X86RegisterInfo.cpp revision 9ccaf53ada99c63737547c0235baeb8454b04e80
10888a09821a98ac0680fad765217302858e70fa4Paul Duffin//===- X86RegisterInfo.cpp - X86 Register Information -----------*- C++ -*-===//
20888a09821a98ac0680fad765217302858e70fa4Paul Duffin//
30888a09821a98ac0680fad765217302858e70fa4Paul Duffin//                     The LLVM Compiler Infrastructure
40888a09821a98ac0680fad765217302858e70fa4Paul Duffin//
50888a09821a98ac0680fad765217302858e70fa4Paul Duffin// This file is distributed under the University of Illinois Open Source
60888a09821a98ac0680fad765217302858e70fa4Paul Duffin// License. See LICENSE.TXT for details.
70888a09821a98ac0680fad765217302858e70fa4Paul Duffin//
80888a09821a98ac0680fad765217302858e70fa4Paul Duffin//===----------------------------------------------------------------------===//
90888a09821a98ac0680fad765217302858e70fa4Paul Duffin//
100888a09821a98ac0680fad765217302858e70fa4Paul Duffin// This file contains the X86 implementation of the TargetRegisterInfo class.
110888a09821a98ac0680fad765217302858e70fa4Paul Duffin// This file is responsible for the frame pointer elimination optimization
120888a09821a98ac0680fad765217302858e70fa4Paul Duffin// on X86.
130888a09821a98ac0680fad765217302858e70fa4Paul Duffin//
140888a09821a98ac0680fad765217302858e70fa4Paul Duffin//===----------------------------------------------------------------------===//
150888a09821a98ac0680fad765217302858e70fa4Paul Duffin
160888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "X86.h"
170888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "X86RegisterInfo.h"
180888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "X86InstrBuilder.h"
190888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "X86MachineFunctionInfo.h"
200888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "X86Subtarget.h"
210888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "X86TargetMachine.h"
220888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/Constants.h"
230888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/Function.h"
240888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/Type.h"
250888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/CodeGen/ValueTypes.h"
260888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/CodeGen/MachineInstrBuilder.h"
270888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/CodeGen/MachineFunction.h"
280888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/CodeGen/MachineFunctionPass.h"
290888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/CodeGen/MachineFrameInfo.h"
300888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/CodeGen/MachineLocation.h"
310888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/CodeGen/MachineModuleInfo.h"
320888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/CodeGen/MachineRegisterInfo.h"
330888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/MC/MCAsmInfo.h"
340888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/Target/TargetFrameInfo.h"
350888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/Target/TargetInstrInfo.h"
360888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/Target/TargetMachine.h"
370888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/Target/TargetOptions.h"
380888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/ADT/BitVector.h"
390888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/ADT/STLExtras.h"
400888a09821a98ac0680fad765217302858e70fa4Paul Duffin#include "llvm/Support/ErrorHandling.h"
410888a09821a98ac0680fad765217302858e70fa4Paul Duffinusing namespace llvm;
420888a09821a98ac0680fad765217302858e70fa4Paul Duffin
430888a09821a98ac0680fad765217302858e70fa4Paul DuffinX86RegisterInfo::X86RegisterInfo(X86TargetMachine &tm,
440888a09821a98ac0680fad765217302858e70fa4Paul Duffin                                 const TargetInstrInfo &tii)
450888a09821a98ac0680fad765217302858e70fa4Paul Duffin  : X86GenRegisterInfo(tm.getSubtarget<X86Subtarget>().is64Bit() ?
460888a09821a98ac0680fad765217302858e70fa4Paul Duffin                         X86::ADJCALLSTACKDOWN64 :
470888a09821a98ac0680fad765217302858e70fa4Paul Duffin                         X86::ADJCALLSTACKDOWN32,
480888a09821a98ac0680fad765217302858e70fa4Paul Duffin                       tm.getSubtarget<X86Subtarget>().is64Bit() ?
490888a09821a98ac0680fad765217302858e70fa4Paul Duffin                         X86::ADJCALLSTACKUP64 :
500888a09821a98ac0680fad765217302858e70fa4Paul Duffin                         X86::ADJCALLSTACKUP32),
510888a09821a98ac0680fad765217302858e70fa4Paul Duffin    TM(tm), TII(tii) {
520888a09821a98ac0680fad765217302858e70fa4Paul Duffin  // Cache some information.
530888a09821a98ac0680fad765217302858e70fa4Paul Duffin  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
540888a09821a98ac0680fad765217302858e70fa4Paul Duffin  Is64Bit = Subtarget->is64Bit();
550888a09821a98ac0680fad765217302858e70fa4Paul Duffin  IsWin64 = Subtarget->isTargetWin64();
560888a09821a98ac0680fad765217302858e70fa4Paul Duffin  StackAlign = TM.getFrameInfo()->getStackAlignment();
570888a09821a98ac0680fad765217302858e70fa4Paul Duffin
580888a09821a98ac0680fad765217302858e70fa4Paul Duffin  if (Is64Bit) {
590888a09821a98ac0680fad765217302858e70fa4Paul Duffin    SlotSize = 8;
600888a09821a98ac0680fad765217302858e70fa4Paul Duffin    StackPtr = X86::RSP;
610888a09821a98ac0680fad765217302858e70fa4Paul Duffin    FramePtr = X86::RBP;
620888a09821a98ac0680fad765217302858e70fa4Paul Duffin  } else {
630888a09821a98ac0680fad765217302858e70fa4Paul Duffin    SlotSize = 4;
640888a09821a98ac0680fad765217302858e70fa4Paul Duffin    StackPtr = X86::ESP;
650888a09821a98ac0680fad765217302858e70fa4Paul Duffin    FramePtr = X86::EBP;
660888a09821a98ac0680fad765217302858e70fa4Paul Duffin  }
670888a09821a98ac0680fad765217302858e70fa4Paul Duffin}
680888a09821a98ac0680fad765217302858e70fa4Paul Duffin
690888a09821a98ac0680fad765217302858e70fa4Paul Duffin/// getDwarfRegNum - This function maps LLVM register identifiers to the DWARF
700888a09821a98ac0680fad765217302858e70fa4Paul Duffin/// specific numbering, used in debug info and exception tables.
710888a09821a98ac0680fad765217302858e70fa4Paul Duffinint X86RegisterInfo::getDwarfRegNum(unsigned RegNo, bool isEH) const {
720888a09821a98ac0680fad765217302858e70fa4Paul Duffin  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
730888a09821a98ac0680fad765217302858e70fa4Paul Duffin  unsigned Flavour = DWARFFlavour::X86_64;
740888a09821a98ac0680fad765217302858e70fa4Paul Duffin
750888a09821a98ac0680fad765217302858e70fa4Paul Duffin  if (!Subtarget->is64Bit()) {
760888a09821a98ac0680fad765217302858e70fa4Paul Duffin    if (Subtarget->isTargetDarwin()) {
770888a09821a98ac0680fad765217302858e70fa4Paul Duffin      if (isEH)
780888a09821a98ac0680fad765217302858e70fa4Paul Duffin        Flavour = DWARFFlavour::X86_32_DarwinEH;
790888a09821a98ac0680fad765217302858e70fa4Paul Duffin      else
800888a09821a98ac0680fad765217302858e70fa4Paul Duffin        Flavour = DWARFFlavour::X86_32_Generic;
810888a09821a98ac0680fad765217302858e70fa4Paul Duffin    } else if (Subtarget->isTargetCygMing()) {
820888a09821a98ac0680fad765217302858e70fa4Paul Duffin      // Unsupported by now, just quick fallback
830888a09821a98ac0680fad765217302858e70fa4Paul Duffin      Flavour = DWARFFlavour::X86_32_Generic;
840888a09821a98ac0680fad765217302858e70fa4Paul Duffin    } else {
850888a09821a98ac0680fad765217302858e70fa4Paul Duffin      Flavour = DWARFFlavour::X86_32_Generic;
860888a09821a98ac0680fad765217302858e70fa4Paul Duffin    }
870888a09821a98ac0680fad765217302858e70fa4Paul Duffin  }
880888a09821a98ac0680fad765217302858e70fa4Paul Duffin
890888a09821a98ac0680fad765217302858e70fa4Paul Duffin  return X86GenRegisterInfo::getDwarfRegNumFull(RegNo, Flavour);
900888a09821a98ac0680fad765217302858e70fa4Paul Duffin}
910888a09821a98ac0680fad765217302858e70fa4Paul Duffin
920888a09821a98ac0680fad765217302858e70fa4Paul Duffin/// getX86RegNum - This function maps LLVM register identifiers to their X86
930888a09821a98ac0680fad765217302858e70fa4Paul Duffin/// specific numbering, which is used in various places encoding instructions.
