X86RegisterInfo.cpp revision 72852a8cfb605056d87b644d2e36b1346051413d
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file contains the X86 implementation of the TargetRegisterInfo class. 11// This file is responsible for the frame pointer elimination optimization 12// on X86. 13// 14//===----------------------------------------------------------------------===// 15 16#include "X86.h" 17#include "X86RegisterInfo.h" 18#include "X86InstrBuilder.h" 19#include "X86MachineFunctionInfo.h" 20#include "X86Subtarget.h" 21#include "X86TargetMachine.h" 22#include "llvm/Constants.h" 23#include "llvm/Function.h" 24#include "llvm/Type.h" 25#include "llvm/CodeGen/ValueTypes.h" 26#include "llvm/CodeGen/MachineInstrBuilder.h" 27#include "llvm/CodeGen/MachineFunction.h" 28#include "llvm/CodeGen/MachineFunctionPass.h" 29#include "llvm/CodeGen/MachineFrameInfo.h" 30#include "llvm/CodeGen/MachineLocation.h" 31#include "llvm/CodeGen/MachineModuleInfo.h" 32#include "llvm/CodeGen/MachineRegisterInfo.h" 33#include "llvm/MC/MCAsmInfo.h" 34#include "llvm/Target/TargetFrameInfo.h" 35#include "llvm/Target/TargetInstrInfo.h" 36#include "llvm/Target/TargetMachine.h" 37#include "llvm/Target/TargetOptions.h" 38#include "llvm/ADT/BitVector.h" 39#include "llvm/ADT/STLExtras.h" 40#include "llvm/Support/ErrorHandling.h" 41using namespace llvm; 42 43X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm, 44 const TargetInstrInfo &tii) 45 : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ? 46 X86::ADJCALLSTACKDOWN64 : 47 X86::ADJCALLSTACKDOWN32, 48 tm.getSubtarget<X86Subtarget>().is64Bit() ? 49 X86::ADJCALLSTACKUP64 : 50 X86::ADJCALLSTACKUP32), 51 TM(tm), TII(tii) { 52 // Cache some information. 53 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 54 Is64Bit = Subtarget->is64Bit(); 55 IsWin64 = Subtarget->isTargetWin64(); 56 StackAlign = TM.getFrameInfo()->getStackAlignment(); 57 58 if (Is64Bit) { 59 SlotSize = 8; 60 StackPtr = X86::RSP; 61 FramePtr = X86::RBP; 62 } else { 63 SlotSize = 4; 64 StackPtr = X86::ESP; 65 FramePtr = X86::EBP; 66 } 67} 68 69/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF 70/// specific numbering, used in debug info and exception tables. 71int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const { 72 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); 73 unsigned Flavour = DWARFFlavour::X86_64; 74 75 if (!Subtarget->is64Bit()) { 76 if (Subtarget->isTargetDarwin()) { 77 if (isEH) 78 Flavour = DWARFFlavour::X86_32_DarwinEH; 79 else 80 Flavour = DWARFFlavour::X86_32_Generic; 81 } else if (Subtarget->isTargetCygMing()) { 82 // Unsupported by now, just quick fallback 83 Flavour = DWARFFlavour::X86_32_Generic; 84 } else { 85 Flavour = DWARFFlavour::X86_32_Generic; 86 } 87 } 88 89 return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour); 90} 91 92/// getX86RegNum - This function maps LLVM register identifiers to their X86 93/// specific numbering, which is used in various places encoding instructions. 94unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) { 95 switch(RegNo) { 96 case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; 97 case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; 98 case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; 99 case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; 100 case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: 101 return N86::ESP; 102 case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: 103 return N86::EBP; 104 case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: 105 return N86::ESI; 106 case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: 107 return N86::EDI; 108 109 case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: 110 return N86::EAX; 111 case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: 112 return N86::ECX; 113 case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: 114 return N86::EDX; 115 case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: 116 return N86::EBX; 117 case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: 118 return N86::ESP; 119 case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: 120 return N86::EBP; 121 case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: 122 return N86::ESI; 123 case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: 124 return N86::EDI; 125 126 case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: 127 case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: 128 return RegNo-X86::ST0; 129 130 case X86::XMM0: case X86::XMM8: 131 case X86::YMM0: case X86::YMM8: case X86::MM0: 132 return 0; 133 case X86::XMM1: case X86::XMM9: 134 case X86::YMM1: case X86::YMM9: case X86::MM1: 135 return 1; 136 case X86::XMM2: case X86::XMM10: 137 case X86::YMM2: case X86::YMM10: case X86::MM2: 138 return 2; 139 case X86::XMM3: case X86::XMM11: 140 case X86::YMM3: case X86::YMM11: case X86::MM3: 141 return 3; 142 case X86::XMM4: case X86::XMM12: 143 case X86::YMM4: case X86::YMM12: case X86::MM4: 144 return 4; 145 case X86::XMM5: case X86::XMM13: 146 case X86::YMM5: case X86::YMM13: case X86::MM5: 147 return 5; 148 case X86::XMM6: case X86::XMM14: 149 case X86::YMM6: case X86::YMM14: case X86::MM6: 150 return 6; 151 case X86::XMM7: case X86::XMM15: 152 case X86::YMM7: case X86::YMM15: case X86::MM7: 153 return 7; 154 155 case X86::ES: 156 return 0; 157 case X86::CS: 158 return 1; 159 case X86::SS: 160 return 2; 161 case X86::DS: 162 return 3; 163 case X86::FS: 164 return 4; 165 case X86::GS: 166 return 5; 167 168 case X86::CR0: 169 return 0; 170 case X86::CR1: 171 return 1; 172 case X86::CR2: 173 return 2; 174 case X86::CR3: 175 return 3; 176 case X86::CR4: 177 return 4; 178 179 case X86::DR0: 180 return 0; 181 case X86::DR1: 182 return 1; 183 case X86::DR2: 184 return 2; 185 case X86::DR3: 186 return 3; 187 case X86::DR4: 188 return 4; 189 case X86::DR5: 190 return 5; 191 case X86::DR6: 192 return 6; 193 case X86::DR7: 194 return 7; 195 196 default: 197 assert(isVirtualRegister(RegNo) && "Unknown physical register!"); 198 llvm_unreachable("Register allocator hasn't allocated reg correctly yet!"); 199 return 0; 200 } 201} 202 203const TargetRegisterClass * 204X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, 205 const TargetRegisterClass *B, 206 unsigned SubIdx) const { 207 switch (SubIdx) { 208 default: return 0; 209 case X86::sub_8bit: 210 if (B == &X86::GR8RegClass) { 211 if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8) 212 return A; 213 } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) { 214 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 215 A == &X86::GR64_NOREXRegClass || 216 A == &X86::GR64_NOSPRegClass || 217 A == &X86::GR64_NOREX_NOSPRegClass) 218 return &X86::GR64_ABCDRegClass; 219 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 220 A == &X86::GR32_NOREXRegClass || 221 