X86RegisterInfo.cpp revision 6e041c2015dc25140b20e09ed7adbc9b8d6dc62b
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the MRegisterInfo class.  This
11// file is responsible for the frame pointer elimination optimization on X86.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86RegisterInfo.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/Type.h"
24#include "llvm/CodeGen/ValueTypes.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineLocation.h"
29#include "llvm/CodeGen/SSARegMap.h"
30#include "llvm/Target/TargetAsmInfo.h"
31#include "llvm/Target/TargetFrameInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38using namespace llvm;
39
40namespace {
41  cl::opt<bool>
42  NoFusing("disable-spill-fusing",
43           cl::desc("Disable fusing of spill code into instructions"));
44  cl::opt<bool>
45  PrintFailedFusing("print-failed-fuse-candidates",
46                    cl::desc("Print instructions that the allocator wants to"
47                             " fuse, but the X86 backend currently can't"),
48                    cl::Hidden);
49}
50
51X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
52                                 const TargetInstrInfo &tii)
53  : X86GenRegisterInfo(X86::ADJCALLSTACKDOWN, X86::ADJCALLSTACKUP),
54    TM(tm), TII(tii) {
55  // Cache some information.
56  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
57  Is64Bit = Subtarget->is64Bit();
58  StackAlign = TM.getFrameInfo()->getStackAlignment();
59  if (Is64Bit) {
60    SlotSize = 8;
61    StackPtr = X86::RSP;
62    FramePtr = X86::RBP;
63  } else {
64    SlotSize = 4;
65    StackPtr = X86::ESP;
66    FramePtr = X86::EBP;
67  }
68
69  SmallVector<unsigned,16> AmbEntries;
70  static const unsigned OpTbl2Addr[][2] = {
71    { X86::ADC32ri,     X86::ADC32mi },
72    { X86::ADC32ri8,    X86::ADC32mi8 },
73    { X86::ADC32rr,     X86::ADC32mr },
74    { X86::ADC64ri32,   X86::ADC64mi32 },
75    { X86::ADC64ri8,    X86::ADC64mi8 },
76    { X86::ADC64rr,     X86::ADC64mr },
77    { X86::ADD16ri,     X86::ADD16mi },
78    { X86::ADD16ri8,    X86::ADD16mi8 },
79    { X86::ADD16rr,     X86::ADD16mr },
80    { X86::ADD32ri,     X86::ADD32mi },
81    { X86::ADD32ri8,    X86::ADD32mi8 },
82    { X86::ADD32rr,     X86::ADD32mr },
83    { X86::ADD64ri32,   X86::ADD64mi32 },
84    { X86::ADD64ri8,    X86::ADD64mi8 },
85    { X86::ADD64rr,     X86::ADD64mr },
86    { X86::ADD8ri,      X86::ADD8mi },
87    { X86::ADD8rr,      X86::ADD8mr },
88    { X86::AND16ri,     X86::AND16mi },
89    { X86::AND16ri8,    X86::AND16mi8 },
90    { X86::AND16rr,     X86::AND16mr },
91    { X86::AND32ri,     X86::AND32mi },
92    { X86::AND32ri8,    X86::AND32mi8 },
93    { X86::AND32rr,     X86::AND32mr },
94    { X86::AND64ri32,   X86::AND64mi32 },
95    { X86::AND64ri8,    X86::AND64mi8 },
96    { X86::AND64rr,     X86::AND64mr },
97    { X86::AND8ri,      X86::AND8mi },
98    { X86::AND8rr,      X86::AND8mr },
99    { X86::DEC16r,      X86::DEC16m },
100    { X86::DEC32r,      X86::DEC32m },
101    { X86::DEC64_16r,   X86::DEC64_16m },
102    { X86::DEC64_32r,   X86::DEC64_32m },
103    { X86::DEC64r,      X86::DEC64m },
104    { X86::DEC8r,       X86::DEC8m },
105    { X86::INC16r,      X86::INC16m },
106    { X86::INC32r,      X86::INC32m },
107    { X86::INC64_16r,   X86::INC64_16m },
108    { X86::INC64_32r,   X86::INC64_32m },
109    { X86::INC64r,      X86::INC64m },
110    { X86::INC8r,       X86::INC8m },
111    { X86::NEG16r,      X86::NEG16m },
112    { X86::NEG32r,      X86::NEG32m },
113    { X86::NEG64r,      X86::NEG64m },
114    { X86::NEG8r,       X86::NEG8m },
115    { X86::NOT16r,      X86::NOT16m },
116    { X86::NOT32r,      X86::NOT32m },
117    { X86::NOT64r,      X86::NOT64m },
118    { X86::NOT8r,       X86::NOT8m },
119    { X86::OR16ri,      X86::OR16mi },
120    { X86::OR16ri8,     X86::OR16mi8 },
121    { X86::OR16rr,      X86::OR16mr },
122    { X86::OR32ri,      X86::OR32mi },
123    { X86::OR32ri8,     X86::OR32mi8 },
124    { X86::OR32rr,      X86::OR32mr },
125    { X86::OR64ri32,    X86::OR64mi32 },
126    { X86::OR64ri8,     X86::OR64mi8 },
127    { X86::OR64rr,      X86::OR64mr },
128    { X86::OR8ri,       X86::OR8mi },
129    { X86::OR8rr,       X86::OR8mr },
130    { X86::ROL16r1,     X86::ROL16m1 },
131    { X86::ROL16rCL,    X86::ROL16mCL },
132    { X86::ROL16ri,     X86::ROL16mi },
133    { X86::ROL32r1,     X86::ROL32m1 },
134    { X86::ROL32rCL,    X86::ROL32mCL },
135    { X86::ROL32ri,     X86::ROL32mi },
136    { X86::ROL64r1,     X86::ROL64m1 },
137    { X86::ROL64rCL,    X86::ROL64mCL },
138    { X86::ROL64ri,     X86::ROL64mi },
139    { X86::ROL8r1,      X86::ROL8m1 },
140    { X86::ROL8rCL,     X86::ROL8mCL },
141    { X86::ROL8ri,      X86::ROL8mi },
142    { X86::ROR16r1,     X86::ROR16m1 },
143    { X86::ROR16rCL,    X86::ROR16mCL },
144    { X86::ROR16ri,     X86::ROR16mi },
145    { X86::ROR32r1,     X86::ROR32m1 },
146    { X86::ROR32rCL,    X86::ROR32mCL },
147    { X86::ROR32ri,     X86::ROR32mi },
148    { X86::ROR64r1,     X86::ROR64m1 },
149    { X86::ROR64rCL,    X86::ROR64mCL },
150    { X86::ROR64ri,     X86::ROR64mi },
151    { X86::ROR8r1,      X86::ROR8m1 },
152    { X86::ROR8rCL,     X86::ROR8mCL },
153    { X86::ROR8ri,      X86::ROR8mi },
154    { X86::SAR16r1,     X86::SAR16m1 },
155    { X86::SAR16rCL,    X86::SAR16mCL },
156    { X86::SAR16ri,     X86::SAR16mi },
157    { X86::SAR32r1,     X86::SAR32m1 },
158    { X86::SAR32rCL,    X86::SAR32mCL },
159    { X86::SAR32ri,     X86::SAR32mi },
160    { X86::SAR64r1,     X86::SAR64m1 },
161    { X86::SAR64rCL,    X86::SAR64mCL },
162    { X86::SAR64ri,     X86::SAR64mi },
163    { X86::SAR8r1,      X86::SAR8m1 },
164    { X86::SAR8rCL,     X86::SAR8mCL },
165    { X86::SAR8ri,      X86::SAR8mi },
166    { X86::SBB32ri,     X86::SBB32mi },
167    { X86::SBB32ri8,    X86::SBB32mi8 },
168    { X86::SBB32rr,     X86::SBB32mr },
169    { X86::SBB64ri32,   X86::SBB64mi32 },
170    { X86::SBB64ri8,    X86::SBB64mi8 },
171    { X86::SBB64rr,     X86::SBB64mr },
172    { X86::SHL16r1,     X86::SHL16m1 },
173    { X86::SHL16rCL,    X86::SHL16mCL },
174    { X86::SHL16ri,     X86::SHL16mi },
175    { X86::SHL32r1,     X86::SHL32m1 },
176    { X86::SHL32rCL,    X86::SHL32mCL },
177    { X86::SHL32ri,     X86::SHL32mi },
178    { X86::SHL64r1,     X86::SHL64m1 },
179    { X86::SHL64rCL,    X86::SHL64mCL },
180    { X86::SHL64ri,     X86::SHL64mi },
181    { X86::SHL8r1,      X86::SHL8m1 },
182    { X86::SHL8rCL,     X86::SHL8mCL },
183    { X86::SHL8ri,      X86::SHL8mi },
184    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
185    { X86::SHLD16rri8,  X86::SHLD16mri8 },
186    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
187    { X86::SHLD32rri8,  X86::SHLD32mri8 },
188    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
189    { X86::SHLD64rri8,  X86::SHLD64mri8 },
190    { X86::SHR16r1,     X86::SHR16m1 },
191    { X86::SHR16rCL,    X86::SHR16mCL },
192    { X86::SHR16ri,     X86::SHR16mi },
193    { X86::SHR32r1,     X86::SHR32m1 },
194    { X86::SHR32rCL,    X86::SHR32mCL },
195    { X86::SHR32ri,     X86::SHR32mi },
196    { X86::SHR64r1,     X86::SHR64m1 },
197    { X86::SHR64rCL,    X86::SHR64mCL },
198    { X86::SHR64ri,     X86::SHR64mi },
199    { X86::SHR8r1,      X86::SHR8m1 },
200    { X86::SHR8rCL,     X86::SHR8mCL },
201    { X86::SHR8ri,      X86::SHR8mi },
202    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
203    { X86::SHRD16rri8,  X86::SHRD16mri8 },
204    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
205    { X86::SHRD32rri8,  X86::SHRD32mri8 },
206    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
207    { X86::SHRD64rri8,  X86::SHRD64mri8 },
208    { X86::SUB16ri,     X86::SUB16mi },
209    { X86::SUB16ri8,    X86::SUB16mi8 },
210    { X86::SUB16rr,     X86::SUB16mr },
211    { X86::SUB32ri,     X86::SUB32mi },
212    { X86::SUB32ri8,    X86::SUB32mi8 },
213    { X86::SUB32rr,     X86::SUB32mr },
214    { X86::SUB64ri32,   X86::SUB64mi32 },
215    { X86::SUB64ri8,    X86::SUB64mi8 },
216    { X86::SUB64rr,     X86::SUB64mr },
217    { X86::SUB8ri,      X86::SUB8mi },
218    { X86::SUB8rr,      X86::SUB8mr },
219    { X86::XOR16ri,     X86::XOR16mi },
220    { X86::XOR16ri8,    X86::XOR16mi8 },
221    { X86::XOR16rr,     X86::XOR16mr },
222    { X86::XOR32ri,     X86::XOR32mi },
223    { X86::XOR32ri8,    X86::XOR32mi8 },
224    { X86::XOR32rr,     X86::XOR32mr },
225    { X86::XOR64ri32,   X86::XOR64mi32 },
226    { X86::XOR64ri8,    X86::XOR64mi8 },
227    { X86::XOR64rr,     X86::XOR64mr },
228    { X86::XOR8ri,      X86::XOR8mi },
229    { X86::XOR8rr,      X86::XOR8mr }
230  };
231
232  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
233    unsigned RegOp = OpTbl2Addr[i][0];
234    unsigned MemOp = OpTbl2Addr[i][1];
235    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
236      assert(false && "Duplicated entries?");
237    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
238    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
239                                               std::make_pair(RegOp, AuxInfo))))
240      AmbEntries.push_back(MemOp);
241  }
242
243  // If the third value is 1, then it's folding either a load or a store.