940888a09821a98ac0680fad765217302858e70fa4Paul Duffinunsigned X86RegisterInfo::getX86RegNum(unsigned RegNo) {
950888a09821a98ac0680fad765217302858e70fa4Paul Duffin  switch(RegNo) {
960888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX;
970888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX;
980888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX;
990888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX;
1000888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH:
1010888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::ESP;
1020888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH:
1030888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::EBP;
1040888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH:
1050888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::ESI;
1060888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH:
1070888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::EDI;
1080888a09821a98ac0680fad765217302858e70fa4Paul Duffin
1090888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::R8:  case X86::R8D:  case X86::R8W:  case X86::R8B:
1100888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::EAX;
1110888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::R9:  case X86::R9D:  case X86::R9W:  case X86::R9B:
1120888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::ECX;
1130888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B:
1140888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::EDX;
1150888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B:
1160888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::EBX;
1170888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B:
1180888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::ESP;
1190888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B:
1200888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::EBP;
1210888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B:
1220888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::ESI;
1230888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B:
1240888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return N86::EDI;
1250888a09821a98ac0680fad765217302858e70fa4Paul Duffin
1260888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3:
1270888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7:
1280888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return RegNo-X86::ST0;
1290888a09821a98ac0680fad765217302858e70fa4Paul Duffin
1300888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::XMM0: case X86::XMM8:
1310888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::YMM0: case X86::YMM8: case X86::MM0:
1320888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 0;
1330888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::XMM1: case X86::XMM9:
1340888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::YMM1: case X86::YMM9: case X86::MM1:
1350888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 1;
1360888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::XMM2: case X86::XMM10:
1370888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::YMM2: case X86::YMM10: case X86::MM2:
1380888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 2;
1390888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::XMM3: case X86::XMM11:
1400888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::YMM3: case X86::YMM11: case X86::MM3:
1410888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 3;
1420888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::XMM4: case X86::XMM12:
1430888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::YMM4: case X86::YMM12: case X86::MM4:
1440888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 4;
1450888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::XMM5: case X86::XMM13:
1460888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::YMM5: case X86::YMM13: case X86::MM5:
1470888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 5;
1480888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::XMM6: case X86::XMM14:
1490888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::YMM6: case X86::YMM14: case X86::MM6:
1500888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 6;
1510888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::XMM7: case X86::XMM15:
1520888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::YMM7: case X86::YMM15: case X86::MM7:
1530888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 7;
1540888a09821a98ac0680fad765217302858e70fa4Paul Duffin
1550888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::ES:
1560888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 0;
1570888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::CS:
1580888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 1;
1590888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::SS:
1600888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 2;
1610888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::DS:
1620888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 3;
1630888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::FS:
1640888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 4;
1650888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::GS:
1660888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 5;
1670888a09821a98ac0680fad765217302858e70fa4Paul Duffin
1680888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::CR0:
1690888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 0;
1700888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::CR1:
1710888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 1;
1720888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::CR2:
1730888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 2;
1740888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::CR3:
1750888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 3;
1760888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::CR4:
1770888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 4;
1780888a09821a98ac0680fad765217302858e70fa4Paul Duffin
1790888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::DR0:
1800888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 0;
1810888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::DR1:
1820888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 1;
1830888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::DR2:
1840888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 2;
1850888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::DR3:
1860888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 3;
1870888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::DR4:
1880888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 4;
1890888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::DR5:
1900888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 5;
1910888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::DR6:
1920888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 6;
1930888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::DR7:
1940888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 7;
1950888a09821a98ac0680fad765217302858e70fa4Paul Duffin
1960888a09821a98ac0680fad765217302858e70fa4Paul Duffin  // Pseudo index registers are equivalent to a "none"
1970888a09821a98ac0680fad765217302858e70fa4Paul Duffin  // scaled index (See Intel Manual 2A, table 2-3)
1980888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::EIZ:
1990888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::RIZ:
2000888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 4;
2010888a09821a98ac0680fad765217302858e70fa4Paul Duffin
2020888a09821a98ac0680fad765217302858e70fa4Paul Duffin  default:
2030888a09821a98ac0680fad765217302858e70fa4Paul Duffin    assert(isVirtualRegister(RegNo) && "Unknown physical register!");
2040888a09821a98ac0680fad765217302858e70fa4Paul Duffin    llvm_unreachable("Register allocator hasn't allocated reg correctly yet!");
2050888a09821a98ac0680fad765217302858e70fa4Paul Duffin    return 0;
2060888a09821a98ac0680fad765217302858e70fa4Paul Duffin  }
2070888a09821a98ac0680fad765217302858e70fa4Paul Duffin}
2080888a09821a98ac0680fad765217302858e70fa4Paul Duffin
2090888a09821a98ac0680fad765217302858e70fa4Paul Duffinconst TargetRegisterClass *
2100888a09821a98ac0680fad765217302858e70fa4Paul DuffinX86RegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
2110888a09821a98ac0680fad765217302858e70fa4Paul Duffin                                          const TargetRegisterClass *B,
2120888a09821a98ac0680fad765217302858e70fa4Paul Duffin                                          unsigned SubIdx) const {
2130888a09821a98ac0680fad765217302858e70fa4Paul Duffin  switch (SubIdx) {
2140888a09821a98ac0680fad765217302858e70fa4Paul Duffin  default: return 0;
2150888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::sub_8bit:
2160888a09821a98ac0680fad765217302858e70fa4Paul Duffin    if (B == &X86::GR8RegClass) {
2170888a09821a98ac0680fad765217302858e70fa4Paul Duffin      if (A->getSize() == 2 || A->getSize() == 4 || A->getSize() == 8)
2180888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return A;
2190888a09821a98ac0680fad765217302858e70fa4Paul Duffin    } else if (B == &X86::GR8_ABCD_LRegClass || B == &X86::GR8_ABCD_HRegClass) {
2200888a09821a98ac0680fad765217302858e70fa4Paul Duffin      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
2210888a09821a98ac0680fad765217302858e70fa4Paul Duffin          A == &X86::GR64_NOREXRegClass ||
2220888a09821a98ac0680fad765217302858e70fa4Paul Duffin          A == &X86::GR64_NOSPRegClass ||
