CVTSS2SDrm }, 343 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm }, 344 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm }, 345 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm }, 346 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm }, 347 { X86::FsMOVAPDrr, X86::MOVSDrm }, 348 { X86::FsMOVAPSrr, X86::MOVSSrm }, 349 { X86::IMUL16rri, X86::IMUL16rmi }, 350 { X86::IMUL16rri8, X86::IMUL16rmi8 }, 351 { X86::IMUL32rri, X86::IMUL32rmi }, 352 { X86::IMUL32rri8, X86::IMUL32rmi8 }, 353 { X86::IMUL64rri32, X86::IMUL64rmi32 }, 354 { X86::IMUL64rri8, X86::IMUL64rmi8 }, 355 { X86::Int_CMPSDrr, X86::Int_CMPSDrm }, 356 { X86::Int_CMPSSrr, X86::Int_CMPSSrm }, 357 { X86::Int_COMISDrr, X86::Int_COMISDrm }, 358 { X86::Int_COMISSrr, X86::Int_COMISSrm }, 359 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm }, 360 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm }, 361 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm }, 362 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm }, 363 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm }, 364 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm }, 365 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm }, 366 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm }, 367 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm }, 368 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm }, 369 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm }, 370 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm }, 371 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm }, 372 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm }, 373 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm }, 374 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm }, 375 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm }, 376 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm }, 377 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm }, 378 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm }, 379 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm }, 380 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm }, 381 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm }, 382 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm }, 383 { X86::MOV16rr, X86::MOV16rm }, 384 { X86::MOV16to16_, X86::MOV16_rm }, 385 { X86::MOV32rr, X86::MOV32rm }, 386 { X86::MOV32to32_, X86::MOV32_rm }, 387 { X86::MOV64rr, X86::MOV64rm }, 388 { X86::MOV64toPQIrr, X86::MOV64toPQIrm }, 389 { X86::MOV64toSDrr, X86::MOV64toSDrm }, 390 { X86::MOV8rr, X86::MOV8rm }, 391 { X86::MOVAPDrr, X86::MOVAPDrm }, 392 { X86::MOVAPSrr, X86::MOVAPSrm }, 393 { X86::MOVDDUPrr, X86::MOVDDUPrm }, 394 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm }, 395 { X86::MOVDI2SSrr, X86::MOVDI2SSrm }, 396 { X86::MOVSD2PDrr, X86::MOVSD2PDrm }, 397 { X86::MOVSDrr, X86::MOVSDrm }, 398 { X86::MOVSHDUPrr, X86::MOVSHDUPrm }, 399 { X86::MOVSLDUPrr, X86::MOVSLDUPrm }, 400 { X86::MOVSS2PSrr, X86::MOVSS2PSrm }, 401 { X86::MOVSSrr, X86::MOVSSrm }, 402 { X86::MOVSX16rr8, X86::MOVSX16rm8 }, 403 { X86::MOVSX32rr16, X86::MOVSX32rm16 }, 404 { X86::MOVSX32rr8, X86::MOVSX32rm8 }, 405 { X86::MOVSX64rr16, X86::MOVSX64rm16 }, 406 { X86::MOVSX64rr32, X86::MOVSX64rm32 }, 407 { X86::MOVSX64rr8, X86::MOVSX64rm8 }, 408 { X86::MOVUPDrr, X86::MOVUPDrm }, 409 { X86::MOVUPSrr, X86::MOVUPSrm }, 410 { X86::MOVZX16rr8, X86::MOVZX16rm8 }, 411 { X86::MOVZX32rr16, X86::MOVZX32rm16 }, 412 { X86::MOVZX32rr8, X86::MOVZX32rm8 }, 413 { X86::MOVZX64rr16, X86::MOVZX64rm16 }, 414 { X86::MOVZX64rr8, X86::MOVZX64rm8 }, 415 { X86::PSHUFDri, X86::PSHUFDmi }, 416 { X86::PSHUFHWri, X86::PSHUFHWmi }, 417 { X86::PSHUFLWri, X86::PSHUFLWmi }, 418 { X86::PsMOVZX64rr32, X86::PsMOVZX64rm32 }, 419 { X86::RCPPSr, X86::RCPPSm }, 420 { X86::RCPPSr_Int, X86::RCPPSm_Int }, 421 { X86::RSQRTPSr, X86::RSQRTPSm }, 422 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int }, 423 { X86::RSQRTSSr, X86::RSQRTSSm }, 424 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int }, 425 { X86::SQRTPDr, X86::SQRTPDm }, 426 { X86::SQRTPDr_Int, X86::SQRTPDm_Int }, 427 { X86::SQRTPSr, X86::SQRTPSm }, 428 { X86::SQRTPSr_Int, X86::SQRTPSm_Int }, 429 { X86::SQRTSDr, X86::SQRTSDm }, 430 { X86::SQRTSDr_Int, X86::SQRTSDm_Int }, 431 { X86::SQRTSSr, X86::SQRTSSm }, 432 { X86::SQRTSSr_Int, X86::SQRTSSm_Int }, 433 { X86::TEST16rr, X86::TEST16rm }, 434 { X86::TEST32rr, X86::TEST32rm }, 435 { X86::TEST64rr, X86::TEST64rm }, 436 { X86::TEST8rr, X86::TEST8rm }, 437 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 438 { X86::UCOMISDrr, X86::UCOMISDrm }, 439 { X86::UCOMISSrr, X86::UCOMISSrm }, 440 { X86::XCHG16rr, X86::XCHG16rm }, 441 { X86::XCHG32rr, X86::XCHG32rm }, 442 { X86::XCHG64rr, X86::XCHG64rm }, 443 { X86::XCHG8rr, X86::XCHG8rm } 444 }; 445 446 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { 447 unsigned RegOp = OpTbl1[i][0]; 448 unsigned MemOp = OpTbl1[i][1]; 449 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp))) 450 assert(false && "Duplicated entries?"); 451 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load 452 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, 453 std::make_pair(RegOp, AuxInfo)))) 454 AmbEntries.push_back(MemOp); 455 } 456 457 static const unsigned OpTbl2[][2] = { 458 { X86::ADC32rr, X86::ADC32rm }, 459 { X86::ADC64rr, X86::ADC64rm }, 460 { X86::ADD16rr, X86::ADD16rm }, 461 { X86::ADD32rr, X86::ADD32rm }, 462 { X86::ADD64rr, X86::ADD64rm }, 463 { X86::ADD8rr, X86::ADD8rm }, 464 { X86::ADDPDrr, X86::ADDPDrm }, 465 { X86::ADDPSrr, X86::ADDPSrm }, 466 { X86::ADDSDrr, X86::ADDSDrm }, 467 { X86::ADDSSrr, X86::ADDSSrm }, 468 { X86::ADDSUBPDrr, X86::ADDSUBPDrm }, 469 { X86::ADDSUBPSrr, X86::ADDSUBPSrm }, 470 { X86::AND16rr, X86::AND16rm }, 471 { X86::AND32rr, X86::AND32rm }, 472 { X86::AND64rr, X86::AND64rm }, 473 { X86::AND8rr, X86::AND8rm }, 474 { X86::ANDNPDrr, X86::ANDNPDrm }, 475 { X86::ANDNPSrr, X86::ANDNPSrm }, 476 { X86::ANDPDrr, X86::ANDPDrm }, 477 { X86::ANDPSrr, X86::ANDPSrm }, 478 { X86::CMOVA16rr, X86::CMOVA16rm }, 479 { X86::CMOVA32rr, X86::CMOVA32rm }, 480 { X86::CMOVA64rr, X86::CMOVA64rm }, 481 { X86::CMOVAE16rr, X86::CMOVAE16rm }, 482 { X86::CMOVAE32rr, X86::CMOVAE32rm }, 483 { X86::CMOVAE64rr, X86::CMOVAE64rm }, 484 { X86::CMOVB16rr, X86::CMOVB16rm }, 485 { X86::CMOVB32rr, X86::CMOVB32rm }, 486 { X86::CMOVB64rr, X86::CMOVB64rm }, 487 { X86::CMOVBE16rr, X86::CMOVBE16rm }, 488 { X86::CMOVBE32rr, X86::CMOVBE32rm }, 489 { X86::CMOVBE64rr, X86::CMOVBE64rm }, 490 { X86::CMOVE16rr, X86::CMOVE16rm }, 491 { X86::CMOVE32rr, X86::CMOVE32rm }, 492 { X86::CMOVE64rr, X86::CMOVE64rm }, 493 { X86::CMOVG16rr, X86::CMOVG16rm }, 494 { X86::CMOVG32rr, X86::CMOVG32rm }, 495 { X86::CMOVG64rr, X86::CMOVG64rm }, 496 { X86::CMOVGE16rr, X86::CMOVGE16rm }, 497 { X86::CMOVGE32rr, X86::CMOVGE32rm }, 498 { X86::CMOVGE64rr, X86::CMOVGE64rm }, 499 { X86::CMOVL16rr, X86::CMOVL16rm }, 500 { X86::CMOVL32rr, X86::CMOVL32rm }, 501 { X86::CMOVL64rr, X86::CMOVL64rm }, 502 { X86::CMOVLE16rr, X86::CMOVLE16rm }, 503 { X86::CMOVLE32rr, X86::CMOVLE32rm }, 504 { X86::CMOVLE64rr, X86::CMOVLE64rm }, 505 { X86::CMOVNE16rr, X86::CMOVNE16rm }, 506 { X86::CMOVNE32rr, X86::CMOVNE32rm }, 507 { X86::CMOVNE64rr, X86::CMOVNE64rm }, 508 { X86::CMOVNP16rr, X86::CMOVNP16rm }, 509 { X86::CMOVNP32rr, X86::CMOVNP32rm }, 510 { X86::CMOVNP64rr, X86::CMOVNP64rm }, 511 { X86::CMOVNS16rr, X86::CMOVNS16rm }, 512 { X86::CMOVNS32rr, X86::CMOVNS32rm }, 513 { X86::CMOVNS64rr, X86::CMOVNS64rm }, 514 { X86::CMOVP16rr, X86::CMOVP16rm }, 515 { X86::CMOVP32rr, X86::CMOVP32rm }, 516 { X86::CMOVP64rr, X86::CMOVP64rm }, 517 { X86::CMOVS16rr, X86::CMOVS16rm }, 518 { X86::CMOVS32rr, X86::CMOVS32rm }, 519 { X86::CMOVS64rr, X86::CMOVS64rm }, 520 { X86::CMPPDrri, X86::CMPPDrmi }, 521 { X86::CMPPSrri, X86::CMPPSrmi }, 522 { X86::CMPSDrr, X86::CMPSDrm }, 523 { X86::CMPSSrr, X86::CMPSSrm }, 524 { X86::DIVPDrr, X86::DIVPDrm }, 525 { X86::DIVPSrr, X86::DIVPSrm }, 526 { X86::DIVSDrr, X86::DIVSDrm }, 527 { X86::DIVSSrr, X86::DIVSSrm }, 528 { X86::HADDPDrr, X86::HADDPDrm }, 529 { X86::HADDPSrr, X86::HADDPSrm }, 530 { X86::HSUBPDrr, X86::HSUBPDrm }, 531 { X86::HSUBPSrr, X86::HSUBPSrm }, 532 { X86::IMUL16rr, X86::IMUL16rm }, 533 { X86::IMUL32rr, X86::IMUL32rm }, 534 { X86::IMUL64rr, X86::IMUL64rm }, 535 { X86::MAXPDrr, X86::MAXPDrm }, 536 { X86::MAXPDrr_Int, X86::MAXPDrm_Int }, 537 { X86::MAXPSrr, X86::MAXPSrm }, 538 { X86::MAXPSrr_Int, X86::MAXPSrm_Int }, 539 { X86::MAXSDrr, X86::MAXSDrm }, 540 { X86::MAXSDrr_Int, X86::MAXSDrm_Int }, 541 { X86::MAXSSrr, X86::MAXSSrm }, 542 { X86::MAXSSrr_Int, X86::MAXSSrm_Int }, 543 { X86::MINPDrr, X86::MINPDrm }, 544 { X86::MINPDrr_Int, X86::MINPDrm_Int }, 545 { X86::MINPSrr, X86::MINPSrm }, 546 { X86::MINPSrr_Int, X86::MINPSrm_Int }, 547 { X86::MINSDrr, X86::MINSDrm }, 548 { X86::MINSDrr_Int, X86::MINSDrm_Int }, 549 { X86::MINSSrr, X86::MINSSrm }, 550 { X86::MINSSrr_Int, X86::MINSSrm_Int }, 551 { X86::MULPDrr, X86::MULPDrm }, 552 { X86::MULPSrr, X86::MULPSrm }, 553 { X86::MULSDrr, X86::MULSDrm }, 554 { X86::MULSSrr, X86::MULSSrm }, 555 { X86::OR16rr, X86::OR16rm }, 556 { X86::OR32rr, X86::OR32rm }, 557 { X86::OR64rr, X86::OR64rm }, 558 { X86::OR8rr, X86::OR8rm }, 559 { X86::ORPDrr, X86::ORPDrm }, 560 { X86::ORPSrr, X86::ORPSrm }, 561 { X86::PACKSSDWrr, X86::PACKSSDWrm }, 562 { X86::PACKSSWBrr, X86::PACKSSWBrm }, 563 { X86::PACKUSWBrr, X86::PACKUSWBrm }, 564 { X86::PADDBrr, X86::PADDBrm }, 565 { X86::PADDDrr, X86::PADDDrm }, 566 { X86::PADDQrr, X86::PADDQrm }, 567 { X86::PADDSBrr, X86::PADDSBrm }, 568 { X86::PADDSWrr, X86::PADDSWrm }, 569 { X86::PADDWrr, X86::PADDWrm }, 570 { X86::PANDNrr, X86::PANDNrm }, 571 { X86::PANDrr, X86::PANDrm }, 572 { X86::PAVGBrr, X86::PAVGBrm }, 573 { X86::PAVGWrr, X86::PAVGWrm }, 574 { X86::PCMPEQBrr, X86::PCMPEQBrm }, 575 { X86::PCMPEQDrr, X86::PCMPEQDrm }, 576 { X86::PCMPEQWrr, X86::PCMPEQWrm }, 577 { X86::PCMPGTBrr, X86::PCMPGTBrm }, 578 { X86::PCMPGTDrr, X86::PCMPGTDrm }, 579 { X86::PCMPGTWrr, X86::PCMPGTWrm }, 580 { X86::PINSRWrri, X86::PINSRWrmi }, 581 { X86::PMADDWDrr, X86::PMADDWDrm }, 582 { X86::PMAXSWrr, X86::PMAXSWrm }, 583 { X86::PMAXUBrr, X86::PMAXUBrm }, 584 { X86::PMINSWrr, X86::PMINSWrm }, 585 { X86::PMINUBrr, X86::PMINUBrm }, 586 { X86::PMULHUWrr, X86::PMULHUWrm }, 587 { X86::PMULHWrr, X86::PMULHWrm }, 588 { X86::PMULLWrr, X86::PMULLWrm }, 589 { X86::PMULUDQrr, X86::PMULUDQrm }, 590 { X86::PORrr, X86::PORrm }, 591 { X86::PSADBWrr, X86::PSADBWrm }, 592 { X86::PSLLDrr, X86::PSLLDrm }, 593 { X86::PSLLQrr, X86::PSLLQrm }, 594 { X86::PSLLWrr, X86::PSLLWrm }, 595 { X86::PSRADrr, X86::PSRADrm }, 596 { X86::PSRAWrr, X86::PSRAWrm }, 597 { X86::PSRLDrr, X86::PSRLDrm }, 598 { X86::PSRLQrr, X86::PSRLQrm }, 599 { X86::PSRLWrr, X86::PSRLWrm }, 600 { X86::PSUBBrr, X86::PSUBBrm }, 601 { X86::PSUBDrr, X86::PSUBDrm }, 602 { X86::PSUBSBrr, X86::PSUBSBrm }, 603 { X86::PSUBSWrr, X86::PSUBSWrm }, 604 { X86::PSUBWrr, X86::PSUBWrm }, 605 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm }, 606 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm }, 607 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm }, 608 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm }, 609 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm }, 610 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm }, 611 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm }, 612 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm }, 613 { X86::PXORrr, X86::PXORrm }, 614 { X86::SBB32rr, X86::SBB32rm }, 615 { X86::SBB64rr, X86::SBB64rm }, 616 { X86::SHUFPDrri, X86::SHUFPDrmi }, 617 { X86::SHUFPSrri, X86::SHUFPSrmi }, 618 { X86::SUB16rr, X86::SUB16rm }, 619 { X86::SUB32rr, X86::SUB32rm }, 620 { X86::SUB64rr, X86::SUB64rm }, 621 { X86::SUB8rr, X86::SUB8rm }, 622 { X86::SUBPDrr, X86::SUBPDrm }, 623 { X86::SUBPSrr, X86::SUBPSrm }, 624 { X86::SUBSDrr, X86::SUBSDrm }, 625 { X86::SUBSSrr, X86::SUBSSrm }, 626 // FIXME: TEST*rr -> swapped operand of TEST*mr. 627 { X86::UNPCKHPDrr, X86::UNPCKHPDrm }, 628 { X86::UNPCKHPSrr, X86::UNPCKHPSrm }, 629 { X86::UNPCKLPDrr, X86::UNPCKLPDrm }, 630 { X86::UNPCKLPSrr, X86::UNPCKLPSrm }, 631 { X86::XOR16rr, X86::XOR16rm }, 632 { X86::XOR32rr, X86::XOR32rm }, 633 { X86::XOR64rr, X86::XOR64rm }, 634 { X86::XOR8rr, X86::XOR8rm }, 635 { X86::XORPDrr, X86::XORPDrm }, 636 { X86::XORPSrr, X86::XORPSrm } 637 }; 638 639 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { 640 unsigned RegOp = OpTbl2[i][0]; 641 unsigned MemOp = OpTbl2[i][1]; 642 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp))) 643 assert(false && "Duplicated entries?"); 644 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load 645 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, 646 std::make_pair(RegOp, AuxInfo)))) 647 AmbEntries.push_back(MemOp); 648 } 649 650 // Remove ambiguous entries. 651 for (unsigned i = 0, e = AmbEntries.size(); i != e; ++i) 652 MemOp2RegOpTable.erase((unsigned*)AmbEntries[i]); 653} 654 655// getX86RegNum - This function maps LLVM register identifiers to their X86 656// specific numbering, which is used in various places encoding instructions. 657// 658unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) { 659 switch(RegNo) { 660 case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; 661 case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; 662 case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; 663 case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; 664 case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: 665 return N86::ESP; 666 case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: 667 return N86::EBP; 668 case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: 669 return N86::ESI; 670 case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: 671 return N86::EDI; 672 673 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: 674 return N86::EAX; 675 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: 676 return N86::ECX; 677 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: 678 return N86::EDX; 679 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: 680 return N86::EBX; 681 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: 682 return N86::ESP; 683 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: 684 return N86::EBP; 685 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: 686 return N86::ESI; 687 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: 688 return N86::EDI; 689 690 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: 691 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: 692 return RegNo-X86::ST0; 693 694 case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3: 695 case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: 696 return getDwarfRegNum(RegNo) - getDwarfRegNum(X86::XMM0); 697 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: 698 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: 699 return getDwarfRegNum(RegNo) - getDwarfRegNum(X86::XMM8); 700 701 default: 702 assert(isVirtualRegister(RegNo) && "Unknown physical register!"); 703 assert(0 && "Register allocator hasn't allocated reg correctly yet!"); 704 return 0; 705 } 706} 707 708bool X86RegisterInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 709 MachineBasicBlock::iterator MI, 710 const std::vector<CalleeSavedInfo> &CSI) const { 711 if (CSI.empty()) 712 return false; 713 714 MachineFunction &MF = *MBB.getParent(); 715 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 716 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize); 717 unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r; 718 for (unsigned i = CSI.size(); i != 0; --i) { 719 unsigned Reg = CSI[i-1].getReg(); 720 // Add the callee-saved register as live-in. It's killed at the spill. 