244  static const unsigned OpTbl0[][3] = {
245    { X86::CALL32r,     X86::CALL32m, 1 },
246    { X86::CALL64r,     X86::CALL64m, 1 },
247    { X86::CMP16ri,     X86::CMP16mi, 1 },
248    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
249    { X86::CMP32ri,     X86::CMP32mi, 1 },
250    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
251    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
252    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
253    { X86::CMP8ri,      X86::CMP8mi, 1 },
254    { X86::DIV16r,      X86::DIV16m, 1 },
255    { X86::DIV32r,      X86::DIV32m, 1 },
256    { X86::DIV64r,      X86::DIV64m, 1 },
257    { X86::DIV8r,       X86::DIV8m, 1 },
258    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
259    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
260    { X86::IDIV16r,     X86::IDIV16m, 1 },
261    { X86::IDIV32r,     X86::IDIV32m, 1 },
262    { X86::IDIV64r,     X86::IDIV64m, 1 },
263    { X86::IDIV8r,      X86::IDIV8m, 1 },
264    { X86::IMUL16r,     X86::IMUL16m, 1 },
265    { X86::IMUL32r,     X86::IMUL32m, 1 },
266    { X86::IMUL64r,     X86::IMUL64m, 1 },
267    { X86::IMUL8r,      X86::IMUL8m, 1 },
268    { X86::JMP32r,      X86::JMP32m, 1 },
269    { X86::JMP64r,      X86::JMP64m, 1 },
270    { X86::MOV16ri,     X86::MOV16mi, 0 },
271    { X86::MOV16rr,     X86::MOV16mr, 0 },
272    { X86::MOV16to16_,  X86::MOV16_mr, 0 },
273    { X86::MOV32ri,     X86::MOV32mi, 0 },
274    { X86::MOV32rr,     X86::MOV32mr, 0 },
275    { X86::MOV32to32_,  X86::MOV32_mr, 0 },
276    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
277    { X86::MOV64rr,     X86::MOV64mr, 0 },
278    { X86::MOV8ri,      X86::MOV8mi, 0 },
279    { X86::MOV8rr,      X86::MOV8mr, 0 },
280    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
281    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
282    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
283    { X86::MOVPQIto64rr,X86::MOVPQIto64mr, 0 },
284    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
285    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
286    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
287    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
288    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
289    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
290    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
291    { X86::MUL16r,      X86::MUL16m, 1 },
292    { X86::MUL32r,      X86::MUL32m, 1 },
293    { X86::MUL64r,      X86::MUL64m, 1 },
294    { X86::MUL8r,       X86::MUL8m, 1 },
295    { X86::SETAEr,      X86::SETAEm, 0 },
296    { X86::SETAr,       X86::SETAm, 0 },
297    { X86::SETBEr,      X86::SETBEm, 0 },
298    { X86::SETBr,       X86::SETBm, 0 },
299    { X86::SETEr,       X86::SETEm, 0 },
300    { X86::SETGEr,      X86::SETGEm, 0 },
301    { X86::SETGr,       X86::SETGm, 0 },
302    { X86::SETLEr,      X86::SETLEm, 0 },
303    { X86::SETLr,       X86::SETLm, 0 },
304    { X86::SETNEr,      X86::SETNEm, 0 },
305    { X86::SETNPr,      X86::SETNPm, 0 },
306    { X86::SETNSr,      X86::SETNSm, 0 },
307    { X86::SETPr,       X86::SETPm, 0 },
308    { X86::SETSr,       X86::SETSm, 0 },
309    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
310    { X86::TEST16ri,    X86::TEST16mi, 1 },
311    { X86::TEST32ri,    X86::TEST32mi, 1 },
312    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
313    { X86::TEST8ri,     X86::TEST8mi, 1 },
314    { X86::XCHG16rr,    X86::XCHG16mr, 0 },
315    { X86::XCHG32rr,    X86::XCHG32mr, 0 },
316    { X86::XCHG64rr,    X86::XCHG64mr, 0 },
317    { X86::XCHG8rr,     X86::XCHG8mr, 0 }
318  };
319
320  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
321    unsigned RegOp = OpTbl0[i][0];
322    unsigned MemOp = OpTbl0[i][1];
323    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
324      assert(false && "Duplicated entries?");
325    unsigned FoldedLoad = OpTbl0[i][2];
326    // Index 0, folded load or store.
327    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
328    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
329      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
330                                               std::make_pair(RegOp, AuxInfo))))
331        AmbEntries.push_back(MemOp);
332  }
333
334  static const unsigned OpTbl1[][2] = {
335    { X86::CMP16rr,         X86::CMP16rm },
336    { X86::CMP32rr,         X86::CMP32rm },
337    { X86::CMP64rr,         X86::CMP64rm },
338    { X86::CMP8rr,          X86::CMP8rm },
339    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
340    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
341    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
342    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
343    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
344    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
345    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
346    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
347    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
348    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
349    { X86::FsMOVAPDrr,      X86::MOVSDrm },
350    { X86::FsMOVAPSrr,      X86::MOVSSrm },
351    { X86::IMUL16rri,       X86::IMUL16rmi },
352    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
353    { X86::IMUL32rri,       X86::IMUL32rmi },
354    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
355    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
356    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
357    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
358    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
359    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
360    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
361    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
362    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
363    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
364    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
365    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
366    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
367    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
368    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
369    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
370    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
371    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
372    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
373    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
374    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
375    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
376    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
377    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
378    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
379    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
380    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
381    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
382    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
383    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
384    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
385    { X86::MOV16rr,         X86::MOV16rm },
386    { X86::MOV16to16_,      X86::MOV16_rm },
387    { X86::MOV32rr,         X86::MOV32rm },
388    { X86::MOV32to32_,      X86::MOV32_rm },
389    { X86::MOV64rr,         X86::MOV64rm },
390    { X86::MOV64toPQIrr,    X86::MOV64toPQIrm },
391    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
392    { X86::MOV8rr,          X86::MOV8rm },
393    { X86::MOVAPDrr,        X86::MOVAPDrm },
394    { X86::MOVAPSrr,        X86::MOVAPSrm },
395    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
396    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
397    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
398    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
399    { X86::MOVSDrr,         X86::MOVSDrm },
400    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
401    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
402    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
403    { X86::MOVSSrr,         X86::MOVSSrm },
404    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
405    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
406    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
407    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
408    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
409    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
410    { X86::MOVUPDrr,        X86::MOVUPDrm },
411    { X86::MOVUPSrr,        X86::MOVUPSrm },
412    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
413    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
414    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
415    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
416    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
417    { X86::PSHUFDri,        X86::PSHUFDmi },
418    { X86::PSHUFHWri,       X86::PSHUFHWmi },
419    { X86::PSHUFLWri,       X86::PSHUFLWmi },
420    { X86::PsMOVZX64rr32,   X86::PsMOVZX64rm32 },
421    { X86::RCPPSr,          X86::RCPPSm },
422    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
423    { X86::RSQRTPSr,        X86::RSQRTPSm },
424    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
425    { X86::RSQRTSSr,        X86::RSQRTSSm },
426    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
427    { X86::SQRTPDr,         X86::SQRTPDm },
428    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
429    { X86::SQRTPSr,         X86::SQRTPSm },
430    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
431    { X86::SQRTSDr,         X86::SQRTSDm },
432    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
433    { X86::SQRTSSr,         X86::SQRTSSm },
434    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
435    { X86::TEST16rr,        X86::TEST16rm },
436    { X86::TEST32rr,        X86::TEST32rm },
437    { X86::TEST64rr,        X86::TEST64rm },
438    { X86::TEST8rr,         X86::TEST8rm },
439    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
440    { X86::UCOMISDrr,       X86::UCOMISDrm },
441    { X86::UCOMISSrr,       X86::UCOMISSrm },
442    { X86::XCHG16rr,        X86::XCHG16rm },
443    { X86::XCHG32rr,        X86::XCHG32rm },
444    { X86::XCHG64rr,        X86::XCHG64rm },
445    { X86::XCHG8rr,         X86::XCHG8rm }
446  };
447
448  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
449    unsigned RegOp = OpTbl1[i][0];
450    unsigned MemOp = OpTbl1[i][1];
451    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
452      assert(false && "Duplicated entries?");
453    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
454    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
455      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
456                                               std::make_pair(RegOp, AuxInfo))))
457        AmbEntries.push_back(MemOp);
458  }
459
460  static const unsigned OpTbl2[][2] = {
461    { X86::ADC32rr,         X86::ADC32rm },
462    { X86::ADC64rr,         X86::ADC64rm },
463    { X86::ADD16rr,         X86::ADD16rm },
464    { X86::ADD32rr,         X86::ADD32rm },
465    { X86::ADD64rr,         X86::ADD64rm },
466    { X86::ADD8rr,          X86::ADD8rm },
467    { X86::ADDPDrr,         X86::ADDPDrm },
468    { X86::ADDPSrr,         X86::ADDPSrm },
469    { X86::ADDSDrr,         X86::ADDSDrm },
470    { X86::ADDSSrr,         X86::ADDSSrm },
471    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
472    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
473    { X86::AND16rr,         X86::AND16rm },
474    { X86::AND32rr,         X86::AND32rm },
475    { X86::AND64rr,         X86::AND64rm },
476    { X86::AND8rr,          X86::AND8rm },
477    { X86::ANDNPDrr,        X86::ANDNPDrm },
478    { X86::ANDNPSrr,        X86::ANDNPSrm },
479    { X86::ANDPDrr,         X86::ANDPDrm },
480    { X86::ANDPSrr,         X86::ANDPSrm },
481    { X86::CMOVA16rr,       X86::CMOVA16rm },
482    { X86::CMOVA32rr,       X86::CMOVA32rm },
483    { X86::CMOVA64rr,       X86::CMOVA64rm },
484    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
485    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
