X86RegisterInfo.cpp revision 825b72b0571821bf2d378749f69d6c4cfb52d2f9
1//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetRegisterInfo class.
11// This file is responsible for the frame pointer elimination optimization
12// on X86.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86RegisterInfo.h"
18#include "X86InstrBuilder.h"
19#include "X86MachineFunctionInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/Type.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineFunctionPass.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineLocation.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/Target/TargetAsmInfo.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/BitVector.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/Support/ErrorHandling.h"
43using namespace llvm;
44
45X86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
46                                 const TargetInstrInfo &tii)
47  : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
48                         X86::ADJCALLSTACKDOWN64 :
49                         X86::ADJCALLSTACKDOWN32,
50                       tm.getSubtarget<X86Subtarget>().is64Bit() ?
51                         X86::ADJCALLSTACKUP64 :
52                         X86::ADJCALLSTACKUP32),
53    TM(tm), TII(tii) {
54  // Cache some information.
55  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
56  Is64Bit = Subtarget->is64Bit();
57  IsWin64 = Subtarget->isTargetWin64();
58  StackAlign = TM.getFrameInfo()->getStackAlignment();
59  if (Is64Bit) {
60    SlotSize = 8;
61    StackPtr = X86::RSP;
62    FramePtr = X86::RBP;
63  } else {
64    SlotSize = 4;
65    StackPtr = X86::ESP;
66    FramePtr = X86::EBP;
67  }
68}
69
70// getDwarfRegNum - This function maps LLVM register identifiers to the
71// Dwarf specific numbering, used in debug info and exception tables.
72
73int X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
74  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
75  unsigned Flavour = DWARFFlavour::X86_64;
76  if (!Subtarget->is64Bit()) {
77    if (Subtarget->isTargetDarwin()) {
78      if (isEH)
79        Flavour = DWARFFlavour::X86_32_DarwinEH;
80      else
81        Flavour = DWARFFlavour::X86_32_Generic;
82    } else if (Subtarget->isTargetCygMing()) {
83      // Unsupported by now, just quick fallback
84      Flavour = DWARFFlavour::X86_32_Generic;
85    } else {
86      Flavour = DWARFFlavour::X86_32_Generic;
87    }
88  }
89
90  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
91}
92
93// getX86RegNum - This function maps LLVM register identifiers to their X86
94// specific numbering, which is used in various places encoding instructions.
95//
96unsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
97  switch(RegNo) {
98  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
99  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
100  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
101  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
102  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
103    return N86::ESP;
104  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
105    return N86::EBP;
106  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
107    return N86::ESI;
108  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
109    return N86::EDI;
110
111  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
112    return N86::EAX;
113  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
114    return N86::ECX;
115  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
116    return N86::EDX;
117  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
118    return N86::EBX;
119  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
120    return N86::ESP;
121  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
122    return N86::EBP;
123  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
124    return N86::ESI;
125  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
126    return N86::EDI;
127
128  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
129  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
130    return RegNo-X86::ST0;
131
132  case X86::XMM0: case X86::XMM8: case X86::MM0:
133    return 0;
134  case X86::XMM1: case X86::XMM9: case X86::MM1:
135    return 1;
136  case X86::XMM2: case X86::XMM10: case X86::MM2:
137    return 2;
138  case X86::XMM3: case X86::XMM11: case X86::MM3:
139    return 3;
140  case X86::XMM4: case X86::XMM12: case X86::MM4:
141    return 4;
142  case X86::XMM5: case X86::XMM13: case X86::MM5:
143    return 5;
144  case X86::XMM6: case X86::XMM14: case X86::MM6:
145    return 6;
146  case X86::XMM7: case X86::XMM15: case X86::MM7:
147    return 7;
148
149  default:
150    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
151    llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
152    return 0;
153  }
154}
155
156const TargetRegisterClass *
157X86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
158                                          const TargetRegisterClass *B,
159                                          unsigned SubIdx) const {
160  switch (SubIdx) {
161  default: return 0;
162  case 1:
163    // 8-bit
164    if (B == &X86::GR8RegClass) {
165      if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8)
166        return A;
167    } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) {
168      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
169          A == &X86::GR64_NOREXRegClass ||
170          A == &X86::GR64_NOSPRegClass ||
171          A == &X86::GR64_NOREX_NOSPRegClass)
172        return &X86::GR64_ABCDRegClass;
173      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
174               A == &X86::GR32_NOREXRegClass ||
175               A == &X86::GR32_NOSPRegClass)
176        return &X86::GR32_ABCDRegClass;
177      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
178               A == &X86::GR16_NOREXRegClass)
179        return &X86::GR16_ABCDRegClass;
180    } else if (B == &X86::GR8_NOREXRegClass) {
181      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
182          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
183        return &X86::GR64_NOREXRegClass;
184      else if (A == &X86::GR64_ABCDRegClass)
185        return &X86::GR64_ABCDRegClass;
186      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
187               A == &X86::GR32_NOSPRegClass)
188        return &X86::GR32_NOREXRegClass;
189      else if (A == &X86::GR32_ABCDRegClass)
190        return &X86::GR32_ABCDRegClass;
191      else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass)
192        return &X86::GR16_NOREXRegClass;
193      else if (A == &X86::GR16_ABCDRegClass)
194        return &X86::GR16_ABCDRegClass;
195    }
196    break;
197  case 2:
198    // 8-bit hi
199    if (B == &X86::GR8_ABCD_HRegClass) {
200      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
201          A == &X86::GR64_NOREXRegClass ||
202          A == &X86::GR64_NOSPRegClass ||
203          A == &X86::GR64_NOREX_NOSPRegClass)
204        return &X86::GR64_ABCDRegClass;
205      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
206               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
207        return &X86::GR32_ABCDRegClass;
208      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
209               A == &X86::GR16_NOREXRegClass)
210        return &X86::GR16_ABCDRegClass;
211    }
212    break;
213  case 3:
214    // 16-bit
215    if (B == &X86::GR16RegClass) {
216      if (A->getSize() == 4 || A->getSize() == 8)
217        return A;
218    } else if (B == &X86::GR16_ABCDRegClass) {
219      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
220          A == &X86::GR64_NOREXRegClass ||
221          A == &X86::GR64_NOSPRegClass ||
222          A == &X86::GR64_NOREX_NOSPRegClass)
223        return &X86::GR64_ABCDRegClass;
224      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
225               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
226        return &X86::GR32_ABCDRegClass;
227    } else if (B == &X86::GR16_NOREXRegClass) {
228      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
229          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
230        return &X86::GR64_NOREXRegClass;
231      else if (A == &X86::GR64_ABCDRegClass)
232        return &X86::GR64_ABCDRegClass;
233      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
234               A == &X86::GR32_NOSPRegClass)
235        return &X86::GR32_NOREXRegClass;
236      else if (A == &X86::GR32_ABCDRegClass)
237        return &X86::GR64_ABCDRegClass;
238    }
239    break;
240  case 4:
241    // 32-bit
242    if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) {
243      if (A->getSize() == 8)
244        return A;
245    } else if (B == &X86::GR32_ABCDRegClass) {
246      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
247          A == &X86::GR64_NOREXRegClass ||
248          A == &X86::GR64_NOSPRegClass ||
249          A == &X86::GR64_NOREX_NOSPRegClass)
250        return &X86::GR64_ABCDRegClass;
251    } else if (B == &X86::GR32_NOREXRegClass) {
252      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
253          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
254        return &X86::GR64_NOREXRegClass;
255      else if (A == &X86::GR64_ABCDRegClass)
256        return &X86::GR64_ABCDRegClass;
257    }
258    break;
259  }
260  return 0;
261}
262
263const TargetRegisterClass *X86RegisterInfo::
264getPointerRegClass(unsigned Kind) const {
265  switch (Kind) {
266  default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
267  case 0: // Normal GPRs.