A == &X86::GR32_NOSPRegClass) 222 return &X86::GR32_ABCDRegClass; 223 else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass || 224 A == &X86::GR16_NOREXRegClass) 225 return &X86::GR16_ABCDRegClass; 226 } else if (B == &X86::GR8_NOREXRegClass) { 227 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 228 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 229 return &X86::GR64_NOREXRegClass; 230 else if (A == &X86::GR64_ABCDRegClass) 231 return &X86::GR64_ABCDRegClass; 232 else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass || 233 A == &X86::GR32_NOSPRegClass) 234 return &X86::GR32_NOREXRegClass; 235 else if (A == &X86::GR32_ABCDRegClass) 236 return &X86::GR32_ABCDRegClass; 237 else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass) 238 return &X86::GR16_NOREXRegClass; 239 else if (A == &X86::GR16_ABCDRegClass) 240 return &X86::GR16_ABCDRegClass; 241 } 242 break; 243 case X86::sub_8bit_hi: 244 if (B == &X86::GR8_ABCD_HRegClass) { 245 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 246 A == &X86::GR64_NOREXRegClass || 247 A == &X86::GR64_NOSPRegClass || 248 A == &X86::GR64_NOREX_NOSPRegClass) 249 return &X86::GR64_ABCDRegClass; 250 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 251 A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) 252 return &X86::GR32_ABCDRegClass; 253 else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass || 254 A == &X86::GR16_NOREXRegClass) 255 return &X86::GR16_ABCDRegClass; 256 } 257 break; 258 case X86::sub_16bit: 259 if (B == &X86::GR16RegClass) { 260 if (A->getSize() == 4 || A->getSize() == 8) 261 return A; 262 } else if (B == &X86::GR16_ABCDRegClass) { 263 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 264 A == &X86::GR64_NOREXRegClass || 265 A == &X86::GR64_NOSPRegClass || 266 A == &X86::GR64_NOREX_NOSPRegClass) 267 return &X86::GR64_ABCDRegClass; 268 else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass || 269 A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass) 270 return &X86::GR32_ABCDRegClass; 271 } else if (B == &X86::GR16_NOREXRegClass) { 272 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 273 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 274 return &X86::GR64_NOREXRegClass; 275 else if (A == &X86::GR64_ABCDRegClass) 276 return &X86::GR64_ABCDRegClass; 277 else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass || 278 A == &X86::GR32_NOSPRegClass) 279 return &X86::GR32_NOREXRegClass; 280 else if (A == &X86::GR32_ABCDRegClass) 281 return &X86::GR64_ABCDRegClass; 282 } 283 break; 284 case X86::sub_32bit: 285 if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) { 286 if (A->getSize() == 8) 287 return A; 288 } else if (B == &X86::GR32_ABCDRegClass) { 289 if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass || 290 A == &X86::GR64_NOREXRegClass || 291 A == &X86::GR64_NOSPRegClass || 292 A == &X86::GR64_NOREX_NOSPRegClass) 293 return &X86::GR64_ABCDRegClass; 294 } else if (B == &X86::GR32_NOREXRegClass) { 295 if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass || 296 A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass) 297 return &X86::GR64_NOREXRegClass; 298 else if (A == &X86::GR64_ABCDRegClass) 299 return &X86::GR64_ABCDRegClass; 300 } 301 break; 302 case X86::sub_ss: 303 if (B == &X86::FR32RegClass) 304 return A; 305 break; 306 case X86::sub_sd: 307 if (B == &X86::FR64RegClass) 308 return A; 309 break; 310 case X86::sub_xmm: 311 if (B == &X86::VR128RegClass) 312 return A; 313 break; 314 } 315 return 0; 316} 317 318const TargetRegisterClass * 319X86RegisterInfo::getPointerRegClass(unsigned Kind) const { 320 switch (Kind) { 321 default: llvm_unreachable("Unexpected Kind in getPointerRegClass!"); 322 case 0: // Normal GPRs. 323 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 324 return &X86::GR64RegClass; 325 return &X86::GR32RegClass; 326 case 1: // Normal GRPs except the stack pointer (for encoding reasons). 327 if (TM.getSubtarget<X86Subtarget>().is64Bit()) 328 return &X86::GR64_NOSPRegClass; 329 return &X86::GR32_NOSPRegClass; 330 } 331} 332 333const TargetRegisterClass * 334X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { 335 if (RC == &X86::CCRRegClass) { 336 if (Is64Bit) 337 return &X86::GR64RegClass; 338 else 339 return &X86::GR32RegClass; 340 } 341 return NULL; 342} 343 344const unsigned * 345X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { 346 bool callsEHReturn = false; 347 bool ghcCall = false; 348 349 if (MF) { 350 callsEHReturn = MF->getMMI().callsEHReturn(); 351 const Function *F = MF->getFunction(); 352 ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false); 353 } 354 355 static const unsigned GhcCalleeSavedRegs[] = { 356 0 357 }; 358 359 static const unsigned CalleeSavedRegs32Bit[] = { 360 X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 361 }; 362 363 static const unsigned CalleeSavedRegs32EHRet[] = { 364 X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP, 0 365 }; 366 367 static const unsigned CalleeSavedRegs64Bit[] = { 368 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0 369 }; 370 371 static const unsigned CalleeSavedRegs64EHRet[] = { 372 X86::RAX, X86::RDX, X86::RBX, X86::R12, 373 X86::R13, X86::R14, X86::R15, X86::RBP, 0 374 }; 375 376 static const unsigned CalleeSavedRegsWin64[] = { 377 X86::RBX, X86::RBP, X86::RDI, X86::RSI, 378 X86::R12, X86::R13, X86::R14, X86::R15, 379 X86::XMM6, X86::XMM7, X86::XMM8, X86::XMM9, 380 X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13, 381 X86::XMM14, X86::XMM15, 0 382 }; 383 384 if (ghcCall) { 385 return GhcCalleeSavedRegs; 386 } else if (Is64Bit) { 387 if (IsWin64) 388 return CalleeSavedRegsWin64; 389 else 390 return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit); 391 } else { 392 return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit); 393 } 394} 395 396BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const { 397 BitVector Reserved(getNumRegs()); 398 // Set the stack-pointer register and its aliases as reserved. 399 Reserved.set(X86::RSP); 400 Reserved.set(X86::ESP); 401 Reserved.set(X86::SP); 402 Reserved.set(X86::SPL); 403 404 // Set the instruction pointer register and its aliases as reserved. 405 Reserved.set(X86::RIP); 406 Reserved.set(X86::EIP); 407 Reserved.set(X86::IP); 408 409 // Set the frame-pointer register and its aliases as reserved if needed. 410 if (hasFP(MF)) { 411 Reserved.set(X86::RBP); 412 Reserved.set(X86::EBP); 413 Reserved.set(X86::BP); 414 Reserved.set(X86::BPL); 415 } 416 417 // Mark the x87 stack registers as reserved, since they don't behave normally 418 // with respect to liveness. We don't fully model the effects of x87 stack 419 // pushes and pops after stackification. 