721 MBB.addLiveIn(Reg); 722 BuildMI(MBB, MI, TII.get(Opc)).addReg(Reg); 723 } 724 return true; 725} 726 727bool X86RegisterInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 728 MachineBasicBlock::iterator MI, 729 const std::vector<CalleeSavedInfo> &CSI) const { 730 if (CSI.empty()) 731 return false; 732 733 unsigned Opc = Is64Bit ? X86::POP64r : X86::POP32r; 734 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 735 unsigned Reg = CSI[i].getReg(); 736 BuildMI(MBB, MI, TII.get(Opc), Reg); 737 } 738 return true; 739} 740 741static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB, 742 MachineOperand &MO) { 743 if (MO.isRegister()) 744 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit()); 745 else if (MO.isImmediate()) 746 MIB = MIB.addImm(MO.getImm()); 747 else if (MO.isFrameIndex()) 748 MIB = MIB.addFrameIndex(MO.getFrameIndex()); 749 else if (MO.isGlobalAddress()) 750 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset()); 751 else if (MO.isConstantPoolIndex()) 752 MIB = MIB.addConstantPoolIndex(MO.getConstantPoolIndex(), MO.getOffset()); 753 else if (MO.isJumpTableIndex()) 754 MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex()); 755 else if (MO.isExternalSymbol()) 756 MIB = MIB.addExternalSymbol(MO.getSymbolName()); 757 else 758 assert(0 && "Unknown operand for X86InstrAddOperand!"); 759 760 return MIB; 761} 762 763static unsigned getStoreRegOpcode(const TargetRegisterClass *RC) { 764 unsigned Opc = 0; 765 if (RC == &X86::GR64RegClass) { 766 Opc = X86::MOV64mr; 767 } else if (RC == &X86::GR32RegClass) { 768 Opc = X86::MOV32mr; 769 } else if (RC == &X86::GR16RegClass) { 770 Opc = X86::MOV16mr; 771 } else if (RC == &X86::GR8RegClass) { 772 Opc = X86::MOV8mr; 773 } else if (RC == &X86::GR32_RegClass) { 774 Opc = X86::MOV32_mr; 775 } else if (RC == &X86::GR16_RegClass) { 776 Opc = X86::MOV16_mr; 777 } else if (RC == &X86::RFP80RegClass) { 778 Opc = X86::ST_FpP80m; // pops 779 } else if (RC == &X86::RFP64RegClass) { 780 Opc = X86::ST_Fp64m; 781 } else if (RC == &X86::RFP32RegClass) { 782 Opc = X86::ST_Fp32m; 783 } else if (RC == &X86::FR32RegClass) { 784 Opc = X86::MOVSSmr; 785 } else if (RC == &X86::FR64RegClass) { 786 Opc = X86::MOVSDmr; 787 } else if (RC == &X86::VR128RegClass) { 788 Opc = X86::MOVAPSmr; 789 } else if (RC == &X86::VR64RegClass) { 790 Opc = X86::MMX_MOVQ64mr; 791 } else { 792 assert(0 && "Unknown regclass"); 793 abort(); 794 } 795 796 return Opc; 797} 798 799void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 800 MachineBasicBlock::iterator MI, 801 unsigned SrcReg, int FrameIdx, 802 const TargetRegisterClass *RC) const { 803 unsigned Opc = getStoreRegOpcode(RC); 804 addFrameReference(BuildMI(MBB, MI, TII.get(Opc)), FrameIdx) 805 .addReg(SrcReg, false, false, true); 806} 807 808void X86RegisterInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, 809 SmallVectorImpl<MachineOperand> Addr, 810 const TargetRegisterClass *RC, 811 SmallVectorImpl<MachineInstr*> &NewMIs) const { 812 unsigned Opc = getStoreRegOpcode(RC); 813 MachineInstrBuilder MIB = BuildMI(TII.get(Opc)); 814 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 815 MIB = X86InstrAddOperand(MIB, Addr[i]); 816 MIB.addReg(SrcReg, false, false, true); 817 NewMIs.push_back(MIB); 818} 819 820static unsigned getLoadRegOpcode(const TargetRegisterClass *RC) { 821 unsigned Opc = 0; 822 if (RC == &X86::GR64RegClass) { 823 Opc = X86::MOV64rm; 824 } else if (RC == &X86::GR32RegClass) { 825 Opc = X86::MOV32rm; 826 } else if (RC == &X86::GR16RegClass) { 827 Opc = X86::MOV16rm; 828 } else if (RC == &X86::GR8RegClass) { 829 Opc = X86::MOV8rm; 830 } else if (RC == &X86::GR32_RegClass) { 831 Opc = X86::MOV32_rm; 832 } else if (RC == &X86::GR16_RegClass) { 833 Opc = X86::MOV16_rm; 834 } else if (RC == &X86::RFP80RegClass) { 835 Opc = X86::LD_Fp80m; 836 } else if (RC == &X86::RFP64RegClass) { 837 Opc = X86::LD_Fp64m; 838 } else if (RC == &X86::RFP32RegClass) { 839 Opc = X86::LD_Fp32m; 840 } else if (RC == &X86::FR32RegClass) { 841 Opc = X86::MOVSSrm; 842 } else if (RC == &X86::FR64RegClass) { 843 Opc = X86::MOVSDrm; 844 } else if (RC == &X86::VR128RegClass) { 845 Opc = X86::MOVAPSrm; 846 } else if (RC == &X86::VR64RegClass) { 847 Opc = X86::MMX_MOVQ64rm; 848 } else { 849 assert(0 && "Unknown regclass"); 850 abort(); 851 } 852 853 return Opc; 854} 855 856void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 857 MachineBasicBlock::iterator MI, 858 unsigned DestReg, int FrameIdx, 859 const TargetRegisterClass *RC) const{ 860 unsigned Opc = getLoadRegOpcode(RC); 861 addFrameReference(BuildMI(MBB, MI, TII.get(Opc), DestReg), FrameIdx); 862} 863 864void X86RegisterInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, 865 SmallVectorImpl<MachineOperand> Addr, 866 const TargetRegisterClass *RC, 867 SmallVectorImpl<MachineInstr*> &NewMIs) const { 868 unsigned Opc = getLoadRegOpcode(RC); 869 MachineInstrBuilder MIB = BuildMI(TII.get(Opc), DestReg); 870 for (unsigned i = 0, e = Addr.size(); i != e; ++i) 871 MIB = X86InstrAddOperand(MIB, Addr[i]); 872 NewMIs.push_back(MIB); 873} 874 875void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB, 876 MachineBasicBlock::iterator MI, 877 unsigned DestReg, unsigned SrcReg, 878 const TargetRegisterClass *DestRC, 879 const TargetRegisterClass *SrcRC) const { 880 if (DestRC != SrcRC) { 881 // Moving EFLAGS to / from another register requires a push and a pop. 882 if (SrcRC == &X86::CCRRegClass) { 883 assert(SrcReg == X86::EFLAGS); 884 if (DestRC == &X86::GR64RegClass) { 885 BuildMI(MBB, MI, TII.get(X86::PUSHFQ)); 886 BuildMI(MBB, MI, TII.get(X86::POP64r), DestReg); 887 return; 888 } else if (DestRC == &X86::GR32RegClass) { 889 BuildMI(MBB, MI, TII.get(X86::PUSHFD)); 890 BuildMI(MBB, MI, TII.get(X86::POP32r), DestReg); 891 return; 892 } 893 } else if (DestRC == &X86::CCRRegClass) { 894 assert(DestReg == X86::EFLAGS); 895 if (SrcRC == &X86::GR64RegClass) { 896 BuildMI(MBB, MI, TII.get(X86::PUSH64r)).addReg(SrcReg); 897 BuildMI(MBB, MI, TII.get(X86::POPFQ)); 898 return; 899 } else if (SrcRC == &X86::GR32RegClass) { 900 BuildMI(MBB, MI, TII.get(X86::PUSH32r)).addReg(SrcReg); 901 BuildMI(MBB, MI, TII.get(X86::POPFD)); 902 return; 903 } 904 } 905 cerr << "Not yet supported!"; 906 abort(); 907 } 908 909 unsigned Opc; 910 if (DestRC == &X86::GR64RegClass) { 911 Opc = X86::MOV64rr; 912 } else if (DestRC == &X86::GR32RegClass) { 913 Opc = X86::MOV32rr; 914 } else if (DestRC == &X86::GR16RegClass) { 915 Opc = X86::MOV16rr; 916 } else if (DestRC == &X86::GR8RegClass) { 917 Opc = X86::MOV8rr; 918 } else if (DestRC == &X86::GR32_RegClass) { 919 Opc = X86::MOV32_rr; 920 } else if (DestRC == &X86::GR16_RegClass) { 921 Opc = X86::MOV16_rr; 922 } else if (DestRC == &X86::RFP32RegClass) { 923 Opc = X86::MOV_Fp3232; 924 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) { 925 Opc = X86::MOV_Fp6464; 926 } else if (DestRC == &X86::RFP80RegClass) { 927 Opc = X86::MOV_Fp8080; 928 } else if (DestRC == &X86::FR32RegClass) { 929 Opc = X86::FsMOVAPSrr; 930 } else if (DestRC == &X86::FR64RegClass) { 931 Opc = X86::FsMOVAPDrr; 932 } else if (DestRC == &X86::VR128RegClass) { 933 Opc = X86::MOVAPSrr; 934 } else if (DestRC == &X86::VR64RegClass) { 935 Opc = X86::MMX_MOVQ64rr; 936 } else { 937 assert(0 && "Unknown regclass"); 938 abort(); 939 } 940 BuildMI(MBB, MI, TII.get(Opc), DestReg).addReg(SrcReg); 941} 942 943const TargetRegisterClass * 944X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { 945 if (RC == &X86::CCRRegClass) 946 if (Is64Bit) 947 return &X86::GR64RegClass; 948 else 949 return &X86::GR32RegClass; 950 return NULL; 951} 952 953void X86RegisterInfo::reMaterialize(MachineBasicBlock &MBB, 954 MachineBasicBlock::iterator I, 955 unsigned DestReg, 956 const MachineInstr *Orig) const { 957 // MOV32r0 etc. are implemented with xor which clobbers condition code. 958 // Re-materialize them as movri instructions to avoid side effects. 