268    if (TM.getSubtarget<X86Subtarget>().is64Bit())
269      return &X86::GR64RegClass;
270    return &X86::GR32RegClass;
271  case 1: // Normal GRPs except the stack pointer (for encoding reasons).
272    if (TM.getSubtarget<X86Subtarget>().is64Bit())
273      return &X86::GR64_NOSPRegClass;
274    return &X86::GR32_NOSPRegClass;
275  }
276}
277
278const TargetRegisterClass *
279X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
280  if (RC == &X86::CCRRegClass) {
281    if (Is64Bit)
282      return &X86::GR64RegClass;
283    else
284      return &X86::GR32RegClass;
285  }
286  return NULL;
287}
288
289const unsigned *
290X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
291  bool callsEHReturn = false;
292
293  if (MF) {
294    const MachineFrameInfo *MFI = MF->getFrameInfo();
295    const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
296    callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
297  }
298
299  static const unsigned CalleeSavedRegs32Bit[] = {
300    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
301  };
302
303  static const unsigned CalleeSavedRegs32EHRet[] = {
304    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
305  };
306
307  static const unsigned CalleeSavedRegs64Bit[] = {
308    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
309  };
310
311  static const unsigned CalleeSavedRegs64EHRet[] = {
312    X86::RAX, X86::RDX, X86::RBX, X86::R12,
313    X86::R13, X86::R14, X86::R15, X86::RBP, 0
314  };
315
316  static const unsigned CalleeSavedRegsWin64[] = {
317    X86::RBX,   X86::RBP,   X86::RDI,   X86::RSI,
318    X86::R12,   X86::R13,   X86::R14,   X86::R15,
319    X86::XMM6,  X86::XMM7,  X86::XMM8,  X86::XMM9,
320    X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
321    X86::XMM14, X86::XMM15, 0
322  };
323
324  if (Is64Bit) {
325    if (IsWin64)
326      return CalleeSavedRegsWin64;
327    else
328      return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
329  } else {
330    return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
331  }
332}
333
334const TargetRegisterClass* const*
335X86RegisterInfo::getCalleeSavedRegClasses(const MachineFunction *MF) const {
336  bool callsEHReturn = false;
337
338  if (MF) {
339    const MachineFrameInfo *MFI = MF->getFrameInfo();
340    const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
341    callsEHReturn = (MMI ? MMI->callsEHReturn() : false);
342  }
343
344  static const TargetRegisterClass * const CalleeSavedRegClasses32Bit[] = {
345    &X86::GR32RegClass, &X86::GR32RegClass,
346    &X86::GR32RegClass, &X86::GR32RegClass,  0
347  };
348  static const TargetRegisterClass * const CalleeSavedRegClasses32EHRet[] = {
349    &X86::GR32RegClass, &X86::GR32RegClass,
350    &X86::GR32RegClass, &X86::GR32RegClass,
351    &X86::GR32RegClass, &X86::GR32RegClass,  0
352  };
353  static const TargetRegisterClass * const CalleeSavedRegClasses64Bit[] = {
354    &X86::GR64RegClass, &X86::GR64RegClass,
355    &X86::GR64RegClass, &X86::GR64RegClass,
356    &X86::GR64RegClass, &X86::GR64RegClass, 0
357  };
358  static const TargetRegisterClass * const CalleeSavedRegClasses64EHRet[] = {
359    &X86::GR64RegClass, &X86::GR64RegClass,
360    &X86::GR64RegClass, &X86::GR64RegClass,
361    &X86::GR64RegClass, &X86::GR64RegClass,
362    &X86::GR64RegClass, &X86::GR64RegClass, 0
363  };
364  static const TargetRegisterClass * const CalleeSavedRegClassesWin64[] = {
365    &X86::GR64RegClass,  &X86::GR64RegClass,
366    &X86::GR64RegClass,  &X86::GR64RegClass,
367    &X86::GR64RegClass,  &X86::GR64RegClass,
368    &X86::GR64RegClass,  &X86::GR64RegClass,
369    &X86::VR128RegClass, &X86::VR128RegClass,
370    &X86::VR128RegClass, &X86::VR128RegClass,
371    &X86::VR128RegClass, &X86::VR128RegClass,
372    &X86::VR128RegClass, &X86::VR128RegClass,
373    &X86::VR128RegClass, &X86::VR128RegClass, 0
374  };
375
376  if (Is64Bit) {
377    if (IsWin64)
378      return CalleeSavedRegClassesWin64;
379    else
380      return (callsEHReturn ?
381              CalleeSavedRegClasses64EHRet : CalleeSavedRegClasses64Bit);
382  } else {
383    return (callsEHReturn ?