420 Reserved.set(X86::ST0); 421 Reserved.set(X86::ST1); 422 Reserved.set(X86::ST2); 423 Reserved.set(X86::ST3); 424 Reserved.set(X86::ST4); 425 Reserved.set(X86::ST5); 426 Reserved.set(X86::ST6); 427 Reserved.set(X86::ST7); 428 return Reserved; 429} 430 431//===----------------------------------------------------------------------===// 432// Stack Frame Processing methods 433//===----------------------------------------------------------------------===// 434 435/// hasFP - Return true if the specified function should have a dedicated frame 436/// pointer register. This is true if the function has variable sized allocas 437/// or if frame pointer elimination is disabled. 438bool X86RegisterInfo::hasFP(const MachineFunction &MF) const { 439 const MachineFrameInfo *MFI = MF.getFrameInfo(); 440 const MachineModuleInfo &MMI = MF.getMMI(); 441 442 return (DisableFramePointerElim(MF) || 443 needsStackRealignment(MF) || 444 MFI->hasVarSizedObjects() || 445 MFI->isFrameAddressTaken() || 446 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() || 447 MMI.callsUnwindInit()); 448} 449 450bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const { 451 const MachineFrameInfo *MFI = MF.getFrameInfo(); 452 return (RealignStack && 453 !MFI->hasVarSizedObjects()); 454} 455 456bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const { 457 const MachineFrameInfo *MFI = MF.getFrameInfo(); 458 const Function *F = MF.getFunction(); 459 bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) || 460 F->hasFnAttr(Attribute::StackAlignment)); 461 462 // FIXME: Currently we don't support stack realignment for functions with 463 // variable-sized allocas. 464 // FIXME: It's more complicated than this... 465 if (0 && requiresRealignment && MFI->hasVarSizedObjects()) 466 report_fatal_error( 467 "Stack realignment in presense of dynamic allocas is not supported"); 468 469 return requiresRealignment && canRealignStack(MF); 470} 471 472bool X86RegisterInfo::hasReservedCallFrame(const MachineFunction &MF) const { 473 return !MF.getFrameInfo()->hasVarSizedObjects(); 474} 475 476bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF, 477 unsigned Reg, int &FrameIdx) const { 478 if (Reg == FramePtr && hasFP(MF)) { 479 FrameIdx = MF.getFrameInfo()->getObjectIndexBegin(); 480 return true; 481 } 482 return false; 483} 484 485int 486X86RegisterInfo::getFrameIndexOffset(const MachineFunction &MF, int FI) const { 487 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); 488 const MachineFrameInfo *MFI = MF.getFrameInfo(); 489 int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea(); 490 uint64_t StackSize = MFI->getStackSize(); 491 492 if (needsStackRealignment(MF)) { 493 if (FI < 0) { 494 // Skip the saved EBP. 495 Offset += SlotSize; 496 } else { 497 unsigned Align = MFI->getObjectAlignment(FI); 498 assert((-(Offset + StackSize)) % Align == 0); 499 Align = 0; 500 return Offset + StackSize; 501 } 502 // FIXME: Support tail calls 503 } else { 504 if (!hasFP(MF)) 505 return Offset + StackSize; 506 507 // Skip the saved EBP. 508 Offset += SlotSize; 509 510 // Skip the RETADDR move area 511 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 512 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 513 if (TailCallReturnAddrDelta < 0) 514 Offset -= TailCallReturnAddrDelta; 515 } 516 517 return Offset; 518} 519 520static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) { 521 if (is64Bit) { 522 if (isInt<8>(Imm)) 523 return X86::SUB64ri8; 524 return X86::SUB64ri32; 525 } else { 526 if (isInt<8>(Imm)) 527 return X86::SUB32ri8; 528 return X86::SUB32ri; 529 } 530} 531 532static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) { 533 if (is64Bit) { 534 if (isInt<8>(Imm)) 535 return X86::ADD64ri8; 536 return X86::ADD64ri32; 537 } else { 538 if (isInt<8>(Imm)) 539 return X86::ADD32ri8; 540 return X86::ADD32ri; 541 } 542} 543 544void X86RegisterInfo:: 545eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, 546 MachineBasicBlock::iterator I) const { 547 if (!hasReservedCallFrame(MF)) { 548 // If the stack pointer can be changed after prologue, turn the 549 // adjcallstackup instruction into a 'sub ESP, <amt>' and the 550 // adjcallstackdown instruction into 'add ESP, <amt>' 551 // TODO: consider using push / pop instead of sub + store / add 552 MachineInstr *Old = I; 553 uint64_t Amount = Old->getOperand(0).getImm(); 554 if (Amount != 0) { 555 // We need to keep the stack aligned properly. To do this, we round the 556 // amount of space needed for the outgoing arguments up to the next 557 // alignment boundary. 558 Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign; 559 560 MachineInstr *New = 0; 561 if (Old->getOpcode() == getCallFrameSetupOpcode()) { 562 New = BuildMI(MF, Old->getDebugLoc(), 563 TII.get(getSUBriOpcode(Is64Bit, Amount)), 564 StackPtr) 565 .addReg(StackPtr) 566 .addImm(Amount); 567 } else { 568 assert(Old->getOpcode() == getCallFrameDestroyOpcode()); 569 570 // Factor out the amount the callee already popped. 571 uint64_t CalleeAmt = Old->getOperand(1).getImm(); 572 Amount -= CalleeAmt; 573 574 if (Amount) { 575 unsigned Opc = getADDriOpcode(Is64Bit, Amount); 576 New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr) 577 .addReg(StackPtr) 578 .addImm(Amount); 579 } 580 } 581 582 if (New) { 583 // The EFLAGS implicit def is dead. 584 New->getOperand(3).setIsDead(); 585 586 // Replace the pseudo instruction with a new instruction. 587 MBB.insert(I, New); 588 } 589 } 590 } else if (I->getOpcode() == getCallFrameDestroyOpcode()) { 591 // If we are performing frame pointer elimination and if the callee pops 592 // something off the stack pointer, add it back. We do this until we have 593 // more advanced stack pointer tracking ability. 594 if (uint64_t CalleeAmt = I->getOperand(1).getImm()) { 595 unsigned Opc = getSUBriOpcode(Is64Bit, CalleeAmt); 596 MachineInstr *Old = I; 597 MachineInstr *New = 598 BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), 599 StackPtr) 600 .addReg(StackPtr) 601 .addImm(CalleeAmt); 602 603 // The EFLAGS implicit def is dead. 604 New->getOperand(3).setIsDead(); 605 MBB.insert(I, New); 606 } 607 } 608 609 MBB.erase(I); 610} 611 612unsigned 613X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, 614 int SPAdj, FrameIndexValue *Value, 615 RegScavenger *RS) const{ 616 assert(SPAdj == 0 && "Unexpected"); 617 618 unsigned i = 0; 619 MachineInstr &MI = *II; 620 MachineFunction &MF = *MI.getParent()->getParent(); 621 622 while (!MI.getOperand(i).isFI()) { 623 ++i; 624 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); 625 } 626 627 int FrameIndex = MI.getOperand(i).getIndex(); 628 unsigned BasePtr; 629 630 unsigned Opc = MI.getOpcode(); 631 bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm; 632 if (needsStackRealignment(MF)) 633 BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr); 634 else if (AfterFPPop) 635 BasePtr = StackPtr; 636 else 637 BasePtr = (hasFP(MF) ? FramePtr : StackPtr); 638 639 // This must be part of a four operand memory reference. Replace the 640 // FrameIndex with base register with EBP. Add an offset to the offset. 