486    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
487    { X86::CMOVB16rr,       X86::CMOVB16rm },
488    { X86::CMOVB32rr,       X86::CMOVB32rm },
489    { X86::CMOVB64rr,       X86::CMOVB64rm },
490    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
491    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
492    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
493    { X86::CMOVE16rr,       X86::CMOVE16rm },
494    { X86::CMOVE32rr,       X86::CMOVE32rm },
495    { X86::CMOVE64rr,       X86::CMOVE64rm },
496    { X86::CMOVG16rr,       X86::CMOVG16rm },
497    { X86::CMOVG32rr,       X86::CMOVG32rm },
498    { X86::CMOVG64rr,       X86::CMOVG64rm },
499    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
500    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
501    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
502    { X86::CMOVL16rr,       X86::CMOVL16rm },
503    { X86::CMOVL32rr,       X86::CMOVL32rm },
504    { X86::CMOVL64rr,       X86::CMOVL64rm },
505    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
506    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
507    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
508    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
509    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
510    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
511    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
512    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
513    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
514    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
515    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
516    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
517    { X86::CMOVP16rr,       X86::CMOVP16rm },
518    { X86::CMOVP32rr,       X86::CMOVP32rm },
519    { X86::CMOVP64rr,       X86::CMOVP64rm },
520    { X86::CMOVS16rr,       X86::CMOVS16rm },
521    { X86::CMOVS32rr,       X86::CMOVS32rm },
522    { X86::CMOVS64rr,       X86::CMOVS64rm },
523    { X86::CMPPDrri,        X86::CMPPDrmi },
524    { X86::CMPPSrri,        X86::CMPPSrmi },
525    { X86::CMPSDrr,         X86::CMPSDrm },
526    { X86::CMPSSrr,         X86::CMPSSrm },
527    { X86::DIVPDrr,         X86::DIVPDrm },
528    { X86::DIVPSrr,         X86::DIVPSrm },
529    { X86::DIVSDrr,         X86::DIVSDrm },
530    { X86::DIVSSrr,         X86::DIVSSrm },
531    { X86::HADDPDrr,        X86::HADDPDrm },
532    { X86::HADDPSrr,        X86::HADDPSrm },
533    { X86::HSUBPDrr,        X86::HSUBPDrm },
534    { X86::HSUBPSrr,        X86::HSUBPSrm },
535    { X86::IMUL16rr,        X86::IMUL16rm },
536    { X86::IMUL32rr,        X86::IMUL32rm },
537    { X86::IMUL64rr,        X86::IMUL64rm },
538    { X86::MAXPDrr,         X86::MAXPDrm },
539    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
540    { X86::MAXPSrr,         X86::MAXPSrm },
541    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
542    { X86::MAXSDrr,         X86::MAXSDrm },
543    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
544    { X86::MAXSSrr,         X86::MAXSSrm },
545    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
546    { X86::MINPDrr,         X86::MINPDrm },
547    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
548    { X86::MINPSrr,         X86::MINPSrm },
549    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
550    { X86::MINSDrr,         X86::MINSDrm },
551    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
552    { X86::MINSSrr,         X86::MINSSrm },
553    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
554    { X86::MULPDrr,         X86::MULPDrm },
555    { X86::MULPSrr,         X86::MULPSrm },
556    { X86::MULSDrr,         X86::MULSDrm },
557    { X86::MULSSrr,         X86::MULSSrm },
558    { X86::OR16rr,          X86::OR16rm },
559    { X86::OR32rr,          X86::OR32rm },
560    { X86::OR64rr,          X86::OR64rm },
561    { X86::OR8rr,           X86::OR8rm },
562    { X86::ORPDrr,          X86::ORPDrm },
563    { X86::ORPSrr,          X86::ORPSrm },
564    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
565    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
566    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
567    { X86::PADDBrr,         X86::PADDBrm },
568    { X86::PADDDrr,         X86::PADDDrm },
569    { X86::PADDQrr,         X86::PADDQrm },
570    { X86::PADDSBrr,        X86::PADDSBrm },
571    { X86::PADDSWrr,        X86::PADDSWrm },
572    { X86::PADDWrr,         X86::PADDWrm },
573    { X86::PANDNrr,         X86::PANDNrm },
574    { X86::PANDrr,          X86::PANDrm },
575    { X86::PAVGBrr,         X86::PAVGBrm },
576    { X86::PAVGWrr,         X86::PAVGWrm },
577    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
578    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
579    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
580    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
581    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
582    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
583    { X86::PINSRWrri,       X86::PINSRWrmi },
584    { X86::PMADDWDrr,       X86::PMADDWDrm },
585    { X86::PMAXSWrr,        X86::PMAXSWrm },
586    { X86::PMAXUBrr,        X86::PMAXUBrm },
587    { X86::PMINSWrr,        X86::PMINSWrm },
588    { X86::PMINUBrr,        X86::PMINUBrm },
589    { X86::PMULHUWrr,       X86::PMULHUWrm },
590    { X86::PMULHWrr,        X86::PMULHWrm },
591    { X86::PMULLWrr,        X86::PMULLWrm },
592    { X86::PMULUDQrr,       X86::PMULUDQrm },
593    { X86::PORrr,           X86::PORrm },
594    { X86::PSADBWrr,        X86::PSADBWrm },
595    { X86::PSLLDrr,         X86::PSLLDrm },
596    { X86::PSLLQrr,         X86::PSLLQrm },
597    { X86::PSLLWrr,         X86::PSLLWrm },
598    { X86::PSRADrr,         X86::PSRADrm },
599    { X86::PSRAWrr,         X86::PSRAWrm },
600    { X86::PSRLDrr,         X86::PSRLDrm },
601    { X86::PSRLQrr,         X86::PSRLQrm },
602    { X86::PSRLWrr,         X86::PSRLWrm },
603    { X86::PSUBBrr,         X86::PSUBBrm },
604    { X86::PSUBDrr,         X86::PSUBDrm },
605    { X86::PSUBSBrr,        X86::PSUBSBrm },
606    { X86::PSUBSWrr,        X86::PSUBSWrm },
607    { X86::PSUBWrr,         X86::PSUBWrm },
608    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
609    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
610    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
611    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
612    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
613    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
614    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
615    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
616    { X86::PXORrr,          X86::PXORrm },
617    { X86::SBB32rr,         X86::SBB32rm },
618    { X86::SBB64rr,         X86::SBB64rm },
619    { X86::SHUFPDrri,       X86::SHUFPDrmi },
620    { X86::SHUFPSrri,       X86::SHUFPSrmi },
621    { X86::SUB16rr,         X86::SUB16rm },
622    { X86::SUB32rr,         X86::SUB32rm },
623    { X86::SUB64rr,         X86::SUB64rm },
624    { X86::SUB8rr,          X86::SUB8rm },
625    { X86::SUBPDrr,         X86::SUBPDrm },
626    { X86::SUBPSrr,         X86::SUBPSrm },
627    { X86::SUBSDrr,         X86::SUBSDrm },
628    { X86::SUBSSrr,         X86::SUBSSrm },
629    // FIXME: TEST*rr -> swapped operand of TEST*mr.
630    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
631    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
632    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
633    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
634    { X86::XOR16rr,         X86::XOR16rm },
635    { X86::XOR32rr,         X86::XOR32rm },
636    { X86::XOR64rr,         X86::XOR64rm },
637    { X86::XOR8rr,          X86::XOR8rm },
638    { X86::XORPDrr,         X86::XORPDrm },
639    { X86::XORPSrr,         X86::XORPSrm }
640  };
641
642  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
643    unsigned RegOp = OpTbl2[i][0];
644    unsigned MemOp = OpTbl2[i][1];
645    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
646      assert(false && "Duplicated entries?");
647    unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
648    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
649                                               std::make_pair(RegOp, AuxInfo))))
650      AmbEntries.push_back(MemOp);
651  }
652
653  // Remove ambiguous entries.
654  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
655}
656
657// getDwarfRegNum - This function maps LLVM register identifiers to the
658// Dwarf specific numbering, used in debug info and exception tables.
659
660int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
661  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
662  unsigned Flavour = DWARFFlavour::X86_64;
663  if (!Subtarget->is64Bit()) {
664    if (Subtarget->isTargetDarwin()) {
665      Flavour = DWARFFlavour::X86_32_Darwin;
666    } else if (Subtarget->isTargetCygMing()) {
667      // Unsupported by now, just quick fallback
668      Flavour = DWARFFlavour::X86_32_ELF;
669    } else {
670      Flavour = DWARFFlavour::X86_32_ELF;
671    }
672  }
673
674  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
675}
676
677// getX86RegNum - This function maps LLVM register identifiers to their X86
678// specific numbering, which is used in various places encoding instructions.
679//
680unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
681  switch(RegNo) {
682  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
683  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
684  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
685  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
686  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
687    return N86::ESP;
688  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
689    return N86::EBP;
690  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
691    return N86::ESI;
692  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
693    return N86::EDI;
694
695  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
696    return N86::EAX;
697  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
698    return N86::ECX;
699  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
700    return N86::EDX;
701  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
702    return N86::EBX;
703  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
704    return N86::ESP;
705  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
706    return N86::EBP;
707  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
708    return N86::ESI;
709  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
710    return N86::EDI;
711
712  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
713  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
714    return RegNo-X86::ST0;
715
716  case X86::XMM0: case X86::XMM8: case X86::MM0:
717    return 0;
718  case X86::XMM1: case X86::XMM9: case X86::MM1:
719    return 1;
720  case X86::XMM2: case X86::XMM10: case X86::MM2:
721    return 2;
722  case X86::XMM3: case X86::XMM11: case X86::MM3:
723    return 3;
724  case X86::XMM4: case X86::XMM12: case X86::MM4:
725    return 4;
726  case X86::XMM5: case X86::XMM13: case X86::MM5:
727    return 5;
728  case X86::XMM6: case X86::XMM14: case X86::MM6:
729    return 6;
730  case X86::XMM7: case X86::XMM15: case X86::MM7:
731    return 7;
732
733  default:
734    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
735    assert(0 && "Register allocator hasn't allocated reg correctly yet!");
736    return 0;
737  }
738}
739
740bool X86RegisterInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
741                                                MachineBasicBlock::iterator MI,
742                                const std::vector<CalleeSavedInfo> &CSI) const {
743  if (CSI.empty())
744    return false;
745
746  MachineFunction &MF = *MBB.getParent();
747  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
748  X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
749  unsigned Opc = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
750  for (unsigned i = CSI.size(); i != 0; --i) {
751    unsigned Reg = CSI[i-1].getReg();
752    // Add the callee-saved register as live-in. It's killed at the spill.