959 switch (Orig->getOpcode()) { 960 case X86::MOV8r0: 961 BuildMI(MBB, I, TII.get(X86::MOV8ri), DestReg).addImm(0); 962 break; 963 case X86::MOV16r0: 964 BuildMI(MBB, I, TII.get(X86::MOV16ri), DestReg).addImm(0); 965 break; 966 case X86::MOV32r0: 967 BuildMI(MBB, I, TII.get(X86::MOV32ri), DestReg).addImm(0); 968 break; 969 case X86::MOV64r0: 970 BuildMI(MBB, I, TII.get(X86::MOV64ri32), DestReg).addImm(0); 971 break; 972 default: { 973 MachineInstr *MI = Orig->clone(); 974 MI->getOperand(0).setReg(DestReg); 975 MBB.insert(I, MI); 976 break; 977 } 978 } 979} 980 981static MachineInstr *FuseTwoAddrInst(unsigned Opcode, 982 SmallVector<MachineOperand,4> &MOs, 983 MachineInstr *MI, const TargetInstrInfo &TII) { 984 unsigned NumOps = TII.getNumOperands(MI->getOpcode())-2; 985 986 // Create the base instruction with the memory operand as the first part. 987 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode)); 988 unsigned NumAddrOps = MOs.size(); 989 for (unsigned i = 0; i != NumAddrOps; ++i) 990 MIB = X86InstrAddOperand(MIB, MOs[i]); 991 if (NumAddrOps < 4) // FrameIndex only 992 MIB.addImm(1).addReg(0).addImm(0); 993 994 // Loop over the rest of the ri operands, converting them over. 995 for (unsigned i = 0; i != NumOps; ++i) { 996 MachineOperand &MO = MI->getOperand(i+2); 997 MIB = X86InstrAddOperand(MIB, MO); 998 } 999 return MIB; 1000} 1001 1002static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo, 1003 SmallVector<MachineOperand,4> &MOs, 1004 MachineInstr *MI, const TargetInstrInfo &TII) { 1005 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode)); 1006 1007 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1008 MachineOperand &MO = MI->getOperand(i); 1009 if (i == OpNo) { 1010 assert(MO.isRegister() && "Expected to fold into reg operand!"); 1011 unsigned NumAddrOps = MOs.size(); 1012 for (unsigned i = 0; i != NumAddrOps; ++i) 1013 MIB = X86InstrAddOperand(MIB, MOs[i]); 1014 if (NumAddrOps < 4) // FrameIndex only 1015 MIB.addImm(1).addReg(0).addImm(0); 1016 } else { 1017 MIB = X86InstrAddOperand(MIB, MO); 1018 } 1019 } 1020 return MIB; 1021} 1022 1023static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, 1024 SmallVector<MachineOperand,4> &MOs, 1025 MachineInstr *MI) { 1026 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode)); 1027 1028 unsigned NumAddrOps = MOs.size(); 1029 for (unsigned i = 0; i != NumAddrOps; ++i) 1030 MIB = X86InstrAddOperand(MIB, MOs[i]); 1031 if (NumAddrOps < 4) // FrameIndex only 1032 MIB.addImm(1).addReg(0).addImm(0); 1033 return MIB.addImm(0); 1034} 1035 1036MachineInstr* 1037X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned i, 1038 SmallVector<MachineOperand,4> &MOs) const { 1039 // Table (and size) to search 1040 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL; 1041 bool isTwoAddrFold = false; 1042 unsigned NumOps = TII.getNumOperands(MI->getOpcode()); 1043 bool isTwoAddr = NumOps > 1 && 1044 MI->getInstrDescriptor()->getOperandConstraint(1, TOI::TIED_TO) != -1; 1045 1046 MachineInstr *NewMI = NULL; 1047 // Folding a memory location into the two-address part of a two-address 1048 // instruction is different than folding it other places. It requires 1049 // replacing the *two* registers with the memory location. 1050 if (isTwoAddr && NumOps >= 2 && i < 2 && 1051 MI->getOperand(0).isRegister() && 1052 MI->getOperand(1).isRegister() && 1053 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { 1054 OpcodeTablePtr = &RegOp2MemOpTable2Addr; 1055 isTwoAddrFold = true; 1056 } else if (i == 0) { // If operand 0 1057 if (MI->getOpcode() == X86::MOV16r0) 1058 NewMI = MakeM0Inst(TII, X86::MOV16mi, MOs, MI); 1059 else if (MI->getOpcode() == X86::MOV32r0) 1060 NewMI = MakeM0Inst(TII, X86::MOV32mi, MOs, MI); 1061 else if (MI->getOpcode() == X86::MOV64r0) 1062 NewMI = MakeM0Inst(TII, X86::MOV64mi32, MOs, MI); 1063 else if (MI->getOpcode() == X86::MOV8r0) 1064 NewMI = MakeM0Inst(TII, X86::MOV8mi, MOs, MI); 1065 if (NewMI) { 1066 NewMI->copyKillDeadInfo(MI); 1067 return NewMI; 1068 } 1069 1070 OpcodeTablePtr = &RegOp2MemOpTable0; 1071 } else if (i == 1) { 1072 OpcodeTablePtr = &RegOp2MemOpTable1; 1073 } else if (i == 2) { 1074 OpcodeTablePtr = &RegOp2MemOpTable2; 1075 } 1076 1077 // If table selected... 1078 if (OpcodeTablePtr) { 1079 // Find the Opcode to fuse 1080 DenseMap<unsigned*, unsigned>::iterator I = 1081 OpcodeTablePtr->find((unsigned*)MI->getOpcode()); 1082 if (I != OpcodeTablePtr->end()) { 1083 if (isTwoAddrFold) 1084 NewMI = FuseTwoAddrInst(I->second, MOs, MI, TII); 1085 else 1086 NewMI = FuseInst(I->second, i, MOs, MI, TII); 1087 NewMI->copyKillDeadInfo(MI); 1088 return NewMI; 1089 } 1090 } 1091 1092 // No fusion 1093 if (PrintFailedFusing) 1094 cerr << "We failed to fuse (" 1095 << ((i == 1) ? "r" : "s") << "): " << *MI; 1096 return NULL; 1097} 1098 1099 1100MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned OpNum, 1101 int FrameIndex) const { 1102 // Check switch flag 1103 if (NoFusing) return NULL; 1104 SmallVector<MachineOperand,4> MOs; 1105 MOs.push_back(MachineOperand::CreateFrameIndex(FrameIndex)); 1106 return foldMemoryOperand(MI, OpNum, MOs); 1107} 1108 1109MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned OpNum, 1110 MachineInstr *LoadMI) const { 1111 // Check switch flag 1112 if (NoFusing) return NULL; 1113 SmallVector<MachineOperand,4> MOs; 1114 unsigned NumOps = TII.getNumOperands(LoadMI->getOpcode()); 1115 for (unsigned i = NumOps - 4; i != NumOps; ++i) 1116 MOs.push_back(LoadMI->getOperand(i)); 1117 return foldMemoryOperand(MI, OpNum, MOs); 1118} 1119 1120bool X86RegisterInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, 1121 unsigned Reg, bool UnfoldLoad, bool UnfoldStore, 1122 SmallVectorImpl<MachineInstr*> &NewMIs) const { 1123 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I = 1124 MemOp2RegOpTable.find((unsigned*)MI->getOpcode()); 1125 if (I == MemOp2RegOpTable.end()) 1126 return false; 1127 unsigned Opc = I->second.first; 1128 unsigned Index = I->second.second & 0xf; 1129 bool HasLoad = I->second.second & (1 << 4); 1130 bool HasStore = I->second.second & (1 << 5); 1131 if (UnfoldLoad && !HasLoad) 1132 return false; 1133 HasLoad &= UnfoldLoad; 1134 if (UnfoldStore && !HasStore) 1135 return false; 1136 HasStore &= UnfoldStore; 1137 1138 const TargetInstrDescriptor &TID = TII.get(Opc); 1139 const TargetOperandInfo &TOI = TID.OpInfo[Index]; 1140 const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS) 1141 ? TII.getPointerRegClass() : getRegClass(TOI.RegClass); 1142 SmallVector<MachineOperand,4> AddrOps; 1143 SmallVector<MachineOperand,2> BeforeOps; 1144 SmallVector<MachineOperand,2> AfterOps; 1145 SmallVector<MachineOperand,4> ImpOps; 1146 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1147 MachineOperand &Op = MI->getOperand(i); 1148 if (i >= Index && i < Index+4) 1149 AddrOps.push_back(Op); 1150 else if (Op.isRegister() && Op.isImplicit()) 1151 ImpOps.push_back(Op); 1152 else if (i < Index) 1153 BeforeOps.push_back(Op); 1154 else if (i > Index) 1155 AfterOps.push_back(Op); 1156 } 1157 1158 // Emit the load instruction. 1159 if (HasLoad) { 1160 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs); 1161 if (HasStore) { 1162 // Address operands cannot be marked isKill. 1163 for (unsigned i = 1; i != 5; ++i) { 1164 MachineOperand &MO = NewMIs[0]->getOperand(i); 1165 if (MO.isRegister()) 1166 MO.unsetIsKill(); 1167 } 1168 } 1169 } 1170 1171 // Emit the data processing instruction. 1172 MachineInstr *DataMI = new MachineInstr (TID, true); 1173 MachineInstrBuilder MIB(DataMI); 1174 const TargetRegisterClass *DstRC = 0; 1175 if (HasStore) { 1176 const TargetOperandInfo &DstTOI = TID.OpInfo[0]; 1177 DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS) 1178 ? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass); 1179 MIB.addReg(Reg, true); 1180 } 1181 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) 1182 MIB = X86InstrAddOperand(MIB, BeforeOps[i]); 1183 MIB.addReg(Reg); 1184 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) 1185 MIB = X86InstrAddOperand(MIB, AfterOps[i]); 1186 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { 1187 MachineOperand &MO = ImpOps[i]; 1188 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead()); 1189 } 1190 NewMIs.push_back(MIB); 1191 1192 // Emit the store instruction. 1193 if (HasStore) 1194 storeRegToAddr(MF, Reg, AddrOps, DstRC, NewMIs); 1195 1196 return true; 1197} 1198 1199 1200bool 1201X86RegisterInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, 1202 SmallVectorImpl<SDNode*> &NewNodes) const { 1203 if (!N->isTargetOpcode()) 1204 return false; 1205 1206 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I = 1207 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode()); 1208 if (I == MemOp2RegOpTable.end()) 1209 return false; 1210 unsigned Opc = I->second.first; 1211 unsigned Index = I->second.second & 0xf; 1212 bool HasLoad = I->second.second & (1 << 4); 1213 bool HasStore = I->second.second & (1 << 5); 1214 const TargetInstrDescriptor &TID = TII.get(Opc); 1215 const TargetOperandInfo &TOI = TID.OpInfo[Index]; 1216 const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS) 1217 ? TII.getPointerRegClass() : getRegClass(TOI.RegClass); 1218 std::vector<SDOperand> AddrOps; 1219 std::vector<SDOperand> BeforeOps; 1220 std::vector<SDOperand> AfterOps; 1221 unsigned NumOps = N->getNumOperands(); 1222 for (unsigned i = 0; i != NumOps-1; ++i) { 1223 SDOperand Op = N->getOperand(i); 1224 if (i >= Index && i < Index+4) 1225 AddrOps.push_back(Op); 1226 else if (i < Index) 1227 BeforeOps.push_back(Op); 1228 else if (i > Index) 1229 AfterOps.push_back(Op); 1230 } 1231 SDOperand Chain = N->getOperand(NumOps-1); 1232 AddrOps.push_back(Chain); 1233 1234 // Emit the load instruction. 