641 MI.getOperand(i).ChangeToRegister(BasePtr, false); 642 643 // Now add the frame object offset to the offset from EBP. 644 int FIOffset; 645 if (AfterFPPop) { 646 // Tail call jmp happens after FP is popped. 647 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); 648 const MachineFrameInfo *MFI = MF.getFrameInfo(); 649 FIOffset = MFI->getObjectOffset(FrameIndex) - TFI.getOffsetOfLocalArea(); 650 } else 651 FIOffset = getFrameIndexOffset(MF, FrameIndex); 652 653 if (MI.getOperand(i+3).isImm()) { 654 // Offset is a 32-bit integer. 655 int Offset = FIOffset + (int)(MI.getOperand(i + 3).getImm()); 656 MI.getOperand(i + 3).ChangeToImmediate(Offset); 657 } else { 658 // Offset is symbolic. This is extremely rare. 659 uint64_t Offset = FIOffset + (uint64_t)MI.getOperand(i+3).getOffset(); 660 MI.getOperand(i+3).setOffset(Offset); 661 } 662 return 0; 663} 664 665void 666X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF, 667 RegScavenger *RS) const { 668 MachineFrameInfo *MFI = MF.getFrameInfo(); 669 670 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 671 int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 672 673 if (TailCallReturnAddrDelta < 0) { 674 // create RETURNADDR area 675 // arg 676 // arg 677 // RETADDR 678 // { ... 679 // RETADDR area 680 // ... 681 // } 682 // [EBP] 683 MFI->CreateFixedObject(-TailCallReturnAddrDelta, 684 (-1U*SlotSize)+TailCallReturnAddrDelta, true); 685 } 686 687 if (hasFP(MF)) { 688 assert((TailCallReturnAddrDelta <= 0) && 689 "The Delta should always be zero or negative"); 690 const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo(); 691 692 // Create a frame entry for the EBP register that must be saved. 693 int FrameIdx = MFI->CreateFixedObject(SlotSize, 694 -(int)SlotSize + 695 TFI.getOffsetOfLocalArea() + 696 TailCallReturnAddrDelta, 697 true); 698 assert(FrameIdx == MFI->getObjectIndexBegin() && 699 "Slot for EBP register must be last in order to be found!"); 700 FrameIdx = 0; 701 } 702} 703 704/// emitSPUpdate - Emit a series of instructions to increment / decrement the 705/// stack pointer by a constant value. 706static 707void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 708 unsigned StackPtr, int64_t NumBytes, bool Is64Bit, 709 const TargetInstrInfo &TII) { 710 bool isSub = NumBytes < 0; 711 uint64_t Offset = isSub ? -NumBytes : NumBytes; 712 unsigned Opc = isSub ? 713 getSUBriOpcode(Is64Bit, Offset) : 714 getADDriOpcode(Is64Bit, Offset); 715 uint64_t Chunk = (1LL << 31) - 1; 716 DebugLoc DL = MBB.findDebugLoc(MBBI); 717 718 while (Offset) { 719 uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset; 720 MachineInstr *MI = 721 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr) 722 .addReg(StackPtr) 723 .addImm(ThisVal); 724 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 725 Offset -= ThisVal; 726 } 727} 728 729/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator. 730static 731void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 732 unsigned StackPtr, uint64_t *NumBytes = NULL) { 733 if (MBBI == MBB.begin()) return; 734 735 MachineBasicBlock::iterator PI = prior(MBBI); 736 unsigned Opc = PI->getOpcode(); 737 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 738 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 739 PI->getOperand(0).getReg() == StackPtr) { 740 if (NumBytes) 741 *NumBytes += PI->getOperand(2).getImm(); 742 MBB.erase(PI); 743 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 744 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 745 PI->getOperand(0).getReg() == StackPtr) { 746 if (NumBytes) 747 *NumBytes -= PI->getOperand(2).getImm(); 748 MBB.erase(PI); 749 } 750} 751 752/// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator. 753static 754void mergeSPUpdatesDown(MachineBasicBlock &MBB, 755 MachineBasicBlock::iterator &MBBI, 756 unsigned StackPtr, uint64_t *NumBytes = NULL) { 757 // FIXME: THIS ISN'T RUN!!! 758 return; 759 760 if (MBBI == MBB.end()) return; 761 762 MachineBasicBlock::iterator NI = llvm::next(MBBI); 763 if (NI == MBB.end()) return; 764 765 unsigned Opc = NI->getOpcode(); 766 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 767 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 768 NI->getOperand(0).getReg() == StackPtr) { 769 if (NumBytes) 770 *NumBytes -= NI->getOperand(2).getImm(); 771 MBB.erase(NI); 772 MBBI = NI; 773 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 774 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 775 NI->getOperand(0).getReg() == StackPtr) { 776 if (NumBytes) 777 *NumBytes += NI->getOperand(2).getImm(); 778 MBB.erase(NI); 779 MBBI = NI; 780 } 781} 782 783/// mergeSPUpdates - Checks the instruction before/after the passed 784/// instruction. If it is an ADD/SUB instruction it is deleted argument and the 785/// stack adjustment is returned as a positive value for ADD and a negative for 786/// SUB. 787static int mergeSPUpdates(MachineBasicBlock &MBB, 788 MachineBasicBlock::iterator &MBBI, 789 unsigned StackPtr, 790 bool doMergeWithPrevious) { 791 if ((doMergeWithPrevious && MBBI == MBB.begin()) || 792 (!doMergeWithPrevious && MBBI == MBB.end())) 793 return 0; 794 795 MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI; 796 MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI); 797 unsigned Opc = PI->getOpcode(); 798 int Offset = 0; 799 800 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 || 801 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) && 802 PI->getOperand(0).getReg() == StackPtr){ 803 Offset += PI->getOperand(2).getImm(); 804 MBB.erase(PI); 805 if (!doMergeWithPrevious) MBBI = NI; 806 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 || 807 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) && 808 PI->getOperand(0).getReg() == StackPtr) { 809 Offset -= PI->getOperand(2).getImm(); 810 MBB.erase(PI); 811 if (!doMergeWithPrevious) MBBI = NI; 812 } 813 814 return Offset; 815} 816 817void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF, 818 MCSymbol *Label, 819 unsigned FramePtr) const { 820 MachineFrameInfo *MFI = MF.getFrameInfo(); 821 MachineModuleInfo &MMI = MF.getMMI(); 822 823 // Add callee saved registers to move list. 824 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); 825 if (CSI.empty()) return; 826 827 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 828 const TargetData *TD = MF.getTarget().getTargetData(); 829 bool HasFP = hasFP(MF); 830 831 // Calculate amount of bytes used for return address storing. 832 int stackGrowth = 833 (MF.getTarget().getFrameInfo()->getStackGrowthDirection() == 834 TargetFrameInfo::StackGrowsUp ? 