753    MBB.addLiveIn(Reg);
754    BuildMI(MBB, MI, TII.get(Opc)).addReg(Reg);
755  }
756  return true;
757}
758
759bool X86RegisterInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
760                                                 MachineBasicBlock::iterator MI,
761                                const std::vector<CalleeSavedInfo> &CSI) const {
762  if (CSI.empty())
763    return false;
764
765  unsigned Opc = Is64Bit ? X86::POP64r : X86::POP32r;
766  for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
767    unsigned Reg = CSI[i].getReg();
768    BuildMI(MBB, MI, TII.get(Opc), Reg);
769  }
770  return true;
771}
772
773static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
774                                                     MachineOperand &MO) {
775  if (MO.isRegister())
776    MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
777                     false, false, MO.getSubReg());
778  else if (MO.isImmediate())
779    MIB = MIB.addImm(MO.getImm());
780  else if (MO.isFrameIndex())
781    MIB = MIB.addFrameIndex(MO.getFrameIndex());
782  else if (MO.isGlobalAddress())
783    MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
784  else if (MO.isConstantPoolIndex())
785    MIB = MIB.addConstantPoolIndex(MO.getConstantPoolIndex(), MO.getOffset());
786  else if (MO.isJumpTableIndex())
787    MIB = MIB.addJumpTableIndex(MO.getJumpTableIndex());
788  else if (MO.isExternalSymbol())
789    MIB = MIB.addExternalSymbol(MO.getSymbolName());
790  else
791    assert(0 && "Unknown operand for X86InstrAddOperand!");
792
793  return MIB;
794}
795
796static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
797                                  unsigned StackAlign) {
798  unsigned Opc = 0;
799  if (RC == &X86::GR64RegClass) {
800    Opc = X86::MOV64mr;
801  } else if (RC == &X86::GR32RegClass) {
802    Opc = X86::MOV32mr;
803  } else if (RC == &X86::GR16RegClass) {
804    Opc = X86::MOV16mr;
805  } else if (RC == &X86::GR8RegClass) {
806    Opc = X86::MOV8mr;
807  } else if (RC == &X86::GR32_RegClass) {
808    Opc = X86::MOV32_mr;
809  } else if (RC == &X86::GR16_RegClass) {
810    Opc = X86::MOV16_mr;
811  } else if (RC == &X86::RFP80RegClass) {
812    Opc = X86::ST_FpP80m;   // pops
813  } else if (RC == &X86::RFP64RegClass) {
814    Opc = X86::ST_Fp64m;
815  } else if (RC == &X86::RFP32RegClass) {
816    Opc = X86::ST_Fp32m;
817  } else if (RC == &X86::FR32RegClass) {
818    Opc = X86::MOVSSmr;
819  } else if (RC == &X86::FR64RegClass) {
820    Opc = X86::MOVSDmr;
821  } else if (RC == &X86::VR128RegClass) {
822    // FIXME: Use movaps once we are capable of selectively
823    // aligning functions that spill SSE registers on 16-byte boundaries.
824    Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
825  } else if (RC == &X86::VR64RegClass) {
826    Opc = X86::MMX_MOVQ64mr;
827  } else {
828    assert(0 && "Unknown regclass");
829    abort();
830  }
831
832  return Opc;
833}
834
835void X86RegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
836                                          MachineBasicBlock::iterator MI,
837                                          unsigned SrcReg, bool isKill, int FrameIdx,
838                                          const TargetRegisterClass *RC) const {
839  unsigned Opc = getStoreRegOpcode(RC, StackAlign);
840  addFrameReference(BuildMI(MBB, MI, TII.get(Opc)), FrameIdx)
841    .addReg(SrcReg, false, false, isKill);
842}
843
844void X86RegisterInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
845                                     bool isKill,
846                                     SmallVectorImpl<MachineOperand> &Addr,
847                                     const TargetRegisterClass *RC,
848                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
849  unsigned Opc = getStoreRegOpcode(RC, StackAlign);
850  MachineInstrBuilder MIB = BuildMI(TII.get(Opc));
851  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
852    MIB = X86InstrAddOperand(MIB, Addr[i]);
853  MIB.addReg(SrcReg, false, false, isKill);
854  NewMIs.push_back(MIB);
855}
856
857static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
858                                 unsigned StackAlign) {
859  unsigned Opc = 0;
860  if (RC == &X86::GR64RegClass) {
861    Opc = X86::MOV64rm;
862  } else if (RC == &X86::GR32RegClass) {
863    Opc = X86::MOV32rm;
864  } else if (RC == &X86::GR16RegClass) {
865    Opc = X86::MOV16rm;
866  } else if (RC == &X86::GR8RegClass) {
867    Opc = X86::MOV8rm;
868  } else if (RC == &X86::GR32_RegClass) {
869    Opc = X86::MOV32_rm;
870  } else if (RC == &X86::GR16_RegClass) {
871    Opc = X86::MOV16_rm;
872  } else if (RC == &X86::RFP80RegClass) {
873    Opc = X86::LD_Fp80m;
874  } else if (RC == &X86::RFP64RegClass) {
875    Opc = X86::LD_Fp64m;
876  } else if (RC == &X86::RFP32RegClass) {
877    Opc = X86::LD_Fp32m;
878  } else if (RC == &X86::FR32RegClass) {
879    Opc = X86::MOVSSrm;
880  } else if (RC == &X86::FR64RegClass) {
881    Opc = X86::MOVSDrm;
882  } else if (RC == &X86::VR128RegClass) {
883    // FIXME: Use movaps once we are capable of selectively
884    // aligning functions that spill SSE registers on 16-byte boundaries.
885    Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
886  } else if (RC == &X86::VR64RegClass) {
887    Opc = X86::MMX_MOVQ64rm;
888  } else {
889    assert(0 && "Unknown regclass");
890    abort();
891  }
892
893  return Opc;
894}
895
896void X86RegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
897                                           MachineBasicBlock::iterator MI,
898                                           unsigned DestReg, int FrameIdx,
899                                           const TargetRegisterClass *RC) const{
900  unsigned Opc = getLoadRegOpcode(RC, StackAlign);
901  addFrameReference(BuildMI(MBB, MI, TII.get(Opc), DestReg), FrameIdx);
902}
903
904void X86RegisterInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
905                                      SmallVectorImpl<MachineOperand> &Addr,
906                                      const TargetRegisterClass *RC,
907                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
908  unsigned Opc = getLoadRegOpcode(RC, StackAlign);
909  MachineInstrBuilder MIB = BuildMI(TII.get(Opc), DestReg);
910  for (unsigned i = 0, e = Addr.size(); i != e; ++i)
911    MIB = X86InstrAddOperand(MIB, Addr[i]);
912  NewMIs.push_back(MIB);
913}
914
915void X86RegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
916                                   MachineBasicBlock::iterator MI,
917                                   unsigned DestReg, unsigned SrcReg,
918                                   const TargetRegisterClass *DestRC,
919                                   const TargetRegisterClass *SrcRC) const {
920  if (DestRC != SrcRC) {
921    // Moving EFLAGS to / from another register requires a push and a pop.
922    if (SrcRC == &X86::CCRRegClass) {
923      assert(SrcReg == X86::EFLAGS);
924      if (DestRC == &X86::GR64RegClass) {
925        BuildMI(MBB, MI, TII.get(X86::PUSHFQ));
926        BuildMI(MBB, MI, TII.get(X86::POP64r), DestReg);
927        return;
928      } else if (DestRC == &X86::GR32RegClass) {
929        BuildMI(MBB, MI, TII.get(X86::PUSHFD));
930        BuildMI(MBB, MI, TII.get(X86::POP32r), DestReg);
931        return;
932      }
933    } else if (DestRC == &X86::CCRRegClass) {
934      assert(DestReg == X86::EFLAGS);
935      if (SrcRC == &X86::GR64RegClass) {
936        BuildMI(MBB, MI, TII.get(X86::PUSH64r)).addReg(SrcReg);
937        BuildMI(MBB, MI, TII.get(X86::POPFQ));
938        return;
939      } else if (SrcRC == &X86::GR32RegClass) {
940        BuildMI(MBB, MI, TII.get(X86::PUSH32r)).addReg(SrcReg);
941        BuildMI(MBB, MI, TII.get(X86::POPFD));
942        return;
943      }
944    }
945    cerr << "Not yet supported!";
946    abort();
947  }
948
949  unsigned Opc;
950  if (DestRC == &X86::GR64RegClass) {
951    Opc = X86::MOV64rr;
952  } else if (DestRC == &X86::GR32RegClass) {
953    Opc = X86::MOV32rr;
954  } else if (DestRC == &X86::GR16RegClass) {
955    Opc = X86::MOV16rr;
956  } else if (DestRC == &X86::GR8RegClass) {
957    Opc = X86::MOV8rr;
958  } else if (DestRC == &X86::GR32_RegClass) {
959    Opc = X86::MOV32_rr;
960  } else if (DestRC == &X86::GR16_RegClass) {
961    Opc = X86::MOV16_rr;
962  } else if (DestRC == &X86::RFP32RegClass) {
963    Opc = X86::MOV_Fp3232;
964  } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
965    Opc = X86::MOV_Fp6464;
966  } else if (DestRC == &X86::RFP80RegClass) {
967    Opc = X86::MOV_Fp8080;
968  } else if (DestRC == &X86::FR32RegClass) {
969    Opc = X86::FsMOVAPSrr;
970  } else if (DestRC == &X86::FR64RegClass) {
971    Opc = X86::FsMOVAPDrr;
972  } else if (DestRC == &X86::VR128RegClass) {
973    Opc = X86::MOVAPSrr;
974  } else if (DestRC == &X86::VR64RegClass) {
975    Opc = X86::MMX_MOVQ64rr;
976  } else {
977    assert(0 && "Unknown regclass");
978    abort();
979  }
980  BuildMI(MBB, MI, TII.get(Opc), DestReg).addReg(SrcReg);
981}
982
983const TargetRegisterClass *
984X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
985  if (RC == &X86::CCRRegClass)
986    if (Is64Bit)
987      return &X86::GR64RegClass;
988    else
989      return &X86::GR32RegClass;
990  return NULL;
991}
992
993void X86RegisterInfo::reMaterialize(MachineBasicBlock &MBB,
994                                    MachineBasicBlock::iterator I,
995                                    unsigned DestReg,
996                                    const MachineInstr *Orig) const {
997  // MOV32r0 etc. are implemented with xor which clobbers condition code.
998  // Re-materialize them as movri instructions to avoid side effects.
999  switch (Orig->getOpcode()) {
1000  case X86::MOV8r0:
1001    BuildMI(MBB, I, TII.get(X86::MOV8ri), DestReg).addImm(0);
1002    break;
1003  case X86::MOV16r0:
1004    BuildMI(MBB, I, TII.get(X86::MOV16ri), DestReg).addImm(0);
1005    break;
1006  case X86::MOV32r0:
1007    BuildMI(MBB, I, TII.get(X86::MOV32ri), DestReg).addImm(0);
1008    break;
1009  case X86::MOV64r0:
1010    BuildMI(MBB, I, TII.get(X86::MOV64ri32), DestReg).addImm(0);
1011    break;
1012  default: {
1013    MachineInstr *MI = Orig->clone();
1014    MI->getOperand(0).setReg(DestReg);
1015    MBB.insert(I, MI);
1016    break;
1017  }
1018  }
1019}
1020
1021static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1022                                     SmallVector<MachineOperand,4> &MOs,
1023                                 MachineInstr *MI, const TargetInstrInfo &TII) {
1024  // Create the base instruction with the memory operand as the first part.
1025  MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1026  MachineInstrBuilder MIB(NewMI);
1027  unsigned NumAddrOps = MOs.size();
1028  for (unsigned i = 0; i != NumAddrOps; ++i)
1029    MIB = X86InstrAddOperand(MIB, MOs[i]);
1030  if (NumAddrOps < 4)  // FrameIndex only
1031    MIB.addImm(1).addReg(0).addImm(0);
1032
1033  // Loop over the rest of the ri operands, converting them over.