384            CalleeSavedRegClasses32EHRet : CalleeSavedRegClasses32Bit);
385  }
386}
387
388BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
389  BitVector Reserved(getNumRegs());
390  // Set the stack-pointer register and its aliases as reserved.
391  Reserved.set(X86::RSP);
392  Reserved.set(X86::ESP);
393  Reserved.set(X86::SP);
394  Reserved.set(X86::SPL);
395  // Set the frame-pointer register and its aliases as reserved if needed.
396  if (hasFP(MF)) {
397    Reserved.set(X86::RBP);
398    Reserved.set(X86::EBP);
399    Reserved.set(X86::BP);
400    Reserved.set(X86::BPL);
401  }
402  // Mark the x87 stack registers as reserved, since they don't
403  // behave normally with respect to liveness. We don't fully
404  // model the effects of x87 stack pushes and pops after
405  // stackification.
406  Reserved.set(X86::ST0);
407  Reserved.set(X86::ST1);
408  Reserved.set(X86::ST2);
409  Reserved.set(X86::ST3);
410  Reserved.set(X86::ST4);
411  Reserved.set(X86::ST5);
412  Reserved.set(X86::ST6);
413  Reserved.set(X86::ST7);
414  return Reserved;
415}
416
417//===----------------------------------------------------------------------===//
418// Stack Frame Processing methods
419//===----------------------------------------------------------------------===//
420
421static unsigned calculateMaxStackAlignment(const MachineFrameInfo *FFI) {
422  unsigned MaxAlign = 0;
423  for (int i = FFI->getObjectIndexBegin(),
424         e = FFI->getObjectIndexEnd(); i != e; ++i) {
425    if (FFI->isDeadObjectIndex(i))
426      continue;
427    unsigned Align = FFI->getObjectAlignment(i);
428    MaxAlign = std::max(MaxAlign, Align);
429  }
430
431  return MaxAlign;
432}
433
434// hasFP - Return true if the specified function should have a dedicated frame
435// pointer register.  This is true if the function has variable sized allocas or
436// if frame pointer elimination is disabled.
437//
438bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
439  const MachineFrameInfo *MFI = MF.getFrameInfo();
440  const MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
441
442  return (NoFramePointerElim ||
443          needsStackRealignment(MF) ||
444          MFI->hasVarSizedObjects() ||
445          MFI->isFrameAddressTaken() ||
446          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
447          (MMI && MMI->callsUnwindInit()));
448}
449
450bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
451  const MachineFrameInfo *MFI = MF.getFrameInfo();
452
453  // FIXME: Currently we don't support stack realignment for functions with
454  // variable-sized allocas
455  return (RealignStack &&
456          (MFI->getMaxAlignment() > StackAlign &&
457           !MFI->hasVarSizedObjects()));
458}
459
460bool X86RegisterInfo::hasReservedCallFrame(MachineFunction &MF) const {
461  return !MF.getFrameInfo()->hasVarSizedObjects();
462}
463
464bool X86RegisterInfo::hasReservedSpillSlot(MachineFunction &MF, unsigned Reg,
465                                           int &FrameIdx) const {
466  if (Reg == FramePtr && hasFP(MF)) {
467    FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
468    return true;
469  }
470  return false;
471}
472
473
474int
475X86RegisterInfo::getFrameIndexOffset(MachineFunction &MF, int FI) const {
476  const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
477  MachineFrameInfo *MFI = MF.getFrameInfo();
478
479  int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea();
480  uint64_t StackSize = MFI->getStackSize();
481
482  if (needsStackRealignment(MF)) {
483    if (FI < 0)
484      // Skip the saved EBP
485      Offset += SlotSize;
486    else {
487      unsigned Align = MFI->getObjectAlignment(FI);
488      assert( (-(Offset + StackSize)) % Align == 0);
489      Align = 0;
490      return Offset + StackSize;
491    }
492
493    // FIXME: Support tail calls
494  } else {
495    if (!hasFP(MF))
496      return Offset + StackSize;
497
498    // Skip the saved EBP
499    Offset += SlotSize;
500
501    // Skip the RETADDR move area
502    X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
503    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
504    if (TailCallReturnAddrDelta < 0) Offset -= TailCallReturnAddrDelta;
505  }
506
507  return Offset;
508}
509
510void X86RegisterInfo::
511eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
512                              MachineBasicBlock::iterator I) const {
513  if (!hasReservedCallFrame(MF)) {
514    // If the stack pointer can be changed after prologue, turn the
515    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
516    // adjcallstackdown instruction into 'add ESP, <amt>'
517    // TODO: consider using push / pop instead of sub + store / add
518    MachineInstr *Old = I;
519    uint64_t Amount = Old->getOperand(0).getImm();
520    if (Amount != 0) {
521      // We need to keep the stack aligned properly.  To do this, we round the
522      // amount of space needed for the outgoing arguments up to the next
523      // alignment boundary.
524      Amount = (Amount+StackAlign-1)/StackAlign*StackAlign;
525
526      MachineInstr *New = 0;
527      if (Old->getOpcode() == getCallFrameSetupOpcode()) {
528        New = BuildMI(MF, Old->getDebugLoc(),
529                      TII.get(Is64Bit ? X86::SUB64ri32 : X86::SUB32ri),
530                      StackPtr).addReg(StackPtr).addImm(Amount);
531      } else {
532        assert(Old->getOpcode() == getCallFrameDestroyOpcode());
533        // factor out the amount the callee already popped.
534        uint64_t CalleeAmt = Old->getOperand(1).getImm();
535        Amount -= CalleeAmt;
536        if (Amount) {
537          unsigned Opc = (Amount < 128) ?
538            (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
539            (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri);
540          New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr)
541            .addReg(StackPtr).addImm(Amount);
542        }
543      }
544
545      if (New) {
546        // The EFLAGS implicit def is dead.
547        New->getOperand(3).setIsDead();
548
549        // Replace the pseudo instruction with a new instruction...
550        MBB.insert(I, New);
551      }
552    }
553  } else if (I->getOpcode() == getCallFrameDestroyOpcode()) {
554    // If we are performing frame pointer elimination and if the callee pops
555    // something off the stack pointer, add it back.  We do this until we have
556    // more advanced stack pointer tracking ability.
557    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
558      unsigned Opc = (CalleeAmt < 128) ?