2230888a09821a98ac0680fad765217302858e70fa4Paul Duffin          A == &X86::GR64_NOREX_NOSPRegClass)
2240888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR64_ABCDRegClass;
2250888a09821a98ac0680fad765217302858e70fa4Paul Duffin      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
2260888a09821a98ac0680fad765217302858e70fa4Paul Duffin               A == &X86::GR32_NOREXRegClass ||
2270888a09821a98ac0680fad765217302858e70fa4Paul Duffin               A == &X86::GR32_NOSPRegClass)
2280888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR32_ABCDRegClass;
2290888a09821a98ac0680fad765217302858e70fa4Paul Duffin      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
2300888a09821a98ac0680fad765217302858e70fa4Paul Duffin               A == &X86::GR16_NOREXRegClass)
2310888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR16_ABCDRegClass;
2320888a09821a98ac0680fad765217302858e70fa4Paul Duffin    } else if (B == &X86::GR8_NOREXRegClass) {
2330888a09821a98ac0680fad765217302858e70fa4Paul Duffin      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
2340888a09821a98ac0680fad765217302858e70fa4Paul Duffin          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
2350888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR64_NOREXRegClass;
2360888a09821a98ac0680fad765217302858e70fa4Paul Duffin      else if (A == &X86::GR64_ABCDRegClass)
2370888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR64_ABCDRegClass;
2380888a09821a98ac0680fad765217302858e70fa4Paul Duffin      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
2390888a09821a98ac0680fad765217302858e70fa4Paul Duffin               A == &X86::GR32_NOSPRegClass)
2400888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR32_NOREXRegClass;
2410888a09821a98ac0680fad765217302858e70fa4Paul Duffin      else if (A == &X86::GR32_ABCDRegClass)
2420888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR32_ABCDRegClass;
2430888a09821a98ac0680fad765217302858e70fa4Paul Duffin      else if (A == &X86::GR16RegClass || A == &X86::GR16_NOREXRegClass)
2440888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR16_NOREXRegClass;
2450888a09821a98ac0680fad765217302858e70fa4Paul Duffin      else if (A == &X86::GR16_ABCDRegClass)
2460888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR16_ABCDRegClass;
2470888a09821a98ac0680fad765217302858e70fa4Paul Duffin    }
2480888a09821a98ac0680fad765217302858e70fa4Paul Duffin    break;
2490888a09821a98ac0680fad765217302858e70fa4Paul Duffin  case X86::sub_8bit_hi:
2500888a09821a98ac0680fad765217302858e70fa4Paul Duffin    if (B == &X86::GR8_ABCD_HRegClass) {
2510888a09821a98ac0680fad765217302858e70fa4Paul Duffin      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
2520888a09821a98ac0680fad765217302858e70fa4Paul Duffin          A == &X86::GR64_NOREXRegClass ||
2530888a09821a98ac0680fad765217302858e70fa4Paul Duffin          A == &X86::GR64_NOSPRegClass ||
2540888a09821a98ac0680fad765217302858e70fa4Paul Duffin          A == &X86::GR64_NOREX_NOSPRegClass)
2550888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR64_ABCDRegClass;
2560888a09821a98ac0680fad765217302858e70fa4Paul Duffin      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
2570888a09821a98ac0680fad765217302858e70fa4Paul Duffin               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
2580888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR32_ABCDRegClass;
2590888a09821a98ac0680fad765217302858e70fa4Paul Duffin      else if (A == &X86::GR16RegClass || A == &X86::GR16_ABCDRegClass ||
2600888a09821a98ac0680fad765217302858e70fa4Paul Duffin               A == &X86::GR16_NOREXRegClass)
2610888a09821a98ac0680fad765217302858e70fa4Paul Duffin        return &X86::GR16_ABCDRegClass;
2620888a09821a98ac0680fad765217302858e70fa4Paul Duffin    }
263    break;
264  case X86::sub_16bit:
265    if (B == &X86::GR16RegClass) {
266      if (A->getSize() == 4 || A->getSize() == 8)
267        return A;
268    } else if (B == &X86::GR16_ABCDRegClass) {
269      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
270          A == &X86::GR64_NOREXRegClass ||
271          A == &X86::GR64_NOSPRegClass ||
272          A == &X86::GR64_NOREX_NOSPRegClass)
273        return &X86::GR64_ABCDRegClass;
274      else if (A == &X86::GR32RegClass || A == &X86::GR32_ABCDRegClass ||
275               A == &X86::GR32_NOREXRegClass || A == &X86::GR32_NOSPRegClass)
276        return &X86::GR32_ABCDRegClass;
277    } else if (B == &X86::GR16_NOREXRegClass) {
278      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
279          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
280        return &X86::GR64_NOREXRegClass;
281      else if (A == &X86::GR64_ABCDRegClass)
282        return &X86::GR64_ABCDRegClass;
283      else if (A == &X86::GR32RegClass || A == &X86::GR32_NOREXRegClass ||
284               A == &X86::GR32_NOSPRegClass)
285        return &X86::GR32_NOREXRegClass;
286      else if (A == &X86::GR32_ABCDRegClass)
287        return &X86::GR64_ABCDRegClass;
288    }
289    break;
290  case X86::sub_32bit:
291    if (B == &X86::GR32RegClass || B == &X86::GR32_NOSPRegClass) {
292      if (A->getSize() == 8)
293        return A;
294    } else if (B == &X86::GR32_ABCDRegClass) {
295      if (A == &X86::GR64RegClass || A == &X86::GR64_ABCDRegClass ||
296          A == &X86::GR64_NOREXRegClass ||
297          A == &X86::GR64_NOSPRegClass ||
298          A == &X86::GR64_NOREX_NOSPRegClass)
299        return &X86::GR64_ABCDRegClass;
300    } else if (B == &X86::GR32_NOREXRegClass) {
301      if (A == &X86::GR64RegClass || A == &X86::GR64_NOREXRegClass ||
302          A == &X86::GR64_NOSPRegClass || A == &X86::GR64_NOREX_NOSPRegClass)
303        return &X86::GR64_NOREXRegClass;
304      else if (A == &X86::GR64_ABCDRegClass)
305        return &X86::GR64_ABCDRegClass;
306    }
307    break;
308  case X86::sub_ss:
309    if (B == &X86::FR32RegClass)
310      return A;
311    break;
312  case X86::sub_sd:
313    if (B == &X86::FR64RegClass)
314      return A;
315    break;
316  case X86::sub_xmm:
317    if (B == &X86::VR128RegClass)
318      return A;
319    break;
320  }
321  return 0;
322}
323
324const TargetRegisterClass *
325X86RegisterInfo::getPointerRegClass(unsigned Kind) const {
326  switch (Kind) {
327  default: llvm_unreachable("Unexpected Kind in getPointerRegClass!");
328  case 0: // Normal GPRs.
329    if (TM.getSubtarget<X86Subtarget>().is64Bit())
330      return &X86::GR64RegClass;
331    return &X86::GR32RegClass;
332  case 1: // Normal GRPs except the stack pointer (for encoding reasons).
333    if (TM.getSubtarget<X86Subtarget>().is64Bit())
334      return &X86::GR64_NOSPRegClass;
335    return &X86::GR32_NOSPRegClass;
336  }
337}
338
339const TargetRegisterClass *
340X86RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
341  if (RC == &X86::CCRRegClass) {
342    if (Is64Bit)
343      return &X86::GR64RegClass;
344    else
345      return &X86::GR32RegClass;
346  }
347  return NULL;
348}
349
350const unsigned *
351X86RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
352  bool callsEHReturn = false;
353  bool ghcCall = false;
354
355  if (MF) {
356    callsEHReturn = MF->getMMI().callsEHReturn();
357    const Function *F = MF->getFunction();
358    ghcCall = (F ? F->getCallingConv() == CallingConv::GHC : false);
359  }
360
361  static const unsigned GhcCalleeSavedRegs[] = {
362    0
363  };
364
365  static const unsigned CalleeSavedRegs32Bit[] = {
366    X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
367  };
368
369  static const unsigned CalleeSavedRegs32EHRet[] = {
370    X86::EAX, X86::EDX, X86::ESI, X86::EDI, X86::EBX, X86::EBP,  0
371  };
372
373  static const unsigned CalleeSavedRegs64Bit[] = {
374    X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
375  };
376
377  static const unsigned CalleeSavedRegs64EHRet[] = {
378    X86::RAX, X86::RDX, X86::RBX, X86::R12,
379    X86::R13, X86::R14, X86::R15, X86::RBP, 0
380  };
381
382  static const unsigned CalleeSavedRegsWin64[] = {
383    X86::RBX,   X86::RBP,   X86::RDI,   X86::RSI,
384    X86::R12,   X86::R13,   X86::R14,   X86::R15,
385    X86::XMM6,  X86::XMM7,  X86::XMM8,  X86::XMM9,
386    X86::XMM10, X86::XMM11, X86::XMM12, X86::XMM13,
387    X86::XMM14, X86::XMM15, 0
388  };
389
390  if (ghcCall) {
391    return GhcCalleeSavedRegs;
392  } else if (Is64Bit) {
393    if (IsWin64)
394      return CalleeSavedRegsWin64;
395    else
396      return (callsEHReturn ? CalleeSavedRegs64EHRet : CalleeSavedRegs64Bit);
397  } else {
398    return (callsEHReturn ? CalleeSavedRegs32EHRet : CalleeSavedRegs32Bit);
399  }
400}
401
402BitVector X86RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
403  BitVector Reserved(getNumRegs());
404  // Set the stack-pointer register and its aliases as reserved.
405  Reserved.set(X86::RSP);
406  Reserved.set(X86::ESP);
407  Reserved.set(X86::SP);
408  Reserved.set(X86::SPL);
409
410  // Set the instruction pointer register and its aliases as reserved.
411  Reserved.set(X86::RIP);
412  Reserved.set(X86::EIP);
413  Reserved.set(X86::IP);
414
415  // Set the frame-pointer register and its aliases as reserved if needed.
416  if (hasFP(MF)) {
417    Reserved.set(X86::RBP);
418    Reserved.set(X86::EBP);
419    Reserved.set(X86::BP);
420    Reserved.set(X86::BPL);
421  }
422
423  // Mark the x87 stack registers as reserved, since they don't behave normally
424  // with respect to liveness. We don't fully model the effects of x87 stack
425  // pushes and pops after stackification.