1235 SDNode *Load = 0; 1236 if (HasLoad) { 1237 MVT::ValueType VT = *RC->vt_begin(); 1238 Load = DAG.getTargetNode(getLoadRegOpcode(RC), VT, MVT::Other, 1239 &AddrOps[0], AddrOps.size()); 1240 NewNodes.push_back(Load); 1241 } 1242 1243 // Emit the data processing instruction. 1244 std::vector<MVT::ValueType> VTs; 1245 const TargetRegisterClass *DstRC = 0; 1246 if (TID.numDefs > 0) { 1247 const TargetOperandInfo &DstTOI = TID.OpInfo[0]; 1248 DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS) 1249 ? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass); 1250 VTs.push_back(*DstRC->vt_begin()); 1251 } 1252 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 1253 MVT::ValueType VT = N->getValueType(i); 1254 if (VT != MVT::Other && i >= TID.numDefs) 1255 VTs.push_back(VT); 1256 } 1257 if (Load) 1258 BeforeOps.push_back(SDOperand(Load, 0)); 1259 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); 1260 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size()); 1261 NewNodes.push_back(NewNode); 1262 1263 // Emit the store instruction. 1264 if (HasStore) { 1265 AddrOps.pop_back(); 1266 AddrOps.push_back(SDOperand(NewNode, 0)); 1267 AddrOps.push_back(Chain); 1268 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC), 1269 MVT::Other, &AddrOps[0], AddrOps.size()); 1270 NewNodes.push_back(Store); 1271 } 1272 1273 return true; 1274} 1275 1276 1277const unsigned * 1278X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 1279 static const unsigned CalleeSavedRegs32Bit[] = { 1280 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 1281 }; 1282 1283 static const unsigned CalleeSavedRegs32EHRet[] = { 1284 X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 1285 }; 1286 1287 static const unsigned CalleeSavedRegs64Bit[] = { 1288 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 1289 }; 1290 1291 if (Is64Bit) 1292 return CalleeSavedRegs64Bit; 1293 else { 1294 if (MF) { 1295 MachineFrameInfo *MFI = MF->getFrameInfo(); 1296 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 1297 if (MMI && MMI->callsEHReturn()) 1298 return CalleeSavedRegs32EHRet; 1299 } 1300 return CalleeSavedRegs32Bit; 1301 } 1302} 1303 1304const TargetRegisterClass* const* 1305X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const { 1306 static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = { 1307 &X86::GR32RegClass, &X86::GR32RegClass, 1308 &X86::GR32RegClass, &X86::GR32RegClass, 0 1309 }; 1310 static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = { 1311 &X86::GR32RegClass, &X86::GR32RegClass, 1312 &X86::GR32RegClass, &X86::GR32RegClass, 1313 &X86::GR32RegClass, &X86::GR32RegClass, 0 1314 }; 1315 static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = { 1316 &X86::GR64RegClass, &X86::GR64RegClass, 1317 &X86::GR64RegClass, &X86::GR64RegClass, 1318 &X86::GR64RegClass, &X86::GR64RegClass, 0 1319 }; 1320 1321 if (Is64Bit) 1322 return CalleeSavedRegClasses64Bit; 1323 else { 1324 if (MF) { 1325 MachineFrameInfo *MFI = MF->getFrameInfo(); 1326 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 1327 if (MMI && MMI->callsEHReturn()) 1328 return CalleeSavedRegClasses32EHRet; 1329 } 1330 return CalleeSavedRegClasses32Bit; 1331 } 1332 1333} 1334 1335BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const { 1336 BitVector Reserved(getNumRegs()); 1337 Reserved.set(X86::RSP); 1338 Reserved.set(X86::ESP); 1339 Reserved.set(X86::SP); 1340 Reserved.set(X86::SPL); 1341 if (hasFP(MF)) { 1342 Reserved.set(X86::RBP); 1343 Reserved.set(X86::EBP); 1344 Reserved.set(X86::BP); 1345 Reserved.set(X86::BPL); 1346 } 1347 return Reserved; 1348} 1349 1350//===----------------------------------------------------------------------===// 1351// Stack Frame Processing methods 1352//===----------------------------------------------------------------------===// 1353 1354// hasFP - Return true if the specified function should have a dedicated frame 1355// pointer register. This is true if the function has variable sized allocas or 1356// if frame pointer elimination is disabled. 1357// 1358bool X86RegisterInfo::hasFP(const MachineFunction &MF) const { 1359 MachineFrameInfo *MFI = MF.getFrameInfo(); 1360 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 1361 1362 return (NoFramePointerElim || 1363 MFI->hasVarSizedObjects() || 1364 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 1365 (MMI && MMI->callsUnwindInit())); 1366} 1367 1368bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const { 1369 return !MF.getFrameInfo()->hasVarSizedObjects(); 1370} 1371 1372void X86RegisterInfo:: 1373eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 1374 MachineBasicBlock::iterator I) const { 1375 if (!hasReservedCallFrame(MF)) { 1376 // If the stack pointer can be changed after prologue, turn the 1377 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 1378 // adjcallstackdown instruction into 'add ESP, <amt>' 1379 // TODO: consider using push / pop instead of sub + store / add 1380 MachineInstr *Old = I; 1381 uint64_t Amount = Old->getOperand(0).getImm(); 1382 if (Amount != 0) { 1383 // We need to keep the stack aligned properly. To do this, we round the 1384 // amount of space needed for the outgoing arguments up to the next 1385 // alignment boundary. 1386 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); 1387 Amount = (Amount+Align-1)/Align*Align; 1388 1389 MachineInstr *New = 0; 1390 if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) { 1391 New=BuildMI(TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr) 1392 .addReg(StackPtr).addImm(Amount); 1393 } else { 1394 assert(Old->getOpcode() == X86::ADJCALLSTACKUP); 1395 // factor out the amount the callee already popped. 1396 uint64_t CalleeAmt = Old->getOperand(1).getImm(); 1397 Amount -= CalleeAmt; 1398 if (Amount) { 1399 unsigned Opc = (Amount < 128) ? 1400 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 1401 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri); 1402 New = BuildMI(TII.get(Opc), StackPtr) 1403 .addReg(StackPtr).addImm(Amount); 1404 } 1405 } 1406 1407 // Replace the pseudo instruction with a new instruction... 1408 if (New) MBB.insert(I, New); 1409 } 1410 } else if (I->getOpcode() == X86::ADJCALLSTACKUP) { 1411 // If we are performing frame pointer elimination and if the callee pops 1412 // something off the stack pointer, add it back. We do this until we have 1413 // more advanced stack pointer tracking ability. 1414 if (uint64_t CalleeAmt = I->getOperand(1).getImm()) { 1415 unsigned Opc = (CalleeAmt < 128) ? 1416 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 1417 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri); 1418 MachineInstr *New = 1419 BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt); 1420 MBB.insert(I, New); 1421 } 1422 } 1423 1424 MBB.erase(I); 1425} 1426 1427void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 1428 int SPAdj, RegScavenger *RS) const{ 1429 assert(SPAdj == 0 && "Unexpected"); 1430 1431 unsigned i = 0; 1432 MachineInstr &MI = *II; 1433 MachineFunction &MF = *MI.getParent()->getParent(); 1434 while (!MI.getOperand(i).isFrameIndex()) { 1435 ++i; 1436 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 1437 } 1438 1439 int FrameIndex = MI.getOperand(i).getFrameIndex(); 1440 // This must be part of a four operand memory reference. Replace the 1441 // FrameIndex with base register with EBP. Add an offset to the offset. 1442 MI.getOperand(i).ChangeToRegister(hasFP(MF) ? FramePtr : StackPtr, false); 1443 1444 // Now add the frame object offset to the offset from EBP. 1445 int64_t Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) + 1446 MI.getOperand(i+3).getImm()+SlotSize; 1447 1448 if (!hasFP(MF)) 1449 Offset += MF.getFrameInfo()->getStackSize(); 1450 else { 1451 Offset += SlotSize; // Skip the saved EBP 1452 // Skip the RETADDR move area 1453 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1454 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1455 if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta; 1456 } 1457 1458 MI.getOperand(i+3).ChangeToImmediate(Offset); 1459} 1460 1461void 1462X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{ 1463 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1464 int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1465 if (TailCallReturnAddrDelta < 0) { 1466 // create RETURNADDR area 1467 // arg 1468 // arg 1469 // RETADDR 1470 // { ... 