559        (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
560        (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri);
561      MachineInstr *Old = I;
562      MachineInstr *New =
563        BuildMI(MF, Old->getDebugLoc(), TII.get(Opc),
564                StackPtr).addReg(StackPtr).addImm(CalleeAmt);
565      // The EFLAGS implicit def is dead.
566      New->getOperand(3).setIsDead();
567
568      MBB.insert(I, New);
569    }
570  }
571
572  MBB.erase(I);
573}
574
575void X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
576                                          int SPAdj, RegScavenger *RS) const{
577  assert(SPAdj == 0 && "Unexpected");
578
579  unsigned i = 0;
580  MachineInstr &MI = *II;
581  MachineFunction &MF = *MI.getParent()->getParent();
582  while (!MI.getOperand(i).isFI()) {
583    ++i;
584    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
585  }
586
587  int FrameIndex = MI.getOperand(i).getIndex();
588
589  unsigned BasePtr;
590  if (needsStackRealignment(MF))
591    BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
592  else
593    BasePtr = (hasFP(MF) ? FramePtr : StackPtr);
594
595  // This must be part of a four operand memory reference.  Replace the
596  // FrameIndex with base register with EBP.  Add an offset to the offset.
597  MI.getOperand(i).ChangeToRegister(BasePtr, false);
598
599  // Now add the frame object offset to the offset from EBP.
600  if (MI.getOperand(i+3).isImm()) {
601    // Offset is a 32-bit integer.
602    int Offset = getFrameIndexOffset(MF, FrameIndex) +
603      (int)(MI.getOperand(i+3).getImm());
604
605     MI.getOperand(i+3).ChangeToImmediate(Offset);
606  } else {
607    // Offset is symbolic. This is extremely rare.
608    uint64_t Offset = getFrameIndexOffset(MF, FrameIndex) +
609                      (uint64_t)MI.getOperand(i+3).getOffset();
610    MI.getOperand(i+3).setOffset(Offset);
611  }
612}
613
614void
615X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
616                                                      RegScavenger *RS) const {
617  MachineFrameInfo *MFI = MF.getFrameInfo();
618
619  // Calculate and set max stack object alignment early, so we can decide
620  // whether we will need stack realignment (and thus FP).
621  unsigned MaxAlign = std::max(MFI->getMaxAlignment(),
622                               calculateMaxStackAlignment(MFI));
623
624  MFI->setMaxAlignment(MaxAlign);
625
626  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
627  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
628  if (TailCallReturnAddrDelta < 0) {
629    // create RETURNADDR area
630    //   arg
631    //   arg
632    //   RETADDR
633    //   { ...
634    //     RETADDR area
635    //     ...
636    //   }
637    //   [EBP]
638    MFI->CreateFixedObject(-TailCallReturnAddrDelta,
639                           (-1*SlotSize)+TailCallReturnAddrDelta);
640  }
641
642  if (hasFP(MF)) {
643    assert((TailCallReturnAddrDelta <= 0) &&
644           "The Delta should always be zero or negative");
645    const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
646    // Create a frame entry for the EBP register that must be saved.
647    int FrameIdx = MFI->CreateFixedObject(SlotSize,
648                                          -(int)SlotSize +
649                                          TFI.getOffsetOfLocalArea() +
650                                          TailCallReturnAddrDelta);
651    assert(FrameIdx == MFI->getObjectIndexBegin() &&
652           "Slot for EBP register must be last in order to be found!");
653    FrameIdx = 0;
654  }
655}
656
657/// emitSPUpdate - Emit a series of instructions to increment / decrement the
658/// stack pointer by a constant value.
659static
660void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
661                  unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
662                  const TargetInstrInfo &TII) {
663  bool isSub = NumBytes < 0;
664  uint64_t Offset = isSub ? -NumBytes : NumBytes;
665  unsigned Opc = isSub
666    ? ((Offset < 128) ?
667       (Is64Bit ? X86::SUB64ri8 : X86::SUB32ri8) :
668       (Is64Bit ? X86::SUB64ri32 : X86::SUB32ri))
669    : ((Offset < 128) ?
670       (Is64Bit ? X86::ADD64ri8 : X86::ADD32ri8) :
671       (Is64Bit ? X86::ADD64ri32 : X86::ADD32ri));
672  uint64_t Chunk = (1LL << 31) - 1;
673  DebugLoc DL = (MBBI != MBB.end() ? MBBI->getDebugLoc() :
674                 DebugLoc::getUnknownLoc());
675
676  while (Offset) {
677    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
678    MachineInstr *MI =
679      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
680         .addReg(StackPtr).addImm(ThisVal);
681    // The EFLAGS implicit def is dead.
682    MI->getOperand(3).setIsDead();
683    Offset -= ThisVal;
684  }
685}
686
687// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
688static
689void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
690                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
691  if (MBBI == MBB.begin()) return;
692
693  MachineBasicBlock::iterator PI = prior(MBBI);
694  unsigned Opc = PI->getOpcode();
695  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
696       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
697      PI->getOperand(0).getReg() == StackPtr) {
698    if (NumBytes)
699      *NumBytes += PI->getOperand(2).getImm();
700    MBB.erase(PI);
701  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
702              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
703             PI->getOperand(0).getReg() == StackPtr) {
704    if (NumBytes)
705      *NumBytes -= PI->getOperand(2).getImm();
706    MBB.erase(PI);
707  }
708}
709
710// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
711static
712void mergeSPUpdatesDown(MachineBasicBlock &MBB,
713                        MachineBasicBlock::iterator &MBBI,
714                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
715  return;
716
717  if (MBBI == MBB.end()) return;
718
719  MachineBasicBlock::iterator NI = next(MBBI);
720  if (NI == MBB.end()) return;
721
722  unsigned Opc = NI->getOpcode();
723  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
724       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
725      NI->getOperand(0).getReg() == StackPtr) {
726    if (NumBytes)
727      *NumBytes -= NI->getOperand(2).getImm();
728    MBB.erase(NI);
729    MBBI = NI;
730  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
731              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
732             NI->getOperand(0).getReg() == StackPtr) {
733    if (NumBytes)
734      *NumBytes += NI->getOperand(2).getImm();
735    MBB.erase(NI);
736    MBBI = NI;
737  }
738}
739
740/// mergeSPUpdates - Checks the instruction before/after the passed
741/// instruction. If it is an ADD/SUB instruction it is deleted
742/// argument and the stack adjustment is returned as a positive value for ADD
743/// and a negative for SUB.