426  Reserved.set(X86::ST0);
427  Reserved.set(X86::ST1);
428  Reserved.set(X86::ST2);
429  Reserved.set(X86::ST3);
430  Reserved.set(X86::ST4);
431  Reserved.set(X86::ST5);
432  Reserved.set(X86::ST6);
433  Reserved.set(X86::ST7);
434  return Reserved;
435}
436
437//===----------------------------------------------------------------------===//
438// Stack Frame Processing methods
439//===----------------------------------------------------------------------===//
440
441/// hasFP - Return true if the specified function should have a dedicated frame
442/// pointer register.  This is true if the function has variable sized allocas
443/// or if frame pointer elimination is disabled.
444bool X86RegisterInfo::hasFP(const MachineFunction &MF) const {
445  const MachineFrameInfo *MFI = MF.getFrameInfo();
446  const MachineModuleInfo &MMI = MF.getMMI();
447
448  return (DisableFramePointerElim(MF) ||
449          needsStackRealignment(MF) ||
450          MFI->hasVarSizedObjects() ||
451          MFI->isFrameAddressTaken() ||
452          MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
453          MMI.callsUnwindInit());
454}
455
456bool X86RegisterInfo::canRealignStack(const MachineFunction &MF) const {
457  const MachineFrameInfo *MFI = MF.getFrameInfo();
458  return (RealignStack &&
459          !MFI->hasVarSizedObjects());
460}
461
462bool X86RegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
463  const MachineFrameInfo *MFI = MF.getFrameInfo();
464  const Function *F = MF.getFunction();
465  bool requiresRealignment = ((MFI->getMaxAlignment() > StackAlign) ||
466                               F->hasFnAttr(Attribute::StackAlignment));
467
468  // FIXME: Currently we don't support stack realignment for functions with
469  //        variable-sized allocas.
470  // FIXME: It's more complicated than this...
471  if (0 && requiresRealignment && MFI->hasVarSizedObjects())
472    report_fatal_error(
473      "Stack realignment in presense of dynamic allocas is not supported");
474
475  return requiresRealignment && canRealignStack(MF);
476}
477
478bool X86RegisterInfo::hasReservedCallFrame(const MachineFunction &MF) const {
479  return !MF.getFrameInfo()->hasVarSizedObjects();
480}
481
482bool X86RegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
483                                           unsigned Reg, int &FrameIdx) const {
484  if (Reg == FramePtr && hasFP(MF)) {
485    FrameIdx = MF.getFrameInfo()->getObjectIndexBegin();
486    return true;
487  }
488  return false;
489}
490
491int
492X86RegisterInfo::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
493  const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
494  const MachineFrameInfo *MFI = MF.getFrameInfo();
495  int Offset = MFI->getObjectOffset(FI) - TFI.getOffsetOfLocalArea();
496  uint64_t StackSize = MFI->getStackSize();
497
498  if (needsStackRealignment(MF)) {
499    if (FI < 0) {
500      // Skip the saved EBP.
501      Offset += SlotSize;
502    } else {
503      unsigned Align = MFI->getObjectAlignment(FI);
504      assert((-(Offset + StackSize)) % Align == 0);
505      Align = 0;
506      return Offset + StackSize;
507    }
508    // FIXME: Support tail calls
509  } else {
510    if (!hasFP(MF))
511      return Offset + StackSize;
512
513    // Skip the saved EBP.
514    Offset += SlotSize;
515
516    // Skip the RETADDR move area
517    const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
518    int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
519    if (TailCallReturnAddrDelta < 0)
520      Offset -= TailCallReturnAddrDelta;
521  }
522
523  return Offset;
524}
525
526static unsigned getSUBriOpcode(unsigned is64Bit, int64_t Imm) {
527  if (is64Bit) {
528    if (isInt<8>(Imm))
529      return X86::SUB64ri8;
530    return X86::SUB64ri32;
531  } else {
532    if (isInt<8>(Imm))
533      return X86::SUB32ri8;
534    return X86::SUB32ri;
535  }
536}
537
538static unsigned getADDriOpcode(unsigned is64Bit, int64_t Imm) {
539  if (is64Bit) {
540    if (isInt<8>(Imm))
541      return X86::ADD64ri8;
542    return X86::ADD64ri32;
543  } else {
544    if (isInt<8>(Imm))
545      return X86::ADD32ri8;
546    return X86::ADD32ri;
547  }
548}
549
550void X86RegisterInfo::
551eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
552                              MachineBasicBlock::iterator I) const {
553  if (!hasReservedCallFrame(MF)) {
554    // If the stack pointer can be changed after prologue, turn the
555    // adjcallstackup instruction into a 'sub ESP, <amt>' and the
556    // adjcallstackdown instruction into 'add ESP, <amt>'
557    // TODO: consider using push / pop instead of sub + store / add
558    MachineInstr *Old = I;
559    uint64_t Amount = Old->getOperand(0).getImm();
560    if (Amount != 0) {
561      // We need to keep the stack aligned properly.  To do this, we round the
562      // amount of space needed for the outgoing arguments up to the next
563      // alignment boundary.
564      Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
565
566      MachineInstr *New = 0;
567      if (Old->getOpcode() == getCallFrameSetupOpcode()) {
568        New = BuildMI(MF, Old->getDebugLoc(),
569                      TII.get(getSUBriOpcode(Is64Bit, Amount)),
570                      StackPtr)
571          .addReg(StackPtr)
572          .addImm(Amount);
573      } else {
574        assert(Old->getOpcode() == getCallFrameDestroyOpcode());
575
576        // Factor out the amount the callee already popped.
577        uint64_t CalleeAmt = Old->getOperand(1).getImm();
578        Amount -= CalleeAmt;
579
580      if (Amount) {
581          unsigned Opc = getADDriOpcode(Is64Bit, Amount);
582          New = BuildMI(MF, Old->getDebugLoc(), TII.get(Opc), StackPtr)
583            .addReg(StackPtr)
584            .addImm(Amount);
585        }
586      }
587
588      if (New) {
589        // The EFLAGS implicit def is dead.
590        New->getOperand(3).setIsDead();
591
592        // Replace the pseudo instruction with a new instruction.
593        MBB.insert(I, New);
594      }
595    }
596  } else if (I->getOpcode() == getCallFrameDestroyOpcode()) {
597    // If we are performing frame pointer elimination and if the callee pops
598    // something off the stack pointer, add it back.  We do this until we have
599    // more advanced stack pointer tracking ability.
600    if (uint64_t CalleeAmt = I->getOperand(1).getImm()) {
601      unsigned Opc = getSUBriOpcode(Is64Bit, CalleeAmt);
602      MachineInstr *Old = I;
603      MachineInstr *New =
604        BuildMI(MF, Old->getDebugLoc(), TII.get(Opc),
605                StackPtr)
606          .addReg(StackPtr)
607          .addImm(CalleeAmt);
608
609      // The EFLAGS implicit def is dead.
610      New->getOperand(3).setIsDead();
611      MBB.insert(I, New);
612    }
613  }
614
615  MBB.erase(I);
616}
617
618unsigned
619X86RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
620                                     int SPAdj, FrameIndexValue *Value,
621                                     RegScavenger *RS) const{
622  assert(SPAdj == 0 && "Unexpected");
623
624  unsigned i = 0;
625  MachineInstr &MI = *II;
626  MachineFunction &MF = *MI.getParent()->getParent();
627
628  while (!MI.getOperand(i).isFI()) {
629    ++i;
630    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
631  }
632
633  int FrameIndex = MI.getOperand(i).getIndex();
634  unsigned BasePtr;
635
636  unsigned Opc = MI.getOpcode();
637  bool AfterFPPop = Opc == X86::TAILJMPm64 || Opc == X86::TAILJMPm;
638  if (needsStackRealignment(MF))
639    BasePtr = (FrameIndex < 0 ? FramePtr : StackPtr);
640  else if (AfterFPPop)
641    BasePtr = StackPtr;
642  else
643    BasePtr = (hasFP(MF) ? FramePtr : StackPtr);
644
645  // This must be part of a four operand memory reference.  Replace the
646  // FrameIndex with base register with EBP.  Add an offset to the offset.
647  MI.getOperand(i).ChangeToRegister(BasePtr, false);
648
649  // Now add the frame object offset to the offset from EBP.
650  int FIOffset;
651  if (AfterFPPop) {
652    // Tail call jmp happens after FP is popped.