835 TD->getPointerSize() : -TD->getPointerSize()); 836 837 // FIXME: This is dirty hack. The code itself is pretty mess right now. 838 // It should be rewritten from scratch and generalized sometimes. 839 840 // Determine maximum offset (minumum due to stack growth). 841 int64_t MaxOffset = 0; 842 for (std::vector<CalleeSavedInfo>::const_iterator 843 I = CSI.begin(), E = CSI.end(); I != E; ++I) 844 MaxOffset = std::min(MaxOffset, 845 MFI->getObjectOffset(I->getFrameIdx())); 846 847 // Calculate offsets. 848 int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth; 849 for (std::vector<CalleeSavedInfo>::const_iterator 850 I = CSI.begin(), E = CSI.end(); I != E; ++I) { 851 int64_t Offset = MFI->getObjectOffset(I->getFrameIdx()); 852 unsigned Reg = I->getReg(); 853 Offset = MaxOffset - Offset + saveAreaOffset; 854 855 // Don't output a new machine move if we're re-saving the frame 856 // pointer. This happens when the PrologEpilogInserter has inserted an extra 857 // "PUSH" of the frame pointer -- the "emitPrologue" method automatically 858 // generates one when frame pointers are used. If we generate a "machine 859 // move" for this extra "PUSH", the linker will lose track of the fact that 860 // the frame pointer should have the value of the first "PUSH" when it's 861 // trying to unwind. 862 // 863 // FIXME: This looks inelegant. It's possibly correct, but it's covering up 864 // another bug. I.e., one where we generate a prolog like this: 865 // 866 // pushl %ebp 867 // movl %esp, %ebp 868 // pushl %ebp 869 // pushl %esi 870 // ... 871 // 872 // The immediate re-push of EBP is unnecessary. At the least, it's an 873 // optimization bug. EBP can be used as a scratch register in certain 874 // cases, but probably not when we have a frame pointer. 875 if (HasFP && FramePtr == Reg) 876 continue; 877 878 MachineLocation CSDst(MachineLocation::VirtualFP, Offset); 879 MachineLocation CSSrc(Reg); 880 Moves.push_back(MachineMove(Label, CSDst, CSSrc)); 881 } 882} 883 884/// emitPrologue - Push callee-saved registers onto the stack, which 885/// automatically adjust the stack pointer. Adjust the stack pointer to allocate 886/// space for local variables. Also emit labels used by the exception handler to 887/// generate the exception handling frames. 888void X86RegisterInfo::emitPrologue(MachineFunction &MF) const { 889 MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB. 890 MachineBasicBlock::iterator MBBI = MBB.begin(); 891 MachineFrameInfo *MFI = MF.getFrameInfo(); 892 const Function *Fn = MF.getFunction(); 893 const X86Subtarget *Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>(); 894 MachineModuleInfo &MMI = MF.getMMI(); 895 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 896 bool needsFrameMoves = MMI.hasDebugInfo() || 897 !Fn->doesNotThrow() || UnwindTablesMandatory; 898 uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment. 899 uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate. 900 bool HasFP = hasFP(MF); 901 DebugLoc DL; 902 903 // Add RETADDR move area to callee saved frame size. 904 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta(); 905 if (TailCallReturnAddrDelta < 0) 906 X86FI->setCalleeSavedFrameSize( 907 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta); 908 909 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf 910 // function, and use up to 128 bytes of stack space, don't have a frame 911 // pointer, calls, or dynamic alloca then we do not need to adjust the 912 // stack pointer (we fit in the Red Zone). 913 if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) && 914 !needsStackRealignment(MF) && 915 !MFI->hasVarSizedObjects() && // No dynamic alloca. 916 !MFI->adjustsStack() && // No calls. 917 !Subtarget->isTargetWin64()) { // Win64 has no Red Zone 918 uint64_t MinSize = X86FI->getCalleeSavedFrameSize(); 919 if (HasFP) MinSize += SlotSize; 920 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0); 921 MFI->setStackSize(StackSize); 922 } else if (Subtarget->isTargetWin64()) { 923 // We need to always allocate 32 bytes as register spill area. 924 // FIXME: We might reuse these 32 bytes for leaf functions. 925 StackSize += 32; 926 MFI->setStackSize(StackSize); 927 } 928 929 // Insert stack pointer adjustment for later moving of return addr. Only 930 // applies to tail call optimized functions where the callee argument stack 931 // size is bigger than the callers. 932 if (TailCallReturnAddrDelta < 0) { 933 MachineInstr *MI = 934 BuildMI(MBB, MBBI, DL, 935 TII.get(getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta)), 936 StackPtr) 937 .addReg(StackPtr) 938 .addImm(-TailCallReturnAddrDelta); 939 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead. 940 } 941 942 // Mapping for machine moves: 943 // 944 // DST: VirtualFP AND 945 // SRC: VirtualFP => DW_CFA_def_cfa_offset 946 // ELSE => DW_CFA_def_cfa 947 // 948 // SRC: VirtualFP AND 949 // DST: Register => DW_CFA_def_cfa_register 950 // 951 // ELSE 952 // OFFSET < 0 => DW_CFA_offset_extended_sf 953 // REG < 64 => DW_CFA_offset + Reg 954 // ELSE => DW_CFA_offset_extended 955 956 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 957 const TargetData *TD = MF.getTarget().getTargetData(); 958 uint64_t NumBytes = 0; 959 int stackGrowth = -TD->getPointerSize(); 960 961 if (HasFP) { 962 // Calculate required stack adjustment. 963 uint64_t FrameSize = StackSize - SlotSize; 964 if (needsStackRealignment(MF)) 965 FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign; 966 967 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize(); 968 969 // Get the offset of the stack slot for the EBP register, which is 970 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized. 971 // Update the frame offset adjustment. 972 MFI->setOffsetAdjustment(-NumBytes); 973 974 // Save EBP/RBP into the appropriate stack slot. 975 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) 976 .addReg(FramePtr, RegState::Kill); 977 978 if (needsFrameMoves) { 979 // Mark the place where EBP/RBP was saved. 980 MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol(); 981 BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(FrameLabel); 982 983 // Define the current CFA rule to use the provided offset. 984 if (StackSize) { 985 MachineLocation SPDst(MachineLocation::VirtualFP); 986 MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth); 987 Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc)); 988 } else { 989 // FIXME: Verify & implement for FP 990 MachineLocation SPDst(StackPtr); 991 MachineLocation SPSrc(StackPtr, stackGrowth); 992 Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc)); 993 } 994 995 // Change the rule for the FramePtr to be an "offset" rule. 996 MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth); 997 MachineLocation FPSrc(FramePtr); 998 Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc)); 999 } 1000 1001 // Update EBP with the new base value... 