744static int mergeSPUpdates(MachineBasicBlock &MBB,
745                           MachineBasicBlock::iterator &MBBI,
746                           unsigned StackPtr,
747                           bool doMergeWithPrevious) {
748
749  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
750      (!doMergeWithPrevious && MBBI == MBB.end()))
751    return 0;
752
753  int Offset = 0;
754
755  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
756  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : next(MBBI);
757  unsigned Opc = PI->getOpcode();
758  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
759       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
760      PI->getOperand(0).getReg() == StackPtr){
761    Offset += PI->getOperand(2).getImm();
762    MBB.erase(PI);
763    if (!doMergeWithPrevious) MBBI = NI;
764  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
765              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
766             PI->getOperand(0).getReg() == StackPtr) {
767    Offset -= PI->getOperand(2).getImm();
768    MBB.erase(PI);
769    if (!doMergeWithPrevious) MBBI = NI;
770  }
771
772  return Offset;
773}
774
775void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF,
776                                                unsigned LabelId,
777                                                unsigned FramePtr) const {
778  MachineFrameInfo *MFI = MF.getFrameInfo();
779  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
780  if (!MMI) return;
781
782  // Add callee saved registers to move list.
783  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
784  if (CSI.empty()) return;
785
786  std::vector<MachineMove> &Moves = MMI->getFrameMoves();
787  const TargetData *TD = MF.getTarget().getTargetData();
788  bool HasFP = hasFP(MF);
789
790  // Calculate amount of bytes used for return address storing
791  int stackGrowth =
792    (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
793     TargetFrameInfo::StackGrowsUp ?
794     TD->getPointerSize() : -TD->getPointerSize());
795
796  // FIXME: This is dirty hack. The code itself is pretty mess right now.
797  // It should be rewritten from scratch and generalized sometimes.
798
799  // Determine maximum offset (minumum due to stack growth)
800  int64_t MaxOffset = 0;
801  for (std::vector<CalleeSavedInfo>::const_iterator
802         I = CSI.begin(), E = CSI.end(); I != E; ++I)
803    MaxOffset = std::min(MaxOffset,
804                         MFI->getObjectOffset(I->getFrameIdx()));
805
806  // Calculate offsets.
807  int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
808  for (std::vector<CalleeSavedInfo>::const_iterator
809         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
810    int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
811    unsigned Reg = I->getReg();
812    Offset = MaxOffset - Offset + saveAreaOffset;
813
814    // Don't output a new machine move if we're re-saving the frame
815    // pointer. This happens when the PrologEpilogInserter has inserted an extra
816    // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
817    // generates one when frame pointers are used. If we generate a "machine
818    // move" for this extra "PUSH", the linker will lose track of the fact that
819    // the frame pointer should have the value of the first "PUSH" when it's
820    // trying to unwind.
821    //
822    // FIXME: This looks inelegant. It's possibly correct, but it's covering up
823    //        another bug. I.e., one where we generate a prolog like this:
824    //
825    //          pushl  %ebp
826    //          movl   %esp, %ebp
827    //          pushl  %ebp
828    //          pushl  %esi
829    //           ...
830    //
831    //        The immediate re-push of EBP is unnecessary. At the least, it's an
832    //        optimization bug. EBP can be used as a scratch register in certain
833    //        cases, but probably not when we have a frame pointer.
834    if (HasFP && FramePtr == Reg)
835      continue;
836
837    MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
838    MachineLocation CSSrc(Reg);
839    Moves.push_back(MachineMove(LabelId, CSDst, CSSrc));
840  }
841}
842
843void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
844  MachineBasicBlock &MBB = MF.front();   // Prolog goes in entry BB
845  MachineFrameInfo *MFI = MF.getFrameInfo();
846  const Function* Fn = MF.getFunction();
847  const X86Subtarget* Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
848  MachineModuleInfo *MMI = MFI->getMachineModuleInfo();
849  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
850  MachineBasicBlock::iterator MBBI = MBB.begin();
851  bool needsFrameMoves = (MMI && MMI->hasDebugInfo()) ||
852                          !Fn->doesNotThrow() ||
853                          UnwindTablesMandatory;
854  bool HasFP = hasFP(MF);
855  DebugLoc DL;
856
857  // Get the number of bytes to allocate from the FrameInfo.
858  uint64_t StackSize = MFI->getStackSize();
859
860  // Get desired stack alignment
861  uint64_t MaxAlign  = MFI->getMaxAlignment();
862
863  // Add RETADDR move area to callee saved frame size.
864  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
865  if (TailCallReturnAddrDelta < 0)
866    X86FI->setCalleeSavedFrameSize(
867          X86FI->getCalleeSavedFrameSize() +(-TailCallReturnAddrDelta));
868
869  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
870  // function, and use up to 128 bytes of stack space, don't have a frame
871  // pointer, calls, or dynamic alloca then we do not need to adjust the
872  // stack pointer (we fit in the Red Zone).
873  bool DisableRedZone = Fn->hasFnAttr(Attribute::NoRedZone);
874  if (Is64Bit && !DisableRedZone &&
875      !needsStackRealignment(MF) &&
876      !MFI->hasVarSizedObjects() &&                // No dynamic alloca.
877      !MFI->hasCalls() &&                          // No calls.
878      !Subtarget->isTargetWin64()) {               // Win64 has no Red Zone
879    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
880    if (HasFP) MinSize += SlotSize;
881    StackSize = std::max(MinSize,
882                         StackSize > 128 ? StackSize - 128 : 0);
883    MFI->setStackSize(StackSize);
884  } else if (Subtarget->isTargetWin64()) {
885    // We need to always allocate 32 bytes as register spill area.
886    // FIXME: we might reuse these 32 bytes for leaf functions.
887    StackSize += 32;
888    MFI->setStackSize(StackSize);
889  }
890
891  // Insert stack pointer adjustment for later moving of return addr.  Only
892  // applies to tail call optimized functions where the callee argument stack
893  // size is bigger than the callers.