653    const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
654    const MachineFrameInfo *MFI = MF.getFrameInfo();
655    FIOffset = MFI->getObjectOffset(FrameIndex) - TFI.getOffsetOfLocalArea();
656  } else
657    FIOffset = getFrameIndexOffset(MF, FrameIndex);
658
659  if (MI.getOperand(i+3).isImm()) {
660    // Offset is a 32-bit integer.
661    int Offset = FIOffset + (int)(MI.getOperand(i + 3).getImm());
662    MI.getOperand(i + 3).ChangeToImmediate(Offset);
663  } else {
664    // Offset is symbolic. This is extremely rare.
665    uint64_t Offset = FIOffset + (uint64_t)MI.getOperand(i+3).getOffset();
666    MI.getOperand(i+3).setOffset(Offset);
667  }
668  return 0;
669}
670
671void
672X86RegisterInfo::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
673                                                      RegScavenger *RS) const {
674  MachineFrameInfo *MFI = MF.getFrameInfo();
675
676  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
677  int32_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
678
679  if (TailCallReturnAddrDelta < 0) {
680    // create RETURNADDR area
681    //   arg
682    //   arg
683    //   RETADDR
684    //   { ...
685    //     RETADDR area
686    //     ...
687    //   }
688    //   [EBP]
689    MFI->CreateFixedObject(-TailCallReturnAddrDelta,
690                           (-1U*SlotSize)+TailCallReturnAddrDelta, true);
691  }
692
693  if (hasFP(MF)) {
694    assert((TailCallReturnAddrDelta <= 0) &&
695           "The Delta should always be zero or negative");
696    const TargetFrameInfo &TFI = *MF.getTarget().getFrameInfo();
697
698    // Create a frame entry for the EBP register that must be saved.
699    int FrameIdx = MFI->CreateFixedObject(SlotSize,
700                                          -(int)SlotSize +
701                                          TFI.getOffsetOfLocalArea() +
702                                          TailCallReturnAddrDelta,
703                                          true);
704    assert(FrameIdx == MFI->getObjectIndexBegin() &&
705           "Slot for EBP register must be last in order to be found!");
706    FrameIdx = 0;
707  }
708}
709
710/// emitSPUpdate - Emit a series of instructions to increment / decrement the
711/// stack pointer by a constant value.
712static
713void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
714                  unsigned StackPtr, int64_t NumBytes, bool Is64Bit,
715                  const TargetInstrInfo &TII) {
716  bool isSub = NumBytes < 0;
717  uint64_t Offset = isSub ? -NumBytes : NumBytes;
718  unsigned Opc = isSub ?
719    getSUBriOpcode(Is64Bit, Offset) :
720    getADDriOpcode(Is64Bit, Offset);
721  uint64_t Chunk = (1LL << 31) - 1;
722  DebugLoc DL = MBB.findDebugLoc(MBBI);
723
724  while (Offset) {
725    uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
726    MachineInstr *MI =
727      BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
728        .addReg(StackPtr)
729        .addImm(ThisVal);
730    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
731    Offset -= ThisVal;
732  }
733}
734
735/// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
736static
737void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
738                      unsigned StackPtr, uint64_t *NumBytes = NULL) {
739  if (MBBI == MBB.begin()) return;
740
741  MachineBasicBlock::iterator PI = prior(MBBI);
742  unsigned Opc = PI->getOpcode();
743  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
744       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
745      PI->getOperand(0).getReg() == StackPtr) {
746    if (NumBytes)
747      *NumBytes += PI->getOperand(2).getImm();
748    MBB.erase(PI);
749  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
750              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
751             PI->getOperand(0).getReg() == StackPtr) {
752    if (NumBytes)
753      *NumBytes -= PI->getOperand(2).getImm();
754    MBB.erase(PI);
755  }
756}
757
758/// mergeSPUpdatesUp - Merge two stack-manipulating instructions lower iterator.
759static
760void mergeSPUpdatesDown(MachineBasicBlock &MBB,
761                        MachineBasicBlock::iterator &MBBI,
762                        unsigned StackPtr, uint64_t *NumBytes = NULL) {
763  // FIXME: THIS ISN'T RUN!!!
764  return;
765
766  if (MBBI == MBB.end()) return;
767
768  MachineBasicBlock::iterator NI = llvm::next(MBBI);
769  if (NI == MBB.end()) return;
770
771  unsigned Opc = NI->getOpcode();
772  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
773       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
774      NI->getOperand(0).getReg() == StackPtr) {
775    if (NumBytes)
776      *NumBytes -= NI->getOperand(2).getImm();
777    MBB.erase(NI);
778    MBBI = NI;
779  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
780              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
781             NI->getOperand(0).getReg() == StackPtr) {
782    if (NumBytes)
783      *NumBytes += NI->getOperand(2).getImm();
784    MBB.erase(NI);
785    MBBI = NI;
786  }
787}
788
789/// mergeSPUpdates - Checks the instruction before/after the passed
790/// instruction. If it is an ADD/SUB instruction it is deleted argument and the
791/// stack adjustment is returned as a positive value for ADD and a negative for
792/// SUB.
793static int mergeSPUpdates(MachineBasicBlock &MBB,
794                           MachineBasicBlock::iterator &MBBI,
795                           unsigned StackPtr,
796                           bool doMergeWithPrevious) {
797  if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
798      (!doMergeWithPrevious && MBBI == MBB.end()))
799    return 0;
800
801  MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
802  MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
803  unsigned Opc = PI->getOpcode();
804  int Offset = 0;
805
806  if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
807       Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
808      PI->getOperand(0).getReg() == StackPtr){
809    Offset += PI->getOperand(2).getImm();
810    MBB.erase(PI);
811    if (!doMergeWithPrevious) MBBI = NI;
812  } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
813              Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
814             PI->getOperand(0).getReg() == StackPtr) {
815    Offset -= PI->getOperand(2).getImm();
816    MBB.erase(PI);
817    if (!doMergeWithPrevious) MBBI = NI;
818  }
819
820  return Offset;
821}
822
823void X86RegisterInfo::emitCalleeSavedFrameMoves(MachineFunction &MF,
824                                                MCSymbol *Label,
825                                                unsigned FramePtr) const {
826  MachineFrameInfo *MFI = MF.getFrameInfo();
827  MachineModuleInfo &MMI = MF.getMMI();
828
829  // Add callee saved registers to move list.
830  const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
831  if (CSI.empty()) return;
832
833  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
834  const TargetData *TD = MF.getTarget().getTargetData();
835  bool HasFP = hasFP(MF);
836
837  // Calculate amount of bytes used for return address storing.
838  int stackGrowth =
839    (MF.getTarget().getFrameInfo()->getStackGrowthDirection() ==
840     TargetFrameInfo::StackGrowsUp ?
841     TD->getPointerSize() : -TD->getPointerSize());
842
843  // FIXME: This is dirty hack. The code itself is pretty mess right now.
844  // It should be rewritten from scratch and generalized sometimes.
845
846  // Determine maximum offset (minumum due to stack growth).
847  int64_t MaxOffset = 0;
848  for (std::vector<CalleeSavedInfo>::const_iterator
849         I = CSI.begin(), E = CSI.end(); I != E; ++I)
850    MaxOffset = std::min(MaxOffset,
851                         MFI->getObjectOffset(I->getFrameIdx()));
852
853  // Calculate offsets.
854  int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
855  for (std::vector<CalleeSavedInfo>::const_iterator
856         I = CSI.begin(), E = CSI.end(); I != E; ++I) {
857    int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
858    unsigned Reg = I->getReg();
859    Offset = MaxOffset - Offset + saveAreaOffset;
860
861    // Don't output a new machine move if we're re-saving the frame
862    // pointer. This happens when the PrologEpilogInserter has inserted an extra
863    // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
864    // generates one when frame pointers are used. If we generate a "machine
865    // move" for this extra "PUSH", the linker will lose track of the fact that
866    // the frame pointer should have the value of the first "PUSH" when it's
867    // trying to unwind.
868    //
869    // FIXME: This looks inelegant. It's possibly correct, but it's covering up
870    //        another bug. I.e., one where we generate a prolog like this:
871    //
872    //          pushl  %ebp
873    //          movl   %esp, %ebp
874    //          pushl  %ebp
875    //          pushl  %esi
876    //           ...
877    //
878    //        The immediate re-push of EBP is unnecessary. At the least, it's an
879    //        optimization bug. EBP can be used as a scratch register in certain
880    //        cases, but probably not when we have a frame pointer.