1002 BuildMI(MBB, MBBI, DL, 1003 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr) 1004 .addReg(StackPtr); 1005 1006 if (needsFrameMoves) { 1007 // Mark effective beginning of when frame pointer becomes valid. 1008 MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol(); 1009 BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(FrameLabel); 1010 1011 // Define the current CFA to use the EBP/RBP register. 1012 MachineLocation FPDst(FramePtr); 1013 MachineLocation FPSrc(MachineLocation::VirtualFP); 1014 Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc)); 1015 } 1016 1017 // Mark the FramePtr as live-in in every block except the entry. 1018 for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end(); 1019 I != E; ++I) 1020 I->addLiveIn(FramePtr); 1021 1022 // Realign stack 1023 if (needsStackRealignment(MF)) { 1024 MachineInstr *MI = 1025 BuildMI(MBB, MBBI, DL, 1026 TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), 1027 StackPtr).addReg(StackPtr).addImm(-MaxAlign); 1028 1029 // The EFLAGS implicit def is dead. 1030 MI->getOperand(3).setIsDead(); 1031 } 1032 } else { 1033 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize(); 1034 } 1035 1036 // Skip the callee-saved push instructions. 1037 bool PushedRegs = false; 1038 int StackOffset = 2 * stackGrowth; 1039 1040 while (MBBI != MBB.end() && 1041 (MBBI->getOpcode() == X86::PUSH32r || 1042 MBBI->getOpcode() == X86::PUSH64r)) { 1043 PushedRegs = true; 1044 ++MBBI; 1045 1046 if (!HasFP && needsFrameMoves) { 1047 // Mark callee-saved push instruction. 1048 MCSymbol *Label = MMI.getContext().CreateTempSymbol(); 1049 BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label); 1050 1051 // Define the current CFA rule to use the provided offset. 1052 unsigned Ptr = StackSize ? 1053 MachineLocation::VirtualFP : StackPtr; 1054 MachineLocation SPDst(Ptr); 1055 MachineLocation SPSrc(Ptr, StackOffset); 1056 Moves.push_back(MachineMove(Label, SPDst, SPSrc)); 1057 StackOffset += stackGrowth; 1058 } 1059 } 1060 1061 DL = MBB.findDebugLoc(MBBI); 1062 1063 // Adjust stack pointer: ESP -= numbytes. 1064 if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) { 1065 // Check, whether EAX is livein for this function. 1066 bool isEAXAlive = false; 1067 for (MachineRegisterInfo::livein_iterator 1068 II = MF.getRegInfo().livein_begin(), 1069 EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) { 1070 unsigned Reg = II->first; 1071 isEAXAlive = (Reg == X86::EAX || Reg == X86::AX || 1072 Reg == X86::AH || Reg == X86::AL); 1073 } 1074 1075 // Function prologue calls _alloca to probe the stack when allocating more 1076 // than 4k bytes in one go. Touching the stack at 4K increments is necessary 1077 // to ensure that the guard pages used by the OS virtual memory manager are 1078 // allocated in correct sequence. 1079 if (!isEAXAlive) { 1080 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1081 .addImm(NumBytes); 1082 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 1083 .addExternalSymbol("_alloca") 1084 .addReg(StackPtr, RegState::Define | RegState::Implicit); 1085 } else { 1086 // Save EAX 1087 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r)) 1088 .addReg(X86::EAX, RegState::Kill); 1089 1090 // Allocate NumBytes-4 bytes on stack. We'll also use 4 already 1091 // allocated bytes for EAX. 1092 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX) 1093 .addImm(NumBytes - 4); 1094 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32)) 1095 .addExternalSymbol("_alloca") 1096 .addReg(StackPtr, RegState::Define | RegState::Implicit); 1097 1098 // Restore EAX 1099 MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), 1100 X86::EAX), 1101 StackPtr, false, NumBytes - 4); 1102 MBB.insert(MBBI, MI); 1103 } 1104 } else if (NumBytes) { 1105 // If there is an SUB32ri of ESP immediately before this instruction, merge 1106 // the two. This can be the case when tail call elimination is enabled and 1107 // the callee has more arguments then the caller. 1108 NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true); 1109 1110 // If there is an ADD32ri or SUB32ri of ESP immediately after this 1111 // instruction, merge the two instructions. 1112 mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes); 1113 1114 if (NumBytes) 1115 emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII); 1116 } 1117 1118 if ((NumBytes || PushedRegs) && needsFrameMoves) { 1119 // Mark end of stack pointer adjustment. 1120 MCSymbol *Label = MMI.getContext().CreateTempSymbol(); 1121 BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label); 1122 1123 if (!HasFP && NumBytes) { 1124 // Define the current CFA rule to use the provided offset. 1125 if (StackSize) { 1126 MachineLocation SPDst(MachineLocation::VirtualFP); 1127 MachineLocation SPSrc(MachineLocation::VirtualFP, 1128 -StackSize + stackGrowth); 1129 Moves.push_back(MachineMove(Label, SPDst, SPSrc)); 1130 } else { 1131 // FIXME: Verify & implement for FP 1132 MachineLocation SPDst(StackPtr); 1133 MachineLocation SPSrc(StackPtr, stackGrowth); 1134 Moves.push_back(MachineMove(Label, SPDst, SPSrc)); 1135 } 1136 } 1137 1138 // Emit DWARF info specifying the offsets of the callee-saved registers. 1139 if (PushedRegs) 1140 emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr); 1141 } 1142} 1143 1144void X86RegisterInfo::emitEpilogue(MachineFunction &MF, 1145 MachineBasicBlock &MBB) const { 1146 const MachineFrameInfo *MFI = MF.getFrameInfo(); 1147 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); 1148 MachineBasicBlock::iterator MBBI = prior(MBB.end()); 1149 unsigned RetOpcode = MBBI->getOpcode(); 1150 DebugLoc DL = MBBI->getDebugLoc(); 1151 1152 switch (RetOpcode) { 1153 default: 1154 llvm_unreachable("Can only insert epilog into returning blocks"); 1155 case X86::RET: 1156 case X86::RETI: 1157 case X86::TCRETURNdi: 1158 case X86::TCRETURNri: 1159 case X86::TCRETURNmi: 1160 case X86::TCRETURNdi64: 1161 case X86::TCRETURNri64: 1162 case X86::TCRETURNmi64: 1163 case X86::EH_RETURN: 1164 case X86::EH_RETURN64: 1165 break; // These are ok 1166 } 1167 1168 // Get the number of bytes to allocate from the FrameInfo. 1169 uint64_t StackSize = MFI->getStackSize(); 1170 uint64_t MaxAlign = MFI->getMaxAlignment(); 1171 unsigned CSSize = X86FI->getCalleeSavedFrameSize(); 1172 uint64_t NumBytes = 0; 1173 1174 if (hasFP(MF)) { 1175 // Calculate required stack adjustment. 1176 uint64_t FrameSize = StackSize - SlotSize; 1177 if (needsStackRealignment(MF)) 1178 FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign; 1179 1180 NumBytes = FrameSize - CSSize; 1181 1182 // Pop EBP. 1183 BuildMI(MBB, MBBI, DL, 1184 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr); 1185 } else { 1186 NumBytes = StackSize - CSSize; 1187 } 1188 1189 // Skip the callee-saved pop instructions. 