1471 // RETADDR area 1472 // ... 1473 // } 1474 // [EBP] 1475 MF.getFrameInfo()-> 1476 CreateFixedObject(-TailCallReturnAddrDelta, 1477 (-1*SlotSize)+TailCallReturnAddrDelta); 1478 } 1479 if (hasFP(MF)) { 1480 assert((TailCallReturnAddrDelta <= 0) && 1481 "The Delta should always be zero or negative"); 1482 // Create a frame entry for the EBP register that must be saved. 1483 int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, 1484 (int)SlotSize * -2+ 1485 TailCallReturnAddrDelta); 1486 assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() && 1487 "Slot for EBP register must be last in order to be found!"); 1488 } 1489} 1490 1491/// emitSPUpdate - Emit a series of instructions to increment / decrement the 1492/// stack pointer by a constant value. 1493static 1494void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 1495 unsigned StackPtr, int64_t NumBytes, bool Is64Bit, 1496 const TargetInstrInfo &TII) { 1497 bool isSub = NumBytes < 0; 1498 uint64_t Offset = isSub ? -NumBytes : NumBytes; 1499 unsigned Opc = isSub 1500 ? ((Offset < 128) ? 1501 (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) : 1502 (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri)) 1503 : ((Offset < 128) ? 1504 (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) : 1505 (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri)); 1506 uint64_t Chunk = (1LL << 31) - 1; 1507 1508 while (Offset) { 1509 uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset; 1510 BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(ThisVal); 1511 Offset -= ThisVal; 1512 } 1513} 1514 1515// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. 1516static 1517void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 1518 unsigned StackPtr, uint64_t *NumBytes = NULL) { 1519 if (MBBI == MBB.begin()) return; 1520 1521 MachineBasicBlock::iterator PI = prior(MBBI); 1522 unsigned Opc = PI->getOpcode(); 1523 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 1524 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 1525 PI->getOperand(0).getReg() == StackPtr) { 1526 if (NumBytes) 1527 *NumBytes += PI->getOperand(2).getImm(); 1528 MBB.erase(PI); 1529 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 1530 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 1531 PI->getOperand(0).getReg() == StackPtr) { 1532 if (NumBytes) 1533 *NumBytes -= PI->getOperand(2).getImm(); 1534 MBB.erase(PI); 1535 } 1536} 1537 1538// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator. 1539static 1540void mergeSPUpdatesDown(MachineBasicBlock &MBB, 1541 MachineBasicBlock::iterator &MBBI, 1542 unsigned StackPtr, uint64_t *NumBytes = NULL) { 1543 return; 1544 1545 if (MBBI == MBB.end()) return; 1546 1547 MachineBasicBlock::iterator NI = next(MBBI); 1548 if (NI == MBB.end()) return; 1549 1550 unsigned Opc = NI->getOpcode(); 1551 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 1552 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 1553 NI->getOperand(0).getReg() == StackPtr) { 1554 if (NumBytes) 1555 *NumBytes -= NI->getOperand(2).getImm(); 1556 MBB.erase(NI); 1557 MBBI = NI; 1558 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 1559 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 1560 NI->getOperand(0).getReg() == StackPtr) { 1561 if (NumBytes) 1562 *NumBytes += NI->getOperand(2).getImm(); 1563 MBB.erase(NI); 1564 MBBI = NI; 1565 } 1566} 1567 1568/// mergeSPUpdates - Checks the instruction before/after the passed 1569/// instruction. If it is an ADD/SUB instruction it is deleted 1570/// argument and the stack adjustment is returned as a positive value for ADD 1571/// and a negative for SUB. 1572static int mergeSPUpdates(MachineBasicBlock &MBB, 1573 MachineBasicBlock::iterator &MBBI, 1574 unsigned StackPtr, 1575 bool doMergeWithPrevious) { 1576 1577 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 1578 (!doMergeWithPrevious && MBBI == MBB.end())) 1579 return 0; 1580 1581 int Offset = 0; 1582 1583 MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI; 1584 MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI); 1585 unsigned Opc = PI->getOpcode(); 1586 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 1587 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 1588 PI->getOperand(0).getReg() == StackPtr){ 1589 Offset += PI->getOperand(2).getImm(); 1590 MBB.erase(PI); 1591 if (!doMergeWithPrevious) MBBI = NI; 1592 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 1593 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 1594 PI->getOperand(0).getReg() == StackPtr) { 1595 Offset -= PI->getOperand(2).getImm(); 1596 MBB.erase(PI); 1597 if (!doMergeWithPrevious) MBBI = NI; 1598 } 1599 1600 return Offset; 1601} 1602 1603void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { 1604 MachineBasicBlock &MBB = MF.front(); // Prolog goes in entry BB 1605 MachineFrameInfo *MFI = MF.getFrameInfo(); 1606 unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); 1607 const Function* Fn = MF.getFunction(); 1608 const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 1609 MachineModuleInfo *MMI = MFI->getMachineModuleInfo(); 1610 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1611 MachineBasicBlock::iterator MBBI = MBB.begin(); 1612 1613 // Prepare for frame info. 1614 unsigned FrameLabelId = 0; 1615 1616 // Get the number of bytes to allocate from the FrameInfo. 1617 uint64_t StackSize = MFI->getStackSize(); 1618 // Add RETADDR move area to callee saved frame size. 1619 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 1620 if (TailCallReturnAddrDelta < 0) 1621 X86FI->setCalleeSavedFrameSize( 1622 X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta)); 1623 uint64_t NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1624 1625 // Insert stack pointer adjustment for later moving of return addr. Only 1626 // applies to tail call optimized functions where the callee argument stack 1627 // size is bigger than the callers. 1628 if (TailCallReturnAddrDelta < 0) { 1629 BuildMI(MBB, MBBI, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri), 1630 StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta); 1631 } 1632 1633 if (hasFP(MF)) { 1634 // Get the offset of the stack slot for the EBP register... which is 1635 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 1636 // Update the frame offset adjustment. 1637 MFI->setOffsetAdjustment(SlotSize-NumBytes); 1638 1639 // Save EBP into the appropriate stack slot... 1640 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 1641 .addReg(FramePtr); 1642 NumBytes -= SlotSize; 1643 1644 if (MMI && MMI->needsFrameInfo()) { 1645 // Mark effective beginning of when frame pointer becomes valid. 1646 FrameLabelId = MMI->NextLabelID(); 1647 BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(FrameLabelId); 1648 } 1649 1650 // Update EBP with the new base value... 1651 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr) 1652 .addReg(StackPtr); 1653 } 1654 1655 unsigned ReadyLabelId = 0; 1656 if (MMI && MMI->needsFrameInfo()) { 1657 // Mark effective beginning of when frame pointer is ready. 1658 ReadyLabelId = MMI->NextLabelID(); 1659 BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(ReadyLabelId); 1660 } 1661 1662 // Skip the callee-saved push instructions. 1663 while (MBBI != MBB.end() && 1664 (MBBI->getOpcode() == X86::PUSH32r || 1665 MBBI->getOpcode() == X86::PUSH64r)) 1666 ++MBBI; 1667 1668 if (NumBytes) { // adjust stack pointer: ESP -= numbytes 1669 if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) { 1670 // Check, whether EAX is livein for this function 1671 bool isEAXAlive = false; 1672 for (MachineFunction::livein_iterator II = MF.livein_begin(), 1673 EE = MF.livein_end(); (II != EE) && !isEAXAlive; ++II) { 1674 unsigned Reg = II->first; 1675 isEAXAlive = (Reg == X86::EAX || Reg == X86::AX || 1676 Reg == X86::AH || Reg == X86::AL); 1677 } 1678 1679 // Function prologue calls _alloca to probe the stack when allocating 1680 // more than 4k bytes in one go. Touching the stack at 4K increments is 1681 // necessary to ensure that the guard pages used by the OS virtual memory 1682 // manager are allocated in correct sequence. 