881    if (HasFP && FramePtr == Reg)
882      continue;
883
884    MachineLocation CSDst(MachineLocation::VirtualFP, Offset);
885    MachineLocation CSSrc(Reg);
886    Moves.push_back(MachineMove(Label, CSDst, CSSrc));
887  }
888}
889
890/// emitPrologue - Push callee-saved registers onto the stack, which
891/// automatically adjust the stack pointer. Adjust the stack pointer to allocate
892/// space for local variables. Also emit labels used by the exception handler to
893/// generate the exception handling frames.
894void X86RegisterInfo::emitPrologue(MachineFunction &MF) const {
895  MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
896  MachineBasicBlock::iterator MBBI = MBB.begin();
897  MachineFrameInfo *MFI = MF.getFrameInfo();
898  const Function *Fn = MF.getFunction();
899  const X86Subtarget *Subtarget = &MF.getTarget().getSubtarget<X86Subtarget>();
900  MachineModuleInfo &MMI = MF.getMMI();
901  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
902  bool needsFrameMoves = MMI.hasDebugInfo() ||
903                          !Fn->doesNotThrow() || UnwindTablesMandatory;
904  uint64_t MaxAlign  = MFI->getMaxAlignment(); // Desired stack alignment.
905  uint64_t StackSize = MFI->getStackSize();    // Number of bytes to allocate.
906  bool HasFP = hasFP(MF);
907  DebugLoc DL;
908
909  // Add RETADDR move area to callee saved frame size.
910  int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
911  if (TailCallReturnAddrDelta < 0)
912    X86FI->setCalleeSavedFrameSize(
913      X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
914
915  // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
916  // function, and use up to 128 bytes of stack space, don't have a frame
917  // pointer, calls, or dynamic alloca then we do not need to adjust the
918  // stack pointer (we fit in the Red Zone).
919  if (Is64Bit && !Fn->hasFnAttr(Attribute::NoRedZone) &&
920      !needsStackRealignment(MF) &&
921      !MFI->hasVarSizedObjects() &&                // No dynamic alloca.
922      !MFI->adjustsStack() &&                      // No calls.
923      !Subtarget->isTargetWin64()) {               // Win64 has no Red Zone
924    uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
925    if (HasFP) MinSize += SlotSize;
926    StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
927    MFI->setStackSize(StackSize);
928  } else if (Subtarget->isTargetWin64()) {
929    // We need to always allocate 32 bytes as register spill area.
930    // FIXME: We might reuse these 32 bytes for leaf functions.
931    StackSize += 32;
932    MFI->setStackSize(StackSize);
933  }
934
935  // Insert stack pointer adjustment for later moving of return addr.  Only
936  // applies to tail call optimized functions where the callee argument stack
937  // size is bigger than the callers.
938  if (TailCallReturnAddrDelta < 0) {
939    MachineInstr *MI =
940      BuildMI(MBB, MBBI, DL,
941              TII.get(getSUBriOpcode(Is64Bit, -TailCallReturnAddrDelta)),
942              StackPtr)
943        .addReg(StackPtr)
944        .addImm(-TailCallReturnAddrDelta);
945    MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
946  }
947
948  // Mapping for machine moves:
949  //
950  //   DST: VirtualFP AND
951  //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
952  //        ELSE                        => DW_CFA_def_cfa
953  //
954  //   SRC: VirtualFP AND
955  //        DST: Register               => DW_CFA_def_cfa_register
956  //
957  //   ELSE
958  //        OFFSET < 0                  => DW_CFA_offset_extended_sf
959  //        REG < 64                    => DW_CFA_offset + Reg
960  //        ELSE                        => DW_CFA_offset_extended
961
962  std::vector<MachineMove> &Moves = MMI.getFrameMoves();
963  const TargetData *TD = MF.getTarget().getTargetData();
964  uint64_t NumBytes = 0;
965  int stackGrowth = -TD->getPointerSize();
966
967  if (HasFP) {
968    // Calculate required stack adjustment.
969    uint64_t FrameSize = StackSize - SlotSize;
970    if (needsStackRealignment(MF))
971      FrameSize = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
972
973    NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
974
975    // Get the offset of the stack slot for the EBP register, which is
976    // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
977    // Update the frame offset adjustment.
978    MFI->setOffsetAdjustment(-NumBytes);
979
980    // Save EBP/RBP into the appropriate stack slot.
981    BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
982      .addReg(FramePtr, RegState::Kill);
983
984    if (needsFrameMoves) {
985      // Mark the place where EBP/RBP was saved.
986      MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
987      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(FrameLabel);
988
989      // Define the current CFA rule to use the provided offset.
990      if (StackSize) {
991        MachineLocation SPDst(MachineLocation::VirtualFP);
992        MachineLocation SPSrc(MachineLocation::VirtualFP, 2 * stackGrowth);
993        Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
994      } else {
995        // FIXME: Verify & implement for FP
996        MachineLocation SPDst(StackPtr);
997        MachineLocation SPSrc(StackPtr, stackGrowth);
998        Moves.push_back(MachineMove(FrameLabel, SPDst, SPSrc));
999      }
1000
1001      // Change the rule for the FramePtr to be an "offset" rule.
1002      MachineLocation FPDst(MachineLocation::VirtualFP, 2 * stackGrowth);
1003      MachineLocation FPSrc(FramePtr);
1004      Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
1005    }
1006
1007    // Update EBP with the new base value...
1008    BuildMI(MBB, MBBI, DL,
1009            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
1010        .addReg(StackPtr);
1011
1012    if (needsFrameMoves) {
1013      // Mark effective beginning of when frame pointer becomes valid.
1014      MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
1015      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(FrameLabel);
1016
1017      // Define the current CFA to use the EBP/RBP register.
1018      MachineLocation FPDst(FramePtr);
1019      MachineLocation FPSrc(MachineLocation::VirtualFP);
1020      Moves.push_back(MachineMove(FrameLabel, FPDst, FPSrc));
1021    }
1022
1023    // Mark the FramePtr as live-in in every block except the entry.
1024    for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
1025         I != E; ++I)
1026      I->addLiveIn(FramePtr);
1027
1028    // Realign stack
1029    if (needsStackRealignment(MF)) {
1030      MachineInstr *MI =
1031        BuildMI(MBB, MBBI, DL,
1032                TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri),
1033                StackPtr).addReg(StackPtr).addImm(-MaxAlign);
1034
1035      // The EFLAGS implicit def is dead.
1036      MI->getOperand(3).setIsDead();
1037    }
1038  } else {
1039    NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1040  }
1041
1042  // Skip the callee-saved push instructions.
1043  bool PushedRegs = false;
1044  int StackOffset = 2 * stackGrowth;
1045
1046  while (MBBI != MBB.end() &&
1047         (MBBI->getOpcode() == X86::PUSH32r ||
1048          MBBI->getOpcode() == X86::PUSH64r)) {
1049    PushedRegs = true;
1050    ++MBBI;
1051
1052    if (!HasFP && needsFrameMoves) {
1053      // Mark callee-saved push instruction.
1054      MCSymbol *Label = MMI.getContext().CreateTempSymbol();
1055      BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
1056
1057      // Define the current CFA rule to use the provided offset.
1058      unsigned Ptr = StackSize ?
1059        MachineLocation::VirtualFP : StackPtr;
1060      MachineLocation SPDst(Ptr);
1061      MachineLocation SPSrc(Ptr, StackOffset);
1062      Moves.push_back(MachineMove(Label, SPDst, SPSrc));
1063      StackOffset += stackGrowth;
1064    }
1065  }
1066
1067  DL = MBB.findDebugLoc(MBBI);
1068
1069  // Adjust stack pointer: ESP -= numbytes.
1070  if (NumBytes >= 4096 && Subtarget->isTargetCygMing()) {
1071    // Check, whether EAX is livein for this function.
1072    bool isEAXAlive = false;
1073    for (MachineRegisterInfo::livein_iterator
1074           II = MF.getRegInfo().livein_begin(),
1075           EE = MF.getRegInfo().livein_end(); (II != EE) && !isEAXAlive; ++II) {
1076      unsigned Reg = II->first;
1077      isEAXAlive = (Reg == X86::EAX || Reg == X86::AX ||
1078                    Reg == X86::AH || Reg == X86::AL);
1079    }
1080
1081    // Function prologue calls _alloca to probe the stack when allocating more
1082    // than 4k bytes in one go. Touching the stack at 4K increments is necessary
1083    // to ensure that the guard pages used by the OS virtual memory manager are
1084    // allocated in correct sequence.