1034  unsigned NumOps = TII.getNumOperands(MI->getOpcode())-2;
1035  for (unsigned i = 0; i != NumOps; ++i) {
1036    MachineOperand &MO = MI->getOperand(i+2);
1037    MIB = X86InstrAddOperand(MIB, MO);
1038  }
1039  for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1040    MachineOperand &MO = MI->getOperand(i);
1041    MIB = X86InstrAddOperand(MIB, MO);
1042  }
1043  return MIB;
1044}
1045
1046static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1047                              SmallVector<MachineOperand,4> &MOs,
1048                              MachineInstr *MI, const TargetInstrInfo &TII) {
1049  MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1050  MachineInstrBuilder MIB(NewMI);
1051
1052  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1053    MachineOperand &MO = MI->getOperand(i);
1054    if (i == OpNo) {
1055      assert(MO.isRegister() && "Expected to fold into reg operand!");
1056      unsigned NumAddrOps = MOs.size();
1057      for (unsigned i = 0; i != NumAddrOps; ++i)
1058        MIB = X86InstrAddOperand(MIB, MOs[i]);
1059      if (NumAddrOps < 4)  // FrameIndex only
1060        MIB.addImm(1).addReg(0).addImm(0);
1061    } else {
1062      MIB = X86InstrAddOperand(MIB, MO);
1063    }
1064  }
1065  return MIB;
1066}
1067
1068static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1069                                SmallVector<MachineOperand,4> &MOs,
1070                                MachineInstr *MI) {
1071  MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1072
1073  unsigned NumAddrOps = MOs.size();
1074  for (unsigned i = 0; i != NumAddrOps; ++i)
1075    MIB = X86InstrAddOperand(MIB, MOs[i]);
1076  if (NumAddrOps < 4)  // FrameIndex only
1077    MIB.addImm(1).addReg(0).addImm(0);
1078  return MIB.addImm(0);
1079}
1080
1081MachineInstr*
1082X86RegisterInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
1083                                   SmallVector<MachineOperand,4> &MOs) const {
1084  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1085  bool isTwoAddrFold = false;
1086  unsigned NumOps = TII.getNumOperands(MI->getOpcode());
1087  bool isTwoAddr = NumOps > 1 &&
1088    MI->getInstrDescriptor()->getOperandConstraint(1, TOI::TIED_TO) != -1;
1089
1090  MachineInstr *NewMI = NULL;
1091  // Folding a memory location into the two-address part of a two-address
1092  // instruction is different than folding it other places.  It requires
1093  // replacing the *two* registers with the memory location.
1094  if (isTwoAddr && NumOps >= 2 && i < 2 &&
1095      MI->getOperand(0).isRegister() &&
1096      MI->getOperand(1).isRegister() &&
1097      MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1098    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1099    isTwoAddrFold = true;
1100  } else if (i == 0) { // If operand 0
1101    if (MI->getOpcode() == X86::MOV16r0)
1102      NewMI = MakeM0Inst(TII, X86::MOV16mi, MOs, MI);
1103    else if (MI->getOpcode() == X86::MOV32r0)
1104      NewMI = MakeM0Inst(TII, X86::MOV32mi, MOs, MI);
1105    else if (MI->getOpcode() == X86::MOV64r0)
1106      NewMI = MakeM0Inst(TII, X86::MOV64mi32, MOs, MI);
1107    else if (MI->getOpcode() == X86::MOV8r0)
1108      NewMI = MakeM0Inst(TII, X86::MOV8mi, MOs, MI);
1109    if (NewMI) {
1110      NewMI->copyKillDeadInfo(MI);
1111      return NewMI;
1112    }
1113
1114    OpcodeTablePtr = &RegOp2MemOpTable0;
1115  } else if (i == 1) {
1116    OpcodeTablePtr = &RegOp2MemOpTable1;
1117  } else if (i == 2) {
1118    OpcodeTablePtr = &RegOp2MemOpTable2;
1119  }
1120
1121  // If table selected...
1122  if (OpcodeTablePtr) {
1123    // Find the Opcode to fuse
1124    DenseMap<unsigned*, unsigned>::iterator I =
1125      OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1126    if (I != OpcodeTablePtr->end()) {
1127      if (isTwoAddrFold)
1128        NewMI = FuseTwoAddrInst(I->second, MOs, MI, TII);
1129      else
1130        NewMI = FuseInst(I->second, i, MOs, MI, TII);
1131      NewMI->copyKillDeadInfo(MI);
1132      return NewMI;
1133    }
1134  }
1135
1136  // No fusion
1137  if (PrintFailedFusing)
1138    cerr << "We failed to fuse ("
1139         << ((i == 1) ? "r" : "s") << "): " << *MI;
1140  return NULL;
1141}
1142
1143
1144MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI,
1145                                              SmallVectorImpl<unsigned> &Ops,
1146                                              int FrameIndex) const {
1147  // Check switch flag
1148  if (NoFusing) return NULL;
1149
1150  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1151    unsigned NewOpc = 0;
1152    switch (MI->getOpcode()) {
1153    default: return NULL;
1154    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
1155    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1156    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1157    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1158    }
1159    // Change to CMPXXri r, 0 first.
1160    MI->setInstrDescriptor(TII.get(NewOpc));
1161    MI->getOperand(1).ChangeToImmediate(0);
1162  } else if (Ops.size() != 1)
1163    return NULL;
1164
1165  SmallVector<MachineOperand,4> MOs;
1166  MOs.push_back(MachineOperand::CreateFrameIndex(FrameIndex));
1167  return foldMemoryOperand(MI, Ops[0], MOs);
1168}
1169
1170MachineInstr* X86RegisterInfo::foldMemoryOperand(MachineInstr *MI,
1171                                                 SmallVectorImpl<unsigned> &Ops,
1172                                                 MachineInstr *LoadMI) const {
1173  // Check switch flag
1174  if (NoFusing) return NULL;
1175
1176  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1177    unsigned NewOpc = 0;
1178    switch (MI->getOpcode()) {
1179    default: return NULL;
1180    case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
1181    case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1182    case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1183    case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1184    }
1185    // Change to CMPXXri r, 0 first.
1186    MI->setInstrDescriptor(TII.get(NewOpc));
1187    MI->getOperand(1).ChangeToImmediate(0);
1188  } else if (Ops.size() != 1)
1189    return NULL;
1190
1191  SmallVector<MachineOperand,4> MOs;
1192  unsigned NumOps = TII.getNumOperands(LoadMI->getOpcode());
1193  for (unsigned i = NumOps - 4; i != NumOps; ++i)
1194    MOs.push_back(LoadMI->getOperand(i));
1195  return foldMemoryOperand(MI, Ops[0], MOs);
1196}
1197
1198
1199bool X86RegisterInfo::canFoldMemoryOperand(MachineInstr *MI,
1200                                         SmallVectorImpl<unsigned> &Ops) const {
1201  // Check switch flag
1202  if (NoFusing) return 0;
1203
1204  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1205    switch (MI->getOpcode()) {
1206    default: return false;
1207    case X86::TEST8rr:
1208    case X86::TEST16rr:
1209    case X86::TEST32rr:
1210    case X86::TEST64rr:
1211      return true;
1212    }
1213  }
1214
1215  if (Ops.size() != 1)
1216    return false;
1217
1218  unsigned OpNum = Ops[0];
1219  unsigned Opc = MI->getOpcode();
1220  unsigned NumOps = TII.getNumOperands(Opc);
1221  bool isTwoAddr = NumOps > 1 &&
1222    TII.getOperandConstraint(Opc, 1, TOI::TIED_TO) != -1;
1223
1224  // Folding a memory location into the two-address part of a two-address
1225  // instruction is different than folding it other places.  It requires
1226  // replacing the *two* registers with the memory location.
1227  const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1228  if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
1229    OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1230  } else if (OpNum == 0) { // If operand 0
1231    switch (Opc) {
1232    case X86::MOV16r0:
1233    case X86::MOV32r0:
1234    case X86::MOV64r0:
1235    case X86::MOV8r0:
1236      return true;
1237    default: break;
1238    }
1239    OpcodeTablePtr = &RegOp2MemOpTable0;
1240  } else if (OpNum == 1) {
1241    OpcodeTablePtr = &RegOp2MemOpTable1;
1242  } else if (OpNum == 2) {
1243    OpcodeTablePtr = &RegOp2MemOpTable2;
1244  }
1245
1246  if (OpcodeTablePtr) {
1247    // Find the Opcode to fuse
1248    DenseMap<unsigned*, unsigned>::iterator I =
1249      OpcodeTablePtr->find((unsigned*)Opc);
1250    if (I != OpcodeTablePtr->end())
1251      return true;
1252  }
1253  return false;
1254}
1255
1256bool X86RegisterInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
1257                                unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
1258                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1259  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1260    MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
1261  if (I == MemOp2RegOpTable.end())
1262    return false;
1263  unsigned Opc = I->second.first;
1264  unsigned Index = I->second.second & 0xf;
1265  bool FoldedLoad = I->second.second & (1 << 4);
1266  bool FoldedStore = I->second.second & (1 << 5);
1267  if (UnfoldLoad && !FoldedLoad)
1268    return false;
1269  UnfoldLoad &= FoldedLoad;
1270  if (UnfoldStore && !FoldedStore)
1271    return false;
1272  UnfoldStore &= FoldedStore;
1273
1274  const TargetInstrDescriptor &TID = TII.get(Opc);
1275  const TargetOperandInfo &TOI = TID.OpInfo[Index];
1276  const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1277    ? TII.getPointerRegClass() : getRegClass(TOI.RegClass);
1278  SmallVector<MachineOperand,4> AddrOps;
1279  SmallVector<MachineOperand,2> BeforeOps;
1280  SmallVector<MachineOperand,2> AfterOps;
1281  SmallVector<MachineOperand,4> ImpOps;
1282  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1283    MachineOperand &Op = MI->getOperand(i);
1284    if (i >= Index && i < Index+4)
1285      AddrOps.push_back(Op);
1286    else if (Op.isRegister() && Op.isImplicit())
1287      ImpOps.push_back(Op);
1288    else if (i < Index)
1289      BeforeOps.push_back(Op);
1290    else if (i > Index)
1291      AfterOps.push_back(Op);
1292  }
1293
1294  // Emit the load instruction.
1295  if (UnfoldLoad) {
1296    loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
1297    if (UnfoldStore) {
1298      // Address operands cannot be marked isKill.
1299      for (unsigned i = 1; i != 5; ++i) {
1300        MachineOperand &MO = NewMIs[0]->getOperand(i);
1301        if (MO.isRegister())
1302          MO.unsetIsKill();
1303      }
1304    }
1305  }
1306
1307  // Emit the data processing instruction.
1308  MachineInstr *DataMI = new MachineInstr(TID, true);
1309  MachineInstrBuilder MIB(DataMI);
1310
1311  if (FoldedStore)
1312    MIB.addReg(Reg, true);
1313  for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
1314    MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
1315  if (FoldedLoad)
1316    MIB.addReg(Reg);
1317  for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
1318    MIB = X86InstrAddOperand(MIB, AfterOps[i]);
1319  for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
1320    MachineOperand &MO = ImpOps[i];
1321    MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
1322  }
1323  // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
1324  unsigned NewOpc = 0;
1325  switch (DataMI->getOpcode()) {
1326  default: break;
1327  case X86::CMP64ri32:
1328  case X86::CMP32ri:
1329  case X86::CMP16ri:
1330  case X86::CMP8ri: {
1331    MachineOperand &MO0 = DataMI->getOperand(0);
1332    MachineOperand &MO1 = DataMI->getOperand(1);
1333    if (MO1.getImm() == 0) {
1334      switch (DataMI->getOpcode()) {
1335      default: break;
1336      case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
1337      case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
1338      case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
1339      case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
1340      }
1341      DataMI->setInstrDescriptor(TII.get(NewOpc));
1342      MO1.ChangeToRegister(MO0.getReg(), false);
1343    }
1344  }
1345  }
1346  NewMIs.push_back(DataMI);
1347
1348  // Emit the store instruction.