894  if (TailCallReturnAddrDelta < 0) {
895    MachineInstr *MI =
896      BuildMI(MBB, MBBI, DL, TII.get(Is64Bit? X86::SUB64ri32 : X86::SUB32ri),
897              StackPtr).addReg(StackPtr).addImm(-TailCallReturnAddrDelta);
898    // The EFLAGS implicit def is dead.
899    MI->getOperand(3).setIsDead();
900  }
901
902  //  uint64_t StackSize = MFI->getStackSize();
903  std::vector<MachineMove> &Moves = MMI->getFrameMoves();
904  const TargetData *TD = MF.getTarget().getTargetData();
905  int stackGrowth =
906    (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
907     TargetFrameInfo::StackGrowsUp ?
908     TD->getPointerSize() : -TD->getPointerSize());
909
910  uint64_t NumBytes = 0;
911  if (HasFP) {
912    // Calculate required stack adjustment
913    uint64_t FrameSize = StackSize - SlotSize;
914    if (needsStackRealignment(MF))
915      FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
916
917    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
918
919    // Get the offset of the stack slot for the EBP register, which is
920    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
921    // Update the frame offset adjustment.
922    MFI->setOffsetAdjustment(-NumBytes);
923
924    // Save EBP/RBP into the appropriate stack slot...
925    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
926      .addReg(FramePtr, RegState::Kill);
927
928    if (needsFrameMoves) {
929      // Mark effective beginning of when frame pointer becomes valid.
930      unsigned FrameLabelId = MMI->NextLabelID();
931      BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
932
933      // Define the current CFA rule to use the provided offset.
934      if (StackSize) {
935        MachineLocation SPDst(MachineLocation::VirtualFP);
936        MachineLocation SPSrc(MachineLocation::VirtualFP,
937                              HasFP ? 2 * stackGrowth :
938                                      -StackSize + stackGrowth);
939        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
940      } else {
941        // FIXME: Verify & implement for FP
942        MachineLocation SPDst(StackPtr);
943        MachineLocation SPSrc(StackPtr, stackGrowth);
944        Moves.push_back(MachineMove(FrameLabelId, SPDst, SPSrc));
945      }
946
947      // Change the rule for the FramePtr to be an "offset" rule.
948      MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
949      MachineLocation FPSrc(FramePtr);
950      Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
951    }
952
953    // Update EBP with the new base value...
954    BuildMI(MBB, MBBI, DL,
955            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
956        .addReg(StackPtr);
957
958    if (needsFrameMoves) {
959      unsigned FrameLabelId = MMI->NextLabelID();
960      BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(FrameLabelId);
961
962      // Define the current CFA to use the EBP/RBP register.
963      MachineLocation FPDst(FramePtr);
964      MachineLocation FPSrc(MachineLocation::VirtualFP);
965      Moves.push_back(MachineMove(FrameLabelId, FPDst, FPSrc));
966    }
967
968    // Mark the FramePtr as live-in in every block except the entry.
969    for (MachineFunction::iterator I = next(MF.begin()), E = MF.end();
970         I != E; ++I)
971      I->addLiveIn(FramePtr);
972
973    // Realign stack
974    if (needsStackRealignment(MF)) {
975      MachineInstr *MI =
976        BuildMI(MBB, MBBI, DL,
977                TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri),
978                StackPtr).addReg(StackPtr).addImm(-MaxAlign);
979
980      // The EFLAGS implicit def is dead.
981      MI->getOperand(3).setIsDead();
982    }
983  } else {
984    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
985  }
986
987  // Skip the callee-saved push instructions.
988  bool RegsSaved = false;
989  while (MBBI != MBB.end() &&
990         (MBBI->getOpcode() == X86::PUSH32r ||
991          MBBI->getOpcode() == X86::PUSH64r)) {
992    RegsSaved = true;
993    ++MBBI;
994  }
995
996  if (RegsSaved && needsFrameMoves) {
997    // Mark end of callee-saved push instructions.
998    unsigned LabelId = MMI->NextLabelID();
999    BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
1000
1001    // Emit DWARF info specifying the offsets of the callee-saved registers.
1002    emitCalleeSavedFrameMoves(MF, LabelId, HasFP ? FramePtr : StackPtr);
1003  }
1004
1005  if (MBBI != MBB.end())
1006    DL = MBBI->getDebugLoc();
1007
1008  // Adjust stack pointer: ESP -= numbytes.
1009  if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
1010    // Check, whether EAX is livein for this function.
1011    bool isEAXAlive = false;
1012    for (MachineRegisterInfo::livein_iterator
1013           II = MF.getRegInfo().livein_begin(),
1014           EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) {
1015      unsigned Reg = II->first;
1016      isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
1017                    Reg == X86::AH || Reg == X86::AL);
1018    }
1019
1020    // Function prologue calls _alloca to probe the stack when allocating more
1021    // than 4k bytes in one go. Touching the stack at 4K increments is necessary
1022    // to ensure that the guard pages used by the OS virtual memory manager are
1023    // allocated in correct sequence.
1024    if (!isEAXAlive) {
1025      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1026        .addImm(NumBytes);
1027      BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
1028        .addExternalSymbol("_alloca");
1029    } else {
1030      // Save EAX
1031      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1032        .addReg(X86::EAX, RegState::Kill);
1033
1034      // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
1035      // allocated bytes for EAX.
1036      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1037        .addImm(NumBytes - 4);
1038      BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
1039        .addExternalSymbol("_alloca");
1040
1041      // Restore EAX
1042      MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
1043                                              X86::EAX),
1044                                      StackPtr, false, NumBytes - 4);
1045      MBB.insert(MBBI, MI);
1046    }
1047  } else if (NumBytes) {
1048    // If there is an SUB32ri of ESP immediately before this instruction, merge
1049    // the two. This can be the case when tail call elimination is enabled and
1050    // the callee has more arguments then the caller.
1051    NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
1052
1053    // If there is an ADD32ri or SUB32ri of ESP immediately after this
1054    // instruction, merge the two instructions.
1055    mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
1056
1057    if (NumBytes)
1058      emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
1059  }
1060
1061  if (!HasFP && needsFrameMoves) {
1062    // Mark end of stack pointer adjustment.
1063    unsigned LabelId = MMI->NextLabelID();
1064    BuildMI(MBB, MBBI, DL, TII.get(X86::DBG_LABEL)).addImm(LabelId);
1065
1066    // Define the current CFA rule to use the provided offset.