1683 if (!isEAXAlive) { 1684 BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes); 1685 BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)) 1686 .addExternalSymbol("_alloca"); 1687 } else { 1688 // Save EAX 1689 BuildMI(MBB, MBBI, TII.get(X86::PUSH32r), X86::EAX); 1690 // Allocate NumBytes-4 bytes on stack. We'll also use 4 already 1691 // allocated bytes for EAX. 1692 BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4); 1693 BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)) 1694 .addExternalSymbol("_alloca"); 1695 // Restore EAX 1696 MachineInstr *MI = addRegOffset(BuildMI(TII.get(X86::MOV32rm),X86::EAX), 1697 StackPtr, NumBytes-4); 1698 MBB.insert(MBBI, MI); 1699 } 1700 } else { 1701 // If there is an SUB32ri of ESP immediately before this instruction, 1702 // merge the two. This can be the case when tail call elimination is 1703 // enabled and the callee has more arguments then the caller. 1704 NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); 1705 // If there is an ADD32ri or SUB32ri of ESP immediately after this 1706 // instruction, merge the two instructions. 1707 mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes); 1708 1709 if (NumBytes) 1710 emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII); 1711 } 1712 } 1713 1714 if (MMI && MMI->needsFrameInfo()) { 1715 std::vector<MachineMove> &Moves = MMI->getFrameMoves(); 1716 const TargetData *TD = MF.getTarget().getTargetData(); 1717 1718 // Calculate amount of bytes used for return address storing 1719 int stackGrowth = 1720 (MF.getTarget().getFrameInfo()->getStackGrowthDirection() == 1721 TargetFrameInfo::StackGrowsUp ? 1722 TD->getPointerSize() : -TD->getPointerSize()); 1723 1724 if (StackSize) { 1725 // Show update of SP. 1726 if (hasFP(MF)) { 1727 // Adjust SP 1728 MachineLocation SPDst(MachineLocation::VirtualFP); 1729 MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth); 1730 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 1731 } else { 1732 MachineLocation SPDst(MachineLocation::VirtualFP); 1733 MachineLocation SPSrc(MachineLocation::VirtualFP, -StackSize+stackGrowth); 1734 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 1735 } 1736 } else { 1737 //FIXME: Verify & implement for FP 1738 MachineLocation SPDst(StackPtr); 1739 MachineLocation SPSrc(StackPtr, stackGrowth); 1740 Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc)); 1741 } 1742 1743 // Add callee saved registers to move list. 1744 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); 1745 1746 // FIXME: This is dirty hack. The code itself is pretty mess right now. 1747 // It should be rewritten from scratch and generalized sometimes. 1748 1749 // Determine maximum offset (minumum due to stack growth) 1750 int64_t MaxOffset = 0; 1751 for (unsigned I = 0, E = CSI.size(); I!=E; ++I) 1752 MaxOffset = std::min(MaxOffset, 1753 MFI->getObjectOffset(CSI[I].getFrameIdx())); 1754 1755 // Calculate offsets 1756 for (unsigned I = 0, E = CSI.size(); I!=E; ++I) { 1757 int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx()); 1758 unsigned Reg = CSI[I].getReg(); 1759 Offset = (MaxOffset-Offset+3*stackGrowth); 1760 MachineLocation CSDst(MachineLocation::VirtualFP, Offset); 1761 MachineLocation CSSrc(Reg); 1762 Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc)); 1763 } 1764 1765 if (hasFP(MF)) { 1766 // Save FP 1767 MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth); 1768 MachineLocation FPSrc(FramePtr); 1769 Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc)); 1770 } 1771 1772 MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr); 1773 MachineLocation FPSrc(MachineLocation::VirtualFP); 1774 Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc)); 1775 } 1776 1777 // If it's main() on Cygwin\Mingw32 we should align stack as well 1778 if (Fn->hasExternalLinkage() && Fn->getName() == "main" && 1779 Subtarget->isTargetCygMing()) { 1780 BuildMI(MBB, MBBI, TII.get(X86::AND32ri), X86::ESP) 1781 .addReg(X86::ESP).addImm(-Align); 1782 1783 // Probe the stack 1784 BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(Align); 1785 BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca"); 1786 } 1787} 1788 1789void X86RegisterInfo::emitEpilogue(MachineFunction &MF, 1790 MachineBasicBlock &MBB) const { 1791 const MachineFrameInfo *MFI = MF.getFrameInfo(); 1792 const Function* Fn = MF.getFunction(); 1793 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1794 const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 1795 MachineBasicBlock::iterator MBBI = prior(MBB.end()); 1796 unsigned RetOpcode = MBBI->getOpcode(); 1797 1798 switch (RetOpcode) { 1799 case X86::RET: 1800 case X86::RETI: 1801 case X86::TCRETURNdi: 1802 case X86::TCRETURNri: 1803 case X86::TCRETURNri64: 1804 case X86::TCRETURNdi64: 1805 case X86::EH_RETURN: 1806 case X86::TAILJMPd: 1807 case X86::TAILJMPr: 1808 case X86::TAILJMPm: break; // These are ok 1809 default: 1810 assert(0 && "Can only insert epilog into returning blocks"); 1811 } 1812 1813 // Get the number of bytes to allocate from the FrameInfo 1814 uint64_t StackSize = MFI->getStackSize(); 1815 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1816 uint64_t NumBytes = StackSize - CSSize; 1817 1818 if (hasFP(MF)) { 1819 // pop EBP. 1820 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); 1821 NumBytes -= SlotSize; 1822 } 1823 1824 // Skip the callee-saved pop instructions. 1825 while (MBBI != MBB.begin()) { 1826 MachineBasicBlock::iterator PI = prior(MBBI); 1827 unsigned Opc = PI->getOpcode(); 1828 if (Opc != X86::POP32r && Opc != X86::POP64r && !TII.isTerminatorInstr(Opc)) 1829 break; 1830 --MBBI; 1831 } 1832 1833 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1834 // instruction, merge the two instructions. 1835 if (NumBytes || MFI->hasVarSizedObjects()) 1836 mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); 1837 1838 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1839 // slot before popping them off! Also, if it's main() on Cygwin/Mingw32 we 1840 // aligned stack in the prologue, - revert stack changes back. Note: we're 1841 // assuming, that frame pointer was forced for main() 1842 if (MFI->hasVarSizedObjects() || 1843 (Fn->hasExternalLinkage() && Fn->getName() == "main" && 1844 Subtarget->isTargetCygMing())) { 1845 unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r; 1846 if (CSSize) { 1847 MachineInstr *MI = addRegOffset(BuildMI(TII.get(Opc), StackPtr), 1848 FramePtr, -CSSize); 1849 MBB.insert(MBBI, MI); 1850 } else 1851 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr). 1852 addReg(FramePtr); 1853 1854 NumBytes = 0; 1855 } 1856 1857 // adjust stack pointer back: ESP += numbytes 1858 if (NumBytes) 1859 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 1860 1861 // We're returning from function via eh_return. 1862 if (RetOpcode == X86::EH_RETURN) { 1863 MBBI = prior(MBB.end()); 1864 MachineOperand &DestAddr = MBBI->getOperand(0); 1865 assert(DestAddr.isRegister() && "Offset should be in register!"); 1866 BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr). 1867 addReg(DestAddr.getReg()); 1868 // Tail call return: adjust the stack pointer and jump to callee 1869 } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || 1870 RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) { 1871 MBBI = prior(MBB.end()); 1872 MachineOperand &JumpTarget = MBBI->getOperand(0); 1873 MachineOperand &StackAdjust = MBBI->getOperand(1); 1874 assert( StackAdjust.isImmediate() && "Expecting immediate value."); 1875 1876 // Adjust stack pointer. 1877 int StackAdj = StackAdjust.getImm(); 1878 int MaxTCDelta = X86FI->getTCReturnAddrDelta(); 1879 int Offset = 0; 1880 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); 1881 // Incoporate the retaddr area. 1882 Offset = StackAdj-MaxTCDelta; 1883 assert(Offset >= 0 && "Offset should never be negative"); 1884 if (Offset) { 1885 // Check for possible merge with preceeding ADD instruction. 1886 Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1887 emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII); 1888 } 1889 // Jump to label or value in register. 