1349  if (UnfoldStore) {
1350    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
1351    const TargetRegisterClass *DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1352      ? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass);
1353    storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
1354  }
1355
1356  return true;
1357}
1358
1359
1360bool
1361X86RegisterInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1362                                     SmallVectorImpl<SDNode*> &NewNodes) const {
1363  if (!N->isTargetOpcode())
1364    return false;
1365
1366  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1367    MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
1368  if (I == MemOp2RegOpTable.end())
1369    return false;
1370  unsigned Opc = I->second.first;
1371  unsigned Index = I->second.second & 0xf;
1372  bool FoldedLoad = I->second.second & (1 << 4);
1373  bool FoldedStore = I->second.second & (1 << 5);
1374  const TargetInstrDescriptor &TID = TII.get(Opc);
1375  const TargetOperandInfo &TOI = TID.OpInfo[Index];
1376  const TargetRegisterClass *RC = (TOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1377    ? TII.getPointerRegClass() : getRegClass(TOI.RegClass);
1378  std::vector<SDOperand> AddrOps;
1379  std::vector<SDOperand> BeforeOps;
1380  std::vector<SDOperand> AfterOps;
1381  unsigned NumOps = N->getNumOperands();
1382  for (unsigned i = 0; i != NumOps-1; ++i) {
1383    SDOperand Op = N->getOperand(i);
1384    if (i >= Index && i < Index+4)
1385      AddrOps.push_back(Op);
1386    else if (i < Index)
1387      BeforeOps.push_back(Op);
1388    else if (i > Index)
1389      AfterOps.push_back(Op);
1390  }
1391  SDOperand Chain = N->getOperand(NumOps-1);
1392  AddrOps.push_back(Chain);
1393
1394  // Emit the load instruction.
1395  SDNode *Load = 0;
1396  if (FoldedLoad) {
1397    MVT::ValueType VT = *RC->vt_begin();
1398    Load = DAG.getTargetNode(getLoadRegOpcode(RC, StackAlign), VT, MVT::Other,
1399                             &AddrOps[0], AddrOps.size());
1400    NewNodes.push_back(Load);
1401  }
1402
1403  // Emit the data processing instruction.
1404  std::vector<MVT::ValueType> VTs;
1405  const TargetRegisterClass *DstRC = 0;
1406  if (TID.numDefs > 0) {
1407    const TargetOperandInfo &DstTOI = TID.OpInfo[0];
1408    DstRC = (DstTOI.Flags & M_LOOK_UP_PTR_REG_CLASS)
1409      ? TII.getPointerRegClass() : getRegClass(DstTOI.RegClass);
1410    VTs.push_back(*DstRC->vt_begin());
1411  }
1412  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
1413    MVT::ValueType VT = N->getValueType(i);
1414    if (VT != MVT::Other && i >= TID.numDefs)
1415      VTs.push_back(VT);
1416  }
1417  if (Load)
1418    BeforeOps.push_back(SDOperand(Load, 0));
1419  std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
1420  SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
1421  NewNodes.push_back(NewNode);
1422
1423  // Emit the store instruction.
1424  if (FoldedStore) {
1425    AddrOps.pop_back();
1426    AddrOps.push_back(SDOperand(NewNode, 0));
1427    AddrOps.push_back(Chain);
1428    SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, StackAlign),
1429                                      MVT::Other, &AddrOps[0], AddrOps.size());
1430    NewNodes.push_back(Store);
1431  }
1432
1433  return true;
1434}
1435
1436unsigned X86RegisterInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
1437                                      bool UnfoldLoad, bool UnfoldStore) const {
1438  DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
1439    MemOp2RegOpTable.find((unsigned*)Opc);
1440  if (I == MemOp2RegOpTable.end())
1441    return 0;
1442  bool FoldedLoad = I->second.second & (1 << 4);
1443  bool FoldedStore = I->second.second & (1 << 5);
1444  if (UnfoldLoad && !FoldedLoad)
1445    return 0;
1446  if (UnfoldStore && !FoldedStore)
1447    return 0;
1448  return I->second.first;
1449}
1450
1451const unsigned *
1452X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
1453  static const unsigned CalleeSavedRegs32Bit[] = {
1454    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
1455  };
1456
1457  static const unsigned CalleeSavedRegs32EHRet[] = {
1458    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
1459  };
1460
1461  static const unsigned CalleeSavedRegs64Bit[] = {
1462    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
1463  };
1464
1465  if (Is64Bit)
1466    return CalleeSavedRegs64Bit;
1467  else {
1468    if (MF) {
1469        MachineFrameInfo *MFI = MF->getFrameInfo();
1470        MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1471        if (MMI && MMI->callsEHReturn())
1472          return CalleeSavedRegs32EHRet;
1473    }
1474    return CalleeSavedRegs32Bit;
1475  }
1476}
1477
1478const TargetRegisterClass* const*
1479X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
1480  static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
1481    &X86::GR32RegClass, &X86::GR32RegClass,
1482    &X86::GR32RegClass, &X86::GR32RegClass,  0
1483  };
1484  static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
1485    &X86::GR32RegClass, &X86::GR32RegClass,
1486    &X86::GR32RegClass, &X86::GR32RegClass,
1487    &X86::GR32RegClass, &X86::GR32RegClass,  0
1488  };
1489  static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
1490    &X86::GR64RegClass, &X86::GR64RegClass,
1491    &X86::GR64RegClass, &X86::GR64RegClass,
1492    &X86::GR64RegClass, &X86::GR64RegClass, 0
1493  };
1494
1495  if (Is64Bit)
1496    return CalleeSavedRegClasses64Bit;
1497  else {
1498    if (MF) {
1499        MachineFrameInfo *MFI = MF->getFrameInfo();
1500        MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1501        if (MMI && MMI->callsEHReturn())
1502          return CalleeSavedRegClasses32EHRet;
1503    }
1504    return CalleeSavedRegClasses32Bit;
1505  }
1506
1507}
1508
1509BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
1510  BitVector Reserved(getNumRegs());
1511  Reserved.set(X86::RSP);
1512  Reserved.set(X86::ESP);
1513  Reserved.set(X86::SP);
1514  Reserved.set(X86::SPL);
1515  if (hasFP(MF)) {
1516    Reserved.set(X86::RBP);
1517    Reserved.set(X86::EBP);
1518    Reserved.set(X86::BP);
1519    Reserved.set(X86::BPL);
1520  }
1521  return Reserved;
1522}
1523
1524//===----------------------------------------------------------------------===//
1525// Stack Frame Processing methods
1526//===----------------------------------------------------------------------===//
1527
1528// hasFP - Return true if the specified function should have a dedicated frame
1529// pointer register.  This is true if the function has variable sized allocas or
1530// if frame pointer elimination is disabled.
1531//
1532bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
1533  MachineFrameInfo *MFI = MF.getFrameInfo();
1534  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1535
1536  return (NoFramePointerElim ||
1537          MFI->hasVarSizedObjects() ||
1538          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
1539          (MMI && MMI->callsUnwindInit()));
1540}
1541
1542bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
1543  return !MF.getFrameInfo()->hasVarSizedObjects();
1544}
1545
1546void X86RegisterInfo::
1547eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
1548                              MachineBasicBlock::iterator I) const {
1549  if (!hasReservedCallFrame(MF)) {
1550    // If the stack pointer can be changed after prologue, turn the
1551    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
1552    // adjcallstackdown instruction into 'add ESP, <amt>'
1553    // TODO: consider using push / pop instead of sub + store / add
1554    MachineInstr *Old = I;
1555    uint64_t Amount = Old->getOperand(0).getImm();
1556    if (Amount != 0) {
1557      // We need to keep the stack aligned properly.  To do this, we round the
1558      // amount of space needed for the outgoing arguments up to the next
1559      // alignment boundary.
1560      Amount = (Amount+StackAlign-1)/StackAlign*StackAlign;
1561
1562      MachineInstr *New = 0;
1563      if (Old->getOpcode() == X86::ADJCALLSTACKDOWN) {
1564        New=BuildMI(TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri), StackPtr)
1565          .addReg(StackPtr).addImm(Amount);
1566      } else {
1567        assert(Old->getOpcode() == X86::ADJCALLSTACKUP);
1568        // factor out the amount the callee already popped.
1569        uint64_t CalleeAmt = Old->getOperand(1).getImm();
1570        Amount -= CalleeAmt;
1571        if (Amount) {
1572          unsigned Opc = (Amount < 128) ?
1573            (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
1574            (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
1575          New = BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(Amount);
1576        }
1577      }
1578
1579      // Replace the pseudo instruction with a new instruction...
1580      if (New) MBB.insert(I, New);
1581    }
1582  } else if (I->getOpcode() == X86::ADJCALLSTACKUP) {
1583    // If we are performing frame pointer elimination and if the callee pops
1584    // something off the stack pointer, add it back.  We do this until we have
1585    // more advanced stack pointer tracking ability.
1586    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
1587      unsigned Opc = (CalleeAmt < 128) ?
1588        (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
1589        (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
1590      MachineInstr *New =
1591        BuildMI(TII.get(Opc), StackPtr).addReg(StackPtr).addImm(CalleeAmt);
1592      MBB.insert(I, New);
1593    }
1594  }
1595
1596  MBB.erase(I);
1597}
1598
1599void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
1600                                          int SPAdj, RegScavenger *RS) const{
1601  assert(SPAdj == 0 && "Unexpected");
1602
1603  unsigned i = 0;
1604  MachineInstr &MI = *II;
1605  MachineFunction &MF = *MI.getParent()->getParent();
1606  while (!MI.getOperand(i).isFrameIndex()) {
1607    ++i;
1608    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
1609  }
1610
1611  int FrameIndex = MI.getOperand(i).getFrameIndex();
1612  // This must be part of a four operand memory reference.  Replace the
1613  // FrameIndex with base register with EBP.  Add an offset to the offset.
1614  MI.getOperand(i).ChangeToRegister(hasFP(MF) ? FramePtr : StackPtr, false);
1615
1616  // Now add the frame object offset to the offset from EBP.
1617  int64_t Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
1618                   MI.getOperand(i+3).getImm()+SlotSize;
1619
1620  if (!hasFP(MF))
1621    Offset += MF.getFrameInfo()->getStackSize();
1622  else {
1623    Offset += SlotSize;  // Skip the saved EBP
1624    // Skip the RETADDR move area
1625    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1626    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1627    if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta;
1628  }
1629
1630  MI.getOperand(i+3).ChangeToImmediate(Offset);
1631}
1632
1633void
1634X86RegisterInfo::processFunctionBeforeFrameFinalized(MachineFunction &MF) const{
1635  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1636  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1637  if (TailCallReturnAddrDelta < 0) {
1638    // create RETURNADDR area
1639    //   arg
1640    //   arg
1641    //   RETADDR
1642    //   { ...