1067    if (StackSize) {
1068      MachineLocation SPDst(MachineLocation::VirtualFP);
1069      MachineLocation SPSrc(MachineLocation::VirtualFP,
1070                            -StackSize + stackGrowth);
1071      Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
1072    } else {
1073      // FIXME: Verify & implement for FP
1074      MachineLocation SPDst(StackPtr);
1075      MachineLocation SPSrc(StackPtr, stackGrowth);
1076      Moves.push_back(MachineMove(LabelId, SPDst, SPSrc));
1077    }
1078  }
1079}
1080
1081void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
1082                                   MachineBasicBlock &MBB) const {
1083  const MachineFrameInfo *MFI = MF.getFrameInfo();
1084  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1085  MachineBasicBlock::iterator MBBI = prior(MBB.end());
1086  unsigned RetOpcode = MBBI->getOpcode();
1087  DebugLoc DL = MBBI->getDebugLoc();
1088
1089  switch (RetOpcode) {
1090  case X86::RET:
1091  case X86::RETI:
1092  case X86::TCRETURNdi:
1093  case X86::TCRETURNri:
1094  case X86::TCRETURNri64:
1095  case X86::TCRETURNdi64:
1096  case X86::EH_RETURN:
1097  case X86::EH_RETURN64:
1098  case X86::TAILJMPd:
1099  case X86::TAILJMPr:
1100  case X86::TAILJMPm: break;  // These are ok
1101  default:
1102    llvm_unreachable("Can only insert epilog into returning blocks");
1103  }
1104
1105  // Get the number of bytes to allocate from the FrameInfo
1106  uint64_t StackSize = MFI->getStackSize();
1107  uint64_t MaxAlign  = MFI->getMaxAlignment();
1108  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1109  uint64_t NumBytes = 0;
1110
1111  if (hasFP(MF)) {
1112    // Calculate required stack adjustment
1113    uint64_t FrameSize = StackSize - SlotSize;
1114    if (needsStackRealignment(MF))
1115      FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
1116
1117    NumBytes = FrameSize - CSSize;
1118
1119    // pop EBP.
1120    BuildMI(MBB, MBBI, DL,
1121            TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1122  } else {
1123    NumBytes = StackSize - CSSize;
1124  }
1125
1126  // Skip the callee-saved pop instructions.
1127  MachineBasicBlock::iterator LastCSPop = MBBI;
1128  while (MBBI != MBB.begin()) {
1129    MachineBasicBlock::iterator PI = prior(MBBI);
1130    unsigned Opc = PI->getOpcode();
1131    if (Opc != X86::POP32r && Opc != X86::POP64r &&
1132        !PI->getDesc().isTerminator())
1133      break;
1134    --MBBI;
1135  }
1136
1137  DL = MBBI->getDebugLoc();
1138
1139  // If there is an ADD32ri or SUB32ri of ESP immediately before this
1140  // instruction, merge the two instructions.
1141  if (NumBytes || MFI->hasVarSizedObjects())
1142    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
1143
1144  // If dynamic alloca is used, then reset esp to point to the last callee-saved
1145  // slot before popping them off! Same applies for the case, when stack was
1146  // realigned
1147  if (needsStackRealignment(MF)) {
1148    // We cannot use LEA here, because stack pointer was realigned. We need to
1149    // deallocate local frame back
1150    if (CSSize) {
1151      emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1152      MBBI = prior(LastCSPop);
1153    }
1154
1155    BuildMI(MBB, MBBI, DL,
1156            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1157            StackPtr).addReg(FramePtr);
1158  } else if (MFI->hasVarSizedObjects()) {
1159    if (CSSize) {
1160      unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
1161      MachineInstr *MI = addLeaRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
1162                                         FramePtr, false, -CSSize);
1163      MBB.insert(MBBI, MI);
1164    } else
1165      BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1166              StackPtr).addReg(FramePtr);
1167
1168  } else {
1169    // adjust stack pointer back: ESP += numbytes
1170    if (NumBytes)
1171      emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1172  }
1173
1174  // We're returning from function via eh_return.
1175  if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1176    MBBI = prior(MBB.end());
1177    MachineOperand &DestAddr  = MBBI->getOperand(0);
1178    assert(DestAddr.isReg() && "Offset should be in register!");
1179    BuildMI(MBB, MBBI, DL,
1180            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1181            StackPtr).addReg(DestAddr.getReg());
1182  // Tail call return: adjust the stack pointer and jump to callee
1183  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1184             RetOpcode== X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64) {
1185    MBBI = prior(MBB.end());
1186    MachineOperand &JumpTarget = MBBI->getOperand(0);
1187    MachineOperand &StackAdjust = MBBI->getOperand(1);
1188    assert(StackAdjust.isImm() && "Expecting immediate value.");
1189
1190    // Adjust stack pointer.
1191    int StackAdj = StackAdjust.getImm();
1192    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1193    int Offset = 0;
1194    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1195    // Incoporate the retaddr area.
1196    Offset = StackAdj-MaxTCDelta;
1197    assert(Offset >= 0 && "Offset should never be negative");
1198
1199    if (Offset) {
1200      // Check for possible merge with preceeding ADD instruction.
1201      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1202      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
1203    }
1204
1205    // Jump to label or value in register.
1206    if (RetOpcode == X86::TCRETURNdi|| RetOpcode == X86::TCRETURNdi64)
1207      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPd)).
1208        addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1209    else if (RetOpcode== X86::TCRETURNri64)
1210      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64), JumpTarget.getReg());
1211    else
1212       BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr), JumpTarget.getReg());
1213
1214    // Delete the pseudo instruction TCRETURN.
1215    MBB.erase(MBBI);
1216  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1217             (X86FI->getTCReturnAddrDelta() < 0)) {
1218    // Add the return addr area delta back since we are not tail calling.
1219    int delta = -1*X86FI->getTCReturnAddrDelta();
1220    MBBI = prior(MBB.end());
1221    // Check for possible merge with preceeding ADD instruction.