1085    if (!isEAXAlive) {
1086      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1087        .addImm(NumBytes);
1088      BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
1089        .addExternalSymbol("_alloca")
1090        .addReg(StackPtr, RegState::Define | RegState::Implicit);
1091    } else {
1092      // Save EAX
1093      BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1094        .addReg(X86::EAX, RegState::Kill);
1095
1096      // Allocate NumBytes-4 bytes on stack. We'll also use 4 already
1097      // allocated bytes for EAX.
1098      BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1099        .addImm(NumBytes - 4);
1100      BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
1101        .addExternalSymbol("_alloca")
1102        .addReg(StackPtr, RegState::Define | RegState::Implicit);
1103
1104      // Restore EAX
1105      MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
1106                                              X86::EAX),
1107                                      StackPtr, false, NumBytes - 4);
1108      MBB.insert(MBBI, MI);
1109    }
1110  } else if (NumBytes) {
1111    // If there is an SUB32ri of ESP immediately before this instruction, merge
1112    // the two. This can be the case when tail call elimination is enabled and
1113    // the callee has more arguments then the caller.
1114    NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
1115
1116    // If there is an ADD32ri or SUB32ri of ESP immediately after this
1117    // instruction, merge the two instructions.
1118    mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
1119
1120    if (NumBytes)
1121      emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, TII);
1122  }
1123
1124  if ((NumBytes || PushedRegs) && needsFrameMoves) {
1125    // Mark end of stack pointer adjustment.
1126    MCSymbol *Label = MMI.getContext().CreateTempSymbol();
1127    BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
1128
1129    if (!HasFP && NumBytes) {
1130      // Define the current CFA rule to use the provided offset.
1131      if (StackSize) {
1132        MachineLocation SPDst(MachineLocation::VirtualFP);
1133        MachineLocation SPSrc(MachineLocation::VirtualFP,
1134                              -StackSize + stackGrowth);
1135        Moves.push_back(MachineMove(Label, SPDst, SPSrc));
1136      } else {
1137        // FIXME: Verify & implement for FP
1138        MachineLocation SPDst(StackPtr);
1139        MachineLocation SPSrc(StackPtr, stackGrowth);
1140        Moves.push_back(MachineMove(Label, SPDst, SPSrc));
1141      }
1142    }
1143
1144    // Emit DWARF info specifying the offsets of the callee-saved registers.
1145    if (PushedRegs)
1146      emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
1147  }
1148}
1149
1150void X86RegisterInfo::emitEpilogue(MachineFunction &MF,
1151                                   MachineBasicBlock &MBB) const {
1152  const MachineFrameInfo *MFI = MF.getFrameInfo();
1153  X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1154  MachineBasicBlock::iterator MBBI = prior(MBB.end());
1155  unsigned RetOpcode = MBBI->getOpcode();
1156  DebugLoc DL = MBBI->getDebugLoc();
1157
1158  switch (RetOpcode) {
1159  default:
1160    llvm_unreachable("Can only insert epilog into returning blocks");
1161  case X86::RET:
1162  case X86::RETI:
1163  case X86::TCRETURNdi:
1164  case X86::TCRETURNri:
1165  case X86::TCRETURNmi:
1166  case X86::TCRETURNdi64:
1167  case X86::TCRETURNri64:
1168  case X86::TCRETURNmi64:
1169  case X86::EH_RETURN:
1170  case X86::EH_RETURN64:
1171    break;  // These are ok
1172  }
1173
1174  // Get the number of bytes to allocate from the FrameInfo.
1175  uint64_t StackSize = MFI->getStackSize();
1176  uint64_t MaxAlign  = MFI->getMaxAlignment();
1177  unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1178  uint64_t NumBytes = 0;
1179
1180  if (hasFP(MF)) {
1181    // Calculate required stack adjustment.
1182    uint64_t FrameSize = StackSize - SlotSize;
1183    if (needsStackRealignment(MF))
1184      FrameSize = (FrameSize + MaxAlign - 1)/MaxAlign*MaxAlign;
1185
1186    NumBytes = FrameSize - CSSize;
1187
1188    // Pop EBP.
1189    BuildMI(MBB, MBBI, DL,
1190            TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1191  } else {
1192    NumBytes = StackSize - CSSize;
1193  }
1194
1195  // Skip the callee-saved pop instructions.
1196  MachineBasicBlock::iterator LastCSPop = MBBI;
1197  while (MBBI != MBB.begin()) {
1198    MachineBasicBlock::iterator PI = prior(MBBI);
1199    unsigned Opc = PI->getOpcode();
1200
1201    if (Opc != X86::POP32r && Opc != X86::POP64r &&
1202        !PI->getDesc().isTerminator())
1203      break;
1204
1205    --MBBI;
1206  }
1207
1208  DL = MBBI->getDebugLoc();
1209
1210  // If there is an ADD32ri or SUB32ri of ESP immediately before this
1211  // instruction, merge the two instructions.
1212  if (NumBytes || MFI->hasVarSizedObjects())
1213    mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
1214
1215  // If dynamic alloca is used, then reset esp to point to the last callee-saved
1216  // slot before popping them off! Same applies for the case, when stack was
1217  // realigned.
1218  if (needsStackRealignment(MF)) {
1219    // We cannot use LEA here, because stack pointer was realigned. We need to
1220    // deallocate local frame back.
1221    if (CSSize) {
1222      emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1223      MBBI = prior(LastCSPop);
1224    }
1225
1226    BuildMI(MBB, MBBI, DL,
1227            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1228            StackPtr).addReg(FramePtr);
1229  } else if (MFI->hasVarSizedObjects()) {
1230    if (CSSize) {
1231      unsigned Opc = Is64Bit ? X86::LEA64r : X86::LEA32r;
1232      MachineInstr *MI =
1233        addRegOffset(BuildMI(MF, DL, TII.get(Opc), StackPtr),
1234                     FramePtr, false, -CSSize);
1235      MBB.insert(MBBI, MI);
1236    } else {
1237      BuildMI(MBB, MBBI, DL,
1238              TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), StackPtr)
1239        .addReg(FramePtr);
1240    }
1241  } else if (NumBytes) {
1242    // Adjust stack pointer back: ESP += numbytes.
1243    emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, TII);
1244  }
1245
1246  // We're returning from function via eh_return.
1247  if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1248    MBBI = prior(MBB.end());
1249    MachineOperand &DestAddr  = MBBI->getOperand(0);
1250    assert(DestAddr.isReg() && "Offset should be in register!");
1251    BuildMI(MBB, MBBI, DL,
1252            TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1253            StackPtr).addReg(DestAddr.getReg());
1254  } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1255             RetOpcode == X86::TCRETURNmi ||
1256             RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
1257             RetOpcode == X86::TCRETURNmi64) {
1258    bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
1259    // Tail call return: adjust the stack pointer and jump to callee.
1260    MBBI = prior(MBB.end());
1261    MachineOperand &JumpTarget = MBBI->getOperand(0);
1262    MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
1263    assert(StackAdjust.isImm() && "Expecting immediate value.");
1264
1265    // Adjust stack pointer.
1266    int StackAdj = StackAdjust.getImm();
1267    int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1268    int Offset = 0;
1269    assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1270
1271    // Incoporate the retaddr area.
1272    Offset = StackAdj-MaxTCDelta;
1273    assert(Offset >= 0 && "Offset should never be negative");
1274
1275    if (Offset) {
1276      // Check for possible merge with preceeding ADD instruction.
1277      Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1278      emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, TII);
1279    }
1280
1281    // Jump to label or value in register.
1282    if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
1283      BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
1284                                     ? X86::TAILJMPd : X86::TAILJMPd64)).
1285        addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
1286                         JumpTarget.getTargetFlags());
1287    } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
1288      MachineInstrBuilder MIB =
1289        BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
1290                                       ? X86::TAILJMPm : X86::TAILJMPm64));
1291      for (unsigned i = 0; i != 5; ++i)
1292        MIB.addOperand(MBBI->getOperand(i));
1293    } else if (RetOpcode == X86::TCRETURNri64) {
1294      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
1295        addReg(JumpTarget.getReg(), RegState::Kill);
1296    } else {
1297      BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
1298        addReg(JumpTarget.getReg(), RegState::Kill);
1299    }
1300
1301    MachineInstr *NewMI = prior(MBBI);
1302    for (unsigned i = 2, e = MBBI->getNumOperands(); i != e; ++i)
1303      NewMI->addOperand(MBBI->getOperand(i));
1304
1305    // Delete the pseudo instruction TCRETURN.