1643    //     RETADDR area
1644    //     ...
1645    //   }
1646    //   [EBP]
1647    MF.getFrameInfo()->
1648      CreateFixedObject(-TailCallReturnAddrDelta,
1649                        (-1*SlotSize)+TailCallReturnAddrDelta);
1650  }
1651  if (hasFP(MF)) {
1652    assert((TailCallReturnAddrDelta <= 0) &&
1653           "The Delta should always be zero or negative");
1654    // Create a frame entry for the EBP register that must be saved.
1655    int FrameIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1656                                                        (int)SlotSize * -2+
1657                                                       TailCallReturnAddrDelta);
1658    assert(FrameIdx == MF.getFrameInfo()->getObjectIndexBegin() &&
1659           "Slot for EBP register must be last in order to be found!");
1660  }
1661}
1662
1663/// emitSPUpdate - Emit a series of instructions to increment / decrement the
1664/// stack pointer by a constant value.
1665static
1666void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
1667                  unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
1668                  const TargetInstrInfo &TII) {
1669  bool isSub = NumBytes < 0;
1670  uint64_t Offset = isSub ? -NumBytes : NumBytes;
1671  unsigned Opc = isSub
1672    ? ((Offset < 128) ?
1673       (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
1674       (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
1675    : ((Offset < 128) ?
1676       (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
1677       (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
1678  uint64_t Chunk = (1LL << 31) - 1;
1679
1680  while (Offset) {
1681    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
1682    BuildMI(MBB, MBBI, TII.get(Opc), StackPtr).addReg(StackPtr).addImm(ThisVal);
1683    Offset -= ThisVal;
1684  }
1685}
1686
1687// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
1688static
1689void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
1690                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
1691  if (MBBI == MBB.begin()) return;
1692
1693  MachineBasicBlock::iterator PI = prior(MBBI);
1694  unsigned Opc = PI->getOpcode();
1695  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1696       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1697      PI->getOperand(0).getReg() == StackPtr) {
1698    if (NumBytes)
1699      *NumBytes += PI->getOperand(2).getImm();
1700    MBB.erase(PI);
1701  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1702              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1703             PI->getOperand(0).getReg() == StackPtr) {
1704    if (NumBytes)
1705      *NumBytes -= PI->getOperand(2).getImm();
1706    MBB.erase(PI);
1707  }
1708}
1709
1710// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
1711static
1712void mergeSPUpdatesDown(MachineBasicBlock &MBB,
1713                        MachineBasicBlock::iterator &MBBI,
1714                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
1715  return;
1716
1717  if (MBBI == MBB.end()) return;
1718
1719  MachineBasicBlock::iterator NI = next(MBBI);
1720  if (NI == MBB.end()) return;
1721
1722  unsigned Opc = NI->getOpcode();
1723  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1724       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1725      NI->getOperand(0).getReg() == StackPtr) {
1726    if (NumBytes)
1727      *NumBytes -= NI->getOperand(2).getImm();
1728    MBB.erase(NI);
1729    MBBI = NI;
1730  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1731              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1732             NI->getOperand(0).getReg() == StackPtr) {
1733    if (NumBytes)
1734      *NumBytes += NI->getOperand(2).getImm();
1735    MBB.erase(NI);
1736    MBBI = NI;
1737  }
1738}
1739
1740/// mergeSPUpdates - Checks the instruction before/after the passed
1741/// instruction. If it is an ADD/SUB instruction it is deleted
1742/// argument and the stack adjustment is returned as a positive value for ADD
1743/// and a negative for SUB.
1744static int mergeSPUpdates(MachineBasicBlock &MBB,
1745                           MachineBasicBlock::iterator &MBBI,
1746                           unsigned StackPtr,
1747                           bool doMergeWithPrevious) {
1748
1749  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
1750      (!doMergeWithPrevious && MBBI == MBB.end()))
1751    return 0;
1752
1753  int Offset = 0;
1754
1755  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
1756  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
1757  unsigned Opc = PI->getOpcode();
1758  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
1759       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
1760      PI->getOperand(0).getReg() == StackPtr){
1761    Offset += PI->getOperand(2).getImm();
1762    MBB.erase(PI);
1763    if (!doMergeWithPrevious) MBBI = NI;
1764  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
1765              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
1766             PI->getOperand(0).getReg() == StackPtr) {
1767    Offset -= PI->getOperand(2).getImm();
1768    MBB.erase(PI);
1769    if (!doMergeWithPrevious) MBBI = NI;
1770  }
1771
1772  return Offset;
1773}
1774
1775void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
1776  MachineBasicBlock &MBB = MF.front();   // Prolog goes in entry BB
1777  MachineFrameInfo *MFI = MF.getFrameInfo();
1778  const Function* Fn = MF.getFunction();
1779  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
1780  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
1781  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1782  MachineBasicBlock::iterator MBBI = MBB.begin();
1783
1784  // Prepare for frame info.
1785  unsigned FrameLabelId = 0;
1786
1787  // Get the number of bytes to allocate from the FrameInfo.
1788  uint64_t StackSize = MFI->getStackSize();
1789  // Add RETADDR move area to callee saved frame size.
1790  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1791  if (TailCallReturnAddrDelta < 0)
1792    X86FI->setCalleeSavedFrameSize(
1793          X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta));
1794  uint64_t NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1795
1796  // Insert stack pointer adjustment for later moving of return addr.  Only
1797  // applies to tail call optimized functions where the callee argument stack
1798  // size is bigger than the callers.
1799  if (TailCallReturnAddrDelta < 0) {
1800    BuildMI(MBB, MBBI, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
1801            StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta);
1802  }
1803
1804  if (hasFP(MF)) {
1805    // Get the offset of the stack slot for the EBP register... which is
1806    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1807    // Update the frame offset adjustment.
1808    MFI->setOffsetAdjustment(SlotSize-NumBytes);
1809
1810    // Save EBP into the appropriate stack slot...
1811    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1812      .addReg(FramePtr);
1813    NumBytes -= SlotSize;
1814
1815    if (MMI && MMI->needsFrameInfo()) {
1816      // Mark effective beginning of when frame pointer becomes valid.
1817      FrameLabelId = MMI->NextLabelID();
1818      BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(FrameLabelId);
1819    }
1820
1821    // Update EBP with the new base value...
1822    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
1823      .addReg(StackPtr);
1824  }
1825
1826  unsigned ReadyLabelId = 0;
1827  if (MMI && MMI->needsFrameInfo()) {
1828    // Mark effective beginning of when frame pointer is ready.
1829    ReadyLabelId = MMI->NextLabelID();
1830    BuildMI(MBB, MBBI, TII.get(X86::LABEL)).addImm(ReadyLabelId);
1831  }
1832
1833  // Skip the callee-saved push instructions.
1834  while (MBBI != MBB.end() &&
1835         (MBBI->getOpcode() == X86::PUSH32r ||
1836          MBBI->getOpcode() == X86::PUSH64r))
1837    ++MBBI;
1838
1839  if (NumBytes) {   // adjust stack pointer: ESP -= numbytes
1840    if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
1841      // Check, whether EAX is livein for this function
1842      bool isEAXAlive = false;
1843      for (MachineFunction::livein_iterator II = MF.livein_begin(),
1844             EE = MF.livein_end(); (II != EE) && !isEAXAlive; ++II) {
1845        unsigned Reg = II->first;
1846        isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
1847                      Reg == X86::AH || Reg == X86::AL);
1848      }
1849
1850      // Function prologue calls _alloca to probe the stack when allocating
1851      // more than 4k bytes in one go. Touching the stack at 4K increments is
1852      // necessary to ensure that the guard pages used by the OS virtual memory
1853      // manager are allocated in correct sequence.
1854      if (!isEAXAlive) {
1855        BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes);
1856        BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
1857          .addExternalSymbol("_alloca");
1858      } else {
1859        // Save EAX
1860        BuildMI(MBB, MBBI, TII.get(X86::PUSH32r), X86::EAX);
1861        // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
1862        // allocated bytes for EAX.
1863        BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(NumBytes-4);
1864        BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32))
1865          .addExternalSymbol("_alloca");
1866        // Restore EAX
1867        MachineInstr *MI = addRegOffset(BuildMI(TII.get(X86::MOV32rm),X86::EAX),
1868                                        StackPtr, NumBytes-4);
1869        MBB.insert(MBBI, MI);
1870      }
1871    } else {
1872      // If there is an SUB32ri of ESP immediately before this instruction,
1873      // merge the two. This can be the case when tail call elimination is
1874      // enabled and the callee has more arguments then the caller.
1875      NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
1876      // If there is an ADD32ri or SUB32ri of ESP immediately after this
1877      // instruction, merge the two instructions.
1878      mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
1879
1880      if (NumBytes)
1881        emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
1882    }
1883  }
1884
1885  if (MMI && MMI->needsFrameInfo()) {
1886    std::vector<MachineMove> &Moves = MMI->getFrameMoves();
1887    const TargetData *TD = MF.getTarget().getTargetData();
1888
1889    // Calculate amount of bytes used for return address storing
1890    int stackGrowth =
1891      (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
1892       TargetFrameInfo::StackGrowsUp ?
1893       TD->getPointerSize() : -TD->getPointerSize());
1894
1895    if (StackSize) {
1896      // Show update of SP.
1897      if (hasFP(MF)) {
1898        // Adjust SP
1899        MachineLocation SPDst(MachineLocation::VirtualFP);
1900        MachineLocation SPSrc(MachineLocation::VirtualFP, 2*stackGrowth);
1901        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1902      } else {
1903        MachineLocation SPDst(MachineLocation::VirtualFP);
1904        MachineLocation SPSrc(MachineLocation::VirtualFP, -StackSize+stackGrowth);
1905        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1906      }
1907    } else {
1908      //FIXME: Verify & implement for FP
1909      MachineLocation SPDst(StackPtr);
1910      MachineLocation SPSrc(StackPtr, stackGrowth);
1911      Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
1912    }
1913
1914    // Add callee saved registers to move list.
1915    const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
1916
1917    // FIXME: This is dirty hack. The code itself is pretty mess right now.
1918    // It should be rewritten from scratch and generalized sometimes.