1190 MachineBasicBlock::iterator LastCSPop = MBBI; 1191 while (MBBI != MBB.begin()) { 1192 MachineBasicBlock::iterator PI = prior(MBBI); 1193 unsigned Opc = PI->getOpcode(); 1194 1195 if (Opc != X86::POP32r && Opc != X86::POP64r && 1196 !PI->getDesc().isTerminator()) 1197 break; 1198 1199 --MBBI; 1200 } 1201 1202 DL = MBBI->getDebugLoc(); 1203 1204 // If there is an ADD32ri or SUB32ri of ESP immediately before this 1205 // instruction, merge the two instructions. 1206 if (NumBytes || MFI->hasVarSizedObjects()) 1207 mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes); 1208 1209 // If dynamic alloca is used, then reset esp to point to the last callee-saved 1210 // slot before popping them off! Same applies for the case, when stack was 1211 // realigned. 1212 if (needsStackRealignment(MF)) { 1213 // We cannot use LEA here, because stack pointer was realigned. We need to 1214 // deallocate local frame back. 1215 if (CSSize) { 1216 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 1217 MBBI = prior(LastCSPop); 1218 } 1219 1220 BuildMI(MBB, MBBI, DL, 1221 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), 1222 StackPtr).addReg(FramePtr); 1223 } else if (MFI->hasVarSizedObjects()) { 1224 if (CSSize) { 1225 unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r; 1226 MachineInstr *MI = 1227 addRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr), 1228 FramePtr, false, -CSSize); 1229 MBB.insert(MBBI, MI); 1230 } else { 1231 BuildMI(MBB, MBBI, DL, 1232 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr) 1233 .addReg(FramePtr); 1234 } 1235 } else if (NumBytes) { 1236 // Adjust stack pointer back: ESP += numbytes. 1237 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII); 1238 } 1239 1240 // We're returning from function via eh_return. 1241 if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) { 1242 MBBI = prior(MBB.end()); 1243 MachineOperand &DestAddr = MBBI->getOperand(0); 1244 assert(DestAddr.isReg() && "Offset should be in register!"); 1245 BuildMI(MBB, MBBI, DL, 1246 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), 1247 StackPtr).addReg(DestAddr.getReg()); 1248 } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi || 1249 RetOpcode == X86::TCRETURNmi || 1250 RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 || 1251 RetOpcode == X86::TCRETURNmi64) { 1252 bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64; 1253 // Tail call return: adjust the stack pointer and jump to callee. 1254 MBBI = prior(MBB.end()); 1255 MachineOperand &JumpTarget = MBBI->getOperand(0); 1256 MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1); 1257 assert(StackAdjust.isImm() && "Expecting immediate value."); 1258 1259 // Adjust stack pointer. 1260 int StackAdj = StackAdjust.getImm(); 1261 int MaxTCDelta = X86FI->getTCReturnAddrDelta(); 1262 int Offset = 0; 1263 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive"); 1264 1265 // Incoporate the retaddr area. 1266 Offset = StackAdj-MaxTCDelta; 1267 assert(Offset >= 0 && "Offset should never be negative"); 1268 1269 if (Offset) { 1270 // Check for possible merge with preceeding ADD instruction. 1271 Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1272 emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII); 1273 } 1274 1275 // Jump to label or value in register. 1276 if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) { 1277 BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi) 1278 ? X86::TAILJMPd : X86::TAILJMPd64)). 1279 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(), 1280 JumpTarget.getTargetFlags()); 1281 } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) { 1282 MachineInstrBuilder MIB = 1283 BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi) 1284 ? X86::TAILJMPm : X86::TAILJMPm64)); 1285 for (unsigned i = 0; i != 5; ++i) 1286 MIB.addOperand(MBBI->getOperand(i)); 1287 } else if (RetOpcode == X86::TCRETURNri64) { 1288 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)). 1289 addReg(JumpTarget.getReg(), RegState::Kill); 1290 } else { 1291 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)). 1292 addReg(JumpTarget.getReg(), RegState::Kill); 1293 } 1294 1295 MachineInstr *NewMI = prior(MBBI); 1296 for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i) 1297 NewMI->addOperand(MBBI->getOperand(i)); 1298 1299 // Delete the pseudo instruction TCRETURN. 1300 MBB.erase(MBBI); 1301 } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) && 1302 (X86FI->getTCReturnAddrDelta() < 0)) { 1303 // Add the return addr area delta back since we are not tail calling. 1304 int delta = -1*X86FI->getTCReturnAddrDelta(); 1305 MBBI = prior(MBB.end()); 1306 1307 // Check for possible merge with preceeding ADD instruction. 1308 delta += mergeSPUpdates(MBB, MBBI, StackPtr, true); 1309 emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII); 1310 } 1311} 1312 1313unsigned X86RegisterInfo::getRARegister() const { 1314 return Is64Bit ? X86::RIP // Should have dwarf #16. 1315 : X86::EIP; // Should have dwarf #8. 1316} 1317 1318unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const { 1319 return hasFP(MF) ? FramePtr : StackPtr; 1320} 1321 1322void 1323X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) const { 1324 // Calculate amount of bytes used for return address storing 1325 int stackGrowth = (Is64Bit ? -8 : -4); 1326 1327 // Initial state of the frame pointer is esp+stackGrowth. 1328 MachineLocation Dst(MachineLocation::VirtualFP); 1329 MachineLocation Src(StackPtr, stackGrowth); 1330 Moves.push_back(MachineMove(0, Dst, Src)); 1331 1332 // Add return address to move list 1333 MachineLocation CSDst(StackPtr, stackGrowth); 1334 MachineLocation CSSrc(getRARegister()); 1335 Moves.push_back(MachineMove(0, CSDst, CSSrc)); 1336} 1337 1338unsigned X86RegisterInfo::getEHExceptionRegister() const { 1339 llvm_unreachable("What is the exception register"); 1340 return 0; 1341} 1342 1343unsigned X86RegisterInfo::getEHHandlerRegister() const { 1344 llvm_unreachable("What is the exception handler register"); 1345 return 0; 1346} 1347 1348namespace llvm { 1349unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) { 1350 switch (VT.getSimpleVT().SimpleTy) { 1351 default: return Reg; 1352 case MVT::i8: 1353 if (High) { 1354 switch (Reg) { 1355 default: return 0; 1356 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1357 return X86::AH; 1358 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1359 return X86::DH; 1360 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1361 return X86::CH; 1362 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1363 return X86::BH; 1364 } 1365 } else { 1366 switch (Reg) { 1367 default: return 0; 1368 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1369 return X86::AL; 1370 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1371 return X86::DL; 1372 