1890 if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64) 1891 BuildMI(MBB, MBBI, TII.get(X86::TAILJMPd)). 1892 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset()); 1893 else if (RetOpcode== X86::TCRETURNri64) { 1894 BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr64), JumpTarget.getReg()); 1895 } else 1896 BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr), JumpTarget.getReg()); 1897 // Delete the pseudo instruction TCRETURN. 1898 MBB.erase(MBBI); 1899 } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) && 1900 (X86FI->getTCReturnAddrDelta() < 0)) { 1901 // Add the return addr area delta back since we are not tail calling. 1902 int delta = -1*X86FI->getTCReturnAddrDelta(); 1903 MBBI = prior(MBB.end()); 1904 // Check for possible merge with preceeding ADD instruction. 1905 delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1906 emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII); 1907 } 1908} 1909 1910unsigned X86RegisterInfo::getRARegister() const { 1911 if (Is64Bit) 1912 return X86::RIP; // Should have dwarf #16 1913 else 1914 return X86::EIP; // Should have dwarf #8 1915} 1916 1917unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const { 1918 return hasFP(MF) ? FramePtr : StackPtr; 1919} 1920 1921void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) 1922 const { 1923 // Calculate amount of bytes used for return address storing 1924 int stackGrowth = (Is64Bit ? -8 : -4); 1925 1926 // Initial state of the frame pointer is esp+4. 1927 MachineLocation Dst(MachineLocation::VirtualFP); 1928 MachineLocation Src(StackPtr, stackGrowth); 1929 Moves.push_back(MachineMove(0, Dst, Src)); 1930 1931 // Add return address to move list 1932 MachineLocation CSDst(StackPtr, stackGrowth); 1933 MachineLocation CSSrc(getRARegister()); 1934 Moves.push_back(MachineMove(0, CSDst, CSSrc)); 1935} 1936 1937unsigned X86RegisterInfo::getEHExceptionRegister() const { 1938 assert(0 && "What is the exception register"); 1939 return 0; 1940} 1941 1942unsigned X86RegisterInfo::getEHHandlerRegister() const { 1943 assert(0 && "What is the exception handler register"); 1944 return 0; 1945} 1946 1947namespace llvm { 1948unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) { 1949 switch (VT) { 1950 default: return Reg; 1951 case MVT::i8: 1952 if (High) { 1953 switch (Reg) { 1954 default: return 0; 1955 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1956 return X86::AH; 1957 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1958 return X86::DH; 1959 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1960 return X86::CH; 1961 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1962 return X86::BH; 1963 } 1964 } else { 1965 switch (Reg) { 1966 default: return 0; 1967 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1968 return X86::AL; 1969 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1970 return X86::DL; 1971 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1972 return X86::CL; 1973 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1974 return X86::BL; 1975 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1976 return X86::SIL; 1977 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1978 return X86::DIL; 1979 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1980 return X86::BPL; 1981 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1982 return X86::SPL; 1983 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1984 return X86::R8B; 1985 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1986 return X86::R9B; 1987 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1988 return X86::R10B; 1989 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1990 return X86::R11B; 1991 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1992 return X86::R12B; 1993 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1994 return X86::R13B; 1995 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1996 return X86::R14B; 1997 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1998 return X86::R15B; 1999 } 2000 } 2001 case MVT::i16: 2002 switch (Reg) { 2003 default: return Reg; 2004 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 2005 return X86::AX; 2006 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 2007 return X86::DX; 2008 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 2009 return X86::CX; 2010 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 2011 return X86::BX; 2012 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 2013 return X86::SI; 2014 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 2015 return X86::DI; 2016 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 2017 return X86::BP; 2018 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 2019 return X86::SP; 2020 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 2021 return X86::R8W; 2022 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 2023 return X86::R9W; 2024 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 2025 return X86::R10W; 2026 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 2027 return X86::R11W; 2028 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 2029 return X86::R12W; 2030 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 2031 return X86::R13W; 2032 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 2033 return X86::R14W; 2034 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 2035 return X86::R15W; 2036 } 2037 case MVT::i32: 2038 switch (Reg) { 2039 default: return Reg; 2040 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 2041 return X86::EAX; 2042 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 2043 return X86::EDX; 2044 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 2045 return X86::ECX; 2046 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 2047 return X86::EBX; 2048 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 2049 return X86::ESI; 2050 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 2051 return X86::EDI; 2052 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 2053 return X86::EBP; 2054 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 2055 return X86::ESP; 2056 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 2057 return X86::R8D; 2058 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 2059 return X86::R9D; 2060 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 2061 return X86::R10D; 2062 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 2063 return X86::R11D; 2064 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 2065 return X86::R12D; 2066 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 2067 return X86::R13D; 2068 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 2069 return X86::R14D; 2070 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 2071 return X86::R15D; 2072 } 2073 case MVT::i64: 2074 switch (Reg) { 2075 default: return Reg; 2076 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 2077 return X86::RAX; 2078 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 2079 return X86::RDX; 2080 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 2081 return X86::RCX; 2082 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 2083 return X86::RBX; 2084 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 2085 return X86::RSI; 2086 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 2087 return X86::RDI; 2088 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 2089 return X86::RBP; 2090 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 2091 return X86::RSP; 2092 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 2093 return X86::R8; 2094 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 2095 return X86::R9; 2096 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 2097 return X86::R10; 2098 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 2099 return X86::R11; 2100 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 2101 return X86::R12; 2102 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 2103 return X86::R13; 2104 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 2105 return X86::R14; 2106 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 2107 return X86::R15; 2108 } 2109 } 2110 2111 return Reg; 2112} 2113} 2114 2115#include "X86GenRegisterInfo.inc" 2116 2117