1222    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1223    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
1224  }
1225}
1226
1227unsigned X86RegisterInfo::getRARegister() const {
1228  if (Is64Bit)
1229    return X86::RIP;  // Should have dwarf #16
1230  else
1231    return X86::EIP;  // Should have dwarf #8
1232}
1233
1234unsigned X86RegisterInfo::getFrameRegister(MachineFunction &MF) const {
1235  return hasFP(MF) ? FramePtr : StackPtr;
1236}
1237
1238void X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves)
1239                                                                         const {
1240  // Calculate amount of bytes used for return address storing
1241  int stackGrowth = (Is64Bit ? -8 : -4);
1242
1243  // Initial state of the frame pointer is esp+4.
1244  MachineLocation Dst(MachineLocation::VirtualFP);
1245  MachineLocation Src(StackPtr, stackGrowth);
1246  Moves.push_back(MachineMove(0, Dst, Src));
1247
1248  // Add return address to move list
1249  MachineLocation CSDst(StackPtr, stackGrowth);
1250  MachineLocation CSSrc(getRARegister());
1251  Moves.push_back(MachineMove(0, CSDst, CSSrc));
1252}
1253
1254unsigned X86RegisterInfo::getEHExceptionRegister() const {
1255  llvm_unreachable("What is the exception register");
1256  return 0;
1257}
1258
1259unsigned X86RegisterInfo::getEHHandlerRegister() const {
1260  llvm_unreachable("What is the exception handler register");
1261  return 0;
1262}
1263
1264namespace llvm {
1265unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
1266  switch (VT.getSimpleVT().SimpleTy) {
1267  default: return Reg;
1268  case MVT::i8:
1269    if (High) {
1270      switch (Reg) {
1271      default: return 0;
1272      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1273        return X86::AH;
1274      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1275        return X86::DH;
1276      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1277        return X86::CH;
1278      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1279        return X86::BH;
1280      }
1281    } else {
1282      switch (Reg) {
1283      default: return 0;
1284      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1285        return X86::AL;
1286      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1287        return X86::DL;
1288      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1289        return X86::CL;
1290      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1291        return X86::BL;
1292      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1293        return X86::SIL;
1294      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1295        return X86::DIL;
1296      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1297        return X86::BPL;
1298      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1299        return X86::SPL;
1300      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1301        return X86::R8B;
1302      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1303        return X86::R9B;
1304      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1305        return X86::R10B;
1306      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1307        return X86::R11B;
1308      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1309        return X86::R12B;
1310      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1311        return X86::R13B;
1312      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1313        return X86::R14B;
1314      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1315        return X86::R15B;
1316      }
1317    }
1318  case MVT::i16:
1319    switch (Reg) {
1320    default: return Reg;
1321    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1322      return X86::AX;
1323    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1324      return X86::DX;
1325    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1326      return X86::CX;
1327    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1328      return X86::BX;
1329    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1330      return X86::SI;
1331    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1332      return X86::DI;
1333    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1334      return X86::BP;
1335    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1336      return X86::SP;
1337    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1338      return X86::R8W;
1339    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1340      return X86::R9W;
1341    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1342      return X86::R10W;
1343    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1344      return X86::R11W;
1345    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1346      return X86::R12W;
1347    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1348      return X86::R13W;
1349    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1350      return X86::R14W;
1351    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1352      return X86::R15W;
1353    }
1354  case MVT::i32:
1355    switch (Reg) {
1356    default: return Reg;
1357    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1358      return X86::EAX;
1359    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1360      return X86::EDX;
1361    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1362      return X86::ECX;
1363    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1364      return X86::EBX;
1365    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1366      return X86::ESI;
1367    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1368      return X86::EDI;
1369    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1370      return X86::EBP;
1371    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1372      return X86::ESP;
1373    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1374      return X86::R8D;
1375    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1376      return X86::R9D;
1377    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1378      return X86::R10D;
1379    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1380      return X86::R11D;
1381    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1382      return X86::R12D;
1383    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1384      return X86::R13D;
1385    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1386      return X86::R14D;
1387    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1388      return X86::R15D;
1389    }
1390  case MVT::i64:
1391    switch (Reg) {
1392    default: return Reg;
1393    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1394      return X86::RAX;
1395    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1396      return X86::RDX;
1397    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1398      return X86::RCX;
1399    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1400      return X86::RBX;
1401    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1402      return X86::RSI;
1403    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1404      return X86::RDI;
1405    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1406      return X86::RBP;
1407    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1408      return X86::RSP;
1409    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1410      return X86::R8;
1411    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1412      return X86::R9;
1413    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1414      return X86::R10;
1415    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1416      return X86::R11;
1417    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1418      return X86::R12;
1419    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1420      return X86::R13;
1421    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1422      return X86::R14;
1423    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1424      return X86::R15;
1425    }
1426  }
1427
1428  return Reg;
1429}
1430}
1431
1432#include "X86GenRegisterInfo.inc"
1433
1434namespace {
1435  struct VISIBILITY_HIDDEN MSAC : public MachineFunctionPass {
1436    static char ID;
1437    MSAC() : MachineFunctionPass(&ID) {}
1438
1439    virtual bool runOnMachineFunction(MachineFunction &MF) {
1440      MachineFrameInfo *FFI = MF.getFrameInfo();
1441      MachineRegisterInfo &RI = MF.getRegInfo();
1442
1443      // Calculate max stack alignment of all already allocated stack objects.
1444      unsigned MaxAlign = calculateMaxStackAlignment(FFI);
1445
1446      // Be over-conservative: scan over all vreg defs and find, whether vector
1447      // registers are used. If yes - there is probability, that vector register
1448      // will be spilled and thus stack needs to be aligned properly.
1449      for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister;
1450           RegNum < RI.getLastVirtReg(); ++RegNum)
1451        MaxAlign = std::max(MaxAlign, RI.getRegClass(RegNum)->getAlignment());
1452
1453      if (FFI->getMaxAlignment() == MaxAlign)
1454        return false;
1455
1456      FFI->setMaxAlignment(MaxAlign);
1457      return true;
1458    }
1459
1460    virtual const char *getPassName() const {
1461      return "X86 Maximal Stack Alignment Calculator";
1462    }
1463
1464    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1465      AU.setPreservesCFG();
1466      MachineFunctionPass::getAnalysisUsage(AU);
1467    }
1468  };
1469
1470  char MSAC::ID = 0;
1471}
1472
1473FunctionPass*
1474llvm::createX86MaxStackAlignmentCalculatorPass() { return new MSAC(); }
1475