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1373 return X86::CL; 1374 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1375 return X86::BL; 1376 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1377 return X86::SIL; 1378 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1379 return X86::DIL; 1380 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1381 return X86::BPL; 1382 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1383 return X86::SPL; 1384 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1385 return X86::R8B; 1386 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1387 return X86::R9B; 1388 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1389 return X86::R10B; 1390 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1391 return X86::R11B; 1392 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1393 return X86::R12B; 1394 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1395 return X86::R13B; 1396 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1397 return X86::R14B; 1398 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1399 return X86::R15B; 1400 } 1401 } 1402 case MVT::i16: 1403 switch (Reg) { 1404 default: return Reg; 1405 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1406 return X86::AX; 1407 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1408 return X86::DX; 1409 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1410 return X86::CX; 1411 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1412 return X86::BX; 1413 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1414 return X86::SI; 1415 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1416 return X86::DI; 1417 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1418 return X86::BP; 1419 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1420 return X86::SP; 1421 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1422 return X86::R8W; 1423 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1424 return X86::R9W; 1425 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1426 return X86::R10W; 1427 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1428 return X86::R11W; 1429 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1430 return X86::R12W; 1431 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1432 return X86::R13W; 1433 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1434 return X86::R14W; 1435 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1436 return X86::R15W; 1437 } 1438 case MVT::i32: 1439 switch (Reg) { 1440 default: return Reg; 1441 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1442 return X86::EAX; 1443 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1444 return X86::EDX; 1445 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1446 return X86::ECX; 1447 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1448 return X86::EBX; 1449 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1450 return X86::ESI; 1451 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1452 return X86::EDI; 1453 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1454 return X86::EBP; 1455 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1456 return X86::ESP; 1457 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1458 return X86::R8D; 1459 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1460 return X86::R9D; 1461 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1462 return X86::R10D; 1463 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1464 return X86::R11D; 1465 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1466 return X86::R12D; 1467 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1468 return X86::R13D; 1469 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1470 return X86::R14D; 1471 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1472 return X86::R15D; 1473 } 1474 case MVT::i64: 1475 switch (Reg) { 1476 default: return Reg; 1477 case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX: 1478 return X86::RAX; 1479 case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX: 1480 return X86::RDX; 1481 case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX: 1482 return X86::RCX; 1483 case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX: 1484 return X86::RBX; 1485 case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI: 1486 return X86::RSI; 1487 case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI: 1488 return X86::RDI; 1489 case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP: 1490 return X86::RBP; 1491 case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP: 1492 return X86::RSP; 1493 case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8: 1494 return X86::R8; 1495 case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9: 1496 return X86::R9; 1497 case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10: 1498 return X86::R10; 1499 case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11: 1500 return X86::R11; 1501 case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12: 1502 return X86::R12; 1503 case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13: 1504 return X86::R13; 1505 case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14: 1506 return X86::R14; 1507 case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15: 1508 return X86::R15; 1509 } 1510 } 1511 1512 return Reg; 1513} 1514} 1515 1516#include "X86GenRegisterInfo.inc" 1517 1518namespace { 1519 struct MSAH : public MachineFunctionPass { 1520 static char ID; 1521 MSAH() : MachineFunctionPass(&ID) {} 1522 1523 virtual bool runOnMachineFunction(MachineFunction &MF) { 1524 const X86TargetMachine *TM = 1525 static_cast<const X86TargetMachine *>(&MF.getTarget()); 1526 const X86RegisterInfo *X86RI = TM->getRegisterInfo(); 1527 MachineRegisterInfo &RI = MF.getRegInfo(); 1528 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1529 unsigned StackAlignment = X86RI->getStackAlignment(); 1530 1531 // Be over-conservative: scan over all vreg defs and find whether vector 1532 // registers are used. If yes, there is a possibility that vector register 1533 // will be spilled and thus require dynamic stack realignment. 1534 for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister; 1535 RegNum < RI.getLastVirtReg(); ++RegNum) 1536 if (RI.getRegClass(RegNum)->getAlignment() > StackAlignment) { 1537 FuncInfo->setReserveFP(true); 1538 return true; 1539 } 1540 1541 // Nothing to do 1542 return false; 1543 } 1544 1545 virtual const char *getPassName() const { 1546 return "X86 Maximal Stack Alignment Check"; 1547 } 1548 1549 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 1550 AU.setPreservesCFG(); 1551 MachineFunctionPass::getAnalysisUsage(AU); 1552 } 1553 }; 1554 1555 char MSAH::ID = 0; 1556} 1557 1558FunctionPass* 1559llvm::createX86MaxStackAlignmentHeuristicPass() { return new MSAH(); } 1560