1306    MBB.erase(MBBI);
1307  } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1308             (X86FI->getTCReturnAddrDelta() < 0)) {
1309    // Add the return addr area delta back since we are not tail calling.
1310    int delta = -1*X86FI->getTCReturnAddrDelta();
1311    MBBI = prior(MBB.end());
1312
1313    // Check for possible merge with preceeding ADD instruction.
1314    delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1315    emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, TII);
1316  }
1317}
1318
1319unsigned X86RegisterInfo::getRARegister() const {
1320  return Is64Bit ? X86::RIP     // Should have dwarf #16.
1321                 : X86::EIP;    // Should have dwarf #8.
1322}
1323
1324unsigned X86RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
1325  return hasFP(MF) ? FramePtr : StackPtr;
1326}
1327
1328void
1329X86RegisterInfo::getInitialFrameState(std::vector<MachineMove> &Moves) const {
1330  // Calculate amount of bytes used for return address storing
1331  int stackGrowth = (Is64Bit ? -8 : -4);
1332
1333  // Initial state of the frame pointer is esp+stackGrowth.
1334  MachineLocation Dst(MachineLocation::VirtualFP);
1335  MachineLocation Src(StackPtr, stackGrowth);
1336  Moves.push_back(MachineMove(0, Dst, Src));
1337
1338  // Add return address to move list
1339  MachineLocation CSDst(StackPtr, stackGrowth);
1340  MachineLocation CSSrc(getRARegister());
1341  Moves.push_back(MachineMove(0, CSDst, CSSrc));
1342}
1343
1344unsigned X86RegisterInfo::getEHExceptionRegister() const {
1345  llvm_unreachable("What is the exception register");
1346  return 0;
1347}
1348
1349unsigned X86RegisterInfo::getEHHandlerRegister() const {
1350  llvm_unreachable("What is the exception handler register");
1351  return 0;
1352}
1353
1354namespace llvm {
1355unsigned getX86SubSuperRegister(unsigned Reg, EVT VT, bool High) {
1356  switch (VT.getSimpleVT().SimpleTy) {
1357  default: return Reg;
1358  case MVT::i8:
1359    if (High) {
1360      switch (Reg) {
1361      default: return 0;
1362      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1363        return X86::AH;
1364      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1365        return X86::DH;
1366      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1367        return X86::CH;
1368      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1369        return X86::BH;
1370      }
1371    } else {
1372      switch (Reg) {
1373      default: return 0;
1374      case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1375        return X86::AL;
1376      case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1377        return X86::DL;
1378      case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1379        return X86::CL;
1380      case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1381        return X86::BL;
1382      case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1383        return X86::SIL;
1384      case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1385        return X86::DIL;
1386      case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1387        return X86::BPL;
1388      case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1389        return X86::SPL;
1390      case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1391        return X86::R8B;
1392      case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1393        return X86::R9B;
1394      case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1395        return X86::R10B;
1396      case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1397        return X86::R11B;
1398      case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1399        return X86::R12B;
1400      case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1401        return X86::R13B;
1402      case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1403        return X86::R14B;
1404      case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1405        return X86::R15B;
1406      }
1407    }
1408  case MVT::i16:
1409    switch (Reg) {
1410    default: return Reg;
1411    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1412      return X86::AX;
1413    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1414      return X86::DX;
1415    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1416      return X86::CX;
1417    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1418      return X86::BX;
1419    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1420      return X86::SI;
1421    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1422      return X86::DI;
1423    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1424      return X86::BP;
1425    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1426      return X86::SP;
1427    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1428      return X86::R8W;
1429    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1430      return X86::R9W;
1431    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1432      return X86::R10W;
1433    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1434      return X86::R11W;
1435    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1436      return X86::R12W;
1437    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1438      return X86::R13W;
1439    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1440      return X86::R14W;
1441    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1442      return X86::R15W;
1443    }
1444  case MVT::i32:
1445    switch (Reg) {
1446    default: return Reg;
1447    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1448      return X86::EAX;
1449    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1450      return X86::EDX;
1451    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1452      return X86::ECX;
1453    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1454      return X86::EBX;
1455    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1456      return X86::ESI;
1457    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1458      return X86::EDI;
1459    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1460      return X86::EBP;
1461    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1462      return X86::ESP;
1463    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1464      return X86::R8D;
1465    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1466      return X86::R9D;
1467    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1468      return X86::R10D;
1469    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1470      return X86::R11D;
1471    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1472      return X86::R12D;
1473    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1474      return X86::R13D;
1475    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1476      return X86::R14D;
1477    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1478      return X86::R15D;
1479    }
1480  case MVT::i64:
1481    switch (Reg) {
1482    default: return Reg;
1483    case X86::AH: case X86::AL: case X86::AX: case X86::EAX: case X86::RAX:
1484      return X86::RAX;
1485    case X86::DH: case X86::DL: case X86::DX: case X86::EDX: case X86::RDX:
1486      return X86::RDX;
1487    case X86::CH: case X86::CL: case X86::CX: case X86::ECX: case X86::RCX:
1488      return X86::RCX;
1489    case X86::BH: case X86::BL: case X86::BX: case X86::EBX: case X86::RBX:
1490      return X86::RBX;
1491    case X86::SIL: case X86::SI: case X86::ESI: case X86::RSI:
1492      return X86::RSI;
1493    case X86::DIL: case X86::DI: case X86::EDI: case X86::RDI:
1494      return X86::RDI;
1495    case X86::BPL: case X86::BP: case X86::EBP: case X86::RBP:
1496      return X86::RBP;
1497    case X86::SPL: case X86::SP: case X86::ESP: case X86::RSP:
1498      return X86::RSP;
1499    case X86::R8B: case X86::R8W: case X86::R8D: case X86::R8:
1500      return X86::R8;
1501    case X86::R9B: case X86::R9W: case X86::R9D: case X86::R9:
1502      return X86::R9;
1503    case X86::R10B: case X86::R10W: case X86::R10D: case X86::R10:
1504      return X86::R10;
1505    case X86::R11B: case X86::R11W: case X86::R11D: case X86::R11:
1506      return X86::R11;
1507    case X86::R12B: case X86::R12W: case X86::R12D: case X86::R12:
1508      return X86::R12;
1509    case X86::R13B: case X86::R13W: case X86::R13D: case X86::R13:
1510      return X86::R13;
1511    case X86::R14B: case X86::R14W: case X86::R14D: case X86::R14:
1512      return X86::R14;
1513    case X86::R15B: case X86::R15W: case X86::R15D: case X86::R15:
1514      return X86::R15;
1515    }
1516  }
1517
1518  return Reg;
1519}
1520}
1521
1522#include "X86GenRegisterInfo.inc"
1523
1524namespace {
1525  struct MSAH : public MachineFunctionPass {
1526    static char ID;
1527    MSAH() : MachineFunctionPass(ID) {}
1528
1529    virtual bool runOnMachineFunction(MachineFunction &MF) {
1530      const X86TargetMachine *TM =
1531        static_cast<const X86TargetMachine *>(&MF.getTarget());
1532      const X86RegisterInfo *X86RI = TM->getRegisterInfo();
1533      MachineRegisterInfo &RI = MF.getRegInfo();
1534      X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1535      unsigned StackAlignment = X86RI->getStackAlignment();
1536
1537      // Be over-conservative: scan over all vreg defs and find whether vector
1538      // registers are used. If yes, there is a possibility that vector register
1539      // will be spilled and thus require dynamic stack realignment.
1540      for (unsigned RegNum = TargetRegisterInfo::FirstVirtualRegister;
1541           RegNum < RI.getLastVirtReg(); ++RegNum)
1542        if (RI.getRegClass(RegNum)->getAlignment() > StackAlignment) {
1543          FuncInfo->setReserveFP(true);
1544          return true;
1545        }
1546
1547      // Nothing to do
1548      return false;
1549    }
1550
1551    virtual const char *getPassName() const {
1552      return "X86 Maximal Stack Alignment Check";
1553    }
1554
1555    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1556      AU.setPreservesCFG();
1557      MachineFunctionPass::getAnalysisUsage(AU);
1558    }
1559  };
1560
1561  char MSAH::ID = 0;
1562}
1563
1564FunctionPass*
1565llvm::createX86MaxStackAlignmentHeuristicPass() { return new MSAH(); }
1566