1919
1920    // Determine maximum offset (minumum due to stack growth)
1921    int64_t MaxOffset = 0;
1922    for (unsigned I = 0, E = CSI.size(); I!=E; ++I)
1923      MaxOffset = std::min(MaxOffset,
1924                           MFI->getObjectOffset(CSI[I].getFrameIdx()));
1925
1926    // Calculate offsets
1927    int64_t saveAreaOffset = (hasFP(MF) ? 3 : 2)*stackGrowth;
1928    for (unsigned I = 0, E = CSI.size(); I!=E; ++I) {
1929      int64_t Offset = MFI->getObjectOffset(CSI[I].getFrameIdx());
1930      unsigned Reg = CSI[I].getReg();
1931      Offset = (MaxOffset-Offset+saveAreaOffset);
1932      MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
1933      MachineLocation CSSrc(Reg);
1934      Moves.push_back(MachineMove(FrameLabelId, CSDst, CSSrc));
1935    }
1936
1937    if (hasFP(MF)) {
1938      // Save FP
1939      MachineLocation FPDst(MachineLocation::VirtualFP, 2*stackGrowth);
1940      MachineLocation FPSrc(FramePtr);
1941      Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
1942    }
1943
1944    MachineLocation FPDst(hasFP(MF) ? FramePtr : StackPtr);
1945    MachineLocation FPSrc(MachineLocation::VirtualFP);
1946    Moves.push_back(MachineMove(ReadyLabelId, FPDst, FPSrc));
1947  }
1948
1949  // If it's main() on Cygwin\Mingw32 we should align stack as well
1950  if (Fn->hasExternalLinkage() && Fn->getName() == "main" &&
1951      Subtarget->isTargetCygMing()) {
1952    BuildMI(MBB, MBBI, TII.get(X86::AND32ri), X86::ESP)
1953                .addReg(X86::ESP).addImm(-StackAlign);
1954
1955    // Probe the stack
1956    BuildMI(MBB, MBBI, TII.get(X86::MOV32ri), X86::EAX).addImm(StackAlign);
1957    BuildMI(MBB, MBBI, TII.get(X86::CALLpcrel32)).addExternalSymbol("_alloca");
1958  }
1959}
1960
1961void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
1962                                   MachineBasicBlock &MBB) const {
1963  const MachineFrameInfo *MFI = MF.getFrameInfo();
1964  const Function* Fn = MF.getFunction();
1965  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1966  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
1967  MachineBasicBlock::iterator MBBI = prior(MBB.end());
1968  unsigned RetOpcode = MBBI->getOpcode();
1969
1970  switch (RetOpcode) {
1971  case X86::RET:
1972  case X86::RETI:
1973  case X86::TCRETURNdi:
1974  case X86::TCRETURNri:
1975  case X86::TCRETURNri64:
1976  case X86::TCRETURNdi64:
1977  case X86::EH_RETURN:
1978  case X86::TAILJMPd:
1979  case X86::TAILJMPr:
1980  case X86::TAILJMPm: break;  // These are ok
1981  default:
1982    assert(0 && "Can only insert epilog into returning blocks");
1983  }
1984
1985  // Get the number of bytes to allocate from the FrameInfo
1986  uint64_t StackSize = MFI->getStackSize();
1987  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1988  uint64_t NumBytes = StackSize - CSSize;
1989
1990  if (hasFP(MF)) {
1991    // pop EBP.
1992    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1993    NumBytes -= SlotSize;
1994  }
1995
1996  // Skip the callee-saved pop instructions.
1997  while (MBBI != MBB.begin()) {
1998    MachineBasicBlock::iterator PI = prior(MBBI);
1999    unsigned Opc = PI->getOpcode();
2000    if (Opc != X86::POP32r && Opc != X86::POP64r && !TII.isTerminatorInstr(Opc))
2001      break;
2002    --MBBI;
2003  }
2004
2005  // If there is an ADD32ri or SUB32ri of ESP immediately before this
2006  // instruction, merge the two instructions.
2007  if (NumBytes || MFI->hasVarSizedObjects())
2008    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
2009
2010  // If dynamic alloca is used, then reset esp to point to the last callee-saved
2011  // slot before popping them off!  Also, if it's main() on Cygwin/Mingw32 we
2012  // aligned stack in the prologue, - revert stack changes back. Note: we're
2013  // assuming, that frame pointer was forced for main()
2014  if (MFI->hasVarSizedObjects() ||
2015      (Fn->hasExternalLinkage() && Fn->getName() == "main" &&
2016       Subtarget->isTargetCygMing())) {
2017    unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
2018    if (CSSize) {
2019      MachineInstr *MI = addRegOffset(BuildMI(TII.get(Opc), StackPtr),
2020                                      FramePtr, -CSSize);
2021      MBB.insert(MBBI, MI);
2022    } else
2023      BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
2024        addReg(FramePtr);
2025
2026    NumBytes = 0;
2027  }
2028
2029  // adjust stack pointer back: ESP += numbytes
2030  if (NumBytes)
2031    emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
2032
2033  // We're returning from function via eh_return.
2034  if (RetOpcode == X86::EH_RETURN) {
2035    MBBI = prior(MBB.end());
2036    MachineOperand &DestAddr  = MBBI->getOperand(0);
2037    assert(DestAddr.isRegister() && "Offset should be in register!");
2038    BuildMI(MBB, MBBI, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),StackPtr).
2039      addReg(DestAddr.getReg());
2040  // Tail call return: adjust the stack pointer and jump to callee
2041  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
2042             RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
2043    MBBI = prior(MBB.end());
2044    MachineOperand &JumpTarget = MBBI->getOperand(0);
2045    MachineOperand &StackAdjust = MBBI->getOperand(1);
2046    assert( StackAdjust.isImmediate() && "Expecting immediate value.");
2047
2048    // Adjust stack pointer.
2049    int StackAdj = StackAdjust.getImm();
2050    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
2051    int Offset = 0;
2052    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
2053    // Incoporate the retaddr area.
2054    Offset = StackAdj-MaxTCDelta;
2055    assert(Offset >= 0 && "Offset should never be negative");
2056    if (Offset) {
2057      // Check for possible merge with preceeding ADD instruction.
2058      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
2059      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
2060    }
2061    // Jump to label or value in register.
2062    if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
2063      BuildMI(MBB, MBBI, TII.get(X86::TAILJMPd)).
2064        addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
2065    else if (RetOpcode== X86::TCRETURNri64) {
2066      BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
2067    } else
2068       BuildMI(MBB, MBBI, TII.get(X86::TAILJMPr), JumpTarget.getReg());
2069    // Delete the pseudo instruction TCRETURN.
2070    MBB.erase(MBBI);
2071  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
2072             (X86FI->getTCReturnAddrDelta() < 0)) {
2073    // Add the return addr area delta back since we are not tail calling.
2074    int delta = -1*X86FI->getTCReturnAddrDelta();
2075    MBBI = prior(MBB.end());
2076    // Check for possible merge with preceeding ADD instruction.
2077    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
2078    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
2079  }
2080}
2081
2082unsigned X86RegisterInfo::getRARegister() const {
2083  if (Is64Bit)
2084    return X86::RIP;  // Should have dwarf #16
2085  else
2086    return X86::EIP;  // Should have dwarf #8
2087}
2088
2089unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
2090  return hasFP(MF) ? FramePtr : StackPtr;
2091}
2092
2093void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
2094                                                                         const {
2095  // Calculate amount of bytes used for return address storing
2096  int stackGrowth = (Is64Bit ? -8 : -4);
2097
2098  // Initial state of the frame pointer is esp+4.
2099  MachineLocation Dst(MachineLocation::VirtualFP);
2100  MachineLocation Src(StackPtr, stackGrowth);
2101  Moves.push_back(MachineMove(0, Dst, Src));
2102
2103  // Add return address to move list
2104  MachineLocation CSDst(StackPtr, stackGrowth);
2105  MachineLocation CSSrc(getRARegister());
2106  Moves.push_back(MachineMove(0, CSDst, CSSrc));
2107}
2108
2109unsigned X86RegisterInfo::getEHExceptionRegister() const {
2110  assert(0 && "What is the exception register");
2111  return 0;
2112}
2113
2114unsigned X86RegisterInfo::getEHHandlerRegister() const {
2115  assert(0 && "What is the exception handler register");
2116  return 0;
2117}
2118
2119namespace llvm {
2120unsigned getX86SubSuperRegister(unsigned Reg, MVT::ValueType VT, bool High) {
2121  switch (VT) {
2122  default: return Reg;
2123  case MVT::i8:
2124    if (High) {
2125      switch (Reg) {
2126      default: return 0;
2127      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2128        return X86::AH;
2129      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2130        return X86::DH;
2131      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2132        return X86::CH;
2133      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2134        return X86::BH;
2135      }
2136    } else {
2137      switch (Reg) {
2138      default: return 0;
2139      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2140        return X86::AL;
2141      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2142        return X86::DL;
2143      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2144        return X86::CL;
2145      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2146        return X86::BL;
2147      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
2148        return X86::SIL;
2149      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
2150        return X86::DIL;
2151      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
2152        return X86::BPL;
2153      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
2154        return X86::SPL;
2155      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
2156        return X86::R8B;
2157      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
2158        return X86::R9B;
2159      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
2160        return X86::R10B;
2161      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
2162        return X86::R11B;
2163      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
2164        return X86::R12B;
2165      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
2166        return X86::R13B;
2167      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
2168        return X86::R14B;
2169      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
2170        return X86::R15B;
2171      }
2172    }
2173  case MVT::i16:
2174    switch (Reg) {
2175    default: return Reg;
2176    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2177      return X86::AX;
2178    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2179      return X86::DX;
2180    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2181      return X86::CX;
2182    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2183      return X86::BX;
2184    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
2185      return X86::SI;
2186    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
2187      return X86::DI;
2188    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
2189      return X86::BP;
2190    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
2191      return X86::SP;
2192    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
2193      return X86::R8W;
2194    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
2195      return X86::R9W;
2196    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
2197      return X86::R10W;
2198    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
2199      return X86::R11W;
2200    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
2201      return X86::R12W;
2202    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
2203      return X86::R13W;
2204    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
2205      return X86::R14W;
2206    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
2207      return X86::R15W;
2208    }
2209  case MVT::i32:
2210    switch (Reg) {
2211    default: return Reg;
2212    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2213      return X86::EAX;
2214    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2215      return X86::EDX;
2216    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2217      return X86::ECX;
2218    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2219      return X86::EBX;
2220    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
2221      return X86::ESI;
2222    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
2223      return X86::EDI;
2224    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
2225      return X86::EBP;
2226    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
2227      return X86::ESP;
2228    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
2229      return X86::R8D;
2230    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
2231      return X86::R9D;
2232    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
2233      return X86::R10D;
2234    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
2235      return X86::R11D;
2236    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
2237      return X86::R12D;
2238    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
2239      return X86::R13D;
2240    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
2241      return X86::R14D;
2242    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
2243      return X86::R15D;
2244    }
2245  case MVT::i64:
2246    switch (Reg) {
2247    default: return Reg;
2248    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
2249      return X86::RAX;
2250    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
2251      return X86::RDX;
2252    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
2253      return X86::RCX;
2254    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
2255      return X86::RBX;
2256    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
2257      return X86::RSI;
2258    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
2259      return X86::RDI;
2260    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
2261      return X86::RBP;
2262    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
2263      return X86::RSP;
2264    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
2265      return X86::R8;
2266    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
2267      return X86::R9;
2268    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
2269      return X86::R10;
2270    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
2271      return X86::R11;
2272    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
2273      return X86::R12;
2274    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
2275      return X86::R13;
2276    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
2277      return X86::R14;
2278    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
2279      return X86::R15;
2280    }
2281  }
2282
2283  return Reg;
2284}
2285}
2286
2287#include "X86GenRegisterInfo.inc"
2288
2289